
ptg

Linux Kernel
Development

Third Edition

Robert Love

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

 From the Library of Wow! eBook

ptg

Linux Kernel Development
Third Edition

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise.

ISBN-13: 978-0-672-32946-3
ISBN-10: 0-672-32946-8

Library of Congress Cataloging-in-Publication Data:

Love, Robert.

Linux kernel development / Robert Love. — 3rd ed.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-672-32946-3 (pbk. : alk. paper) 1. Linux. 2. Operating systems (Computers)
I. Title.

QA76.76.O63L674 2010

005.4’32—dc22

2010018961

Text printed in the United States on recycled paper at RR Donnelley, Crawfordsville, Indiana.
First printing June 2010

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publish-
er was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Acquisitions Editor
Mark Taber

Development
Editor
Michael Thurston

Technical Editor
Robert P. J. Day

Managing Editor
Sandra Schroeder

Senior Project
Editor
Tonya Simpson

Copy Editor
Apostrophe Editing
Services

Indexer
Brad Herriman

Proofreader
Debbie Williams

Publishing
Coordinator
Vanessa Evans

Book Designer
Gary Adair

Compositor
Mark Shirar

 From the Library of Wow! eBook

ptg

Contents at a Glance
1 Introduction to the Linux Kernel 1

2 Getting Started with the Kernel 11

3 Process Management 23

4 Process Scheduling 41

5 System Calls 69

6 Kernel Data Structures 85

7 Interrupts and Interrupt Handlers 113

8 Bottom Halves and Deferring Work 133

9 An Introduction to Kernel Synchronization 161

10 Kernel Synchronization Methods 175

11 Timers and Time Management 207

12 Memory Management 231

13 The Virtual Filesystem 261

14 The Block I/O Layer 289

15 The Process Address Space 305

16 The Page Cache and Page Writeback 323

17 Devices and Modules 337

18 Debugging 363

19 Portability 379

20 Patches, Hacking, and the Community 395

Bibliography 407

Index 411

 From the Library of Wow! eBook

ptg

Table of Contents

1 Introduction to the Linux Kernel 1
History of Unix 1

Along Came Linus: Introduction to Linux 3

Overview of Operating Systems and Kernels 4

Linux Versus Classic Unix Kernels 6

Linux Kernel Versions 8

The Linux Kernel Development Community 10

Before We Begin 10

2 Getting Started with the Kernel 11
Obtaining the Kernel Source 11

Using Git 11

Installing the Kernel Source 12

Using Patches 12

The Kernel Source Tree 12

Building the Kernel 13

Configuring the Kernel 14

Minimizing Build Noise 15

Spawning Multiple Build Jobs 16

Installing the New Kernel 16

A Beast of a Different Nature 16

No libc or Standard Headers 17

GNU C 18

Inline Functions 18

Inline Assembly 19

Branch Annotation 19

No Memory Protection 20

No (Easy) Use of Floating Point 20

Small, Fixed-Size Stack 20

Synchronization and Concurrency 21

Importance of Portability 21

Conclusion 21

 From the Library of Wow! eBook

ptg

viii Contents

3 Process Management 23
The Process 23

Process Descriptor and the Task Structure 24

Allocating the Process Descriptor 25

Storing the Process Descriptor 26

Process State 27

Manipulating the Current Process State 29

Process Context 29

The Process Family Tree 29

Process Creation 31

Copy-on-Write 31

Forking 32

vfork() 33

The Linux Implementation of Threads 33

Creating Threads 34

Kernel Threads 35

Process Termination 36

Removing the Process Descriptor 37

The Dilemma of the Parentless Task 38

Conclusion 40

4 Process Scheduling 41
Multitasking 41

Linux’s Process Scheduler 42

Policy 43

I/O-Bound Versus Processor-Bound Processes 43

Process Priority 44

Timeslice 45

The Scheduling Policy in Action 45

The Linux Scheduling Algorithm 46

Scheduler Classes 46

Process Scheduling in Unix Systems 47

Fair Scheduling 48

The Linux Scheduling Implementation 50

Time Accounting 50

The Scheduler Entity Structure 50

The Virtual Runtime 51

 From the Library of Wow! eBook

ptg

ixContents

Process Selection 52

Picking the Next Task 53

Adding Processes to the Tree 54

Removing Processes from the Tree 56

The Scheduler Entry Point 57

Sleeping and Waking Up 58

Wait Queues 58

Waking Up 61

Preemption and Context Switching 62

User Preemption 62

Kernel Preemption 63

Real-Time Scheduling Policies 64

Scheduler-Related System Calls 65

Scheduling Policy and Priority-Related
System Calls 66

Processor Affinity System Calls 66

Yielding Processor Time 66

Conclusion 67

5 System Calls 69
Communicating with the Kernel 69

APIs, POSIX, and the C Library 70

Syscalls 71

System Call Numbers 72

System Call Performance 72

System Call Handler 73

Denoting the Correct System Call 73

Parameter Passing 74

System Call Implementation 74

Implementing System Calls 74

Verifying the Parameters 75

System Call Context 78

Final Steps in Binding a System Call 79

Accessing the System Call from User-Space 81

Why Not to Implement a System Call 82

Conclusion 83

 From the Library of Wow! eBook

ptg

x Contents

6 Kernel Data Structures 85
Linked Lists 85

Singly and Doubly Linked Lists 85

Circular Linked Lists 86

Moving Through a Linked List 87

The Linux Kernel’s Implementation 88

The Linked List Structure 88

Defining a Linked List 89

List Heads 90

Manipulating Linked Lists 90

Adding a Node to a Linked List 90

Deleting a Node from a Linked List 91

Moving and Splicing Linked List Nodes 92

Traversing Linked Lists 93

The Basic Approach 93

The Usable Approach 93

Iterating Through a List Backward 94

Iterating While Removing 95

Other Linked List Methods 96

Queues 96

kfifo 97

Creating a Queue 97

Enqueuing Data 98

Dequeuing Data 98

Obtaining the Size of a Queue 98

Resetting and Destroying the Queue 99

Example Queue Usage 99

Maps 100

Initializing an idr 101

Allocating a New UID 101

Looking Up a UID 102

Removing a UID 103

Destroying an idr 103

Binary Trees 103

Binary Search Trees 104

Self-Balancing Binary Search Trees 105

Red-Black Trees 105

rbtrees 106

 From the Library of Wow! eBook

ptg

xiContents

What Data Structure to Use, When 108

Algorithmic Complexity 109

Algorithms 109

Big-O Notation 109

Big Theta Notation 109

Time Complexity 110

Conclusion 111

7 Interrupts and Interrupt Handlers 113
Interrupts 113

Interrupt Handlers 114

Top Halves Versus Bottom Halves 115

Registering an Interrupt Handler 116

Interrupt Handler Flags 116

An Interrupt Example 117

Freeing an Interrupt Handler 118

Writing an Interrupt Handler 118

Shared Handlers 119

A Real-Life Interrupt Handler 120

Interrupt Context 122

Implementing Interrupt Handlers 123

/proc/interrupts 126

Interrupt Control 127

Disabling and Enabling Interrupts 127

Disabling a Specific Interrupt Line 129

Status of the Interrupt System 130

Conclusion 131

8 Bottom Halves and Deferring Work 133
Bottom Halves 134

Why Bottom Halves? 134

A World of Bottom Halves 135

The Original “Bottom Half” 135

Task Queues 135

Softirqs and Tasklets 136

Dispelling the Confusion 137

 From the Library of Wow! eBook

ptg

xii Contents

Softirqs 137

Implementing Softirqs 137

The Softirq Handler 138

Executing Softirqs 138

Using Softirqs 140

Assigning an Index 140

Registering Your Handler 141

Raising Your Softirq 141

Tasklets 142

Implementing Tasklets 142

The Tasklet Structure 142

Scheduling Tasklets 143

Using Tasklets 144

Declaring Your Tasklet 144

Writing Your Tasklet Handler 145

Scheduling Your Tasklet 145

ksoftirqd 146

The Old BH Mechanism 148

Work Queues 149

Implementing Work Queues 149

Data Structures Representing the Threads 149

Data Structures Representing the Work 150

Work Queue Implementation Summary 152

Using Work Queues 153

Creating Work 153

Your Work Queue Handler 153

Scheduling Work 153

Flushing Work 154

Creating New Work Queues 154

The Old Task Queue Mechanism 155

Which Bottom Half Should I Use? 156

Locking Between the Bottom Halves 157

Disabling Bottom Halves 157

Conclusion 159

9 An Introduction to Kernel Synchronization 161
Critical Regions and Race Conditions 162

Why Do We Need Protection? 162

The Single Variable 163

 From the Library of Wow! eBook

ptg

xiiiContents

Locking 165

Causes of Concurrency 167

Knowing What to Protect 168

Deadlocks 169

Contention and Scalability 171

Conclusion 172

10 Kernel Synchronization Methods 175
Atomic Operations 175

Atomic Integer Operations 176

64-Bit Atomic Operations 180

Atomic Bitwise Operations 181

Spin Locks 183

Spin Lock Methods 184

Other Spin Lock Methods 186

Spin Locks and Bottom Halves 187

Reader-Writer Spin Locks 188

Semaphores 190

Counting and Binary Semaphores 191

Creating and Initializing Semaphores 192

Using Semaphores 193

Reader-Writer Semaphores 194

Mutexes 195

Semaphores Versus Mutexes 197

Spin Locks Versus Mutexes 197

Completion Variables 197

BKL: The Big Kernel Lock 198

Sequential Locks 200

Preemption Disabling 201

Ordering and Barriers 203

Conclusion 206

11 Timers and Time Management 207
Kernel Notion of Time 208

The Tick Rate: HZ 208

The Ideal HZ Value 210

Advantages with a Larger HZ 210

Disadvantages with a Larger HZ 211

 From the Library of Wow! eBook

ptg

xiv Contents

Jiffies 212

Internal Representation of Jiffies 213

Jiffies Wraparound 214

User-Space and HZ 216

Hardware Clocks and Timers 216

Real-Time Clock 217

System Timer 217

The Timer Interrupt Handler 217

The Time of Day 220

Timers 222

Using Timers 222

Timer Race Conditions 224

Timer Implementation 224

Delaying Execution 225

Busy Looping 225

Small Delays 226

schedule_timeout() 227

schedule_timeout() Implementation 228

Sleeping on a Wait Queue, with a Timeout 229

Conclusion 230

12 Memory Management 231
Pages 231

Zones 233

Getting Pages 235

Getting Zeroed Pages 236

Freeing Pages 237

kmalloc() 238

gfp_mask Flags 238

Action Modifiers 239

Zone Modifiers 240

Type Flags 241

kfree() 243

vmalloc() 244

Slab Layer 245

Design of the Slab Layer 246

 From the Library of Wow! eBook

ptg

xvContents

Slab Allocator Interface 249

Allocating from the Cache 250

Example of Using the Slab Allocator 251

Statically Allocating on the Stack 252

Single-Page Kernel Stacks 252

Playing Fair on the Stack 253

High Memory Mappings 253

Permanent Mappings 254

Temporary Mappings 254

Per-CPU Allocations 255

The New percpu Interface 256

Per-CPU Data at Compile-Time 256

Per-CPU Data at Runtime 257

Reasons for Using Per-CPU Data 258

Picking an Allocation Method 259

Conclusion 260

13 The Virtual Filesystem 261
Common Filesystem Interface 261

Filesystem Abstraction Layer 262

Unix Filesystems 263

VFS Objects and Their Data Structures 265

The Superblock Object 266

Superblock Operations 267

The Inode Object 270

Inode Operations 271

The Dentry Object 275

Dentry State 276

The Dentry Cache 276

Dentry Operations 278

The File Object 279

File Operations 280

Data Structures Associated with Filesystems 285

Data Structures Associated with a Process 286

Conclusion 288

 From the Library of Wow! eBook

ptg

xvi Contents

14 The Block I/O Layer 289
Anatomy of a Block Device 290

Buffers and Buffer Heads 291

The bio Structure 294

I/O vectors 295

The Old Versus the New 296

Request Queues 297

I/O Schedulers 297

The Job of an I/O Scheduler 298

The Linus Elevator 299

The Deadline I/O Scheduler 300

The Anticipatory I/O Scheduler 302

The Complete Fair Queuing I/O Scheduler 303

The Noop I/O Scheduler 303

I/O Scheduler Selection 304

Conclusion 304

15 The Process Address Space 305
Address Spaces 305

The Memory Descriptor 306

Allocating a Memory Descriptor 308

Destroying a Memory Descriptor 309

The mm_struct and Kernel Threads 309

Virtual Memory Areas 309

VMA Flags 311

VMA Operations 312

Lists and Trees of Memory Areas 313

Memory Areas in Real Life 314

Manipulating Memory Areas 315

find_vma() 316

find_vma_prev() 317

find_vma_intersection() 317

mmap() and do_mmap(): Creating an
Address Interval 318

munmap() and do_munmap(): Removing an
Address Interval 320

Page Tables 320

Conclusion 322

 From the Library of Wow! eBook

ptg

xviiContents

16 The Page Cache and Page Writeback 323
Approaches to Caching 323

Write Caching 324

Cache Eviction 324

Least Recently Used 325

The Two-List Strategy 325

The Linux Page Cache 326

The address_space Object 326

address_space Operations 328

Radix Tree 330

The Old Page Hash Table 330

The Buffer Cache 330

The Flusher Threads 331

Laptop Mode 333

History: bdflush, kupdated, and pdflush 333

Avoiding Congestion with Multiple Threads 334

Conclusion 335

17 Devices and Modules 337
Device Types 337

Modules 338

Hello, World! 338

Building Modules 340

Living in the Source Tree 340

Living Externally 342

Installing Modules 342

Generating Module Dependencies 342

Loading Modules 343

Managing Configuration Options 344

Module Parameters 346

Exported Symbols 348

The Device Model 348

Kobjects 349

Ktypes 350

Ksets 351

Interrelation of Kobjects, Ktypes, and Ksets 351

Managing and Manipulating Kobjects 352

 From the Library of Wow! eBook

ptg

xviii Contents

Reference Counts 353

Incrementing and Decrementing
Reference Counts 354

Krefs 354

sysfs 355

Adding and Removing kobjects from sysfs 357

Adding Files to sysfs 358

Default Attributes 358

Creating New Attributes 359

Destroying Attributes 360

sysfs Conventions 360

The Kernel Events Layer 361

Conclusion 362

18 Debugging 363
Getting Started 363

Bugs in the Kernel 364

Debugging by Printing 364

Robustness 365

Loglevels 365

The Log Buffer 366

syslogd and klogd 367

Transposing printf() and printk() 367

Oops 367

ksymoops 369

kallsyms 369

Kernel Debugging Options 370

Asserting Bugs and Dumping Information 370

Magic SysRq Key 371

The Saga of a Kernel Debugger 372

gdb 372

kgdb 373

Poking and Probing the System 373

Using UID as a Conditional 373

Using Condition Variables 374

Using Statistics 374

Rate and Occurrence Limiting Your Debugging 375

 From the Library of Wow! eBook

ptg

xixContents

Binary Searching to Find the Culprit Change 376

Binary Searching with Git 376

When All Else Fails: The Community 377

Conclusion 378

19 Portability 379
Portable Operating Systems 379

History of Portability in Linux 380

Word Size and Data Types 381

Opaque Types 384

Special Types 384

Explicitly Sized Types 385

Signedness of Chars 386

Data Alignment 386

Avoiding Alignment Issues 387

Alignment of Nonstandard Types 387

Structure Padding 387

Byte Order 389

Time 391

Page Size 391

Processor Ordering 392

SMP, Kernel Preemption, and High Memory 393

Conclusion 393

20 Patches, Hacking, and the Community 395
The Community 395

Linux Coding Style 396

Indention 396

Switch Statements 396

Spacing 397

Braces 398

Line Length 399

Naming 400

Functions 400

Comments 400

Typedefs 401

Use Existing Routines 402

 From the Library of Wow! eBook

ptg

xx Contents

Minimize ifdefs in the Source 402

Structure Initializers 402

Fixing Up Code Ex Post Facto 403

Chain of Command 403

Submitting Bug Reports 403

Patches 404

Generating Patches 404

Generating Patches with Git 405

Submitting Patches 406

Conclusion 406

Bibliography 407

Index 411

 From the Library of Wow! eBook

ptg

Foreword

As the Linux kernel and the applications that use it become more widely used, we are
seeing an increasing number of system software developers who wish to become involved
in the development and maintenance of Linux. Some of these engineers are motivated
purely by personal interest, some work for Linux companies, some work for hardware
manufacturers, and some are involved with in-house development projects.

But all face a common problem:The learning curve for the kernel is getting longer
and steeper.The system is becoming increasingly complex, and it is very large.And as the
years pass, the current members of the kernel development team gain deeper and broader
knowledge of the kernel’s internals, which widens the gap between them and newcomers.

I believe that this declining accessibility of the Linux source base is already a problem
for the quality of the kernel, and it will become more serious over time.Those who care
for Linux clearly have an interest in increasing the number of developers who can con-
tribute to the kernel.

One approach to this problem is to keep the code clean: sensible interfaces, consistent
layout,“do one thing, do it well,” and so on.This is Linus Torvalds’ solution.

The approach that I counsel is to liberally apply commentary to the code: words that
the reader can use to understand what the coder intended to achieve at the time. (The
process of identifying divergences between the intent and the implementation is known
as debugging. It is hard to do this if the intent is not known.)

But even code commentary does not provide the broad-sweep view of what a major
subsystem is intended to do, and of how its developers set about doing it.This, the start-
ing point of understanding, is what the written word serves best.

Robert Love’s contribution provides a means by which experienced developers can
gain that essential view of what services the kernel subsystems are supposed to provide,
and of how they set about providing them.This will be sufficient knowledge for many
people: the curious, the application developers, those who wish to evaluate the kernel’s
design, and others.

But the book is also a stepping stone to take aspiring kernel developers to the next
stage, which is making alterations to the kernel to achieve some defined objective. I
would encourage aspiring developers to get their hands dirty:The best way to under-
stand a part of the kernel is to make changes to it. Making a change forces the developer
to a level of understanding which merely reading the code does not provide.The serious
kernel developer will join the development mailing lists and will interact with other
developers.This interaction is the primary means by which kernel contributors learn

 From the Library of Wow! eBook

ptg

and stay abreast. Robert covers the mechanics and culture of this important part of
kernel life well.

Please enjoy and learn from Robert’s book.And should you decide to take the next
step and become a member of the kernel development community, consider yourself
welcomed in advance.We value and measure people by the usefulness of their contribu-
tions, and when you contribute to Linux, you do so in the knowledge that your work is
of small but immediate benefit to tens or even hundreds of millions of human beings.
This is a most enjoyable privilege and responsibility.

Andrew Morton

 From the Library of Wow! eBook

ptg

Preface

When I was first approached about converting my experiences with the Linux kernel
into a book, I proceeded with trepidation.What would place my book at the top of its
subject? I was not interested unless I could do something special, a best-in-class work.

I realized that I could offer a unique approach to the topic. My job is hacking the kernel.
My hobby is hacking the kernel. My love is hacking the kernel. Over the years, I have accu-
mulated interesting anecdotes and insider tips.With my experiences, I could write a book on
how to hack the kernel and—just as important—how not to hack the kernel. First and fore-
most, this is a book about the design and implementation of the Linux kernel.This book’s
approach differs from would-be competitors, however, in that the information is given with
a slant to learning enough to actually get work done—and getting it done right. I am a
pragmatic engineer and this is a practical book. It should be fun, easy to read, and useful.

I hope that readers can walk away from this work with a better understanding of the
rules (written and unwritten) of the Linux kernel. I intend that you, fresh from reading
this book and the kernel source code, can jump in and start writing useful, correct, clean
kernel code. Of course, you can read this book just for fun, too.

That was the first edition.Time has passed, and now we return once more to the fray.
This third edition offers quite a bit over the first and second: intense polish and revision,
updates, and many fresh sections and all new chapters.This edition incorporates changes in
the kernel since the second edition. More important, however, is the decision made by the
Linux kernel community to not proceed with a 2.7 development kernel in the near to mid-
term.1 Instead, kernel developers plan to continue developing and stabilizing the 2.6 series.
This decision has many implications, but the item of relevance to this book is that there is
quite a bit of staying power in a contemporary book on the 2.6 Linux kernel.As the Linux
kernel matures, there is a greater chance of a snapshot of the kernel remaining representative
long into the future.This book functions as the canonical documentation for the kernel,
documenting it with both an understanding of its history and an eye to the future.

Using This Book
Developing code in the kernel does not require genius, magic, or a bushy Unix-hacker
beard.The kernel, although having some interesting rules of its own, is not much differ-
ent from any other large software endeavor.You need to master many details—as with
any big project—but the differences are quantitative, not qualitative.

1 This decision was made in the summer of 2004 at the annual Linux Kernel Developers Summit in

Ottawa, Canada. Your author was an invited attendee.

 From the Library of Wow! eBook

ptg

It is imperative that you utilize the source.The open availability of the source code
for the Linux system is a rare gift that you must not take for granted. It is not sufficient
only to read the source, however.You need to dig in and change some code. Find a bug
and fix it. Improve the drivers for your hardware.Add some new functionality, even if it
is trivial. Find an itch and scratch it! Only when you write code will it all come together.

Kernel Version
This book is based on the 2.6 Linux kernel series. It does not cover older kernels, except
for historical relevance.We discuss, for example, how certain subsystems are implemented
in the 2.4 Linux kernel series, as their simpler implementations are helpful teaching aids.
Specifically, this book is up to date as of Linux kernel version 2.6.34.Although the ker-
nel is a moving target and no effort can hope to capture such a dynamic beast in a time-
less manner, my intention is that this book is relevant for developers and users of both
older and newer kernels.

Although this book discusses the 2.6.34 kernel, I have made an effort to ensure the
material is factually correct with respect to the 2.6.32 kernel as well.That latter version
is sanctioned as the “enterprise” kernel by the various Linux distributions, ensuring we
will continue to see it in production systems and under active development for many
years. (2.6.9, 2.6.18, and 2.6.27 were similar “long-term” releases.)

Audience
This book targets Linux developers and users who are interested in understanding the
Linux kernel. It is not a line-by-line commentary of the kernel source. Nor is it a guide
to developing drivers or a reference on the kernel API. Instead, the goal of this book is
to provide enough information on the design and implementation of the Linux kernel
that a sufficiently accomplished programmer can begin developing code in the kernel.
Kernel development can be fun and rewarding, and I want to introduce the reader to
that world as readily as possible.This book, however, in discussing both theory and appli-
cation, should appeal to readers of both academic and practical persuasions. I have always
been of the mind that one needs to understand the theory to understand the application,
but I try to balance the two in this work. I hope that whatever your motivations for
understanding the Linux kernel, this book explains the design and implementation suffi-
ciently for your needs.

Thus, this book covers both the usage of core kernel systems and their design and
implementation. I think this is important and deserves a moment’s discussion.A good
example is Chapter 8,“Bottom Halves and Deferring Work,” which covers a component
of device drivers called bottom halves. In that chapter, I discuss both the design and
implementation of the kernel’s bottom-half mechanisms (which a core kernel developer
or academic might find interesting) and how to actually use the exported interfaces to
implement your own bottom half (which a device driver developer or casual hacker can
find pertinent). I believe all groups can find both discussions relevant.The core kernel

 From the Library of Wow! eBook

ptg

developer, who certainly needs to understand the inner workings of the kernel, should
have a good understanding of how the interfaces are actually used.At the same time, a
device driver writer can benefit from a good understanding of the implementation
behind the interface.

This is akin to learning some library’s API versus studying the actual implementation
of the library.At first glance, an application programmer needs to understand only the
API—it is often taught to treat interfaces as a black box. Likewise, a library developer is
concerned only with the library’s design and implementation. I believe, however, both
parties should invest time in learning the other half.An application programmer who
better understands the underlying operating system can make much greater use of it.
Similarly, the library developer should not grow out of touch with the reality and practi-
cality of the applications that use the library. Consequently, I discuss both the design and
usage of kernel subsystems, not only in hopes that this book will be useful to either
party, but also in hopes that the whole book is useful to both parties.

I assume that the reader knows the C programming language and is familiar with
Linux systems. Some experience with operating system design and related computer sci-
ence topics is beneficial, but I try to explain concepts as much as possible—if not, the
Bibliography includes some excellent books on operating system design.

This book is appropriate for an undergraduate course introducing operating system
design as the applied text if accompanied by an introductory book on theory.This book
should fare well either in an advanced undergraduate course or in a graduate-level
course without ancillary material.

Third Edition Acknowledgments
Like most authors, I did not write this book in a cave, which is a good thing, because
there are bears in caves. Consequently many hearts and minds contributed to the com-
pletion of this manuscript.Although no list could be complete, it is my sincere pleasure
to acknowledge the assistance of many friends and colleagues who provided encourage-
ment, knowledge, and constructive criticism.

First, I would like to thank my team at Addison–Wesley and Pearson who worked
long and hard to make this a better book, particularly Mark Taber for spearheading this
third edition from conception to final product; Michael Thurston, development editor;
and Tonya Simpson, project editor.

A special thanks to my technical editor on this edition, Robert P. J. Day. His insight,
experience, and corrections improved this book immeasurably. Despite his sterling effort,
however, any remaining mistakes remain my own. I have the same gratitude to Adam
Belay, Zack Brown, Martin Pool, and Chris Rivera, whose excellent technical editing
efforts on the first and second editions still shine through.

Many fellow kernel developers answered questions, provided support, or simply wrote
code interesting enough on which to write a book.They include Andrea Arcangeli,Alan
Cox, Greg Kroah-Hartman, Dave Miller, Patrick Mochel,Andrew Morton, Nick Piggin,
and Linus Torvalds.

 From the Library of Wow! eBook

ptg

A big thank you to my colleagues at Google, the most creative and intelligent group
with which I have ever had the pleasure to work.Too many names would fill these pages
if I listed them all, but I will single out Alan Blount, Jay Crim, Chris Danis, Chris
DiBona, Eric Flatt, Mike Lockwood, San Mehat, Brian Rogan, Brian Swetland, Jon
Trowbridge, and Steve Vinter for their friendship, knowledge, and support.

Respect and love to Paul Amici, Mikey Babbitt, Keith Barbag, Jacob Berkman, Nat
Friedman, Dustin Hall, Joyce Hawkins, Miguel de Icaza, Jimmy Krehl, Doris Love, Linda
Love, Brette Luck, Randy O’Dowd, Sal Ribaudo and mother, Chris Rivera, Carolyn
Rodon, Joey Shaw, Sarah Stewart, Jeremy VanDoren and family, Luis Villa, Steve Weisberg
and family, and Helen Whisnant.

Finally, thank you to my parents for so much, particularly my well-proportioned ears.
Happy Hacking!

Robert Love
Boston

About the Author
Robert Love is an open source programmer, speaker, and author who has been using
and contributing to Linux for more than 15 years. Robert is currently senior software
engineer at Google, where he was a member of the team that developed the Android
mobile platform’s kernel. Prior to Google, he was Chief Architect, Linux Desktop, at
Novell. Before Novell, he was a kernel engineer at MontaVista Software and Ximian.

Robert’s kernel projects include the preemptive kernel, the process scheduler, the
kernel events layer, inotify,VM enhancements, and several device drivers.

Robert has given numerous talks on and has written multiple articles about the Linux
kernel. He is a contributing editor for Linux Journal. His other books include Linux
System Programming and Linux in a Nutshell.

Robert received a B.A. degree in mathematics and a B.S. degree in computer science
from the University of Florida. He lives in Boston.

 From the Library of Wow! eBook

ptg

1
Introduction to

the Linux Kernel

This chapter introduces the Linux kernel and Linux operating system, placing them in
the historical context of Unix.Today, Unix is a family of operating systems implementing
a similar application programming interface (API) and built around shared design deci-
sions. But Unix is also a specific operating system, first built more than 40 years ago.To
understand Linux, we must first discuss the first Unix system.

History of Unix
After four decades of use, computer scientists continue to regard the Unix operating system
as one of the most powerful and elegant systems in existence. Since the creation of Unix in
1969, the brainchild of Dennis Ritchie and KenThompson has become a creature of leg-
ends, a system whose design has withstood the test of time with few bruises to its name.

Unix grew out of Multics, a failed multiuser operating system project in which Bell
Laboratories was involved.With the Multics project terminated, members of Bell Labora-
tories’ Computer Sciences Research Center found themselves without a capable interac-
tive operating system. In the summer of 1969, Bell Lab programmers sketched out a
filesystem design that ultimately evolved into Unix.Testing its design,Thompson imple-
mented the new system on an otherwise-idle PDP-7. In 1971, Unix was ported to the
PDP-11, and in 1973, the operating system was rewritten in C—an unprecedented step at
the time, but one that paved the way for future portability.The first Unix widely used
outside Bell Labs was Unix System, Sixth Edition, more commonly called V6.

Other companies ported Unix to new machines.Accompanying these ports were
enhancements that resulted in several variants of the operating system. In 1977, Bell Labs
released a combination of these variants into a single system, Unix System III; in 1982,
AT&T released System V.1

1 What about System IV? It was an internal development version.

 From the Library of Wow! eBook

ptg

2 Chapter 1 Introduction to the Linux Kernel

The simplicity of Unix’s design, coupled with the fact that it was distributed with
source code, led to further development at external organizations. The most influential of
these contributors was the University of California at Berkeley. Variants of Unix from
Berkeley are known as Berkeley Software Distributions, or BSD. Berkeley’s first release,
1BSD in 1977, was a collection of patches and additional software on top of Bell Labs’
Unix. 2BSD in 1978 continued this trend, adding the csh and vi utilities, which persist
on Unix systems to this day. The first standalone Berkeley Unix was 3BSD in 1979. It
added virtual memory (VM) to an already impressive list of features.A series of 4BSD
releases, 4.0BSD, 4.1BSD, 4.2BSD, 4.3BSD, followed 3BSD.These versions of Unix added
job control, demand paging, and TCP/IP. In 1994, the university released the final official
Berkeley Unix, featuring a rewritten VM subsystem, as 4.4BSD.Today, thanks to BSD’s
permissive license, development of BSD continues with the Darwin, FreeBSD, NetBSD,
and OpenBSD systems.

In the 1980s and 1990s, multiple workstation and server companies introduced their
own commercial versions of Unix.These systems were based on either an AT&T or a
Berkeley release and supported high-end features developed for their particular hardware
architecture.Among these systems were Digital’s Tru64, Hewlett Packard’s HP-UX, IBM’s
AIX, Sequent’s DYNIX/ptx, SGI’s IRIX, and Sun’s Solaris & SunOS.

The original elegant design of the Unix system, along with the years of innovation
and evolutionary improvement that followed, has resulted in a powerful, robust, and stable
operating system.A handful of characteristics of Unix are at the core of its strength. First,
Unix is simple:Whereas some operating systems implement thousands of system calls and
have unclear design goals, Unix systems implement only hundreds of system calls and
have a straightforward, even basic, design. Second, in Unix, everything is a file.2 This simpli-
fies the manipulation of data and devices into a set of core system calls: open(), read(),
write(), lseek(), and close().Third, the Unix kernel and related system utilities are
written in C—a property that gives Unix its amazing portability to diverse hardware
architectures and accessibility to a wide range of developers. Fourth, Unix has fast process
creation time and the unique fork() system call. Finally, Unix provides simple yet robust
interprocess communication (IPC) primitives that, when coupled with the fast process
creation time, enable the creation of simple programs that do one thing and do it well.These
single-purpose programs can be strung together to accomplish tasks of increasing com-
plexity. Unix systems thus exhibit clean layering, with a strong separation between policy
and mechanism.

Today, Unix is a modern operating system supporting preemptive multitasking, multi-
threading, virtual memory, demand paging, shared libraries with demand loading, and

2 Well, okay, not everything—but much is represented as a file. Sockets are a notable exception. Some

recent efforts, such as Unix’s successor at Bell Labs, Plan9, implement nearly all aspects of the system

as a file.

 From the Library of Wow! eBook

ptg

3Along Came Linus: Introduction to Linux

TCP/IP networking. Many Unix variants scale to hundreds of processors, whereas other
Unix systems run on small, embedded devices.Although Unix is no longer a research
project, Unix systems continue to benefit from advances in operating system design while
remaining a practical and general-purpose operating system.

Unix owes its success to the simplicity and elegance of its design. Its strength today
derives from the inaugural decisions that Dennis Ritchie, Ken Thompson, and other
early developers made: choices that have endowed Unix with the capability to evolve
without compromising itself.

Along Came Linus: Introduction to Linux
Linus Torvalds developed the first version of Linux in 1991 as an operating system for
computers powered by the Intel 80386 microprocessor, which at the time was a new and
advanced processor. Linus, then a student at the University of Helsinki, was perturbed by
the lack of a powerful yet free Unix system.The reigning personal computer OS of the
day, Microsoft’s DOS, was useful to Torvalds for little other than playing Prince of Persia.
Linus did use Minix, a low-cost Unix created as a teaching aid, but he was discouraged by
the inability to easily make and distribute changes to the system’s source code (because of
Minix’s license) and by design decisions made by Minix’s author.

In response to his predicament, Linus did what any normal college student would do:
He decided to write his own operating system. Linus began by writing a simple terminal
emulator, which he used to connect to larger Unix systems at his school. Over the course
of the academic year, his terminal emulator evolved and improved. Before long, Linus had
an immature but full-fledged Unix on his hands. He posted an early release to the Inter-
net in late 1991.

Use of Linux took off, with early Linux distributions quickly gaining many users.
More important to its initial success, however, is that Linux quickly attracted many devel-
opers—hackers adding, changing, improving code. Because of the terms of its license,
Linux swiftly evolved into a collaborative project developed by many.

Fast forward to the present.Today, Linux is a full-fledged operating system also running
on Alpha,ARM, PowerPC, SPARC, x86-64 and many other architectures. It runs on sys-
tems as small as a watch to machines as large as room-filling super-computer clusters.
Linux powers the smallest consumer electronics and the largest Datacenters.Today, com-
mercial interest in Linux is strong. Both new Linux-specific corporations, such as Red
Hat, and existing powerhouses, such as IBM, are providing Linux-based solutions for
embedded, mobile, desktop, and server needs.

Linux is a Unix-like system, but it is not Unix.That is, although Linux borrows many
ideas from Unix and implements the Unix API (as defined by POSIX and the Single
Unix Specification), it is not a direct descendant of the Unix source code like other Unix
systems.Where desired, it has deviated from the path taken by other implementations, but
it has not forsaken the general design goals of Unix or broken standardized application
interfaces.

 From the Library of Wow! eBook

ptg

4 Chapter 1 Introduction to the Linux Kernel

One of Linux’s most interesting features is that it is not a commercial product; instead,
it is a collaborative project developed over the Internet.Although Linus remains the cre-
ator of Linux and the maintainer of the kernel, progress continues through a loose-knit
group of developers.Anyone can contribute to Linux.The Linux kernel, as with much of
the system, is free or open source software.3 Specifically, the Linux kernel is licensed under
the GNU General Public License (GPL) version 2.0. Consequently, you are free to down-
load the source code and make any modifications you want.The only caveat is that if you
distribute your changes, you must continue to provide the recipients with the same rights
you enjoyed, including the availability of the source code.4

Linux is many things to many people.The basics of a Linux system are the kernel, C
library, toolchain, and basic system utilities, such as a login process and shell.A Linux system
can also include a modern X Window System implementation including a full-featured
desktop environment, such as GNOME.Thousands of free and commercial applications
exist for Linux. In this book, when I say Linux I typically mean the Linux kernel.Where it is
ambiguous, I try explicitly to point out whether I am referring to Linux as a full system or
just the kernel proper. Strictly speaking, the term Linux refers only to the kernel.

Overview of Operating Systems and Kernels
Because of the ever-growing feature set and ill design of some modern commercial oper-
ating systems, the notion of what precisely defines an operating system is not universal.
Many users consider whatever they see on the screen to be the operating system.Techni-
cally speaking, and in this book, the operating system is considered the parts of the system
responsible for basic use and administration.This includes the kernel and device drivers,
boot loader, command shell or other user interface, and basic file and system utilities. It is
the stuff you need—not a web browser or music players.The term system, in turn, refers to
the operating system and all the applications running on top of it.

Of course, the topic of this book is the kernel.Whereas the user interface is the outer-
most portion of the operating system, the kernel is the innermost. It is the core internals;
the software that provides basic services for all other parts of the system, manages hard-
ware, and distributes system resources.The kernel is sometimes referred to as the
supervisor, core, or internals of the operating system.Typical components of a kernel are
interrupt handlers to service interrupt requests, a scheduler to share processor time
among multiple processes, a memory management system to manage process address
spaces, and system services such as networking and interprocess communication. On

3 I will leave the free versus open debate to you. See http://www.fsf.org and http://www.opensource.

org.
4 You should read the GNU GPL version 2.0. There is a copy in the file COPYING in your kernel source

tree. You can also find it online at http://www.fsf.org. Note that the latest version of the GNU GPL is ver-

sion 3.0; the kernel developers have decided to remain with version 2.0.

 From the Library of Wow! eBook

http://www.fsf.org
http://www.opensource.org
http://www.fsf.org
http://www.opensource.org

ptg

5Overview of Operating Systems and Kernels

modern systems with protected memory management units, the kernel typically resides in
an elevated system state compared to normal user applications.This includes a protected
memory space and full access to the hardware.This system state and memory space is col-
lectively referred to as kernel-space. Conversely, user applications execute in user-space.They
see a subset of the machine’s available resources and can perform certain system functions,
directly access hardware, access memory outside of that allotted them by the kernel, or
otherwise misbehave.When executing kernel code, the system is in kernel-space execut-
ing in kernel mode.When running a regular process, the system is in user-space executing
in user mode.

Applications running on the system communicate with the kernel via system calls (see
Figure 1.1).An application typically calls functions in a library—for example, the C
library—that in turn rely on the system call interface to instruct the kernel to carry out
tasks on the application’s behalf. Some library calls provide many features not found in the
system call, and thus, calling into the kernel is just one step in an otherwise large func-
tion. For example, consider the familiar printf() function. It provides formatting and
buffering of the data; only one step in its work is invoking write() to write the data to
the console. Conversely, some library calls have a one-to-one relationship with the kernel.
For example, the open() library function does little except call the open() system call.
Still other C library functions, such as strcpy(), should (one hopes) make no direct use
of the kernel at all.When an application executes a system call, we say that the kernel is
executing on behalf of the application. Furthermore, the application is said to be executing a
system call in kernel-space, and the kernel is running in process context.This relationship—
that applications call into the kernel via the system call interface—is the fundamental man-
ner in which applications get work done.

The kernel also manages the system’s hardware. Nearly all architectures, including all
systems that Linux supports, provide the concept of interrupts.When hardware wants to
communicate with the system, it issues an interrupt that literally interrupts the processor,
which in turn interrupts the kernel.A number identifies interrupts and the kernel uses
this number to execute a specific interrupt handler to process and respond to the interrupt.
For example, as you type, the keyboard controller issues an interrupt to let the system
know that there is new data in the keyboard buffer.The kernel notes the interrupt num-
ber of the incoming interrupt and executes the correct interrupt handler.The interrupt
handler processes the keyboard data and lets the keyboard controller know it is ready for
more data.To provide synchronization, the kernel can disable interrupts—either all inter-
rupts or just one specific interrupt number. In many operating systems, including Linux,
the interrupt handlers do not run in a process context. Instead, they run in a special
interrupt context that is not associated with any process.This special context exists solely to
let an interrupt handler quickly respond to an interrupt, and then exit.

These contexts represent the breadth of the kernel’s activities. In fact, in Linux, we can
generalize that each processor is doing exactly one of three things at any given moment:

n In user-space, executing user code in a process
n In kernel-space, in process context, executing on behalf of a specific process

 From the Library of Wow! eBook

ptg

6 Chapter 1 Introduction to the Linux Kernel

Application 1 Application 2

System Call Interface

Application 3

Kernel Subsystems

Device Drivers

user-space

hardware

kernel-space

Figure 1.1 Relationship between applications, the kernel, and hardware.

n In kernel-space, in interrupt context, not associated with a process, handling an
interrupt

This list is inclusive. Even corner cases fit into one of these three activities: For exam-
ple, when idle, it turns out that the kernel is executing an idle process in process context in
the kernel.

Linux Versus Classic Unix Kernels
Owing to their common ancestry and same API, modern Unix kernels share various
design traits. (See the Bibliography for my favorite books on the design of the classic
Unix kernels.) With few exceptions, a Unix kernel is typically a monolithic static binary.
That is, it exists as a single, large, executable image that runs in a single address space.
Unix systems typically require a system with a paged memory-management unit
(MMU); this hardware enables the system to enforce memory protection and to provide a
unique virtual address space to each process. Linux historically has required an MMU, but

 From the Library of Wow! eBook

ptg

7Linux Versus Classic Unix Kernels

special versions can actually run without one.This is a neat feature, enabling Linux to run
on very small MMU-less embedded systems, but otherwise more academic than practi-
cal—even simple embedded systems nowadays tend to have advanced features such as
memory-management units. In this book, we focus on MMU-based systems.

Monolithic Kernel Versus Microkernel Designs
We can divide kernels into two main schools of design: the monolithic kernel and the micro-
kernel. (A third camp, exokernel, is found primarily in research systems.)

Monolithic kernels are the simpler design of the two, and all kernels were designed in this
manner until the 1980s. Monolithic kernels are implemented entirely as a single process
running in a single address space. Consequently, such kernels typically exist on disk as sin-
gle static binaries. All kernel services exist and execute in the large kernel address space.
Communication within the kernel is trivial because everything runs in kernel mode in the
same address space: The kernel can invoke functions directly, as a user-space application
might. Proponents of this model cite the simplicity and performance of the monolithic
approach. Most Unix systems are monolithic in design.

Microkernels, on the other hand, are not implemented as a single large process. Instead,
the functionality of the kernel is broken down into separate processes, usually called
servers. Ideally, only the servers absolutely requiring such capabilities run in a privileged exe-
cution mode. The rest of the servers run in user-space. All the servers, though, are sepa-
rated into different address spaces. Therefore, direct function invocation as in monolithic
kernels is not possible. Instead, microkernels communicate via message passing: An inter-
process communication (IPC) mechanism is built into the system, and the various servers
communicate with and invoke “services” from each other by sending messages over the IPC
mechanism. The separation of the various servers prevents a failure in one server from
bringing down another. Likewise, the modularity of the system enables one server to be
swapped out for another.

Because the IPC mechanism involves quite a bit more overhead than a trivial function call,
however, and because a context switch from kernel-space to user-space or vice versa is
often involved, message passing includes a latency and throughput hit not seen on mono-
lithic kernels with simple function invocation. Consequently, all practical microkernel-based
systems now place most or all the servers in kernel-space, to remove the overhead of fre-
quent context switches and potentially enable direct function invocation. The Windows NT
kernel (on which Windows XP, Vista, and 7 are based) and Mach (on which part of Mac OS X
is based) are examples of microkernels. Neither Windows NT nor Mac OS X run any micro-
kernel servers in user-space in their latest iteration, defeating the primary purpose of micro-
kernel design altogether.

Linux is a monolithic kernel; that is, the Linux kernel executes in a single address space
entirely in kernel mode. Linux, however, borrows much of the good from microkernels: Linux
boasts a modular design, the capability to preempt itself (called kernel preemption), support
for kernel threads, and the capability to dynamically load separate binaries (kernel modules)
into the kernel image. Conversely, Linux has none of the performance-sapping features that
curse microkernel design: Everything runs in kernel mode, with direct function invocation—
not message passing—the modus of communication. Nonetheless, Linux is modular,
threaded, and the kernel itself is schedulable. Pragmatism wins again.

 From the Library of Wow! eBook

ptg

8 Chapter 1 Introduction to the Linux Kernel

As Linus and other kernel developers contribute to the Linux kernel, they decide how
best to advance Linux without neglecting its Unix roots (and, more important, the Unix
API). Consequently, because Linux is not based on any specific Unix variant, Linus and
company can pick and choose the best solution to any given problem—or at times, invent
new solutions! A handful of notable differences exist between the Linux kernel and classic
Unix systems:

n Linux supports the dynamic loading of kernel modules.Although the Linux kernel
is monolithic, it can dynamically load and unload kernel code on demand.

n Linux has symmetrical multiprocessor (SMP) support.Although most commercial
variants of Unix now support SMP, most traditional Unix implementations did not.

n The Linux kernel is preemptive. Unlike traditional Unix variants, the Linux kernel
can preempt a task even as it executes in the kernel. Of the other commercial Unix
implementations, Solaris and IRIX have preemptive kernels, but most Unix kernels
are not preemptive.

n Linux takes an interesting approach to thread support: It does not differentiate
between threads and normal processes.To the kernel, all processes are the same—
some just happen to share resources.

n Linux provides an object-oriented device model with device classes, hot-pluggable
events, and a user-space device filesystem (sysfs).

n Linux ignores some common Unix features that the kernel developers consider
poorly designed, such as STREAMS, or standards that are impossible to cleanly
implement.

n Linux is free in every sense of the word.The feature set Linux implements is the
result of the freedom of Linux’s open development model. If a feature is without
merit or poorly thought out, Linux developers are under no obligation to imple-
ment it.To the contrary, Linux has adopted an elitist attitude toward changes: Mod-
ifications must solve a specific real-world problem, derive from a clean design, and
have a solid implementation. Consequently, features of some other modern Unix
variants that are more marketing bullet or one-off requests, such as pageable kernel
memory, have received no consideration.

Despite these differences, however, Linux remains an operating system with a strong
Unix heritage.

Linux Kernel Versions
Linux kernels come in two flavors: stable and development. Stable kernels are production-
level releases suitable for widespread deployment. New stable kernel versions are released
typically only to provide bug fixes or new drivers. Development kernels, on the other
hand, undergo rapid change where (almost) anything goes.As developers experiment
with new solutions, the kernel code base changes in often drastic ways.

 From the Library of Wow! eBook

ptg

9Linux Kernel Versions

Linux kernels distinguish between stable and development kernels with a simple nam-
ing scheme (see Figure 1.2).Three or four numbers, delineated with a dot, represent
Linux kernel versions.The first value is the major release, the second is the minor release,
and the third is the revision.An optional fourth value is the stable version.The minor
release also determines whether the kernel is a stable or development kernel; an even
number is stable, whereas an odd number is development. For example, the kernel version
2.6.30.1 designates a stable kernel.This kernel has a major version of two, a minor version
of six, a revision of 30, and a stable version of one.The first two values describe the “ker-
nel series”—in this case, the 2.6 kernel series.

Development kernels have a series of phases. Initially, the kernel developers work on
new features and chaos ensues. Over time, the kernel matures and eventually a feature
freeze is declared.At that point, Linus will not accept new features.Work on existing fea-
tures, however, can continue.After Linus considers the kernel nearly stabilized, a code
freeze is put into effect.When that occurs, only bug fixes are accepted. Shortly thereafter
(hopefully), Linus releases the first version of a new stable series. For example, the devel-
opment series 1.3 stabilized into 2.0 and 2.5 stabilized into 2.6.

Within a given series, Linus releases new kernels regularly, with each version earning a
new revision. For example, the first version of the 2.6 kernel series was 2.6.0.The next
was 2.6.1.These revisions contain bug fixes, new drivers, and new features, but the differ-
ence between two revisions—say, 2.6.3 and 2.6.4—is minor.

This is how development progressed until 2004, when at the invite-only Kernel
Developers Summit, the assembled kernel developers decided to prolong the 2.6 kernel
series and postpone the introduction of a 2.7 development series.The rationale was that
the 2.6 kernel was well received, stable, and sufficiently mature such that new destabiliz-
ing features were unneeded.This course has proven wise, as the ensuing years have shown
2.6 is a mature and capable beast.As of this writing, a 2.7 development series is not on
the table and seems unlikely. Instead, the development cycle of each 2.6 revision has
grown longer, each release incorporating a mini-development series.Andrew Morton,
Linus’s second-in-command, has repurposed his 2.6-mm tree—once a testing ground for
memory management-related changes—into a general-purpose test bed. Destabilizing

The Major Version The Revision

The Minor Version The Stable Version

2.6.26.1

Figure 1.2 Kernel version naming convention.

 From the Library of Wow! eBook

ptg

10 Chapter 1 Introduction to the Linux Kernel

changes thus flow into 2.6-mm and, when mature, into one of the 2.6 mini-development
series.Thus, over the last few years, each 2.6 release—for example, 2.6.29—has taken sev-
eral months, boasting significant changes over its predecessor.This “development series in
miniature” has proven rather successful, maintaining high levels of stability while still intro-
ducing new features and appears unlikely to change in the near future. Indeed, the consen-
sus among kernel developers is that this new release process will continue indefinitely.

To compensate for the reduced frequency of releases, the kernel developers have intro-
duced the aforementioned stable release.This release (the 8 in 2.6.32.8) contains crucial bug
fixes, often back-ported from the under-development kernel (in this example, 2.6.33). In
this manner, the previous release continues to receive attention focused on stabilization.

The Linux Kernel Development Community
When you begin developing code for the Linux kernel, you become a part of the global
kernel development community.The main forum for this community is the Linux Kernel
Mailing List (oft-shortened to lkml). Subscription information is available at http://vger.
kernel.org. Note that this is a high-traffic list with hundreds of messages a day and that
the other readers—who include all the core kernel developers, including Linus—are not
open to dealing with nonsense.The list is, however, a priceless aid during development
because it is where you can find testers, receive peer review, and ask questions.

Later chapters provide an overview of the kernel development process and a more
complete description of participating successfully in the kernel development community.
In the meantime, however, lurking on (silently reading) the Linux Kernel Mailing List is
as good a supplement to this book as you can find.

Before We Begin
This book is about the Linux kernel: its goals, the design that fulfills those goals, and the
implementation that realizes that design.The approach is practical, taking a middle road
between theory and practice when explaining how everything works. My objective is to
give you an insider’s appreciation and understanding for the design and implementation
of the Linux kernel.This approach, coupled with some personal anecdotes and tips on
kernel hacking, should ensure that this book gets you off the ground running, whether
you are looking to develop core kernel code, a new device driver, or simply better under-
stand the Linux operating system.

While reading this book, you should have access to a Linux system and the kernel
source. Ideally, by this point, you are a Linux user and have poked and prodded at the
source, but require some help making it all come together. Conversely, you might never
have used Linux but just want to learn the design of the kernel out of curiosity. However,
if your desire is to write some code of your own, there is no substitute for the source.The
source code is freely available; use it!

Oh, and above all else, have fun!

 From the Library of Wow! eBook

http://vger.kernel.org
http://vger.kernel.org

ptg

2
Getting Started with the Kernel

In this chapter, we introduce some of the basics of the Linux kernel: where to get its
source, how to compile it, and how to install the new kernel.We then go over the differ-
ences between the kernel and user-space programs and common programming constructs
used in the kernel.Although the kernel certainly is unique in many ways, at the end of
the day it is little different from any other large software project.

Obtaining the Kernel Source
The current Linux source code is always available in both a complete tarball (an archive
created with the tar command) and an incremental patch from the official home of the
Linux kernel, http://www.kernel.org.

Unless you have a specific reason to work with an older version of the Linux source,
you always want the latest code.The repository at kernel.org is the place to get it, along
with additional patches from a number of leading kernel developers.

Using Git
Over the last couple of years, the kernel hackers, led by Linus himself, have begun using a
new version control system to manage the Linux kernel source. Linus created this system,
called Git, with speed in mind. Unlike traditional systems such as CVS, Git is distributed,
and its usage and workflow is consequently unfamiliar to many developers. I strongly rec-
ommend using Git to download and manage the Linux kernel source.

You can use Git to obtain a copy of the latest “pushed” version of Linus’s tree:

$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git

When checked out, you can update your tree to Linus’s latest:

$ git pull

With these two commands, you can obtain and subsequently keep up to date with the
official kernel tree.To commit and manage your own changes, see Chapter 20,“Patches,

 From the Library of Wow! eBook

http://www.kernel.org

ptg

12 Chapter 2 Getting Started with the Kernel

Hacking, and the Community.”A complete discussion of Git is outside the scope of this
book; many online resources provide excellent guides.

Installing the Kernel Source
The kernel tarball is distributed in both GNU zip (gzip) and bzip2 format. Bzip2 is the
default and preferred format because it generally compresses quite a bit better than gzip.
The Linux kernel tarball in bzip2 format is named linux-x.y.z.tar.bz2, where x.y.z
is the version of that particular release of the kernel source.After downloading the source,
uncompressing and untarring it is simple. If your tarball is compressed with bzip2, run

$ tar xvjf linux-x.y.z.tar.bz2

If it is compressed with GNU zip, run

$ tar xvzf linux-x.y.z.tar.gz

This uncompresses and untars the source to the directory linux-x.y.z. If you use git
to obtain and manage the kernel source, you do not need to download the tarball. Just
run the git clone command as described and git downloads and unpacks the latest source.

Where to Install and Hack on the Source
The kernel source is typically installed in /usr/src/linux. You should not use this source
tree for development because the kernel version against which your C library is compiled is
often linked to this tree. Moreover, you should not require root in order to make changes to
the kernel—instead, work out of your home directory and use root only to install new ker-
nels. Even when installing a new kernel, /usr/src/linux should remain untouched.

Using Patches
Throughout the Linux kernel community, patches are the lingua franca of communication.
You will distribute your code changes in patches and receive code from others as patches.
Incremental patches provide an easy way to move from one kernel tree to the next. Instead
of downloading each large tarball of the kernel source, you can simply apply an incremen-
tal patch to go from one version to the next.This saves everyone bandwidth and you time.
To apply an incremental patch, from inside your kernel source tree, simply run

$ patch –p1 < ../patch-x.y.z

Generally, a patch to a given version of the kernel is applied against the previous version.
Generating and applying patches is discussed in much more depth in later chapters.

The Kernel Source Tree
The kernel source tree is divided into a number of directories, most of which contain
many more subdirectories.The directories in the root of the source tree, along with their
descriptions, are listed in Table 2.1.

 From the Library of Wow! eBook

ptg

13Building the Kernel

A number of files in the root of the source tree deserve mention.The file COPYING is
the kernel license (the GNU GPL v2). CREDITS is a listing of developers with more than a
trivial amount of code in the kernel. MAINTAINERS lists the names of the individuals who
maintain subsystems and drivers in the kernel. Makefile is the base kernel Makefile.

Building the Kernel
Building the kernel is easy. It is surprisingly easier than compiling and installing other sys-
tem-level components, such as glibc.The 2.6 kernel series introduced a new configuration
and build system, which made the job even easier and is a welcome improvement over
earlier releases.

Table 2.1 Directories in the Root of the Kernel Source Tree

Directory Description

arch Architecture-specific source

block Block I/O layer

crypto Crypto API

Documentation Kernel source documentation

drivers Device drivers

firmware Device firmware needed to use certain drivers

fs The VFS and the individual filesystems

include Kernel headers

init Kernel boot and initialization

ipc Interprocess communication code

kernel Core subsystems, such as the scheduler

lib Helper routines

mm Memory management subsystem and the VM

net Networking subsystem

samples Sample, demonstrative code

scripts Scripts used to build the kernel

security Linux Security Module

sound Sound subsystem

usr Early user-space code (called initramfs)

tools Tools helpful for developing Linux

virt Virtualization infrastructure

 From the Library of Wow! eBook

ptg

14 Chapter 2 Getting Started with the Kernel

Configuring the Kernel
Because the Linux source code is available, it follows that you can configure and custom
tailor it before compiling. Indeed, it is possible to compile support into your kernel for
only the specific features and drivers you want. Configuring the kernel is a required step
before building it. Because the kernel offers myriad features and supports a varied basket
of hardware, there is a lot to configure. Kernel configuration is controlled by configuration
options, which are prefixed by CONFIG in the form CONFIG_FEATURE. For example, sym-
metrical multiprocessing (SMP) is controlled by the configuration option CONFIG_SMP. If
this option is set, SMP is enabled; if unset, SMP is disabled.The configure options are used
both to decide which files to build and to manipulate code via preprocessor directives.

Configuration options that control the build process are either Booleans or tristates.A
Boolean option is either yes or no. Kernel features, such as CONFIG_PREEMPT, are usually
Booleans.A tristate option is one of yes, no, or module.The module setting represents a con-
figuration option that is set but is to be compiled as a module (that is, a separate dynami-
cally loadable object). In the case of tristates, a yes option explicitly means to compile the
code into the main kernel image and not as a module. Drivers are usually represented by
tristates.

Configuration options can also be strings or integers.These options do not control the
build process but instead specify values that kernel source can access as a preprocessor
macro. For example, a configuration option can specify the size of a statically allocated
array.

Vendor kernels, such as those provided by Canonical for Ubuntu or Red Hat for
Fedora, are precompiled as part of the distribution. Such kernels typically enable a good
cross section of the needed kernel features and compile nearly all the drivers as modules.
This provides for a great base kernel with support for a wide range of hardware as separate
modules. For better or worse, as a kernel hacker, you need to compile your own kernels
and learn what modules to include on your own.

Thankfully, the kernel provides multiple tools to facilitate configuration.The simplest
tool is a text-based command-line utility:

$ make config

This utility goes through each option, one by one, and asks the user to interactively
select yes, no, or (for tristates) module. Because this takes a long time, unless you are paid by
the hour, you should use an ncurses-based graphical utility:

$ make menuconfig

Or a gtk+-based graphical utility:

$ make gconfig

These three utilities divide the various configuration options into categories, such as
“Processor Type and Features.” You can move through the categories, view the kernel
options, and of course change their values.

 From the Library of Wow! eBook

ptg

15Building the Kernel

This command creates a configuration based on the defaults for your architecture:

$ make defconfig

Although these defaults are somewhat arbitrary (on i386, they are rumored to be
Linus’s configuration!), they provide a good start if you have never configured the kernel.
To get off and running quickly, run this command and then go back and ensure that con-
figuration options for your hardware are enabled.

The configuration options are stored in the root of the kernel source tree in a file
named .config.You may find it easier (as most of the kernel developers do) to just edit
this file directly. It is quite easy to search for and change the value of the configuration
options.After making changes to your configuration file, or when using an existing con-
figuration file on a new kernel tree, you can validate and update the configuration:

$ make oldconfig

You should always run this before building a kernel.
The configuration option CONFIG_IKCONFIG_PROC places the complete kernel configu-

ration file, compressed, at /proc/config.gz.This makes it easy to clone your current
configuration when building a new kernel. If your current kernel has this option enabled,
you can copy the configuration out of /proc and use it to build a new kernel:

$ zcat /proc/config.gz > .config

$ make oldconfig

After the kernel configuration is set—however you do it—you can build it with a sin-
gle command:

$ make

Unlike kernels before 2.6, you no longer need to run make dep before building the
kernel—the dependency tree is maintained automatically.You also do not need to specify
a specific build type, such as bzImage, or build modules separately, as you did in old ver-
sions.The default Makefile rule will handle everything.

Minimizing Build Noise
A trick to minimize build noise, but still see warnings and errors, is to redirect the output
from make:

$ make > ../detritus

If you need to see the build output, you can read the file. Because the warnings and
errors are output to standard error, however, you normally do not need to. In fact, I just do

$ make > /dev/null

This redirects all the worthless output to that big, ominous sink of no return,
/dev/null.

 From the Library of Wow! eBook

ptg

16 Chapter 2 Getting Started with the Kernel

Spawning Multiple Build Jobs
The make program provides a feature to split the build process into a number of parallel
jobs. Each of these jobs then runs separately and concurrently, significantly speeding up the
build process on multiprocessing systems. It also improves processor utilization because the
time to build a large source tree includes significant time in I/O wait (time in which the
process is idle waiting for an I/O request to complete).

By default, make spawns only a single job because Makefiles all too often have incorrect
dependency information.With incorrect dependencies, multiple jobs can step on each
other’s toes, resulting in errors in the build process.The kernel’s Makefiles have correct
dependency information, so spawning multiple jobs does not result in failures.To build the
kernel with multiple make jobs, use

$ make -jn

Here, n is the number of jobs to spawn. Usual practice is to spawn one or two jobs per
processor. For example, on a 16-core machine, you might do

$ make -j32 > /dev/null

Using utilities such as the excellent distcc or ccache can also dramatically improve
kernel build time.

Installing the New Kernel
After the kernel is built, you need to install it. How it is installed is architecture- and boot
loader-dependent—consult the directions for your boot loader on where to copy the ker-
nel image and how to set it up to boot.Always keep a known-safe kernel or two around in
case your new kernel has problems!

As an example, on an x86 system using grub, you would copy arch/i386/boot/bzImage
to /boot, name it something like vmlinuz-version, and edit /boot/grub/grub.conf,
adding a new entry for the new kernel. Systems using LILO to boot would instead edit
/etc/lilo.conf and then rerun lilo.

Installing modules, thankfully, is automated and architecture-independent.As root,
simply run

% make modules_install

This installs all the compiled modules to their correct home under /lib/modules.
The build process also creates the file System.map in the root of the kernel source tree.

It contains a symbol lookup table, mapping kernel symbols to their start addresses.This is
used during debugging to translate memory addresses to function and variable names.

A Beast of a Different Nature
The Linux kernel has several unique attributes as compared to a normal user-space appli-
cation.Although these differences do not necessarily make developing kernel code harder
than developing user-space code, they certainly make doing so different.

 From the Library of Wow! eBook

ptg

17A Beast of a Different Nature

These characteristics make the kernel a beast of a different nature. Some of the usual
rules are bent; other rules are entirely new.Although some of the differences are obvious
(we all know the kernel can do anything it wants), others are not so obvious.The most
important of these differences are

n The kernel has access to neither the C library nor the standard C headers.
n The kernel is coded in GNU C.
n The kernel lacks the memory protection afforded to user-space.
n The kernel cannot easily execute floating-point operations.
n The kernel has a small per-process fixed-size stack.
n Because the kernel has asynchronous interrupts, is preemptive, and supports SMP,

synchronization and concurrency are major concerns within the kernel.
n Portability is important.

Let’s briefly look at each of these issues because all kernel developers must keep them
in mind.

No libc or Standard Headers
Unlike a user-space application, the kernel is not linked against the standard C library—or
any other library, for that matter.There are multiple reasons for this, including a chicken-
and-the-egg situation, but the primary reason is speed and size.The full C library—or even
a decent subset of it—is too large and too inefficient for the kernel.

Do not fret: Many of the usual libc functions are implemented inside the kernel. For
example, the common string manipulation functions are in lib/string.c. Just include
the header file <linux/string.h> and have at them.

Header Files
When I talk about header files in this book, I am referring to the kernel header files that are
part of the kernel source tree. Kernel source files cannot include outside headers, just as
they cannot use outside libraries.

The base files are located in the include/ directory in the root of the kernel source tree. For
example, the header file <linux/inotify.h> is located at include/linux/inotify.h in
the kernel source tree.

A set of architecture-specific header files are located in arch/<architecture>/include/asm
in the kernel source tree. For example, if compiling for the x86 architecture, your architec-
ture-specific headers are in arch/x86/include/asm. Source code includes these headers
via just the asm/ prefix, for example <asm/ioctl.h>.

Of the missing functions, the most familiar is printf().The kernel does not have
access to printf(), but it does provide printk(), which works pretty much the same as
its more familiar cousin.The printk()function copies the formatted string into the ker-
nel log buffer, which is normally read by the syslog program. Usage is similar to
printf():

 From the Library of Wow! eBook

ptg

18 Chapter 2 Getting Started with the Kernel

printk("Hello world! A string '%s' and an integer '%d'\n", str, i);

One notable difference between printf() and printk() is that printk() enables you
to specify a priority flag.This flag is used by syslogd to decide where to display kernel
messages. Here is an example of these priorities:

printk(KERN_ERR "this is an error!\n");

Note there is no comma between KERN_ERR and the printed message.This is inten-
tional; the priority flag is a preprocessor-define representing a string literal, which is con-
catenated onto the printed message during compilation.We use printk() throughout
this book.

GNU C
Like any self-respecting Unix kernel, the Linux kernel is programmed in C. Perhaps sur-
prisingly, the kernel is not programmed in strict ANSI C. Instead, where applicable, the
kernel developers make use of various language extensions available in gcc (the GNU
Compiler Collection, which contains the C compiler used to compile the kernel and
most everything else written in C on a Linux system).

The kernel developers use both ISO C991 and GNU C extensions to the C language.
These changes wed the Linux kernel to gcc, although recently one other compiler, the
Intel C compiler, has sufficiently supported enough gcc features that it, too, can compile
the Linux kernel.The earliest supported gcc version is 3.2; gcc version 4.4 or later is rec-
ommended.The ISO C99 extensions that the kernel uses are nothing special and, because
C99 is an official revision of the C language, are slowly cropping up in a lot of other
code.The more unfamiliar deviations from standard ANSI C are those provided by GNU
C. Let’s look at some of the more interesting extensions that you will see in the kernel;
these changes differentiate kernel code from other projects with which you might be
familiar.

Inline Functions
Both C99 and GNU C support inline functions.An inline function is, as its name suggests,
inserted inline into each function call site.This eliminates the overhead of function invo-
cation and return (register saving and restore) and allows for potentially greater optimiza-
tion as the compiler can optimize both the caller and the called function as one.As a
downside (nothing in life is free), code size increases because the contents of the function
are copied into all the callers, which increases memory consumption and instruction
cache footprint. Kernel developers use inline functions for small time-critical functions.

1 ISO C99 is the latest major revision to the ISO C standard. C99 adds numerous enhancements to the

previous major revision, ISO C90, including designated initializers, variable length arrays, C++-style

comments, and the long long and complex types. The Linux kernel, however, employs only a sub-

set of C99 features.

 From the Library of Wow! eBook

ptg

19A Beast of a Different Nature

Making large functions inline, especially those used more than once or that are not
exceedingly time critical, is frowned upon.

An inline function is declared when the keywords static and inline are used as part
of the function definition. For example

static inline void wolf(unsigned long tail_size)

The function declaration must precede any usage, or else the compiler cannot make
the function inline. Common practice is to place inline functions in header files. Because
they are marked static, an exported function is not created. If an inline function is used
by only one file, it can instead be placed toward the top of just that file.

In the kernel, using inline functions is preferred over complicated macros for reasons
of type safety and readability.

Inline Assembly
The gcc C compiler enables the embedding of assembly instructions in otherwise normal
C functions.This feature, of course, is used in only those parts of the kernel that are
unique to a given system architecture.

The asm() compiler directive is used to inline assembly code. For example, this inline
assembly directive executes the x86 processor’s rdtsc instruction, which returns the value
of the timestamp (tsc) register:

unsigned int low, high;

asm volatile("rdtsc" : "=a" (low), "=d" (high));

/* low and high now contain the lower and upper 32-bits of the 64-bit tsc */

The Linux kernel is written in a mixture of C and assembly, with assembly relegated
to low-level architecture and fast path code.The vast majority of kernel code is pro-
grammed in straight C.

Branch Annotation
The gcc C compiler has a built-in directive that optimizes conditional branches as either
very likely taken or very unlikely taken.The compiler uses the directive to appropriately
optimize the branch.The kernel wraps the directive in easy-to-use macros, likely() and
unlikely().

For example, consider an if statement such as the following:

if (error) {

/* ... */

}

To mark this branch as very unlikely taken (that is, likely not taken):

/* we predict 'error' is nearly always zero ... */

if (unlikely(error)) {

/* ... */

}

 From the Library of Wow! eBook

ptg

20 Chapter 2 Getting Started with the Kernel

Conversely, to mark a branch as very likely taken:

/* we predict 'success' is nearly always nonzero ... */

if (likely(success)) {

/* ... */

}

You should only use these directives when the branch direction is overwhelmingly
known a priori or when you want to optimize a specific case at the cost of the other case.
This is an important point:These directives result in a performance boost when the
branch is correctly marked, but a performance loss when the branch is mismarked.A
common usage, as shown in these examples, for unlikely() and likely() is error con-
ditions.As you might expect, unlikely() finds much more use in the kernel because if
statements tend to indicate a special case.

No Memory Protection
When a user-space application attempts an illegal memory access, the kernel can trap the
error, send the SIGSEGV signal, and kill the process. If the kernel attempts an illegal mem-
ory access, however, the results are less controlled. (After all, who is going to look after the
kernel?) Memory violations in the kernel result in an oops, which is a major kernel error.
It should go without saying that you must not illegally access memory, such as dereferenc-
ing a NULL pointer—but within the kernel, the stakes are much higher!

Additionally, kernel memory is not pageable.Therefore, every byte of memory you
consume is one less byte of available physical memory. Keep that in mind the next time
you need to add one more feature to the kernel!

No (Easy) Use of Floating Point
When a user-space process uses floating-point instructions, the kernel manages the transi-
tion from integer to floating point mode.What the kernel has to do when using floating-
point instructions varies by architecture, but the kernel normally catches a trap and then
initiates the transition from integer to floating point mode.

Unlike user-space, the kernel does not have the luxury of seamless support for floating
point because it cannot easily trap itself. Using a floating point inside the kernel requires
manually saving and restoring the floating point registers, among other possible chores.
The short answer is: Don’t do it! Except in the rare cases, no floating-point operations are
in the kernel.

Small, Fixed-Size Stack
User-space can get away with statically allocating many variables on the stack, including
huge structures and thousand-element arrays.This behavior is legal because user-space has
a large stack that can dynamically grow. (Developers on older, less advanced operating
systems—say, DOS—might recall a time when even user-space had a fixed-sized stack.)

 From the Library of Wow! eBook

ptg

21Conclusion

The kernel stack is neither large nor dynamic; it is small and fixed in size.The exact
size of the kernel’s stack varies by architecture. On x86, the stack size is configurable at
compile-time and can be either 4KB or 8KB. Historically, the kernel stack is two pages,
which generally implies that it is 8KB on 32-bit architectures and 16KB on 64-bit archi-
tectures—this size is fixed and absolute. Each process receives its own stack.

The kernel stack is discussed in much greater detail in later chapters.

Synchronization and Concurrency
The kernel is susceptible to race conditions. Unlike a single-threaded user-space applica-
tion, a number of properties of the kernel allow for concurrent access of shared resources
and thus require synchronization to prevent races. Specifically

n Linux is a preemptive multitasking operating system. Processes are scheduled and
rescheduled at the whim of the kernel’s process scheduler.The kernel must syn-
chronize between these tasks.

n Linux supports symmetrical multiprocessing (SMP).Therefore, without proper pro-
tection, kernel code executing simultaneously on two or more processors can con-
currently access the same resource.

n Interrupts occur asynchronously with respect to the currently executing code.
Therefore, without proper protection, an interrupt can occur in the midst of access-
ing a resource, and the interrupt handler can then access the same resource.

n The Linux kernel is preemptive.Therefore, without protection, kernel code can be
preempted in favor of different code that then accesses the same resource.

Typical solutions to race conditions include spinlocks and semaphores. Later chapters
provide a thorough discussion of synchronization and concurrency.

Importance of Portability
Although user-space applications do not have to aim for portability, Linux is a portable
operating system and should remain one.This means that architecture-independent C
code must correctly compile and run on a wide range of systems, and that architecture-
dependent code must be properly segregated in system-specific directories in the kernel
source tree.

A handful of rules—such as remain endian neutral, be 64-bit clean, do not assume the
word or page size, and so on—go a long way. Portability is discussed in depth in a later
chapter.

Conclusion
To be sure, the kernel has unique qualities. It enforces its own rules and the stakes, manag-
ing the entire system as the kernel does, are certainly higher.That said, the Linux kernel’s
complexity and barrier-to-entry is not qualitatively different from any other large soft-

 From the Library of Wow! eBook

ptg

22 Chapter 2 Getting Started with the Kernel

ware project.The most important step on the road to Linux development is the realiza-
tion that the kernel is not something to fear. Unfamiliar, sure. Insurmountable? Not at all.

This and the previous chapter lay the foundation for the topics we cover through this
book’s remaining chapters. In each subsequent chapter, we cover a specific kernel concept
or subsystem.Along the way, it is imperative that you read and modify the kernel source.
Only through actually reading and experimenting with the code can you ever understand
it.The source is freely available—use it!

 From the Library of Wow! eBook

ptg

3
Process Management

This chapter introduces the concept of the process, one of the fundamental abstractions
in Unix operating systems. It defines the process, as well as related concepts such as
threads, and then discusses how the Linux kernel manages each process: how they are
enumerated within the kernel, how they are created, and how they ultimately die.
Because running user applications is the reason we have operating systems, the process
management is a crucial part of any operating system kernel, including Linux.

The Process
A process is a program (object code stored on some media) in the midst of execution.
Processes are, however, more than just the executing program code (often called the text
section in Unix).They also include a set of resources such as open files and pending signals,
internal kernel data, processor state, a memory address space with one or more memory
mappings, one or more threads of execution, and a data section containing global variables.
Processes, in effect, are the living result of running program code.The kernel needs to
manage all these details efficiently and transparently.

Threads of execution, often shortened to threads, are the objects of activity within the
process. Each thread includes a unique program counter, process stack, and set of proces-
sor registers.The kernel schedules individual threads, not processes. In traditional Unix
systems, each process consists of one thread. In modern systems, however, multithreaded
programs—those that consist of more than one thread—are common.As you will see
later, Linux has a unique implementation of threads: It does not differentiate between
threads and processes.To Linux, a thread is just a special kind of process.

On modern operating systems, processes provide two virtualizations: a virtualized
processor and virtual memory.The virtual processor gives the process the illusion that it
alone monopolizes the system, despite possibly sharing the processor among hundreds of
other processes. Chapter 4,“Process Scheduling,” discusses this virtualization.Virtual
memory lets the process allocate and manage memory as if it alone owned all the mem-
ory in the system.Virtual memory is covered in Chapter 12,“Memory Management.”

 From the Library of Wow! eBook

ptg

24 Chapter 3 Process Management

Interestingly, note that threads share the virtual memory abstraction, whereas each
receives its own virtualized processor.

A program itself is not a process; a process is an active program and related resources.
Indeed, two or more processes can exist that are executing the same program. In fact, two
or more processes can exist that share various resources, such as open files or an address
space.

A process begins its life when, not surprisingly, it is created. In Linux, this occurs by
means of the fork() system call, which creates a new process by duplicating an existing
one.The process that calls fork() is the parent, whereas the new process is the child.The
parent resumes execution and the child starts execution at the same place: where the call
to fork() returns.The fork() system call returns from the kernel twice: once in the par-
ent process and again in the newborn child.

Often, immediately after a fork it is desirable to execute a new, different program.The
exec() family of function calls creates a new address space and loads a new program into
it. In contemporary Linux kernels, fork() is actually implemented via the clone() sys-
tem call, which is discussed in a following section.

Finally, a program exits via the exit() system call.This function terminates the process
and frees all its resources.A parent process can inquire about the status of a terminated
child via the wait4()1 system call, which enables a process to wait for the termination of
a specific process.When a process exits, it is placed into a special zombie state that repre-
sents terminated processes until the parent calls wait() or waitpid().

Note
Another name for a process is a task. The Linux kernel internally refers to processes as
tasks. In this book, I use the terms interchangeably, although when I say task I am generally
referring to a process from the kernel’s point of view.

Process Descriptor and the Task Structure
The kernel stores the list of processes in a circular doubly linked list called the task list.2

Each element in the task list is a process descriptor of the type struct task_struct, which
is defined in <linux/sched.h>.The process descriptor contains all the information about
a specific process.

The task_struct is a relatively large data structure, at around 1.7 kilobytes on a 32-bit
machine.This size, however, is quite small considering that the structure contains all the
information that the kernel has and needs about a process.The process descriptor contains

1 The kernel implements the wait4() system call. Linux systems, via the C library, typically provide the

wait(), waitpid(), wait3(), and wait4() functions. All these functions return status about a ter-

minated process, albeit with slightly different semantics.
2 Some texts on operating system design call this list the task array. Because the Linux implementation

is a linked list and not a static array, in Linux it is called the task list.

 From the Library of Wow! eBook

ptg

25Process Descriptor and the Task Structure

the data that describes the executing program—open files, the process’s address space,
pending signals, the process’s state, and much more (see Figure 3.1).

Allocating the Process Descriptor
The task_struct structure is allocated via the slab allocator to provide object reuse and
cache coloring (see Chapter 12). Prior to the 2.6 kernel series, struct task_struct was
stored at the end of the kernel stack of each process.This allowed architectures with few
registers, such as x86, to calculate the location of the process descriptor via the stack pointer
without using an extra register to store the location.With the process descriptor now
dynamically created via the slab allocator, a new structure, struct thread_info, was cre-
ated that again lives at the bottom of the stack (for stacks that grow down) and at the top
of the stack (for stacks that grow up).3 See Figure 3.2.

The thread_info structure is defined on x86 in <asm/thread_info.h> as

struct thread_info {

struct task_struct *task;

struct exec_domain *exec_domain;

__u32 flags;

__u32 status;

__u32 cpu;

int preempt_count;

3 Register-impaired architectures were not the only reason for creating struct thread_info. The

new structure also makes it rather easy to calculate offsets of its values for use in assembly code.

process descriptor

struct task_struct

the task list

struct task_struct

struct task_struct

struct task_struct

unsigned long state;
int prio;
unsigned long policy;
struct task_struct *parent;
struct list_head tasks;
pid_t pid;
…

Figure 3.1 The process descriptor and task list.

 From the Library of Wow! eBook

ptg

26 Chapter 3 Process Management

struct thread_struct

Process Kernel Stack

Start of Stack

current_thread_info ()-

- stack pointer

- highest memory address

- lowest memory address

the process’s struct task_struct

thread_info has a pointer to the process descriptor

Figure 3.2 The process descriptor and kernel stack.

Each task’s thread_info structure is allocated at the end of its stack.The task element
of the structure is a pointer to the task’s actual task_struct.

Storing the Process Descriptor
The system identifies processes by a unique process identification value or PID.The PID is a
numerical value represented by the opaque type4 pid_t, which is typically an int. Because
of backward compatibility with earlier Unix and Linux versions, however, the default
maximum value is only 32,768 (that of a short int), although the value optionally can
be increased as high as four million (this is controlled in <linux/threads.h>.The kernel
stores this value as pid inside each process descriptor.

This maximum value is important because it is essentially the maximum number of
processes that may exist concurrently on the system.Although 32,768 might be sufficient
for a desktop system, large servers may require many more processes. Moreover, the lower
the value, the sooner the values will wrap around, destroying the useful notion that higher

4 An opaque type is a data type whose physical representation is unknown or irrelevant.

mm_segment_t addr_limit;

struct restart_block restart_block;

void *sysenter_return;

int uaccess_err;

};

 From the Library of Wow! eBook

ptg

27Process Descriptor and the Task Structure

values indicate later-run processes than lower values. If the system is willing to break com-
patibility with old applications, the administrator may increase the maximum value via
/proc/sys/kernel/pid_max.

Inside the kernel, tasks are typically referenced directly by a pointer to their
task_struct structure. In fact, most kernel code that deals with processes works directly
with struct task_struct. Consequently, it is useful to be able to quickly look up the
process descriptor of the currently executing task, which is done via the current macro.
This macro must be independently implemented by each architecture. Some architectures
save a pointer to the task_struct structure of the currently running process in a register,
enabling for efficient access. Other architectures, such as x86 (which has few registers to
waste), make use of the fact that struct thread_info is stored on the kernel stack to cal-
culate the location of thread_info and subsequently the task_struct.

On x86, current is calculated by masking out the 13 least-significant bits of the stack
pointer to obtain the thread_info structure.This is done by the
current_thread_info() function.The assembly is shown here:

movl $-8192, %eax

andl %esp, %eax

This assumes that the stack size is 8KB.When 4KB stacks are enabled, 4096 is used in
lieu of 8192.

Finally, current dereferences the task member of thread_info to return the
task_struct:

current_thread_info()->task;

Contrast this approach with that taken by PowerPC (IBM’s modern RISC-based
microprocessor), which stores the current task_struct in a register.Thus, current on
PPC merely returns the value stored in the register r2. PPC can take this approach
because, unlike x86, it has plenty of registers. Because accessing the process descriptor is a
common and important job, the PPC kernel developers deem using a register worthy for
the task.

Process State
The state field of the process descriptor describes the current condition of the process
(see Figure 3.3). Each process on the system is in exactly one of five different states.This
value is represented by one of five flags:

n TASK_RUNNING—The process is runnable; it is either currently running or on a run-
queue waiting to run (runqueues are discussed in Chapter 4).This is the only possi-
ble state for a process executing in user-space; it can also apply to a process in
kernel-space that is actively running.

n TASK_INTERRUPTIBLE—The process is sleeping (that is, it is blocked), waiting for
some condition to exist.When this condition exists, the kernel sets the process’s
state to TASK_RUNNING.The process also awakes prematurely and becomes runnable
if it receives a signal.

 From the Library of Wow! eBook

ptg

28 Chapter 3 Process Management

Scheduler dispatches task to run:
schedule() calls context_switch().

Task sleeps on wait queue
for a specific event.

Task is preempted
by higher priority task.

Event occurs and task is woken up
and placed back on the run queue.

Task forks.

Task exits via
 do_exit.

Existing task calls
fork() and creates
a new process.

Task is terminated.

TASK_INTERRUPTIBLE
or

TASK_UNINTERRUPTIBLE
(waiting)

TASK_RUNNING

(running)

TASK_RUNNING

(ready but
not running)

Figure 3.3 Flow chart of process states.

n TASK_UNINTERRUPTIBLE—This state is identical to TASK_INTERRUPTIBLE except
that it does not wake up and become runnable if it receives a signal.This is used in
situations where the process must wait without interruption or when the event is
expected to occur quite quickly. Because the task does not respond to signals in
this state, TASK_UNINTERRUPTIBLE is less often used than TASK_INTERRUPTIBLE.5

n __TASK_TRACED—The process is being traced by another process, such as a debug-
ger, via ptrace.

n __TASK_STOPPED—Process execution has stopped; the task is not running nor is it
eligible to run.This occurs if the task receives the SIGSTOP, SIGTSTP, SIGTTIN, or
SIGTTOU signal or if it receives any signal while it is being debugged.

5 This is why you have those dreaded unkillable processes with state D in ps(1). Because the task will

not respond to signals, you cannot send it a SIGKILL signal. Further, even if you could terminate the

task, it would not be wise because the task is supposedly in the middle of an important operation and

may hold a semaphore.

 From the Library of Wow! eBook

ptg

29Process Descriptor and the Task Structure

Manipulating the Current Process State
Kernel code often needs to change a process’s state.The preferred mechanism is using

set_task_state(task, state); /* set task ‘task’ to state ‘state’ */

This function sets the given task to the given state. If applicable, it also provides a
memory barrier to force ordering on other processors. (This is only needed on SMP sys-
tems.) Otherwise, it is equivalent to

task->state = state;

The method set_current_state(state) is synonymous to set_task_state(current,
state). See <linux/sched.h> for the implementation of these and related functions.

Process Context
One of the most important parts of a process is the executing program code.This code is
read in from an executable file and executed within the program’s address space. Normal
program execution occurs in user-space.When a program executes a system call (see
Chapter 5,“System Calls”) or triggers an exception, it enters kernel-space.At this point, the
kernel is said to be “executing on behalf of the process” and is in process context.When in
process context, the current macro is valid.6 Upon exiting the kernel, the process resumes
execution in user-space, unless a higher-priority process has become runnable in the
interim, in which case the scheduler is invoked to select the higher priority process.

System calls and exception handlers are well-defined interfaces into the kernel.A
process can begin executing in kernel-space only through one of these interfaces—all
access to the kernel is through these interfaces.

The Process Family Tree
A distinct hierarchy exists between processes in Unix systems, and Linux is no exception.
All processes are descendants of the init process, whose PID is one.The kernel starts
init in the last step of the boot process.The init process, in turn, reads the system
initscripts and executes more programs, eventually completing the boot process.

Every process on the system has exactly one parent. Likewise, every process has zero or
more children. Processes that are all direct children of the same parent are called siblings.
The relationship between processes is stored in the process descriptor. Each task_struct
has a pointer to the parent’s task_struct, named parent, and a list of children, named

6 Other than process context there is interrupt context, which we discuss in Chapter 7, “Interrupts and

Interrupt Handlers.” In interrupt context, the system is not running on behalf of a process but is execut-

ing an interrupt handler. No process is tied to interrupt handlers.

 From the Library of Wow! eBook

ptg

30 Chapter 3 Process Management

children. Consequently, given the current process, it is possible to obtain the process
descriptor of its parent with the following code:

struct task_struct *my_parent = current->parent;

Similarly, it is possible to iterate over a process’s children with

struct task_struct *task;

struct list_head *list;

list_for_each(list, ¤t->children) {

task = list_entry(list, struct task_struct, sibling);

/* task now points to one of current’s children */

}

The init task’s process descriptor is statically allocated as init_task.A good example
of the relationship between all processes is the fact that this code will always succeed:

struct task_struct *task;

for (task = current; task != &init_task; task = task->parent)

;

/* task now points to init */

In fact, you can follow the process hierarchy from any one process in the system to any
other. Oftentimes, however, it is desirable simply to iterate over all processes in the system.
This is easy because the task list is a circular, doubly linked list.To obtain the next task in
the list, given any valid task, use

list_entry(task->tasks.next, struct task_struct, tasks)

Obtaining the previous task works the same way:

list_entry(task->tasks.prev, struct task_struct, tasks)

These two routines are provided by the macros next_task(task) and
prev_task(task), respectively. Finally, the macro for_each_process(task) is provided,
which iterates over the entire task list. On each iteration, task points to the next task in
the list:

struct task_struct *task;

for_each_process(task) {

/* this pointlessly prints the name and PID of each task */

printk(“%s[%d]\n”, task->comm, task->pid);

}

Caution
It is expensive to iterate over every task in a system with many processes; code should have
good reason (and no alternative) before doing so.

 From the Library of Wow! eBook

ptg

31Process Creation

Process Creation
Process creation in Unix is unique. Most operating systems implement a spawn mecha-
nism to create a new process in a new address space, read in an executable, and begin exe-
cuting it. Unix takes the unusual approach of separating these steps into two distinct
functions: fork()and exec().7 The first, fork(), creates a child process that is a copy of
the current task. It differs from the parent only in its PID (which is unique), its PPID
(parent’s PID, which is set to the original process), and certain resources and statistics, such
as pending signals, which are not inherited.The second function, exec(), loads a new
executable into the address space and begins executing it.The combination of
fork()followed by exec()is similar to the single function most operating systems
provide.

Copy-on-Write
Traditionally, upon fork(), all resources owned by the parent are duplicated and the
copy is given to the child.This approach is naive and inefficient in that it copies much
data that might otherwise be shared.Worse still, if the new process were to immediately
execute a new image, all that copying would go to waste. In Linux, fork() is imple-
mented through the use of copy-on-write pages. Copy-on-write (or COW) is a technique
to delay or altogether prevent copying of the data. Rather than duplicate the process
address space, the parent and the child can share a single copy.

The data, however, is marked in such a way that if it is written to, a duplicate is made
and each process receives a unique copy. Consequently, the duplication of resources
occurs only when they are written; until then, they are shared read-only.This technique
delays the copying of each page in the address space until it is actually written to. In the
case that the pages are never written—for example, if exec() is called immediately after
fork()—they never need to be copied.

The only overhead incurred by fork() is the duplication of the parent’s page tables
and the creation of a unique process descriptor for the child. In the common case that a
process executes a new executable image immediately after forking, this optimization pre-
vents the wasted copying of large amounts of data (with the address space, easily tens of
megabytes).This is an important optimization because the Unix philosophy encourages
quick process execution.

7 By exec() I mean any member of the exec() family of functions. The kernel implements the

execve() system call on top of which execlp(), execle(), execv(), and execvp() are

implemented.

 From the Library of Wow! eBook

ptg

32 Chapter 3 Process Management

Forking
Linux implements fork() via the clone() system call.This call takes a series of flags that
specify which resources, if any, the parent and child process should share. (See “The Linux
Implementation of Threads” section later in this chapter for more about the flags.) The
fork(), vfork(), and __clone() library calls all invoke the clone() system call with the
requisite flags.The clone() system call, in turn, calls do_fork().

The bulk of the work in forking is handled by do_fork(), which is defined in
kernel/fork.c.This function calls copy_process() and then starts the process running.
The interesting work is done by copy_process():

1. It calls dup_task_struct(), which creates a new kernel stack, thread_info struc-
ture, and task_struct for the new process.The new values are identical to those of
the current task.At this point, the child and parent process descriptors are identical.

2. It then checks that the new child will not exceed the resource limits on the num-
ber of processes for the current user.

3. The child needs to differentiate itself from its parent.Various members of the
process descriptor are cleared or set to initial values. Members of the process
descriptor not inherited are primarily statistically information.The bulk of the val-
ues in task_struct remain unchanged.

4. The child’s state is set to TASK_UNINTERRUPTIBLE to ensure that it does not yet run.

5. copy_process() calls copy_flags() to update the flags member of the
task_struct.The PF_SUPERPRIV flag, which denotes whether a task used super-
user privileges, is cleared.The PF_FORKNOEXEC flag, which denotes a process that has
not called exec(), is set.

6. It calls alloc_pid() to assign an available PID to the new task.

7. Depending on the flags passed to clone(), copy_process() either duplicates or
shares open files, filesystem information, signal handlers, process address space, and
namespace.These resources are typically shared between threads in a given process;
otherwise they are unique and thus copied here.

8. Finally, copy_process() cleans up and returns to the caller a pointer to the new
child.

Back in do_fork(), if copy_process() returns successfully, the new child is woken up
and run. Deliberately, the kernel runs the child process first.8 In the common case of the
child simply calling exec() immediately, this eliminates any copy-on-write overhead that
would occur if the parent ran first and began writing to the address space.

8 This does not currently function correctly, although the goal is for the child to run first.

 From the Library of Wow! eBook

ptg

33The Linux Implementation of Threads

vfork()
The vfork()system call has the same effect as fork(), except that the page table entries
of the parent process are not copied. Instead, the child executes as the sole thread in the
parent’s address space, and the parent is blocked until the child either calls exec() or exits.
The child is not allowed to write to the address space.This was a welcome optimization in
the old days of 3BSD when the call was introduced because at the time copy-on-write
pages were not used to implement fork().Today, with copy-on-write and child-runs-
first semantics, the only benefit to vfork() is not copying the parent page tables entries.
If Linux one day gains copy-on-write page table entries, there will no longer be any ben-
efit.9 Because the semantics of vfork() are tricky (what, for example, happens if the
exec() fails?), ideally systems would not need vfork() and the kernel would not imple-
ment it. It is entirely possible to implement vfork() as a normal fork()—this is what
Linux did until version 2.2.

The vfork() system call is implemented via a special flag to the clone() system call:

1. In copy_process(), the task_struct member vfork_done is set to NULL.

2. In do_fork(), if the special flag was given, vfork_done is pointed at a specific
address.

3. After the child is first run, the parent—instead of returning—waits for the child to
signal it through the vfork_done pointer.

4. In the mm_release() function, which is used when a task exits a memory address
space, vfork_done is checked to see whether it is NULL. If it is not, the parent is sig-
naled.

5. Back in do_fork(), the parent wakes up and returns.

If this all goes as planned, the child is now executing in a new address space, and the
parent is again executing in its original address space.The overhead is lower, but the
implementation is not pretty.

The Linux Implementation of Threads
Threads are a popular modern programming abstraction.They provide multiple threads of
execution within the same program in a shared memory address space.They can also
share open files and other resources.Threads enable concurrent programming and, on multi-
ple processor systems, true parallelism.

Linux has a unique implementation of threads.To the Linux kernel, there is no con-
cept of a thread. Linux implements all threads as standard processes.The Linux kernel

9 Patches are available to add this functionality to Linux. In time, this feature will most likely find its way

into the mainline Linux kernel.

 From the Library of Wow! eBook

ptg

34 Chapter 3 Process Management

does not provide any special scheduling semantics or data structures to represent threads.
Instead, a thread is merely a process that shares certain resources with other processes.
Each thread has a unique task_struct and appears to the kernel as a normal process—
threads just happen to share resources, such as an address space, with other processes.

This approach to threads contrasts greatly with operating systems such as Microsoft
Windows or Sun Solaris, which have explicit kernel support for threads (and sometimes
call threads lightweight processes).The name “lightweight process” sums up the difference in
philosophies between Linux and other systems.To these other operating systems, threads
are an abstraction to provide a lighter, quicker execution unit than the heavy process.To
Linux, threads are simply a manner of sharing resources between processes (which are
already quite lightweight).10 For example, assume you have a process that consists of four
threads. On systems with explicit thread support, one process descriptor might exist that,
in turn, points to the four different threads.The process descriptor describes the shared
resources, such as an address space or open files.The threads then describe the resources
they alone possess. Conversely, in Linux, there are simply four processes and thus four
normal task_struct structures.The four processes are set up to share certain resources.
The result is quite elegant.

Creating Threads
Threads are created the same as normal tasks, with the exception that the clone() system
call is passed flags corresponding to the specific resources to be shared:

clone(CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, 0);

The previous code results in behavior identical to a normal fork(), except that the
address space, filesystem resources, file descriptors, and signal handlers are shared. In other
words, the new task and its parent are what are popularly called threads.

In contrast, a normal fork() can be implemented as

clone(SIGCHLD, 0);

And vfork() is implemented as

clone(CLONE_VFORK | CLONE_VM | SIGCHLD, 0);

The flags provided to clone() help specify the behavior of the new process and detail
what resources the parent and child will share.Table 3.1 lists the clone flags, which are
defined in <linux/sched.h>, and their effect.

10 As an example, benchmark process creation time in Linux versus process (or even thread!) creation

time in these other operating systems. The results are favorable for Linux.

 From the Library of Wow! eBook

ptg

35The Linux Implementation of Threads

Kernel Threads
It is often useful for the kernel to perform some operations in the background.The ker-
nel accomplishes this via kernel threads—standard processes that exist solely in kernel-
space.The significant difference between kernel threads and normal processes is that
kernel threads do not have an address space. (Their mm pointer, which points at their
address space, is NULL.) They operate only in kernel-space and do not context switch into
user-space. Kernel threads, however, are schedulable and preemptable, the same as normal
processes.

Linux delegates several tasks to kernel threads, most notably the flush tasks and the
ksoftirqd task.You can see the kernel threads on your Linux system by running the com-
mand ps -ef.There are a lot of them! Kernel threads are created on system boot by
other kernel threads. Indeed, a kernel thread can be created only by another kernel
thread.The kernel handles this automatically by forking all new kernel threads off of the

Flag Meaning

CLONE_FILES Parent and child share open files.

CLONE_FS Parent and child share filesystem information.

CLONE_IDLETASK Set PID to zero (used only by the idle tasks).

CLONE_NEWNS Create a new namespace for the child.

CLONE_PARENT Child is to have same parent as its parent.

CLONE_PTRACE Continue tracing child.

CLONE_SETTID Write the TID back to user-space.

CLONE_SETTLS Create a new TLS for the child.

CLONE_SIGHAND Parent and child share signal handlers and blocked signals.

CLONE_SYSVSEM Parent and child share System V SEM_UNDO semantics.

CLONE_THREAD Parent and child are in the same thread group.

CLONE_VFORK vfork() was used and the parent will sleep until the child
wakes it.

CLONE_UNTRACED Do not let the tracing process force CLONE_PTRACE on the
child.

CLONE_STOP Start process in the TASK_STOPPED state.

CLONE_SETTLS Create a new TLS (thread-local storage) for the child.

CLONE_CHILD_CLEARTID Clear the TID in the child.

CLONE_CHILD_SETTID Set the TID in the child.

CLONE_PARENT_SETTID Set the TID in the parent.

CLONE_VM Parent and child share address space.

 From the Library of Wow! eBook

ptg

36 Chapter 3 Process Management

kthreadd kernel process.The interface, declared in <linux/kthread.h>, for spawning a
new kernel thread from an existing one is

struct task_struct *kthread_create(int (*threadfn)(void *data),

void *data,

const char namefmt[],

...)

The new task is created via the clone() system call by the kthread kernel process.The
new process will run the threadfn function, which is passed the data argument.The
process will be named namefmt, which takes printf-style formatting arguments in the vari-
able argument list.The process is created in an unrunnable state; it will not start running
until explicitly woken up via wake_up_process().A process can be created and made
runnable with a single function, kthread_run():

struct task_struct *kthread_run(int (*threadfn)(void *data),

void *data,

const char namefmt[],

...)

This routine, implemented as a macro, simply calls both kthread_create() and
wake_up_process():

#define kthread_run(threadfn, data, namefmt, ...) \

({ \

struct task_struct *k; \

\

k = kthread_create(threadfn, data, namefmt, ## __VA_ARGS__); \

if (!IS_ERR(k)) \

wake_up_process(k); \

k; \

})

When started, a kernel thread continues to exist until it calls do_exit() or another
part of the kernel calls kthread_stop(), passing in the address of the task_struct struc-
ture returned by kthread_create():

int kthread_stop(struct task_struct *k)

We discuss specific kernel threads in more detail in later chapters.

Process Termination
It is sad, but eventually processes must die.When a process terminates, the kernel releases
the resources owned by the process and notifies the child’s parent of its demise.

Generally, process destruction is self-induced. It occurs when the process calls the
exit() system call, either explicitly when it is ready to terminate or implicitly on return
from the main subroutine of any program. (That is, the C compiler places a call to exit()
after main() returns.) A process can also terminate involuntarily.This occurs when the

 From the Library of Wow! eBook

ptg

37Process Termination

process receives a signal or exception it cannot handle or ignore. Regardless of how a
process terminates, the bulk of the work is handled by do_exit(), defined in
kernel/exit.c, which completes a number of chores:

1. It sets the PF_EXITING flag in the flags member of the task_struct.

2. It calls del_timer_sync() to remove any kernel timers. Upon return, it is guaran-
teed that no timer is queued and that no timer handler is running.

3. If BSD process accounting is enabled, do_exit() calls acct_update_integrals()
to write out accounting information.

4. It calls exit_mm() to release the mm_struct held by this process. If no other process
is using this address space—that it, if the address space is not shared—the kernel
then destroys it.

5. It calls exit_sem(). If the process is queued waiting for an IPC semaphore, it is
dequeued here.

6. It then calls exit_files() and exit_fs() to decrement the usage count of objects
related to file descriptors and filesystem data, respectively. If either usage counts
reach zero, the object is no longer in use by any process, and it is destroyed.

7. It sets the task’s exit code, stored in the exit_code member of the task_struct, to
the code provided by exit() or whatever kernel mechanism forced the termina-
tion.The exit code is stored here for optional retrieval by the parent.

8. It calls exit_notify() to send signals to the task’s parent, reparents any of the task’s
children to another thread in their thread group or the init process, and sets the
task’s exit state, stored in exit_state in the task_struct structure, to
EXIT_ZOMBIE.

9. do_exit() calls schedule() to switch to a new process (see Chapter 4). Because
the process is now not schedulable, this is the last code the task will ever execute.
do_exit() never returns.

At this point, all objects associated with the task (assuming the task was the sole user)
are freed.The task is not runnable (and no longer has an address space in which to run)
and is in the EXIT_ZOMBIE exit state.The only memory it occupies is its kernel stack, the
thread_info structure, and the task_struct structure.The task exists solely to provide
information to its parent.After the parent retrieves the information, or notifies the kernel
that it is uninterested, the remaining memory held by the process is freed and returned to
the system for use.

Removing the Process Descriptor
After do_exit() completes, the process descriptor for the terminated process still exists,
but the process is a zombie and is unable to run.As discussed, this enables the system to
obtain information about a child process after it has terminated. Consequently, the acts of

 From the Library of Wow! eBook

ptg

38 Chapter 3 Process Management

cleaning up after a process and removing its process descriptor are separate.After the par-
ent has obtained information on its terminated child, or signified to the kernel that it
does not care, the child’s task_struct is deallocated.

The wait() family of functions are implemented via a single (and complicated) system
call, wait4().The standard behavior is to suspend execution of the calling task until one
of its children exits, at which time the function returns with the PID of the exited child.
Additionally, a pointer is provided to the function that on return holds the exit code of
the terminated child.

When it is time to finally deallocate the process descriptor, release_task() is
invoked. It does the following:

1. It calls __exit_signal(), which calls __unhash_process(), which in turns calls
detach_pid() to remove the process from the pidhash and remove the process
from the task list.

2. __exit_signal() releases any remaining resources used by the now dead process
and finalizes statistics and bookkeeping.

3. If the task was the last member of a thread group, and the leader is a zombie, then
release_task() notifies the zombie leader’s parent.

4. release_task() calls put_task_struct() to free the pages containing the
process’s kernel stack and thread_info structure and deallocate the slab cache con-
taining the task_struct.

At this point, the process descriptor and all resources belonging solely to the process
have been freed.

The Dilemma of the Parentless Task
If a parent exits before its children, some mechanism must exist to reparent any child tasks
to a new process, or else parentless terminated processes would forever remain zombies,
wasting system memory.The solution is to reparent a task’s children on exit to either
another process in the current thread group or, if that fails, the init process. do_exit()
calls exit_notify(), which calls forget_original_parent(), which, in turn, calls
find_new_reaper() to perform the reparenting:

static struct task_struct *find_new_reaper(struct task_struct *father)

{

struct pid_namespace *pid_ns = task_active_pid_ns(father);

struct task_struct *thread;

thread = father;

while_each_thread(father, thread) {

if (thread->flags & PF_EXITING)

continue;

if (unlikely(pid_ns->child_reaper == father))

 From the Library of Wow! eBook

ptg

39Process Termination

pid_ns->child_reaper = thread;

return thread;

}

if (unlikely(pid_ns->child_reaper == father)) {

write_unlock_irq(&tasklist_lock);

if (unlikely(pid_ns == &init_pid_ns))

panic(“Attempted to kill init!”);

zap_pid_ns_processes(pid_ns);

write_lock_irq(&tasklist_lock);

/*

* We can not clear ->child_reaper or leave it alone.

* There may by stealth EXIT_DEAD tasks on ->children,

* forget_original_parent() must move them somewhere.

*/

pid_ns->child_reaper = init_pid_ns.child_reaper;

}

return pid_ns->child_reaper;

}

This code attempts to find and return another task in the process’s thread group. If
another task is not in the thread group, it finds and returns the init process. Now that a
suitable new parent for the children is found, each child needs to be located and repar-
ented to reaper:

reaper = find_new_reaper(father);

list_for_each_entry_safe(p, n, &father->children, sibling) {

p->real_parent = reaper;

if (p->parent == father) {

BUG_ON(p->ptrace);

p->parent = p->real_parent;

}

reparent_thread(p, father);

}

ptrace_exit_finish() is then called to do the same reparenting but to a list of
ptraced children:

void exit_ptrace(struct task_struct *tracer)

{

struct task_struct *p, *n;

LIST_HEAD(ptrace_dead);

write_lock_irq(&tasklist_lock);

list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) {

if (__ptrace_detach(tracer, p))

list_add(&p->ptrace_entry, &ptrace_dead);

 From the Library of Wow! eBook

ptg

40 Chapter 3 Process Management

}

write_unlock_irq(&tasklist_lock);

BUG_ON(!list_empty(&tracer->ptraced));

list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_entry) {

list_del_init(&p->ptrace_entry);

release_task(p);

}

}

The rationale behind having both a child list and a ptraced list is interesting; it is a new
feature in the 2.6 kernel.When a task is ptraced, it is temporarily reparented to the debug-
ging process.When the task’s parent exits, however, it must be reparented along with its
other siblings. In previous kernels, this resulted in a loop over every process in the system
looking for children.The solution is simply to keep a separate list of a process’s children
being ptraced—reducing the search for one’s children from every process to just two rela-
tively small lists.

With the process successfully reparented, there is no risk of stray zombie processes.The
init process routinely calls wait() on its children, cleaning up any zombies assigned to it.

Conclusion
In this chapter, we looked at the core operating system abstraction of the process.We dis-
cussed the generalities of the process, why it is important, and the relationship between
processes and threads.We then discussed how Linux stores and represents processes (with
task_struct and thread_info), how processes are created (via fork() and ultimately
clone()), how new executable images are loaded into address spaces (via the exec()
family of system calls), the hierarchy of processes, how parents glean information about
their deceased children (via the wait() family of system calls), and how processes ulti-
mately die (forcefully or intentionally via exit()).The process is a fundamental and cru-
cial abstraction, at the heart of every modern operating system, and ultimately the reason
we have operating systems altogether (to run programs).

The next chapter discusses process scheduling, which is the delicate and interesting
manner in which the kernel decides which processes to run, at what time, and in what
order.

 From the Library of Wow! eBook

ptg

4
Process Scheduling

The prior chapter discussed processes, the operating system abstraction of active program
code.This chapter discusses the process scheduler, the kernel subsystem that puts those
processes to work.

The process scheduler decides which process runs, when, and for how long.The
process scheduler (or simply the scheduler, to which it is often shortened) divides the finite
resource of processor time between the runnable processes on a system.The scheduler is
the basis of a multitasking operating system such as Linux. By deciding which process
runs next, the scheduler is responsible for best utilizing the system and giving users the
impression that multiple processes are executing simultaneously.

The idea behind the scheduler is simple.To best utilize processor time, assuming there
are runnable processes, a process should always be running. If there are more runnable
processes than processors in a system, some processes will not be running at a given
moment.These processes are waiting to run. Deciding which process runs next, given a set
of runnable processes, is the fundamental decision that the scheduler must make.

Multitasking
A multitasking operating system is one that can simultaneously interleave execution of
more than one process. On single processor machines, this gives the illusion of multiple
processes running concurrently. On multiprocessor machines, such functionality enables
processes to actually run concurrently, in parallel, on different processors. On either type
of machine, it also enables many processes to block or sleep, not actually executing until
work is available.These processes, although in memory, are not runnable. Instead, such
processes utilize the kernel to wait until some event (keyboard input, network data, pas-
sage of time, and so on) occurs. Consequently, a modern Linux system can have many
processes in memory but, say, only one in a runnable state.

Multitasking operating systems come in two flavors: cooperative multitasking and
preemptive multitasking. Linux, like all Unix variants and most modern operating systems,
implements preemptive multitasking. In preemptive multitasking, the scheduler decides
when a process is to cease running and a new process is to begin running.The act of

 From the Library of Wow! eBook

ptg

42 Chapter 4 Process Scheduling

involuntarily suspending a running process is called preemption.The time a process runs
before it is preempted is usually predetermined, and it is called the timeslice of the process.
The timeslice, in effect, gives each runnable process a slice of the processor’s time. Manag-
ing the timeslice enables the scheduler to make global scheduling decisions for the sys-
tem. It also prevents any one process from monopolizing the processor. On many modern
operating systems, the timeslice is dynamically calculated as a function of process behavior
and configurable system policy.As we shall see, Linux’s unique “fair” scheduler does not
employ timeslices per se, to interesting effect.

Conversely, in cooperative multitasking, a process does not stop running until it voluntary
decides to do so.The act of a process voluntarily suspending itself is called yielding. Ideally,
processes yield often, giving each runnable process a decent chunk of the processor, but
the operating system cannot enforce this.The shortcomings of this approach are manifest:
The scheduler cannot make global decisions regarding how long processes run; processes
can monopolize the processor for longer than the user desires; and a hung process that
never yields can potentially bring down the entire system.Thankfully, most operating sys-
tems designed in the last two decades employ preemptive multitasking, with Mac OS 9
(and earlier) and Windows 3.1 (and earlier) being the most notable (and embarrassing)
exceptions. Of course, Unix has sported preemptive multitasking since its inception.

Linux’s Process Scheduler
From Linux’s first version in 1991 through the 2.4 kernel series, the Linux scheduler was
simple, almost pedestrian, in design. It was easy to understand, but scaled poorly in light of
many runnable processes or many processors.

In response, during the 2.5 kernel development series, the Linux kernel received a
scheduler overhaul.A new scheduler, commonly called the O(1) scheduler because of its
algorithmic behavior,1 solved the shortcomings of the previous Linux scheduler and
introduced powerful new features and performance characteristics. By introducing a con-
stant-time algorithm for timeslice calculation and per-processor runqueues, it rectified the
design limitations of the earlier scheduler.

The O(1) scheduler performed admirably and scaled effortlessly as Linux supported
large “iron” with tens if not hundreds of processors. Over time, however, it became evi-
dent that the O(1) scheduler had several pathological failures related to scheduling
latency-sensitive applications.These applications, called interactive processes, include any
application with which the user interacts.Thus, although the O(1) scheduler was ideal
for large server workloads—which lack interactive processes—it performed below par on
desktop systems, where interactive applications are the raison d’être. Beginning early in the

1 O(1) is an example of big-o notation. In short, it means the scheduler can perform its work in con-

stant time, regardless of the size of any inputs. A full explanation of big-o notation is in Chapter 6,

“Kernel Data Structures.”

 From the Library of Wow! eBook

ptg

43Policy

2.6 kernel series, developers introduced new process schedulers aimed at improving the
interactive performance of the O(1) scheduler.The most notable of these was the Rotating
Staircase Deadline scheduler, which introduced the concept of fair scheduling, borrowed
from queuing theory, to Linux’s process scheduler.This concept was the inspiration for
the O(1) scheduler’s eventual replacement in kernel version 2.6.23, the Completely Fair
Scheduler, or CFS.

This chapter discusses the fundamentals of scheduler design and how they apply to the
Completely Fair Scheduler and its goals, design, implementation, algorithms, and related
system calls.We also discuss the O(1) scheduler because its implementation is a more
“classic” Unix process scheduler model.

Policy
Policy is the behavior of the scheduler that determines what runs when.A scheduler’s
policy often determines the overall feel of a system and is responsible for optimally utiliz-
ing processor time.Therefore, it is very important.

I/O-Bound Versus Processor-Bound Processes
Processes can be classified as either I/O-bound or processor-bound.The former is character-
ized as a process that spends much of its time submitting and waiting on I/O requests.
Consequently, such a process is runnable for only short durations, because it eventually
blocks waiting on more I/O. (Here, by I/O, we mean any type of blockable resource,
such as keyboard input or network I/O, and not just disk I/O.) Most graphical user inter-
face (GUI) applications, for example, are I/O-bound, even if they never read from or
write to the disk, because they spend most of their time waiting on user interaction via
the keyboard and mouse.

Conversely, processor-bound processes spend much of their time executing code.They
tend to run until they are preempted because they do not block on I/O requests very
often. Because they are not I/O-driven, however, system response does not dictate that
the scheduler run them often.A scheduler policy for processor-bound processes, there-
fore, tends to run such processes less frequently but for longer durations.The ultimate
example of a processor-bound process is one executing an infinite loop. More palatable
examples include programs that perform a lot of mathematical calculations, such as ssh-
keygen or MATLAB.

Of course, these classifications are not mutually exclusive. Processes can exhibit both
behaviors simultaneously:The X Window server, for example, is both processor and I/O-
intense. Other processes can be I/O-bound but dive into periods of intense processor
action.A good example of this is a word processor, which normally sits waiting for key
presses but at any moment might peg the processor in a rabid fit of spell checking or
macro calculation.

The scheduling policy in a system must attempt to satisfy two conflicting goals: fast
process response time (low latency) and maximal system utilization (high throughput).To

 From the Library of Wow! eBook

ptg

44 Chapter 4 Process Scheduling

satisfy these at-odds requirements, schedulers often employ complex algorithms to deter-
mine the most worthwhile process to run while not compromising fairness to other,
lower priority, processes.The scheduler policy in Unix systems tends to explicitly favor
I/O-bound processes, thus providing good process response time. Linux, aiming to pro-
vide good interactive response and desktop performance, optimizes for process response
(low latency), thus favoring I/O-bound processes over processor-bound processors.As we
will see, this is done in a creative manner that does not neglect processor-bound
processes.

Process Priority
A common type of scheduling algorithm is priority-based scheduling.The goal is to rank
processes based on their worth and need for processor time.The general idea, which isn’t
exactly implemented on Linux, is that processes with a higher priority run before those
with a lower priority, whereas processes with the same priority are scheduled round-robin
(one after the next, repeating). On some systems, processes with a higher priority also
receive a longer timeslice.The runnable process with timeslice remaining and the highest
priority always runs. Both the user and the system can set a process’s priority to influence
the scheduling behavior of the system.

The Linux kernel implements two separate priority ranges.The first is the nice value, a
number from –20 to +19 with a default of 0. Larger nice values correspond to a lower
priority—you are being “nice” to the other processes on the system. Processes with a
lower nice value (higher priority) receive a larger proportion of the system’s processor
compared to processes with a higher nice value (lower priority). Nice values are the stan-
dard priority range used in all Unix systems, although different Unix systems apply them
in different ways, reflective of their individual scheduling algorithms. In other Unix-based
systems, such as Mac OS X, the nice value is a control over the absolute timeslice allotted
to a process; in Linux, it is a control over the proportion of timeslice.You can see a list of
the processes on your system and their respective nice values (under the column marked
NI) with the command ps -el.

The second range is the real-time priority.The values are configurable, but by default
range from 0 to 99, inclusive. Opposite from nice values, higher real-time priority values
correspond to a greater priority.All real-time processes are at a higher priority than nor-
mal processes; that is, the real-time priority and nice value are in disjoint value spaces.
Linux implements real-time priorities in accordance with the relevant Unix standards,
specifically POSIX.1b.All modern Unix systems implement a similar scheme.You can see
a list of the processes on your system and their respective real-time priority (under the
column marked RTPRIO) with the command

ps -eo state,uid,pid,ppid,rtprio,time,comm.

A value of “-” means the process is not real-time.

 From the Library of Wow! eBook

ptg

45Policy

Timeslice
The timeslice2 is the numeric value that represents how long a task can run until it is pre-
empted.The scheduler policy must dictate a default timeslice, which is not a trivial exer-
cise.Too long a timeslice causes the system to have poor interactive performance; the
system will no longer feel as if applications are concurrently executed.Too short a times-
lice causes significant amounts of processor time to be wasted on the overhead of switch-
ing processes because a significant percentage of the system’s time is spent switching from
one process with a short timeslice to the next. Furthermore, the conflicting goals of I/O-
bound versus processor-bound processes again arise: I/O-bound processes do not need
longer timeslices (although they do like to run often), whereas processor-bound processes
crave long timeslices (to keep their caches hot).

With this argument, it would seem that any long timeslice would result in poor inter-
active performance. In many operating systems, this observation is taken to heart, and the
default timeslice is rather low—for example, 10 milliseconds. Linux’s CFS scheduler,
however, does not directly assign timeslices to processes. Instead, in a novel approach, CFS
assigns processes a proportion of the processor. On Linux, therefore, the amount of proces-
sor time that a process receives is a function of the load of the system.This assigned pro-
portion is further affected by each process’s nice value.The nice value acts as a weight,
changing the proportion of the processor time each process receives. Processes with
higher nice values (a lower priority) receive a deflationary weight, yielding them a smaller
proportion of the processor; processes with smaller nice values (a higher priority) receive
an inflationary weight, netting them a larger proportion of the processor.

As mentioned, the Linux operating system is preemptive.When a process enters the
runnable state, it becomes eligible to run. In most operating systems, whether the process
runs immediately, preempting the currently running process, is a function of the process’s
priority and available timeslice. In Linux, under the new CFS scheduler, the decision is a
function of how much of a proportion of the processor the newly runnable processor has
consumed. If it has consumed a smaller proportion of the processor than the currently
executing process, it runs immediately, preempting the current process. If not, it is sched-
uled to run at a later time.

The Scheduling Policy in Action
Consider a system with two runnable tasks: a text editor and a video encoder.The text
editor is I/O-bound because it spends nearly all its time waiting for user key presses. (No
matter how fast the user types, it is not that fast.) Despite this, when the text editor does
receive a key press, the user expects the editor to respond immediately. Conversely, the
video encoder is processor-bound.Aside from reading the raw data stream from the disk

2 Timeslice is sometimes called quantum or processor slice in other systems. Linux calls it timeslice,

thus so should you.

 From the Library of Wow! eBook

ptg

46 Chapter 4 Process Scheduling

and later writing the resulting video, the encoder spends all its time applying the video
codec to the raw data, easily consuming 100% of the processor.The video encoder does
not have any strong time constraints on when it runs—if it started running now or in half
a second, the user could not tell and would not care. Of course, the sooner it finishes the
better, but latency is not a primary concern.

In this scenario, ideally the scheduler gives the text editor a larger proportion of the
available processor than the video encoder, because the text editor is interactive.We have
two goals for the text editor. First, we want it to have a large amount of processor time
available to it; not because it needs a lot of processor (it does not) but because we want it
to always have processor time available the moment it needs it. Second, we want the text
editor to preempt the video encoder the moment it wakes up (say, when the user presses
a key).This can ensure the text editor has good interactive performance and is responsive to
user input. On most operating systems, these goals are accomplished (if at all) by giving
the text editor a higher priority and larger timeslice than the video encoder.Advanced
operating systems do this automatically, by detecting that the text editor is interactive.
Linux achieves these goals too, but by different means. Instead of assigning the text editor
a specific priority and timeslice, it guarantees the text editor a specific proportion of the
processor. If the video encoder and text editor are the only running processes and both
are at the same nice level, this proportion would be 50%—each would be guaranteed half
of the processor’s time. Because the text editor spends most of its time blocked, waiting
for user key presses, it does not use anywhere near 50% of the processor. Conversely, the
video encoder is free to use more than its allotted 50%, enabling it to finish the encoding
quickly.

The crucial concept is what happens when the text editor wakes up. Our primary goal
is to ensure it runs immediately upon user input. In this case, when the editor wakes up,
CFS notes that it is allotted 50% of the processor but has used considerably less. Specifi-
cally, CFS determines that the text editor has run for less time than the video encoder.
Attempting to give all processes a fair share of the processor, it then preempts the video
encoder and enables the text editor to run.The text editor runs, quickly processes the
user’s key press, and again sleeps, waiting for more input.As the text editor has not con-
sumed its allotted 50%, we continue in this manner, with CFS always enabling the text
editor to run when it wants and the video encoder to run the rest of the time.

The Linux Scheduling Algorithm
In the previous sections, we discussed process scheduling in the abstract, with only occa-
sional mention of how Linux applies a given concept to reality.With the foundation of
scheduling now built, we can dive into Linux’s process scheduler.

Scheduler Classes
The Linux scheduler is modular, enabling different algorithms to schedule different types
of processes.This modularity is called scheduler classes. Scheduler classes enable different,
pluggable algorithms to coexist, scheduling their own types of processes. Each scheduler

 From the Library of Wow! eBook

ptg

47The Linux Scheduling Algorithm

class has a priority.The base scheduler code, which is defined in kernel/sched.c, iterates
over each scheduler class in order of priority.The highest priority scheduler class that has
a runnable process wins, selecting who runs next.

The Completely Fair Scheduler (CFS) is the registered scheduler class for normal
processes, called SCHED_NORMAL in Linux (and SCHED_OTHER in POSIX). CFS is defined
in kernel/sched_fair.c.The rest of this section discusses the CFS algorithm and is ger-
mane to any Linux kernel since 2.6.23.We discuss the scheduler class for real-time
processes in a later section.

Process Scheduling in Unix Systems
To discuss fair scheduling, we must first describe how traditional Unix systems schedule
processes.As mentioned in the previous section, modern process schedulers have two
common concepts: process priority and timeslice.Timeslice is how long a process runs;
processes start with some default timeslice. Processes with a higher priority run more fre-
quently and (on many systems) receive a higher timeslice. On Unix, the priority is
exported to user-space in the form of nice values.This sounds simple, but in practice it
leads to several pathological problems, which we now discuss.

First, mapping nice values onto timeslices requires a decision about what absolute
timeslice to allot each nice value.This leads to suboptimal switching behavior. For exam-
ple, let’s assume we assign processes of the default nice value (zero) a timeslice of 100 mil-
liseconds and processes at the highest nice value (+20, the lowest priority) a timeslice of 5
milliseconds. Further, let’s assume one of each of these processes is runnable. Our default-
priority process thus receives 20 ⁄21 (100 out of 105 milliseconds) of the processor, whereas
our low priority process receives 1/21 (5 out of 105 milliseconds) of the processor.We
could have used any numbers for this example, but we assume this allotment is optimal
since we chose it. Now, what happens if we run exactly two low priority processes? We’d
expect they each receive 50% of the processor, which they do. But they each enjoy the
processor for only 5 milliseconds at a time (5 out of 10 milliseconds each)! That is, instead
of context switching twice every 105 milliseconds, we now context switch twice every
10 milliseconds. Conversely, if we have two normal priority processes, each again receives
the correct 50% of the processor, but in 100 millisecond increments. Neither of these
timeslice allotments are necessarily ideal; each is simply a byproduct of a given nice value
to timeslice mapping coupled with a specific runnable process priority mix. Indeed, given
that high nice value (low priority) processes tend to be background, processor-intensive
tasks, while normal priority processes tend to be foreground user tasks, this timeslice
allotment is exactly backward from ideal!

A second problem concerns relative nice values and again the nice value to timeslice
mapping. Say we have two processes, each a single nice value apart. First, let’s assume they
are at nice values 0 and 1.This might map (and indeed did in the O(1) scheduler) to
timeslices of 100 and 95 milliseconds, respectively.These two values are nearly identical,
and thus the difference here between a single nice value is small. Now, instead, let’s
assume our two processes are at nice values of 18 and 19.This now maps to timeslices of

 From the Library of Wow! eBook

ptg

48 Chapter 4 Process Scheduling

10 and 5 milliseconds, respectively—the former receiving twice the processor time as the
latter! Because nice values are most commonly used in relative terms (as the system call
accepts an increment, not an absolute value), this behavior means that “nicing down a
process by one” has wildly different effects depending on the starting nice value.

Third, if performing a nice value to timeslice mapping, we need the ability to assign
an absolute timeslice.This absolute value must be measured in terms the kernel can meas-
ure. In most operating systems, this means the timeslice must be some integer multiple of
the timer tick. (See Chapter 11,“Timers and Time Management,” for a discussion on
time.) This introduces several problems. First, the minimum timeslice has a floor of the
period of the timer tick, which might be as high as 10 milliseconds or as low as 1 mil-
lisecond. Second, the system timer limits the difference between two timeslices; successive
nice values might map to timeslices as much as 10 milliseconds or as little as 1 millisec-
ond apart. Finally, timeslices change with different timer ticks. (If this paragraph’s discus-
sion of timer ticks is foreign, reread it after reading Chapter 11.This is only one
motivation behind CFS.)

The fourth and final problem concerns handling process wake up in a priority-based
scheduler that wants to optimize for interactive tasks. In such a system, you might want to
give freshly woken-up tasks a priority boost by allowing them to run immediately, even if
their timeslice was expired.Although this improves interactive performance in many, if
not most, situations, it also opens the door to pathological cases where certain sleep/wake
up use cases can game the scheduler into providing one process an unfair amount of
processor time, at the expense of the rest of the system.

Most of these problems are solvable by making substantial but not paradigm-shifting
changes to the old-school Unix scheduler. For example, making nice values geometric
instead of additive solves the second problem.And mapping nice values to timeslices using
a measurement decoupled from the timer tick solves the third problem. But such solu-
tions belie the true problem, which is that assigning absolute timeslices yields a constant
switching rate but variable fairness.The approach taken by CFS is a radical (for process
schedulers) rethinking of timeslice allotment: Do away with timeslices completely and
assign each process a proportion of the processor. CFS thus yields constant fairness but a
variable switching rate.

Fair Scheduling
CFS is based on a simple concept: Model process scheduling as if the system had an ideal,
perfectly multitasking processor. In such a system, each process would receive 1/n of the
processor’s time, where n is the number of runnable processes, and we’d schedule them for
infinitely small durations, so that in any measurable period we’d have run all n processes
for the same amount of time.As an example, assume we have two processes. In the stan-
dard Unix model, we might run one process for 5 milliseconds and then another process
for 5 milliseconds.While running, each process would receive 100% of the processor. In
an ideal, perfectly multitasking processor, we would run both processes simultaneously for
10 milliseconds, each at 50% power.This latter model is called perfect multitasking.

 From the Library of Wow! eBook

ptg

49The Linux Scheduling Algorithm

Of course, such a model is also impractical, because it is not possible on a single
processor to literally run multiple processes simultaneously. Moreover, it is not efficient to
run processes for infinitely small durations.That is, there is a switching cost to preempting
one process for another: the overhead of swapping one process for another and the effects
on caches, for example.Thus, although we’d like to run processes for very small durations,
CFS is mindful of the overhead and performance hit in doing so. Instead, CFS will run
each process for some amount of time, round-robin, selecting next the process that has
run the least. Rather than assign each process a timeslice, CFS calculates how long a
process should run as a function of the total number of runnable processes. Instead of
using the nice value to calculate a timeslice, CFS uses the nice value to weight the propor-
tion of processor a process is to receive: Higher valued (lower priority) processes receive a
fractional weight relative to the default nice value, whereas lower valued (higher priority)
processes receive a larger weight.

Each process then runs for a “timeslice” proportional to its weight divided by the total
weight of all runnable threads.To calculate the actual timeslice, CFS sets a target for its
approximation of the “infinitely small” scheduling duration in perfect multitasking.This
target is called the targeted latency. Smaller targets yield better interactivity and a closer
approximation to perfect multitasking, at the expense of higher switching costs and thus
worse overall throughput. Let’s assume the targeted latency is 20 milliseconds and we have
two runnable tasks at the same priority. Regardless of those task’s priority, each will run for
10 milliseconds before preempting in favor of the other. If we have four tasks at the
same priority, each will run for 5 milliseconds. If there are 20 tasks, each will run for
1 millisecond.

Note as the number of runnable tasks approaches infinity, the proportion of allotted
processor and the assigned timeslice approaches zero.As this will eventually result in
unacceptable switching costs, CFS imposes a floor on the timeslice assigned to each
process.This floor is called the minimum granularity. By default it is 1 millisecond.Thus,
even as the number of runnable processes approaches infinity, each will run for at least 1
millisecond, to ensure there is a ceiling on the incurred switching costs. (Astute readers
will note that CFS is thus not perfectly fair when the number of processes grows so large
that the calculated proportion is floored by the minimum granularity.This is true.
Although modifications to fair queuing exist to improve upon this fairness, CFS was
explicitly designed to make this trade-off. In the common case of only a handful of
runnable processes, CFS is perfectly fair.)

Now, let’s again consider the case of two runnable processes, except with dissimilar
nice values—say, one with the default nice value (zero) and one with a nice value of 5.
These nice values have dissimilar weights and thus our two processes receive different
proportions of the processor’s time. In this case, the weights work out to about a 1⁄3
penalty for the nice-5 process. If our target latency is again 20 milliseconds, our two
processes will receive 15 milliseconds and 5 milliseconds each of processor time, respec-
tively. Say our two runnable processes instead had nice values of 10 and 15.What would
be the allotted timeslices? Again 15 and 5 milliseconds each! Absolute nice values no

 From the Library of Wow! eBook

ptg

50 Chapter 4 Process Scheduling

longer affect scheduling decisions; only relative values affect the proportion of processor
time allotted.

Put generally, the proportion of processor time that any process receives is determined
only by the relative difference in niceness between it and the other runnable processes.
The nice values, instead of yielding additive increases to timeslices, yield geometric differ-
ences.The absolute timeslice allotted any nice value is not an absolute number, but a
given proportion of the processor. CFS is called a fair scheduler because it gives each
process a fair share—a proportion—of the processor’s time.As mentioned, note that CFS
isn’t perfectly fair, because it only approximates perfect multitasking, but it can place a
lower bound on latency of n for n runnable processes on the unfairness.

The Linux Scheduling Implementation
With the discussion of the motivation for and logic of CFS behind us, we can now
explore CFS’s actual implementation, which lives in kernel/sched_fair.c. Specifically,
we discuss four components of CFS:

n Time Accounting
n Process Selection
n The Scheduler Entry Point
n Sleeping and Waking Up

Time Accounting
All process schedulers must account for the time that a process runs. Most Unix systems
do so, as discussed earlier, by assigning each process a timeslice. On each tick of the system
clock, the timeslice is decremented by the tick period.When the timeslice reaches zero,
the process is preempted in favor of another runnable process with a nonzero timeslice.

The Scheduler Entity Structure
CFS does not have the notion of a timeslice, but it must still keep account for the time
that each process runs, because it needs to ensure that each process runs only for its fair
share of the processor. CFS uses the scheduler entity structure, struct sched_entity,
defined in <linux/sched.h>, to keep track of process accounting:

struct sched_entity {

struct load_weight load;

struct rb_node run_node;

struct list_head group_node;

unsigned int on_rq;

u64 exec_start;

u64 sum_exec_runtime;

u64 vruntime;

u64 prev_sum_exec_runtime;

 From the Library of Wow! eBook

ptg

51The Linux Scheduling Implementation

u64 last_wakeup;

u64 avg_overlap;

u64 nr_migrations;

u64 start_runtime;

u64 avg_wakeup;

/* many stat variables elided, enabled only if CONFIG_SCHEDSTATS is set */

};

The scheduler entity structure is embedded in the process descriptor, struct
task_stuct, as a member variable named se.We discussed the process descriptor in
Chapter 3,“Process Management.”

The Virtual Runtime
The vruntime variable stores the virtual runtime of a process, which is the actual runtime
(the amount of time spent running) normalized (or weighted) by the number of runnable
processes.The virtual runtime’s units are nanoseconds and therefore vruntime is decou-
pled from the timer tick.The virtual runtime is used to help us approximate the “ideal
multitasking processor” that CFS is modeling.With such an ideal processor, we wouldn’t
need vruntime, because all runnable processes would perfectly multitask.That is, on an
ideal processor, the virtual runtime of all processes of the same priority would be identi-
cal—all tasks would have received an equal, fair share of the processor. Because processors
are not capable of perfect multitasking and we must run each process in succession, CFS
uses vruntime to account for how long a process has run and thus how much longer it
ought to run.

The function update_curr(), defined in kernel/sched_fair.c, manages this
accounting:

static void update_curr(struct cfs_rq *cfs_rq)

{

struct sched_entity *curr = cfs_rq->curr;

u64 now = rq_of(cfs_rq)->clock;

unsigned long delta_exec;

if (unlikely(!curr))

return;

/*

* Get the amount of time the current task was running

* since the last time we changed load (this cannot

* overflow on 32 bits):

*/

delta_exec = (unsigned long)(now - curr->exec_start);

if (!delta_exec)

return;

 From the Library of Wow! eBook

ptg

52 Chapter 4 Process Scheduling

__update_curr(cfs_rq, curr, delta_exec);

curr->exec_start = now;

if (entity_is_task(curr)) {

struct task_struct *curtask = task_of(curr);

trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);

cpuacct_charge(curtask, delta_exec);

account_group_exec_runtime(curtask, delta_exec);

}

}

update_curr() calculates the execution time of the current process and stores that
value in delta_exec. It then passes that runtime to __update_curr(), which weights the
time by the number of runnable processes.The current process’s vruntime is then incre-
mented by the weighted value:

/*

* Update the current task’s runtime statistics. Skip current tasks that

* are not in our scheduling class.

*/

static inline void

__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,

unsigned long delta_exec)

{

unsigned long delta_exec_weighted;

schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));

curr->sum_exec_runtime += delta_exec;

schedstat_add(cfs_rq, exec_clock, delta_exec);

delta_exec_weighted = calc_delta_fair(delta_exec, curr);

curr->vruntime += delta_exec_weighted;

update_min_vruntime(cfs_rq);

}

update_curr() is invoked periodically by the system timer and also whenever a
process becomes runnable or blocks, becoming unrunnable. In this manner, vruntime is
an accurate measure of the runtime of a given process and an indicator of what process
should run next.

Process Selection
In the last section, we discussed how vruntime on an ideal, perfectly multitasking proces-
sor would be identical among all runnable processes. In reality, we cannot perfectly multi-
task, so CFS attempts to balance a process’s virtual runtime with a simple rule:When CFS

 From the Library of Wow! eBook

ptg

53The Linux Scheduling Implementation

is deciding what process to run next, it picks the process with the smallest vruntime.This
is, in fact, the core of CFS’s scheduling algorithm: Pick the task with the smallest
vruntime.That’s it! The rest of this subsection describes how the selection of the process
with the smallest vruntime is implemented.

CFS uses a red-black tree to manage the list of runnable processes and efficiently find
the process with the smallest vruntime.A red-black tree, called an rbtree in Linux, is a type
of self-balancing binary search tree.We discuss self-balancing binary search trees in general
and red-black trees in particular in Chapter 6. For now, if you are unfamiliar, you need to
know only that red-black trees are a data structure that store nodes of arbitrary data, iden-
tified by a specific key, and that they enable efficient search for a given key. (Specifically,
obtaining a node identified by a given key is logarithmic in time as a function of total
nodes in the tree.)

Picking the Next Task
Let’s start with the assumption that we have a red-black tree populated with every
runnable process in the system where the key for each node is the runnable process’s vir-
tual runtime.We’ll look at how we build that tree in a moment, but for now let’s assume
we have it. Given this tree, the process that CFS wants to run next, which is the process
with the smallest vruntime, is the leftmost node in the tree.That is, if you follow the tree
from the root down through the left child, and continue moving to the left until you
reach a leaf node, you find the process with the smallest vruntime. (Again, if you are
unfamiliar with binary search trees, don’t worry. Just know that this process is efficient.)
CFS’s process selection algorithm is thus summed up as “run the process represented by
the leftmost node in the rbtree.”The function that performs this selection is
__pick_next_entity(), defined in kernel/sched_fair.c:

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)

{

struct rb_node *left = cfs_rq->rb_leftmost;

if (!left)

return NULL;

return rb_entry(left, struct sched_entity, run_node);

}

Note that __pick_next_entity() does not actually traverse the tree to find the left-
most node, because the value is cached by rb_leftmost.Although it is efficient to walk
the tree to find the leftmost node—O(height of tree), which is O(log N) for N nodes
if the tree is balanced—it is even easier to cache the leftmost node.The return value from
this function is the process that CFS next runs. If the function returns NULL, there is no
leftmost node, and thus no nodes in the tree. In that case, there are no runnable processes,
and CFS schedules the idle task.

 From the Library of Wow! eBook

ptg

54 Chapter 4 Process Scheduling

Adding Processes to the Tree
Now let’s look at how CFS adds processes to the rbtree and caches the leftmost node.
This would occur when a process becomes runnable (wakes up) or is first created via
fork(), as discussed in Chapter 3.Adding processes to the tree is performed by
enqueue_entity():

static void

enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)

{

/*

* Update the normalized vruntime before updating min_vruntime

* through callig update_curr().

*/

if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE))

se->vruntime += cfs_rq->min_vruntime;

/*

* Update run-time statistics of the ‘current’.

*/

update_curr(cfs_rq);

account_entity_enqueue(cfs_rq, se);

if (flags & ENQUEUE_WAKEUP) {

place_entity(cfs_rq, se, 0);

enqueue_sleeper(cfs_rq, se);

}

update_stats_enqueue(cfs_rq, se);

check_spread(cfs_rq, se);

if (se != cfs_rq->curr)

__enqueue_entity(cfs_rq, se);

}

This function updates the runtime and other statistics and then invokes
__enqueue_entity() to perform the actual heavy lifting of inserting the entry into the
red-black tree:

/*

* Enqueue an entity into the rb-tree:

*/

static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)

{

struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;

struct rb_node *parent = NULL;

struct sched_entity *entry;

s64 key = entity_key(cfs_rq, se);

int leftmost = 1;

 From the Library of Wow! eBook

ptg

55The Linux Scheduling Implementation

/*

* Find the right place in the rbtree:

*/

while (*link) {

parent = *link;

entry = rb_entry(parent, struct sched_entity, run_node);

/*

* We dont care about collisions. Nodes with

* the same key stay together.

*/

if (key < entity_key(cfs_rq, entry)) {

link = &parent->rb_left;

} else {

link = &parent->rb_right;

leftmost = 0;

}

}

/*

* Maintain a cache of leftmost tree entries (it is frequently

* used):

*/

if (leftmost)

cfs_rq->rb_leftmost = &se->run_node;

rb_link_node(&se->run_node, parent, link);

rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);

}

Let’s look at this function.The body of the while() loop traverses the tree in search of
a matching key, which is the inserted process’s vruntime. Per the rules of the balanced
tree, it moves to the left child if the key is smaller than the current node’s key and to the
right child if the key is larger. If it ever moves to the right, even once, it knows the
inserted process cannot be the new leftmost node, and it sets leftmost to zero. If it moves
only to the left, leftmost remains one, and we have a new leftmost node and can update
the cache by setting rb_leftmost to the inserted process.The loop terminates when we
compare ourselves to a node that has no child in the direction we move; link is then
NULL and the loop terminates.When out of the loop, the function calls rb_link_node()
on the parent node, making the inserted process the new child.The function
rb_insert_color() updates the self-balancing properties of the tree; we discuss the col-
oring in Chapter 6.

 From the Library of Wow! eBook

ptg

56 Chapter 4 Process Scheduling

Removing Processes from the Tree
Finally, let’s look at how CFS removes processes from the red-black tree.This happens
when a process blocks (becomes unrunnable) or terminates (ceases to exist):

static void

dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)

{

/*

* Update run-time statistics of the ‘current’.

*/

update_curr(cfs_rq);

update_stats_dequeue(cfs_rq, se);

clear_buddies(cfs_rq, se);

if (se != cfs_rq->curr)

__dequeue_entity(cfs_rq, se);

account_entity_dequeue(cfs_rq, se);

update_min_vruntime(cfs_rq);

/*

* Normalize the entity after updating the min_vruntime because the

* update can refer to the ->curr item and we need to reflect this

* movement in our normalized position.

*/

if (!sleep)

se->vruntime -= cfs_rq->min_vruntime;

}

As with adding a process to the red-black tree, the real work is performed by a helper
function, __dequeue_entity():

static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)

{

if (cfs_rq->rb_leftmost == &se->run_node) {

struct rb_node *next_node;

next_node = rb_next(&se->run_node);

cfs_rq->rb_leftmost = next_node;

}

rb_erase(&se->run_node, &cfs_rq->tasks_timeline);

}

Removing a process from the tree is much simpler because the rbtree implementation
provides the rb_erase() function that performs all the work.The rest of this function
updates the rb_leftmost cache. If the process-to-remove is the leftmost node, the func-

 From the Library of Wow! eBook

ptg

57The Linux Scheduling Implementation

tion invokes rb_next() to find what would be the next node in an in-order traversal.
This is what will be the leftmost node when the current leftmost node is removed.

The Scheduler Entry Point
The main entry point into the process schedule is the function schedule(), defined in
kernel/sched.c.This is the function that the rest of the kernel uses to invoke the process
scheduler, deciding which process to run and then running it. schedule() is generic with
respect to scheduler classes.That is, it finds the highest priority scheduler class with a
runnable process and asks it what to run next. Given that, it should be no surprise that
schedule() is simple.The only important part of the function—which is otherwise too
uninteresting to reproduce here—is its invocation of pick_next_task(), also defined in
kernel/sched.c.The pick_next_task() function goes through each scheduler class,
starting with the highest priority, and selects the highest priority process in the highest
priority class:

/*

* Pick up the highest-prio task:

*/

static inline struct task_struct *

pick_next_task(struct rq *rq)

{

const struct sched_class *class;

struct task_struct *p;

/*

* Optimization: we know that if all tasks are in

* the fair class we can call that function directly:

*/

if (likely(rq->nr_running == rq->cfs.nr_running)) {

p = fair_sched_class.pick_next_task(rq);

if (likely(p))

return p;

}

class = sched_class_highest;

for (; ;) {

p = class->pick_next_task(rq);

if (p)

return p;

/*

* Will never be NULL as the idle class always

* returns a non-NULL p:

*/

class = class->next;

}

}

 From the Library of Wow! eBook

ptg

58 Chapter 4 Process Scheduling

Note the optimization at the beginning of the function. Because CFS is the scheduler
class for normal processes, and most systems run mostly normal processes, there is a small
hack to quickly select the next CFS-provided process if the number of runnable processes
is equal to the number of CFS runnable processes (which suggests that all runnable
processes are provided by CFS).

The core of the function is the for() loop, which iterates over each class in priority
order, starting with the highest priority class. Each class implements the
pick_next_task() function, which returns a pointer to its next runnable process or, if
there is not one, NULL.The first class to return a non-NULL value has selected the next
runnable process. CFS’s implementation of pick_next_task() calls
pick_next_entity(), which in turn calls the __pick_next_entity() function that we
discussed in the previous section.

Sleeping and Waking Up
Tasks that are sleeping (blocked) are in a special nonrunnable state.This is important
because without this special state, the scheduler would select tasks that did not want to
run or, worse, sleeping would have to be implemented as busy looping.A task sleeps for a
number of reasons, but always while it is waiting for some event.The event can be a spec-
ified amount of time, more data from a file I/O, or another hardware event.A task can
also involuntarily go to sleep when it tries to obtain a contended semaphore in the kernel
(this is covered in Chapter 9,“An Introduction to Kernel Synchronization”).A common
reason to sleep is file I/O—for example, the task issued a read() request on a file, which
needs to be read in from disk.As another example, the task could be waiting for keyboard
input.Whatever the case, the kernel behavior is the same:The task marks itself as sleeping,
puts itself on a wait queue, removes itself from the red-black tree of runnable, and calls
schedule() to select a new process to execute.Waking back up is the inverse:The task is
set as runnable, removed from the wait queue, and added back to the red-black tree.

As discussed in the previous chapter, two states are associated with sleeping,
TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE.They differ only in that tasks in the
TASK_UNINTERRUPTIBLE state ignore signals, whereas tasks in the TASK_INTERRUPTIBLE
state wake up prematurely and respond to a signal if one is issued. Both types of sleeping
tasks sit on a wait queue, waiting for an event to occur, and are not runnable.

Wait Queues
Sleeping is handled via wait queues.A wait queue is a simple list of processes waiting for
an event to occur.Wait queues are represented in the kernel by wake_queue_head_t.Wait
queues are created statically via DECLARE_WAITQUEUE() or dynamically via
init_waitqueue_head(). Processes put themselves on a wait queue and mark themselves
not runnable.When the event associated with the wait queue occurs, the processes on the
queue are awakened. It is important to implement sleeping and waking correctly, to avoid
race conditions.

 From the Library of Wow! eBook

ptg

59The Linux Scheduling Implementation

Some simple interfaces for sleeping used to be in wide use.These interfaces, however,
have races: It is possible to go to sleep after the condition becomes true. In that case, the
task might sleep indefinitely.Therefore, the recommended method for sleeping in the ker-
nel is a bit more complicated:

/* ‘q’ is the wait queue we wish to sleep on */

DEFINE_WAIT(wait);

add_wait_queue(q, &wait);

while (!condition) { /* condition is the event that we are waiting for */

prepare_to_wait(&q, &wait, TASK_INTERRUPTIBLE);

if (signal_pending(current))

/* handle signal */

schedule();

}

finish_wait(&q, &wait);

The task performs the following steps to add itself to a wait queue:

1. Creates a wait queue entry via the macro DEFINE_WAIT().

2. Adds itself to a wait queue via add_wait_queue().This wait queue awakens the
process when the condition for which it is waiting occurs. Of course, there needs
to be code elsewhere that calls wake_up() on the queue when the event actually
does occur.

3. Calls prepare_to_wait() to change the process state to either
TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE.This function also adds the task
back to the wait queue if necessary, which is needed on subsequent iterations of
the loop.

4. If the state is set to TASK_INTERRUPTIBLE, a signal wakes the process up.This is
called a spurious wake up (a wake-up not caused by the occurrence of the event). So
check and handle signals.

5. When the task awakens, it again checks whether the condition is true. If it is, it
exits the loop. Otherwise, it again calls schedule() and repeats.

6. Now that the condition is true, the task sets itself to TASK_RUNNING and removes
itself from the wait queue via finish_wait().

If the condition occurs before the task goes to sleep, the loop terminates, and the task
does not erroneously go to sleep. Note that kernel code often has to perform various
other tasks in the body of the loop. For example, it might need to release locks before
calling schedule() and reacquire them after or react to other events.

 From the Library of Wow! eBook

ptg

60 Chapter 4 Process Scheduling

The function inotify_read() in fs/notify/inotify/inotify_user.c, which
handles reading from the inotify file descriptor, is a straightforward example of using
wait queues:

static ssize_t inotify_read(struct file *file, char __user *buf,
size_t count, loff_t *pos)

{
struct fsnotify_group *group;
struct fsnotify_event *kevent;
char __user *start;
int ret;
DEFINE_WAIT(wait);

start = buf;
group = file->private_data;

while (1) {
prepare_to_wait(&group->notification_waitq,

&wait,
TASK_INTERRUPTIBLE);

mutex_lock(&group->notification_mutex);
kevent = get_one_event(group, count);
mutex_unlock(&group->notification_mutex);

if (kevent) {
ret = PTR_ERR(kevent);
if (IS_ERR(kevent))

break;
ret = copy_event_to_user(group, kevent, buf);
fsnotify_put_event(kevent);
if (ret < 0)

break;
buf += ret;
count -= ret;
continue;

}

ret = -EAGAIN;
if (file->f_flags & O_NONBLOCK)

break;
ret = -EINTR;
if (signal_pending(current))

break;

if (start != buf)
break;

schedule();

 From the Library of Wow! eBook

ptg

61The Linux Scheduling Implementation

}
finish_wait(&group->notification_waitq, &wait);

if (start != buf && ret != -EFAULT)
ret = buf - start;

return ret;
}

This function follows the pattern laid out in our example.The main difference is that
it checks for the condition in the body of the while() loop, instead of in the while()
statement itself.This is because checking the condition is complicated and requires grab-
bing locks.The loop is terminated via break.

Waking Up
Waking is handled via wake_up(), which wakes up all the tasks waiting on the given wait
queue. It calls try_to_wake_up(), which sets the task’s state to TASK_RUNNING, calls
enqueue_task() to add the task to the red-black tree, and sets need_resched if the
awakened task’s priority is higher than the priority of the current task.The code that
causes the event to occur typically calls wake_up() itself. For example, when data arrives
from the hard disk, the VFS calls wake_up() on the wait queue that holds the processes
waiting for the data.

An important note about sleeping is that there are spurious wake-ups. Just because a
task is awakened does not mean that the event for which the task is waiting has occurred;
sleeping should always be handled in a loop that ensures that the condition for which the
task is waiting has indeed occurred. Figure 4.1 depicts the relationship between each
scheduler state.

TASK_RUNNING TASK_INTERRUPTIBLE
receives a signal

task state is set to TASK_RUNNING
and task executes signal handler

_ _add_wait_queue() adds task to a wait queue, sets the task’s state to
TASK_INTERRUPTIBLE, and calls schedule(). schedule() calls
deactivate_task() which removes the task from the runqueue.

(task is runnable) (task is not runnable)

Event the task is waiting for occurs, and try_to_wake_up() sets the task to
TASK_RUNNING, calls activate_task() to add the task to a runqueue, and
calls schedule(). _ _remove_wait_queue() removes the task from the wait
queue.

Figure 4.1 Sleeping and waking up.

 From the Library of Wow! eBook

ptg

62 Chapter 4 Process Scheduling

Preemption and Context Switching
Context switching, the switching from one runnable task to another, is handled by the
context_switch()function defined in kernel/sched.c. It is called by schedule()
when a new process has been selected to run. It does two basic jobs:

n Calls switch_mm(), which is declared in <asm/mmu_context.h>, to switch the vir-
tual memory mapping from the previous process’s to that of the new process.

n Calls switch_to(), declared in <asm/system.h>, to switch the processor state from
the previous process’s to the current’s.This involves saving and restoring stack infor-
mation and the processor registers and any other architecture-specific state that
must be managed and restored on a per-process basis.

The kernel, however, must know when to call schedule(). If it called schedule() only
when code explicitly did so, user-space programs could run indefinitely. Instead, the kernel
provides the need_resched flag to signify whether a reschedule should be performed (see
Table 4.1).This flag is set by scheduler_tick() when a process should be preempted, and
by try_to_wake_up() when a process that has a higher priority than the currently run-
ning process is awakened.The kernel checks the flag, sees that it is set, and calls schedule()
to switch to a new process.The flag is a message to the kernel that the scheduler should be
invoked as soon as possible because another process deserves to run.

Upon returning to user-space or returning from an interrupt, the need_resched flag is
checked. If it is set, the kernel invokes the scheduler before continuing.

The flag is per-process, and not simply global, because it is faster to access a value in
the process descriptor (because of the speed of current and high probability of it being
cache hot) than a global variable. Historically, the flag was global before the 2.2 kernel. In
2.2 and 2.4, the flag was an int inside the task_struct. In 2.6, it was moved into a sin-
gle bit of a special flag variable inside the thread_info structure.

User Preemption
User preemption occurs when the kernel is about to return to user-space, need_resched
is set, and therefore, the scheduler is invoked. If the kernel is returning to user-space, it

Table 4.1 Functions for Accessing and Manipulating need_resched

Function Purpose

set_tsk_need_resched() Set the need_resched flag in the given process.

clear_tsk_need_resched() Clear the need_resched flag in the given
process.

need_resched() Test the value of the need_resched flag; return
true if set and false otherwise.

 From the Library of Wow! eBook

ptg

63Preemption and Context Switching

knows it is in a safe quiescent state. In other words, if it is safe to continue executing the
current task, it is also safe to pick a new task to execute. Consequently, whenever the ker-
nel is preparing to return to user-space either on return from an interrupt or after a sys-
tem call, the value of need_resched is checked. If it is set, the scheduler is invoked to
select a new (more fit) process to execute. Both the return paths for return from interrupt
and return from system call are architecture-dependent and typically implemented in
assembly in entry.S (which, aside from kernel entry code, also contains kernel exit
code).

In short, user preemption can occur

n When returning to user-space from a system call
n When returning to user-space from an interrupt handler

Kernel Preemption
The Linux kernel, unlike most other Unix variants and many other operating systems, is a
fully preemptive kernel. In nonpreemptive kernels, kernel code runs until completion.
That is, the scheduler cannot reschedule a task while it is in the kernel—kernel code is
scheduled cooperatively, not preemptively. Kernel code runs until it finishes (returns to
user-space) or explicitly blocks. In the 2.6 kernel, however, the Linux kernel became pre-
emptive: It is now possible to preempt a task at any point, so long as the kernel is in a
state in which it is safe to reschedule.

So when is it safe to reschedule? The kernel can preempt a task running in the kernel
so long as it does not hold a lock.That is, locks are used as markers of regions of nonpre-
emptibility. Because the kernel is SMP-safe, if a lock is not held, the current code is reen-
trant and capable of being preempted.

The first change in supporting kernel preemption was the addition of a preemption
counter, preempt_count, to each process’s thread_info.This counter begins at zero and
increments once for each lock that is acquired and decrements once for each lock that is
released.When the counter is zero, the kernel is preemptible. Upon return from interrupt,
if returning to kernel-space, the kernel checks the values of need_resched and
preempt_count. If need_resched is set and preempt_count is zero, then a more impor-
tant task is runnable, and it is safe to preempt.Thus, the scheduler is invoked. If
preempt_count is nonzero, a lock is held, and it is unsafe to reschedule. In that case, the
interrupt returns as usual to the currently executing task.When all the locks that the cur-
rent task is holding are released, preempt_count returns to zero.At that time, the unlock
code checks whether need_resched is set. If so, the scheduler is invoked. Enabling and
disabling kernel preemption is sometimes required in kernel code and is discussed in
Chapter 9.

Kernel preemption can also occur explicitly, when a task in the kernel blocks or
explicitly calls schedule().This form of kernel preemption has always been supported
because no additional logic is required to ensure that the kernel is in a state that is safe to

 From the Library of Wow! eBook

ptg

64 Chapter 4 Process Scheduling

preempt. It is assumed that the code that explicitly calls schedule() knows it is safe to
reschedule.

Kernel preemption can occur

n When an interrupt handler exits, before returning to kernel-space
n When kernel code becomes preemptible again
n If a task in the kernel explicitly calls schedule()
n If a task in the kernel blocks (which results in a call to schedule())

Real-Time Scheduling Policies
Linux provides two real-time scheduling policies, SCHED_FIFO and SCHED_RR.The nor-
mal, not real-time scheduling policy is SCHED_NORMAL.Via the scheduling classes framework,
these real-time policies are managed not by the Completely Fair Scheduler, but by a spe-
cial real-time scheduler, defined in kernel/sched_rt.c.The rest of this section discusses
the real-time scheduling policies and algorithm.

SCHED_FIFO implements a simple first-in, first-out scheduling algorithm without
timeslices.A runnable SCHED_FIFO task is always scheduled over any SCHED_NORMAL tasks.
When a SCHED_FIFO task becomes runnable, it continues to run until it blocks or explic-
itly yields the processor; it has no timeslice and can run indefinitely. Only a higher prior-
ity SCHED_FIFO or SCHED_RR task can preempt a SCHED_FIFO task.Two or more
SCHED_FIFO tasks at the same priority run round-robin, but again only yielding the
processor when they explicitly choose to do so. If a SCHED_FIFO task is runnable, all tasks
at a lower priority cannot run until it becomes unrunnable.

SCHED_RR is identical to SCHED_FIFO except that each process can run only until it
exhausts a predetermined timeslice.That is, SCHED_RR is SCHED_FIFO with timeslices—it is
a real-time, round-robin scheduling algorithm.When a SCHED_RR task exhausts its times-
lice, any other real-time processes at its priority are scheduled round-robin.The timeslice
is used to allow only rescheduling of same-priority processes.As with SCHED_FIFO, a
higher-priority process always immediately preempts a lower-priority one, and a lower-
priority process can never preempt a SCHED_RR task, even if its timeslice is exhausted.

Both real-time scheduling policies implement static priorities.The kernel does not cal-
culate dynamic priority values for real-time tasks.This ensures that a real-time process at a
given priority always preempts a process at a lower priority.

The real-time scheduling policies in Linux provide soft real-time behavior. Soft real-
time refers to the notion that the kernel tries to schedule applications within timing
deadlines, but the kernel does not promise to always achieve these goals. Conversely, hard
real-time systems are guaranteed to meet any scheduling requirements within certain lim-
its. Linux makes no guarantees on the capability to schedule real-time tasks. Despite not
having a design that guarantees hard real-time behavior, the real-time scheduling per-
formance in Linux is quite good.The 2.6 Linux kernel is capable of meeting stringent
timing requirements.

 From the Library of Wow! eBook

ptg

65Scheduler-Related System Calls

Real-time priorities range inclusively from zero to MAX_RT_PRIO minus 1. By default,
MAX_RT_PRIO is 100—therefore, the default real-time priority range is zero to 99.This
priority space is shared with the nice values of SCHED_NORMAL tasks:They use the space
from MAX_RT_PRIO to (MAX_RT_PRIO + 40). By default, this means the –20 to +19 nice
range maps directly onto the priority space from 100 to 139.

Scheduler-Related System Calls
Linux provides a family of system calls for the management of scheduler parameters.
These system calls allow manipulation of process priority, scheduling policy, and processor
affinity, as well as provide an explicit mechanism to yield the processor to other tasks.

Various books—and your friendly system man pages—provide reference to these sys-
tem calls (which are all implemented in the C library without much wrapper—they just
invoke the system call).Table 4.2 lists the system calls and provides a brief description.
How system calls are implemented in the kernel is discussed in Chapter 5,“System Calls.”

Table 4.2 Scheduler-Related System Calls

System Call Description

nice() Sets a process’s nice value

sched_setscheduler() Sets a process’s scheduling policy

sched_getscheduler() Gets a process’s scheduling policy

sched_setparam() Sets a process’s real-time priority

sched_getparam() Gets a process’s real-time priority

sched_get_priority_max() Gets the maximum real-time priority

sched_get_priority_min() Gets the minimum real-time priority

sched_rr_get_interval() Gets a process’s timeslice value

sched_setaffinity() Sets a process’s processor affinity

sched_getaffinity() Gets a process’s processor affinity

sched_yield() Temporarily yields the processor

 From the Library of Wow! eBook

ptg

66 Chapter 4 Process Scheduling

Scheduling Policy and Priority-Related System Calls
The sched_setscheduler() and sched_getscheduler() system calls set and get a given
process’s scheduling policy and real-time priority, respectively.Their implementation, like
most system calls, involves a lot of argument checking, setup, and cleanup.The important
work, however, is merely to read or write the policy and rt_priority values in the
process’s task_struct.

The sched_setparam() and sched_getparam() system calls set and get a process’s
real-time priority.These calls merely encode rt_priority in a special sched_param
structure.The calls sched_get_priority_max() and sched_get_priority_min() return
the maximum and minimum priorities, respectively, for a given scheduling policy.The
maximum priority for the real-time policies is MAX_USER_RT_PRIO minus one; the mini-
mum is one.

For normal tasks, the nice()function increments the given process’s static priority by
the given amount. Only root can provide a negative value, thereby lowering the nice
value and increasing the priority.The nice() function calls the kernel’s set_user_nice()
function, which sets the static_prio and prio values in the task’s task_struct as
appropriate.

Processor Affinity System Calls
The Linux scheduler enforces hard processor affinity.That is, although it tries to provide
soft or natural affinity by attempting to keep processes on the same processor, the sched-
uler also enables a user to say,“This task must remain on this subset of the available
processors no matter what.”This hard affinity is stored as a bitmask in the task’s
task_struct as cpus_allowed.The bitmask contains one bit per possible processor on
the system. By default, all bits are set and, therefore, a process is potentially runnable on
any processor.The user, however, via sched_setaffinity(), can provide a different bit-
mask of any combination of one or more bits. Likewise, the call sched_getaffinity()
returns the current cpus_allowed bitmask.

The kernel enforces hard affinity in a simple manner. First, when a process is initially
created, it inherits its parent’s affinity mask. Because the parent is running on an allowed
processor, the child thus runs on an allowed processor. Second, when a processor’s affinity
is changed, the kernel uses the migration threads to push the task onto a legal processor.
Finally, the load balancer pulls tasks to only an allowed processor.Therefore, a process
only ever runs on a processor whose bit is set in the cpus_allowed field of its process
descriptor.

Yielding Processor Time
Linux provides the sched_yield() system call as a mechanism for a process to explicitly
yield the processor to other waiting processes. It works by removing the process from the
active array (where it currently is, because it is running) and inserting it into the expired
array.This has the effect of not only preempting the process and putting it at the end of
its priority list, but also putting it on the expired list—guaranteeing it will not run for a

 From the Library of Wow! eBook

ptg

67Conclusion

while. Because real-time tasks never expire, they are a special case.Therefore, they are
merely moved to the end of their priority list (and not inserted into the expired array). In
earlier versions of Linux, the semantics of the sched_yield()call were quite different; at
best, the task was moved only to the end of its priority list.The yielding was often not for
a long time. Nowadays, applications and even kernel code should be certain they truly
want to give up the processor before calling sched_yield().

Kernel code, as a convenience, can call yield(), which ensures that the task’s state is
TASK_RUNNING and then call sched_yield(). User-space applications use the
sched_yield()system call.

Conclusion
The process scheduler is an important part of any kernel because running processes is
(for most of us, at least) the point of using the computer in the first place. Juggling the
demands of process scheduling is nontrivial, however:A large number of runnable
processes, scalability concerns, trade-offs between latency and throughput, and the
demands of various workloads make a one-size-fits-all algorithm hard to achieve.The
Linux kernel’s new CFS process scheduler, however, comes close to appeasing all parties
and providing an optimal solution for most use cases with good scalability through a
novel, interesting approach.

The previous chapter covered process management.This chapter ruminated on the
theory behind process scheduling and the specific implementation, algorithms, and inter-
faces used by the current Linux kernel.The next chapter covers the primary interface that
the kernel provides to running processes: system calls.

 From the Library of Wow! eBook

ptg

5
System Calls

In any modern operating system, the kernel provides a set of interfaces by which
processes running in user-space can interact with the system.These interfaces give appli-
cations controlled access to hardware, a mechanism with which to create new processes
and communicate with existing ones, and the capability to request other operating system
resources.The interfaces act as the messengers between applications and the kernel, with
the applications issuing various requests and the kernel fulfilling them (or returning an
error).The existence of these interfaces, and the fact that applications are not free to
directly do whatever they want, is key to providing a stable system.

Communicating with the Kernel
System calls provide a layer between the hardware and user-space processes.This layer
serves three primary purposes. First, it provides an abstracted hardware interface for user-
space.When reading or writing from a file, for example, applications are not concerned
with the type of disk, media, or even the type of filesystem on which the file resides. Sec-
ond, system calls ensure system security and stability.With the kernel acting as a middle-
man between system resources and user-space, the kernel can arbitrate access based on
permissions, users, and other criteria. For example, this arbitration prevents applications
from incorrectly using hardware, stealing other processes’ resources, or otherwise doing
harm to the system. Finally, a single common layer between user-space and the rest of the
system allows for the virtualized system provided to processes, discussed in Chapter 3,
“Process Management.” If applications were free to access system resources without the
kernel’s knowledge, it would be nearly impossible to implement multitasking and virtual
memory, and certainly impossible to do so with stability and security. In Linux, system
calls are the only means user-space has of interfacing with the kernel; they are the only
legal entry point into the kernel other than exceptions and traps. Indeed, other interfaces,
such as device files or /proc, are ultimately accessed via system calls. Interestingly, Linux

 From the Library of Wow! eBook

ptg

70 Chapter 5 System Calls

implements far fewer system calls than most systems.1This chapter addresses the role and
implementation of system calls in Linux.

APIs, POSIX, and the C Library
Typically, applications are programmed against an Application Programming Interface
(API) implemented in user-space, not directly to system calls.This is important because
no direct correlation is needed between the interfaces that applications make use of and
the actual interface provided by the kernel.An API defines a set of programming inter-
faces used by applications.Those interfaces can be implemented as a system call, imple-
mented through multiple system calls, or implemented without the use of system calls at
all.The same API can exist on multiple systems and provide the same interface to applica-
tions while the implementation of the API itself can differ greatly from system to system.
See Figure 5.1 for an example of the relationship between a POSIX API, the C library,
and system calls.

One of the more common application programming interfaces in the Unix world is
based on the POSIX standard.Technically, POSIX is composed of a series of standards
from the IEEE2 that aim to provide a portable operating system standard roughly based
on Unix. Linux strives to be POSIX- and SUSv3-compliant where applicable.

POSIX is an excellent example of the relationship between APIs and system calls. On
most Unix systems, the POSIX-defined API calls have a strong correlation to the system
calls. Indeed, the POSIX standard was created to resemble the interfaces provided by ear-
lier Unix systems. On the other hand, some systems that are rather un-Unix, such as
Microsoft Windows, offer POSIX-compatible libraries.

1 There are about 335 system calls are on x86. (Each architecture is allowed to define unique system

calls.) Although not all operating systems publish their exact system calls, some operating systems are

estimated to have more than one thousand. In the previous edition of this book, x86 had only 250 sys-

tem calls.
2 IEEE (eye-triple-E) is the Institute of Electrical and Electronics Engineers. It is a nonprofit professional

association involved in numerous technical areas and responsible for many important standards, such

as POSIX. For more information, visit http://www.ieee.org.

call to printf() printf() in the C library write() in the C library write() system call

Application C library Kernel

Figure 5.1 The relationship between applications, the C library,
and the kernel with a call to printf().

 From the Library of Wow! eBook

http://www.ieee.org

ptg

71Syscalls

The system call interface in Linux, as with most Unix systems, is provided in part by
the C library.The C library implements the main API on Unix systems, including the
standard C library and the system call interface.The C library is used by all C programs
and, because of C’s nature, is easily wrapped by other programming languages for use in
their programs.The C library additionally provides the majority of the POSIX API.

From the application programmer’s point of view, system calls are irrelevant; all the
programmer is concerned with is the API. Conversely, the kernel is concerned only with
the system calls; what library calls and applications make use of the system calls is not of
the kernel’s concern. Nonetheless, it is important for the kernel to keep track of the
potential uses of a system call and keep the system call as general and flexible as possible.

A meme related to interfaces in Unix is “Provide mechanism, not policy.” In other
words, Unix system calls exist to provide a specific function in an abstract sense.The
manner in which the function is used is not any of the kernel’s business.

Syscalls
System calls (often called syscalls in Linux) are typically accessed via function calls defined
in the C library.They can define zero, one, or more arguments (inputs) and might result
in one or more side effects,3 for example writing to a file or copying some data into a
provided pointer. System calls also provide a return value of type long4 that signifies suc-
cess or error—usually, although not always, a negative return value denotes an error.A
return value of zero is usually (but again not always) a sign of success.The C library, when
a system call returns an error, writes a special error code into the global errno variable.
This variable can be translated into human-readable errors via library functions such as
perror().

Finally, system calls have a defined behavior. For example, the system call getpid() is
defined to return an integer that is the current process’s PID.The implementation of this
syscall in the kernel is simple:

SYSCALL_DEFINE0(getpid)

{

return task_tgid_vnr(current); // returns current->tgid

}

Note that the definition says nothing of the implementation.The kernel must provide
the intended behavior of the system call but is free to do so with whatever implementation

3 Note the “might” here. Although nearly all system calls have a side effect (that is, they result in some

change of the system’s state), a few syscalls, such as getpid(), merely return some data from the

kernel.
4 The use of type long is for compatibility with 64-bit architectures.

 From the Library of Wow! eBook

ptg

72 Chapter 5 System Calls

it wants as long as the result is correct. Of course, this system call is as simple as they
come, and there are not too many other ways to implement it.5

SYSCALL_DEFINE0 is simply a macro that defines a system call with no parameters
(hence the 0).The expanded code looks like this:

asmlinkage long sys_getpid(void)

Let’s look at how system calls are defined. First, note the asmlinkage modifier on the
function definition.This is a directive to tell the compiler to look only on the stack for
this function’s arguments.This is a required modifier for all system calls. Second, the func-
tion returns a long. For compatibility between 32- and 64-bit systems, system calls
defined to return an int in user-space return a long in the kernel.Third, note that the
getpid() system call is defined as sys_getpid() in the kernel.This is the naming con-
vention taken with all system calls in Linux: System call bar() is implemented in the ker-
nel as function sys_bar().

System Call Numbers
In Linux, each system call is assigned a syscall number.This is a unique number that is used
to reference a specific system call.When a user-space process executes a system call, the
syscall number identifies which syscall was executed; the process does not refer to the
syscall by name.

The syscall number is important; when assigned, it cannot change, or compiled appli-
cations will break. Likewise, if a system call is removed, its system call number cannot be
recycled, or previously compiled code would aim to invoke one system call but would in
reality invoke another. Linux provides a “not implemented” system call,
sys_ni_syscall(), which does nothing except return -ENOSYS, the error corresponding
to an invalid system call.This function is used to “plug the hole” in the rare event that a
syscall is removed or otherwise made unavailable.

The kernel keeps a list of all registered system calls in the system call table, stored in
sys_call_table.This table is architecture; on x86-64 it is defined in
arch/i386/kernel/syscall_64.c.This table assigns each valid syscall to a unique
syscall number.

System Call Performance
System calls in Linux are faster than in many other operating systems.This is partly
because of Linux’s fast context switch times; entering and exiting the kernel is a stream-
lined and simple affair.The other factor is the simplicity of the system call handler and the
individual system calls themselves.

5 You might be wondering why does getpid() return tgid, the thread group ID? In normal process-

es, the TGID is equal to the PID. With threads, the TGID is the same for all threads in a thread

group. This enables the threads to call getpid() and get the same PID.

 From the Library of Wow! eBook

ptg

73System Call Handler

System Call Handler
It is not possible for user-space applications to execute kernel code directly.They cannot
simply make a function call to a method existing in kernel-space because the kernel exists
in a protected memory space. If applications could directly read and write to the kernel’s
address space, system security and stability would be nonexistent.

Instead, user-space applications must somehow signal to the kernel that they want to
execute a system call and have the system switch to kernel mode, where the system call
can be executed in kernel-space by the kernel on behalf of the application.

The mechanism to signal the kernel is a software interrupt: Incur an exception, and
the system will switch to kernel mode and execute the exception handler.The exception
handler, in this case, is actually the system call handler.The defined software interrupt on
x86 is interrupt number 128, which is incurred via the int $0x80 instruction. It triggers
a switch to kernel mode and the execution of exception vector 128, which is the system
call handler.The system call handler is the aptly named function system_call(). It is
architecture-dependent; on x86-64 it is implemented in assembly in entry_64.S.6

Recently, x86 processors added a feature known as sysenter.This feature provides a faster,
more specialized way of trapping into a kernel to execute a system call than using the int
interrupt instruction. Support for this feature was quickly added to the kernel. Regardless
of how the system call handler is invoked, however, the important notion is that somehow
user-space causes an exception or trap to enter the kernel.

Denoting the Correct System Call
Simply entering kernel-space alone is not sufficient because multiple system calls exist, all
of which enter the kernel in the same manner.Thus, the system call number must be
passed into the kernel. On x86, the syscall number is fed to the kernel via the eax regis-
ter. Before causing the trap into the kernel, user-space sticks in eax the number corre-
sponding to the desired system call.The system call handler then reads the value from
eax. Other architectures do something similar.

The system_call() function checks the validity of the given system call number by
comparing it to NR_syscalls. If it is larger than or equal to NR_syscalls, the function
returns -ENOSYS. Otherwise, the specified system call is invoked:

call *sys_call_table(,%rax,8)

Because each element in the system call table is 64 bits (8 bytes), the kernel multiplies
the given system call number by four to arrive at its location in the system call table. On
x86-32, the code is similar, with the 8 replaced by 4. See Figure 5.2.

6 Much of the following description of the system call handler is based on the x86 version. They are all

similar.

 From the Library of Wow! eBook

ptg

74 Chapter 5 System Calls

Parameter Passing
In addition to the system call number, most syscalls require that one or more parameters
be passed to them. Somehow, user-space must relay the parameters to the kernel during
the trap.The easiest way to do this is via the same means that the syscall number is passed:
The parameters are stored in registers. On x86-32, the registers ebx, ecx, edx, esi, and
edi contain, in order, the first five arguments. In the unlikely case of six or more argu-
ments, a single register is used to hold a pointer to user-space where all the parameters
are stored.

The return value is sent to user-space also via register. On x86, it is written into the
eax register.

System Call Implementation
The actual implementation of a system call in Linux does not need to be concerned with
the behavior of the system call handler.Thus, adding a new system call to Linux is rela-
tively easy.The hard work lies in designing and implementing the system call; registering
it with the kernel is simple. Let’s look at the steps involved in writing a new system call
for Linux.

Implementing System Calls
The first step in implementing a system call is defining its purpose.What will it do? The
syscall should have exactly one purpose. Multiplexing syscalls (a single system call that
does wildly different things depending on a flag argument) is discouraged in Linux. Look
at ioctl() as an example of what not to do.

What are the new system call’s arguments, return value, and error codes? The system
call should have a clean and simple interface with the smallest number of arguments possi-
ble.The semantics and behavior of a system call are important; they must not change,
because existing applications will come to rely on them. Be forward thinking; consider

Application C library
read() wrapper

Syscall Handler sys_read()

User Space Kernel Space

call read() read() wrapper system_call() sys_read()

Figure 5.2 Invoking the system call handler and executing a system call.

 From the Library of Wow! eBook

ptg

75System Call Implementation

how the function might change over time. Can new functionality be added to your system
call or will any change require an entirely new function? Can you easily fix bugs without
breaking backward compatibility? Many system calls provide a flag argument to address
forward compatibility.The flag is not used to multiplex different behavior across a single
system call—as mentioned, that is not acceptable—but to enable new functionality and
options without breaking backward compatibility or needing to add a new system call.

Designing the interface with an eye toward the future is important.Are you needlessly
limiting the function? Design the system call to be as general as possible. Do not assume
its use today will be the same as its use tomorrow.The purpose of the system call will
remain constant but its uses may change. Is the system call portable? Do not make
assumptions about an architecture’s word size or endianness. Chapter 19,“Portability,” dis-
cusses these issues. Make sure you are not making poor assumptions that will break the
system call in the future. Remember the Unix motto:“Provide mechanism, not policy.”

When you write a system call, you need to realize the need for portability and robust-
ness, not just today but in the future.The basic Unix system calls have survived this test of
time; most of them are just as useful and applicable today as they were 30 years ago!

Verifying the Parameters
System calls must carefully verify all their parameters to ensure that they are valid and
legal.The system call runs in kernel-space, and if the user can pass invalid input into the
kernel without restraint, the system’s security and stability can suffer.

For example, file I/O syscalls must check whether the file descriptor is valid. Process-
related functions must check whether the provided PID is valid. Every parameter must be
checked to ensure it is not just valid and legal, but correct. Processes must not ask the ker-
nel to access resources to which the process does not have access.

One of the most important checks is the validity of any pointers that the user pro-
vides. Imagine if a process could pass any pointer into the kernel, unchecked, with warts
and all, even passing a pointer to which it did not have read access! Processes could then
trick the kernel into copying data for which they did not have access permission, such as
data belonging to another process or data mapped unreadable. Before following a pointer
into user-space, the system must ensure that

n The pointer points to a region of memory in user-space. Processes must not be able
to trick the kernel into reading data in kernel-space on their behalf.

n The pointer points to a region of memory in the process’s address space.The
process must not be able to trick the kernel into reading someone else’s data.

n If reading, the memory is marked readable. If writing, the memory is marked
writable. If executing, the memory is marked executable.The process must not be
able to bypass memory access restrictions.

The kernel provides two methods for performing the requisite checks and the desired
copy to and from user-space. Note kernel code must never blindly follow a pointer into
user-space! One of these two methods must always be used.

 From the Library of Wow! eBook

ptg

76 Chapter 5 System Calls

For writing into user-space, the method copy_to_user() is provided. It takes three
parameters.The first is the destination memory address in the process’s address space.The
second is the source pointer in kernel-space. Finally, the third argument is the size in bytes
of the data to copy.

For reading from user-space, the method copy_from_user() is analogous to
copy_to_user().The function reads from the second parameter into the first parameter
the number of bytes specified in the third parameter.

Both of these functions return the number of bytes they failed to copy on error. On
success, they return zero. It is standard for the syscall to return -EFAULT in the case of such
an error.

Let’s consider an example system call that uses both copy_from_user() and
copy_to_user().This syscall, silly_copy(), is utterly worthless; it copies data from its
first parameter into its second.This is suboptimal in that it involves an intermediate and
extraneous copy into kernel-space for no gain. But it helps illustrate the point.

/*

* silly_copy - pointless syscall that copies the len bytes from

* ‘src’ to ‘dst’ using the kernel as an intermediary in the copy.

* Intended as an example of copying to and from the kernel.

*/

SYSCALL_DEFINE3(silly_copy,

unsigned long *, src,

unsigned long *, dst,

unsigned long len)

{

unsigned long buf;

/* copy src, which is in the user’s address space, into buf */

if (copy_from_user(&buf, src, len))

return -EFAULT;

/* copy buf into dst, which is in the user’s address space */

if (copy_to_user(dst, &buf, len))

return -EFAULT;

/* return amount of data copied */

return len;

}

Both copy_to_user() and copy_from_user() may block.This occurs, for example, if
the page containing the user data is not in physical memory but is swapped to disk. In
that case, the process sleeps until the page fault handler can bring the page from the swap
file on disk into physical memory.

A final possible check is for valid permission. In older versions of Linux, it was stan-
dard for syscalls that require root privilege to use suser().This function merely checked

 From the Library of Wow! eBook

ptg

77System Call Implementation

whether a user was root; this is now removed and a finer-grained “capabilities” system is
in place.The new system enables specific access checks on specific resources.A call to
capable() with a valid capabilities flag returns nonzero if the caller holds the specified
capability and zero otherwise. For example, capable(CAP_SYS_NICE) checks whether the
caller has the ability to modify nice values of other processes. By default, the superuser
possesses all capabilities and nonroot possesses none. For example, here is the reboot()
system call. Note how its first step is ensuring that the calling process has the
CAP_SYS_REBOOT. If that one conditional statement were removed, any process could
reboot the system.

SYSCALL_DEFINE4(reboot,

int, magic1,

int, magic2,

unsigned int, cmd,

void __user *, arg)

{

char buffer[256];

/* We only trust the superuser with rebooting the system. */

if (!capable(CAP_SYS_BOOT))

return -EPERM;

/* For safety, we require “magic” arguments. */

if (magic1 != LINUX_REBOOT_MAGIC1 ||

(magic2 != LINUX_REBOOT_MAGIC2 &&

magic2 != LINUX_REBOOT_MAGIC2A &&

magic2 != LINUX_REBOOT_MAGIC2B &&

magic2 != LINUX_REBOOT_MAGIC2C))

return -EINVAL;

/* Instead of trying to make the power_off code look like

* halt when pm_power_off is not set do it the easy way.

*/

if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)

cmd = LINUX_REBOOT_CMD_HALT;

lock_kernel();

switch (cmd) {

case LINUX_REBOOT_CMD_RESTART:

kernel_restart(NULL);

break;

case LINUX_REBOOT_CMD_CAD_ON:

C_A_D = 1;

break;

 From the Library of Wow! eBook

ptg

78 Chapter 5 System Calls

case LINUX_REBOOT_CMD_CAD_OFF:

C_A_D = 0;

break;

case LINUX_REBOOT_CMD_HALT:

kernel_halt();

unlock_kernel();

do_exit(0);

break;

case LINUX_REBOOT_CMD_POWER_OFF:

kernel_power_off();

unlock_kernel();

do_exit(0);

break;

case LINUX_REBOOT_CMD_RESTART2:

if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {

unlock_kernel();

return -EFAULT;

}

buffer[sizeof(buffer) - 1] = ‘\0’;

kernel_restart(buffer);

break;

default:

unlock_kernel();

return -EINVAL;

}

unlock_kernel();

return 0;

}

See <linux/capability.h> for a list of all capabilities and what rights they entail.

System Call Context
As discussed in Chapter 3, the kernel is in process context during the execution of a sys-
tem call.The current pointer points to the current task, which is the process that issued
the syscall.

In process context, the kernel is capable of sleeping (for example, if the system call
blocks on a call or explicitly calls schedule()) and is fully preemptible.These two points
are important. First, the capability to sleep means that system calls can make use of the
majority of the kernel’s functionality.As we will see in Chapter 7,“Interrupts and

 From the Library of Wow! eBook

ptg

79System Call Context

Interrupt Handlers,” the capability to sleep greatly simplifies kernel programming.7 The
fact that process context is preemptible implies that, like user-space, the current task may
be preempted by another task. Because the new task may then execute the same system
call, care must be exercised to ensure that system calls are reentrant. Of course, this is the
same concern that symmetrical multiprocessing introduces. Synchronizing reentrancy is
covered in Chapter 9,“An Introduction to Kernel Synchronization,” and Chapter 10,
“Kernel Synchronization Methods.”

When the system call returns, control continues in system_call(), which ultimately
switches to user-space and continues the execution of the user process.

Final Steps in Binding a System Call
After the system call is written, it is trivial to register it as an official system call:

1. Add an entry to the end of the system call table.This needs to be done for each
architecture that supports the system call (which, for most calls, is all the architec-
tures).The position of the syscall in the table, starting at zero, is its system call num-
ber. For example, the tenth entry in the list is assigned syscall number nine.

2. For each supported architecture, define the syscall number in <asm/unistd.h>.

3. Compile the syscall into the kernel image (as opposed to compiling as a module).
This can be as simple as putting the system call in a relevant file in kernel/, such as
sys.c, which is home to miscellaneous system calls.

Look at these steps in more detail with a fictional system call, foo(). First, we want to
add sys_foo() to the system call table. For most architectures, the table is located in
entry.S and looks like this:

ENTRY(sys_call_table)

.long sys_restart_syscall /* 0 */

.long sys_exit

.long sys_fork

.long sys_read

.long sys_write

.long sys_open /* 5 */

...

.long sys_eventfd2

.long sys_epoll_create1

.long sys_dup3 /* 330 */

7 Interrupt handlers cannot sleep and thus are much more limited in what they can do than system

calls running in process context.

 From the Library of Wow! eBook

ptg

80 Chapter 5 System Calls

.long sys_pipe2

.long sys_inotify_init1

.long sys_preadv

.long sys_pwritev

.long sys_rt_tgsigqueueinfo /* 335 */

.long sys_perf_event_open

.long sys_recvmmsg

The new system call is then appended to the tail of this list:

.long sys_foo

Although it is not explicitly specified, the system call is then given the next subsequent
syscall number—in this case, 338. For each architecture you want to support, the system
call must be added to the architecture’s system call table.The system call does not need to
receive the same syscall number under each architecture, as the system call number is part
of the architecture’s unique ABI. Usually, you would want to make the system call avail-
able to each architecture. Note the convention of placing the number in a comment
every five entries; this makes it easy to find out which syscall is assigned which number.

Next, the system call number is added to <asm/unistd.h>, which currently looks
somewhat like this:

/*

* This file contains the system call numbers.

*/

#define __NR_restart_syscall 0

#define __NR_exit 1

#define __NR_fork 2

#define __NR_read 3

#define __NR_write 4

#define __NR_open 5

...

#define __NR_signalfd4 327

#define __NR_eventfd2 328

#define __NR_epoll_create1 329

#define __NR_dup3 330

#define __NR_pipe2 331

#define __NR_inotify_init1 332

#define __NR_preadv 333

#define __NR_pwritev 334

#define __NR_rt_tgsigqueueinfo 335

#define __NR_perf_event_open 336

#define __NR_recvmmsg 337

The following is then added to the end of the list:

#define __NR_foo 338

 From the Library of Wow! eBook

ptg

81System Call Context

Finally, the actual foo() system call is implemented. Because the system call must be
compiled into the core kernel image in all configurations, in this example we define it in
kernel/sys.c.You should put it wherever the function is most relevant; for example, if
the function is related to scheduling, you could define it in kernel/sched.c.

#include <asm/page.h>

/*

* sys_foo – everyone’s favorite system call.

*

* Returns the size of the per-process kernel stack.

*/

asmlinkage long sys_foo(void)

{

return THREAD_SIZE;

}

That is it! Boot this kernel and user-space can invoke the foo() system call.

Accessing the System Call from User-Space
Generally, the C library provides support for system calls. User applications can pull in
function prototypes from the standard headers and link with the C library to use your
system call (or the library routine that, in turn, uses your syscall call). If you just wrote the
system call, however, it is doubtful that glibc already supports it!

Thankfully, Linux provides a set of macros for wrapping access to system calls. It sets
up the register contents and issues the trap instructions.These macros are named
_syscalln(), where n is between 0 and 6.The number corresponds to the number of
parameters passed into the syscall because the macro needs to know how many parame-
ters to expect and, consequently, push into registers. For example, consider the system call
open(), defined as

long open(const char *filename, int flags, int mode)

The syscall macro to use this system call without explicit library support would be

#define __NR_open 5

_syscall3(long, open, const char *, filename, int, flags, int, mode)

Then, the application can simply call open().
For each macro, there are 2 + 2 × n parameters.The first parameter corresponds to the

return type of the syscall.The second is the name of the system call. Next follows the
type and name for each parameter in order of the system call.The __NR_open define is in
<asm/unistd.h>; it is the system call number.The _syscall3 macro expands into a C
function with inline assembly; the assembly performs the steps discussed in the previous
section to push the system call number and parameters into the correct registers and issue

 From the Library of Wow! eBook

ptg

82 Chapter 5 System Calls

the software interrupt to trap into the kernel. Placing this macro in an application is all
that is required to use the open() system call.

Let’s write the macro to use our splendid new foo() system call and then write some
test code to show off our efforts.

#define __NR_foo 283

__syscall0(long, foo)

int main ()

{

long stack_size;

stack_size = foo ();

printf (“The kernel stack size is %ld\n”, stack_size);

return 0;

}

Why Not to Implement a System Call
The previous sections have shown that it is easy to implement a new system call, but that
in no way should encourage you to do so. Indeed, you should exercise caution and
restraint in adding new syscalls. Often, much more viable alternatives to providing a new
system call are available. Let’s look at the pros, cons, and alternatives.

The pros of implementing a new interface as a syscall are as follows:

n System calls are simple to implement and easy to use.
n System call performance on Linux is fast.

The cons:

n You need a syscall number, which needs to be officially assigned to you.
n After the system call is in a stable series kernel, it is written in stone.The interface

cannot change without breaking user-space applications.
n Each architecture needs to separately register the system call and support it.
n System calls are not easily used from scripts and cannot be accessed directly from

the filesystem.
n Because you need an assigned syscall number, it is hard to maintain and use a sys-

tem call outside of the master kernel tree.
n For simple exchanges of information, a system call is overkill.

The alternatives:

n Implement a device node and read() and write() to it. Use ioctl() to manipu-
late specific settings or retrieve specific information.

 From the Library of Wow! eBook

ptg

83Conclusion

n Certain interfaces, such as semaphores, can be represented as file descriptors and
manipulated as such.

n Add the information as a file to the appropriate location in sysfs.

For many interfaces, system calls are the correct answer. Linux, however, has tried to
avoid simply adding a system call to support each new abstraction that comes along.The
result has been an incredibly clean system call layer with few regrets or deprecations
(interfaces no longer used or supported).The slow rate of addition of new system calls is a
sign that Linux is a relatively stable and feature-complete operating system.

Conclusion
In this chapter, we discussed what system calls are and how they relate to library calls and
the application programming interface (API).We then looked at how the Linux kernel
implements system calls and the chain of events required to execute a system call: trapping
into the kernel, transmitting the syscall number and any arguments, executing the correct
system call function, and returning to user-space with the syscall’s return value.

We then went over how to add system calls and provided a simple example of using a
new system call from user-space.The whole process was quite easy! As the simplicity of
adding a new system call demonstrates, the work is all in the syscall’s implementation.The
rest of this book discusses concepts and kernel interfaces needed to write well-behaved,
optimal, and safe system calls.

Finally, we wrapped up the chapter with a discussion on the pros and cons of imple-
menting system calls and a brief list of the alternatives to adding new ones.

 From the Library of Wow! eBook

ptg

6
Kernel Data Structures

This chapter introduces several built-in data structures for use in Linux kernel code.As
with any large software project, the Linux kernel provides these generic data structures
and primitives to encourage code reuse. Kernel developers should use these data struc-
tures whenever possible and not “roll your own” solutions. In the following sections, we
cover the most useful of these generic data structures, which are the following:

n Linked lists
n Queues
n Maps
n Binary trees

We conclude the chapter with a discussion on algorithmic complexity, the ease with
which algorithms and data structures scale to support ever larger inputs.

Linked Lists
The linked list is the simplest and most common data structure in the Linux kernel.A
linked list is a data structure that allows the storage and manipulation of a variable number
of elements, called the nodes of the list. Unlike in a static array, the elements in a linked list
are dynamically created and inserted into the list.This enables the management of a vary-
ing number of elements unknown at compile time. Because the elements are created at
different times, they do not necessarily occupy contiguous regions in memory.Therefore,
the elements need to be linked together; thus each element in the list contains a pointer to
the next element.As elements are added to or removed from the list, the pointer to the
next node is simply adjusted.

Singly and Doubly Linked Lists
The simplest data structure representing such a linked list might look similar to the
following:

 From the Library of Wow! eBook

ptg

86 Chapter 6 Kernel Data Structures

/* an element in a linked list */

struct list_element {

void *data; /* the payload */

struct list_element *next; /* pointer to the next element */

};

Figure 6.1 is a linked list.

In some linked lists, each element also contains a pointer to the previous element.These
lists are called doubly linked lists because they are linked both forward and backward.
Linked lists, such as the list in Figure 6.1, that do not have a pointer to the previous ele-
ment are called singly linked lists.

A data structure representing a doubly linked list would look similar to this:

/* an element in a linked list */

struct list_element {

void *data; /* the payload */

struct list_element *next; /* pointer to the next element */

struct list_element *prev; /* pointer to the previous element */

};

Figure 6.2 is a doubly linked list.

Circular Linked Lists
Normally, because the last element in a linked list has no next element, it is set to point to
a special value, such as NULL, to indicate it is the last element in the list. In some linked
lists, the last element does not point to a special value. Instead, it points back to the first
value.This linked list is called a circular linked list because the list is cyclic. Circular linked
lists can come in both doubly and singly linked versions. In a circular doubly linked list,

• • • next • • • next • • • next null

Figure 6.1 A singly linked list.

null • • • next nullprev• • • nextprev• • • nextprev

Figure 6.2 A doubly linked list.

 From the Library of Wow! eBook

ptg

87Linked Lists

the first node’s “previous” pointer points at the last node. Figures 6.3 and 6.4 are singly
and doubly circular linked lists, respectively.

Although the Linux kernel’s linked list implementation is unique, it is fundamentally a
circular doubly linked list. Using this type of linked list provides the greatest flexibility.

Moving Through a Linked List
Movement through a linked list occurs linearly.You visit one element, follow the next
pointer, and visit the next element. Rinse and repeat.This is the easiest method of moving
through a linked list, and the one for which linked lists are best suited. Linked lists are ill-
suited for use cases where random access is an important operation. Instead, you use
linked lists when iterating over the whole list is important and the dynamic addition and
removal of elements is required.

In linked list implementations, the first element is often represented by a special
pointer—called the head—that enables easy access to the “start” of the list. In a noncircu-
lar-linked list, the last element is delineated by its next pointer being NULL. In a circular-
linked list, the last element is delineated because it points to the head element.Traversing
the list, therefore, occurs linearly through each element from the first to the last. In a dou-
bly linked list, movement can also occur backward, linearly from the last element to the

• • • next • • • next • • • next

Figure 6.3 A circular singly linked list.

• • • nextprev• • • nextprev• • • nextprev

Figure 6.4 A circular doubly linked list.

 From the Library of Wow! eBook

ptg

88 Chapter 6 Kernel Data Structures

first. Of course, given a specific element in the list, you can iterate backward and forward
any number of elements, too.You need not traverse the whole list.

The Linux Kernel’s Implementation
In comparison to most linked list implementations—including the generic approach
described in the previous sections—the Linux kernel’s implementation is unique. Recall
from the earlier discussion that data (or a grouping of data, such as a struct) is maintained
in a linked list by adding a next (and perhaps a previous) node pointer to the data. For
example, assume we had a fox structure to describe that member of the Canidae family:

struct fox {

unsigned long tail_length; /* length in centimeters of tail */

unsigned long weight; /* weight in kilograms */

bool is_fantastic; /* is this fox fantastic? */

};

The common pattern for storing this structure in a linked list is to embed the list
pointer in the structure. For example:

struct fox {

unsigned long tail_length; /* length in centimeters of tail */

unsigned long weight; /* weight in kilograms */

bool is_fantastic; /* is this fox fantastic? */

struct fox *next; /* next fox in linked list */

struct fox *prev; /* previous fox in linked list */

};

The Linux kernel approach is different. Instead of turning the structure into a linked
list, the Linux approach is to embed a linked list node in the structure!

The Linked List Structure
In the old days, there were multiple implementations of linked lists in the kernel.A single,
powerful linked list implementation was needed to remove duplicate code. During the
2.1 kernel development series, the official kernel linked-list implementation was intro-
duced.All existing uses of linked lists now use the official implementation; do not rein-
vent the wheel!

The linked-list code is declared in the header file <linux/list.h> and the data struc-
ture is simple:

struct list_head {

struct list_head *next

struct list_head *prev;

};

The next pointer points to the next list node, and the prev pointer points to the pre-
vious list node.Yet, seemingly, this is not particularly useful.What value is a giant linked
list...of linked list nodes? The utility is in how the list_head structure is used:

 From the Library of Wow! eBook

ptg

89Linked Lists

struct fox {

unsigned long tail_length; /* length in centimeters of tail */

unsigned long weight; /* weight in kilograms */

bool is_fantastic; /* is this fox fantastic? */

struct list_head list; /* list of all fox structures */

};

With this, list.next in fox points to the next element, and list.prev in fox points
to the previous. Now this is becoming useful, but it gets better.The kernel provides a
family of routines to manipulate linked lists. For example, the list_add() method adds a
new node to an existing linked list.These methods, however, are generic:They accept
only list_head structures. Using the macro container_of(), we can easily find the par-
ent structure containing any given member variable.This is because in C, the offset of a
given variable into a structure is fixed by the ABI at compile time.

#define container_of(ptr, type, member) ({ \

const typeof(((type *)0)->member) *__mptr = (ptr); \

(type *)((char *)__mptr - offsetof(type,member));})

Using container_of(), we can define a simple function to return the parent structure
containing any list_head:

#define list_entry(ptr, type, member) \

container_of(ptr, type, member)

Armed with list_entry(), the kernel provides routines to create, manipulate, and
otherwise manage linked lists—all without knowing anything about the structures that
the list_head resides within.

Defining a Linked List
As shown, a list_head by itself is worthless; it is normally embedded inside your own
structure:

struct fox {

unsigned long tail_length; /* length in centimeters of tail */

unsigned long weight; /* weight in kilograms */

bool is_fantastic; /* is this fox fantastic? */

struct list_head list; /* list of all fox structures */

};

The list needs to be initialized before it can be used. Because most of the elements are
created dynamically (probably why you need a linked list), the most common way of ini-
tializing the linked list is at runtime:

struct fox *red_fox;

red_fox = kmalloc(sizeof(*red_fox), GFP_KERNEL);

red_fox->tail_length = 40;

red_fox->weight = 6;

red_fox->is_fantastic = false;

INIT_LIST_HEAD(&red_fox->list);

 From the Library of Wow! eBook

ptg

90 Chapter 6 Kernel Data Structures

If the structure is statically created at compile time, and you have a direct reference to
it, you can simply do this:

struct fox red_fox = {

.tail_length = 40,

.weight = 6,

.list = LIST_HEAD_INIT(red_fox.list),

};

List Heads
The previous section shows how easy it is to take an existing structure—such as our
struct fox example—and turn it into a linked list.With simple code changes, our struc-
ture is now manageable by the kernel’s linked list routines. But before we can use those
routines, we need a canonical pointer to refer to the list as a whole—a head pointer.

One nice aspect of the kernel’s linked list implementation is that our fox nodes are
indistinguishable. Each contains a list_head, and we can iterate from any one node to
the next, until we have seen every node.This approach is elegant, but you will generally
want a special pointer that refers to your linked list, without being a list node itself. Inter-
estingly, this special node is in fact a normal list_head:

static LIST_HEAD(fox_list);

This defines and initializes a list_head named fox_list.The majority of the linked
list routines accept one or two parameters: the head node or the head node plus an actual
list node. Let’s look at those routines.

Manipulating Linked Lists
The kernel provides a family of functions to manipulate linked lists.They all take point-
ers to one or more list_head structures.The functions are implemented as inline func-
tions in generic C and can be found in <linux/list.h>.

Interestingly, all these functions are O(1).1 This means they execute in constant time,
regardless of the size of the list or any other inputs. For example, it takes the same amount
of time to add or remove an entry to or from a list whether that list has 3 or 3,000
entries.This is perhaps not surprising, but still good to know.

Adding a Node to a Linked List
To add a node to a linked list:

list_add(struct list_head *new, struct list_head *head)

1 See the section “Algorithmic Complexity,” later in this chapter, for a discussion on O(1).

 From the Library of Wow! eBook

ptg

91Linked Lists

This function adds the new node to the given list immediately after the head node.
Because the list is circular and generally has no concept of first or last nodes, you can pass
any element for head. If you do pass the “last” element, however, this function can be
used to implement a stack.

Returning to our fox example, assume we had a new struct fox that we wanted to
add to the fox_list list.We’d do this:

list_add(&f->list, &fox_list);

To add a node to the end of a linked list:

list_add_tail(struct list_head *new, struct list_head *head)

This function adds the new node to the given list immediately before the head node.As
with list_add(), because the lists are circular, you can generally pass any element for
head.This function can be used to implement a queue, however, if you pass the “first”
element.

Deleting a Node from a Linked List
After adding a node to a linked list, deleting a node from a list is the next most important
operation.To delete a node from a linked list, use list_del():

list_del(struct list_head *entry)

This function removes the element entry from the list. Note that it does not free any
memory belonging to entry or the data structure in which it is embedded; this function
merely removes the element from the list.After calling this, you would typically destroy
your data structure and the list_head inside it.

For example, to delete the fox node we previous added to fox_list:

list_del(&f->list);

Note the function does not receive as input fox_list. It simply receives a specific
node and modifies the pointers of the previous and subsequent nodes such that the given
node is no longer part of the list.The implementation is instructive:

static inline void __list_del(struct list_head *prev, struct list_head *next)

{

next->prev = prev;

prev->next = next;

}

static inline void list_del(struct list_head *entry)

{

__list_del(entry->prev, entry->next);

}

 From the Library of Wow! eBook

ptg

92 Chapter 6 Kernel Data Structures

To delete a node from a linked list and reinitialize it, the kernel provides
list_del_init():

list_del_init(struct list_head *entry)

This function behaves the same as list_del(), except it also reinitializes the given
list_head with the rationale that you no longer want the entry in the list, but you can
reuse the data structure itself.

Moving and Splicing Linked List Nodes
To move a node from one list to another

list_move(struct list_head *list, struct list_head *head)

This function removes the list entry from its linked list and adds it to the given list
after the head element.

To move a node from one list to the end of another

list_move_tail(struct list_head *list, struct list_head *head)

This function does the same as list_move(), but inserts the list element before the
head entry.

To check whether a list is empty

list_empty(struct list_head *head)

This returns nonzero if the given list is empty; otherwise, it returns zero.
To splice two unconnected lists together

list_splice(struct list_head *list, struct list_head *head)

This function splices together two lists by inserting the list pointed to by list to the
given list after the element head.

To splice two unconnected lists together and reinitialize the old list

list_splice_init(struct list_head *list, struct list_head *head)

This function works the same as list_splice(), except that the emptied list pointed
to by list is reinitialized.

Saving a Couple Dereferences
If you happen to already have the next and prev pointers available, you can save a couple
cycles (specifically, the dereferences to get the pointers) by calling the internal list functions
directly. Every previously discussed function actually does nothing except find the next and
prev pointers and then call the internal functions. The internal functions generally have the
same name as their wrappers, except they are prefixed by double underscores. For exam-
ple, rather than call list_del(list), you can call __list_del(prev, next). This is
useful only if the next and previous pointers are already dereferenced. Otherwise, you are
just writing ugly code. See the header <linux/list.h> for the exact interfaces.

 From the Library of Wow! eBook

ptg

93Linked Lists

Traversing Linked Lists
Now you know how to declare, initialize, and manipulate a linked list in the kernel.This is
all very well and good, but it is meaningless if you have no way to access your data! The
linked lists are just containers that hold your important data; you need a way to use lists to
move around and access the actual structures that contain the data.The kernel (thank
goodness) provides a nice set of interfaces for traversing linked lists and referencing the
data structures that include them.

Note that, unlike the list manipulation routines, iterating over a linked list in its entirety
is clearly an O(n) operation, for n entries in the list.

The Basic Approach
The most basic way to iterate over a list is with the list_for_each()macro.The macro
takes two parameters, both list_head structures.The first is a pointer used to point to the
current entry; it is a temporary variable that you must provide.The second is the
list_head acting as the head node of the list you want to traverse (see the earlier section,
“List Heads”). On each iteration of the loop, the first parameter points to the next entry
in the list, until each entry has been visited. Usage is as follows:

struct list_head *p;

list_for_each(p, fox_list) {

/* p points to an entry in the list */

}

Well, that is still worthless! A pointer to the list structure is usually no good; what we
need is a pointer to the structure that contains the list_head. For example, with the pre-
vious fox structure example, we want a pointer to each fox, not a pointer to the list
member in the structure.We can use the macro list_entry(), which we discussed ear-
lier, to retrieve the structure that contains a given list_head. For example:

struct list_head *p;

struct fox *f;

list_for_each(p, &fox_list) {

/* f points to the structure in which the list is embedded */

f = list_entry(p, struct fox, list);

}

The Usable Approach
The previous approach does not make for particularly intuitive or elegant code, although
it does illustrate how list_head nodes function. Consequently, most kernel code uses the
list_for_each_entry() macro to iterate over a linked list.This macro handles the work
performed by list_entry(), making list iteration simple:

list_for_each_entry(pos, head, member)

 From the Library of Wow! eBook

ptg

94 Chapter 6 Kernel Data Structures

Here, pos is a pointer to the object containing the list_head nodes.Think of it as the
return value from list_entry(). head is a pointer to the list_head head node from
which you want to start iterating—in our previous example, fox_list. member is the vari-
able name of the list_head structure in pos—list in our example.This sounds confus-
ing, but it is easy to use. Here is how we would rewrite the previous list_for_each() to
iterate over every fox node:

struct fox *f;

list_for_each_entry(f, &fox_list, list) {

/* on each iteration, ‘f’ points to the next fox structure ... */

}

Now let’s look at a real example, from inotify, the kernel’s filesystem notification system:

static struct inotify_watch *inode_find_handle(struct inode *inode,

struct inotify_handle *ih)

{

struct inotify_watch *watch;

list_for_each_entry(watch, &inode->inotify_watches, i_list) {

if (watch->ih == ih)

return watch;

}

return NULL;

}

This function iterates over all the entries in the inode->inotify_watches list. Each
entry is of type struct inotify_watch and the list_head in that structure is named
i_list.With each iteration of the loop, watch points at a new node in the list.The purpose
of this simple function is to search the inotify_watches list in the provided inode struc-
ture to find an inotify_watch entry whose inotify_handle matches the provided handle.

Iterating Through a List Backward
The macro list_for_each_entry_reverse() works just like list_for_each_entry(),
except that it moves through the list in reverse.That is, instead of following the next
pointers forward through the list, it follows the prev pointers backward. Usage is the same as
with list_for_each_entry():

list_for_each_entry_reverse(pos, head, member)

There are only a handful of reasons to favor moving through a list in reverse. One is
performance: If you know the item you are searching for is likely behind the node you are
starting your search from, you can move backward in hopes of finding it sooner.A second
reason is if ordering is important. For example, if you use a linked list as a stack, you can
walk the list from the tail backward to achieve last-in/first-out (LIFO) ordering. If you do

 From the Library of Wow! eBook

ptg

95Linked Lists

not have an explicit reason to move through the list in reverse, don’t—just use
list_for_each_entry().

Iterating While Removing
The standard list iteration methods are not appropriate if you are removing entries from
the list as you iterate.The standard methods rely on the fact that the list entries are not
changing out from under them, and thus if the current entry is removed in the body of
the loop, the subsequent iteration cannot advance to the next (or previous) pointer.This is
a common pattern in loops, and programmers solve it by storing the next (or previous)
pointer in a temporary variable prior to a potential removal operation.The Linux kernel
provides a routine to handle this situation for you:

list_for_each_entry_safe(pos, next, head, member)

You use this version in the same manner as list_for_each_entry(), except that you
provide the next pointer, which is of the same type as pos.The next pointer is used by
the list_for_each_entry_safe() macro to store the next entry in the list, making it
safe to remove the current entry. Let’s consider an example, again in inotify:

void inotify_inode_is_dead(struct inode *inode)

{

struct inotify_watch *watch, *next;

mutex_lock(&inode->inotify_mutex);

list_for_each_entry_safe(watch, next, &inode->inotify_watches, i_list) {

struct inotify_handle *ih = watch->ih;

mutex_lock(&ih->mutex);

inotify_remove_watch_locked(ih, watch); /* deletes watch */

mutex_unlock(&ih->mutex);

}

mutex_unlock(&inode->inotify_mutex);

}

This function iterates over and removes all the entries in the inotify_watches list. If
the standard list_for_each_entry() were used, this code would introduce a use-after-
free bug, as moving to the next item in the list would require accessing watch, which was
destroyed.

If you need to iterate over a linked list in reverse and potentially remove elements, the
kernel provides list_for_each_entry_safe_reverse():

list_for_each_entry_safe_reverse(pos, n, head, member)

Usage is the same as with list_for_each_entry_safe().

 From the Library of Wow! eBook

ptg

96 Chapter 6 Kernel Data Structures

You May Still Need Locking!
The “safe” variants of list_for_each_entry() protect you only from removals from the
list within the body of the loop. If there is a chance of concurrent removals from other
code—or any other form of concurrent list manipulation—you need to properly lock access
to the list.

See Chapters 9, “An Introduction to Kernel Synchronization,” and Chapter 10, “Kernel Syn-
chronization Methods,” for a discussion on synchronization and locking.

Other Linked List Methods
Linux provides myriad other list methods, enabling seemingly every conceivable way to
access and manipulate a linked list.All these methods are defined in the header file
<linux/list.h>.

Queues
A common programming pattern in any operating system kernel is producer and consumer.
In this pattern, a producer creates data—say, error messages to be read or networking
packets to be processed—while a consumer, in turn, reads, processes, or otherwise
consumes the data. Often the easiest way to implement this pattern is with a queue.The
producer pushes data onto the queue and the consumer pulls data off the queue.The
consumer retrieves the data in the order it was enqueued.That is, the first data on the
queue is the first data off the queue. For this reason, queues are also called FIFOs, short
for first-in, first-out. See Figure 6.5 for an example of a standard queue.

Enqueue

Dequeue

A Queue

Figure 6.5 A queue (FIFO).

 From the Library of Wow! eBook

ptg

97Queues

The Linux kernel’s generic queue implementation is called kfifo and is implemented in
kernel/kfifo.c and declared in <linux/kfifo.h>.This section discusses the API after
an update in 2.6.33. Usage is slightly different in kernel versions prior to 2.6.33—double-
check <linux/kfifo.h> before writing code.

kfifo
Linux’s kfifo works like most other queue abstractions, providing two primary operations:
enqueue (unfortunately named in) and dequeue (out).The kfifo object maintains two off-
sets into the queue: an in offset and an out offset.The in offset is the location in the queue
to which the next enqueue will occur.The out offset is the location in the queue from
which the next dequeue will occur.The out offset is always less than or equal to the in
offset. It wouldn’t make sense for it to be greater; otherwise, you could dequeue data that
had not yet been enqueued.

The enqueue (in) operation copies data into the queue, starting at the in offset.When
complete, the in offset is incremented by the amount of data enqueued.The dequeue
(out) operation copies data out of the queue, starting from the out offset.When complete,
the out offset is incremented by the amount of data enqueued.When the out offset is
equal to the in offset, the queue is empty: No more data can be dequeued until more data
is enqueued.When the in offset is equal to the length of the queue, no more data can be
enqueued until the queue is reset.

Creating a Queue
To use a kfifo, you must first define and initialize it.As with most kernel objects, you can
do this dynamically or statically.The most common method is dynamic:

int kfifo_alloc(struct kfifo *fifo, unsigned int size, gfp_t gfp_mask);

This function creates and initializes a kfifo with a queue of size bytes.The kernel uses
the gfp mask gfp_mask to allocate the queue. (We discuss memory allocations in Chapter
12,“Memory Management”). Upon success, kfifo_alloc() returns zero; on error it
returns a negative error code. Following is a simple example:

struct kfifo fifo;

int ret;

ret = kfifo_alloc(&kifo, PAGE_SIZE, GFP_KERNEL);

if (ret)

return ret;

/* ‘fifo’ now represents a PAGE_SIZE-sized queue ... */

If you want to allocate the buffer yourself, you can:

void kfifo_init(struct kfifo *fifo, void *buffer, unsigned int size);

 From the Library of Wow! eBook

ptg

98 Chapter 6 Kernel Data Structures

This function creates and initializes a kfifo that will use the size bytes of memory
pointed at by buffer for its queue.With both kfifo_alloc() and kfifo_init(), size
must be a power of two.

Statically declaring a kfifo is simpler, but less common:

DECLARE_KFIFO(name, size);

INIT_KFIFO(name);

This creates a static kfifo named name with a queue of size bytes.As before, size
must be a power of 2.

Enqueuing Data
When your kfifo is created and initialized, enqueuing data into the queue is performed
via the kfifo_in() function:

unsigned int kfifo_in(struct kfifo *fifo, const void *from, unsigned int len);

This function copies the len bytes starting at from into the queue represented by
fifo. On success it returns the number of bytes enqueued. If less than len bytes are free
in the queue, the function copies only up to the amount of available bytes.Thus the
return value can be less than len or even zero, if nothing was copied.

Dequeuing Data
When you add data to a queue with kfifo_in(), you can remove it with kfifo_out():

unsigned int kfifo_out(struct kfifo *fifo, void *to, unsigned int len);

This function copies at most len bytes from the queue pointed at by fifo to the
buffer pointed at by to. On success the function returns the number of bytes copied. If
less than len bytes are in the queue, the function copies less than requested.

When dequeued, data is no longer accessible from the queue.This is the normal usage
of a queue, but if you want to “peek” at data within the queue without removing it, you
can use kfifo_out_peek():

unsigned int kfifo_out_peek(struct kfifo *fifo, void *to, unsigned int len,
unsigned offset);

This works the same as kfifo_out(), except that the out offset is not incremented,
and thus the dequeued data is available to read on a subsequent call to kfifo_out().The
parameter offset specifies an index into the queue; specify zero to read from the head of
the queue, as kfifo_out() does.

Obtaining the Size of a Queue
To obtain the total size in bytes of the buffer used to store a kfifo’s queue, call
kfifo_size():

static inline unsigned int kfifo_size(struct kfifo *fifo);

 From the Library of Wow! eBook

ptg

99Queues

In another example of horrible kernel naming, use kfifo_len() to obtain the number
of bytes enqueued in a kfifo:

static inline unsigned int kfifo_len(struct kfifo *fifo);

To find out the number of bytes available to write into a kfifo, call kfifo_avail():

static inline unsigned int kfifo_avail(struct kfifo *fifo);

Finally, kfifo_is_empty() and kfifo_is_full() return nonzero if the given kfifo is
empty or full, respectively, and zero if not:

static inline int kfifo_is_empty(struct kfifo *fifo);

static inline int kfifo_is_full(struct kfifo *fifo);

Resetting and Destroying the Queue
To reset a kfifo, jettisoning all the contents of the queue, call kfifo_reset():

static inline void kfifo_reset(struct kfifo *fifo);

To destroy a kfifo allocated with kfifo_alloc(), call kfifo_free():

void kfifo_free(struct kfifo *fifo);

If you created your kfifo with kfifo_init(), it is your responsibility to free the asso-
ciated buffer. How you do so depends on how you created it. See Chapter 12 for a dis-
cussion on allocating and freeing dynamic memory.

Example Queue Usage
With these interfaces under our belt, let’s take a look at a simple example of using a kfifo.
Assume we created a kfifo pointed at by fifo with a queue size of 8KB.We can now
enqueue data onto the queue. In this example, we enqueue simple integers. In your own
code, you will likely enqueue more complicated, task-specific structures. Using integers in
this example, let’s see exactly how the kfifo works:

unsigned int i;

/* enqueue [0, 32) to the kfifo named ‘fifo’ */

for (i = 0; i < 32; i++)

kfifo_in(fifo, &i; sizeof(i));

The kfifo named fifo now contains 0 through 31, inclusive.We can take a peek at the
first item in the queue and verify it is 0:

unsigned int val;

int ret;

ret = kfifo_out_peek(fifo, &val, sizeof(val), 0);

if (ret != sizeof(val))

return -EINVAL;

 From the Library of Wow! eBook

ptg

100 Chapter 6 Kernel Data Structures

printk(KERN_INFO “%u\n”, val); /* should print 0 */

To dequeue and print all the items in the kfifo, we can use kfifo_out():

/* while there is data in the queue ... */

while (kfifo_avail(fifo)) {

unsigned int val;

int ret;

/* ... read it, one integer at a time */

ret = kfifo_out(fifo, &val, sizeof(val));

if (ret != sizeof(val))

return -EINVAL;

printk(KERN_INFO “%u\n”, val);

}

This prints 0 through 31, inclusive, and in that order. (If this code snippet printed the
numbers backward, from 31 to 0, we would have a stack, not a queue.)

Maps
A map, also known as an associative array, is a collection of unique keys, where each key is
associated with a specific value.The relationship between a key and its value is called a
mapping. Maps support at least three operations:

n Add (key, value)
n Remove (key)
n value = Lookup (key)

Although a hash table is a type of map, not all maps are implemented via hashes.
Instead of a hash table, maps can also use a self-balancing binary search tree to store their
data.Although a hash offers better average-case asymptotic complexity (see the section
“Algorithmic Complexity” later in this chapter), a binary search tree has better worst-case
behavior (logarithmic versus linear).A binary search tree also enables order preservation,
enabling users to efficiently iterate over the entire collection in a sorted order. Finally, a
binary search tree does not require a hash function; instead, any key type is suitable so
long as it can define the <= operator.

Although the general term for all collections mapping a key to a value, the name maps
often refers specifically to an associated array implemented using a binary search tree as
opposed to a hash table. For example, the C++ STL container std::map is implemented
using a self-balancing binary search tree (or similar data structure), because it provides the
ability to in-order traverse the collection.

The Linux kernel provides a simple and efficient map data structure, but it is not a
general-purpose map. Instead, it is designed for one specific use case: mapping a unique

 From the Library of Wow! eBook

ptg

101Maps

identification number (UID) to a pointer. In addition to providing the three main map
operations, Linux’s implementation also piggybacks an allocate operation on top of the add
operation.This allocate operation not only adds a UID/value pair to the map but also
generates the UID.

The idr data structure is used for mapping user-space UIDs, such as inotify watch
descriptors or POSIX timer IDs, to their associated kernel data structure, such as the
inotify_watch or k_itimer structures, respectively. Following the Linux kernel’s scheme
of obfuscated, confusing names, this map is called idr.

Initializing an idr
Setting up an idr is easy. First you statically define or dynamically allocate an idr struc-
ture.Then you call idr_init():

void idr_init(struct idr *idp);

For example:

struct idr id_huh; /* statically define idr structure */

idr_init(&id_huh); /* initialize provided idr structure */

Allocating a New UID
Once you have an idr set up, you can allocate a new UID, which is a two-step process.
First you tell the idr that you want to allocate a new UID, allowing it to resize the back-
ing tree as necessary.Then, with a second call, you actually request the new UID.This
complication exists to allow you to perform the initial resizing, which may require a
memory allocation, without a lock.We discuss memory allocations in Chapter 12 and
locking in Chapters 9 and 10. For now, let’s concentrate on using idr without concern to
how we handle locking.

The first function, to resize the backing tree, is idr_pre_get():

int idr_pre_get(struct idr *idp, gfp_t gfp_mask);

This function will, if needed to fulfill a new UID allocation, resize the idr pointed at
by idp. If a resize is needed, the memory allocation will use the gfp flags gfp_mask (gfp
flags are discussed in Chapter 12).You do not need to synchronize concurrent access to
this call. Inverted from nearly every other function in the kernel, idr_pre_get() returns
one on success and zero on error—be careful!

The second function, to actually obtain a new UID and add it to the idr, is
idr_get_new():

int idr_get_new(struct idr *idp, void *ptr, int *id);

This function uses the idr pointed at by idp to allocate a new UID and associate it
with the pointer ptr. On success, the function returns zero and stores the new UID in
id. On error, it returns a nonzero error code: -EAGAIN if you need to (again) call
idr_pre_get() and -ENOSPC if the idr is full.

 From the Library of Wow! eBook

ptg

102 Chapter 6 Kernel Data Structures

Let’s look at a full example:

int id;

do {

if (!idr_pre_get(&idr_huh, GFP_KERNEL))

return -ENOSPC;

ret = idr_get_new(&idr_huh, ptr, &id);

} while (ret == -EAGAIN);

If successful, this snippet obtains a new UID, which is stored in the integer id and
maps that UID to ptr (which we don’t define in the snippet).

The function idr_get_new_above() enables the caller to specify a minimum UID
value to return:

int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id);

This works the same as idr_get_new(), except that the new UID is guaranteed to be
equal to or greater than starting_id. Using this variant of the function allows idr users
to ensure that a UID is never reused, allowing the value to be unique not only among
currently allocated IDs but across the entirety of a system’s uptime.This code snippet is
the same as our previous example, except that we request strictly increasing UID values:

int id;

do {

if (!idr_pre_get(&idr_huh, GFP_KERNEL))

return -ENOSPC;

ret = idr_get_new_above(&idr_huh, ptr, next_id, &id);

} while (ret == -EAGAIN);

if (!ret)

next_id = id + 1;

Looking Up a UID
When we have allocated some number of UIDs in an idr, we can look them up:The
caller provides the UID, and the idr returns the associated pointer.This is accomplished, in
a much simpler manner than allocating a new UID, with the idr_find() function:

void *idr_find(struct idr *idp, int id);

A successful call to this function returns the pointer associated with the UID id in the
idr pointed at by idp. On error, the function returns NULL. Note if you mapped NULL to a
UID with idr_get_new() or idr_get_new_above(), this function successfully returns
NULL, giving you no way to distinguish success from failure. Consequently, you should not
map UIDs to NULL.

 From the Library of Wow! eBook

ptg

103Binary Trees

Usage is simple:

struct my_struct *ptr = idr_find(&idr_huh, id);

if (!ptr)

return -EINVAL; /* error */

Removing a UID
To remove a UID from an idr, use idr_remove():

void idr_remove(struct idr *idp, int id);

A successful call to idr_remove() removes the UID id from the idr pointed at by idp.
Unfortunately, idr_remove() has no way to signify error (for example if id is not in idp).

Destroying an idr
Destroying an idr is a simple affair, accomplished with the idr_destroy()function:

void idr_destroy(struct idr *idp);

A successful call to idr_destroy() deallocates only unused memory associated with
the idr pointed at by idp. It does not free any memory currently in use by allocated
UIDs. Generally, kernel code wouldn’t destroy its idr facility until it was shutting down or
unloading, and it wouldn’t unload until it had no more users (and thus no more UIDs),
but to force the removal of all UIDs, you can call idr_remove_all():

void idr_remove_all(struct idr *idp);

You would call idr_remove_all() on the idr pointed at by idp before calling
idr_destroy(), ensuring that all idr memory was freed.

Binary Trees
A tree is a data structure that provides a hierarchical tree-like structure of data. Mathemati-
cally, it is an acyclic, connected, directed graph in which each vertex (called a node) has zero or
more outgoing edges and zero or one incoming edges.A binary tree is a tree in which
nodes have at most two outgoing edges—that is, a tree in which nodes have zero, one, or
two children. See Figure 6.6 for a sample binary tree.

 From the Library of Wow! eBook

ptg

104 Chapter 6 Kernel Data Structures

2

7 8

4 5

9

3

65

1

Figure 6.6 A binary tree.

Binary Search Trees
A binary search tree (often abbreviated BST) is a binary tree with a specific ordering
imposed on its nodes.The ordering is often defined via the following induction:

n The left subtree of the root contains only nodes with values less than the root.
n The right subtree of the root contains only nodes with values greater than the root.
n All subtrees are also binary search trees.

A binary search tree is thus a binary tree in which all nodes are ordered such that left
children are less than their parent in value and right children are greater than their parent.
Consequently, both searching for a given node and in-order traversal are efficient (loga-
rithmic and linear, respectively). See Figure 6.7 for a sample binary search tree.

7

3 9

1 5

4

17

126

15

Figure 6.7 A binary search tree (BST).

 From the Library of Wow! eBook

ptg

105Binary Trees

Self-Balancing Binary Search Trees
The depth of a node is measured by how many parent nodes it is from the root.Nodes at the
“bottom”of the tree—those with no children—are called leaves.The height of a tree is the
depth of the deepest node in the tree.A balanced binary search tree is a binary search tree in which
the depth of all leaves differs by at most one (see Figure 6.8).A self-balancing binary search tree is a
binary search tree that attempts,as part of its normal operations,to remain (semi) balanced.

Red-Black Trees
A red-black tree is a type of self-balancing binary search tree. Linux’s primary binary tree
data structure is the red-black tree. Red-black trees have a special color attribute, which is
either red or black. Red-black trees remain semi-balanced by enforcing that the following
six properties remain true:

1. All nodes are either red or black.

2. Leaf nodes are black.

3. Leaf nodes do not contain data.

4. All non-leaf nodes have two children.

5. If a node is red, both of its children are black.

6. The path from a node to one of its leaves contains the same number of black nodes
as the shortest path to any of its other leaves.

Taken together, these properties ensure that the deepest leaf has a depth of no more
than double that of the shallowest leaf. Consequently, the tree is always semi-balanced.
Why this is true is surprisingly simple. First, by property five, a red node cannot be the
child or parent of another red node. By property six, all paths through the tree to its
leaves have the same number of black nodes.The longest path through the tree alternates
red and black nodes.Thus the shortest path, which must have the same number of black
nodes, contains only black nodes.Therefore, the longest path from the root to a leaf is no
more than double the shortest path from the root to any other leaf.

11

7 18

3 169

8

42

10

Figure 6.8 A balanced binary search tree.

 From the Library of Wow! eBook

ptg

106 Chapter 6 Kernel Data Structures

If the insertion and removal operations enforce these six properties, the tree remains
semi-balanced. Now, it might seem odd to require insert and remove to maintain these
particular properties.Why not implement the operations such that they enforce other,
simpler rules that result in a balanced tree? It turns out that these properties are relatively
easy to enforce (although complex to implement), allowing insert and remove to guaran-
tee a semi-balanced tree without burdensome extra overhead.

Describing how insert and remove enforce these rules is beyond the scope of this book.
Although simple rules, the implementation is complex.Any good undergraduate-level
data structures textbook ought to give a full treatment.

rbtrees
The Linux implementation of red-black trees is called rbtrees.They are defined in
lib/rbtree.c and declared in <linux/rbtree.h>.Aside from optimizations, Linux’s
rbtrees resemble the “classic” red-black tree as described in the previous section.They
remain balanced such that inserts are always logarithmic with respect to the number of
nodes in the tree.

The root of an rbtree is represented by the rb_root structure.To create a new tree, we
allocate a new rb_root and initialize it to the special value RB_ROOT:

struct rb_root root = RB_ROOT;

Individual nodes in an rbtree are represented by the rb_node structure. Given an
rb_node, we can move to its left or right child by following pointers off the node of the
same name.

The rbtree implementation does not provide search and insert routines. Users of
rbtrees are expected to define their own.This is because C does not make generic pro-
gramming easy, and the Linux kernel developers believed the most efficient way to imple-
ment search and insert was to require each user to do so manually, using provided rbtree
helper functions but their own comparison operators.

The best way to demonstrate search and insert is to show a real-world example. First,
let’s look at search.The following function implements a search of Linux’s page cache for
a chunk of a file (represented by an inode and offset pair). Each inode has its own rbtree,
keyed off of page offsets into file.This function thus searches the given inode’s rbtree for a
matching offset value:

struct page * rb_search_page_cache(struct inode *inode,

unsigned long offset)

{

struct rb_node *n = inode->i_rb_page_cache.rb_node;

while (n) {

struct page *page = rb_entry(n, struct page, rb_page_cache);

 From the Library of Wow! eBook

ptg

107Binary Trees

if (offset < page->offset)

n = n->rb_left;

else if (offset > page->offset)

n = n->rb_right;

else

return page;

}

return NULL;

}

In this example, the while loop iterates over the rbtree, traversing as needed to the left
or right child in the direction of the given offset.The if and else statements implement
the rbtree’s comparison function, thus enforcing the tree’s ordering. If the loop finds a
node with a matching offset, the search is complete, and the function returns the associ-
ated page structure. If the loop reaches the end of the rbtree without finding a match,
one does not exist in the tree, and the function returns NULL.

Insert is even more complicated because it implements both search and insertion logic.
The following isn’t a trivial function, but if you need to implement your own insert rou-
tine, this is a good guide:

struct page * rb_insert_page_cache(struct inode *inode,

unsigned long offset,

struct rb_node *node)

{

struct rb_node **p = &inode->i_rb_page_cache.rb_node;

struct rb_node *parent = NULL;

struct page *page;

while (*p) {

parent = *p;

page = rb_entry(parent, struct page, rb_page_cache);

if (offset < page->offset)

p = &(*p)->rb_left;

else if (offset > page->offset)

p = &(*p)->rb_right;

else

return page;

}

rb_link_node(node, parent, p);

rb_insert_color(node, &inode->i_rb_page_cache);

return NULL;

}

 From the Library of Wow! eBook

ptg

108 Chapter 6 Kernel Data Structures

As with our search function, the while loop is iterating over the tree, moving in the
direction of the provided offset. Unlike with search, however, the function is hoping not
to find a matching offset but, instead, reach the leaf node that is the correct insertion
point for the new offset.When the insertion point is found, rb_link_node() is called to
insert the new node at the given spot. rb_insert_color() is then called to perform the
complicated rebalancing dance.The function returns NULL if the page was added to the
page cache and the address of an existing page structure if the page is already in the
cache.

What Data Structure to Use, When
Thus far we’ve discussed four of Linux’s most important data structures: linked lists,
queues, maps, and red-black trees. In this section, we cover some tips to help you decide
which data structure to use in your own code.

If your primary access method is iterating over all your data, use a linked list. Intuitively,
no data structure can provide better than linear complexity when visiting every element,
so you should favor the simplest data structure for that simple job.Also consider linked lists
when performance is not important, when you need to store a relatively small number of
items, or when you need to interface with other kernel code that uses linked lists.

If your code follows the producer/consumer pattern, use a queue, particularly if you
want (or can cope with) a fixed-size buffer. Queues make adding and removing items
simple and efficient, and they provide first-in, first-out (FIFO) semantics, which is what
most producer/consumer use cases demand. On the other hand, if you need to store an
unknown, potentially large number of items, a linked list may make more sense, because
you can dynamically add any number of items to the list.

If you need to map a UID to an object, use a map. Maps make such mappings easy and
efficient, and they also maintain and allocate the UID for you. Linux’s map interface,
being specific to UID-to-pointer mappings, isn’t good for much else, however. If you are
dealing with descriptors handed out to user-space, consider this option.

If you need to store a large amount of data and look it up efficiently, consider a red-
black tree. Red-black trees enable the searching in logarithmic time, while still providing
an efficient linear time in-order traversal.Although more complicated to implement than
the other data structures, their in-memory footprint isn’t significantly worse. If you are
not performing many time-critical look-up operations, a red-black tree probably isn’t
your best bet. In that case, favor a linked list.

None of these data structures fit your needs? The kernel implements other seldom-
used data structures that might meet your needs, such as radix trees (a type of trie) and
bitmaps. Only after exhausting all kernel-provided solutions should you consider “rolling
your own” data structure. One common data structure often implemented in individual
source files is the hash table. Because a hash table is little more than some buckets and a
hash function, and the hash function is so specific to each use case, there is little value in
providing a kernelwide solution in a nongeneric programming language such as C.

 From the Library of Wow! eBook

ptg

109Algorithmic Complexity

Algorithmic Complexity
Often, in computer science and related disciplines, it is useful to express the algorithmic
complexity—or scalability—of algorithms quantitatively.Various methods exist for repre-
senting scalability. One common technique is to study the asymptotic behavior of the algo-
rithm.This is the behavior of the algorithm because its inputs grow exceedingly large and
approach infinity.Asymptotic behavior shows how well an algorithm scales as its input
grows larger and larger. Studying an algorithm’s scalability—how it performs as the size of
its input increases—enables us to model the algorithm against a benchmark and better
understand its behavior.

Algorithms
An algorithm is a series of instructions, possibly one or more inputs, and ultimately a
result or output. For example, the steps carried out to count the number of people in a
room are an algorithm, with the people being the input and the count being the output.
In the Linux kernel, both page eviction and the process scheduler are examples of algo-
rithms. Mathematically, an algorithm is like a function. (Or at least, you can model it as
one.) For example, if you call the people counting algorithm f and the number of people
to count x, you can write

y = f(x) people counting function

where y is the time required to count the x people.

Big-O Notation
One useful asymptotic notation is the upper bound, which is a function whose value, after
an initial point, is always greater than the value of the function that you are studying. It is
said that the upper bound grows as fast or faster than the function in question.A special
notation, big-o (pronounced big oh) notation, is used to describe this growth. It is written
f(x) is O(g(x)) and is read as f is big-oh of g.The formal mathematical definition is

In English, the time to complete f(x) is always less than or equal to the time to com-
plete g(x) multiplied by some arbitrary constant, so long as the input x is larger than
some initial value x’.

Essentially, you are looking for a function whose behavior is as bad as or worse than
the algorithm.You can then look at the result of large inputs to this function and obtain
an understanding of the bound of your algorithm.

Big Theta Notation
When most people talk about big-o notation, they are more accurately referring to what
Donald Knuth describes as big-theta notation.Technically, big-o notation refers to an upper

If f(x) is O(g(x)), then
c, x' such that f(x) c g(x), x >x'

 From the Library of Wow! eBook

ptg

110 Chapter 6 Kernel Data Structures

bound. For example, 7 is an upper bound of 6; so are 9, 12, and 65. Subsequently, when
most people discuss function growth, they talk about the least upper bound, or a function
that models both the upper and lower bounds.2 Professor Knuth, the father of the field
of algorithmic analysis, describes this as big-theta notation and gives the following
definition:

If f(x) is big-theta of g(x), then

g(x) is both an upper bound and a

lower bound for f(x).

Then, you can say that f(x) is of order g(x).The order, or big-theta, of an algorithm is
one of the most important mathematical tools for understanding algorithms in the kernel.

Consequently, when people refer to big-o notation, they are more often talking about
the least such big-o, the big-theta.You really do not have to worry about this, unless you
want to make Professor Knuth really happy.

Time Complexity
Consider the original example of having to count the number of people in a room. Pre-
tend you can count one person per second.Then, if there are 7 people in the room, it will
take 7 seconds to count them. More generally, given n people it will take n seconds to
count everyone.Thus, you can say this algorithm is O(n).What if the task was to dance in
front of everyone in the room? Because it would take the same amount of time to dance
whether there were 5 or 5,000 people in the room, this task is O(1). See Table 6.1 for
other common complexities.

Table 6.1 Table of Common Time Complexity Values

O(g(x)) Name

1 Constant (perfect scalability)

log n Logarithmic

n Linear

n2 Quadratic

n3 Cubic

2n Exponential

n! Factorial

2 If you’re curious, the lower bound is modeled by big-omega notation. The definition is the same as big-

o, except g(x) is always less than or equal to f(x), not greater than or equal to. Big-omega notation

is less useful than big-o because finding functions smaller than your function is rarely indicative of

behavior.

 From the Library of Wow! eBook

ptg

111Conclusion

What is the complexity of introducing everyone in the room to everyone else? What is
a possible function that models this algorithm? If it took 30 seconds to introduce each
person, how long would it take to introduce 10 people to each other? What about 100
people to each other? Understanding how an algorithm performs as it has ever more
work to do is a crucial component in determining the best algorithm for a given job.

Of course, it is wise to avoid complexities such as O(n!) or O(2n). Likewise, it is usu-
ally an improvement to replace an O(n) algorithm with a functionally equivalent O(log
n) algorithm.This is not always the case, however, and a blind assumption should not be
made based solely on big-o notation. Recall that, given O(g(x)), there is a constant, c,
multiplied by g(x).Therefore, it is possible that an O(1) algorithm takes 3 hours to com-
plete. Sure, it is always 3 hours, regardless of how large the input, but that can still be a
long time compared to an O(n) algorithm with few inputs.The typical input size should
always be taken into account when comparing algorithms.

Favor less complex algorithms, but keep in mind the overhead of the algorithm in
relation to the typical input size. Do not blindly optimize to a level of scalability you will
never need to support!

Conclusion
In this chapter, we discussed many of the generic data structures that Linux kernel
developers use to implement everything from the process scheduler to device drivers.You
will find these data structures useful as we continue our study of the Linux kernel.When
writing your own kernel code, always reuse existing kernel infrastructure and don’t
reinvent the wheel.

We also covered algorithmic complexity and tools for measuring and expressing it,
the most notable being big-o notation.Throughout this book and the Linux kernel, big-o
notation is an important notion of how well algorithms and kernel components scale
in light of many users, processes, processors, network connections, and other ever-
expanding inputs.

 From the Library of Wow! eBook

ptg

7
Interrupts and

Interrupt Handlers

A core responsibility of any operating system kernel is managing the hardware con-
nected to the machine—hard drives and Blu-ray discs, keyboards and mice, 3D processors
and wireless radios.To meet this responsibility, the kernel needs to communicate with the
machine’s individual devices. Given that processors can be orders of magnitudes faster
than the hardware they talk to, it is not ideal for the kernel to issue a request and wait for
a response from the significantly slower hardware. Instead, because the hardware is com-
paratively slow to respond, the kernel must be free to go and handle other work, dealing
with the hardware only after that hardware has actually completed its work.

How can the processor work with hardware without impacting the machine’s overall
performance? One answer to this question is polling. Periodically, the kernel can check the
status of the hardware in the system and respond accordingly. Polling incurs overhead,
however, because it must occur repeatedly regardless of whether the hardware is active or
ready.A better solution is to provide a mechanism for the hardware to signal to the kernel
when attention is needed.This mechanism is called an interrupt. In this chapter, we discuss
interrupts and how the kernel responds to them, with special functions called interrupt
handlers.

Interrupts
Interrupts enable hardware to signal to the processor. For example, as you type, the key-
board controller (the hardware device that manages the keyboard) issues an electrical sig-
nal to the processor to alert the operating system to newly available key presses.These
electrical signals are interrupts.The processor receives the interrupt and signals the oper-
ating system to enable the operating system to respond to the new data. Hardware devices
generate interrupts asynchronously with respect to the processor clock—they can occur
at any time. Consequently, the kernel can be interrupted at any time to process interrupts.

An interrupt is physically produced by electronic signals originating from hardware
devices and directed into input pins on an interrupt controller, a simple chip that multi-

 From the Library of Wow! eBook

ptg

114 Chapter 7 Interrupts and Interrupt Handlers

plexes multiple interrupt lines into a single line to the processor. Upon receiving an inter-
rupt, the interrupt controller sends a signal to the processor.The processor detects this sig-
nal and interrupts its current execution to handle the interrupt.The processor can then
notify the operating system that an interrupt has occurred, and the operating system can
handle the interrupt appropriately.

Different devices can be associated with different interrupts by means of a unique
value associated with each interrupt.This way, interrupts from the keyboard are distinct
from interrupts from the hard drive.This enables the operating system to differentiate
between interrupts and to know which hardware device caused which interrupt. In turn,
the operating system can service each interrupt with its corresponding handler.

These interrupt values are often called interrupt request (IRQ) lines. Each IRQ line is
assigned a numeric value—for example, on the classic PC, IRQ zero is the timer inter-
rupt and IRQ one is the keyboard interrupt. Not all interrupt numbers, however, are so
rigidly defined. Interrupts associated with devices on the PCI bus, for example, generally
are dynamically assigned. Other non-PC architectures have similar dynamic assignments
for interrupt values.The important notion is that a specific interrupt is associated with a
specific device, and the kernel knows this.The hardware then issues interrupts to get the
kernel’s attention: Hey, I have new key presses waiting! Read and process these bad boys!

Exceptions
In OS texts, exceptions are often discussed at the same time as interrupts. Unlike inter-
rupts, exceptions occur synchronously with respect to the processor clock. Indeed, they are
often called synchronous interrupts. Exceptions are produced by the processor while execut-
ing instructions either in response to a programming error (for example, divide by zero) or
abnormal conditions that must be handled by the kernel (for example, a page fault).
Because many processor architectures handle exceptions in a similar manner to interrupts,
the kernel infrastructure for handling the two is similar. Much of the discussion of interrupts
(asynchronous interrupts generated by hardware) in this chapter also pertains to exceptions
(synchronous interrupts generated by the processor).

You are already familiar with one exception: In the previous chapter, you saw how system
calls on the x86 architecture are implemented by the issuance of a software interrupt,
which traps into the kernel and causes execution of a special system call handler. Inter-
rupts work in a similar way, you will see, except hardware—not software—issues interrupts.

Interrupt Handlers
The function the kernel runs in response to a specific interrupt is called an interrupt handler
or interrupt service routine (ISR). Each device that generates interrupts has an associated
interrupt handler. For example, one function handles interrupts from the system timer,
whereas another function handles interrupts generated by the keyboard.The interrupt
handler for a device is part of the device’s driver—the kernel code that manages the device.

In Linux, interrupt handlers are normal C functions.They match a specific prototype,
which enables the kernel to pass the handler information in a standard way, but otherwise

 From the Library of Wow! eBook

ptg

115Top Halves Versus Bottom Halves

they are ordinary functions.What differentiates interrupt handlers from other kernel func-
tions is that the kernel invokes them in response to interrupts and that they run in a spe-
cial context (discussed later in this chapter) called interrupt context.This special context is
occasionally called atomic context because, as we shall see, code executing in this context is
unable to block. In this book, we will use the term interrupt context.

Because an interrupt can occur at any time, an interrupt handler can, in turn, be exe-
cuted at any time. It is imperative that the handler runs quickly, to resume execution of
the interrupted code as soon as possible.Therefore, while it is important to the hardware
that the operating system services the interrupt without delay, it is also important to the
rest of the system that the interrupt handler executes in as short a period as possible.

At the very least, an interrupt handler’s job is to acknowledge the interrupt’s receipt to
the hardware: Hey, hardware, I hear ya; now get back to work! Often, however, interrupt han-
dlers have a large amount of work to perform. For example, consider the interrupt handler
for a network device. On top of responding to the hardware, the interrupt handler needs
to copy networking packets from the hardware into memory, process them, and push the
packets down to the appropriate protocol stack or application. Obviously, this can be a lot
of work, especially with today’s gigabit and 10-gigabit Ethernet cards.

Top Halves Versus Bottom Halves
These two goals—that an interrupt handler execute quickly and perform a large amount
of work—clearly conflict with one another. Because of these competing goals, the pro-
cessing of interrupts is split into two parts, or halves.The interrupt handler is the top half.
The top half is run immediately upon receipt of the interrupt and performs only the
work that is time-critical, such as acknowledging receipt of the interrupt or resetting the
hardware.Work that can be performed later is deferred until the bottom half.The bottom
half runs in the future, at a more convenient time, with all interrupts enabled. Linux pro-
vides various mechanisms for implementing bottom halves, and they are all discussed in
Chapter 8,“Bottom Halves and Deferring Work.”

Let’s look at an example of the top-half/bottom-half dichotomy, using our old friend,
the network card.When network cards receive packets from the network, they need to
alert the kernel of their availability.They want and need to do this immediately, to opti-
mize network throughput and latency and avoid timeouts.Thus, they immediately issue an
interrupt: Hey, kernel, I have some fresh packets here! The kernel responds by executing the
network card’s registered interrupt.

The interrupt runs, acknowledges the hardware, copies the new networking packets
into main memory, and readies the network card for more packets.These jobs are the
important, time-critical, and hardware-specific work.The kernel generally needs to
quickly copy the networking packet into main memory because the network data buffer
on the networking card is fixed and miniscule in size, particularly compared to main
memory. Delays in copying the packets can result in a buffer overrun, with incoming
packets overwhelming the networking card’s buffer and thus packets being dropped.After
the networking data is safely in the main memory, the interrupt’s job is done, and it can

 From the Library of Wow! eBook

ptg

116 Chapter 7 Interrupts and Interrupt Handlers

return control of the system to whatever code was interrupted when the interrupt was
generated.The rest of the processing and handling of the packets occurs later, in the bot-
tom half. In this chapter, we look at the top half; in the next chapter, we study the bottom.

Registering an Interrupt Handler
Interrupt handlers are the responsibility of the driver managing the hardware. Each device
has one associated driver and, if that device uses interrupts (and most do), then that driver
must register one interrupt handler.

Drivers can register an interrupt handler and enable a given interrupt line for handling
with the function request_irq(), which is declared in <linux/interrupt.h>:

/* request_irq: allocate a given interrupt line */

int request_irq(unsigned int irq,

irq_handler_t handler,

unsigned long flags,

const char *name,

void *dev)

The first parameter, irq, specifies the interrupt number to allocate. For some devices,
for example legacy PC devices such as the system timer or keyboard, this value is typically
hard-coded. For most other devices, it is probed or otherwise determined programmati-
cally and dynamically.

The second parameter, handler, is a function pointer to the actual interrupt handler
that services this interrupt.This function is invoked whenever the operating system
receives the interrupt.

typedef irqreturn_t (*irq_handler_t)(int, void *);

Note the specific prototype of the handler function: It takes two parameters and has a
return value of irqreturn_t.This function is discussed later in this chapter.

Interrupt Handler Flags
The third parameter, flags, can be either zero or a bit mask of one or more of the flags
defined in <linux/interrupt.h>.Among these flags, the most important are

n IRQF_DISABLED—When set, this flag instructs the kernel to disable all interrupts
when executing this interrupt handler.When unset, interrupt handlers run with all
interrupts except their own enabled. Most interrupt handlers do not set this flag, as
disabling all interrupts is bad form. Its use is reserved for performance-sensitive inter-
rupts that execute quickly.This flag is the current manifestation of the SA_INTERRUPT
flag, which in the past distinguished between “fast” and “slow” interrupts.

n IRQF_SAMPLE_RANDOM—This flag specifies that interrupts generated by this device
should contribute to the kernel entropy pool.The kernel entropy pool provides
truly random numbers derived from various random events. If this flag is specified,
the timing of interrupts from this device are fed to the pool as entropy. Do not set

 From the Library of Wow! eBook

ptg

117Registering an Interrupt Handler

this if your device issues interrupts at a predictable rate (for example, the system
timer) or can be influenced by external attackers (for example, a networking
device). On the other hand, most other hardware generates interrupts at nondeter-
ministic times and is, therefore, a good source of entropy.

n IRQF_TIMER—This flag specifies that this handler processes interrupts for the sys-
tem timer.

n IRQF_SHARED—This flag specifies that the interrupt line can be shared among mul-
tiple interrupt handlers. Each handler registered on a given line must specify this
flag; otherwise, only one handler can exist per line. More information on shared
handlers is provided in a following section.

The fourth parameter, name, is an ASCII text representation of the device associated
with the interrupt. For example, this value for the keyboard interrupt on a PC is key-
board.These text names are used by /proc/irq and /proc/interrupts for communica-
tion with the user, which is discussed shortly.

The fifth parameter, dev, is used for shared interrupt lines.When an interrupt handler
is freed (discussed later), dev provides a unique cookie to enable the removal of only the
desired interrupt handler from the interrupt line.Without this parameter, it would be
impossible for the kernel to know which handler to remove on a given interrupt line.You
can pass NULL here if the line is not shared, but you must pass a unique cookie if your
interrupt line is shared. (And unless your device is old and crusty and lives on the ISA bus,
there is a good chance it must support sharing.) This pointer is also passed into the inter-
rupt handler on each invocation.A common practice is to pass the driver’s device struc-
ture:This pointer is unique and might be useful to have within the handlers.

On success, request_irq() returns zero.A nonzero value indicates an error, in which
case the specified interrupt handler was not registered.A common error is -EBUSY, which
denotes that the given interrupt line is already in use (and either the current user or you
did not specify IRQF_SHARED).

Note that request_irq() can sleep and therefore cannot be called from interrupt
context or other situations where code cannot block. It is a common mistake to call
request_irq() when it is unsafe to sleep.This is partly because of why request_irq()
can block: It is indeed unclear. On registration, an entry corresponding to the interrupt is
created in /proc/irq.The function proc_mkdir() creates new procfs entries.This func-
tion calls proc_create() to set up the new procfs entries, which in turn calls kmalloc()
to allocate memory.As you will see in Chapter 12,“Memory Management,” kmalloc()
can sleep. So there you go!

An Interrupt Example
In a driver, requesting an interrupt line and installing a handler is done via
request_irq():

if (request_irq(irqn, my_interrupt, IRQF_SHARED, "my_device", my_dev)) {

printk(KERN_ERR "my_device: cannot register IRQ %d\n", irqn);

return -EIO;

}

 From the Library of Wow! eBook

ptg

118 Chapter 7 Interrupts and Interrupt Handlers

In this example, irqn is the requested interrupt line; my_interrupt is the handler; we
specify via flags that the line can be shared; the device is named my_device; and we passed
my_dev for dev. On failure, the code prints an error and returns. If the call returns zero,
the handler has been successfully installed. From that point forward, the handler is invoked
in response to an interrupt. It is important to initialize hardware and register an interrupt
handler in the proper order to prevent the interrupt handler from running before the
device is fully initialized.

Freeing an Interrupt Handler
When your driver unloads, you need to unregister your interrupt handler and potentially
disable the interrupt line.To do this, call

void free_irq(unsigned int irq, void *dev)

If the specified interrupt line is not shared, this function removes the handler and dis-
ables the line. If the interrupt line is shared, the handler identified via dev is removed, but
the interrupt line is disabled only when the last handler is removed. Now you can see why
a unique dev is important.With shared interrupt lines, a unique cookie is required to dif-
ferentiate between the multiple handlers that can exist on a single line and enable
free_irq() to remove only the correct handler. In either case (shared or unshared), if dev
is non-NULL, it must match the desired handler.A call to free_irq() must be made from
process context.

Table 7.1 reviews the functions for registering and deregistering an interrupt handler.

Writing an Interrupt Handler
The following is a declaration of an interrupt handler:

static irqreturn_t intr_handler(int irq, void *dev)

Note that this declaration matches the prototype of the handler argument given to
request_irq().The first parameter, irq, is the numeric value of the interrupt line the
handler is servicing.This value is passed into the handler, but it is not used very often,
except in printing log messages. Before version 2.0 of the Linux kernel, there was not a
dev parameter and thus irq was used to differentiate between multiple devices using the

Table 7.1 Interrupt Registration Methods

Function Description

request_irq() Register a given interrupt handler on a given interrupt line.

free_irq() Unregister a given interrupt handler; if no handlers remain on the
line, the given interrupt line is disabled.

 From the Library of Wow! eBook

ptg

119Writing an Interrupt Handler

same driver and therefore the same interrupt handler.As an example of this, consider a
computer with multiple hard drive controllers of the same type.

The second parameter, dev, is a generic pointer to the same dev that was given to
request_irq() when the interrupt handler was registered. If this value is unique (which
is required to support sharing), it can act as a cookie to differentiate between multiple
devices potentially using the same interrupt handler. dev might also point to a structure of
use to the interrupt handler. Because the device structure is both unique to each device
and potentially useful to have within the handler, it is typically passed for dev.

The return value of an interrupt handler is the special type irqreturn_t.An interrupt
handler can return two special values, IRQ_NONE or IRQ_HANDLED.The former is returned
when the interrupt handler detects an interrupt for which its device was not the origina-
tor.The latter is returned if the interrupt handler was correctly invoked, and its device did
indeed cause the interrupt.Alternatively, IRQ_RETVAL(val) may be used. If val is
nonzero, this macro returns IRQ_HANDLED. Otherwise, the macro returns IRQ_NONE.These
special values are used to let the kernel know whether devices are issuing spurious (that is,
unrequested) interrupts. If all the interrupt handlers on a given interrupt line return
IRQ_NONE, then the kernel can detect the problem. Note the curious return type,
irqreturn_t, which is simply an int.This value provides backward compatibility with
earlier kernels, which did not have this feature; before 2.6, interrupt handlers returned
void. Drivers may simply typedef irqreturn_t to void and define the different return
values to no-ops and then work in 2.4 without further modification.The interrupt han-
dler is normally marked static because it is never called directly from another file.

The role of the interrupt handler depends entirely on the device and its reasons for
issuing the interrupt.At a minimum, most interrupt handlers need to provide acknowl-
edgment to the device that they received the interrupt. Devices that are more complex
need to additionally send and receive data and perform extended work in the interrupt
handler.As mentioned, the extended work is pushed as much as possible into the bottom
half handler, which is discussed in the next chapter.

Reentrancy and Interrupt Handlers
Interrupt handlers in Linux need not be reentrant. When a given interrupt handler is execut-
ing, the corresponding interrupt line is masked out on all processors, preventing another
interrupt on the same line from being received. Normally all other interrupts are enabled, so
other interrupts are serviced, but the current line is always disabled. Consequently, the
same interrupt handler is never invoked concurrently to service a nested interrupt. This
greatly simplifies writing your interrupt handler.

Shared Handlers
A shared handler is registered and executed much like a nonshared handler. Following are
three main differences:

n The IRQF_SHARED flag must be set in the flags argument to request_irq().
n The dev argument must be unique to each registered handler.A pointer to any

per-device structure is sufficient; a common choice is the device structure as it is

 From the Library of Wow! eBook

ptg

120 Chapter 7 Interrupts and Interrupt Handlers

both unique and potentially useful to the handler.You cannot pass NULL for a shared
handler!

n The interrupt handler must be capable of distinguishing whether its device actually
generated an interrupt.This requires both hardware support and associated logic in
the interrupt handler. If the hardware did not offer this capability, there would be no
way for the interrupt handler to know whether its associated device or some other
device sharing the line caused the interrupt.

All drivers sharing the interrupt line must meet the previous requirements. If any one
device does not share fairly, none can share the line.When request_irq() is called with
IRQF_SHARED specified, the call succeeds only if the interrupt line is currently not regis-
tered, or if all registered handlers on the line also specified IRQF_SHARED. Shared handlers,
however, can mix usage of IRQF_DISABLED.

When the kernel receives an interrupt, it invokes sequentially each registered handler
on the line.Therefore, it is important that the handler be capable of distinguishing
whether it generated a given interrupt.The handler must quickly exit if its associated
device did not generate the interrupt.This requires the hardware device to have a status
register (or similar mechanism) that the handler can check. Most hardware does indeed
have such a feature.

A Real-Life Interrupt Handler
Let’s look at a real interrupt handler, from the real-time clock (RTC) driver, found in
drivers/char/rtc.c.An RTC is found in many machines, including PCs. It is a device,
separate from the system timer, which sets the system clock, provides an alarm, or supplies
a periodic timer. On most architectures, the system clock is set by writing the desired time
into a specific register or I/O range.Any alarm or periodic timer functionality is normally
implemented via interrupt.The interrupt is equivalent to a real-world clock alarm:The
receipt of the interrupt is analogous to a buzzing alarm.

When the RTC driver loads, the function rtc_init() is invoked to initialize the
driver. One of its duties is to register the interrupt handler:

/* register rtc_interrupt on rtc_irq */

if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc", (void *)&rtc_port)) {

printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);

return -EIO;

}

In this example, the interrupt line is stored in rtc_irq.This variable is set to the RTC
interrupt for a given architecture. On a PC, the RTC is located at IRQ 8.The second
parameter is the interrupt handler, rtc_interrupt, which is willing to share the interrupt
line with other handlers, thanks to the IRQF_SHARED flag. From the fourth parameter, you
can see that the driver name is rtc. Because this device shares the interrupt line, it passes a
unique per-device value for dev.

Finally, the handler itself:

 From the Library of Wow! eBook

ptg

121Writing an Interrupt Handler

static irqreturn_t rtc_interrupt(int irq, void *dev)

{

/*

* Can be an alarm interrupt, update complete interrupt,

* or a periodic interrupt. We store the status in the

* low byte and the number of interrupts received since

* the last read in the remainder of rtc_irq_data.

*/

spin_lock(&rtc_lock);

rtc_irq_data += 0x100;

rtc_irq_data &= ~0xff;

rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);

if (rtc_status & RTC_TIMER_ON)

mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);

spin_unlock(&rtc_lock);

/*

* Now do the rest of the actions

*/

spin_lock(&rtc_task_lock);

if (rtc_callback)

rtc_callback->func(rtc_callback->private_data);

spin_unlock(&rtc_task_lock);

wake_up_interruptible(&rtc_wait);

kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);

return IRQ_HANDLED;

}

This function is invoked whenever the machine receives the RTC interrupt. First, note
the spin lock calls:The first set ensures that rtc_irq_data is not accessed concurrently by
another processor on an SMP machine, and the second set protects rtc_callback from
the same. Locks are discussed in Chapter 10,“Kernel Synchronization Methods.”

The rtc_irq_data variable is an unsigned long that stores information about the
RTC and is updated on each interrupt to reflect the status of the interrupt.

Next, if an RTC periodic timer is set, it is updated via mod_timer().Timers are dis-
cussed in Chapter 11,“Timers and Time Management.”

The final bunch of code, under the comment “now do the rest of the actions,” executes
a possible preset callback function.The RTC driver enables a callback function to be reg-
istered and executed on each RTC interrupt.

 From the Library of Wow! eBook

ptg

122 Chapter 7 Interrupts and Interrupt Handlers

Finally, this function returns IRQ_HANDLED to signify that it properly handled this
device. Because the interrupt handler does not support sharing, and there is no mecha-
nism for the RTC to detect a spurious interrupt, this handler always returns IRQ_HANDLED.

Interrupt Context
When executing an interrupt handler, the kernel is in interrupt context. Recall that process
context is the mode of operation the kernel is in while it is executing on behalf of a
process—for example, executing a system call or running a kernel thread. In process con-
text, the current macro points to the associated task. Furthermore, because a process is
coupled to the kernel in process context, process context can sleep or otherwise invoke
the scheduler.

Interrupt context, on the other hand, is not associated with a process.The current
macro is not relevant (although it points to the interrupted process).Without a backing
process, interrupt context cannot sleep—how would it ever reschedule? Therefore, you
cannot call certain functions from interrupt context. If a function sleeps, you cannot use it
from your interrupt handler—this limits the functions that one can call from an interrupt
handler.

Interrupt context is time-critical because the interrupt handler interrupts other code.
Code should be quick and simple. Busy looping is possible, but discouraged.This is an
important point; always keep in mind that your interrupt handler has interrupted other
code (possibly even another interrupt handler on a different line!). Because of this asyn-
chronous nature, it is imperative that all interrupt handlers be as quick and as simple as
possible.As much as possible, work should be pushed out from the interrupt handler and
performed in a bottom half, which runs at a more convenient time.

The setup of an interrupt handler’s stacks is a configuration option. Historically, inter-
rupt handlers did not receive their own stacks. Instead, they would share the stack of the
process that they interrupted.1 The kernel stack is two pages in size; typically, that is 8KB
on 32-bit architectures and 16KB on 64-bit architectures. Because in this setup interrupt
handlers share the stack, they must be exceptionally frugal with what data they allocate
there. Of course, the kernel stack is limited to begin with, so all kernel code should be
cautious.

Early in the 2.6 kernel process, an option was added to reduce the stack size from two
pages down to one, providing only a 4KB stack on 32-bit systems.This reduced memory
pressure because every process on the system previously needed two pages of contiguous,
nonswappable kernel memory.To cope with the reduced stack size, interrupt handlers
were given their own stack, one stack per processor, one page in size.This stack is referred
to as the interrupt stack.Although the total size of the interrupt stack is half that of the
original shared stack, the average stack space available is greater because interrupt handlers
get the full page of memory to themselves.

1 A process is always running. When nothing else is schedulable, the idle task runs.

 From the Library of Wow! eBook

ptg

123Implementing Interrupt Handlers

Your interrupt handler should not care what stack setup is in use or what the size of
the kernel stack is.Always use an absolute minimum amount of stack space.

Implementing Interrupt Handlers
Perhaps not surprising, the implementation of the interrupt handling system in Linux is
architecture-dependent.The implementation depends on the processor, the type of inter-
rupt controller used, and the design of the architecture and machine.

Figure 7.1 is a diagram of the path an interrupt takes through hardware and the kernel.

A device issues an interrupt by sending an electric signal over its bus to the interrupt
controller. If the interrupt line is enabled (they can be masked out), the interrupt con-
troller sends the interrupt to the processor. In most architectures, this is accomplished by
an electrical signal sent over a special pin to the processor. Unless interrupts are disabled in
the processor (which can also happen), the processor immediately stops what it is doing,
disables the interrupt system, and jumps to a predefined location in memory and executes
the code located there.This predefined point is set up by the kernel and is the entry point
for interrupt handlers.

The interrupt’s journey in the kernel begins at this predefined entry point, just as
system calls enter the kernel through a predefined exception handler. For each interrupt
line, the processor jumps to a unique location in memory and executes the code located
there. In this manner, the kernel knows the IRQ number of the incoming interrupt.
The initial entry point simply saves this value and stores the current register values
(which belong to the interrupted task) on the stack; then the kernel calls do_IRQ().
From here onward, most of the interrupt handling code is written in C; however, it is
still architecture-dependent.

Hardware

Processor

processor interrupts
the kernel

generates an interrupt

do_IRQ()

ret_from_intr()

Is there an interrupt
handler on this line?

handle_IRQ_event()

yes

no

return to the
kernel code

that was
interrupted

run all interrupt
handlers on this line

interrupt controller

Figure 7.1 The path that an interrupt takes from hardware and on through the
kernel.

 From the Library of Wow! eBook

ptg

124 Chapter 7 Interrupts and Interrupt Handlers

The do_IRQ() function is declared as

unsigned int do_IRQ(struct pt_regs regs)

Because the C calling convention places function arguments at the top of the stack, the
pt_regs structure contains the initial register values that were previously saved in the
assembly entry routine. Because the interrupt value was also saved, do_IRQ() can extract
it.After the interrupt line is calculated, do_IRQ() acknowledges the receipt of the inter-
rupt and disables interrupt delivery on the line. On normal PC machines, these operations
are handled by mask_and_ack_8259A().

Next, do_IRQ() ensures that a valid handler is registered on the line and that it is
enabled and not currently executing. If so, it calls handle_IRQ_event(), defined in
kernel/irq/handler.c, to run the installed interrupt handlers for the line.

/**

* handle_IRQ_event - irq action chain handler

* @irq: the interrupt number

* @action: the interrupt action chain for this irq

*

* Handles the action chain of an irq event

*/

irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)

{

irqreturn_t ret, retval = IRQ_NONE;

unsigned int status = 0;

if (!(action->flags & IRQF_DISABLED))

local_irq_enable_in_hardirq();

do {

trace_irq_handler_entry(irq, action);

ret = action->handler(irq, action->dev_id);

trace_irq_handler_exit(irq, action, ret);

switch (ret) {

case IRQ_WAKE_THREAD:

/*

* Set result to handled so the spurious check

* does not trigger.

*/

ret = IRQ_HANDLED;

/*

* Catch drivers which return WAKE_THREAD but

* did not set up a thread function

*/

if (unlikely(!action->thread_fn)) {

 From the Library of Wow! eBook

ptg

125Implementing Interrupt Handlers

warn_no_thread(irq, action);

break;

}

/*

* Wake up the handler thread for this

* action. In case the thread crashed and was

* killed we just pretend that we handled the

* interrupt. The hardirq handler above has

* disabled the device interrupt, so no irq

* storm is lurking.

*/

if (likely(!test_bit(IRQTF_DIED,

&action->thread_flags))) {

set_bit(IRQTF_RUNTHREAD, &action->thread_flags);

wake_up_process(action->thread);

}

/* Fall through to add to randomness */

case IRQ_HANDLED:

status |= action->flags;

break;

default:

break;

}

retval |= ret;

action = action->next;

} while (action);

if (status & IRQF_SAMPLE_RANDOM)

add_interrupt_randomness(irq);

local_irq_disable();

return retval;

}

First, because the processor disabled interrupts, they are turned back on unless
IRQF_DISABLED was specified during the handler’s registration. Recall that
IRQF_DISABLED specifies that the handler must be run with interrupts disabled. Next,
each potential handler is executed in a loop. If this line is not shared, the loop terminates
after the first iteration. Otherwise, all handlers are executed.After that,
add_interrupt_randomness() is called if IRQF_SAMPLE_RANDOM was specified during
registration.This function uses the timing of the interrupt to generate entropy for the ran-
dom number generator. Finally, interrupts are again disabled (do_IRQ() expects them still

 From the Library of Wow! eBook

ptg

126 Chapter 7 Interrupts and Interrupt Handlers

to be off) and the function returns. Back in do_IRQ(), the function cleans up and returns
to the initial entry point, which then jumps to ret_from_intr().

The routine ret_from_intr() is, as with the initial entry code, written in assembly.
This routine checks whether a reschedule is pending. (Recall from Chapter 4,“Process
Scheduling,” that this implies that need_resched is set). If a reschedule is pending, and the
kernel is returning to user-space (that is, the interrupt interrupted a user process),
schedule() is called. If the kernel is returning to kernel-space (that is, the interrupt inter-
rupted the kernel itself), schedule() is called only if the preempt_count is zero. Other-
wise it is not safe to preempt the kernel.After schedule() returns, or if there is no work
pending, the initial registers are restored and the kernel resumes whatever was interrupted.

On x86, the initial assembly routines are located in arch/x86/kernel/entry_64.S
(entry_32.S for 32-bit x86) and the C methods are located in arch/x86/kernel/irq.c.
Other supported architectures are similar.

/proc/interrupts
Procfs is a virtual filesystem that exists only in kernel memory and is typically mounted at
/proc. Reading or writing files in procfs invokes kernel functions that simulate reading or
writing from a real file.A relevant example is the /proc/interrupts file, which is popu-
lated with statistics related to interrupts on the system. Here is sample output from a
uniprocessor PC:

CPU0

0: 3602371 XT-PIC timer

1: 3048 XT-PIC i8042

2: 0 XT-PIC cascade

4: 2689466 XT-PIC uhci-hcd, eth0

5: 0 XT-PIC EMU10K1

12: 85077 XT-PIC uhci-hcd

15: 24571 XT-PIC aic7xxx

NMI: 0

LOC: 3602236

ERR: 0

The first column is the interrupt line. On this system, interrupts numbered 0–2, 4, 5, 12,
and 15 are present. Handlers are not installed on lines not displayed.The second column is
a counter of the number of interrupts received.A column is present for each processor on
the system, but this machine has only one processor.As you can see, the timer interrupt has
received 3,602,371 interrupts,2 whereas the sound card (EMU10K1) has received none
(which is an indication that it has not been used since the machine booted).The third col-
umn is the interrupt controller handling this interrupt. XT-PIC corresponds to the standard

2 As an exercise, after reading Chapter 11 can you tell how long the system has been up (in terms of

HZ), knowing the number of timer interrupts that have occurred?

 From the Library of Wow! eBook

ptg

127Interrupt Control

PC programmable interrupt controller. On systems with an I/O APIC, most interrupts
would list IO-APIC-level or IO-APIC-edge as their interrupt controller. Finally, the last
column is the device associated with this interrupt.This name is supplied by the devname
parameter to request_irq(), as discussed previously. If the interrupt is shared, as is the
case with interrupt number 4 in this example, all the devices registered on the interrupt
line are listed.

For the curious, procfs code is located primarily in fs/proc.The function that provides
/proc/interrupts is, not surprisingly, architecture-dependent and named
show_interrupts().

Interrupt Control
The Linux kernel implements a family of interfaces for manipulating the state of inter-
rupts on a machine.These interfaces enable you to disable the interrupt system for the
current processor or mask out an interrupt line for the entire machine.These routines are
all architecture-dependent and can be found in <asm/system.h> and <asm/irq.h>. See
Table 7.2, later in this chapter, for a complete listing of the interfaces.

Reasons to control the interrupt system generally boil down to needing to provide
synchronization. By disabling interrupts, you can guarantee that an interrupt handler will
not preempt your current code. Moreover, disabling interrupts also disables kernel pre-
emption. Neither disabling interrupt delivery nor disabling kernel preemption provides
any protection from concurrent access from another processor, however. Because Linux
supports multiple processors, kernel code more generally needs to obtain some sort of
lock to prevent another processor from accessing shared data simultaneously.These locks
are often obtained in conjunction with disabling local interrupts.The lock provides pro-
tection against concurrent access from another processor, whereas disabling interrupts
provides protection against concurrent access from a possible interrupt handler. Chapters
9 and 10 discuss the various problems of synchronization and their solutions. Neverthe-
less, understanding the kernel interrupt control interfaces is important.

Disabling and Enabling Interrupts
To disable interrupts locally for the current processor (and only the current processor) and
then later reenable them, do the following:

local_irq_disable();

/* interrupts are disabled .. */

local_irq_enable();

These functions are usually implemented as a single assembly operation. (Of course,
this depends on the architecture.) Indeed, on x86, local_irq_disable() is a simple cli
and local_irq_enable() is a simple sti instruction. cli and sti are the assembly calls
to clear and set the allow interrupts flag, respectively. In other words, they disable and enable
interrupt delivery on the issuing processor.

 From the Library of Wow! eBook

ptg

128 Chapter 7 Interrupts and Interrupt Handlers

The local_irq_disable() routine is dangerous if interrupts were already disabled
prior to its invocation.The corresponding call to local_irq_enable() unconditionally
enables interrupts, despite the fact that they were off to begin with. Instead, a mechanism
is needed to restore interrupts to a previous state.This is a common concern because a
given code path in the kernel can be reached both with and without interrupts enabled,
depending on the call chain. For example, imagine the previous code snippet is part of a
larger function. Imagine that this function is called by two other functions, one that dis-
ables interrupts and one that does not. Because it is becoming harder as the kernel grows
in size and complexity to know all the code paths leading up to a function, it is much
safer to save the state of the interrupt system before disabling it.Then, when you are ready
to reenable interrupts, you simply restore them to their original state:

unsigned long flags;

local_irq_save(flags); /* interrupts are now disabled */

/* ... */

local_irq_restore(flags); /* interrupts are restored to their previous state */

Note that these methods are implemented at least in part as macros, so the flags
parameter (which must be defined as an unsigned long) is seemingly passed by value.
This parameter contains architecture-specific data containing the state of the interrupt sys-
tems. Because at least one supported architecture incorporates stack information into the
value (ahem, SPARC), flags cannot be passed to another function (specifically, it must
remain on the same stack frame). For this reason, the call to save and the call to restore
interrupts must occur in the same function.

All the previous functions can be called from both interrupt and process context.

No More Global cli()

The kernel formerly provided a method to disable interrupts on all processors in the system.
Furthermore, if another processor called this method, it would have to wait until interrupts
were enabled before continuing. This function was named cli() and the corresponding
enable call was named sti()—very x86-centric, despite existing for all architectures. These
interfaces were deprecated during 2.5, and consequently all interrupt synchronization must
now use a combination of local interrupt control and spin locks (discussed in Chapter 9, “An
Introduction to Kernel Synchronization”). This means that code that previously only had to
disable interrupts globally to ensure mutual-exclusive access to shared data now needs to do
a bit more work.

Previously, driver writers could assume a cli() used in their interrupt handlers and any-
where else the shared data was accessed would provide mutual exclusion. The cli() call
would ensure that no other interrupt handlers (and thus their specific handler) would run.
Furthermore, if another processor entered a cli() protected region, it would not continue
until the original processor exited its cli() protected region with a call to sti().

Removing the global cli() has a handful of advantages. First, it forces driver writers to imple-
ment real locking. A fine-grained lock with a specific purpose is faster than a global lock, which
is effectively what cli() is. Second, the removal streamlined a lot of code in the interrupt sys-
tem and removed a bunch more. The result is simpler and easier to comprehend.

 From the Library of Wow! eBook

ptg

129Interrupt Control

Disabling a Specific Interrupt Line
In the previous section, we looked at functions that disable all interrupt delivery for an
entire processor. In some cases, it is useful to disable only a specific interrupt line for the
entire system.This is called masking out an interrupt line.As an example, you might want to
disable delivery of a device’s interrupts before manipulating its state. Linux provides four
interfaces for this task:

void disable_irq(unsigned int irq);

void disable_irq_nosync(unsigned int irq);

void enable_irq(unsigned int irq);

void synchronize_irq(unsigned int irq);

The first two functions disable a given interrupt line in the interrupt controller.This
disables delivery of the given interrupt to all processors in the system.Additionally, the
disable_irq()function does not return until any currently executing handler completes.
Thus, callers are assured not only that new interrupts will not be delivered on the given
line, but also that any already executing handlers have exited.The function
disable_irq_nosync() does not wait for current handlers to complete.

The function synchronize_irq() waits for a specific interrupt handler to exit, if it is
executing, before returning.

Calls to these functions nest. For each call to disable_irq() or
disable_irq_nosync() on a given interrupt line, a corresponding call to enable_irq()
is required. Only on the last call to enable_irq() is the interrupt line actually enabled.
For example, if disable_irq() is called twice, the interrupt line is not actually reenabled
until the second call to enable_irq().

All three of these functions can be called from interrupt or process context and do not
sleep. If calling from interrupt context, be careful! You do not want, for example, to enable
an interrupt line while you are handling it. (Recall that the interrupt line of a handler is
masked out while it is serviced.)

It would be rather rude to disable an interrupt line shared among multiple interrupt
handlers. Disabling the line disables interrupt delivery for all devices on the line.There-
fore, drivers for newer devices tend not to use these interfaces.3 Because PCI devices have
to support interrupt line sharing by specification, they should not use these interfaces at
all.Thus, disable_irq() and friends are found more often in drivers for older legacy
devices, such as the PC parallel port.

3 Many older devices, particularly ISA devices, do not provide a method of obtaining whether they gener-

ated an interrupt. Therefore, often interrupt lines for ISA devices cannot be shared. Because the PCI

specification mandates the sharing of interrupts, modern PCI-based devices support interrupt sharing.

In contemporary computers, nearly all interrupt lines can be shared.

 From the Library of Wow! eBook

ptg

130 Chapter 7 Interrupts and Interrupt Handlers

Status of the Interrupt System
It is often useful to know the state of the interrupt system (for example, whether inter-
rupts are enabled or disabled) or whether you are currently executing in interrupt context.

The macro irqs_disabled(), defined in <asm/system.h>, returns nonzero if the
interrupt system on the local processor is disabled. Otherwise, it returns zero.

Two macros, defined in <linux/hardirq.h>, provide an interface to check the ker-
nel’s current context.They are

in_interrupt()

in_irq()

The most useful is the first: It returns nonzero if the kernel is performing any type of
interrupt handling.This includes either executing an interrupt handler or a bottom half
handler.The macro in_irq() returns nonzero only if the kernel is specifically executing
an interrupt handler.

More often, you want to check whether you are in process context.That is, you want
to ensure you are not in interrupt context.This is often the case because code wants to do
something that can only be done from process context, such as sleep. If in_interrupt()
returns zero, the kernel is in process context.

Yes, the names are confusing and do little to impart their meaning.Table 7.2 is a sum-
mary of the interrupt control methods and their description.

Table 7.2 Interrupt Control Methods

Function Description

local_irq_disable() Disables local interrupt delivery

local_irq_enable() Enables local interrupt delivery

local_irq_save() Saves the current state of local interrupt delivery and then
disables it

local_irq_restore() Restores local interrupt delivery to the given state

disable_irq() Disables the given interrupt line and ensures no handler on
the line is executing before returning

disable_irq_nosync() Disables the given interrupt line

enable_irq() Enables the given interrupt line

irqs_disabled() Returns nonzero if local interrupt delivery is disabled; other-
wise returns zero

in_interrupt() Returns nonzero if in interrupt context and zero if in process
context

in_irq() Returns nonzero if currently executing an interrupt handler
and zero otherwise

 From the Library of Wow! eBook

ptg

131Conclusion

Conclusion
This chapter looked at interrupts, a hardware resource used by devices to asynchro-
nously signal the processor. Interrupts, in effect, are used by hardware to interrupt the
operating system.

Most modern hardware uses interrupts to communicate with operating systems.The
device driver that manages a given piece of hardware registers an interrupt handler to
respond to and process interrupts issued from their associated hardware.Work performed
in interrupts includes acknowledging and resetting hardware, copying data from the
device to main memory and vice versa, processing hardware requests, and sending out
new hardware requests.

The kernel provides interfaces for registering and unregistering interrupt handlers, dis-
abling interrupts, masking out interrupt lines, and checking the status of the interrupt sys-
tem.Table 7.2 provided an overview of many of these functions.

Because interrupts interrupt other executing code (processes, the kernel itself, and
even other interrupt handlers), they must execute quickly. Often, however, there is a lot of
work to do.To balance the large amount of work with the need for quick execution, the
kernel divides the work of processing interrupts into two halves.The interrupt handler,
the top half, was discussed in this chapter.The next chapter looks at the bottom half.

 From the Library of Wow! eBook

ptg

8
Bottom Halves and

Deferring Work

The previous chapter discussed interrupt handlers, the kernel mechanism for dealing
with hardware interrupts. Interrupt handlers are an important—indeed, required—part of
any operating system. Due to various limitations, however, interrupt handlers can form
only the first half of any interrupt processing solution.These limitations include

n Interrupt handlers run asynchronously and thus interrupt other, potentially impor-
tant, code, including other interrupt handlers.Therefore, to avoid stalling the inter-
rupted code for too long, interrupt handlers need to run as quickly as possible.

n Interrupt handlers run with the current interrupt level disabled at best (if
IRQF_DISABLED is unset), and at worst (if IRQF_DISABLED is set) with all interrupts
on the current processor disabled.As disabling interrupts prevents hardware from
communicating with the operating systems, interrupt handlers need to run as
quickly as possible.

n Interrupt handlers are often timing-critical because they deal with hardware.
n Interrupt handlers do not run in process context; therefore, they cannot block.This

limits what they can do.

It should now be evident that interrupt handlers are only a piece of the solution to
managing hardware interrupts. Operating systems certainly need a quick, asynchronous,
simple mechanism for immediately responding to hardware and performing any time-
critical actions. Interrupt handlers serve this function well; but other, less critical work can
and should be deferred to a later point when interrupts are enabled.

Consequently, managing interrupts is divided into two parts, or halves.The first part,
interrupt handlers (top halves), are executed by the kernel asynchronously in immediate
response to a hardware interrupt, as discussed in the previous chapter.This chapter looks
at the second part of the interrupt solution, bottom halves.

 From the Library of Wow! eBook

ptg

134 Chapter 8 Bottom Halves and Deferring Work

Bottom Halves
The job of bottom halves is to perform any interrupt-related work not performed by the
interrupt handler. In an ideal world, this is nearly all the work because you want the
interrupt handler to perform as little work (and in turn be as fast) as possible. By offload-
ing as much work as possible to the bottom half, the interrupt handler can return control
of the system to whatever it interrupted as quickly as possible.

Nonetheless, the interrupt handler must perform some of the work. For example, the
interrupt handler almost assuredly needs to acknowledge to the hardware the receipt of
the interrupt. It may need to copy data to or from the hardware.This work is timing-
sensitive, so it makes sense to perform it in the interrupt handler.

Almost anything else is fair game for performing in the bottom half. For example, if
you copy data from the hardware into memory in the top half, it certainly makes sense to
process it in the bottom half. Unfortunately, no hard and fast rules exist about what work
to perform where—the decision is left entirely up to the device-driver author.Although
no arrangement is illegal, an arrangement can certainly be suboptimal. Remember, inter-
rupt handlers run asynchronously, with at least the current interrupt line disabled. Mini-
mizing their duration is important.Although it is not always clear how to divide the work
between the top and bottom half, a couple of useful tips help:

n If the work is time sensitive, perform it in the interrupt handler.
n If the work is related to the hardware, perform it in the interrupt handler.
n If the work needs to ensure that another interrupt (particularly the same interrupt)

does not interrupt it, perform it in the interrupt handler.
n For everything else, consider performing the work in the bottom half.

When attempting to write your own device driver, looking at other interrupt handlers
and their corresponding bottom halves can help.When deciding how to divide your
interrupt processing work between the top and bottom half, ask yourself what must be in
the top half and what can be in the bottom half. Generally, the quicker the interrupt han-
dler executes, the better.

Why Bottom Halves?
It is crucial to understand why to defer work, and when exactly to defer it.You want to
limit the amount of work you perform in an interrupt handler because interrupt handlers
run with the current interrupt line disabled on all processors.Worse, handlers that register
with IRQF_DISABLED run with all interrupt lines disabled on the local processor, plus the
current interrupt line disabled on all processors. Minimizing the time spent with inter-
rupts disabled is important for system response and performance.Add to this the fact that
interrupt handlers run asynchronously with respect to other code—even other interrupt
handlers—and it is clear that you should work to minimize how long interrupt handlers
run. Processing incoming network traffic should not prevent the kernel’s receipt of key-
strokes.The solution is to defer some of the work until later.

 From the Library of Wow! eBook

ptg

135Bottom Halves

But when is “later?”The important thing to realize is that later is often simply not now.
The point of a bottom half is not to do work at some specific point in the future, but sim-
ply to defer work until any point in the future when the system is less busy and interrupts
are again enabled. Often, bottom halves run immediately after the interrupt returns.The
key is that they run with all interrupts enabled.

Linux is not alone in separating the processing of hardware interrupts into two parts;
most operating systems do so.The top half is quick and simple and runs with some or all
interrupts disabled.The bottom half (however it is implemented) runs later with all inter-
rupts enabled.This design keeps system latency low by running with interrupts disabled
for as little time as necessary.

A World of Bottom Halves
Unlike the top half, which is implemented entirely via the interrupt handler, multiple
mechanisms are available for implementing a bottom half.These mechanisms are different
interfaces and subsystems that enable you to implement bottom halves.Whereas the pre-
vious chapter looked at just a single way of implementing interrupt handlers, this chapter
looks at multiple methods of implementing bottom halves. Over the course of Linux’s
history, there have been many bottom-half mechanisms. Confusingly, some of these
mechanisms have similar or even dumb names. It requires a special type of programmer to
name bottom halves.

This chapter discusses both the design and implementation of the bottom-half mecha-
nisms that exist in 2.6.We also discuss how to use them in the kernel code you write.The
old, but long since removed, bottom-half mechanisms are historically significant, and so
they are mentioned when relevant.

The Original “Bottom Half”
In the beginning, Linux provided only the “bottom half ” for implementing bottom
halves.This name was logical because at the time that was the only means available for
deferring work.The infrastructure was also known as BH, which is what we will call it to
avoid confusion with the generic term bottom half.The BH interface was simple, like most
things in those good old days. It provided a statically created list of 32 bottom halves for
the entire system.The top half could mark whether the bottom half would run by setting
a bit in a 32-bit integer. Each BH was globally synchronized. No two could run at the
same time, even on different processors.This was easy to use, yet inflexible; a simple
approach, yet a bottleneck.

Task Queues
Later on, the kernel developers introduced task queues both as a method of deferring
work and as a replacement for the BH mechanism.The kernel defined a family of queues.
Each queue contained a linked list of functions to call.The queued functions were run at
certain times, depending on which queue they were in. Drivers could register their bot-
tom halves in the appropriate queue.This worked fairly well, but it was still too inflexible

 From the Library of Wow! eBook

ptg

136 Chapter 8 Bottom Halves and Deferring Work

to replace the BH interface entirely. It also was not lightweight enough for performance-
critical subsystems, such as networking.

Softirqs and Tasklets
During the 2.3 development series, the kernel developers introduced softirqs and tasklets.
With the exception of compatibility with existing drivers, softirqs and tasklets could com-
pletely replace the BH interface.1 Softirqs are a set of statically defined bottom halves that
can run simultaneously on any processor; even two of the same type can run concur-
rently.Tasklets, which have an awful and confusing name,2 are flexible, dynamically cre-
ated bottom halves built on top of softirqs.Two different tasklets can run concurrently on
different processors, but two of the same type of tasklet cannot run simultaneously.Thus,
tasklets are a good trade-off between performance and ease of use. For most bottom-half
processing, the tasklet is sufficient. Softirqs are useful when performance is critical, such as
with networking. Using softirqs requires more care, however, because two of the same
softirq can run at the same time. In addition, softirqs must be registered statically at com-
pile time. Conversely, code can dynamically register tasklets.

To further confound the issue, some people refer to all bottom halves as software inter-
rupts or softirqs. In other words, they call both the softirq mechanism and bottom halves
in general softirqs. Ignore those people.They run with the same crowd that named the
BH and tasklet mechanisms.

While developing the 2.5 kernel, the BH interface was finally tossed to the curb
because all BH users were converted to the other bottom-half interfaces.Additionally, the
task queue interface was replaced by the work queue interface.Work queues are a simple
yet useful method of queuing work to later be performed in process context.We get to
them later.

Consequently, today 2.6 has three bottom-half mechanisms in the kernel: softirqs,
tasklets, and work queues.The old BH and task queue interfaces are but mere memories.

Kernel Timers
Another mechanism for deferring work is kernel timers. Unlike the mechanisms discussed in
the chapter thus far, timers defer work for a specified amount of time. That is, although the
tools discussed in this chapter are useful to defer work to any time but now, you use timers
to defer work until at least a specific time has elapsed.

Therefore, timers have different uses than the general mechanisms discussed in this chap-
ter. A full discussion of timers is given in Chapter 11, “Timers and Time Management.”

1 It is nontrivial to convert BHs to softirqs or tasklets because BHs are globally synchronized and, there-

fore, assume that no other BH is running during their execution. The conversion did eventually happen,

however, in 2.5.
2 They have nothing to do with tasks. Think of a tasklet as a simple and easy-to-use softirq.

 From the Library of Wow! eBook

ptg

137Softirqs

Dispelling the Confusion
This is some seriously confusing stuff, but actually it involves just naming issues. Let’s go
over it again.

Bottom half is a generic operating system term referring to the deferred portion of
interrupt processing, so named because it represents the second, or bottom, half of the
interrupt processing solution. In Linux, the term currently has this meaning, too.All the
kernel’s mechanisms for deferring work are “bottom halves.” Some people also confus-
ingly call all bottom halves “softirqs.”

Bottom half also refers to the original deferred work mechanism in Linux.This mech-
anism is also known as a BH, so we call it by that name now and leave the former as a
generic description.The BH mechanism was deprecated a while back and fully removed
in the 2.5 development kernel series.

Currently, three methods exist for deferring work: softirqs, tasklets, and work queues.
Tasklets are built on softirqs and work queues are their own subsystem.Table 8.1 presents
a history of bottom halves.

With this naming confusion settled, let’s look at the individual mechanisms.

Softirqs
The place to start this discussion of the actual bottom half methods is with softirqs.
Softirqs are rarely used directly; tasklets are a much more common form of bottom half.
Nonetheless, because tasklets are built on softirqs, we cover them first.The softirq code
lives in the file kernel/softirq.c in the kernel source tree.

Implementing Softirqs
Softirqs are statically allocated at compile time. Unlike tasklets, you cannot dynamically
register and destroy softirqs. Softirqs are represented by the softirq_action structure,
which is defined in <linux/interrupt.h>:

Table 8.1 Bottom Half Status

Bottom Half Status

BH Removed in 2.5

Task queues Removed in 2.5

Softirq Available since 2.3

Tasklet Available since 2.3

Work queues Available since 2.5

 From the Library of Wow! eBook

ptg

138 Chapter 8 Bottom Halves and Deferring Work

struct softirq_action {

void (*action)(struct softirq_action *);

};

A 32-entry array of this structure is declared in kernel/softirq.c:

static struct softirq_action softirq_vec[NR_SOFTIRQS];

Each registered softirq consumes one entry in the array. Consequently, there are
NR_SOFTIRQS registered softirqs.The number of registered softirqs is statically determined
at compile time and cannot be changed dynamically.The kernel enforces a limit of 32
registered softirqs; in the current kernel, however, only nine exist.3

The Softirq Handler
The prototype of a softirq handler, action, looks like

void softirq_handler(struct softirq_action *)

When the kernel runs a softirq handler, it executes this action function with a pointer
to the corresponding softirq_action structure as its lone argument. For example, if
my_softirq pointed to an entry in the softirq_vec array, the kernel would invoke the
softirq handler function as

my_softirq->action(my_softirq);

It seems a bit odd that the kernel passes the entire structure to the softirq handler.This
trick enables future additions to the structure without requiring a change in every softirq
handler.

A softirq never preempts another softirq.The only event that can preempt a softirq is
an interrupt handler.Another softirq—even the same one—can run on another processor,
however.

Executing Softirqs
A registered softirq must be marked before it will execute.This is called raising the softirq.
Usually, an interrupt handler marks its softirq for execution before returning.Then, at a
suitable time, the softirq runs. Pending softirqs are checked for and executed in the fol-
lowing places:

n In the return from hardware interrupt code path
n In the ksoftirqd kernel thread
n In any code that explicitly checks for and executes pending softirqs, such as the net-

working subsystem

Regardless of the method of invocation, softirq execution occurs in __do_softirq(),
which is invoked by do_softirq().The function is quite simple. If there are pending

3 Most drivers use tasklets or work queues for their bottom half. Tasklets are built off softirqs, as the

next section explains.

 From the Library of Wow! eBook

ptg

139Softirqs

softirqs, __do_softirq() loops over each one, invoking its handler. Let’s look at a simpli-
fied variant of the important part of __do_softirq():

u32 pending;

pending = local_softirq_pending();

if (pending) {

struct softirq_action *h;

/* reset the pending bitmask */

set_softirq_pending(0);

h = softirq_vec;

do {

if (pending & 1)

h->action(h);

h++;

pending >>= 1;

} while (pending);

}

This snippet is the heart of softirq processing. It checks for, and executes, any pending
softirqs. Specifically

1. It sets the pending local variable to the value returned by the
local_softirq_pending() macro.This is a 32-bit mask of pending softirqs—if bit
n is set, the nth softirq is pending.

2. Now that the pending bitmask of softirqs is saved, it clears the actual bitmask.4

3. The pointer h is set to the first entry in the softirq_vec.

4. If the first bit in pending is set, h->action(h) is called.

5. The pointer h is incremented by one so that it now points to the second entry in
the softirq_vec array.

6. The bitmask pending is right-shifted by one.This tosses the first bit away and
moves all other bits one place to the right. Consequently, the second bit is now the
first (and so on).

7. The pointer h now points to the second entry in the array, and the pending bit-
mask now has the second bit as the first. Repeat the previous steps.

4 This actually occurs with local interrupts disabled, but that is omitted in this simplified example. If

interrupts were not disabled, a softirq could have been raised (and thus be pending) in the intervening

time between saving the mask and clearing it. This would result in incorrectly clearing a pending bit.

 From the Library of Wow! eBook

ptg

140 Chapter 8 Bottom Halves and Deferring Work

8. Continue repeating until pending is zero, at which point there are no more pend-
ing softirqs and the work is done. Note, this check is sufficient to ensure h always
points to a valid entry in softirq_vec because pending has at most 32 set bits and
thus this loop executes at most 32 times.

Using Softirqs
Softirqs are reserved for the most timing-critical and important bottom-half processing
on the system. Currently, only two subsystems—networking and block devices—directly
use softirqs.Additionally, kernel timers and tasklets are built on top of softirqs. If you add a
new softirq, you normally want to ask yourself why using a tasklet is insufficient.Tasklets
are dynamically created and are simpler to use because of their weaker locking require-
ments, and they still perform quite well. Nonetheless, for timing-critical applications that
can do their own locking in an efficient way, softirqs might be the correct solution.

Assigning an Index
You declare softirqs statically at compile time via an enum in <linux/interrupt.h>.The
kernel uses this index, which starts at zero, as a relative priority. Softirqs with the lowest
numerical priority execute before those with a higher numerical priority.

Creating a new softirq includes adding a new entry to this enum.When adding a new
softirq, you might not want to simply add your entry to the end of the list, as you would
elsewhere. Instead, you need to insert the new entry depending on the priority you want
to give it. By convention, HI_SOFTIRQ is always the first and RCU_SOFTIRQ is always the
last entry.A new entry likely belongs in between BLOCK_SOFTIRQ and TASKLET_SOFTIRQ.
Table 8.2 contains a list of the existing tasklet types.

Table 8.2 Softirq Types

Tasklet Priority Softirq Description

HI_SOFTIRQ 0 High-priority tasklets

TIMER_SOFTIRQ 1 Timers

NET_TX_SOFTIRQ 2 Send network packets

NET_RX_SOFTIRQ 3 Receive network packets

BLOCK_SOFTIRQ 4 Block devices

TASKLET_SOFTIRQ 5 Normal priority tasklets

SCHED_SOFTIRQ 6 Scheduler

HRTIMER_SOFTIRQ 7 High-resolution timers

RCU_SOFTIRQ 8 RCU locking

 From the Library of Wow! eBook

ptg

141Softirqs

Registering Your Handler
Next, the softirq handler is registered at run-time via open_softirq(), which takes two
parameters: the softirq’s index and its handler function.The networking subsystem, for
example, registers its softirqs like this, in net/core/dev.c:

open_softirq(NET_TX_SOFTIRQ, net_tx_action);

open_softirq(NET_RX_SOFTIRQ, net_rx_action);

The softirq handlers run with interrupts enabled and cannot sleep.While a handler
runs, softirqs on the current processor are disabled.Another processor, however, can exe-
cute other softirqs. If the same softirq is raised again while it is executing, another proces-
sor can run it simultaneously.This means that any shared data—even global data used only
within the softirq handler—needs proper locking (as discussed in the next two chapters).
This is an important point, and it is the reason tasklets are usually preferred. Simply pre-
venting your softirqs from running concurrently is not ideal. If a softirq obtained a lock to
prevent another instance of itself from running simultaneously, there would be no reason
to use a softirq. Consequently, most softirq handlers resort to per-processor data (data
unique to each processor and thus not requiring locking) and other tricks to avoid
explicit locking and provide excellent scalability.

The raison d’être to softirqs is scalability. If you do not need to scale to infinitely many
processors, then use a tasklet.Tasklets are essentially softirqs in which multiple instances of
the same handler cannot run concurrently on multiple processors.

Raising Your Softirq
After a handler is added to the enum list and registered via open_softirq(), it is ready to
run.To mark it pending, so it is run at the next invocation of do_softirq(), call
raise_softirq(). For example, the networking subsystem would call,

raise_softirq(NET_TX_SOFTIRQ);

This raises the NET_TX_SOFTIRQ softirq. Its handler, net_tx_action(), runs the next
time the kernel executes softirqs.This function disables interrupts prior to actually raising
the softirq and then restores them to their previous state. If interrupts are already off, the
function raise_softirq_irqoff() can be used as a small optimization. For example

/*

* interrupts must already be off!

*/

raise_softirq_irqoff(NET_TX_SOFTIRQ);

Softirqs are most often raised from within interrupt handlers. In the case of interrupt
handlers, the interrupt handler performs the basic hardware-related work, raises the
softirq, and then exits.When processing interrupts, the kernel invokes do_softirq().The
softirq then runs and picks up where the interrupt handler left off. In this example, the
“top half ” and “bottom half ” naming should make sense.

 From the Library of Wow! eBook

ptg

142 Chapter 8 Bottom Halves and Deferring Work

Tasklets
Tasklets are a bottom-half mechanism built on top of softirqs.As mentioned, they have
nothing to do with tasks.Tasklets are similar in nature and behavior to softirqs; however,
they have a simpler interface and relaxed locking rules.

As a device driver author, the decision whether to use softirqs versus tasklets is simple:
You almost always want to use tasklets.As we saw in the previous section, you can
(almost) count on one hand the users of softirqs. Softirqs are required only for high-
frequency and highly threaded uses.Tasklets, on the other hand, see much greater use.
Tasklets work just fine for the vast majority of cases and are very easy to use.

Implementing Tasklets
Because tasklets are implemented on top of softirqs, they are softirqs.As discussed, tasklets
are represented by two softirqs: HI_SOFTIRQ and TASKLET_SOFTIRQ.The only difference
in these types is that the HI_SOFTIRQ-based tasklets run prior to the TASKLET_SOFTIRQ-
based tasklets.

The Tasklet Structure
Tasklets are represented by the tasklet_struct structure. Each structure represents a
unique tasklet.The structure is declared in <linux/interrupt.h>:

struct tasklet_struct {

struct tasklet_struct *next; /* next tasklet in the list */

unsigned long state; /* state of the tasklet */

atomic_t count; /* reference counter */

void (*func)(unsigned long); /* tasklet handler function */

unsigned long data; /* argument to the tasklet function */

};

The func member is the tasklet handler (the equivalent of action to a softirq) and
receives data as its sole argument.

The state member is exactly zero, TASKLET_STATE_SCHED, or TASKLET_STATE_RUN.
TASKLET_STATE_SCHED denotes a tasklet that is scheduled to run, and
TASKLET_STATE_RUN denotes a tasklet that is running.As an optimization,
TASKLET_STATE_RUN is used only on multiprocessor machines because a uniprocessor
machine always knows whether the tasklet is running. (It is either the currently executing
code, or not.)

The count field is used as a reference count for the tasklet. If it is nonzero, the tasklet is
disabled and cannot run; if it is zero, the tasklet is enabled and can run if marked pending.

 From the Library of Wow! eBook

ptg

143Tasklets

Scheduling Tasklets
Scheduled tasklets (the equivalent of raised softirqs)5 are stored in two per-processor struc-
tures: tasklet_vec (for regular tasklets) and tasklet_hi_vec (for high-priority tasklets).
Both of these structures are linked lists of tasklet_struct structures. Each
tasklet_struct structure in the list represents a different tasklet.

Tasklets are scheduled via the tasklet_schedule() and tasklet_hi_schedule()
functions, which receive a pointer to the tasklet’s tasklet_struct as their lone argu-
ment. Each function ensures that the provided tasklet is not yet scheduled and then calls
__tasklet_schedule() and __tasklet_hi_schedule() as appropriate.The two func-
tions are similar. (The difference is that one uses TASKLET_SOFTIRQ and one uses
HI_SOFTIRQ.) Writing and using tasklets is covered in the next section. Now, let’s look at
the steps tasklet_schedule() undertakes:

1. Check whether the tasklet’s state is TASKLET_STATE_SCHED. If it is, the tasklet is
already scheduled to run and the function can immediately return.

2. Call __tasklet_schedule().

3. Save the state of the interrupt system, and then disable local interrupts.This ensures
that nothing on this processor will mess with the tasklet code while
tasklet_schedule() is manipulating the tasklets.

4. Add the tasklet to be scheduled to the head of the tasklet_vec or
tasklet_hi_vec linked list, which is unique to each processor in the system.

5. Raise the TASKLET_SOFTIRQ or HI_SOFTIRQ softirq, so do_softirq() executes this
tasklet in the near future.

6. Restore interrupts to their previous state and return.

At the next earliest convenience, do_softirq() is run as discussed in the previous sec-
tion. Because most tasklets and softirqs are marked pending in interrupt handlers,
do_softirq() most likely runs when the last interrupt returns. Because
TASKLET_SOFTIRQ or HI_SOFTIRQ is now raised, do_softirq() executes the associated
handlers.These handlers, tasklet_action() and tasklet_hi_action(), are the heart of
tasklet processing. Let’s look at the steps these handlers perform:

1. Disable local interrupt delivery (there is no need to first save their state because the
code here is always called as a softirq handler and interrupts are always enabled) and
retrieve the tasklet_vec or tasklet_hi_vec list for this processor.

2. Clear the list for this processor by setting it equal to NULL.

5 Yet another example of the confusing naming schemes at work here. Why are softirqs raised but

tasklets scheduled? Who knows? Both terms mean to mark that bottom half pending so that it is exe-

cuted soon.

 From the Library of Wow! eBook

ptg

144 Chapter 8 Bottom Halves and Deferring Work

3. Enable local interrupt delivery.Again, there is no need to restore them to their pre-
vious state because this function knows that they were always originally enabled.

4. Loop over each pending tasklet in the retrieved list.

5. If this is a multiprocessing machine, check whether the tasklet is running on
another processor by checking the TASKLET_STATE_RUN flag. If it is currently run-
ning, do not execute it now and skip to the next pending tasklet. (Recall that only
one tasklet of a given type may run concurrently.)

6. If the tasklet is not currently running, set the TASKLET_STATE_RUN flag, so another
processor will not run it.

7. Check for a zero count value, to ensure that the tasklet is not disabled. If the tasklet
is disabled, skip it and go to the next pending tasklet.

8. We now know that the tasklet is not running elsewhere, is marked as running so it
will not start running elsewhere, and has a zero count value. Run the tasklet handler.

9. After the tasklet runs, clear the TASKLET_STATE_RUN flag in the tasklet’s state field.

10. Repeat for the next pending tasklet, until there are no more scheduled tasklets
waiting to run.

The implementation of tasklets is simple, but rather clever.As you saw, all tasklets are
multiplexed on top of two softirqs, HI_SOFTIRQ and TASKLET_SOFTIRQ.When a tasklet is
scheduled, the kernel raises one of these softirqs.These softirqs, in turn, are handled by
special functions that then run any scheduled tasklets.The special functions ensure that
only one tasklet of a given type runs at the same time. (But other tasklets can run simulta-
neously.) All this complexity is then hidden behind a clean and simple interface.

Using Tasklets
In most cases, tasklets are the preferred mechanism with which to implement your bot-
tom half for a normal hardware device.Tasklets are dynamically created, easy to use, and
quick. Moreover, although their name is mind-numbingly confusing, it grows on you: It
is cute.

Declaring Your Tasklet
You can create tasklets statically or dynamically.What option you choose depends on
whether you have (or want) a direct or indirect reference to the tasklet. If you are going
to statically create the tasklet (and thus have a direct reference to it), use one of two
macros in <linux/interrupt.h>:

DECLARE_TASKLET(name, func, data)

DECLARE_TASKLET_DISABLED(name, func, data);

Both these macros statically create a struct tasklet_struct with the given name.
When the tasklet is scheduled, the given function func is executed and passed the argu-

 From the Library of Wow! eBook

ptg

145Tasklets

ment data.The difference between the two macros is the initial reference count.The first
macro creates the tasklet with a count of zero, and the tasklet is enabled.The second
macro sets count to one, and the tasklet is disabled. Here is an example:

DECLARE_TASKLET(my_tasklet, my_tasklet_handler, dev);

This line is equivalent to

struct tasklet_struct my_tasklet = { NULL, 0, ATOMIC_INIT(0),

my_tasklet_handler, dev };

This creates a tasklet named my_tasklet enabled with tasklet_handler as its han-
dler.The value of dev is passed to the handler when it is executed.

To initialize a tasklet given an indirect reference (a pointer) to a dynamically created
struct tasklet_struct, t, call tasklet_init():

tasklet_init(t, tasklet_handler, dev); /* dynamically as opposed to statically */

Writing Your Tasklet Handler
The tasklet handler must match the correct prototype:

void tasklet_handler(unsigned long data)

As with softirqs, tasklets cannot sleep.This means you cannot use semaphores or other
blocking functions in a tasklet.Tasklets also run with all interrupts enabled, so you must
take precautions (for example, disable interrupts and obtain a lock) if your tasklet shares
data with an interrupt handler. Unlike softirqs, however, two of the same tasklets never
run concurrently—although two different tasklets can run at the same time on two dif-
ferent processors. If your tasklet shares data with another tasklet or softirq, you need to use
proper locking (see Chapter 9,“An Introduction to Kernel Synchronization,” and
Chapter 10,“Kernel Synchronization Methods”).

Scheduling Your Tasklet
To schedule a tasklet for execution, tasklet_schedule() is called and passed a pointer to
the relevant tasklet_struct:

tasklet_schedule(&my_tasklet); /* mark my_tasklet as pending */

After a tasklet is scheduled, it runs once at some time in the near future. If the same
tasklet is scheduled again, before it has had a chance to run, it still runs only once. If it is
already running, for example on another processor, the tasklet is rescheduled and runs
again.As an optimization, a tasklet always runs on the processor that scheduled it—mak-
ing better use of the processor’s cache, you hope.

You can disable a tasklet via a call to tasklet_disable(), which disables the given
tasklet. If the tasklet is currently running, the function will not return until it finishes exe-
cuting.Alternatively, you can use tasklet_disable_nosync(), which disables the given
tasklet but does not wait for the tasklet to complete prior to returning.This is usually not
safe because you cannot assume the tasklet is not still running.A call to

 From the Library of Wow! eBook

ptg

146 Chapter 8 Bottom Halves and Deferring Work

tasklet_enable()enables the tasklet.This function also must be called before a tasklet
created with DECLARE_TASKLET_DISABLED() is usable. For example:

tasklet_disable(&my_tasklet); /* tasklet is now disabled */

/* we can now do stuff knowing that the tasklet cannot run .. */

tasklet_enable(&my_tasklet); /* tasklet is now enabled */

You can remove a tasklet from the pending queue via tasklet_kill().This function
receives a pointer as a lone argument to the tasklet’s tasklet_struct. Removing a
scheduled tasklet from the queue is useful when dealing with a tasklet that often resched-
ules itself.This function first waits for the tasklet to finish executing and then it removes
the tasklet from the queue. Nothing stops some other code from rescheduling the tasklet,
of course.This function must not be used from interrupt context because it sleeps.

ksoftirqd
Softirq (and thus tasklet) processing is aided by a set of per-processor kernel threads.These
kernel threads help in the processing of softirqs when the system is overwhelmed with
softirqs. Because tasklets are implemented using softirqs, the following discussion applies
equally to softirqs and tasklets. For brevity, we will refer mainly to softirqs.

As already described, the kernel processes softirqs in a number of places, most com-
monly on return from handling an interrupt. Softirqs might be raised at high rates (such
as during heavy network traffic). Further, softirq functions can reactivate themselves.That
is, while running, a softirq can raise itself so that it runs again (for example, the network-
ing subsystem’s softirq raises itself).The possibility of a high frequency of softirqs in con-
junction with their capability to remark themselves active can result in user-space
programs being starved of processor time. Not processing the reactivated softirqs in a
timely manner, however, is unacceptable.When softirqs were first designed, this caused a
dilemma that needed fixing, and neither obvious solution was a good one. First, let’s look
at each of the two obvious solutions.

The first solution is simply to keep processing softirqs as they come in and to recheck
and reprocess any pending softirqs before returning.This ensures that the kernel processes
softirqs in a timely manner and, most important, that any reactivated softirqs are also
immediately processed.The problem lies in high load environments, in which many
softirqs occur, that continually reactivate themselves.The kernel might continually service
softirqs without accomplishing much else. User-space is neglected—indeed, nothing but
softirqs and interrupt handlers run and, in turn, the system’s users get mad.This approach
might work fine if the system is never under intense load; if the system experiences mod-
erate interrupt levels, this solution is not acceptable. User-space cannot be starved for sig-
nificant periods.

The second solution is not to handle reactivated softirqs. On return from interrupt, the
kernel merely looks at all pending softirqs and executes them as normal. If any softirqs

 From the Library of Wow! eBook

ptg

147Tasklets

reactivate themselves, however, they will not run until the next time the kernel handles
pending softirqs.This is most likely not until the next interrupt occurs, which can equate
to a lengthy amount of time before any new (or reactivated) softirqs are executed.Worse,
on an otherwise idle system, it is beneficial to process the softirqs right away. Unfortu-
nately, this approach is oblivious to which processes are runnable.Therefore, although this
method prevents starving user-space, it does starve the softirqs and does not take good
advantage of an idle system.

In designing softirqs, the kernel developers realized that some sort of compromise was
needed.The solution ultimately implemented in the kernel is to not immediately process
reactivated softirqs. Instead, if the number of softirqs grows excessive, the kernel wakes up
a family of kernel threads to handle the load.The kernel threads run with the lowest pos-
sible priority (nice value of 19), which ensures they do not run in lieu of anything impor-
tant.This concession prevents heavy softirq activity from completely starving user-space
of processor time. Conversely, it also ensures that “excess” softirqs do run eventually.
Finally, this solution has the added property that on an idle system the softirqs are handled
rather quickly because the kernel threads will schedule immediately.

There is one thread per processor.The threads are each named ksoftirqd/n where n
is the processor number. On a two-processor system, you would have ksoftirqd/0 and
ksoftirqd/1. Having a thread on each processor ensures an idle processor, if available, can
always service softirqs.After the threads are initialized, they run a tight loop similar to this:

for (;;) {

if (!softirq_pending(cpu))

schedule();

set_current_state(TASK_RUNNING);

while (softirq_pending(cpu)) {

do_softirq();

if (need_resched())

schedule();

}

set_current_state(TASK_INTERRUPTIBLE);

}

If any softirqs are pending (as reported by softirq_pending()), ksoftirqd calls
do_softirq() to handle them. Note that it does this repeatedly to handle any reactivated
softirqs, too.After each iteration, schedule() is called if needed, to enable more impor-
tant processes to run.After all processing is complete, the kernel thread sets itself
TASK_INTERRUPTIBLE and invokes the scheduler to select a new runnable process.

The softirq kernel threads are awakened whenever do_softirq() detects an executed
kernel thread reactivating itself.

 From the Library of Wow! eBook

ptg

148 Chapter 8 Bottom Halves and Deferring Work

The Old BH Mechanism
Although the old BH interface, thankfully, is no longer present in 2.6, it was around for a
long time—since the earliest versions of the kernel. Because it had immense staying
power, it certainly carries some historical significance that requires more than a passing
look. Nothing in this brief section actually pertains to 2.6, but the history is important.

The BH interface is ancient, and it showed. Each BH must be statically defined, and
there are a maximum of 32. Because the handlers must all be defined at compile-time,
modules could not directly use the BH interface.They could piggyback off an existing
BH, however. Over time, this static requirement and the maximum of 32 bottom halves
became a major hindrance to their use.

All BH handlers are strictly serialized—no two BH handlers, even of different types,
can run concurrently.This made synchronization easy, but it wasn’t beneficial to multi-
processor scalability. Performance on large SMP machines was sub par.A driver using the
BH interface did not scale well to multiple processors.The networking layer, in particular,
suffered.

Other than these attributes, the BH mechanism is similar to tasklets. In fact, the BH
interface was implemented on top of tasklets in 2.4.The 32 possible bottom halves were
represented by constants defined in <linux/interrupt.h>.To mark a BH as pending, the
function mark_bh() was called and passed the number of the BH. In 2.4, this in turn
scheduled the BH tasklet, bh_action(), to run. Before the 2.4 kernel, the BH mechanism
was independently implemented and did not rely on any lower-level bottom-half mecha-
nism, much as softirqs are implemented today.

Because of the shortcomings of this form of bottom half, kernel developers introduced
task queues to replace bottom halves.Task queues never accomplished this goal, although
they did win many new users. In 2.3, the softirq and tasklet mechanisms were introduced
to put an end to the BH.The BH mechanism was reimplemented on top of tasklets.
Unfortunately, it was complicated to port bottom halves from the BH interface to tasklets
or softirqs because of the weaker inherent serialization of the new interfaces.6 During 2.5,
however, the conversion did occur when timers and SCSI—the remaining BH users—
finally moved over to softirqs.The kernel developers summarily removed the BH inter-
face. Good riddance, BH!

6 That is, the weaker serialization was beneficial to performance but also harder to program. Converting

a BH to a tasklet, for example, required careful thinking: Is this code safe running at the same time as

any other tasklet? When finally converted, however, the performance was worth it.

 From the Library of Wow! eBook

ptg

149Work Queues

Work Queues
Work queues are a different form of deferring work from what we have looked at so far.
Work queues defer work into a kernel thread—this bottom half always runs in process
context.Thus, code deferred to a work queue has all the usual benefits of process context.
Most important, work queues are schedulable and can therefore sleep.

Normally, it is easy to decide between using work queues and softirqs/tasklets. If the
deferred work needs to sleep, work queues are used. If the deferred work need not sleep,
softirqs or tasklets are used. Indeed, the usual alternative to work queues is kernel threads.
Because the kernel developers frown upon creating a new kernel thread (and, in some
locales, it is a punishable offense), work queues are strongly preferred.They are really easy
to use, too.

If you need a schedulable entity to perform your bottom-half processing, you need
work queues.They are the only bottom-half mechanisms that run in process context, and
thus, the only ones that can sleep.This means they are useful for situations in which you
need to allocate a lot of memory, obtain a semaphore, or perform block I/O. If you do
not need a kernel thread to handle your deferred work, consider a tasklet instead.

Implementing Work Queues
In its most basic form, the work queue subsystem is an interface for creating kernel
threads to handle work queued from elsewhere.These kernel threads are called worker
threads.Work queues let your driver create a special worker thread to handle deferred
work.The work queue subsystem, however, implements and provides a default worker
thread for handling work.Therefore, in its most common form, a work queue is a simple
interface for deferring work to a generic kernel thread.

The default worker threads are called events/n where n is the processor number;
there is one per processor. For example, on a uniprocessor system there is one thread,
events/0.A dual processor system would additionally have an events/1 thread.The
default worker thread handles deferred work from multiple locations. Many drivers in the
kernel defer their bottom-half work to the default thread. Unless a driver or subsystem
has a strong requirement for creating its own thread, the default thread is preferred.

Nothing stops code from creating its own worker thread, however.This might be
advantageous if you perform large amounts of processing in the worker thread. Processor-
intense and performance-critical work might benefit from its own thread.This also light-
ens the load on the default threads, which prevents starving the rest of the queued work.

Data Structures Representing the Threads
The worker threads are represented by the workqueue_struct structure:

/*

* The externally visible workqueue abstraction is an array of

* per-CPU workqueues:

*/

 From the Library of Wow! eBook

ptg

150 Chapter 8 Bottom Halves and Deferring Work

struct workqueue_struct {

struct cpu_workqueue_struct cpu_wq[NR_CPUS];

struct list_head list;

const char *name;

int singlethread;

int freezeable;

int rt;

};

This structure, defined in kernel/workqueue.c, contains an array of struct
cpu_workqueue_struct, one per possible processor on the system. Because the worker
threads exist on each processor in the system, there is one of these structures per worker
thread, per processor, on a given machine.The cpu_workqueue_struct is the core data
structure and is also defined in kernel/workqueue.c:

struct cpu_workqueue_struct {

spinlock_t lock; /* lock protecting this structure */

struct list_head worklist; /* list of work */

wait_queue_head_t more_work;

struct work_struct *current_struct;

struct workqueue_struct *wq; /* associated workqueue_struct */

task_t *thread; /* associated thread */

};

Note that each type of worker thread has one workqueue_struct associated to it.
Inside, there is one cpu_workqueue_struct for every thread and, thus, every processor,
because there is one worker thread on each processor.

Data Structures Representing the Work
All worker threads are implemented as normal kernel threads running the
worker_thread()function.After initial setup, this function enters an infinite loop and
goes to sleep.When work is queued, the thread is awakened and processes the work.
When there is no work left to process, it goes back to sleep.

The work is represented by the work_struct structure, defined in
<linux/workqueue.h>:

struct work_struct {

atomic_long_t data;

struct list_head entry;

work_func_t func;

};

These structures are strung into a linked list, one for each type of queue on each
processor. For example, there is one list of deferred work for the generic thread, per
processor.When a worker thread wakes up, it runs any work in its list.As it completes

 From the Library of Wow! eBook

ptg

151Work Queues

work, it removes the corresponding work_struct entries from the linked list.When the
list is empty, it goes back to sleep.

Let’s look at the heart of worker_thread(), simplified:

for (;;) {

prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);

if (list_empty(&cwq->worklist))

schedule();

finish_wait(&cwq->more_work, &wait);

run_workqueue(cwq);

}

This function performs the following functions, in an infinite loop:

1. The thread marks itself sleeping (the task’s state is set to TASK_INTERRUPTIBLE) and
adds itself to a wait queue.

2. If the linked list of work is empty, the thread calls schedule() and goes to sleep.

3. If the list is not empty, the thread does not go to sleep. Instead, it marks itself
TASK_RUNNING and removes itself from the wait queue.

4. If the list is nonempty, the thread calls run_workqueue() to perform the deferred
work.

The function run_workqueue(), in turn, actually performs the deferred work:

while (!list_empty(&cwq->worklist)) {

struct work_struct *work;

work_func_t f;

void *data;

work = list_entry(cwq->worklist.next, struct work_struct, entry);

f = work->func;

list_del_init(cwq->worklist.next);

work_clear_pending(work);

f(work);

}

This function loops over each entry in the linked list of pending work and executes
the func member of the workqueue_struct for each entry in the linked list:

1. While the list is not empty, it grabs the next entry in the list.

2. It retrieves the function that should be called, func, and its argument, data.

3. It removes this entry from the list and clears the pending bit in the structure itself.

 From the Library of Wow! eBook

ptg

152 Chapter 8 Bottom Halves and Deferring Work

4. It invokes the function.

5. Repeat.

Work Queue Implementation Summary
The relationship between the different data structures is admittedly a bit convoluted.
Figure 8.1 provides a graphical example, which should bring it all together.

At the highest level, there are worker threads.There can be multiple types of worker
threads; there is one worker thread per processor of a given type. Parts of the kernel can
create worker threads as needed. By default, there is the events worker thread. Each worker
thread is represented by the cpu_workqueue_struct structure.The workqueue_struct
structure represents all the worker threads of a given type.

For example, assume that in addition to the generic events worker type, you also create
a falcon worker type.Also, assume you have a four-processor computer.Then there are four
events threads (and thus four cpu_workqueue_struct structures) and four falcon threads
(and thus another four cpu_workqueue_struct structures).There is one
workqueue_struct for the events type and one for the falcon type.

Now, let’s approach from the lowest level, which starts with work.Your driver creates
work, which it wants to defer to later.The work_struct structure represents this work.
Among other things, this structure contains a pointer to the function that handles the

cpu_workqueue_struct one per processor

workqueue_struct structure one per type of worker
thread

worker thread

. . .

.
. . .

work_struct
structures
. . .
. . .

one per deferrable
function

Figure 8.1 The relationship between work, work queues, and the
worker threads.

 From the Library of Wow! eBook

ptg

153Work Queues

deferred work.The work is submitted to a specific worker thread—in this case, a specific
falcon thread.The worker thread then wakes up and performs the queued work.

Most drivers use the existing default worker threads, named events.They are easy and
simple. Some more serious situations, however, demand their own worker threads.The
XFS filesystem, for example, creates two new types of worker threads.

Using Work Queues
Using work queues is easy.We cover the default events queue first and then look at creat-
ing new worker threads.

Creating Work
The first step is actually creating some work to defer.To create the structure statically at
runtime, use DECLARE_WORK:

DECLARE_WORK(name, void (*func)(void *), void *data);

This statically creates a work_struct structure named name with handler function
func and argument data.

Alternatively, you can create work at runtime via a pointer:

INIT_WORK(struct work_struct *work, void (*func)(void *), void *data);

This dynamically initializes the work queue pointed to by work with handler function
func and argument data.

Your Work Queue Handler
The prototype for the work queue handler is

void work_handler(void *data)

A worker thread executes this function, and thus, the function runs in process context.
By default, interrupts are enabled and no locks are held. If needed, the function can sleep.
Note that, despite running in process context, the work handlers cannot access user-space
memory because there is no associated user-space memory map for kernel threads.The
kernel can access user memory only when running on behalf of a user-space process, such
as when executing a system call. Only then is user memory mapped in.

Locking between work queues or other parts of the kernel is handled just as with any
other process context code.This makes writing work handlers much easier.The next two
chapters cover locking.

Scheduling Work
Now that the work is created, we can schedule it.To queue a given work’s handler func-
tion with the default events worker threads, simply call

schedule_work(&work);

The work is scheduled immediately and is run as soon as the events worker thread on
the current processor wakes up.

 From the Library of Wow! eBook

ptg

154 Chapter 8 Bottom Halves and Deferring Work

Sometimes you do not want the work to execute immediately, but instead after some
delay. In those cases, you can schedule work to execute at a given time in the future:

schedule_delayed_work(&work, delay);

In this case, the work_struct represented by &work will not execute for at least delay
timer ticks into the future. Using ticks as a unit of time is covered in Chapter 10.

Flushing Work
Queued work is executed when the worker thread next wakes up. Sometimes, you need
to ensure that a given batch of work has completed before continuing.This is especially
important for modules, which almost certainly want to call this function before unload-
ing. Other places in the kernel also might need to make certain no work is pending, to
prevent race conditions.

For these needs, there is a function to flush a given work queue:

void flush_scheduled_work(void);

This function waits until all entries in the queue are executed before returning.While
waiting for any pending work to execute, the function sleeps.Therefore, you can call it
only from process context.

Note that this function does not cancel any delayed work.That is, any work that was
scheduled via schedule_delayed_work(), and whose delay is not yet up, is not flushed
via flush_scheduled_work().To cancel delayed work, call

int cancel_delayed_work(struct work_struct *work);

This function cancels the pending work, if any, associated with the given
work_struct.

Creating New Work Queues
If the default queue is insufficient for your needs, you can create a new work queue and
corresponding worker threads. Because this creates one worker thread per processor, you
should create unique work queues only if your code needs the performance of a unique
set of threads.

You create a new work queue and the associated worker threads via a simple function:

struct workqueue_struct *create_workqueue(const char *name);

The parameter name is used to name the kernel threads. For example, the default events
queue is created via

struct workqueue_struct *keventd_wq;

keventd_wq = create_workqueue(“events”);

This function creates all the worker threads (one for each processor in the system) and
prepares them to handle work.

Creating work is handled in the same manner regardless of the queue type.After the
work is created, the following functions are analogous to schedule_work() and

 From the Library of Wow! eBook

ptg

155Work Queues

schedule_delayed_work(), except that they work on the given work queue and not the
default events queue.

int queue_work(struct workqueue_struct *wq, struct work_struct *work)

int queue_delayed_work(struct workqueue_struct *wq,

struct work_struct *work,

unsigned long delay)

Finally, you can flush a wait queue via a call to the function

flush_workqueue(struct workqueue_struct *wq)

As previously discussed, this function works identically to flush_scheduled_work(),
except that it waits for the given queue to empty before returning.

The Old Task Queue Mechanism
Like the BH interface, which gave way to softirqs and tasklets, the work queue interface
grew out of shortcomings in the task queue interface.The task queue interface (often
called simply tq in the kernel), like tasklets, also has nothing to do with tasks in the
process sense.7 The users of the task queue interface were ripped in half during the 2.5
development kernel. Half of the users were converted to tasklets, whereas the other half
continued using the task queue interface.What was left of the task queue interface then
became the work queue interface. Briefly looking at task queues, which were around for
some time, is a useful historical exercise.

Task queues work by defining a bunch of queues.The queues have names, such as the
scheduler queue, the immediate queue, or the timer queue. Each queue is run at a specific
point in the kernel.A kernel thread, keventd, ran the work associated with the scheduler
queue.This was the precursor to the full work queue interface.The timer queue was run
at each tick of the system timer, and the immediate queue was run in a handful of differ-
ent places to ensure it was run “immediately” (hack!).There were other queues, too.Addi-
tionally, you could dynamically create new queues.

All this might sound useful, but the reality is that the task queue interface was a mess.
All the queues were essentially arbitrary abstractions, scattered about the kernel as if
thrown in the air and kept where they landed.The only meaningful queue was the sched-
uler queue, which provided the only way to defer work to process context.

The other good thing about task queues was the brain-dead simple interface. Despite
the myriad of queues and the arbitrary rules about when they ran, the interface was as
simple as possible. But that’s about it—the rest of task queues needed to go.

7 Bottom-half names are apparently a conspiracy to confuse new kernel developers. Seriously, these

names are awful.

 From the Library of Wow! eBook

ptg

156 Chapter 8 Bottom Halves and Deferring Work

The various task queue users were converted to other bottom-half mechanisms. Most
of them switched to tasklets.The scheduler queue users stuck around. Finally, the keventd
code was generalized into the excellent work queue mechanism we have today, and task
queues were finally ripped out of the kernel.

Which Bottom Half Should I Use?
The decision over which bottom half to use is important. In the current 2.6 kernel, you
have three choices: softirqs, tasklets, and work queues.Tasklets are built on softirqs and,
therefore, both are similar.The work queue mechanism is an entirely different creature
and is built on kernel threads.

Softirqs, by design, provide the least serialization.This requires softirq handlers to go
through extra steps to ensure that shared data is safe because two or more softirqs of the
same type may run concurrently on different processors. If the code in question is already
highly threaded, such as in a networking subsystem that is chest-deep in per-processor
variables, softirqs make a good choice.They are certainly the fastest alternative for timing-
critical and high-frequency uses.

Tasklets make more sense if the code is not finely threaded.They have a simpler inter-
face and, because two tasklets of the same type might not run concurrently, they are easier
to implement.Tasklets are effectively softirqs that do not run concurrently.A driver devel-
oper should always choose tasklets over softirqs, unless prepared to utilize per-processor
variables or similar magic to ensure that the softirq can safely run concurrently on multi-
ple processors.

If your deferred work needs to run in process context, your only choice of the three is
work queues. If process context is not a requirement—specifically, if you have no need to
sleep—softirqs or tasklets are perhaps better suited.Work queues involve the highest over-
head because they involve kernel threads and, therefore, context switching.This is not to
say that they are inefficient, but in light of thousands of interrupts hitting per second (as
the networking subsystem might experience), other methods make more sense. For most
situations, however, work queues are sufficient.

In terms of ease of use, work queues take the crown. Using the default events queue is
child’s play. Next come tasklets, which also have a simple interface. Coming in last are
softirqs, which need to be statically created and require careful thinking with their
implementation.

Table 8.3 is a comparison between the three bottom-half interfaces.

Table 8.3 Bottom Half Comparison

Bottom Half Context Inherent Serialization

Softirq Interrupt None

Tasklet Interrupt Against the same tasklet

Work queues Process None (scheduled as process context)

 From the Library of Wow! eBook

ptg

157Disabling Bottom Halves

In short, normal driver writers have two choices. First, do you need a schedulable
entity to perform your deferred work—fundamentally, do you need to sleep for any rea-
son? Then work queues are your only option. Otherwise, tasklets are preferred. Only if
scalability becomes a concern do you investigate softirqs.

Locking Between the Bottom Halves
We have not discussed locking yet, which is such a fun and expansive topic that we
devote the next two chapters to it. Nonetheless, you need to understand that it is crucial
to protect shared data from concurrent access while using bottom halves, even on a single
processor machine. Remember, a bottom half can run at virtually any moment.You might
want to come back to this section after reading the next two chapters if the concept of
locking is foreign to you.

One of the benefits of tasklets is that they are serialized with respect to themselves:
The same tasklet will not run concurrently, even on two different processors.This means
you do not have to worry about intra-tasklet concurrency issues. Inter-tasklet concur-
rency (that is, when two different tasklets share the same data) requires proper locking.

Because softirqs provide no serialization, (even two instances of the same softirq might
run simultaneously), all shared data needs an appropriate lock.

If process context code and a bottom half share data, you need to disable bottom-half
processing and obtain a lock before accessing the data. Doing both ensures local and SMP
protection and prevents a deadlock.

If interrupt context code and a bottom half share data, you need to disable interrupts
and obtain a lock before accessing the data.This also ensures both local and SMP protec-
tion and prevents a deadlock.

Any shared data in a work queue requires locking, too.The locking issues are no dif-
ferent from normal kernel code because work queues run in process context.

Chapter 9,“An Introduction to Kernel Synchronization,” provides a background on
the issues surrounding concurrency, and Chapter 10 covers the kernel locking primitives.
These chapters cover how to protect data that bottom halves use.

Disabling Bottom Halves
Normally, it is not sufficient to only disable bottom halves. More often, to safely protect
shared data, you need to obtain a lock and disable bottom halves. Such methods, which
you might use in a driver, are covered in Chapter 10. If you are writing core kernel code,
however, you might need to disable just the bottom halves.

To disable all bottom-half processing (specifically, all softirqs and thus all tasklets), call
local_bh_disable().To enable bottom-half processing, call local_bh_enable().Yes,
the function is misnamed; no one bothered to change the name when the BH interface
gave way to softirqs.Table 8.4 is a summary of these functions.

 From the Library of Wow! eBook

ptg

158 Chapter 8 Bottom Halves and Deferring Work

The calls can be nested—only the final call to local_bh_enable() actually enables
bottom halves. For example, the first time local_bh_disable() is called, local softirq
processing is disabled. If local_bh_disable() is called three more times, local processing
remains disabled. Processing is not reenabled until the fourth call to local_bh_enable().

The functions accomplish this by maintaining a per-task counter via the
preempt_count (interestingly, the same counter used by kernel preemption).8 When the
counter reaches zero, bottom-half processing is possible. Because bottom halves were dis-
abled, local_bh_enable() also checks for any pending bottom halves and executes them.

The functions are unique to each supported architecture and are usually written as
complicated macros in <asm/softirq.h>.The following are close C representations for
the curious:

/*

* disable local bottom halves by incrementing the preempt_count

*/

void local_bh_disable(void)

{

struct thread_info *t = current_thread_info();

t->preempt_count += SOFTIRQ_OFFSET;

}

/*

* decrement the preempt_count - this will ‘automatically’ enable

* bottom halves if the count returns to zero

*

* optionally run any bottom halves that are pending

*/

void local_bh_enable(void)

{

8 This counter is used both by the interrupt and bottom-half subsystems. Thus, in Linux, a single per-

task counter represents the atomicity of a task. This has proven useful for work such as debugging

sleeping-while-atomic bugs.

Table 8.4 Bottom Half Control Methods

Method Description

void local_bh_disable() Disables softirq and tasklet processing on the local
processor

void local_bh_enable() Enables softirq and tasklet processing on the local
processor

 From the Library of Wow! eBook

ptg

159Conclusion

struct thread_info *t = current_thread_info();

t->preempt_count -= SOFTIRQ_OFFSET;

/*

* is preempt_count zero and are any bottom halves pending?

* if so, run them

*/

if (unlikely(!t->preempt_count && softirq_pending(smp_processor_id())))

do_softirq();

}

These calls do not disable the execution of work queues. Because work queues run in
process context, there are no issues with asynchronous execution, and thus, there is no
need to disable them. Because softirqs and tasklets can occur asynchronously (say, on
return from handling an interrupt), however, kernel code may need to disable them.With
work queues, on the other hand, protecting shared data is the same as in any process con-
text. Chapters 8 and 9 give the details.

Conclusion
In this chapter, we covered the three mechanisms used to defer work in the Linux kernel:
softirqs, tasklets, and work queues.We went over their design and implementation.We dis-
cussed how to use them in your own code and we insulted their poorly conceived names.
For historical completeness, we also looked at the bottom-half mechanisms that existed in
previous versions of the Linux kernel: BH’s and task queues.

We talked a lot in this chapter about synchronization and concurrency because such
topics apply quite a bit to bottom halves.We even wrapped up the chapter with a discus-
sion on disabling bottom halves for reasons of concurrency protection. It is now time to
dive head first into these topics. Chapter 9 discusses kernel synchronization and concur-
rency in the abstract, providing a foundation for understanding the issues at the heart of
the problem. Chapter 10 discusses the specific interfaces provided by our beloved kernel
to solve these problems.Armed with the next two chapters, the world is your oyster.

 From the Library of Wow! eBook

ptg

9
An Introduction to Kernel

Synchronization

In a shared memory application, developers must ensure that shared resources are pro-
tected from concurrent access.The kernel is no exception. Shared resources require pro-
tection from concurrent access because if multiple threads of execution1 access and
manipulate the data at the same time, the threads may overwrite each other’s changes or
access data while it is in an inconsistent state. Concurrent access of shared data is a recipe
for instability that often proves hard to track down and debug—getting it right at the start
is important.

Properly protecting shared resources can be tough.Years ago, before Linux supported
symmetrical multiprocessing, preventing concurrent access of data was simple. Because
only a single processor was supported, the only way data could be concurrently accessed
was if an interrupt occurred or if kernel code explicitly rescheduled and enabled another
task to run.With earlier kernels, development was simple.

Those halcyon days are over. Symmetrical multiprocessing support was introduced in
the 2.0 kernel and has been continually enhanced ever since. Multiprocessing support
implies that kernel code can simultaneously run on two or more processors. Conse-
quently, without protection, code in the kernel, running on two different processors, can
simultaneously access shared data at exactly the same time.With the introduction of the
2.6 kernel, the Linux kernel is preemptive.This implies that (again, in the absence of pro-
tection) the scheduler can preempt kernel code at virtually any point and reschedule
another task.Today, a number of scenarios enable for concurrency inside the kernel, and
they all require protection.

1 The term threads of execution implies any instance of executing code. This includes, for example, a

task in the kernel, an interrupt handler, a bottom half, or a kernel thread. This chapter may shorten

threads of execution to simply threads. Keep in mind that this term describes any executing code.

 From the Library of Wow! eBook

ptg

162 Chapter 9 An Introduction to Kernel Synchronization

This chapter discusses the issues of concurrency and synchronization in the abstract, as
they exist in any operating system kernel.The next chapter details the specific mecha-
nisms and interfaces that the Linux kernel provides to solve synchronization issues and
prevent race conditions.

Critical Regions and Race Conditions
Code paths that access and manipulate shared data are called critical regions (also called
critical sections). It is usually unsafe for multiple threads of execution to access the same
resource simultaneously.To prevent concurrent access during critical regions, the pro-
grammer must ensure that code executes atomically—that is, operations complete without
interruption as if the entire critical region were one indivisible instruction. It is a bug if it
is possible for two threads of execution to be simultaneously executing within the same
critical region.When this does occur, we call it a race condition, so-named because the
threads raced to get there first. Note how rare a race condition in your code might mani-
fest itself—debugging race conditions is often difficult because they are not easily repro-
ducible. Ensuring that unsafe concurrency is prevented and that race conditions do not
occur is called synchronization.

Why Do We Need Protection?
To best understand the need for synchronization, let’s look at the ubiquity of race condi-
tions. For a first example, let’s consider a real-world case: an ATM (Automated Teller
Machine, called a cash machine, cashpoint, or ABM outside of the United States).

One of the most common functions performed by cash machines is withdrawing
money from an individual’s personal bank account.A person walks up to the machine,
inserts an ATM card, types in a PIN, selects Withdrawal, inputs a pecuniary amount, hits
OK, takes the money, and mails it to me.

After the user has asked for a specific amount of money, the cash machine needs to
ensure that the money actually exists in that user’s account. If the money exists, it then
needs to deduct the withdrawal from the total funds available.The code to implement this
would look something like

int total = get_total_from_account(); /* total funds in account */

int withdrawal = get_withdrawal_amount(); /* amount user asked to withdrawal */

/* check whether the user has enough funds in her account */

if (total < withdrawal) {

error(“You do not have that much money!”)

return -1;

}

/* OK, the user has enough money: deduct the withdrawal amount from her total */

total -= withdrawal;

update_total_funds(total);

 From the Library of Wow! eBook

ptg

163Critical Regions and Race Conditions

/* give the user their money */

spit_out_money(withdrawal);

Now, let’s presume that another deduction in the user’s funds is happening at the same
time. It does not matter how the simultaneous deduction is happening:Assume that the
user’s spouse is initiating another withdrawal at another ATM, a payee is electronically trans-
ferring funds out of the account, or the bank is deducting a fee from the account (as banks
these days are so wont to do).Any of these scenarios fits our example.

Both systems performing the withdrawal would have code similar to what we just
looked at: First check whether the deduction is possible, then compute the new total
funds, and finally execute the physical deduction. Now let’s make up some numbers. Pre-
sume that the first deduction is a withdrawal from an ATM for $100 and that the second
deduction is the bank applying a fee of $10 because the customer walked into the bank.
Assume the customer has a total of $105 in the bank. Obviously, one of these transactions
cannot correctly complete without sending the account into the red.

What you would expect is something like this:The fee transaction happens first.Ten
dollars is less than $105, so 10 is subtracted from 105 to get a new total of 95, and $10 is
pocketed by the bank.Then the ATM withdrawal comes along and fails because $95 is
less than $100.

With race conditions, life can be much more interesting.Assume that the two transac-
tions are initiated at roughly the same time. Both transactions verify that sufficient funds
exist: $105 is more than both $100 and $10, so all is good.Then the withdrawal process
subtracts $100 from $105, yielding $5.The fee transaction then does the same, subtracting
$10 from $105 and getting $95.The withdrawal process then updates the user’s new total
available funds to $5. Now the fee transaction also updates the new total, resulting in $95.
Free money!

Clearly, financial institutions must ensure that this can never happen.They must lock
the account during certain operations, making each transaction atomic with respect to
any other transaction. Such transactions must occur in their entirety, without interrup-
tion, or not occur at all.

The Single Variable
Now, let’s look at a specific computing example. Consider a simple shared resource, a sin-
gle global integer, and a simple critical region, the operation of merely incrementing it:

i++;

This might translate into machine instructions to the computer’s processor that resem-
ble the following:

get the current value of i and copy it into a register

add one to the value stored in the register

write back to memory the new value of i

 From the Library of Wow! eBook

ptg

164 Chapter 9 An Introduction to Kernel Synchronization

Now, assume that there are two threads of execution, both enter this critical region,
and the initial value of i is 7.The desired outcome is then similar to the following (with
each row representing a unit of time):

As expected, 7 incremented twice is 9.A possible outcome, however, is the following:

Thread 1 Thread 2

get i (7) —

increment i (7 -> 8) —

write back i (8) —

— get i (8)

— increment i (8 -> 9)

— write back i (9)

Thread 1 Thread 2

get i (7) get i (7)

increment i (7 -> 8) —

— increment i (7 -> 8)

write back i (8) —

— write back i (8)

Thread 1 Thread 2

increment & store i (7 -> 8) —

— increment & store i (8 -> 9)

Thread 1 Thread 2

— increment & store (7 -> 8)

increment & store (8 -> 9) —

If both threads of execution read the initial value of i before it is incremented, both
threads increment and save the same value.As a result, the variable i contains the value 8
when, in fact, it should now contain 9.This is one of the simplest examples of a critical
region.Thankfully, the solution is equally as simple:We merely need a way to perform
these operations in one indivisible step. Most processors provide an instruction to atomi-
cally read, increment, and write back a single variable. Using this atomic instruction, the
only possible outcome is

Or conversely

 From the Library of Wow! eBook

ptg

165Locking

It would never be possible for the two atomic operations to interleave.The processor
would physically ensure that it was impossible. Using such an instruction would alleviate
the problem.The kernel provides a set of interfaces that implement these atomic instruc-
tions; they are discussed in the next chapter.

Locking
Now, let’s consider a more complicated race condition that requires a more complicated
solution.Assume you have a queue of requests that needs to be serviced. For this exercise,
let’s assume the implementation is a linked list, in which each node represents a request.
Two functions manipulate the queue. One function adds a new request to the tail of the
queue.Another function removes a request from the head of the queue and does some-
thing useful with the request.Various parts of the kernel invoke these two functions; thus,
requests are continually being added, removed, and serviced. Manipulating the request
queues certainly requires multiple instructions. If one thread attempts to read from the
queue while another is in the middle of manipulating it, the reading thread will find the
queue in an inconsistent state. It should be apparent the sort of damage that could occur
if access to the queue could occur concurrently. Often, when the shared resource is a
complex data structure, the result of a race condition is corruption of the data structure.

The previous scenario, at first, might not have a clear solution. How can you prevent
one processor from reading from the queue while another processor is updating it?
Although it is feasible for a particular architecture to implement simple instructions, such
as arithmetic and comparison, atomically it is ludicrous for architectures to provide
instructions to support the indefinitely sized critical regions that would exist in the previ-
ous example.What is needed is a way of making sure that only one thread manipulates
the data structure at a time—a mechanism for preventing access to a resource while
another thread of execution is in the marked region.

A lock provides such a mechanism; it works much like a lock on a door. Imagine the
room beyond the door as the critical region. Inside the room, only one thread of execu-
tion can be present at a given time.When a thread enters the room, it locks the door
behind it.When the thread is finished manipulating the shared data, it leaves the room and
unlocks the door. If another thread reaches the door while it is locked, it must wait for the
thread inside to exit the room and unlock the door before it can enter.Threads hold locks;
locks protect data.

In the previous request queue example, a single lock could have been used to protect
the queue.Whenever there was a new request to add to the queue, the thread would first
obtain the lock.Then it could safely add the request to the queue and ultimately release
the lock.When a thread wanted to remove a request from the queue, it too would obtain
the lock.Then it could read the request and remove it from the queue. Finally, it would
release the lock.Any other access to the queue would similarly need to obtain the lock.
Because the lock can be held by only one thread at a time, only a single thread can
manipulate the queue at a time. If a thread comes along while another thread is already

 From the Library of Wow! eBook

ptg

updating it, the second thread has to wait for the first to release the lock before it can
continue.The lock prevents concurrency and protects the queue from race conditions.

Any code that accesses the queue first needs to obtain the relevant lock. If another
thread of execution comes along, the lock prevents concurrency:

166 Chapter 9 An Introduction to Kernel Synchronization

Notice that locks are advisory and voluntary. Locks are entirely a programming con-
struct that the programmer must take advantage of. Nothing prevents you from writing
code that manipulates the fictional queue without the appropriate lock. Such a practice,
of course, would eventually result in a race condition and corruption.

Locks come in various shapes and sizes—Linux alone implements a handful of differ-
ent locking mechanisms.The most significant difference between the various mechanisms
is the behavior when the lock is unavailable because another thread already holds it—
some lock variants busy wait,2 whereas other locks put the current task to sleep until the
lock becomes available.The next chapter discusses the behavior of the different locks in
Linux and their interfaces.

Astute readers are now screaming.The lock does not solve the problem; it simply
shrinks the critical region down to just the lock and unlock code: probably much smaller,
sure, but still a potential race! Fortunately, locks are implemented using atomic operations
that ensure no race exists.A single instruction can verify whether the key is taken and, if
not, seize it. How this is done is architecture-specific, but almost all processors implement
an atomic test and set instruction that tests the value of an integer and sets it to a new
value only if it is zero.A value of zero means unlocked. On the popular x86 architecture,
locks are implemented using such a similar instruction called compare and exchange.

2 That is, spin in a tight loop, checking the status of the lock over and over, waiting for the lock to

become available.

Thread 1 Thread 2

try to lock the queue try to lock the queue

succeeded: acquired lock failed: waiting...

access queue... waiting...

unlock the queue waiting...

... succeeded: acquired lock

access queue...

unlock the queue

 From the Library of Wow! eBook

ptg

167Locking

Causes of Concurrency
In user-space, the need for synchronization stems from the fact that programs are sched-
uled preemptively at the will of the scheduler. Because a process can be preempted at any
time and another process can be scheduled onto the processor, a process can be involun-
tarily preempted in the middle of accessing a critical region. If the newly scheduled
process then enters the same critical region (say, if the two processes manipulate the same
shared memory or write to the same file descriptor), a race can occur.The same problem
can occur with multiple single-threaded processes sharing files, or within a single program
with signals, because signals can occur asynchronously.This type of concurrency—in
which two things do not actually happen at the same time but interleave with each other
such that they might as well—is called pseudo-concurrency.

If you have a symmetrical multiprocessing machine, two processes can actually be exe-
cuted in a critical region at the exact same time.That is called true concurrency.Although
the causes and semantics of true versus pseudo concurrency are different, they both result
in the same race conditions and require the same sort of protection.

The kernel has similar causes of concurrency:

n Interrupts— An interrupt can occur asynchronously at almost any time, inter-
rupting the currently executing code.

n Softirqs and tasklets— The kernel can raise or schedule a softirq or tasklet at
almost any time, interrupting the currently executing code.

n Kernel preemption— Because the kernel is preemptive, one task in the kernel
can preempt another.

n Sleeping and synchronization with user-space— A task in the kernel can
sleep and thus invoke the scheduler, resulting in the running of a new process.

n Symmetrical multiprocessing— Two or more processors can execute kernel
code at exactly the same time.

Kernel developers need to understand and prepare for these causes of concurrency. It is
a major bug if an interrupt occurs in the middle of code that is manipulating a resource
and the interrupt handler can access the same resource. Similarly, it is a bug if kernel code
is preemptive while it is accessing a shared resource. Likewise, it is a bug if code in the
kernel sleeps while in the middle of a critical section. Finally, two processors should never
simultaneously access the same piece of data.With a clear picture of what data needs pro-
tection, it is not hard to provide the locking to keep the system stable. Rather, the hard
part is identifying these conditions and realizing that to prevent concurrency, you need
some form of protection.

Let us reiterate this point, because it is important. Implementing the actual locking in
your code to protect shared data is not difficult, especially when done early on during the
design phase of development.The tricky part is identifying the actual shared data and the
corresponding critical sections.This is why designing locking into your code from the
get-go, and not as an afterthought, is of paramount importance. It can be difficult to go

 From the Library of Wow! eBook

ptg

168 Chapter 9 An Introduction to Kernel Synchronization

in, ex post, and identify critical regions and retrofit locking into the existing code.The
resulting code is often not pretty, either.The takeaway from this is to always design proper
locking into your code from the beginning.

Code that is safe from concurrent access from an interrupt handler is said to be
interrupt-safe. Code that is safe from concurrency on symmetrical multiprocessing
machines is SMP-safe. Code that is safe from concurrency with kernel preemption is
preempt-safe.3 The actual mechanisms used to provide synchronization and protect against
race conditions in all these cases is covered in the next chapter.

Knowing What to Protect
Identifying what data specifically needs protection is vital. Because any data that can be
accessed concurrently almost assuredly needs protection, it is often easier to identify what
data does not need protection and work from there. Obviously, any data that is local to
one particular thread of execution does not need protection, because only that thread can
access the data. For example, local automatic variables (and dynamically allocated data
structures whose address is stored only on the stack) do not need any sort of locking
because they exist solely on the stack of the executing thread. Likewise, data that is
accessed by only a specific task does not require locking (because a process can execute
on only one processor at a time).

What does need locking? Most global kernel data structures do.A good rule of thumb
is that if another thread of execution can access the data, the data needs some sort of
locking; if anyone else can see it, lock it. Remember to lock data, not code.

CONFIG Options: SMP Versus UP
Because the Linux kernel is configurable at compile time, it makes sense that you can tailor
the kernel specifically for a given machine. Most important, the CONFIG_SMP configure
option controls whether the kernel supports SMP. Many locking issues disappear on
uniprocessor machines; consequently, when CONFIG_SMP is unset, unnecessary code is not
compiled into the kernel image. For example, such configuration enables uniprocessor
machines to forego the overhead of spin locks. The same trick applies to CONFIG_PREEMPT
(the configure option enabling kernel preemption). This was an excellent design decision—
the kernel maintains one clean source base, and the various locking mechanisms are used
as needed. Different combinations of CONFIG_SMP and CONFIG_PREEMPT on different archi-
tectures compile in varying lock support.

In your code, provide appropriate protection for the most pessimistic case, SMP with kernel
preemption, and all scenarios will be covered.

3 You will also see that, barring a few exceptions, being SMP-safe implies being preempt-safe.

 From the Library of Wow! eBook

ptg

169Deadlocks

Whenever you write kernel code, you should ask yourself these questions:

n Is the data global? Can a thread of execution other than the current one access it?
n Is the data shared between process context and interrupt context? Is it shared

between two different interrupt handlers?
n If a process is preempted while accessing this data, can the newly scheduled process

access the same data?
n Can the current process sleep (block) on anything? If it does, in what state does that

leave any shared data?
n What prevents the data from being freed out from under me?
n What happens if this function is called again on another processor?
n Given the proceeding points, how am I going to ensure that my code is safe from

concurrency?

In short, nearly all global and shared data in the kernel requires some form of the
synchronization methods, discussed in the next chapter.

Deadlocks
A deadlock is a condition involving one or more threads of execution and one or more
resources, such that each thread waits for one of the resources, but all the resources are
already held.The threads all wait for each other, but they never make any progress toward
releasing the resources that they already hold.Therefore, none of the threads can con-
tinue, which results in a deadlock.

A good analogy is a four-way traffic stop. If each car at the stop decides to wait for the
other cars before going, no car will ever proceed, and we have a traffic deadlock.

The simplest example of a deadlock is the self-deadlock:4 If a thread of execution
attempts to acquire a lock it already holds, it has to wait for the lock to be released. But
it will never release the lock, because it is busy waiting for the lock, and the result is
deadlock:

acquire lock

acquire lock, again

wait for lock to become available

...

4 Some kernels prevent this type of deadlock by providing recursive locks. These are locks that a single

thread of execution may acquire multiple times. Linux, thankfully, does not provide recursive locks. This

is widely considered a good thing. Although recursive locks might alleviate the self-deadlock problem,

they very readily lead to sloppy locking semantics.

 From the Library of Wow! eBook

ptg

170 Chapter 9 An Introduction to Kernel Synchronization

Similarly, consider n threads and n locks. If each thread holds a lock that the other
thread wants, all threads block while waiting for their respective locks to become avail-
able.The most common example is with two threads and two locks, which is often called
the deadly embrace or the ABBA deadlock:

Each thread is waiting for the other, and neither thread will ever release its original
lock; therefore, neither lock will become available.

Prevention of deadlock scenarios is important.Although it is difficult to prove that code
is free of deadlocks, you can write deadlock-free code.A few simple rules go a long way:

n Implement lock ordering. Nested locks must always be obtained in the same order.
This prevents the deadly embrace deadlock. Document the lock ordering so others
will follow it.

n Prevent starvation.Ask yourself, does this code always finish? If foo does not occur, will
bar wait forever?

n Do not double acquire the same lock.
n Design for simplicity. Complexity in your locking scheme invites deadlocks.

The first point is most important and worth stressing. If two or more locks are
acquired at the same time, they must always be acquired in the same order. Let’s assume
you have the cat, dog, and fox locks that protect data structures of the same name. Now
assume you have a function that needs to work on all three of these data structures simul-
taneously—perhaps to copy data between them.Whatever the case, the data structures
require locking to ensure safe access. If one function acquires the locks in the order cat,
dog, and then fox, then every other function must obtain these locks (or a subset of them)
in this same order. For example, it is a potential deadlock (and hence a bug) to first obtain
the fox lock and then obtain the dog lock because the dog lock must always be acquired
prior to the fox lock. Here is an example in which this would cause a deadlock:

Thread 1 Thread 2

acquire lock A acquire lock B

try to acquire lock B try to acquire lock A

wait for lock B wait for lock A

Thread 1 Thread 2

acquire lock cat acquire lock fox

acquire lock dog try to acquire lock dog

try to acquire lock fox wait for lock dog

wait for lock fox —

 From the Library of Wow! eBook

ptg

171Contention and Scalability

Thread one is waiting for the fox lock, which thread two holds, while thread two is
waiting for the dog lock, which thread one holds. Neither ever releases its lock and hence
both wait forever—bam, deadlock. If the locks were always obtained in the same order, a
deadlock in this manner would not be possible.

Whenever locks are nested within other locks, a specific ordering must be obeyed. It is
good practice to place the ordering in a comment above the lock. Something like the fol-
lowing is a good idea:

/*

* cat_lock – locks access to the cat structure

* always obtain before the dog lock!

*/

The order of unlock does not matter with respect to deadlock, although it is common
practice to release the locks in an order inverse to that in which they were acquired.

Preventing deadlocks is important.The Linux kernel has some basic debugging facili-
ties for detecting deadlock scenarios in a running kernel.These features are discussed in
the next chapter.

Contention and Scalability
The term lock contention, or simply contention, describes a lock currently in use but that
another thread is trying to acquire.A lock that is highly contended often has threads waiting
to acquire it. High contention can occur because a lock is frequently obtained, held for a
long time after it is obtained, or both. Because a lock’s job is to serialize access to a
resource, it comes as no surprise that locks can slow down a system’s performance.A
highly contended lock can become a bottleneck in the system, quickly limiting its per-
formance. Of course, the locks are also required to prevent the system from tearing itself
to shreds, so a solution to high contention must continue to provide the necessary
concurrency protection.

Scalability is a measurement of how well a system can be expanded. In operating sys-
tems, we talk of the scalability with a large number of processes, a large number of
processors, or large amounts of memory.We can discuss scalability in relation to virtually
any component of a computer to which we can attach a quantity. Ideally, doubling the
number of processors should result in a doubling of the system’s processor performance.
This, of course, is never the case.

The scalability of Linux on a large number of processors has increased dramatically in
the time since multiprocessing support was introduced in the 2.0 kernel. In the early days
of Linux multiprocessing support, only one task could execute in the kernel at a time.
During 2.2, this limitation was removed as the locking mechanisms grew more fine-
grained.Through 2.4 and onward, kernel locking became even finer grained.Today, in the
2.6 Linux kernel, kernel locking is very fine-grained and scalability is good.

The granularity of locking is a description of the size or amount of data that a lock
protects.A very coarse lock protects a large amount of data—for example, an entire sub-

 From the Library of Wow! eBook

ptg

172 Chapter 9 An Introduction to Kernel Synchronization

system’s set of data structures. On the other hand, a very fine-grained lock protects a small
amount of data—say, only a single element in a larger structure. In reality, most locks fall
somewhere in between these two extremes, protecting neither an entire subsystem nor an
individual element, but perhaps a single structure or list of structures. Most locks start off
fairly coarse and are made more fine-grained as lock contention proves to be a problem.

One example of evolving to finer-grained locking is the scheduler runqueues, dis-
cussed in Chapter 4,“Process Scheduling.” In 2.4 and prior kernels, the scheduler had a
single runqueue. (Recall that a runqueue is the list of runnable processes.) Early in the 2.6
series, the O(1) scheduler introduced per-processor runqueues, each with a unique lock.
The locking evolved from a single global lock to separate locks for each processor.This
was an important optimization, because the runqueue lock was highly contended on
large machines, essentially serializing the entire scheduling process down to a single
processor executing in the scheduler at a time. Later in the 2.6 series, the CFS Scheduler
improved scalability further.

Generally, this scalability improvement is a good thing because it improves Linux’s per-
formance on larger and more powerful systems. Rampant scalability “improvements” can
lead to a decrease in performance on smaller SMP and UP machines, however, because
smaller machines may not need such fine-grained locking but will nonetheless need to
put up with the increased complexity and overhead. Consider a linked list.An initial
locking scheme would provide a single lock for the entire list. In time, this single lock
might prove to be a scalability bottleneck on large multiprocessor machines that fre-
quently access this linked list. In response, the single lock could be broken up into one
lock per node in the linked list. For each node that you wanted to read or write, you
obtained the node’s unique lock. Now there is only lock contention when multiple
processors are accessing the same exact node.What if there is still lock contention, how-
ever? Do you provide a lock for each element in each node? Each bit of each element?
The answer is no. Even though this fine-grained locking might ensure excellent scalability
on large SMP machines, how does it perform on dual processor machines? The overhead
of all those extra locks is wasted if a dual processor machine does not see significant lock
contention to begin with.

Nonetheless, scalability is an important consideration. Designing your locking from the
beginning to scale well is important. Coarse locking of major resources can easily become
a bottleneck on even small machines.There is a thin line between too-coarse locking and
too-fine locking. Locking that is too coarse results in poor scalability if there is high lock
contention, whereas locking that is too fine results in wasteful overhead if there is little
lock contention. Both scenarios equate to poor performance. Start simple and grow in com-
plexity only as needed. Simplicity is key.

Conclusion
Making your code SMP-safe is not something that can be added as an afterthought.
Proper synchronization—locking that is free of deadlocks, scalable, and clean—requires
design decisions from start through finish.Whenever you write kernel code, whether it is

 From the Library of Wow! eBook

ptg

173Conclusion

a new system call or a rewritten driver, protecting data from concurrent access needs to
be a primary concern.

Provide sufficient protection for every scenario—SMP, kernel preemption, and so
on—and rest assured the data will be safe on any given machine and configuration.The
next chapter discusses just how to do this.

With the fundamentals and the theories of synchronization, concurrency, and locking
behind us, let’s now dive into the actual tools that the Linux kernel provides to ensure
that your code is race- and deadlock-free.

 From the Library of Wow! eBook

ptg

10
Kernel Synchronization

Methods

The previous chapter discussed the sources of and solutions to race conditions.Thank-
fully, the Linux kernel provides a family of synchronization methods.The Linux kernel’s
synchronization methods enable developers to write efficient and race-free code.This
chapter discusses these methods and their interfaces, behavior, and use.

Atomic Operations
We start our discussion of synchronization methods with atomic operations because they
are the foundation on which other synchronization methods are built. Atomic operations
provide instructions that execute atomically—without interruption. Just as the atom was
originally thought to be an indivisible particle, atomic operators are indivisible instruc-
tions. For example, as discussed in the previous chapter, an atomic increment can read and
increment a variable by one in a single indivisible and uninterruptible step. Recall the
simple race in incrementing an integer that we discussed in the previous chapter:

Thread 1 Thread 2

get i (7) get i (7)

increment i (7 -> 8)

— increment i (7 -> 8)

write back i (8) —

— write back i (8)

 From the Library of Wow! eBook

ptg

Or

176 Chapter 10 Kernel Synchronization Methods

The ultimate value, always nine, is correct. It is never possible for the two atomic oper-
ations to occur on the same variable concurrently.Therefore, it is not possible for the in-
crements to race.

The kernel provides two sets of interfaces for atomic operations—one that operates on
integers and another that operates on individual bits.These interfaces are implemented on
every architecture that Linux supports. Most architectures contain instructions that pro-
vide atomic versions of simple arithmetic operations. Other architectures, lacking direct
atomic operations, provide an operation to lock the memory bus for a single operation,
thus guaranteeing that another memory-affecting operation cannot occur simultaneously.

Atomic Integer Operations
The atomic integer methods operate on a special data type, atomic_t.This special type is
used, as opposed to having the functions work directly on the C int type, for several rea-
sons. First, having the atomic functions accept only the atomic_t type ensures that the
atomic operations are used only with these special types. Likewise, it also ensures that the
data types are not passed to any nonatomic functions. Indeed, what good would atomic
operations be if they were not consistently used on the data? Next, the use of atomic_t
ensures the compiler does not (erroneously but cleverly) optimize access to the value—it
is important the atomic operations receive the correct memory address and not an alias.
Finally, use of atomic_t can hide any architecture-specific differences in its implementa-
tion.The atomic_t type is defined in <linux/types.h>:

typedef struct {

volatile int counter;

} atomic_t;

Despite being an integer, and thus 32 bits on all the machines that Linux supports, de-
velopers and their code once had to assume that an atomic_t was no larger than 24 bits
in size.The SPARC port in Linux has an odd implementation of atomic operations:A
lock was embedded in the lower 8 bits of the 32-bit int (it looked like Figure 10.1).The
lock was used to protect concurrent access to the atomic type because the SPARC archi-

Thread 1 Thread 2

get, increment, and store i (7 -> 8) —

— get, increment, and store i (8 -> 9)

Thread 1 Thread 2

— get, increment, and store i (7 -> 8)

get, increment, and store i (8 -> 9) —

With atomic operators, this race does not—indeed, cannot—occur. Instead, the out-
come is always one of the following:

 From the Library of Wow! eBook

ptg

177Atomic Operations

tecture lacks appropriate support at the instruction level. Consequently, only 24 usable
bits were available on SPARC machines.Although code that assumed that the full 32-bit
range existed would work on other machines; it would have failed in strange and subtle
ways on SPARC machines—and that is just rude. Recently, clever hacks have allowed
SPARC to provide a fully usable 32-bit atomic_t, and this limitation is no more.

The declarations needed to use the atomic integer operations are in <asm/atomic.h>.
Some architectures provide additional methods that are unique to that architecture, but all
architectures provide at least a minimum set of operations that are used throughout the
kernel.When you write kernel code, you can ensure that these operations are correctly
implemented on all architectures.

Defining an atomic_t is done in the usual manner. Optionally, you can set it to an ini-
tial value:

atomic_t v; /* define v */

atomic_t u = ATOMIC_INIT(0); /* define u and initialize it to zero */

Operations are all simple:

atomic_set(&v, 4); /* v = 4 (atomically) */

atomic_add(2, &v); /* v = v + 2 = 6 (atomically) */

atomic_inc(&v); /* v = v + 1 = 7 (atomically) */

If you ever need to convert an atomic_t to an int, use atomic_read():

printk(“%d\n”, atomic_read(&v)); /* will print “7” */

A common use of the atomic integer operations is to implement counters. Protecting
a sole counter with a complex locking scheme is overkill, so instead developers use
atomic_inc() and atomic_dec(), which are much lighter in weight.

Another use of the atomic integer operators is atomically performing an operation and
testing the result.A common example is the atomic decrement and test:

int atomic_dec_and_test(atomic_t *v)

This function decrements by one the given atomic value. If the result is zero, it returns
true; otherwise, it returns false.A full listing of the standard atomic integer operations
(those found on all architectures) is in Table 10.1.All the operations implemented on a
specific architecture can be found in <asm/atomic.h>.

signed 24-bit integer

32-bit atomic_t

lock

(bit) 31 7 0

Figure 10.1 Old layout of the 32-bit atomic_t on SPARC.

 From the Library of Wow! eBook

ptg

178 Chapter 10 Kernel Synchronization Methods

Table 10.1 Atomic Integer Methods

Atomic Integer Operation Description

ATOMIC_INIT(int i) At declaration, initialize to i.

int atomic_read(atomic_t *v) Atomically read the integer value
of v.

void atomic_set(atomic_t *v, int i) Atomically set v equal to i.

void atomic_add(int i, atomic_t *v) Atomically add i to v.

void atomic_sub(int i, atomic_t *v) Atomically subtract i from v.

void atomic_inc(atomic_t *v) Atomically add one to v.

void atomic_dec(atomic_t *v) Atomically subtract one from v.

int atomic_sub_and_test(int i, atomic_t *v) Atomically subtract i from v and
return true if the result is zero;
otherwise false.

int atomic_add_negative(int i, atomic_t *v) Atomically add i to v and return
true if the result is negative;
otherwise false.

int atomic_add_return(int i, atomic_t *v) Atomically add i to v and return
the result.

int atomic_sub_return(int i, atomic_t *v) Atomically subtract i from v and
return the result.

int atomic_inc_return(int i, atomic_t *v) Atomically increment v by one and
return the result.

int atomic_dec_return(int i, atomic_t *v) Atomically decrement v by one and
return the result.

int atomic_dec_and_test(atomic_t *v) Atomically decrement v by one and
return true if zero; false otherwise.

int atomic_inc_and_test(atomic_t *v) Atomically increment v by one and
return true if the result is zero;
false otherwise.

 From the Library of Wow! eBook

ptg

179Atomic Operations

The atomic operations are typically implemented as inline functions with inline as-
sembly. In the case where a specific function is inherently atomic, the given function is
usually just a macro. For example, on most architectures, a word-sized read is always
atomic.That is, a read of a single word cannot complete in the middle of a write to that
word.The read always returns the word in a consistent state, either before or after the
write completes, but never in the middle. Consequently, atomic_read() is usually just a
macro returning the integer value of the atomic_t:

/**

* atomic_read - read atomic variable

* @v: pointer of type atomic_t

*

* Atomically reads the value of @v.

*/

static inline int atomic_read(const atomic_t *v)

{

return v->counter;

}

Atomicity Versus Ordering
The preceding discussion on atomic reading begs a discussion on the differences between
atomicity and ordering. As discussed, a word-sized read always occurs atomically. It never in-
terleaves with a write to the same word; the read always returns the word in a consistent
state—perhaps before the write completes, perhaps after, but never during. For example, if
an integer is initially 42 and then set to 365, a read on the integer always returns 42 or 365
and never some commingling of the two values. We call this atomicity.

Your code, however, might have more stringent requirements than this: Perhaps you require
that the read always occurs before the pending write. This type of requirement is not atomic-
ity, but ordering. Atomicity ensures that instructions occur without interruption and that they
complete either in their entirety or not at all. Ordering, on the other hand, ensures that the
desired, relative ordering of two or more instructions—even if they are to occur in separate
threads of execution or even separate processors—is preserved.

The atomic operations discussed in this section guarantee only atomicity. Ordering is en-
forced via barrier operations, which we discuss later in this chapter.

In your code, it is usually preferred to choose atomic operations over more compli-
cated locking mechanisms. On most architectures, one or two atomic operations incur
less overhead and less cache-line thrashing than a more complicated synchronization
method.As with any performance-sensitive code, however, testing multiple approaches is
always smart.

 From the Library of Wow! eBook

ptg

180 Chapter 10 Kernel Synchronization Methods

64-Bit Atomic Operations
With the rising prevalence of 64-bit architectures, it is no surprise that the Linux kernel
developers augmented the 32-bit atomic_t type with a 64-bit variant, atomic64_t. For
portability, the size of atomic_t cannot change between architectures, so atomic_t is 32-
bit even on 64-bit architectures. Instead, the atomic64_t type provides a 64-bit atomic
integer that functions otherwise identical to its 32-bit brother. Usage is exactly the same,
except that the usable range of the integer is 64, rather than 32, bits. Nearly all the classic
32-bit atomic operations are implemented in 64-bit variants; they are prefixed with
atomic64 in lieu of atomic.Table 10.2 is a full listing of the standard operations; some archi-
tectures implement more, but they are not portable.As with atomic_t, the atomic64_t
type is just a simple wrapper around an integer, this type a long:

typedef struct {

volatile long counter;

} atomic64_t;

Table 10.2 Atomic Integer Methods

Atomic Integer Operation Description

ATOMIC64_INIT(long i) At declaration, initialize to i.

long atomic64_read(atomic64_t *v) Atomically read the integer value of v.

void atomic64_set(atomic64_t *v, int i) Atomically set v equal to i.

void atomic64_add(int i, atomic64_t *v) Atomically add i to v.

void atomic64_sub(int i, atomic64_t *v) Atomically subtract i from v.

void atomic64_inc(atomic64_t *v) Atomically add one to v.

void atomic64_dec(atomic64_t *v) Atomically subtract one from v.

int atomic64_sub_and_test(int i, atomic64_t *v) Atomically subtract i from v and
return true if the result is zero;
otherwise false.

int atomic64_add_negative(int i, atomic64_t *v) Atomically add i to v and return true if
the result is negative; otherwise false.

long atomic64_add_return(int i, atomic64_t *v) Atomically add i to v and return the
result.

long atomic64_sub_return(int i, atomic64_t *v) Atomically subtract i from v and
return the result.

long atomic64_inc_return(int i, atomic64_t *v) Atomically increment v by one and
return the result.

long atomic64_dec_return(int i, atomic64_t *v) Atomically decrement v by one and
return the result.

int atomic64_dec_and_test(atomic64_t *v) Atomically decrement v by one and
return true if zero; false otherwise.

int atomic64_inc_and_test(atomic64_t *v) Atomically increment v by one and
return true if the result is zero;
false otherwise.

 From the Library of Wow! eBook

ptg

181Atomic Operations

All 64-bit architectures provide atomic64_t and a family of arithmetic functions to
operate on it. Most 32-bit architectures do not, however, support atomic64_t—x86-32 is
a notable exception. For portability between all Linux’s supported architectures, develop-
ers should use the 32-bit atomic_t type.The 64-bit atomic64_t is reserved for code that
is both architecture-specific and that requires 64-bits.

Atomic Bitwise Operations
In addition to atomic integer operations, the kernel also provides a family of functions
that operate at the bit level. Not surprisingly, they are architecture-specific and defined in
<asm/bitops.h>.

What might be surprising is that the bitwise functions operate on generic memory ad-
dresses.The arguments are a pointer and a bit number. Bit zero is the least significant bit
of the given address. On 32-bit machines, bit 31 is the most significant bit, and bit 32 is
the least significant bit of the following word.There are no limitations on the bit number
supplied; although, most uses of the functions provide a word and, consequently, a bit
number between 0 and 31 on 32-bit machines and 0 and 63 on 64-bit machines.

Because the functions operate on a generic pointer, there is no equivalent of the
atomic integer’s atomic_t type. Instead, you can work with a pointer to whatever data
you want. Consider an example:

unsigned long word = 0;

set_bit(0, &word); /* bit zero is now set (atomically) */

set_bit(1, &word); /* bit one is now set (atomically) */

printk(“%ul\n”, word); /* will print “3” */

clear_bit(1, &word); /* bit one is now unset (atomically) */

change_bit(0, &word); /* bit zero is flipped; now it is unset (atomically) */

/* atomically sets bit zero and returns the previous value (zero) */

if (test_and_set_bit(0, &word)) {

/* never true ... */

}

/* the following is legal; you can mix atomic bit instructions with normal C */

word = 7;

 From the Library of Wow! eBook

ptg

182 Chapter 10 Kernel Synchronization Methods

A listing of the standard atomic bit operations is in Table 10.3.

Conveniently, nonatomic versions of all the bitwise functions are also provided.They
behave identically to their atomic siblings, except they do not guarantee atomicity, and
their names are prefixed with double underscores. For example, the nonatomic form of
test_bit() is __test_bit(). If you do not require atomicity (say, for example, because a
lock already protects your data), these variants of the bitwise functions might be faster.

Table 10.3 Atomic Bitwise Methods

Atomic Bitwise Operation Description

void set_bit(int nr, void *addr) Atomically set the nr-th bit starting
from addr.

void clear_bit(int nr, void *addr) Atomically clear the nr-th bit starting
from addr.

void change_bit(int nr, void *addr) Atomically flip the value of the nr-th
bit starting from addr.

int test_and_set_bit(int nr, void *addr) Atomically set the nr-th bit starting
from addr and return the previous
value.

int test_and_clear_bit(int nr, void *addr) Atomically clear the nr-th bit starting
from addr and return the previous
value.

int test_and_change_bit(int nr, void *addr) Atomically flip the nr-th bit starting
from addr and return the previous
value.

int test_bit(int nr, void *addr) Atomically return the value of the nr-
th bit starting from addr.

 From the Library of Wow! eBook

ptg

183Spin Locks

What the Heck Is a Nonatomic Bit Operation?
On first glance, the concept of a nonatomic bit operation might not make any sense. Only a
single bit is involved; thus, there is no possibility of inconsistency. If one of the operations
succeeds, what else could matter? Sure, ordering might be important, but we are talking
about atomicity here. At the end of the day, if the bit has a value provided by any of the in-
structions, we should be good to go, right?

Let’s jump back to just what atomicity means. Atomicity requires that either instructions
succeed in their entirety, uninterrupted, or instructions fail to execute at all. Therefore, if you
issue two atomic bit operations, you expect two operations to succeed. After both opera-
tions complete, the bit needs to have the value as specified by the second operation. More-
over, however, at some point in time prior to the final operation, the bit needs to hold the
value as specified by the first operation. Put more generally, real atomicity requires that all
intermediate states be correctly realized.

For example, assume you issue two atomic bit operations: Initially set the bit and then clear
the bit. Without atomic operations, the bit might end up cleared, but it might never have
been set. The set operation could occur simultaneously with the clear operation and fail.
The clear operation would succeed, and the bit would emerge cleared as intended. With
atomic operations, however, the set would actually occur—there would be a moment in time
when a read would show the bit as set—and then the clear would execute and the bit would
be zero.

This behavior can be important, especially when ordering comes into play or when dealing
with hardware registers.

The kernel also provides routines to find the first set (or unset) bit starting at a given
address:

int find_first_bit(unsigned long *addr, unsigned int size)

int find_first_zero_bit(unsigned long *addr, unsigned int size)

Both functions take a pointer as their first argument and the number of bits in total to
search as their second.They return the bit number of the first set or first unset bit, respec-
tively. If your code is searching only a word, the routines __ffs() and ffz(), which take a
single parameter of the word in which to search, are optimal.

Unlike the atomic integer operations, code typically has no choice whether to use the
bitwise operations—they are the only portable way to set a specific bit.The only question
is whether to use the atomic or nonatomic variants. If your code is inherently safe from
race conditions, you can use the nonatomic versions, which might be faster depending on
the architecture.

Spin Locks
Although it would be nice if every critical region consisted of code that did nothing more
complicated than incrementing a variable, reality is much crueler. In real life, critical re-
gions can span multiple functions. For example, it is often the case that data must be re-
moved from one structure, formatted and parsed, and added to another structure.This

 From the Library of Wow! eBook

ptg

entire operation must occur atomically; it must not be possible for other code to read
from or write to either structure before the update is completed. Because simple atomic
operations are clearly incapable of providing the needed protection in such a complex sce-
nario, a more general method of synchronization is needed: locks.

The most common lock in the Linux kernel is the spin lock.A spin lock is a lock that
can be held by at most one thread of execution. If a thread of execution attempts to ac-
quire a spin lock while it is already held, which is called contended, the thread busy loops—
spins—waiting for the lock to become available. If the lock is not contended, the thread
can immediately acquire the lock and continue.The spinning prevents more than one
thread of execution from entering the critical region at any one time.The same lock can
be used in multiple locations, so all access to a given data structure, for example, can be
protected and synchronized.

Going back to the door and key analogy from the last chapter, spin locks are akin to
sitting outside the door, waiting for the fellow inside to come out and hand you the key. If
you reach the door and no one is inside, you can grab the key and enter the room. If you
reach the door and someone is currently inside, you must wait outside for the key, effec-
tively checking for its presence repeatedly.When the room is vacated, you can grab the
key and go inside.Thanks to the key (read: spin lock), only one person (read: thread of ex-
ecution) is allowed inside the room (read: critical region) at the same time.

The fact that a contended spin lock causes threads to spin (essentially wasting processor
time) while waiting for the lock to become available is salient.This behavior is the point
of the spin lock. It is not wise to hold a spin lock for a long time.This is the nature of the
spin lock: a lightweight single-holder lock that should be held for short durations.An al-
ternative behavior when the lock is contended is to put the current thread to sleep and
wake it up when it becomes available.Then the processor can go off and execute other
code.This incurs a bit of overhead—most notably the two context switches required to
switch out of and back into the blocking thread, which is certainly a lot more code than
the handful of lines used to implement a spin lock.Therefore, it is wise to hold spin locks
for less than the duration of two context switches. Because most of us have better things
to do than measure context switches, just try to hold the lock for as little time as possible.1

Later in this chapter we discuss semaphores, which provide a lock that makes the waiting
thread sleep, rather than spin, when contended.

Spin Lock Methods
Spin locks are architecture-dependent and implemented in assembly.The architecture-
dependent code is defined in <asm/spinlock.h>.The actual usable interfaces are defined
in <linux/spinlock.h>.The basic use of a spin lock is

DEFINE_SPINLOCK(mr_lock);

184 Chapter 10 Kernel Synchronization Methods

1 This is especially important now that the kernel is preemptive. The duration that locks are held is

equivalent to the scheduling latency of the system.

 From the Library of Wow! eBook

ptg

185Spin Locks

spin_lock(&mr_lock);

/* critical region ... */

spin_unlock(&mr_lock);

The lock can be held simultaneously by at most only one thread of execution. Conse-
quently, only one thread is allowed in the critical region at a time.This provides the
needed protection from concurrency on multiprocessing machines. On uniprocessor ma-
chines, the locks compile away and do not exist; they simply act as markers to disable and
enable kernel preemption. If kernel preempt is turned off, the locks compile away entirely.

Warning: Spin Locks Are Not Recursive!
Unlike spin lock implementations in other operating systems and threading libraries, the
Linux kernel’s spin locks are not recursive. This means that if you attempt to acquire a lock
you already hold, you will spin, waiting for yourself to release the lock. But because you are
busy spinning, you will never release the lock and you will deadlock. Be careful!

Spin locks can be used in interrupt handlers, whereas semaphores cannot be used be-
cause they sleep. If a lock is used in an interrupt handler, you must also disable local inter-
rupts (interrupt requests on the current processor) before obtaining the lock. Otherwise, it
is possible for an interrupt handler to interrupt kernel code while the lock is held and at-
tempt to reacquire the lock.The interrupt handler spins, waiting for the lock to become
available.The lock holder, however, does not run until the interrupt handler completes.
This is an example of the double-acquire deadlock discussed in the previous chapter. Note
that you need to disable interrupts only on the current processor. If an interrupt occurs on
a different processor, and it spins on the same lock, it does not prevent the lock holder
(which is on a different processor) from eventually releasing the lock.

The kernel provides an interface that conveniently disables interrupts and acquires the
lock. Usage is

DEFINE_SPINLOCK(mr_lock);

unsigned long flags;

spin_lock_irqsave(&mr_lock, flags);

/* critical region ... */

spin_unlock_irqrestore(&mr_lock, flags);

The routine spin_lock_irqsave()saves the current state of interrupts, disables them
locally, and then obtains the given lock. Conversely, spin_unlock_irqrestore()unlocks
the given lock and returns interrupts to their previous state.This way, if interrupts were
initially disabled, your code would not erroneously enable them, but instead keep them
disabled. Note that the flags variable is seemingly passed by value.This is because the
lock routines are implemented partially as macros.

On uniprocessor systems, the previous example must still disable interrupts to prevent
an interrupt handler from accessing the shared data, but the lock mechanism is compiled
away.The lock and unlock also disable and enable kernel preemption, respectively.

 From the Library of Wow! eBook

ptg

186 Chapter 10 Kernel Synchronization Methods

What Do I Lock?
It is important that each lock is clearly associated with what it is locking. More important,
you should protect data and not code. Despite the examples in this chapter explaining the
importance of protecting the critical sections, it is the actual data inside that needs protec-
tion and not the code.

Big Fat Rule: Locks that simply wrap code regions are hard to understand and prone to race
conditions. Lock data, not code.

Rather than lock code, always associate your shared data with a specific lock. For example,
“the struct foo is locked by foo_lock.” Whenever you access shared data, make sure it
is safe. Most likely, this means obtaining the appropriate lock before manipulating the data
and releasing the lock when finished.

If you always know before the fact that interrupts are initially enabled, there is no need
to restore their previous state.You can unconditionally enable them on unlock. In those
cases, spin_lock_irq() and spin_unlock_irq() are optimal:

DEFINE_SPINLOCK(mr_lock);

spin_lock_irq(&mr_lock);

/* critical section ... */

spin_unlock_irq(&mr_lock);

As the kernel grows in size and complexity, it is increasingly hard to ensure that
interrupts are always enabled in any given code path in the kernel. Use of
spin_lock_irq()therefore is not recommended. If you do use it, you had better be posi-
tive that interrupts were originally on or people will be upset when they expect interrupts
to be off but find them on!

Debugging Spin Locks
The configure option CONFIG_DEBUG_SPINLOCK enables a handful of debugging checks in
the spin lock code. For example, with this option the spin lock code checks for the use of
uninitialized spin locks and unlocking a lock that is not yet locked. When testing your code,
you should always run with spin lock debugging enabled. For additional debugging of lock
lifecycles, enable CONFIG_DEBUG_LOCK_ALLOC.

Other Spin Lock Methods
You can use the method spin_lock_init() to initialize a dynamically created spin lock
(a spinlock_t that you do not have a direct reference to, just a pointer).

The method spin_trylock() attempts to obtain the given spin lock. If the lock is
contended, rather than spin and wait for the lock to be released, the function immediately
returns zero. If it succeeds in obtaining the lock, it returns nonzero. Similarly,

 From the Library of Wow! eBook

ptg

187Spin Locks

spin_is_locked() returns nonzero if the given lock is currently acquired. Otherwise, it
returns zero. In neither case does spin_is_locked() actually obtain the lock.2

Table 10.4 shows a complete list of the standard spin lock methods.

Spin Locks and Bottom Halves
As discussed in Chapter 8,“Bottom Halves and Deferring Work,” certain locking precau-
tions must be taken when working with bottom halves.The function spin_lock_bh()
obtains the given lock and disables all bottom halves.The function spin_unlock_bh()
performs the inverse.

Because a bottom half might preempt process context code, if data is shared between a
bottom-half process context, you must protect the data in process context with both a
lock and the disabling of bottom halves. Likewise, because an interrupt handler might
preempt a bottom half, if data is shared between an interrupt handler and a bottom half,
you must both obtain the appropriate lock and disable interrupts.

2 Use of these two functions can lead to convoluted code. You should not frequently have to check the

values of spin locks—your code should either always acquire the lock itself or always be called while

the lock is already held. Some legitimate uses do exist, however, so these interfaces are provided.

Table 10.4 Spin Lock Methods

Method Description

spin_lock() Acquires given lock

spin_lock_irq() Disables local interrupts and acquires given lock

spin_lock_irqsave() Saves current state of local interrupts, disables local inter-
rupts, and acquires given lock

spin_unlock() Releases given lock

spin_unlock_irq() Releases given lock and enables local interrupts

spin_unlock_irqrestore() Releases given lock and restores local interrupts to given pre-
vious state

spin_lock_init() Dynamically initializes given spinlock_t

spin_trylock() Tries to acquire given lock; if unavailable, returns nonzero

spin_is_locked() Returns nonzero if the given lock is currently acquired, other-
wise it returns zero

 From the Library of Wow! eBook

ptg

188 Chapter 10 Kernel Synchronization Methods

Recall that two tasklets of the same type do not ever run simultaneously.Thus, there is
no need to protect data used only within a single type of tasklet. If the data is shared be-
tween two different tasklets, however, you must obtain a normal spin lock before access-
ing the data in the bottom half.You do not need to disable bottom halves because a
tasklet never preempts another running tasklet on the same processor.

With softirqs, regardless of whether it is the same softirq type, if data is shared by
softirqs, it must be protected with a lock. Recall that softirqs, even two of the same type,
might run simultaneously on multiple processors in the system.A softirq never preempts
another softirq running on the same processor, however, so disabling bottom halves is
not needed.

Reader-Writer Spin Locks
Sometimes, lock usage can be clearly divided into reader and writer paths. For example,
consider a list that is both updated and searched.When the list is updated (written to), it is
important that no other threads of execution concurrently write to or read from the list.
Writing demands mutual exclusion. On the other hand, when the list is searched (read
from), it is only important that nothing else writes to the list. Multiple concurrent readers
are safe so long as there are no writers.The task list’s access patterns (discussed in Chapter
3,“Process Management”) fit this description. Not surprisingly, a reader-writer spin lock
protects the task list.

When a data structure is neatly split into reader/writer or consumer/producer usage
patterns, it makes sense to use a locking mechanism that provides similar semantics.To
satisfy this use, the Linux kernel provides reader-writer spin locks. Reader-writer spin
locks provide separate reader and writer variants of the lock. One or more readers can
concurrently hold the reader lock.The writer lock, conversely, can be held by at most one
writer with no concurrent readers. Reader/writer locks are sometimes called
shared/exclusive or concurrent/exclusive locks because the lock is available in a shared (for
readers) and an exclusive (for writers) form.

Usage is similar to spin locks.The reader-writer spin lock is initialized via

DEFINE_RWLOCK(mr_rwlock);

Then, in the reader code path:

read_lock(&mr_rwlock);

/* critical section (read only) ... */

read_unlock(&mr_rwlock);

Finally, in the writer code path:

write_lock(&mr_rwlock);

/* critical section (read and write) ... */

write_unlock(&mr_lock);

Normally, the readers and writers are in entirely separate code paths, such as in this
example.

 From the Library of Wow! eBook

ptg

189Reader-Writer Spin Locks

Note that you cannot “upgrade” a read lock to a write lock. For example, consider this
code snippet:

read_lock(&mr_rwlock);

write_lock(&mr_rwlock);

Executing these two functions as shown will deadlock, as the write lock spins, waiting
for all readers to release the shared lock—including yourself. If you ever need to write,
obtain the write lock from the start. If the line between your readers and writers is mud-
dled, it might be an indication that you do not need to use reader-writer locks. In that
case, a normal spin lock is optimal.

It is safe for multiple readers to obtain the same lock. In fact, it is safe for the same
thread to recursively obtain the same read lock.This lends itself to a useful and common
optimization. If you have only readers in interrupt handlers but no writers, you can mix
the use of the “interrupt disabling” locks.You can use read_lock() instead of
read_lock_irqsave() for reader protection.You still need to disable interrupts for write
access, à la write_lock_irqsave(), otherwise a reader in an interrupt could deadlock
on the held write lock. See Table 10.5 for a full listing of the reader-writer spin lock
methods.

Table 10.5 Reader-Writer Spin Lock Methods

Method Description

read_lock() Acquires given lock for reading

read_lock_irq() Disables local interrupts and acquires given lock for reading

read_lock_irqsave() Saves the current state of local interrupts, disables local in-
terrupts, and acquires the given lock for reading

read_unlock() Releases given lock for reading

read_unlock_irq() Releases given lock and enables local interrupts

read_unlock_ irqrestore() Releases given lock and restores local interrupts to the
given previous state

write_lock() Acquires given lock for writing

write_lock_irq() Disables local interrupts and acquires the given lock for
writing

write_lock_irqsave() Saves current state of local interrupts, disables local inter-
rupts, and acquires the given lock for writing

write_unlock() Releases given lock

write_unlock_irq() Releases given lock and enables local interrupts

 From the Library of Wow! eBook

ptg

190 Chapter 10 Kernel Synchronization Methods

A final important consideration in using the Linux reader-writer spin locks is that they
favor readers over writers. If the read lock is held and a writer is waiting for exclusive ac-
cess, readers that attempt to acquire the lock continue to succeed.The spinning writer
does not acquire the lock until all readers release the lock.Therefore, a sufficient number
of readers can starve pending writers.This is important to keep in mind when designing
your locking. Sometimes this behavior is beneficial; sometimes it is catastrophic.

Spin locks provide a quick and simple lock.The spinning behavior is optimal for short
hold times and code that cannot sleep (interrupt handlers, for example). In cases where
the sleep time might be long or you potentially need to sleep while holding the lock, the
semaphore is a solution.

Semaphores
Semaphores in Linux are sleeping locks.When a task attempts to acquire a semaphore
that is unavailable, the semaphore places the task onto a wait queue and puts the task to
sleep.The processor is then free to execute other code.When the semaphore becomes
available, one of the tasks on the wait queue is awakened so that it can then acquire the
semaphore.

Let’s jump back to the door and key analogy.When a person reaches the door, he can
grab the key and enter the room.The big difference lies in what happens when another
dude reaches the door and the key is not available. In this case, instead of spinning, the fel-
low puts his name on a list and takes a number.When the person inside the room leaves,
he checks the list at the door. If anyone’s name is on the list, he goes over to the first
name and gives him a playful jab in the chest, waking him up and allowing him to enter
the room. In this manner, the key (read: semaphore) continues to ensure that there is only
one person (read: thread of execution) inside the room (read: critical region) at one time.
This provides better processor utilization than spin locks because there is no time spent
busy looping, but semaphores have much greater overhead than spin locks. Life is always a
trade-off.

You can draw some interesting conclusions from the sleeping behavior of semaphores:

n Because the contending tasks sleep while waiting for the lock to become available,
semaphores are well suited to locks that are held for a long time.

Table 10.5 Reader-Writer Spin Lock Methods

Method Description

write_unlock_irqrestore() Releases given lock and restores local interrupts to given
previous state

write_trylock() Tries to acquire given lock for writing; if unavailable, returns
nonzero

rwlock_init() Initializes given rwlock_t

(continued)

 From the Library of Wow! eBook

ptg

191Semaphores

n Conversely, semaphores are not optimal for locks that are held for short periods be-
cause the overhead of sleeping, maintaining the wait queue, and waking back up
can easily outweigh the total lock hold time.

n Because a thread of execution sleeps on lock contention, semaphores must be ob-
tained only in process context because interrupt context is not schedulable.

n You can (although you might not want to) sleep while holding a semaphore be-
cause you will not deadlock when another process acquires the same semaphore. (It
will just go to sleep and eventually let you continue.)

n You cannot hold a spin lock while you acquire a semaphore, because you might
have to sleep while waiting for the semaphore, and you cannot sleep while holding
a spin lock.

These facts highlight the uses of semaphores versus spin locks. In most uses of sema-
phores, there is little choice as to what lock to use. If your code needs to sleep, which is
often the case when synchronizing with user-space, semaphores are the sole solution. It is
often easier, if not necessary, to use semaphores because they allow you the flexibility of
sleeping.When you do have a choice, the decision between semaphore and spin lock
should be based on lock hold time. Ideally, all your locks should be held as briefly as pos-
sible.With semaphores, however, longer lock hold times are more acceptable.Additionally,
unlike spin locks, semaphores do not disable kernel preemption and, consequently, code
holding a semaphore can be preempted.This means semaphores do not adversely affect
scheduling latency.

Counting and Binary Semaphores
A final useful feature of semaphores is that they can allow for an arbitrary number of si-
multaneous lock holders.Whereas spin locks permit at most one task to hold the lock at a
time, the number of permissible simultaneous holders of semaphores can be set at declara-
tion time.This value is called the usage count or simply the count.The most common value
is to allow, like spin locks, only one lock holder at a time. In this case, the count is equal
to one, and the semaphore is called either a binary semaphore (because it is either held by
one task or not held at all) or a mutex (because it enforces mutual exclusion).Alterna-
tively, the count can be initialized to a nonzero value greater than one. In this case, the
semaphore is called a counting semaphore, and it enables at most count holders of the lock at
a time. Counting semaphores are not used to enforce mutual exclusion because they en-
able multiple threads of execution in the critical region at once. Instead, they are used to
enforce limits in certain code.They are not used much in the kernel. If you use a sema-
phore, you almost assuredly want to use a mutex (a semaphore with a count of one).

 From the Library of Wow! eBook

ptg

192 Chapter 10 Kernel Synchronization Methods

Semaphores were formalized by Edsger Wybe Dijkstra3 in 1968 as a generalized lock-
ing mechanism.A semaphore supports two atomic operations, P() and V(), named after
the Dutch word Proberen, to test (literally, to probe), and the Dutch word Verhogen, to in-
crement. Later systems called these methods down() and up(), respectively, and so does
Linux.The down() method is used to acquire a semaphore by decrementing the count by
one. If the new count is zero or greater, the lock is acquired and the task can enter the
critical region. If the count is negative, the task is placed on a wait queue, and the proces-
sor moves on to something else.These names are used as verbs:You down a semaphore to
acquire it.The up() method is used to release a semaphore upon completion of a critical
region.This is called upping the semaphore.The method increments the count value; if the
semaphore’s wait queue is not empty, one of the waiting tasks is awakened and allowed to
acquire the semaphore.

Creating and Initializing Semaphores
The semaphore implementation is architecture-dependent and defined in
<asm/semaphore.h>.The struct semaphore type represents semaphores. Statically de-
clared semaphores are created via the following, where name is the variable’s name and
count is the usage count of the semaphore:

struct semaphore name;

sema_init(&name, count);

As a shortcut to create the more common mutex, use the following, where, again, name
is the variable name of the binary semaphore:

static DECLARE_MUTEX(name);

More frequently, semaphores are created dynamically, often as part of a larger structure.
In this case, to initialize a dynamically created semaphore to which you have only an indi-
rect pointer reference, just call sema_init(), where sem is a pointer and count is the us-
age count of the semaphore:

sema_init(sem, count);

Similarly, to initialize a dynamically created mutex, you can use

init_MUTEX(sem);

3 Dr. Dijkstra (1930–2002) is one of the most accomplished computer scientists in the (admittedly

brief) history of computer scientists. His numerous contributions include work in OS design, algorithm

theory, and the concept of semaphores. He was born in Rotterdam, The Netherlands, and taught at the

University of Texas for 15 years. He would probably not be happy with the large number of GOTO state-

ments in the Linux kernel, however.

 From the Library of Wow! eBook

ptg

193Semaphores

I do not know why the “mutex” in init_MUTEX() is capitalized or why the “init”
comes first here but second in sema_init(). I suspect that after you read Chapter 8, the
inconsistency is not surprising.

Using Semaphores
The function down_interruptible() attempts to acquire the given semaphore. If the
semaphore is unavailable, it places the calling process to sleep in the TASK_INTERRUPTIBLE
state. Recall from Chapter 3 that this process state implies that a task can be awakened
with a signal, which is generally a good thing. If the task receives a signal while waiting
for the semaphore, it is awakened and down_interruptible() returns -EINTR.Alterna-
tively, the function down() places the task in the TASK_UNINTERRUPTIBLE state when it
sleeps.You most likely do not want this because the process waiting for the semaphore
does not respond to signals.Therefore, use of down_interruptible() is much more
common (and correct) than down().Yes, again, the naming is not ideal.

You can use down_trylock() to try to acquire the given semaphore without blocking.
If the semaphore is already held, the function immediately returns nonzero. Otherwise, it
returns zero and you successfully hold the lock.

To release a given semaphore, call up(). Consider an example:

/* define and declare a semaphore, named mr_sem, with a count of one */

static DECLARE_MUTEX(mr_sem);

/* attempt to acquire the semaphore ... */

if (down_interruptible(&mr_sem)) {

/* signal received, semaphore not acquired ... */

}

/* critical region ... */

/* release the given semaphore */

up(&mr_sem);

A complete listing of the semaphore methods is in Table 10.6.

Table 10.6 Semaphore Methods

Method Description

sema_init(struct semaphore *, int) Initializes the dynamically created semaphore
to the given count

init_MUTEX(struct semaphore *) Initializes the dynamically created semaphore
with a count of one

init_MUTEX_LOCKED(struct semaphore *) Initializes the dynamically created semaphore
with a count of zero (so it is initially locked)

 From the Library of Wow! eBook

ptg

194 Chapter 10 Kernel Synchronization Methods

Reader-Writer Semaphores
Semaphores, like spin locks, also come in a reader-writer flavor.The situations where
reader-writer semaphores are preferred over standard semaphores are the same as with
reader-writer spin locks versus standard spin locks.

Reader-writer semaphores are represented by the struct rw_semaphore type, which
is declared in <linux/rwsem.h>. Statically declared reader-writer semaphores are created
via the following, where name is the declared name of the new semaphore:

static DECLARE_RWSEM(name);

Reader-writer semaphores created dynamically are initialized via

init_rwsem(struct rw_semaphore *sem)

All reader-writer semaphores are mutexes—that is, their usage count is one—although
they enforce mutual exclusion only for writers, not readers.Any number of readers can
concurrently hold the read lock, so long as there are no writers. Conversely, only a sole
writer (with no readers) can acquire the write variant of the lock.All reader-writer locks
use uninterruptible sleep, so there is only one version of each down(). For example:

static DECLARE_RWSEM(mr_rwsem);

/* attempt to acquire the semaphore for reading ... */

down_read(&mr_rwsem);

/* critical region (read only) ... */

/* release the semaphore */

up_read(&mr_rwsem);

Table 10.6 Semaphore Methods

Method Description

down_interruptible (struct semaphore *) Tries to acquire the given semaphore and
enter interruptible sleep if it is contended

down(struct semaphore *) Tries to acquire the given semaphore and
enter uninterruptible sleep if it is contended

down_trylock(struct semaphore *) Tries to acquire the given semaphore and
immediately return nonzero if it is contended

up(struct semaphore *) Releases the given semaphore and wakes a
waiting task, if any

(continued)

 From the Library of Wow! eBook

ptg

195Mutexes

/* ... */

/* attempt to acquire the semaphore for writing ... */

down_write(&mr_rwsem);

/* critical region (read and write) ... */

/* release the semaphore */

up_write(&mr_sem);

As with semaphores, implementations of down_read_trylock() and
down_write_trylock() are provided. Each has one parameter: a pointer to a reader-
writer semaphore.They both return nonzero if the lock is successfully acquired and zero
if it is currently contended. Be careful: For admittedly no good reason, this is the opposite
of normal semaphore behavior!

Reader-writer semaphores have a unique method that their reader-writer spin lock
cousins do not have: downgrade_write().This function atomically converts an acquired
write lock to a read lock.

Reader-writer semaphores, as spin locks of the same nature, should not be used unless
a clear separation exists between write paths and read paths in your code. Supporting the
reader-writer mechanisms has a cost, and it is worthwhile only if your code naturally
splits along a reader/writer boundary.

Mutexes
Until recently, the only sleeping lock in the kernel was the semaphore. Most users of sem-
aphores instantiated a semaphore with a count of one and treated them as a mutual exclusion
lock—a sleeping version of the spin lock. Unfortunately, semaphores are rather generic
and do not impose many usage constraints.This makes them useful for managing exclu-
sive access in obscure situations, such as complicated dances between the kernel and user-
space. But it also means that simpler locking is harder to do, and the lack of enforced rules
makes any sort of automated debugging or constraint enforcement impossible. Seeking a
simpler sleeping lock, the kernel developers introduced the mutex.Yes, as you are now ac-
customed to, that is a confusing name. Let’s clarify.The term “mutex” is a generic name to
refer to any sleeping lock that enforces mutual exclusion, such as a semaphore with a us-
age count of one. In recent Linux kernels, the proper noun “mutex” is now also a specific
type of sleeping lock that implements mutual exclusion.That is, a mutex is a mutex.

The mutex is represented by struct mutex. It behaves similar to a semaphore with a
count of one, but it has a simpler interface, more efficient performance, and additional
constraints on its use.To statically define a mutex, you do:

DEFINE_MUTEX(name);

To dynamically initialize a mutex, you call

mutex_init(&mutex);

 From the Library of Wow! eBook

ptg

196 Chapter 10 Kernel Synchronization Methods

Locking and unlocking the mutex is easy:

mutex_lock(&mutex);

/* critical region ... */

mutex_unlock(&mutex);

That is it! Simpler than a semaphore and without the need to manage usage counts.
Table 10.7 is a listing of the basic mutex methods.

The simplicity and efficiency of the mutex comes from the additional constraints it
imposes on its users over and above what the semaphore requires. Unlike a semaphore,
which implements the most basic of behavior in accordance with Dijkstra’s original de-
sign, the mutex has a stricter, narrower use case:

n Only one task can hold the mutex at a time.That is, the usage count on a mutex is
always one.

n Whoever locked a mutex must unlock it.That is, you cannot lock a mutex in one
context and then unlock it in another.This means that the mutex isn’t suitable for
more complicated synchronizations between kernel and user-space. Most use cases,
however, cleanly lock and unlock from the same context.

n Recursive locks and unlocks are not allowed.That is, you cannot recursively acquire
the same mutex, and you cannot unlock an unlocked mutex.

n A process cannot exit while holding a mutex.
n A mutex cannot be acquired by an interrupt handler or bottom half, even with
mutex_trylock().

n A mutex can be managed only via the official API: It must be initialized via the meth-
ods described in this section and cannot be copied, hand initialized, or reinitialized.

Perhaps the most useful aspect of the new struct mutex is that, via a special debugging
mode, the kernel can programmatically check for and warn about violations of these
constraints.When the kernel configuration option CONFIG_DEBUG_MUTEXES is enabled, a

Table 10.7 Mutex Methods

Method Description

mutex_lock(struct mutex *) Locks the given mutex; sleeps if the lock is
unavailable

mutex_unlock(struct mutex *) Unlocks the given mutex

mutex_trylock(struct mutex *) Tries to acquire the given mutex; returns one if suc-
cessful and the lock is acquired and zero otherwise

mutex_is_locked (struct mutex *) Returns one if the lock is locked and zero otherwise

 From the Library of Wow! eBook

ptg

197Completion Variables

multitude of debugging checks ensure that these (and other) constraints are always
upheld.This enables you and other users of the mutex to guarantee a regimented, simple
usage pattern.

Semaphores Versus Mutexes
Mutexes and semaphores are similar. Having both in the kernel is confusing.Thankfully,
the formula dictating which to use is quite simple: Unless one of mutex’s additional con-
straints prevent you from using them, prefer the new mutex type to semaphores.When
writing new code, only specific, often low-level, uses need a semaphore. Start with a mu-
tex and move to a semaphore only if you run into one of their constraints and have no
other alternative.

Spin Locks Versus Mutexes
Knowing when to use a spin lock versus a mutex (or semaphore) is important to writing
optimal code. In many cases, however, there is little choice. Only a spin lock can be used
in interrupt context, whereas only a mutex can be held while a task sleeps.Table 10.8 re-
views the requirements that dictate which lock to use.

Completion Variables
Using completion variables is an easy way to synchronize between two tasks in the kernel
when one task needs to signal to the other that an event has occurred. One task waits on
the completion variable while another task performs some work.When the other task has
completed the work, it uses the completion variable to wake up any waiting tasks. If you
think this sounds like a semaphore, you are right—the idea is much the same. In fact,
completion variables merely provide a simple solution to a problem whose answer is oth-
erwise semaphores. For example, the vfork() system call uses completion variables to
wake up the parent process when the child process execs or exits.

Completion variables are represented by the struct completion type, which is de-
fined in <linux/completion.h>.A statically created completion variable is created and
initialized via

DECLARE_COMPLETION(mr_comp);

Table 10.8 What to Use: Spin Locks Versus Semaphores

Requirement Recommended Lock

Low overhead locking Spin lock is preferred.

Short lock hold time Spin lock is preferred.

Long lock hold time Mutex is preferred.

Need to lock from interrupt context Spin lock is required.

Need to sleep while holding lock Mutex is required.

 From the Library of Wow! eBook

ptg

198 Chapter 10 Kernel Synchronization Methods

A dynamically created completion variable is initialized via init_completion().
On a given completion variable, the tasks that want to wait call

wait_for_completion().After the event has occurred, calling complete() signals all
waiting tasks to wake up.Table 10.9 has a listing of the completion variable methods.

For sample usages of completion variables, see kernel/sched.c and kernel/fork.c.
A common usage is to have a completion variable dynamically created as a member of a
data structure. Kernel code waiting for the initialization of the data structure calls
wait_for_completion().When the initialization is complete, the waiting tasks are awak-
ened via a call to completion().

BKL: The Big Kernel Lock
Welcome to the redheaded stepchild of the kernel.The Big Kernel Lock (BKL) is a
global spin lock that was created to ease the transition from Linux’s original SMP imple-
mentation to fine-grained locking.The BKL has some interesting properties:

n You can sleep while holding the BKL.The lock is automatically dropped when the
task is unscheduled and reacquired when the task is rescheduled. Of course, this
does not mean it is always safe to sleep while holding the BKL, merely that you can
and you will not deadlock.

n The BKL is a recursive lock.A single process can acquire the lock multiple times
and not deadlock, as it would with a spin lock.

n You can use the BKL only in process context. Unlike spin locks, you cannot ac-
quire the BKL in interrupt context.

n New users of the BKL are forbidden.With every kernel release, fewer and fewer
drivers and subsystems rely on the BKL.

These features helped ease the transition from kernel version 2.0 to 2.2.When SMP
support was introduced in kernel version 2.0, only one task could be in the kernel at a
time. Of course, now the kernel is quite finely threaded, we have come a long way.A goal
of 2.2 was to allow multiple processors to execute in the kernel concurrently.The BKL

Table 10.9 Completion Variable Methods

Method Description

init_completion(struct completion *) Initializes the given dynamically created
completion variable

wait_for_completion(struct completion *) Waits for the given completion variable
to be signaled

complete(struct completion *) Signals any waiting tasks to wake up

 From the Library of Wow! eBook

ptg

199BKL: The Big Kernel Lock

was introduced to help ease the transition to finer-grained locking. It was a great aid
then; now it is a scalability burden.

Use of the BKL is discouraged. In fact, new code should never introduce locking that
uses the BKL.The lock is still fairly well used in parts of the kernel, however.Therefore,
understanding the BKL and its interfaces is important.The BKL behaves like a spin lock,
with the additions previously discussed.The function lock_kernel() acquires the lock
and the function unlock_kernel() releases the lock.A single thread of execution might
acquire the lock recursively but must then call unlock_kernel() an equal number of
times to release the lock. On the last unlock call, the lock will be released.The function
kernel_locked() returns nonzero if the lock is currently held; otherwise, it returns zero.
These interfaces are declared in <linux/smp_lock.h>. Here is sample usage:

lock_kernel();

/*

* Critical section, synchronized against all other BKL users...

* Note, you can safely sleep here and the lock will be transparently

* released. When you reschedule, the lock will be transparently

* reacquired. This implies you will not deadlock, but you still do

* not want to sleep if you need the lock to protect data here!

*/

unlock_kernel();

The BKL also disables kernel preemption while it is held. On UP kernels, the BKL
code does not actually perform any physical locking.Table 10.10 has a complete list of
the BKL functions.

One of the major issues concerning the BKL is determining what the lock is protect-
ing.Too often, the BKL is seemingly associated with code (for example,“it synchronizes
callers to foo()”) instead of data (“it protects the foo structure”).This makes replacing
BKL uses with a spin lock difficult because it is not easy to determine just what is being
locked.The replacement is made even harder in that the relationship between all BKL
users needs to be determined.

Table 10.10 BKL Methods

Function Description

lock_kernel () Acquires the BKL.

unlock_ kernel() Releases the BKL.

kernel_ locked() Returns nonzero if the lock is held and zero otherwise. (UP always
returns nonzero.)

 From the Library of Wow! eBook

ptg

200 Chapter 10 Kernel Synchronization Methods

Sequential Locks
The sequential lock, generally shortened to seq lock, is a newer type of lock introduced in
the 2.6 kernel. It provides a simple mechanism for reading and writing shared data. It
works by maintaining a sequence counter.Whenever the data in question is written to, a
lock is obtained and a sequence number is incremented. Prior to and after reading the
data, the sequence number is read. If the values are the same, a write did not begin in the
middle of the read. Further, if the values are even, a write is not underway. (Grabbing the
write lock makes the value odd, whereas releasing it makes it even because the lock starts
at zero.)

To define a seq lock:

seqlock_t mr_seq_lock = DEFINE_SEQLOCK(mr_seq_lock);

The write path is then

write_seqlock(&mr_seq_lock);

/* write lock is obtained... */

write_sequnlock(&mr_seq_lock);

This looks like normal spin lock code.The oddness comes in with the read path,
which is quite a bit different:

unsigned long seq;

do {

seq = read_seqbegin(&mr_seq_lock);

/* read data here ... */

} while (read_seqretry(&mr_seq_lock, seq));

Seq locks are useful to provide a lightweight and scalable lock for use with many read-
ers and a few writers. Seq locks, however, favor writers over readers.An acquisition of the
write lock always succeeds as long as there are no other writers. Readers do not affect the
write lock, as is the case with reader-writer spin locks and semaphores. Furthermore,
pending writers continually cause the read loop (the previous example) to repeat, until
there are no longer any writers holding the lock.

Seq locks are ideal when your locking needs meet most or all these requirements:

n Your data has a lot of readers.
n Your data has few writers.
n Although few in number, you want to favor writers over readers and never allow

readers to starve writers.
n Your data is simple, such as a simple structure or even a single integer that, for

whatever reason, cannot be made atomic.

A prominent user of the seq lock is jiffies, the variable that stores a Linux machine’s
uptime (see Chapter 11,“Timers and Time Management”). Jiffies holds a 64-bit count of

 From the Library of Wow! eBook

ptg

201Preemption Disabling

the number of clock ticks since the machine booted. On machines that cannot atomi-
cally read the full 64-bit jiffies_64 variable, get_jiffies_64() is implemented using
seq locks:

u64 get_jiffies_64(void)

{

unsigned long seq;

u64 ret;

do {

seq = read_seqbegin(&xtime_lock);

ret = jiffies_64;

} while (read_seqretry(&xtime_lock, seq));

return ret;

}

Updating jiffies during the timer interrupt, in turns, grabs the write variant of the
seq lock:

write_seqlock(&xtime_lock);

jiffies_64 += 1;

write_sequnlock(&xtime_lock);

For a deeper discussion on jiffies and kernel time keeping, see Chapter 11 and the files
kernel/timer.c and kernel/time/tick-common.c in the kernel source tree.

Preemption Disabling
Because the kernel is preemptive, a process in the kernel can stop running at any instant
to enable a process of higher priority to run.This means a task can begin running in the
same critical region as a task that was preempted.To prevent this, the kernel preemption
code uses spin locks as markers of nonpreemptive regions. If a spin lock is held, the kernel
is not preemptive. Because the concurrency issues with kernel preemption and SMP are
the same, and the kernel is already SMP-safe; this simple change makes the kernel pre-
empt-safe, too.

Or so we hope. In reality, some situations do not require a spin lock, but do need ker-
nel preemption disabled.The most frequent of these situations is per-processor data. If the
data is unique to each processor, there might be no need to protect it with a lock because
only that one processor can access the data. If no spin locks are held, the kernel is pre-
emptive, and it would be possible for a newly scheduled task to access this same variable,
as shown here:

task A manipulates per-processor variable foo, which is not protected by a lock

task A is preempted

task B is scheduled

task B manipulates variable foo

task B completes

 From the Library of Wow! eBook

ptg

202 Chapter 10 Kernel Synchronization Methods

task A is rescheduled

task A continues manipulating variable foo

Consequently, even if this were a uniprocessor computer, the variable could be ac-
cessed pseudo-concurrently by multiple processes. Normally, this variable would require a
spin lock (to prevent true concurrency on multiprocessing machines). If this were a per-
processor variable, however, it might not require a lock.

To solve this, kernel preemption can be disabled via preempt_disable().The call is
nestable; you can call it any number of times. For each call, a corresponding call to
preempt_enable() is required.The final corresponding call to preempt_enable() reen-
ables preemption. For example:

preempt_disable();

/* preemption is disabled ... */

preempt_enable();

The preemption count stores the number of held locks and preempt_disable() calls.
If the number is zero, the kernel is preemptive. If the value is one or greater, the kernel is
not preemptive.This count is incredibly useful—it is a great way to do atomicity and
sleep debugging.The function preempt_count() returns this value. See Table 10.11 for a
listing of kernel preemption-related functions.

As a cleaner solution to per-processor data issues, you can obtain the processor number
(which presumably is used to index into the per-processor data) via get_cpu().This
function disables kernel preemption prior to returning the current processor number:

int cpu;

/* disable kernel preemption and set “cpu” to the current processor */

cpu = get_cpu();

/* manipulate per-processor data ... */

Table 10.11 Kernel Preemption-Related Methods

Function Description

preempt_disable() Disables kernel preemption by incrementing the preemp-
tion counter

preempt_enable() Decrements the preemption counter and checks and serv-
ices any pending reschedules if the count is now zero

preempt_enable_no_resched() Enables kernel preemption but does not check for any
pending reschedules

preempt_count() Returns the preemption count

 From the Library of Wow! eBook

ptg

203Ordering and Barriers

/* reenable kernel preemption, “cpu” can change and so is no longer valid */

put_cpu();

Ordering and Barriers
When dealing with synchronization between multiple processors or with hardware de-
vices, it is sometimes a requirement that memory-reads (loads) and memory-writes
(stores) issue in the order specified in your program code.When talking with hardware,
you often need to ensure that a given read occurs before another read or write.Addition-
ally, on symmetrical multiprocessing systems, it might be important for writes to appear in
the order that your code issues them (usually to ensure subsequent reads see the data in
the same order). Complicating these issues is the fact that both the compiler and the
processor can reorder reads and writes4 for performance reasons.Thankfully, all processors
that do reorder reads or writes provide machine instructions to enforce ordering require-
ments. It is also possible to instruct the compiler not to reorder instructions around a
given point.These instructions are called barriers.

Essentially, on some processors the following code may allow the processor to store the
new value in b before it stores the new value in a:

a = 1;

b = 2;

Both the compiler and processor see no relation between a and b.The compiler would
perform this reordering at compile time; the reordering would be static, and the resulting
object code would simply set b before a.The processor, however, could perform the re-
ordering dynamically during execution by fetching and dispatching seemingly unrelated
instructions in whatever order it feels is best.The vast majority of the time, such reorder-
ing is optimal because there is no apparent relation between a and b. Sometimes the pro-
grammer knows best, though.

Although the previous example might be reordered, the processor would never reorder
writes such as the following because there is clearly a data dependency between a and b:

a = 1;

b = a;

Neither the compiler nor the processor, however, knows about code in other contexts.
Occasionally, it is important that writes are seen by other code and the outside world in
the specific order you intend.This is often the case with hardware devices but is also
common on multiprocessing machines.

4 Intel x86 processors do not ever reorder writes. That is, they do not do out-of-order stores. But other

processors do.

 From the Library of Wow! eBook

ptg

204 Chapter 10 Kernel Synchronization Methods

The rmb() method provides a read memory barrier. It ensures that no loads are re-
ordered across the rmb() call.That is, no loads prior to the call will be reordered to after
the call, and no loads after the call will be reordered to before the call.

The wmb() method provides a write barrier. It functions in the same manner as rmb(),
but with respect to stores instead of loads—it ensures no stores are reordered across the
barrier.

The mb() call provides both a read barrier and a write barrier. No loads or stores will
be reordered across a call to mb(). It is provided because a single instruction (often the
same instruction used by rmb()) can provide both the load and store barrier.

A variant of rmb(), read_barrier_depends(), provides a read barrier but only for loads
on which subsequent loads depend.All reads prior to the barrier are guaranteed to complete
before any reads after the barrier that depend on the reads prior to the barrier. Got it?
Basically, it enforces a read barrier, similar to rmb(), but only for certain reads—those that
depend on each other. On some architectures, read_barrier_depends() is much
quicker than rmb() because it is not needed and is, thus, a noop.

Let’s consider an example using mb() and rmb().The initial value of a is one, and the
initial value of b is two.

Without using the memory barriers, on some processors it is possible for c to receive
the new value of b, whereas d receives the old value of a. For example, c could equal four
(what you’d expect), yet d could equal one (not what you’d expect). Using the mb() en-
sured that a and b were written in the intended order, whereas the rmb() insured c and d
were read in the intended order.

This sort of reordering occurs because modern processors dispatch and commit in-
structions out of order, to optimize use of their pipelines.What can end up happening in
the previous example is that the instructions associated with the loads of b and a occur out
of order.The rmb()and wmb() functions correspond to instructions that tell the processor
to commit any pending load or store instructions, respectively, before continuing.

Let’s look at a similar example, but one that uses read_barrier_depends() instead of
rmb(). In this example, initially a is one, b is two, and p is &b.

Thread 1 Thread 2

a = 3; —

mb(); —

b = 4; c = b;

— rmb();

— d = a;

 From the Library of Wow! eBook

ptg

205Ordering and Barriers

Thread 1 Thread 2

a = 3; —

Again, without memory barriers, it would be possible for b to be set to pp before pp
was set to p.The read_barrier_depends(), however, provides a sufficient barrier be-
cause the load of *pp depends on the load of p. It would also be sufficient to use rmb()
here, but because the reads are data dependent, we can use the potentially faster
read_barrier_depends(). Note that in either case, the mb() is required to enforce the
intended load/store ordering in the left thread.

The macros smp_rmb(), smp_wmb(), smp_mb(), and smp_read_barrier_depends()
provide a useful optimization. On SMP kernels they are defined as the usual memory
barriers, whereas on UP kernels they are defined only as a compiler barrier.You can use
these SMP variants when the ordering constraints are specific to SMP systems.

The barrier() method prevents the compiler from optimizing loads or stores across
the call.The compiler knows not to rearrange stores and loads in ways that would change
the effect of the C code and existing data dependencies. It does not have knowledge,
however, of events that can occur outside the current context. For example, the compiler
cannot know about interrupts that might read the same data you are writing. For this rea-
son, you might want to ensure a store is issued before a load, for example.The previous
memory barriers also function as compiler barriers, but a compiler barrier is much lighter
in weight than a memory barrier. Indeed, a compiler barrier is practically free, because it
simply prevents the compiler from possibly rearranging things.

Table 10.12 has a full listing of the memory and compiler barrier methods provided by
all architectures in the Linux kernel.

mb(); —

p = &a; pp = p;

— read_barrier_depends();

— b = *pp;

Table 10.12 Memory and Compiler Barrier Methods

Barrier Description

rmb() Prevents loads from being reordered across the
barrier

read_barrier_depends() Prevents data-dependent loads from being re-
ordered across the barrier

wmb() Prevents stores from being reordered across the
barrier

mb() Prevents load or stores from being reordered
across the barrier

 From the Library of Wow! eBook

ptg

206 Chapter 10 Kernel Synchronization Methods

Note that the actual effects of the barriers vary for each architecture. For example, if a
machine does not perform out-of-order stores (for example, Intel x86 processors do
not), wmb() does nothing.You can use the appropriate memory barrier for the worst case
(that is, the weakest ordering processor) and your code will compile optimally for your
architecture.

Conclusion
This chapter applied the concepts and theories of the last chapter to help you understand
the actual methods provided by the Linux kernel for enforcing synchronization and
concurrency.We started with the simplest method of ensuring synchronization, atomic
operations.We then looked at spin locks, the most common lock in the kernel, which
provide a lightweight single-holder lock that busy waits while contended. Next, we
discussed semaphores, a sleeping lock, and its more general (and used) cousin, the mutex.
Following mutexes, we studied less common, more specialized locking primitives such as
completion variables and seq locks.We poked fun at the BKL, looked at preemption
disabling, and tackled barriers. It has been a wild ride.

Armed with this chapter’s arsenal of synchronization methods, you can now write ker-
nel code that prevents race conditions, ensures the correct synchronization, and correctly
runs on machines with multiple processors.

Table 10.12 Memory and Compiler Barrier Methods

Barrier Description

smp_rmb() Provides an rmb() on SMP, and on UP provides a
barrier()

smp_read_barrier_depends() Provides a read_barrier_depends() on SMP,
and provides a barrier() on UP

smp_wmb() Provides a wmb() on SMP, and provides a
barrier() on UP

smp_mb() Provides an mb() on SMP, and provides a
barrier() on UP

barrier() Prevents the compiler from optimizing stores or
loads across the barrier

 From the Library of Wow! eBook

ptg

11
Timers and Time Management

The passing of time is important to the kernel.A large number of kernel functions are
time-driven, as opposed to event-driven.1 Some of these functions are periodic, such as
balancing the scheduler runqueues or refreshing the screen.They occur on a fixed sched-
ule, such as 100 times per second.The kernel schedules other functions, such as delayed
disk I/O, at a relative time in the future. For example, the kernel might schedule work for
500 milliseconds from now. Finally, the kernel must also manage the system uptime and
the current date and time.

Note the differences between relative and absolute time. Scheduling an event for 5
seconds in the future requires no concept of the absolute time—only the relative time (for
example, 5 seconds from now). Conversely, managing the current time of day requires the
kernel to understand not just the passing of time but also some absolute measurement of
it. Both of these concepts are crucial to the management of time.

Moreover, the implementation differs between how events that occur periodically and
events the kernel schedules for a fixed point in the future are handled. Events that occur
periodically—say, every 10 milliseconds—are driven by the system timer.The system timer
is a programmable piece of hardware that issues an interrupt at a fixed frequency.The in-
terrupt handler for this timer—called the timer interrupt—updates the system time and
performs periodic work.The system timer and its timer interrupt are central to Linux and
a large focus of this chapter.

The other focus of this chapter is dynamic timers, the facility used to schedule events
that run once after a specified time has elapsed. For example, the floppy device driver uses
a timer to shut off the floppy drive motor after a specified period of inactivity.The kernel
can create and destroy timers dynamically.This chapter covers the kernel implementation
of dynamic timers, and the interface available for their use in your code.

1 More accurately, time-driven events are also event-driven—the event being the passing of time. In this

chapter, however, we single out time-driven events because of their frequency in and importance to the

kernel.

 From the Library of Wow! eBook

ptg

208 Chapter 11 Timers and Time Management

Kernel Notion of Time
Certainly, the concept of time to a computer is a bit obscure. Indeed, the kernel must
work with the system’s hardware to comprehend and manage time.The hardware pro-
vides a system timer that the kernel uses to gauge the passing of time.This system timer
works off of an electronic time source, such as a digital clock or the frequency of the
processor.The system timer goes off (often called hitting or popping) at a preprogrammed
frequency, called the tick rate.When the system timer goes off, it issues an interrupt that
the kernel handles via a special interrupt handler.

Because the kernel knows the preprogrammed tick rate, it knows the time between
any two successive timer interrupts.This period is called a tick and is equal to 1/(tick
rate) seconds.This is how the kernel keeps track of both wall time and system uptime.
Wall time—the actual time of day—is important to user-space applications.The kernel
keeps track of it simply because the kernel controls the timer interrupt.A family of sys-
tem calls provides the date and time of day to user-space.The system uptime—the relative
time since the system booted—is useful to both kernel-space and user-space.A lot of
code must be aware of the passing of time.The difference between two uptime readings—
now and then—is a simple measure of this relativity.

The timer interrupt is important to the management of the operating system.A large
number of kernel functions live and die by the passing of time. Some of the work exe-
cuted periodically by the timer interrupt includes

n Updating the system uptime
n Updating the time of day
n On an SMP system, ensuring that the scheduler runqueues are balanced and, if not,

balancing them (as discussed in Chapter 4,“Process Scheduling”)
n Running any dynamic timers that have expired
n Updating resource usage and processor time statistics

Some of this work occurs on every timer interrupt—that is, the work is carried out
with the frequency of the tick rate. Other functions execute periodically but only every n
timer interrupts.That is, these functions occur at some fraction of the tick rate.The sec-
tion “The Timer Interrupt Handler” looks at the timer interrupt handler.

The Tick Rate: HZ
The frequency of the system timer (the tick rate) is programmed on system boot based
on a static preprocessor define, HZ.The value of HZ differs for each supported architecture.
On some supported architectures, it even differs between machine types.

The kernel defines the value in <asm/param.h>.The tick rate has a frequency of HZ
hertz and a period of 1/HZ seconds. For example, by default the x86 architecture defines
HZ to be 100.Therefore, the timer interrupt on i386 has a frequency of 100HZ and
occurs 100 times per second (every one-hundredth of a second, which is every

 From the Library of Wow! eBook

ptg

209The Tick Rate: HZ

10 milliseconds). Other common values for HZ are 250 and 1000, corresponding to
periods of 4ms and 1ms, respectively.Table 11.1 is a complete listing of the supported
architectures and their defined tick rates.

When writing kernel code, never assume that HZ has any given value.This is not a
common mistake these days because so many architectures have varying tick rates. In the
past, however,Alpha was the only architecture with a tick rate not equal to 100Hz, and it
was common to see code incorrectly hard-code the value 100 when the HZ value should
have been used. Examples of using HZ in kernel code are shown later.

The frequency of the timer interrupt is important.As you already saw, the timer inter-
rupt performs a lot of work. Indeed, the kernel’s entire notion of time derives from the

Table 11.1 Frequency of the Timer Interrupt

Architecture Frequency (in Hertz)

Alpha 1024

Arm 100

avr32 100

Blackfin 100

Cris 100

h8300 100

ia64 1024

m32r 100

m68k 100

m68knommu 50, 100, or 1000

Microblaze 100

Mips 100

mn10300 100

parisc 100

powerpc 100

Score 100

s390 100

Sh 100

sparc 100

Um 100

x86 100

 From the Library of Wow! eBook

ptg

210 Chapter 11 Timers and Time Management

periodicity of the system timer. Picking the right value, like a successful relationship, is all
about compromise.

The Ideal HZ Value
Starting with the initial version of Linux, the i386 architecture has had a timer interrupt
frequency of 100 Hz. During the 2.5 development series, however, the frequency was
raised to 1000 Hz and was (as such things are) controversial.Although the frequency is
again 100 Hz, it is now a configuration option, allowing users to compile a kernel with a
custom HZ value. Because so much of the system is dependent on the timer interrupt,
changing its frequency has a reasonable impact on the system. Of course, there are pros
and cons to larger versus smaller HZ values.

Increasing the tick rate means the timer interrupt runs more frequently. Consequently,
the work it performs occurs more often.This has the following benefits:

n The timer interrupt has a higher resolution and, consequently, all timed events have
a higher resolution.

n The accuracy of timed events improves.

The resolution increases by the same factor as the tick rate increases. For example, the
granularity of timers with HZ=100 is 10 milliseconds. In other words, all periodic events
occur along the timer interrupt’s 10 millisecond period and no finer precision2 is guaran-
teed.With HZ=1000, however, resolution is 1 millisecond—10 times finer.Although kernel
code can create timers with 1-millisecond resolution, there is no guarantee the precision
afforded with HZ=100 is sufficient to execute the timer on anything better than 10-mil-
lisecond intervals.

Likewise, accuracy improves in the same manner.Assuming the kernel starts timers at
random times, the average timer is off by half the period of the timer interrupt because
timers might expire at any time, but are executed only on occurrences of the timer inter-
rupt. For example, with HZ=100, the average event occurs +/– 5 milliseconds off from the
desired time.Thus, error is 5 milliseconds on average.With HZ=1000, the average error
drops to 0.5 milliseconds—a tenfold improvement.

Advantages with a Larger HZ
This higher resolution and greater accuracy provides multiple advantages:

n Kernel timers execute with finer resolution and increased accuracy. (This provides a
large number of improvements, one of which is the following.)

2 We use precision here in the computer sense, not the scientific. Precision in science is a statistical

measurement of repeatability. In computers, precision is the number of significant figures used to repre-

sent a value.

 From the Library of Wow! eBook

ptg

211The Tick Rate: HZ

n System calls such as poll()and select()that optionally employ a timeout value
execute with improved precision.

n Measurements, such as resource usage or the system uptime, are recorded with a
finer resolution.

n Process preemption occurs more accurately.

Some of the most readily noticeable performance benefits come from the improved
precision of poll() and select() timeouts.The improvement might be quite large; an
application that makes heavy use of these system calls might waste a great deal of time
waiting for the timer interrupt, when, in fact, the timeout has actually expired. Remember,
the average error (that is, potentially wasted time) is half the period of the timer interrupt.

Another benefit of a higher tick rate is the greater accuracy in process preemption,
which results in decreased scheduling latency. Recall from Chapter 4 that the timer inter-
rupt is responsible for decrementing the running process’s timeslice count.When the
count reaches zero, need_resched is set and the kernel runs the scheduler as soon as pos-
sible. Now assume a given process is running and has 2 milliseconds of its timeslice re-
maining. In 2 milliseconds, the scheduler should preempt the running process and begin
executing a new process. Unfortunately, this event does not occur until the next timer in-
terrupt, which might not be in 2 milliseconds.At worst the next timer interrupt might be
1/HZ of a second away! With HZ=100, a process can get nearly 10 extra milliseconds to
run. Of course, this all balances out and fairness is preserved, because all tasks receive the
same imprecision in scheduling—but that is not the issue.The problem stems from the la-
tency created by the delayed preemption. If the to-be-scheduled task had something
time-sensitive to do, such as refill an audio buffer, the delay might not be acceptable. In-
creasing the tick rate to 1000Hz lowers the worst-case scheduling overrun to just 1 mil-
lisecond, and the average-case overrun to just 0.5 milliseconds.

Disadvantages with a Larger HZ
Now, there must be some downside to increasing the tick rate, or it would have been
1000Hz (or even higher) to start. Indeed, there is one large issue:A higher tick rate im-
plies more frequent timer interrupts, which implies higher overhead, because the proces-
sor must spend more time executing the timer interrupt handler.The higher the tick rate,
the more time the processor spends executing the timer interrupt.This adds up to not just
less processor time available for other work, but also a more frequent thrashing of the
processor’s cache and increase in power consumption.The issue of the overhead’s impact
is debatable.A move from HZ=100 to HZ=1000 clearly brings with it ten times greater
overhead. However, how substantial is the overhead to begin with? The final agreement is
that, at least on modern systems, HZ=1000 does not create unacceptable overhead and the

 From the Library of Wow! eBook

ptg

212 Chapter 11 Timers and Time Management

move to a 1000Hz timer has not hurt performance too much. Nevertheless, it is possible
in 2.6 to compile the kernel with a different value for HZ.3

A Tickless OS
You might wonder whether an operating system even needs a fixed timer interrupt. Although
that has been the norm for 40 years, with nearly all general-purpose operating systems em-
ploying a timer interrupt similar to the system described in this chapter, the Linux kernel sup-
ports an option known as a tickless operation. When a kernel is built with the CONFIG_HZ
configuration option set, the system dynamically schedules the timer interrupt in accordance
with pending timers. Instead of firing the timer interrupt every, say, 1ms, the interrupt is dy-
namically scheduled and rescheduled as needed. If the next timer is set to go off in 3ms,
the timer interrupt fires in 3ms. After that, if there is no work for 50ms, the kernel resched-
ules the interrupt to go off in 50ms.

The reduction in overhead is welcome, but the real gain is in power savings, particular on an
idle system. On a standard tick-based system, the kernel needs to service timer interrupts,
even during idle periods. With a tickless system, moments of idleness are not interrupted by
unnecessary time interrupts, reducing system power consumption. Whether the idle period
is 200 milliseconds or 200 seconds, over time the gains add up to tangible power savings.

Jiffies
The global variable jiffies holds the number of ticks that have occurred since the sys-
tem booted. On boot, the kernel initializes the variable to zero, and it is incremented by
one during each timer interrupt.Thus, because there are HZ timer interrupts in a second,
there are HZ jiffies in a second.The system uptime is therefore jiffies/HZ seconds.What
actually happens is slightly more complicated:The kernel initializes jiffies to a special
initial value, causing the variable to overflow more often, catching bugs.When the actual
value of jiffies is sought, this “offset” is first subtracted.

The Etymology of the Jiffy
The origin of the term jiffy is unknown. Phrases such as in a jiffy are thought to originate from
18th-century England. In lay terms, jiffy refers to an indeterminate but brief period of time.

In scientific applications, jiffy represents various intervals of time, most commonly 10ms. In
physics, a jiffy is sometimes used to refer to the time it takes for light to travel some spe-
cific distance (usually a foot or a centimeter or across a nucleon).

In computer engineering, a jiffy is often the time between two successive clock cycles. In
electrical engineering, a jiffy is the time to complete one AC (alternating current) cycle. In the
United States, this is 1/60 of a second.

3 Because of architectural and NTP-related issues, however, not just any value is acceptable for HZ. On

x86, 100, 500, and 1000 all work fine.

 From the Library of Wow! eBook

ptg

213Jiffies

In operating systems, especially Unix, a jiffy is the time between two successive clock ticks.
Historically, this has been 10ms. As we have seen in this chapter, however, a jiffy in Linux
can have various values.

The jiffies variable is declared in <linux/jiffies.h> as

extern unsigned long volatile jiffies;

In the next section, we look at its actual definition, which is a bit peculiar. For now,
let’s look at some sample kernel code.The following expression converts from seconds to
a unit of jiffies:

(seconds * HZ)

Likewise, this expression converts from jiffies to seconds:

(jiffies / HZ)

The former, converting from seconds to ticks, is more common. For example, code of-
ten needs to set a value for some time in the future, for example:

unsigned long time_stamp = jiffies; /* now */

unsigned long next_tick = jiffies + 1; /* one tick from now */

unsigned long later = jiffies + 5*HZ; /* five seconds from now */

unsigned long fraction = jiffies + HZ / 10; /* a tenth of a second from now */

Converting from ticks to seconds is typically reserved for communicating with user-
space, as the kernel itself rarely cares about any sort of absolute time.

Note that the jiffies variable is prototyped as unsigned long and that storing it in
anything else is incorrect.

Internal Representation of Jiffies
The jiffies variable has always been an unsigned long, and therefore 32 bits in size on
32-bit architectures and 64-bits on 64-bit architectures.With a tick rate of 100, a 32-bit
jiffies variable would overflow in about 497 days.With HZ increased to 1000, however,
that overflow now occurs in just 49.7 days! If jiffies were stored in a 64-bit variable on
all architectures, then for any reasonable HZ value the jiffies variable would never over-
flow in anyone’s lifetime.

For performance and historical reasons—mainly compatibility with existing kernel
code—the kernel developers wanted to keep jiffies an unsigned long. Some smart
thinking and a little linker magic saved that day.

As you previously saw, jiffies is defined as an unsigned long:

extern unsigned long volatile jiffies;

A second variable is also defined in <linux/jiffies.h>:

extern u64 jiffies_64;

 From the Library of Wow! eBook

ptg

214 Chapter 11 Timers and Time Management

The ld(1) script used to link the main kernel image (arch/x86/kernel/vmlinux.
lds.S on x86) then overlays the jiffies variable over the start of the jiffies_64
variable:

jiffies = jiffies_64;

Thus, jiffies is the lower 32 bits of the full 64-bit jiffies_64 variable. Code can
continue to access the jiffies variable exactly as before. Because most code uses
jiffies simply to measure elapses in time, most code cares about only the lower 32 bits.
The time management code uses the entire 64 bits, however, and thus prevents overflow
of the full 64-bit value. Figure 11.1 shows the layout of jiffies and jiffies_64.

Code that accesses jiffies simply reads the lower 32 bits of jiffies_64.The func-
tion get_jiffies_64() can be used to read the full 64-bit value.4 Such a need is rare;
consequently, most code simply continues to read the lower 32 bits directly via the
jiffies variable.

On 64-bit architectures, jiffies_64 and jiffies refer to the same thing. Code can
either read jiffies or call get_jiffies_64() as both actions have the same effect.

Jiffies Wraparound
The jiffies variable, like any C integer, experiences overflow when its value is increased
beyond its maximum storage limit. For a 32-bit unsigned integer, the maximum value is
232 – 1.Thus, a possible 4294967295 timer ticks can occur before the tick count over-
flows.When the tick count is equal to this maximum and it is incremented, it wraps
around to zero.

Look at an example of a wraparound:

unsigned long timeout = jiffies + HZ/2; /* timeout in 0.5s */

4 A special function is needed because 32-bit architectures cannot atomically access both 32-bit words

in a 64-bit value. The special function locks the jiffies count via the xtime_lock lock before reading.

bit 63

jiffies on 32-bit machines

jiffies_64 (and jiffies on 64-bit machines)

031

Figure 11.1 Layout of jiffies and jiffies_64.

 From the Library of Wow! eBook

ptg

215Jiffies

/* do some work ... */

/* then see whether we took too long */

if (timeout > jiffies) {

/* we did not time out, good ... */

} else {

/* we timed out, error ... */

}

The intention of this code snippet is to set a timeout for some time in the future—for
one half second from now, in this example.The code then proceeds to perform some
work, presumably poking hardware and waiting for a response.When done, if the whole
ordeal took longer than the timeout, the code handles the error as appropriate.

Multiple potential overflow issues are here, but let’s study one of them: Consider what
happens if jiffies wrapped back to zero after setting timeout.Then the first conditional
would fail because the jiffies value would be smaller than timeout despite logically
being larger. Conceptually, the jiffies value should be a large number—larger than
timeout. Because it overflowed its maximum value, however, it is now a small value—
perhaps only a handful of ticks over zero. Because of the wraparound, the results of the if
statement are switched.Whoops!

Thankfully, the kernel provides four macros for comparing tick counts that correctly
handle wraparound in the tick count.They are in <linux/jiffies.h>. Listed here are
simplified versions of the macros:

#define time_after(unknown, known) ((long)(known) - (long)(unknown) < 0)

#define time_before(unknown, known) ((long)(unknown) - (long)(known) < 0)

#define time_after_eq(unknown, known) ((long)(unknown) - (long)(known) >= 0)

#define time_before_eq(unknown, known) ((long)(known) - (long)(unknown) >= 0)

The unknown parameter is typically jiffies and the known parameter is the value
against which you want to compare.

The time_after(unknown, known) macro returns true if time unknown is after time
known; otherwise, it returns false.The time_before(unknown, known) macro returns true
if time unknown is before time known; otherwise, it returns false.The final two macros per-
form identically to the first two, except they also return true if the parameters are equal.

The timer-wraparound-safe version of the previous example would look like this:

unsigned long timeout = jiffies + HZ/2; /* timeout in 0.5s */

/* ... */

if (time_before(jiffies, timeout)) {

/* we did not time out, good ... */

} else {

/* we timed out, error ... */

}

 From the Library of Wow! eBook

ptg

216 Chapter 11 Timers and Time Management

If you are curious as to why these macros prevent errors because of wraparound, try
various values for the two parameters.Then assume one parameter wrapped to zero and
see what happens.

User-Space and HZ
In kernels earlier than 2.6, changing the value of HZ resulted in user-space anomalies.This
happened because values were exported to user-space in units of ticks-per-second.As
these interfaces became permanent, applications grew to rely on a specific value of HZ.
Consequently, changing HZ would scale various exported values by some constant—with-
out user-space knowing! Uptime would read 20 hours when it was in fact two!

To prevent such problems, the kernel needs to scale all exported jiffies values. It
does this by defining USER_HZ, which is the HZ value that user-space expects. On x86, be-
cause HZ was historically 100, USER_HZ is 100.The function jiffies_to_clock_t(), de-
fined in kernel/time.c, is then used to scale a tick count in terms of HZ to a tick count
in terms of USER_HZ.The expression used depends on whether USER_HZ and HZ are inte-
ger multiples of themselves and whether USER_HZ is less than or equal to HZ. If both those
conditions are true, and for most systems they usually are, the expression is rather simple:

return x / (HZ / USER_HZ);

A more complicated algorithm is used if the values are not integer multiples.
Finally, the function jiffies_64_to_clock_t() is provided to convert a 64-bit

jiffies value from HZ to USER_HZ units.
These functions are used anywhere a value in ticks-per-seconds needs to be exported

to user-space. Following is an example:

unsigned long start;

unsigned long total_time;

start = jiffies;

/* do some work ... */

total_time = jiffies - start;

printk(“That took %lu ticks\n”, jiffies_to_clock_t(total_time));

User-space expects the previous value as if HZ=USER_HZ. If they are not equivalent, the
macro scales as needed and everyone is happy. Of course, this example is silly: It would
make more sense to print the message in seconds, not ticks. For example:

printk(“That took %lu seconds\n”, total_time / HZ);

Hardware Clocks and Timers
Architectures provide two hardware devices to help with time keeping: the system timer,
which we have been discussing, and the real-time clock.The actual behavior and imple-
mentation of these devices varies between different machines, but the general purpose
and design is about the same for each.

 From the Library of Wow! eBook

ptg

217The Timer Interrupt Handler

Real-Time Clock
The real-time clock (RTC) provides a nonvolatile device for storing the system time.
The RTC continues to keep track of time even when the system is off by way of a small
battery typically included on the system board. On the PC architecture, the RTC and the
CMOS are integrated, and a single battery keeps the RTC running and the BIOS settings
preserved.

On boot, the kernel reads the RTC and uses it to initialize the wall time, which is
stored in the xtime variable.The kernel does not typically read the value again; however,
some supported architectures, such as x86, periodically save the current wall time back to
the RTC. Nonetheless, the real time clock’s primary importance is only during boot,
when the xtime variable is initialized.

System Timer
The system timer serves a much more important (and frequent) role in the kernel’s time-
keeping.The idea behind the system timer, regardless of architecture, is the same—to
provide a mechanism for driving an interrupt at a periodic rate. Some architectures
implement this via an electronic clock that oscillates at a programmable frequency. Other
systems provide a decrementer:A counter is set to some initial value and decrements at a
fixed rate until the counter reaches zero.When the counter reaches zero, an interrupt is
triggered. In any case, the effect is the same.

On x86, the primary system timer is the programmable interrupt timer (PIT).The PIT
exists on all PC machines and has been driving interrupts since the days of DOS.The
kernel programs the PIT on boot to drive the system timer interrupt (interrupt zero) at
HZ frequency. It is a simple device with limited functionality, but it gets the job done.
Other x86 time sources include the local APIC timer and the processor’s time stamp
counter (TSC).

The Timer Interrupt Handler
Now that we have an understanding of HZ, jiffies, and what the system timer’s role is,
let’s look at the actual implementation of the timer interrupt handler.The timer interrupt
is broken into two pieces: an architecture-dependent and an architecture-independent
routine.

The architecture-dependent routine is registered as the interrupt handler for the sys-
tem timer and, thus, runs when the timer interrupt hits. Its exact job depends on the
given architecture, of course, but most handlers perform at least the following work:

n Obtain the xtime_lock lock, which protects access to jiffies_64 and the wall
time value, xtime.

n Acknowledge or reset the system timer as required.
n Periodically save the updated wall time to the real time clock.
n Call the architecture-independent timer routine, tick_periodic().

 From the Library of Wow! eBook

ptg

218 Chapter 11 Timers and Time Management

The architecture-independent routine, tick_periodic(), performs much more work:

n Increment the jiffies_64 count by one. (This is safe, even on 32-bit architectures,
because the xtime_lock lock was previously obtained.)

n Update resource usages, such as consumed system and user time, for the currently
running process.

n Run any dynamic timers that have expired (discussed in the following section).
n Execute scheduler_tick(), as discussed in Chapter 4.
n Update the wall time, which is stored in xtime.
n Calculate the infamous load average.

The routine is simple because other functions handle most of the work:

static void tick_periodic(int cpu)

{

if (tick_do_timer_cpu == cpu) {

write_seqlock(&xtime_lock);

/* Keep track of the next tick event */

tick_next_period = ktime_add(tick_next_period, tick_period);

do_timer(1);

write_sequnlock(&xtime_lock);

}

update_process_times(user_mode(get_irq_regs()));

profile_tick(CPU_PROFILING);

}

Most of the important work is enabled in do_timer()and update_process_times().
The former is responsible for actually performing the increment to jiffies_64:

void do_timer(unsigned long ticks)

{

jiffies_64 += ticks;

update_wall_time();

calc_global_load();

}

The function update_wall_time(), as its name suggests, updates the wall time in ac-
cordance with the elapsed ticks, whereas calc_global_load() updates the system’s load
average statistics.

When do_timer() ultimately returns, update_process_times() is invoked to update
various statistics that a tick has elapsed, noting via user_tick whether it occurred in
user-space or kernel-space:

 From the Library of Wow! eBook

ptg

219The Timer Interrupt Handler

void update_process_times(int user_tick)

{

struct task_struct *p = current;

int cpu = smp_processor_id();

/* Note: this timer irq context must be accounted for as well. */

account_process_tick(p, user_tick);

run_local_timers();

rcu_check_callbacks(cpu, user_tick);

printk_tick();

scheduler_tick();

run_posix_cpu_timers(p);

}

Recall from tick_periodic() that the value of user_tick is set by looking at the
system’s registers:

update_process_times(user_mode(get_irq_regs()));

The account_process_tick()function does the actual updating of the process’s times:

void account_process_tick(struct task_struct *p, int user_tick)

{

cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);

struct rq *rq = this_rq();

if (user_tick)

account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);

else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))

account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,

one_jiffy_scaled);

else

account_idle_time(cputime_one_jiffy);

}

You might realize that this approach implies that the kernel credits a process for run-
ning the entire previous tick in whatever mode the processor was in when the timer inter-
rupt occurred. In reality, the process might have entered and exited kernel mode many
times during the last tick. In fact, the process might not even have been the only process
running in the last tick! This granular process accounting is classic Unix, and without
much more complex accounting, this is the best the kernel can provide. It is also another
reason for a higher frequency tick rate.

Next, the run_local_timers() function marks a softirq (see Chapter 8,“Bottom
Halves and Deferring Work”) to handle the execution of any expired timers.Timers are
covered in a following section,“Timers.”

Finally, the scheduler_tick() function decrements the currently running process’s
timeslice and sets need_resched if needed. On SMP machines, it also balances the per-
processor runqueues as needed.This is discussed in Chapter 4.

 From the Library of Wow! eBook

ptg

220 Chapter 11 Timers and Time Management

The tick_periodic() function returns to the original architecture-dependent inter-
rupt handler, which performs any needed cleanup, releases the xtime_lock lock, and fi-
nally returns.

All this occurs every 1/HZ of a second.That is potentially 100 or 1,000 times per sec-
ond on an x86 machine!

The Time of Day
The current time of day (the wall time) is defined in kernel/time/timekeeping.c:

struct timespec xtime;

The timespec data structure is defined in <linux/time.h> as:

struct timespec {

__kernel_time_t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds */

};

The xtime.tv_sec value stores the number of seconds that have elapsed since January
1, 1970 (UTC).This date is called the epoch. Most Unix systems base their notion of the
current wall time as relative to this epoch.The xtime.v_nsec value stores the number of
nanoseconds that have elapsed in the last second.

Reading or writing the xtime variable requires the xtime_lock lock, which is not a
normal spinlock but a seqlock. Chapter 10,“Kernel Synchronization Methods,” discusses
seqlocks.

To update xtime, a write seqlock is required:

write_seqlock(&xtime_lock);

/* update xtime ... */

write_sequnlock(&xtime_lock);

Reading xtime requires the use of the read_seqbegin() and read_seqretry()
functions:

unsigned long seq;

do {

unsigned long lost;

seq = read_seqbegin(&xtime_lock);

usec = timer->get_offset();

lost = jiffies - wall_jiffies;

if (lost)

usec += lost * (1000000 / HZ);

sec = xtime.tv_sec;

 From the Library of Wow! eBook

ptg

221The Time of Day

usec += (xtime.tv_nsec / 1000);

} while (read_seqretry(&xtime_lock, seq));

This loop repeats until the reader is assured that it read the data without an interven-
ing write. If the timer interrupt occurred and updated xtime during the loop, the re-
turned sequence number is invalid and the loop repeats.

The primary user-space interface for retrieving the wall time is gettimeofday(),
which is implemented as sys_gettimeofday() in kernel/time.c:

asmlinkage long sys_gettimeofday(struct timeval *tv, struct timezone *tz)

{

if (likely(tv)) {

struct timeval ktv;

do_gettimeofday(&ktv);

if (copy_to_user(tv, &ktv, sizeof(ktv)))

return -EFAULT;

}

if (unlikely(tz)) {

if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))

return -EFAULT;

}

return 0;

}

If the user provided a non-NULL tv value, the architecture-dependent
do_gettimeofday() is called.This function primarily performs the xtime read loop pre-
viously discussed. Likewise, if tz is non-NULL, the system time zone (stored in sys_tz) is
returned to the user. If there were errors copying the wall time or time zone back to
user-space, the function returns -EFAULT. Otherwise, it returns zero for success.

The kernel also implements the time()5 system call, but gettimeofday()largely su-
persedes it.The C library also provides other wall time–related library calls, such as
ftime()and ctime().

The settimeofday() system call sets the wall time to the specified value. It requires
the CAP_SYS_TIME capability.

Other than updating xtime, the kernel does not make nearly as frequent use of the
current wall time as user-space does. One notable exception is in the filesystem code,
which stores various timestamps (accessed, modified, and so on) in inodes.

5 Some architectures, however, do not implement sys_time() and instead specify that it is emulated

in the C library through the use of gettimeofday().

 From the Library of Wow! eBook

ptg

222 Chapter 11 Timers and Time Management

Timers
Timers—sometimes called dynamic timers or kernel timers—are essential for managing the
flow of time in kernel code. Kernel code often needs to delay execution of some function
until a later time. In previous chapters, we looked at using the bottom-half mechanisms,
which are great for deferring work until later. Unfortunately, the definition of later is in-
tentionally quite vague.The purpose of bottom halves is not so much to delay work, but
simply to not do the work now.What we need is a tool for delaying work a specified
amount of time—certainly no less, and with hope, not much longer.The solution is ker-
nel timers.

A timer is easy to use.You perform some initial setup, specify an expiration time, spec-
ify a function to execute upon said expiration, and activate the timer.The given function
runs after the timer expires.Timers are not cyclic.The timer is destroyed after it expires.
This is one reason for the dynamic nomenclature:Timers are constantly created and de-
stroyed, and there is no limit on the number of timers.Timers are popular throughout the
entire kernel.

Using Timers
Timers are represented by struct timer_list, which is defined in <linux/timer.h>:

struct timer_list {

struct list_head entry; /* entry in linked list of timers */

unsigned long expires; /* expiration value, in jiffies */

void (*function)(unsigned long); /* the timer handler function */

unsigned long data; /* lone argument to the handler */

struct tvec_t_base_s *base; /* internal timer field, do not touch */

};

Fortunately, the usage of timers requires little understanding of this data structure.Toy-
ing with it is discouraged to keep code forward compatible with changes.The kernel pro-
vides a family of timer-related interfaces to make timer management easy. Everything is
declared in <linux/timer.h>. Most of the actual implementation is in kernel/timer.c.

The first step in creating a timer is defining it:

struct timer_list my_timer;

Next, the timer’s internal values must be initialized.This is done via a helper function
and must be done prior to calling any timer management functions on the timer:

init_timer(&my_timer);

Now you fill out the remaining values as required:

my_timer.expires = jiffies + delay; /* timer expires in delay ticks */

my_timer.data = 0; /* zero is passed to the timer handler */

my_timer.function = my_function; /* function to run when timer expires */

 From the Library of Wow! eBook

ptg

223Timers

The my_timer.expires value specifies the timeout value in absolute ticks.When the
current jiffies count is equal to or greater than my_timer.expires, the handler func-
tion my_timer.function is run with the lone argument of my_timer.data.As you can
see from the timer_list definition, the function must match this prototype:

void my_timer_function(unsigned long data);

The data parameter enables you to register multiple timers with the same handler, and
differentiate between them via the argument. If you do not need the argument, you can
simply pass zero (or any other value).

Finally, you activate the timer:

add_timer(&my_timer);

And, voila, the timer is off and running! Note the significance of the expired value.
The kernel runs the timer handler when the current tick count is equal to or greater than
the specified expiration.Although the kernel guarantees to run no timer handler prior to
the timer’s expiration, there may be a delay in running the timer.Typically, timers are run
fairly close to their expiration; however, they might be delayed until the first timer tick af-
ter their expiration. Consequently, timers cannot be used to implement any sort of hard
real-time processing.

Sometimes you might need to modify the expiration of an already active timer.The ker-
nel implements a function, mod_timer(), which changes the expiration of a given timer:

mod_timer(&my_timer, jiffies + new_delay); /* new expiration */

The mod_timer() function can operate on timers that are initialized but not active,
too. If the timer is inactive, mod_timer() activates it.The function returns zero if the
timer were inactive and one if the timer were active. In either case, upon return from
mod_timer(), the timer is activated and set to the new expiration.

If you need to deactivate a timer prior to its expiration, use the del_timer() function:

del_timer(&my_timer);

The function works on both active and inactive timers. If the timer is already inactive,
the function returns zero; otherwise, the function returns one. Note that you do not need
to call this for timers that have expired because they are automatically deactivated.

A potential race condition that must be guarded against exists when deleting timers.
When del_timer() returns, it guarantees only that the timer is no longer active (that is,
that it will not be executed in the future). On a multiprocessing machine, however, the
timer handler might already be executing on another processor.To deactivate the timer
and wait until a potentially executing handler for the timer exits, use del_timer_sync():

del_timer_sync(&my_timer);

Unlike del_timer(), del_timer_sync() cannot be used from interrupt context.

 From the Library of Wow! eBook

ptg

224 Chapter 11 Timers and Time Management

Timer Race Conditions
Because timers run asynchronously with respect to the currently executing code, several
potential race conditions exist. First, never do the following as a substitute for a mere
mod_timer(), because this is unsafe on multiprocessing machines:

del_timer(my_timer)

my_timer->expires = jiffies + new_delay;

add_timer(my_timer);

Second, in almost all cases, you should use del_timer_sync() over del_timer().
Otherwise, you cannot assume the timer is not currently running, and that is why you
made the call in the first place! Imagine if, after deleting the timer, the code went on to
free or otherwise manipulate resources used by the timer handler.Therefore, the
synchronous version is preferred.

Finally, you must make sure to protect any shared data used in the timer handler func-
tion.The kernel runs the function asynchronously with respect to other code. Data with a
timer should be protected as discussed in Chapters 8 and 9,“An Introduction to Kernel
Synchronization.”

Timer Implementation
The kernel executes timers in bottom-half context, as softirqs, after the timer interrupt
completes.The timer interrupt handler runs update_process_times(), which calls
run_local_timers():

void run_local_timers(void)

{

hrtimer_run_queues();

raise_softirq(TIMER_SOFTIRQ); /* raise the timer softirq */

softlockup_tick();

}

The TIMER_SOFTIRQ softirq is handled by run_timer_softirq().This function runs
all the expired timers (if any) on the current processor.

Timers are stored in a linked list. However, it would be unwieldy for the kernel to ei-
ther constantly traverse the entire list looking for expired timers, or keep the list sorted by
expiration value; the insertion and deletion of timers would then become expensive. In-
stead, the kernel partitions timers into five groups based on their expiration value.Timers
move down through the groups as their expiration time draws closer.The partitioning
ensures that, in most executions of the timer softirq, the kernel has to do little work to
find the expired timers. Consequently, the timer management code is efficient.

 From the Library of Wow! eBook

ptg

225Delaying Execution

Delaying Execution
Often, kernel code (especially drivers) needs a way to delay execution for some time
without using timers or a bottom-half mechanism.This is usually to enable hardware time
to complete a given task.The time is typically quite short. For example, the specifications
for a network card might list the time to change Ethernet modes as two microseconds.
After setting the desired speed, the driver should wait at least the two microseconds be-
fore continuing.

The kernel provides a number of solutions, depending on the semantics of the delay.
The solutions have different characteristics. Some hog the processor while delaying—
effectively preventing—the accomplishment of any real work. Other solutions do not hog
the processor but offer no guarantee that your code will resume in exactly the required
time.6

Busy Looping
The simplest solution to implement (although rarely the optimal solution) is busy waiting
or busy looping.This technique works only when the time you want to delay is some inte-
ger multiple of the tick rate or precision is not important.

The idea is simple: Spin in a loop until the desired number of clock ticks pass. For
example

unsigned long timeout = jiffies + 10; /* ten ticks */

while (time_before(jiffies, timeout))

;

The loop continues until jiffies is larger than delay, which occurs only after 10
clock ticks have passed. On x86 with HZ equal to 1,000, this results in a wait of 10 mil-
liseconds. Similarly

unsigned long delay = jiffies + 2*HZ; /* two seconds */

while (time_before(jiffies, delay))

;

This spins until 2*HZ clock ticks has passed, which is always two seconds regardless of
the clock rate.

This approach is not nice to the rest of the system.While your code waits, the processor
is tied up spinning in a silly loop—no useful work is accomplished! You rarely want to take
this brain-dead approach, and it is shown here because it is a clear and simple method for
delaying execution.You might also encounter it in someone else’s not-so-pretty code.

6 Actually, no approach guarantees that the delay will be for exactly the time requested. Some come ex-

tremely close, however, and they all promise to wait at least as long as needed. Some just wait longer.

 From the Library of Wow! eBook

ptg

226 Chapter 11 Timers and Time Management

A better solution would be to reschedule your process to allow the processor to ac-
complish other work while your code waits:

unsigned long delay = jiffies + 5*HZ;

while (time_before(jiffies, delay))

cond_resched();

The call to cond_resched()schedules a new process, but only if need_resched is set.
In other words, this solution conditionally invokes the scheduler only if there is some
more important task to run. Note that because this approach invokes the scheduler, you
cannot make use of it from an interrupt handler—only from process context.All these
approaches are best used from process context, because interrupt handlers should execute
as quickly as possible. (And busy looping does not help accomplish that goal!) Further-
more, delaying execution in any manner, if at all possible, should not occur while a lock is
held or interrupts are disabled.

C aficionados might wonder what guarantee is given that the previous loops even
work.The C compiler is usually free to perform a given load only once. Normally, no as-
surance is given that the jiffies variable in the loop’s conditional statement is even re-
loaded on each loop iteration.The kernel requires, however, that jiffies be reread on
each iteration, as the value is incremented elsewhere: in the timer interrupt. Indeed, this is
why the variable is marked volatile in <linux/jiffies.h>.The volatile keyword
instructs the compiler to reload the variable on each access from main memory and
never alias the variable’s value in a register, guaranteeing that the previous loop completes
as expected.

Small Delays
Sometimes, kernel code (again, usually drivers) requires short (smaller than a clock tick)
and rather precise delays.This is often to synchronize with hardware, which again usually
lists some minimum time for an activity to complete—often less than a millisecond. It
would be impossible to use jiffies-based delays, as in the previous examples, for such a
short wait.With a timer interrupt of 100Hz, the clock tick is a rather large 10 millisec-
onds! Even with a 1,000Hz timer interrupt, the clock tick is still one millisecond.An-
other solution is clearly necessary for smaller, more precise delays.

Thankfully, the kernel provides three functions for microsecond, nanosecond, and mil-
lisecond delays, defined in <linux/delay.h> and <asm/delay.h>, which do not use
jiffies:

void udelay(unsigned long usecs)

void ndelay(unsigned long nsecs)

void mdelay(unsigned long msecs)

The former function delays execution by busy looping for the specified number of
microseconds.The latter function delays execution for the specified number of milliseconds.

 From the Library of Wow! eBook

ptg

227Delaying Execution

Recall one second equals 1,000 milliseconds, which equals 1,000,000 microseconds. Us-
age is trivial:

udelay(150); /* delay for 150 μs */

The udelay() function is implemented as a loop that knows how many iterations can
be executed in a given period of time.The mdelay() function is then implemented in
terms of udelay(). Because the kernel knows how many loops the processor can com-
plete in a second (see the sidebar on BogoMIPS), the udelay() function simply scales
that value to the correct number of loop iterations for the given delay.

My BogoMIPS Are Bigger Than Yours!
The BogoMIPS value has always been a source of confusion and humor. In reality, the
BogoMIPS calculation has little to do with the performance of your computer and is primarily
used only for the udelay() and mdelay() functions. Its name is a contraction of bogus
(that is, fake) and MIPS (million of instructions per second). Everyone is familiar with a boot
message similar to the following (this is on a 2.4GHz 7300-series Intel Xeon):

Detected 2400.131 MHz processor.

Calibrating delay loop... 4799.56 BogoMIPS

The BogoMIPS value is the number of busy loop iterations the processor can perform in a
given period. In effect, BogoMIPS are a measurement of how fast a processor can do noth-
ing! This value is stored in the loops_per_jiffy variable and is readable from
/proc/cpuinfo. The delay loop functions use the loops_per_jiffy value to figure out
(fairly precisely) how many busy loop iterations they need to execute to provide the requi-
site delay.

The kernel computes loops_per_jiffy on boot via calibrate_delay() in
init/main.c.

The udelay() function should be called only for small delays because larger delays on
fast machines might result in overflow.As a rule, do not use udelay() for delays more
than one millisecond in duration. For longer durations, mdelay() works fine. Like the
other busy waiting solutions for delaying execution, neither of these functions (especially
mdelay(), because it is used for such long delays) should be used unless absolutely
needed. Remember that it is rude to busy loop with locks held or interrupts disabled be-
cause system response and performance will be adversely affected. If you require precise
delays, however, these calls are your best bet.Typical uses of these busy waiting functions
delay for a small amount of time, usually in the microsecond range.

schedule_timeout()
A more optimal method of delaying execution is to use schedule_timeout().This call
puts your task to sleep until at least the specified time has elapsed.There is no guarantee
that the sleep duration will be exactly the specified time—only that the duration is at least

 From the Library of Wow! eBook

ptg

228 Chapter 11 Timers and Time Management

as long as specified.When the specified time has elapsed, the kernel wakes the task up and
places it back on the runqueue. Usage is easy:

/* set task’s state to interruptible sleep */

set_current_state(TASK_INTERRUPTIBLE);

/* take a nap and wake up in “s” seconds */

schedule_timeout(s * HZ);

The lone parameter is the desired relative timeout, in jiffies.This example puts the task
in interruptible sleep for s seconds. Because the task is marked TASK_INTERRUPTIBLE, it
wakes up prematurely if it receives a signal. If the code does not want to process signals,
you can use TASK_UNINTERRUPTIBLE instead.The task must be in one of these two states
before schedule_timeout() is called or else the task will not go to sleep.

Note that because schedule_timeout() invokes the scheduler, code that calls it must
be capable of sleeping. See Chapters 8 and 9 for discussions on atomicity and sleeping. In
short, you must be in process context and must not hold a lock.

schedule_timeout() Implementation
The schedule_timeout() function is fairly straightforward. Indeed, it is a simple applica-
tion of kernel timers, so let’s take a look at it:

signed long schedule_timeout(signed long timeout)

{

timer_t timer;

unsigned long expire;

switch (timeout)

{

case MAX_SCHEDULE_TIMEOUT:

schedule();

goto out;

default:

if (timeout < 0)

{

printk(KERN_ERR “schedule_timeout: wrong timeout “

“value %lx from %p\n”, timeout,

__builtin_return_address(0));

current->state = TASK_RUNNING;

goto out;

}

}

expire = timeout + jiffies;

init_timer(&timer);

 From the Library of Wow! eBook

ptg

229Delaying Execution

timer.expires = expire;

timer.data = (unsigned long) current;

timer.function = process_timeout;

add_timer(&timer);

schedule();

del_timer_sync(&timer);

timeout = expire - jiffies;

out:

return timeout < 0 ? 0 : timeout;

}

The function creates a timer with the original name timer and sets it to expire in
timeout clock ticks in the future. It sets the timer to execute the process_timeout()
function when the timer expires. It then enables the timer and calls schedule(). Because
the task is supposedly marked TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE, the
scheduler does not run the task, but instead picks a new one.

When the timer expires, it runs process_timeout():

void process_timeout(unsigned long data)

{

wake_up_process((task_t *) data);

}

This function puts the task in the TASK_RUNNING state and places it back on the
runqueue.

When the task reschedules, it returns to where it left off in schedule_timeout()
(right after the call to schedule()). In case the task was awakened prematurely (if a signal
was received), the timer is destroyed.The function then returns the time slept.

The code in the switch() statement is for special cases and is not part of the general
usage of the function.The MAX_SCHEDULE_TIMEOUT check enables a task to sleep indefi-
nitely. In that case, no timer is set (because there is no bound on the sleep duration), and
the scheduler is immediately invoked. If you do this, you must have another method of
waking your task up!

Sleeping on a Wait Queue, with a Timeout
Chapter 4 looked at how process context code in the kernel can place itself on a wait
queue to wait for a specific event and then invoke the scheduler to select a new task.
Elsewhere, when the event finally occurs, wake_up() is called, and the tasks sleeping on
the wait queue are awakened and can continue running.

Sometimes it is desirable to wait for a specific event or wait for a specified time to
elapse—whichever comes first. In those cases, code might simply call

 From the Library of Wow! eBook

ptg

230 Chapter 11 Timers and Time Management

schedule_timeout() instead of schedule() after placing itself on a wait queue.The task
wakes up when the desired event occurs or the specified time elapses.The code needs to
check why it woke up—it might be because of the event occurring, the time elapsing, or
a received signal—and continue as appropriate.

Conclusion
In this chapter, we looked at the kernel’s concept of time and how both wall time and
uptime are managed.We contrasted relative time with absolute time and absolute events
with periodic events.We then covered time concepts such as the timer interrupt, timer
ticks, HZ, and jiffies.

We looked at the implementation of timers and how you can use them in your own
kernel code.We finished the chapter with an overview of other methods developers can
use to pass time.

Much of the kernel code that you write will require some understanding of time and
its passing.With high probability—especially if you hack on drivers—you will need to
deal with kernel timers. Reading this chapter is good for more than just passing the time.

 From the Library of Wow! eBook

ptg

12
Memory Management

Memory allocation inside the kernel is not as easy as memory allocation outside the
kernel. Simply put, the kernel lacks luxuries enjoyed by user-space. Unlike user-space, the
kernel is not always afforded the capability to easily allocate memory. For example, the
kernel cannot easily deal with memory allocation errors, and the kernel often cannot
sleep. Because of these limitations, and the need for a lightweight memory allocation
scheme, getting hold of memory in the kernel is more complicated than in user-space.
This is not to say that, from a programmer’s point of view, kernel memory allocations are
difficult—just different.

This chapter discusses the methods used to obtain memory inside the kernel. Before
you can delve into the actual allocation interfaces, however, you need to understand how
the kernel handles memory.

Pages
The kernel treats physical pages as the basic unit of memory management.Although the
processor’s smallest addressable unit is a byte or a word, the memory management unit
(MMU, the hardware that manages memory and performs virtual to physical address
translations) typically deals in pages.Therefore, the MMU maintains the system’s page
tables with page-sized granularity (hence their name). In terms of virtual memory, pages
are the smallest unit that matters.

As you can see in Chapter 19,“Portability,” each architecture defines its own page
size. Many architectures even support multiple page sizes. Most 32-bit architectures have
4KB pages, whereas most 64-bit architectures have 8KB pages.This implies that on a
machine with 4KB pages and 1GB of memory, physical memory is divided into 262,144
distinct pages.

The kernel represents every physical page on the system with a struct page structure.
This structure is defined in <linux/mm_types.h>. I’ve simplified the definition, removing
two confusing unions that do not help color our discussion of the basics:

struct page {

unsigned long flags;

 From the Library of Wow! eBook

ptg

232 Chapter 12 Memory Management

atomic_t _count;

atomic_t _mapcount;

unsigned long private;

struct address_space *mapping;

pgoff_t index;

struct list_head lru;

void *virtual;

};

Let’s look at the important fields.The flags field stores the status of the page. Such
flags include whether the page is dirty or whether it is locked in memory. Bit flags repre-
sent the various values, so at least 32 different flags are simultaneously available.The flag
values are defined in <linux/page-flags.h>.

The _count field stores the usage count of the page—that is, how many references
there are to this page.When this count reaches negative one, no one is using the page, and
it becomes available for use in a new allocation. Kernel code should not check this field
directly but instead use the function page_count(), which takes a page structure as its
sole parameter.Although internally _count is negative one when the page is free,
page_count() returns zero to indicate free and a positive nonzero integer when the page
is in use.A page may be used by the page cache (in which case the mapping field points
to the address_space object associated with this page), as private data (pointed at by
private), or as a mapping in a process’s page table.

The virtual field is the page’s virtual address. Normally, this is simply the address of
the page in virtual memory. Some memory (called high memory) is not permanently
mapped in the kernel’s address space. In that case, this field is NULL, and the page must be
dynamically mapped if needed.We discuss high memory shortly.

The important point to understand is that the page structure is associated with physi-
cal pages, not virtual pages.Therefore, what the structure describes is transient at best.
Even if the data contained in the page continues to exist, it might not always be associ-
ated with the same page structure because of swapping and so on.The kernel uses this
data structure to describe the associated physical page.The data structure’s goal is to
describe physical memory, not the data contained therein.

The kernel uses this structure to keep track of all the pages in the system, because the
kernel needs to know whether a page is free (that is, if the page is not allocated). If a
page is not free, the kernel needs to know who owns the page. Possible owners include
user-space processes, dynamically allocated kernel data, static kernel code, the page cache,
and so on.

Developers are often surprised that an instance of this structure is allocated for each
physical page in the system.They think,“What a lot of memory wasted!” Let’s look at just
how bad (or good) the space consumption is from all these pages.Assume struct page
consumes 40 bytes of memory, the system has 8KB physical pages, and the system has
4GB of physical memory. In that case, there are about 524,288 pages and page structures
on the system.The page structures consume 20MB: perhaps a surprisingly large number

 From the Library of Wow! eBook

ptg

233Zones

in absolute terms, but only a small fraction of a percent relative to the system’s 4GB—not
too high a cost for managing all the system’s physical pages.

Zones
Because of hardware limitations, the kernel cannot treat all pages as identical. Some pages,
because of their physical address in memory, cannot be used for certain tasks. Because of
this limitation, the kernel divides pages into different zones.The kernel uses the zones to
group pages of similar properties. In particular, Linux has to deal with two shortcomings
of hardware with respect to memory addressing:

n Some hardware devices can perform DMA (direct memory access) to only certain
memory addresses.

n Some architectures can physically addressing larger amounts of memory than they
can virtually address. Consequently, some memory is not permanently mapped into
the kernel address space.

Because of these constraints, Linux has four primary memory zones:

n ZONE_DMA—This zone contains pages that can undergo DMA.
n ZONE_DMA32—Like ZOME_DMA, this zone contains pages that can undergo DMA.

Unlike ZONE_DMA, these pages are accessible only by 32-bit devices. On some archi-
tectures, this zone is a larger subset of memory.

n ZONE_NORMAL—This zone contains normal, regularly mapped, pages.
n ZONE_HIGHMEM—This zone contains “high memory,” which are pages not perma-

nently mapped into the kernel’s address space.

These zones, and two other, less notable ones, are defined in <linux/mmzone.h>.
The actual use and layout of the memory zones is architecture-dependent. For exam-

ple, some architectures have no problem performing DMA into any memory address. In
those architectures, ZONE_DMA is empty and ZONE_NORMAL is used for allocations regardless
of their use.As a counterexample, on the x86 architecture, ISA devices cannot perform
DMA into the full 32-bit address space1 because ISA devices can access only the first
16MB of physical memory. Consequently, ZONE_DMA on x86 consists of all memory in the
range 0MB–16MB.

ZONE_HIGHMEM works in the same regard.What an architecture can and cannot directly
map varies. On 32-bit x86 systems, ZONE_HIGHMEM is all memory above the physical
896MB mark. On other architectures, ZONE_HIGHMEM is empty because all memory is

1 Similarly, some broken PCI devices can perform DMA into only a 24-bit address space.

 From the Library of Wow! eBook

ptg

234 Chapter 12 Memory Management

directly mapped.The memory contained in ZONE_HIGHMEM is called high memory.2 The rest
of the system’s memory is called low memory.

ZONE_NORMAL tends to be whatever is left over after the previous two zones claim their
requisite shares. On x86, for example, ZONE_NORMAL is all physical memory from 16MB to
896MB. On other (more fortunate) architectures, ZONE_NORMAL is all available memory.
Table 12.1 is a listing of each zone and its consumed pages on x86-32.

Linux partitions the system’s pages into zones to have a pooling in place to satisfy allo-
cations as needed. For example, having a ZONE_DMA pool gives the kernel the capability to
satisfy memory allocations needed for DMA. If such memory is needed, the kernel can
simply pull the required number of pages from ZONE_DMA. Note that the zones do not
have any physical relevance but are simply logical groupings used by the kernel to keep
track of pages.

Although some allocations may require pages from a particular zone, other allocations
may pull from multiple zones. For example, although an allocation for DMA-able mem-
ory must originate from ZONE_DMA, a normal allocation can come from ZONE_DMA or
ZONE_NORMAL but not both; allocations cannot cross zone boundaries.The kernel prefers
to satisfy normal allocations from the normal zone, of course, to save the pages in
ZONE_DMA for allocations that need it. But if push comes to shove (say, if memory should
get low), the kernel can dip its fingers in whatever zone is available and suitable.

Not all architectures define all zones. For example, a 64-bit architecture such as Intel’s
x86-64 can fully map and handle 64-bits of memory.Thus, x86-64 has no ZONE_HIGHMEM
and all physical memory is contained within ZONE_DMA and ZONE_NORMAL.

Each zone is represented by struct zone, which is defined in <linux/mmzone.h>:

struct zone {

unsigned long watermark[NR_WMARK];

unsigned long lowmem_reserve[MAX_NR_ZONES];

struct per_cpu_pageset pageset[NR_CPUS];

spinlock_t lock;

2 Linux’s high memory has nothing to do with high memory in DOS, which works around limitations of

DOS and x86’s “real mode” processor state.

Table 12.1 Zones on x86-32

Zone Description Physical Memory

ZONE_DMA DMA-able pages < 16MB

ZONE_NORMAL Normally addressable pages 16–896MB

ZONE_HIGHMEM Dynamically mapped pages > 896MB

 From the Library of Wow! eBook

ptg

235Getting Pages

struct free_area free_area[MAX_ORDER]

spinlock_t lru_lock;

struct zone_lru {

struct list_head list;

unsigned long nr_saved_scan;

} lru[NR_LRU_LISTS];

struct zone_reclaim_stat reclaim_stat;

unsigned long pages_scanned;

unsigned long flags;

atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];

int prev_priority;

unsigned int inactive_ratio;

wait_queue_head_t *wait_table;

unsigned long wait_table_hash_nr_entries;

unsigned long wait_table_bits;

struct pglist_data *zone_pgdat;

unsigned long zone_start_pfn;

unsigned long spanned_pages;

unsigned long present_pages;

const char *name;

};

The structure is big, but only three zones are in the system and, thus, only three of
these structures. Let’s look at the more important fields.

The lock field is a spin lock that protects the structure from concurrent access. Note
that it protects just the structure and not all the pages that reside in the zone.A specific
lock does not protect individual pages, although parts of the kernel may lock the data that
happens to reside in said pages.

The watermark array holds the minimum, low, and high watermarks for this zone.The
kernel uses watermarks to set benchmarks for suitable per-zone memory consumption,
varying its aggressiveness as the watermarks vary vis-à-vis free memory.

The name field is, unsurprisingly, a NULL-terminated string representing the name of
this zone.The kernel initializes this value during boot in mm/page_alloc.c, and the three
zones are given the names DMA, Normal, and HighMem.

Getting Pages
Now with an understanding of how the kernel manages memory—via pages, zones, and
so on—let’s look at the interfaces the kernel implements to enable you to allocate and
free memory within the kernel.

The kernel provides one low-level mechanism for requesting memory, along with sev-
eral interfaces to access it.All these interfaces allocate memory with page-sized granular-
ity and are declared in <linux/gfp.h>.The core function is

struct page * alloc_pages(gfp_t gfp_mask, unsigned int order)

 From the Library of Wow! eBook

ptg

236 Chapter 12 Memory Management

This allocates 2order (that is, 1 << order) contiguous physical pages and returns a
pointer to the first page’s page structure; on error it returns NULL.We look at the gfp_t
type and gfp_mask parameter in a later section.You can convert a given page to its logical
address with the function

void * page_address(struct page *page)

This returns a pointer to the logical address where the given physical page currently
resides. If you have no need for the actual struct page, you can call

unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)

This function works the same as alloc_pages(), except that it directly returns the
logical address of the first requested page. Because the pages are contiguous, the other
pages simply follow from the first.

If you need only one page, two functions are implemented as wrappers to save you a
bit of typing:

struct page * alloc_page(gfp_t gfp_mask)

unsigned long __get_free_page(gfp_t gfp_mask)

These functions work the same as their brethren but pass zero for the order (20 =
one page).

Getting Zeroed Pages
If you need the returned page filled with zeros, use the function

unsigned long get_zeroed_page(unsigned int gfp_mask)

This function works the same as __get_free_page(), except that the allocated page is
then zero-filled—every bit of every byte is unset.This is useful for pages given to user-
space because the random garbage in an allocated page is not so random; it might contain
sensitive data.All data must be zeroed or otherwise cleaned before it is returned to user-
space to ensure system security is not compromised.Table 12.2 is a listing of all the low-
level page allocation methods.

Table 12.2 Low-Level Page Allocation Methods

Flag Description

alloc_page(gfp_mask) Allocates a single page and returns a pointer to its

alloc_pages(gfp_mask,

order)

Allocates 2order pages and returns a pointer to the
first page’s page structure

__get_free_page(gfp_mask) Allocates a single page and returns a pointer to its
logical address

__get_free_pages(gfp_mask, Allocates 2order pages and returns a pointer to the
first page’s logical address

 From the Library of Wow! eBook

ptg

237Getting Pages

Freeing Pages
A family of functions enables you to free allocated pages when you no longer need them:

void __free_pages(struct page *page, unsigned int order)

void free_pages(unsigned long addr, unsigned int order)

void free_page(unsigned long addr)

You must be careful to free only pages you allocate. Passing the wrong struct page
or address, or the incorrect order, can result in corruption. Remember, the kernel trusts
itself. Unlike with user-space, the kernel will happily hang itself if you ask it.

Let’s look at an example. Here, we want to allocate eight pages:

unsigned long page;

page = __get_free_pages(GFP_KERNEL, 3);

if (!page) {

/* insufficient memory: you must handle this error! */

return –ENOMEM;

}

/* ‘page’ is now the address of the first of eight contiguous pages ... */

And here we free the eight pages, after we are done using them:

free_pages(page, 3);

/*

* our pages are now freed and we should no

* longer access the address stored in ‘page’

*/

The GFP_KERNEL parameter is an example of a gfp_mask flag. It is discussed shortly.
Make note of the error checking after the call to __get_free_pages().A kernel allo-

cation can fail, and your code must check for and handle such errors.This might mean
unwinding everything you have done thus far. It therefore often makes sense to allocate
your memory at the start of the routine to make handling the error easier. Otherwise, by
the time you attempt to allocate memory, it may be rather hard to bail out.

These low-level page functions are useful when you need page-sized chunks of physi-
cally contiguous pages, especially if you need exactly a single page or two. For more gen-
eral byte-sized allocations, the kernel provides kmalloc().

Table 12.2 Low-Level Page Allocation Methods

Flag Description

get_zeroed_page(gfp_mask) Allocates a single page, zero its contents and
returns a pointer to its logical address

 From the Library of Wow! eBook

ptg

238 Chapter 12 Memory Management

kmalloc()
The kmalloc() function’s operation is similar to that of user-space’s familiar malloc()
routine, with the exception of the additional flags parameter.The kmalloc() function is
a simple interface for obtaining kernel memory in byte-sized chunks. If you need whole
pages, the previously discussed interfaces might be a better choice. For most kernel alloca-
tions, however, kmalloc() is the preferred interface.

The function is declared in <linux/slab.h>:

void * kmalloc(size_t size, gfp_t flags)

The function returns a pointer to a region of memory that is at least size bytes in
length.3 The region of memory allocated is physically contiguous. On error, it returns
NULL. Kernel allocations always succeed, unless an insufficient amount of memory is avail-
able.Thus, you must check for NULL after all calls to kmalloc() and handle the error
appropriately.

Let’s look at an example.Assume you need to dynamically allocate enough room for a
fictional dog structure:

struct dog *p;

p = kmalloc(sizeof(struct dog), GFP_KERNEL);

if (!p)

/* handle error ... */

If the kmalloc() call succeeds, p now points to a block of memory that is at least the
requested size.The GFP_KERNEL flag specifies the behavior of the memory allocator while
trying to obtain the memory to return to the caller of kmalloc().

gfp_mask Flags
You’ve seen various examples of allocator flags in both the low-level page allocation func-
tions and kmalloc(). Now it’s time to discuss these flags in depth. Flags are represented
by the gfp_t type, which is defined in <linux/types.h> as an unsigned int. gfp stands
for __get_free_pages(), one of the memory allocation routines we discussed earlier.

The flags are broken up into three categories: action modifiers, zone modifiers, and
types.Action modifiers specify how the kernel is supposed to allocate the requested mem-
ory. In certain situations, only certain methods can be employed to allocate memory. For

3 kmalloc() may allocate more than you asked, although you have no way of knowing how much

more! Because at its heart the kernel allocator is page-based, some allocations may be rounded up to

fit within the available memory. The kernel never returns less memory than requested. If the kernel is

unable to find at least the requested amount, the allocation fails and the function returns NULL.

 From the Library of Wow! eBook

ptg

239kmalloc()

example, interrupt handlers must instruct the kernel not to sleep (because interrupt han-
dlers cannot reschedule) in the course of allocating memory. Zone modifiers specify from
where to allocate memory.As you saw earlier in this chapter, the kernel divides physical
memory into multiple zones, each of which serves a different purpose. Zone modifiers
specify from which of these zones to allocate.Type flags specify a combination of action
and zone modifiers as needed by a certain type of memory allocation.Type flags simplify
the specification of multiple modifiers; instead of providing a combination of action and
zone modifiers, you can specify just one type flag.The GFP_KERNEL is a type flag, which is
used for code in process context inside the kernel. Let’s look at the flags.

Action Modifiers
All the flags, the action modifiers included, are declared in <linux/gfp.h>.The file
<linux/slab.h> includes this header, however, so you often need not include it directly.
In reality, you usually use only the type modifiers, which are discussed later. Nonetheless,
it is good to have an understanding of these individual flags.Table 12.3 is a list of the
action modifiers.

Table 12.3 Action Modifiers

Flag Description

__GFP_WAIT The allocator can sleep.

__GFP_HIGH The allocator can access emergency pools.

__GFP_IO The allocator can start disk I/O.

__GFP_FS The allocator can start filesystem I/O.

__GFP_COLD The allocator should use cache cold pages.

__GFP_NOWARN The allocator does not print failure warnings.

__GFP_REPEAT The allocator repeats the allocation if it fails, but the allocation
can potentially fail.

__GFP_NOFAIL The allocator indefinitely repeats the allocation. The allocation
cannot fail.

__GFP_NORETRY The allocator never retries if the allocation fails.

__GFP_NOMEMALLOC The allocator does not fall back on reserves.

__GFP_HARDWALL The allocator enforces “hardwall” cpuset boundaries.

__GFP_RECLAIMABLE The allocator marks the pages reclaimable.

__GFP_COMP The allocator adds compound page metadata (used internally
by the hugetlb code).

 From the Library of Wow! eBook

ptg

240 Chapter 12 Memory Management

These allocations can be specified together. For example

ptr = kmalloc(size, __GFP_WAIT | __GFP_IO | __GFP_FS);

This call instructs the page allocator (ultimately alloc_pages()) that the allocation
can block, perform I/O, and perform filesystem operations, if needed.This enables the
kernel great freedom in how it can find the free memory to satisfy the allocation.

Most allocations specify these modifiers but do so indirectly by way of the type flags
we discuss shortly. Don’t worry—you won’t have to figure out which of these weird flags
to use every time you allocate memory!

Zone Modifiers
Zone modifiers specify from which memory zone the allocation should originate. Nor-
mally, allocations can be fulfilled from any zone.The kernel prefers ZONE_NORMAL, how-
ever, to ensure that the other zones have free pages when they are needed.

There are only three zone modifiers because there are only three zones other than
ZONE_NORMAL (which is where, by default, allocations originate).Table 12.4 is a listing of
the zone modifiers.

Specifying one of these three flags modifies the zone from which the kernel attempts
to satisfy the allocation.The __GFP_DMA flag forces the kernel to satisfy the request from
ZONE_DMA.This flag says, I absolutely must have memory into which I can perform DMA. Con-
versely, the __GFP_HIGHMEM flag instructs the allocator to satisfy the request from either
ZONE_NORMAL or (preferentially) ZONE_HIGHMEM.This flag says, I can use high memory, so I can
be a doll and hand you back some of that, but normal memory works, too. If neither flag is speci-
fied, the kernel fulfills the allocation from either ZONE_DMA or ZONE_NORMAL, with a strong
preference to satisfy the allocation from ZONE_NORMAL.

You cannot specify __GFP_HIGHMEM to either __get_free_pages() or kmalloc().
Because these both return a logical address, and not a page structure, it is possible that
these functions would allocate memory not currently mapped in the kernel’s virtual
address space and, thus, does not have a logical address. Only alloc_pages() can allocate
high memory.The majority of your allocations, however, will not specify a zone modifier
because ZONE_NORMAL is sufficient.

Table 12.4 Zone Modifiers

Flag Description

__GFP_DMA Allocates only from ZONE_DMA

__GFP_DMA32 Allocates only from ZONE_DMA32

__GFP_HIGHMEM Allocates from ZONE_HIGHMEM or ZONE_NORMAL

 From the Library of Wow! eBook

ptg

241kmalloc()

Type Flags
The type flags specify the required action and zone modifiers to fulfill a particular type
of transaction.Therefore, kernel code tends to use the correct type flag and not specify
the myriad of other flags it might need.This is both simpler and less error-prone.Table
12.5 is a list of the type flags, and Table 12.6 shows which modifiers are associated with
each type flag.

Table 12.5 Type Flags

Flag Description

GFP_ATOMIC The allocation is high priority and must not sleep. This is the flag
to use in interrupt handlers, in bottom halves, while holding a spin-
lock, and in other situations where you cannot sleep.

GFP_NOWAIT Like GFP_ATOMIC, except that the call will not fallback on emer-
gency memory pools. This increases the liklihood of the memory
allocation failing.

GFP_NOIO This allocation can block, but must not initiate disk I/O. This is the
flag to use in block I/O code when you cannot cause more disk
I/O, which might lead to some unpleasant recursion.

GFP_NOFS This allocation can block and can initiate disk I/O, if it must, but it
will not initiate a filesystem operation. This is the flag to use in
filesystem code when you cannot start another filesystem operation.

GFP_KERNEL This is a normal allocation and might block. This is the flag to use
in process context code when it is safe to sleep. The kernel will do
whatever it has to do to obtain the memory requested by the
caller. This flag should be your default choice.

GFP_USER This is a normal allocation and might block. This flag is used to
allocate memory for user-space processes.

GFP_HIGHUSER This is an allocation from ZONE_HIGHMEM and might block. This
flag is used to allocate memory for user-space processes.

GFP_DMA This is an allocation from ZONE_DMA. Device drivers that need
DMA-able memory use this flag, usually in combination with one of
the preceding flags.

Table 12.6 Modifiers Behind Each Type Flag

Flag Modifier Flags

GFP_ATOMIC __GFP_HIGH

GFP_NOWAIT 0

GFP_NOIO __GFP_WAIT

 From the Library of Wow! eBook

ptg

242 Chapter 12 Memory Management

Let’s look at the frequently used flags and when and why you might need them.The
vast majority of allocations in the kernel use the GFP_KERNEL flag.The resulting allocation
is a normal priority allocation that might sleep. Because the call can block, this flag can be
used only from process context that can safely reschedule. (That is, no locks are held and
so on.) Because this flag does not make any stipulations as to how the kernel may obtain
the requested memory, the memory allocation has a high probability of succeeding.

On the far other end of the spectrum is the GFP_ATOMIC flag. Because this flag specifies
a memory allocation that cannot sleep, the allocation is restrictive in the memory it can
obtain for the caller. If no sufficiently sized contiguous chunk of memory is available, the
kernel is not likely to free memory because it cannot put the caller to sleep. Conversely,
the GFP_KERNEL allocation can put the caller to sleep to swap inactive pages to disk, flush
dirty pages to disk, and so on. Because GFP_ATOMIC cannot perform any of these actions,
it has less of a chance of succeeding (at least when memory is low) compared to
GFP_KERNEL allocations. Nonetheless, the GFP_ATOMIC flag is the only option when the
current code cannot sleep, such as with interrupt handlers, softirqs, and tasklets.

In between these two flags are GFP_NOIO and GFP_NOFS.Allocations initiated with
these flags might block, but they refrain from performing certain other operations.A
GFP_NOIO allocation does not initiate any disk I/O whatsoever to fulfill the request. On
the other hand, GFP_NOFS might initiate disk I/O, but does not initiate filesystem I/O.
Why might you need these flags? They are needed for certain low-level block I/O or
filesystem code, respectively. Imagine if a common path in the filesystem code allocated
memory without the GFP_NOFS flag.The allocation could result in more filesystem opera-
tions, which would then beget other allocations and, thus, more filesystem operations!
This could continue indefinitely. Code such as this that invokes the allocator must ensure
that the allocator also does not execute it, or else the allocation can create a deadlock.
Not surprisingly, the kernel uses these two flags only in a handful of places.

The GFP_DMA flag is used to specify that the allocator must satisfy the request from
ZONE_DMA.This flag is used by device drivers, which need DMA-able memory for their
devices. Normally, you combine this flag with the GFP_ATOMIC or GFP_KERNEL flag.

Table 12.6 Modifiers Behind Each Type Flag

Flag Modifier Flags

GFP_NOFS (__GFP_WAIT | __GFP_IO)

GFP_KERNEL (__GFP_WAIT | __GFP_IO | __GFP_FS)

GFP_USER (__GFP_WAIT | __GFP_IO | __GFP_FS)

GFP_HIGHUSER (__GFP_WAIT | __GFP_IO | __GFP_FS | __GFP_HIGHMEM)

GFP_DMA __GFP_DMA

(continued)

 From the Library of Wow! eBook

ptg

243kmalloc()

In the vast majority of the code that you write, you use either GFP_KERNEL or
GFP_ATOMIC.Table 12.7 is a list of the common situations and the flags to use. Regardless
of the allocation type, you must check for and handle failures.

kfree()
The counterpart to kmalloc() is kfree(), which is declared in <linux/slab.h>:

void kfree(const void *ptr)

The kfree() method frees a block of memory previously allocated with kmalloc().
Do not call this function on memory not previously allocated with kmalloc(), or on
memory that has already been freed. Doing so is a bug, resulting in bad behavior such as
freeing memory belonging to another part of the kernel.As in user-space, be careful to
balance your allocations with your deallocations to prevent memory leaks and other bugs.
Note that calling kfree(NULL) is explicitly checked for and safe.

Let’s look at an example of allocating memory in an interrupt handler. In this exam-
ple, an interrupt handler wants to allocate a buffer to hold incoming data.The preproces-
sor macro BUF_SIZE is the size in bytes of this desired buffer, which is presumably larger
than just a couple of bytes.

char *buf;

buf = kmalloc(BUF_SIZE, GFP_ATOMIC);

if (!buf)

/* error allocating memory ! */

Table 12.7 Which Flag to Use When

Situation Solution

Process context, can sleep Use GFP_KERNEL.

Process context, cannot sleep Use GFP_ATOMIC, or perform your allocations with
GFP_KERNEL at an earlier or later point when you
can sleep.

Interrupt handler Use GFP_ATOMIC.

Softirq Use GFP_ATOMIC.

Tasklet Use GFP_ATOMIC.

Need DMA-able memory, can
sleep

Use (GFP_DMA | GFP_KERNEL).

Need DMA-able memory, cannot
sleep

Use (GFP_DMA | GFP_ATOMIC), or perform your
allocation at an earlier point when you can sleep.

 From the Library of Wow! eBook

ptg

244 Chapter 12 Memory Management

Later, when you no longer need the memory, do not forget to free it:

kfree(buf);

vmalloc()
The vmalloc() function works in a similar fashion to kmalloc(), except it allocates
memory that is only virtually contiguous and not necessarily physically contiguous.This
is how a user-space allocation function works:The pages returned by malloc() are con-
tiguous within the virtual address space of the processor, but there is no guarantee that
they are actually contiguous in physical RAM.The kmalloc() function guarantees that
the pages are physically contiguous (and virtually contiguous).The vmalloc() function
ensures only that the pages are contiguous within the virtual address space. It does this by
allocating potentially noncontiguous chunks of physical memory and “fixing up” the page
tables to map the memory into a contiguous chunk of the logical address space.

For the most part, only hardware devices require physically contiguous memory allo-
cations. On many architectures, hardware devices live on the other side of the memory
management unit and, thus, do not understand virtual addresses. Consequently, any
regions of memory that hardware devices work with must exist as a physically contiguous
block and not merely a virtually contiguous one. Blocks of memory used only by soft-
ware—for example, process-related buffers—are fine using memory that is only virtually
contiguous. In your programming, you never know the difference.All memory appears to
the kernel as logically contiguous.

Despite the fact that physically contiguous memory is required in only certain cases,
most kernel code uses kmalloc() and not vmalloc() to obtain memory. Primarily, this is
for performance.The vmalloc() function, to make nonphysically contiguous pages con-
tiguous in the virtual address space, must specifically set up the page table entries.Worse,
pages obtained via vmalloc() must be mapped by their individual pages (because they
are not physically contiguous), which results in much greater TLB4 thrashing than you see
when directly mapped memory is used. Because of these concerns, vmalloc() is used
only when absolutely necessary—typically, to obtain large regions of memory. For exam-
ple, when modules are dynamically inserted into the kernel, they are loaded into memory
created via vmalloc().

The vmalloc() function is declared in <linux/vmalloc.h> and defined in
mm/vmalloc.c. Usage is identical to user-space’s malloc():

void * vmalloc(unsigned long size)

4 The TLB (translation lookaside buffer) is a hardware cache used by most architectures to cache the

mapping of virtual addresses to physical addresses. This greatly improves the performance of the sys-

tem, because most memory access is done via virtual addressing.

 From the Library of Wow! eBook

ptg

245Slab Layer

The function returns a pointer to at least size bytes of virtually contiguous memory.
On error, the function returns NULL.The function might sleep and thus cannot be called
from interrupt context or other situations in which blocking is not permissible.

To free an allocation obtained via vmalloc(), use

void vfree(const void *addr)

This function frees the block of memory beginning at addr that was previously allo-
cated via vmalloc().The function can also sleep and, thus, cannot be called from inter-
rupt context. It has no return value.

Usage of these functions is simple:

char *buf;

buf = vmalloc(16 * PAGE_SIZE); /* get 16 pages */

if (!buf)

/* error! failed to allocate memory */

/*

* buf now points to at least a 16*PAGE_SIZE bytes

* of virtually contiguous block of memory

*/

After you finish with the memory, make sure to free it by using

vfree(buf);

Slab Layer
Allocating and freeing data structures is one of the most common operations inside any
kernel.To facilitate frequent allocations and deallocations of data, programmers often
introduce free lists.A free list contains a block of available, already allocated, data structures.
When code requires a new instance of a data structure, it can grab one of the structures
off the free list rather than allocate the sufficient amount of memory and set it up for the
data structure. Later, when the data structure is no longer needed, it is returned to the free
list instead of deallocated. In this sense, the free list acts as an object cache, caching a fre-
quently used type of object.

One of the main problems with free lists in the kernel is that there exists no global
control.When available memory is low, there is no way for the kernel to communicate
to every free list that it should shrink the sizes of its cache to free up memory.The ker-
nel has no understanding of the random free lists at all.To remedy this, and to consoli-
date code, the Linux kernel provides the slab layer (also called the slab allocator).The slab
layer acts as a generic data structure-caching layer.

 From the Library of Wow! eBook

ptg

246 Chapter 12 Memory Management

The concept of a slab allocator was first implemented in Sun Microsystem’s SunOS
5.4 operating system.5 The Linux data structure caching layer shares the same name and
basic design.

The slab layer attempts to leverage several basic tenets:

n Frequently used data structures tend to be allocated and freed often, so cache them.
n Frequent allocation and deallocation can result in memory fragmentation (the

inability to find large contiguous chunks of available memory).To prevent this, the
cached free lists are arranged contiguously. Because freed data structures return to
the free list, there is no resulting fragmentation.

n The free list provides improved performance during frequent allocation and deallo-
cation because a freed object can be immediately returned to the next allocation.

n If the allocator is aware of concepts such as object size, page size, and total cache
size, it can make more intelligent decisions.

n If part of the cache is made per-processor (separate and unique to each processor
on the system), allocations and frees can be performed without an SMP lock.

n If the allocator is NUMA-aware, it can fulfill allocations from the same memory
node as the requestor.

n Stored objects can be colored to prevent multiple objects from mapping to the same
cache lines.

The slab layer in Linux was designed and implemented with these premises in mind.

Design of the Slab Layer
The slab layer divides different objects into groups called caches, each of which stores a
different type of object.There is one cache per object type. For example, one cache is for
process descriptors (a free list of task_struct structures), whereas another cache is for
inode objects (struct inode). Interestingly, the kmalloc() interface is built on top of
the slab layer, using a family of general purpose caches.

The caches are then divided into slabs (hence the name of this subsystem).The slabs
are composed of one or more physically contiguous pages.Typically, slabs are composed of
only a single page. Each cache may consist of multiple slabs.

Each slab contains some number of objects, which are the data structures being cached.
Each slab is in one of three states: full, partial, or empty.A full slab has no free objects. (All
objects in the slab are allocated.) An empty slab has no allocated objects. (All objects in
the slab are free.) A partial slab has some allocated objects and some free objects.When
some part of the kernel requests a new object, the request is satisfied from a partial slab, if
one exists. Otherwise, the request is satisfied from an empty slab. If there exists no empty

5 And subsequently documented in Bonwick, J. “The Slab Allocator: An Object-Caching Kernel Memory

Allocator,” USENIX, 1994.

 From the Library of Wow! eBook

ptg

247Slab Layer

slab, one is created. Obviously, a full slab can never satisfy a request because it does not
have any free objects.This strategy reduces fragmentation.

Let’s look at the inode structure as an example, which is the in-memory representa-
tion of a disk inode (see Chapter 13,“The Virtual Filesystem”).These structures are fre-
quently created and destroyed, so it makes sense to manage them via the slab allocator.
Thus, struct inode is allocated from the inode_cachep cache. (Such a naming conven-
tion is standard.) This cache is made up of one or more slabs—probably a lot of slabs
because there are a lot of objects. Each slab contains as many struct inode objects as
possible.When the kernel requests a new inode structure, the kernel returns a pointer to
an already allocated, but unused structure from a partial slab or, if there is no partial slab,
an empty slab.When the kernel is done using the inode object, the slab allocator marks
the object as free. Figure 12.1 diagrams the relationship between caches, slabs, and objects.

Each cache is represented by a kmem_cache structure.This structure contains three
lists—slabs_full, slabs_partial, and slabs_empty—stored inside a kmem_list3
structure, which is defined in mm/slab.c.These lists contain all the slabs associated with
the cache.A slab descriptor, struct slab, represents each slab:

struct slab {

struct list_head list; /* full, partial, or empty list */

unsigned long colouroff; /* offset for the slab coloring */

void *s_mem; /* first object in the slab */

unsigned int inuse; /* allocated objects in the slab */

Cache

slab

object

object

object

slab

object

object

Figure 12.1 The relationship between caches, slabs, and objects.

 From the Library of Wow! eBook

ptg

248 Chapter 12 Memory Management

kmem_bufctl_t free; /* first free object, if any */

};

Slab descriptors are allocated either outside the slab in a general cache or inside the
slab itself, at the beginning.The descriptor is stored inside the slab if the total size of the
slab is sufficiently small, or if internal slack space is sufficient to hold the descriptor.

The slab allocator creates new slabs by interfacing with the low-level kernel page allo-
cator via __get_free_pages():

static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)

{

struct page *page;

void *addr;

int i;

flags |= cachep->gfpflags;

if (likely(nodeid == -1)) {

addr = (void*)__get_free_pages(flags, cachep->gfporder);

if (!addr)

return NULL;

page = virt_to_page(addr);

} else {

page = alloc_pages_node(nodeid, flags, cachep->gfporder);

if (!page)

return NULL;

addr = page_address(page);

}

i = (1 << cachep->gfporder);

if (cachep->flags & SLAB_RECLAIM_ACCOUNT)

atomic_add(i, &slab_reclaim_pages);

add_page_state(nr_slab, i);

while (i––) {

SetPageSlab(page);

page++;

}

return addr;

}

This function uses __get_free_pages() to allocate memory sufficient to hold the
cache.The first parameter to this function points to the specific cache that needs more
pages.The second parameter points to the flags given to __get_free_pages(). Note how
this value is binary OR’ed against another value.This adds default flags that the cache
requires to the flags parameter.The power-of-two size of the allocation is stored in
cachep->gfporder.The previous function is a bit more complicated than one might
expect because code that makes the allocator NUMA-aware.When nodeid is not nega-
tive one, the allocator attempts to fulfill the allocation from the same memory node that

 From the Library of Wow! eBook

ptg

249Slab Layer

requested the allocation.This provides better performance on NUMA systems, in which
accessing memory outside your node results in a performance penalty.

For educational purposes, we can ignore the NUMA-aware code and write a simple
kmem_getpages():

static inline void * kmem_getpages(struct kmem_cache *cachep, gfp_t flags)

{

void *addr;

flags |= cachep->gfpflags;

addr = (void*) __get_free_pages(flags, cachep->gfporder);

return addr;

}

Memory is then freed by kmem_freepages(), which calls free_pages() on the given
cache’s pages. Of course, the point of the slab layer is to refrain from allocating and freeing
pages. In turn, the slab layer invokes the page allocation function only when there does
not exist any partial or empty slabs in a given cache.The freeing function is called only
when available memory grows low and the system is attempting to free memory, or when
a cache is explicitly destroyed.

The slab layer is managed on a per-cache basis through a simple interface, which is
exported to the entire kernel.The interface enables the creation and destruction of new
caches and the allocation and freeing of objects within the caches.The sophisticated man-
agement of caches and the slabs within is entirely handled by the internals of the slab
layer.After you create a cache, the slab layer works just like a specialized allocator for the
specific type of object.

Slab Allocator Interface
A new cache is created via

struct kmem_cache * kmem_cache_create(const char *name,

size_t size,

size_t align,

unsigned long flags,

void (*ctor)(void *));

The first parameter is a string storing the name of the cache.The second parameter is
the size of each element in the cache.The third parameter is the offset of the first object
within a slab.This is done to ensure a particular alignment within the page. Normally,
zero is sufficient, which results in the standard alignment.The flags parameter specifies
optional settings controlling the cache’s behavior. It can be zero, specifying no special
behavior, or one or more of the following flags OR’ed together:

n SLAB_HWCACHE_ALIGN—This flag instructs the slab layer to align each object within
a slab to a cache line.This prevents “false sharing” (two or more objects mapping to

 From the Library of Wow! eBook

ptg

250 Chapter 12 Memory Management

the same cache line despite existing at different addresses in memory).This
improves performance but comes at a cost of increased memory footprint because
the stricter alignment results in more wasted slack space. How large the increase in
memory consumption is depends on the size of the objects and how they naturally
align with respect to the system’s cache lines. For frequently used caches in per-
formance-critical code, setting this option is a good idea; otherwise, think twice.

n SLAB_POISON—This flag causes the slab layer to fill the slab with a known value
(a5a5a5a5).This is called poisoning and is useful for catching access to uninitial-
ized memory.

n SLAB_RED_ZONE—This flag causes the slab layer to insert “red zones” around the
allocated memory to help detect buffer overruns.

n SLAB_PANIC—This flag causes the slab layer to panic if the allocation fails.This flag
is useful when the allocation must not fail, as in, say, allocating the VMA structure
cache (see Chapter 15,“The Process Address Space”) during bootup.

n SLAB_CACHE_DMA—This flag instructs the slab layer to allocate each slab in DMA-
able memory.This is needed if the allocated object is used for DMA and must
reside in ZONE_DMA. Otherwise, you do not need this and you should not set it.

The final parameter, ctor, is a constructor for the cache.The constructor is called
whenever new pages are added to the cache. In practice, caches in the Linux kernel do
not often utilize a constructor. In fact, there once was a deconstructor parameter, too, but
it was removed because no kernel code used it.You can pass NULL for this parameter.

On success, kmem_cache_create() returns a pointer to the created cache. Otherwise, it
returns NULL.This function must not be called from interrupt context because it can sleep.

To destroy a cache, call

int kmem_cache_destroy(struct kmem_cache *cachep)

As the name implies, this function destroys the given cache. It is generally invoked
from module shutdown code in modules that create their own caches. It must not be
called from interrupt context because it may sleep.The caller of this function must ensure
two conditions are true prior to invoking this function:

n All slabs in the cache are empty. Indeed, if an object in one of the slabs were still
allocated and in use, how could the cache be destroyed?

n No one accesses the cache during (and obviously after) a call to
kmem_cache_destroy().The caller must ensure this synchronization.

On success, the function returns zero; it returns nonzero otherwise.

Allocating from the Cache
After a cache is created, an object is obtained from the cache via

void * kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)

 From the Library of Wow! eBook

ptg

251Slab Layer

This function returns a pointer to an object from the given cache cachep. If no free
objects are in any slabs in the cache, and the slab layer must obtain new pages via
kmem_getpages(), the value of flags is passed to __get_free_pages().These are the
same flags we looked at earlier.You probably want GFP_KERNEL or GFP_ATOMIC.

To later free an object and return it to its originating slab, use the function

void kmem_cache_free(struct kmem_cache *cachep, void *objp)

This marks the object objp in cachep as free.

Example of Using the Slab Allocator
Let’s look at a real-life example that uses the task_struct structure (the process descrip-
tor).This code, in slightly more complicated form, is in kernel/fork.c.

First, the kernel has a global variable that stores a pointer to the task_struct cache:

struct kmem_cache *task_struct_cachep;

During kernel initialization, in fork_init(), defined in kernel/fork.c, the cache is
created:

task_struct_cachep = kmem_cache_create(“task_struct”,

sizeof(struct task_struct),

ARCH_MIN_TASKALIGN,

SLAB_PANIC | SLAB_NOTRACK,

NULL);

This creates a cache named task_struct, which stores objects of type struct
task_struct.The objects are created with an offset of ARCH_MIN_TASKALIGN bytes
within the slab.This preprocessor definition is an architecture-specific value. It is usually
defined as L1_CACHE_BYTES—the size in bytes of the L1 cache.There is no constructor.
Note that the return value is not checked for NULL, which denotes failure, because the
SLAB_PANIC flag was given. If the allocation fails, the slab allocator calls panic(). If you
do not provide this flag, you must check the return! The SLAB_PANIC flag is used here
because this is a requisite cache for system operation. (The machine is not much good
without process descriptors.)

Each time a process calls fork(), a new process descriptor must be created (recall
Chapter 3,“Process Management”).This is done in dup_task_struct(), which is called
from do_fork():

struct task_struct *tsk;

tsk = kmem_cache_alloc(task_struct_cachep, GFP_KERNEL);

if (!tsk)

return NULL;

 From the Library of Wow! eBook

ptg

252 Chapter 12 Memory Management

After a task dies, if it has no children waiting on it, its process descriptor is freed and
returned to the task_struct_cachep slab cache.This is done in free_task_struct()
(in which tsk is the exiting task):

kmem_cache_free(task_struct_cachep, tsk);

Because process descriptors are part of the core kernel and always needed, the
task_struct_cachep cache is never destroyed. If it were, however, you would destroy the
cache via

int err;

err = kmem_cache_destroy(task_struct_cachep);

if (err)

/* error destroying cache */

Easy enough? The slab layer handles all the low-level alignment, coloring, allocations,
freeing, and reaping during low-memory conditions. If you frequently create many
objects of the same type, consider using the slab cache. Definitely do not implement your
own free list!

Statically Allocating on the Stack
In user-space, allocations such as some of the examples discussed thus far could have
occurred on the stack because we knew the size of the allocation a priori. User-space is
afforded the luxury of a large, dynamically growing stack, whereas the kernel has no such
luxury—the kernel’s stack is small and fixed.When each process is given a small, fixed
stack, memory consumption is minimized, and the kernel need not burden itself with
stack management code.

The size of the per-process kernel stacks depends on both the architecture and a com-
pile-time option. Historically, the kernel stack has been two pages per process.This is usu-
ally 8KB for 32-bit architectures and 16KB for 64-bit architectures because they usually
have 4KB and 8KB pages, respectively.

Single-Page Kernel Stacks
Early in the 2.6 kernel series, however, an option was introduced to move to single-page
kernel stacks.When enabled, each process is given only a single page—4KB on 32-bit
architectures and 8KB on 64-bit architectures.This was done for two reasons. First, it
results in a page with less memory consumption per process. Second and most important
is that as uptime increases, it becomes increasingly hard to find two physically contiguous
unallocated pages. Physical memory becomes fragmented, and the resulting VM pressure
from allocating a single new process is expensive.

There is one more complication. Keep with me:We have almost grasped the entire
universe of knowledge with respect to kernel stacks. Now, each process’s entire call chain
has to fit in its kernel stack. Historically, however, interrupt handlers also used the kernel

 From the Library of Wow! eBook

ptg

253High Memory Mappings

stack of the process they interrupted, thus they too had to fit.This was efficient and sim-
ple, but it placed even tighter constraints on the already meager kernel stack.When the
stack moved to only a single page, interrupt handlers no longer fit.

To rectify this problem, the kernel developers implemented a new feature: interrupt
stacks. Interrupt stacks provide a single per-processor stack used for interrupt handlers.
With this option, interrupt handlers no longer share the kernel stack of the interrupted
process. Instead, they use their own stacks.This consumes only a single page per processor.

To summarize, kernel stacks are either one or two pages, depending on compile-time
configuration options.The stack can therefore range from 4KB to 16KB. Historically,
interrupt handlers shared the stack of the interrupted process.When single page stacks are
enabled, interrupt handlers are given their own stacks. In any case, unbounded recursion
and alloca() are obviously not allowed.

Okay. Got it?

Playing Fair on the Stack
In any given function, you must keep stack usage to a minimum.There is no hard and fast
rule, but you should keep the sum of all local (that is, automatic) variables in a particular
function to a maximum of a couple hundred bytes. Performing a large static allocation on
the stack, such as of a large array or structure, is dangerous. Otherwise, stack allocations
are performed in the kernel just as in user-space. Stack overflows occur silently and will
undoubtedly result in problems. Because the kernel does not make any effort to manage
the stack, when the stack overflows, the excess data simply spills into whatever exists at
the tail end of the stack.The first thing to eat it is the thread_info structure. (Recall
from Chapter 3 that this structure is allocated at the end of each process’s kernel stack.)
Beyond the stack, any kernel data might lurk.At best, the machine will crash when the
stack overflows.At worst, the overflow will silently corrupt data.

Therefore, it is wise to use a dynamic allocation scheme, such as one of those previ-
ously discussed in this chapter for any large memory allocations.

High Memory Mappings
By definition, pages in high memory might not be permanently mapped into the kernel’s
address space.Thus, pages obtained via alloc_pages() with the __GFP_HIGHMEM flag
might not have a logical address.

On the x86 architecture, all physical memory beyond the 896MB mark is high mem-
ory and is not permanently or automatically mapped into the kernel’s address space,
despite x86 processors being capable of physically addressing up to 4GB (64GB with
PAE6) of physical RAM.After they are allocated, these pages must be mapped into the

6 PAE stands for Physical Address Extension. It is a feature of x86 processors that enables them to

physically address 36 bits (64GB) worth of memory, despite having only a 32-bit virtual address space.

 From the Library of Wow! eBook

ptg

254 Chapter 12 Memory Management

kernel’s logical address space. On x86, pages in high memory are mapped somewhere
between the 3GB and 4GB mark.

Permanent Mappings
To map a given page structure into the kernel’s address space, use this function, declared
in <linux/highmem.h>:

void *kmap(struct page *page)

This function works on either high or low memory. If the page structure belongs to a
page in low memory, the page’s virtual address is simply returned. If the page resides in
high memory, a permanent mapping is created and the address is returned.The function
may sleep, so kmap() works only in process context.

Because the number of permanent mappings are limited (if not, we would not be in
this mess and could just permanently map all memory), high memory should be
unmapped when no longer needed.This is done via the following function, which
unmaps the given page:

void kunmap(struct page *page)

Temporary Mappings
For times when a mapping must be created but the current context cannot sleep, the ker-
nel provides temporary mappings (which are also called atomic mappings).These are a set of
reserved mappings that can hold a temporary mapping.The kernel can atomically map a
high memory page into one of these reserved mappings. Consequently, a temporary map-
ping can be used in places that cannot sleep, such as interrupt handlers, because obtaining
the mapping never blocks.

Setting up a temporary mapping is done via

void *kmap_atomic(struct page *page, enum km_type type)

The type parameter is one of the following enumerations, which describe the purpose
of the temporary mapping.They are defined in <asm-generic/kmap_types.h>:

enum km_type {

KM_BOUNCE_READ,

KM_SKB_SUNRPC_DATA,

KM_SKB_DATA_SOFTIRQ,

KM_USER0,

KM_USER1,

KM_BIO_SRC_IRQ,

KM_BIO_DST_IRQ,

KM_PTE0,

KM_PTE1,

KM_PTE2,

KM_IRQ0,

 From the Library of Wow! eBook

ptg

255Per-CPU Allocations

KM_IRQ1,

KM_SOFTIRQ0,

KM_SOFTIRQ1,

KM_SYNC_ICACHE,

KM_SYNC_DCACHE,

KM_UML_USERCOPY,

KM_IRQ_PTE,

KM_NMI,

KM_NMI_PTE,

KM_TYPE_NR

};

This function does not block and thus can be used in interrupt context and other
places that cannot reschedule. It also disables kernel preemption, which is needed because
the mappings are unique to each processor. (And a reschedule might change which task is
running on which processor.)

The mapping is undone via

void kunmap_atomic(void *kvaddr, enum km_type type)

This function also does not block. In many architectures it does not do anything at all
except enable kernel preemption, because a temporary mapping is valid only until the
next temporary mapping.Thus, the kernel can just “forget about” the kmap_atomic()
mapping, and kunmap_atomic() does not need to do anything special.The next atomic
mapping then simply overwrites the previous one.

Per-CPU Allocations
Modern SMP-capable operating systems use per-CPU data—data that is unique to a
given processor—extensively.Typically, per-CPU data is stored in an array. Each item in
the array corresponds to a possible processor on the system.The current processor num-
ber indexes this array, which is how the 2.4 kernel handles per-CPU data. Nothing is
wrong with this approach, so plenty of 2.6 kernel code still uses it.You declare the data as

unsigned long my_percpu[NR_CPUS];

Then you access it as

int cpu;

cpu = get_cpu(); /* get current processor and disable kernel preemption */

my_percpu[cpu]++; /* ... or whatever */

printk(“my_percpu on cpu=%d is %lu\n”, cpu, my_percpu[cpu]);

put_cpu(); /* enable kernel preemption */

Note that no lock is required because this data is unique to the current processor. If no
processor touches this data except the current, no concurrency concerns exist, and the
current processor can safely access the data without lock.

 From the Library of Wow! eBook

ptg

256 Chapter 12 Memory Management

Kernel preemption is the only concern with per-CPU data. Kernel preemption poses
two problems, listed here:

n If your code is preempted and reschedules on another processor, the cpu variable is
no longer valid because it points to the wrong processor. (In general, code cannot
sleep after obtaining the current processor.)

n If another task preempts your code, it can concurrently access my_percpu on the
same processor, which is a race condition.

Any fears are unwarranted, however, because the call get_cpu(), on top of returning
the current processor number, also disables kernel preemption.The corresponding call to
put_cpu() enables kernel preemption. Note that if you use a call to
smp_processor_id() to get the current processor number, kernel preemption is not dis-
abled; always use the aforementioned methods to remain safe.

The New percpu Interface
The 2.6 kernel introduced a new interface, known as percpu, for creating and manipulat-
ing per-CPU data.This interface generalizes the previous example. Creation and manipu-
lation of per-CPU data is simplified with this new approach.

The previously discussed method of creating and accessing per-CPU data is still valid
and accepted.This new interface, however, grew out of the needs for a simpler and more
powerful method for manipulating per-CPU data on large symmetrical multiprocessing
computers.

The header <linux/percpu.h> declares all the routines.You can find the actual defini-
tions there, in mm/slab.c, and in <asm/percpu.h>.

Per-CPU Data at Compile-Time
Defining a per-CPU variable at compile time is quite easy:

DEFINE_PER_CPU(type, name);

This creates an instance of a variable of type type, named name, for each processor on
the system. If you need a declaration of the variable elsewhere, to avoid compile warn-
ings, the following macro is your friend:

DECLARE_PER_CPU(type, name);

You can manipulate the variables with the get_cpu_var() and put_cpu_var() rou-
tines.A call to get_cpu_var() returns an lvalue for the given variable on the current
processor. It also disables preemption, which put_cpu_var() correspondingly enables.

get_cpu_var(name)++; /* increment name on this processor */

put_cpu_var(name); /* done; enable kernel preemption */

 From the Library of Wow! eBook

ptg

257The New percpu Interface

You can obtain the value of another processor’s per-CPU data, too:

per_cpu(name, cpu)++; /* increment name on the given processor */

You need to be careful with this approach because per_cpu() neither disables kernel
preemption nor provides any sort of locking mechanism.The lockless nature of per-CPU
data exists only if the current processor is the only manipulator of the data. If other
processors touch other processors’ data, you need locks. Be careful. Chapter 9,“An Intro-
duction to Kernel Synchronization,” and Chapter 10,“Kernel Synchronization Methods,”
discuss locking.

Another subtle note:These compile-time per-CPU examples do not work for mod-
ules because the linker actually creates them in a unique executable section (for the curi-
ous, .data.percpu). If you need to access per-CPU data from modules, or if you need to
create such data dynamically, there is hope.

Per-CPU Data at Runtime
The kernel implements a dynamic allocator, similar to kmalloc(), for creating per-CPU
data.This routine creates an instance of the requested memory for each processor on the
systems.The prototypes are in <linux/percpu.h>:

void *alloc_percpu(type); /* a macro */

void *__alloc_percpu(size_t size, size_t align);

void free_percpu(const void *);

The alloc_percpu() macro allocates one instance of an object of the given type for
every processor on the system. It is a wrapper around __alloc_percpu(), which takes the
actual number of bytes to allocate as a parameter and the number of bytes on which to
align the allocation.The alloc_percpu() macro aligns the allocation on a byte boundary
that is the natural alignment of the given type. Such alignment is the usual behavior. For
example,

struct rabid_cheetah = alloc_percpu(struct rabid_cheetah);

is the same as

struct rabid_cheetah = __alloc_percpu(sizeof (struct rabid_cheetah),

__alignof__ (struct rabid_cheetah));

The __alignof__ construct is a gcc feature that returns the required (or recom-
mended, in the case of weird architectures with no alignment requirements) alignment in
bytes for a given type or lvalue. Its syntax is just like that of sizeof. For example, the fol-
lowing would return four on x86:

__alignof__ (unsigned long)

When given an lvalue, the return value is the largest alignment that the lvalue might
have. For example, an lvalue inside a structure could have a greater alignment requirement
than if an instance of the same type were created outside of the structure, because of
structure alignment requirements. Issues of alignment are further discussed in Chapter 19.

 From the Library of Wow! eBook

ptg

258 Chapter 12 Memory Management

A corresponding call to free_percpu() frees the given data on all processors.
A call to alloc_percpu()or __alloc_percpu() returns a pointer, which is used to

indirectly reference the dynamically created per-CPU data.The kernel provides two
macros to make this easy:

get_cpu_var(ptr); /* return a void pointer to this processor’s copy of ptr */

put_cpu_var(ptr); /* done; enable kernel preemption */

The get_cpu_var()macro returns a pointer to the specific instance of the current
processor’s data. It also disables kernel preemption, which a call to put_cpu_var()then
enables.

Let’s look at a full example of using these functions. Of course, this example is a bit
silly because you would normally allocate the memory once (perhaps in some initializa-
tion function), use it in various places, and free it once (perhaps in some shutdown func-
tion). Nevertheless, this example should make usage quite clear:

void *percpu_ptr;

unsigned long *foo;

percpu_ptr = alloc_percpu(unsigned long);

if (!ptr)

/* error allocating memory .. */

foo = get_cpu_var(percpu_ptr);

/* manipulate foo .. */

put_cpu_var(percpu_ptr);

Reasons for Using Per-CPU Data
There are several benefits to using per-CPU data.The first is the reduction in locking
requirements. Depending on the semantics by which processors access the per-CPU data,
you might not need any locking at all. Keep in mind that the “only this processor accesses this
data” rule is only a programming convention.You need to ensure that the local processor
accesses only its unique data. Nothing stops you from cheating.

Second, per-CPU data greatly reduces cache invalidation.This occurs as processors try
to keep their caches in sync. If one processor manipulates data held in another processor’s
cache, that processor must flush or otherwise update its cache. Constant cache invalidation
is called thrashing the cache and wreaks havoc on system performance.The use of per-CPU
data keeps cache effects to a minimum because processors ideally access only their own
data.The percpu interface cache-aligns all data to ensure that accessing one processor’s data
does not bring in another processor’s data on the same cache line.

Consequently, the use of per-CPU data often removes (or at least minimizes) the need
for locking.The only safety requirement for the use of per-CPU data is disabling kernel
preemption, which is much cheaper than locking, and the interface does so automatically.
Per-CPU data can safely be used from either interrupt or process context. Note, however,

 From the Library of Wow! eBook

ptg

259Picking an Allocation Method

that you cannot sleep in the middle of accessing per-CPU data (or else you might end up
on a different processor).

No one is currently required to use the new per-CPU interface. Doing things manu-
ally (with an array as originally discussed) is fine, as long as you disable kernel preemp-
tion.The new interface, however, is much easier to use and might gain additional
optimizations in the future. If you do decide to use per-CPU data in your kernel code,
consider the new interface. One caveat against its use is that it is not backward compatible
with earlier kernels.

Picking an Allocation Method
With myriad allocations methods and approaches, it is not always obvious how to get at
memory in the kernel—but it sure is important! If you need contiguous physical pages,
use one of the low-level page allocators or kmalloc().This is the standard manner of
allocating memory from within the kernel, and most likely, how you will allocate most of
your memory. Recall that the two most common flags given to these functions are
GFP_ATOMIC and GFP_KERNEL. Specify the GFP_ATOMIC flag to perform a high priority
allocation that will not sleep.This is a requirement of interrupt handlers and other pieces
of code that cannot sleep. Code that can sleep, such as process context code that does not
hold a spin lock, should use GFP_KERNEL.This flag specifies an allocation that can sleep, if
needed, to obtain the requested memory.

If you want to allocate from high memory, use alloc_pages().The alloc_pages()
function returns a struct page and not a pointer to a logical address. Because high
memory might not be mapped, the only way to access it might be via the corresponding
struct page structure.To obtain an actual pointer, use kmap() to map the high memory
into the kernel’s logical address space.

If you do not need physically contiguous pages—only virtually contiguous—use
vmalloc(), although bear in mind the slight performance hit taken with vmalloc() over
kmalloc().The vmalloc() function allocates kernel memory that is virtually contiguous
but not, per se, physically contiguous. It performs this feat much as user-space allocations
do, by mapping chunks of physical memory into a contiguous logical address space.

If you are creating and destroying many large data structures, consider setting up a slab
cache.The slab layer maintains a per-processor object cache (a free list), which might
greatly enhance object allocation and deallocation performance. Rather than frequently
allocate and free memory, the slab layer stores a cache of already allocated objects for you.
When you need a new chunk of memory to hold your data structure, the slab layer often
does not need to allocate more memory and instead simply can return an object from
the cache.

 From the Library of Wow! eBook

ptg

260 Chapter 12 Memory Management

Conclusion
In this chapter, we studied how the Linux kernel manages memory.We looked at the var-
ious units and categorizations of memory, including bytes, pages, and zones. (Chapter 15
looks at a fourth categorization, the process address space.) We then discussed various
mechanisms for obtaining memory, including the page allocator and the slab allocator.
Obtaining memory inside the kernel is not always easy because you must be careful to
ensure that the allocation process respects certain kernel conditions, such as an inability to
block or access the filesystem.To that end, we discussed the gfp flags and the various use
cases and requirements for each flag.The relative difficulty in getting hold of memory in
the kernel is one of the largest differences between kernel and user-space development.
While much of this chapter discussed the family of interfaces used to obtain memory, you
should now also wield an understanding of why memory allocation in a kernel is difficult.

With this chapter under our belt, the next chapter discusses the virtual filesystem
(VFS), the kernel subsystem responsible for managing filesystems and providing a unified,
consistent file API to user-space applications. Onward!

 From the Library of Wow! eBook

ptg

13
The Virtual Filesystem

The Virtual Filesystem (sometimes called the Virtual File Switch or more commonly sim-
ply the VFS) is the subsystem of the kernel that implements the file and filesystem-related
interfaces provided to user-space programs.All filesystems rely on the VFS to enable them
not only to coexist, but also to interoperate.This enables programs to use standard Unix
system calls to read and write to different filesystems, even on different media, as shown in
Figure 13.1.

Common Filesystem Interface
The VFS is the glue that enables system calls such as open(), read(), and write()to
work regardless of the filesystem or underlying physical medium.These days, that might
not sound novel—we have long been taking such a feature for granted—but it is a non-

hard disk with ext3

removable disk
with ext2

VFS cp(1)

Figure 13.1 The VFS in action: Using the cp(1) utility to move
data from a hard disk mounted as ext3 to a removable disk mounted

as ext2. Two different filesystems, two different media, one VFS.

 From the Library of Wow! eBook

ptg

262 Chapter 13 The Virtual Filesystem

trivial feat for such generic system calls to work across many diverse filesystems and vary-
ing media. More so, the system calls work between these different filesystems and media—
we can use standard system calls to copy or move files from one filesystem to another. In
older operating systems, such as DOS, this would never have worked; any access to a non-
native filesystem required special tools. It is only because modern operating systems, such
as Linux, abstract access to the filesystems via a virtual interface that such interoperation
and generic access is possible.

New filesystems and new varieties of storage media can find their way into Linux, and
programs need not be rewritten or even recompiled. In this chapter, we will discuss the
VFS, which provides the abstraction allowing myriad filesystems to behave as one. In the
next chapter, we will discuss the block I/O layer, which allows various storage devices—
CD to Blu-ray discs to hard drives to CompactFlash.Together, the VFS and the block I/O
layer provide the abstractions, interfaces, and glue that allow user-space programs to issue
generic system calls to access files via a uniform naming policy on any filesystem, which
itself exists on any storage medium.

Filesystem Abstraction Layer
Such a generic interface for any type of filesystem is feasible only because the kernel
implements an abstraction layer around its low-level filesystem interface.This abstraction
layer enables Linux to support different filesystems, even if they differ in supported fea-
tures or behavior.This is possible because the VFS provides a common file model that can
represent any filesystem’s general feature set and behavior. Of course, it is biased toward
Unix-style filesystems. (You see what constitutes a Unix-style filesystem later in this chap-
ter.) Regardless, wildly differing filesystem types are still supportable in Linux, from
DOS’s FAT to Windows’s NTFS to many Unix-style and Linux-specific filesystems.

The abstraction layer works by defining the basic conceptual interfaces and data struc-
tures that all filesystems support.The filesystems mold their view of concepts such as “this
is how I open files” and “this is what a directory is to me” to match the expectations of the
VFS.The actual filesystem code hides the implementation details.To the VFS layer and the
rest of the kernel, however, each filesystem looks the same.They all support notions such
as files and directories, and they all support operations such as creating and deleting files.

The result is a general abstraction layer that enables the kernel to support many types
of filesystems easily and cleanly.The filesystems are programmed to provide the abstracted
interfaces and data structures the VFS expects; in turn, the kernel easily works with any
filesystem and the exported user-space interface seamlessly works on any filesystem.

In fact, nothing in the kernel needs to understand the underlying details of the filesys-
tems, except the filesystems themselves. For example, consider a simple user-space pro-
gram that does

ret = write (fd, buf, len);

This system call writes the len bytes pointed to by buf into the current position in the
file represented by the file descriptor fd.This system call is first handled by a generic

 From the Library of Wow! eBook

ptg

263Unix Filesystems

sys_write() system call that determines the actual file writing method for the filesystem
on which fd resides.The generic write system call then invokes this method, which is part
of the filesystem implementation, to write the data to the media (or whatever this filesys-
tem does on write). Figure 13.2 shows the flow from user-space’s write() call through
the data arriving on the physical media. On one side of the system call is the genericVFS
interface, providing the frontend to user-space; on the other side of the system call is the
filesystem-specific backend, dealing with the implementation details.The rest of this chap-
ter looks at how theVFS achieves this abstraction and provides its interfaces.

Unix Filesystems
Historically, Unix has provided four basic filesystem-related abstractions: files, directory
entries, inodes, and mount points.

A filesystem is a hierarchical storage of data adhering to a specific structure. Filesystems
contain files, directories, and associated control information.Typical operations performed
on filesystems are creation, deletion, and mounting. In Unix, filesystems are mounted at a
specific mount point in a global hierarchy known as a namespace.1 This enables all
mounted filesystems to appear as entries in a single tree. Contrast this single, unified tree
with the behavior of DOS and Windows, which break the file namespace up into drive
letters, such as C:.This breaks the namespace up among device and partition boundaries,
“leaking” hardware details into the filesystem abstraction.As this delineation may be arbi-
trary and even confusing to the user, it is inferior to Linux’s unified namespace.

A file is an ordered string of bytes.The first byte marks the beginning of the file, and
the last byte marks the end of the file. Each file is assigned a human-readable name for
identification by both the system and the user.Typical file operations are read, write,

1 Recently, Linux has made this hierarchy per-process, to give a unique namespace to each process.

Because each process inherits its parent’s namespace (unless you specify otherwise), there is seem-

ingly one global namespace.

user-space VFS filesystem physical media

write() sys_write() filesystem’s
write method

Figure 13.2 The flow of data from user-space issuing a write() call, through the
VFS’s generic system call, into the filesystem’s specific write method, and finally

arriving at the physical media.

 From the Library of Wow! eBook

ptg

264 Chapter 13 The Virtual Filesystem

create, and delete.The Unix concept of the file is in stark contrast to record-oriented
filesystems, such as OpenVMS’s Files-11. Record-oriented filesystems provide a richer,
more structured representation of files than Unix’s simple byte-stream abstraction, at the
cost of simplicity and flexibility.

Files are organized in directories.A directory is analogous to a folder and usually con-
tains related files. Directories can also contain other directories, called subdirectories. In
this fashion, directories may be nested to form paths. Each component of a path is called a
directory entry.A path example is /home/wolfman/butter—the root directory /, the direc-
tories home and wolfman, and the file butter are all directory entries, called dentries. In
Unix, directories are actually normal files that simply list the files contained therein.
Because a directory is a file to the VFS, the same operations performed on files can be
performed on directories.

Unix systems separate the concept of a file from any associated information about it,
such as access permissions, size, owner, creation time, and so on.This information is some-
times called file metadata (that is, data about the file’s data) and is stored in a separate data
structure from the file, called the inode.This name is short for index node, although these
days the term inode is much more ubiquitous.

All this information is tied together with the filesystem’s own control information,
which is stored in the superblock.The superblock is a data structure containing information
about the filesystem as a whole. Sometimes the collective data is referred to as filesystem
metadata. Filesystem metadata includes information about both the individual files and the
filesystem as a whole.

Traditionally, Unix filesystems implement these notions as part of their physical on-
disk layout. For example, file information is stored as an inode in a separate block on the
disk; directories are files; control information is stored centrally in a superblock, and so
on.The Unix file concepts are physically mapped on to the storage medium.The Linux
VFS is designed to work with filesystems that understand and implement such concepts.
Non-Unix filesystems, such as FAT or NTFS, still work in Linux, but their filesystem
code must provide the appearance of these concepts. For example, even if a filesystem
does not support distinct inodes, it must assemble the inode data structure in memory as
if it did. Or if a filesystem treats directories as a special object, to the VFS they must repre-
sent directories as mere files. Often, this involves some special processing done on-the-fly
by the non-Unix filesystems to cope with the Unix paradigm and the requirements of
the VFS. Such filesystems still work, however, and the overhead is not unreasonable.

 From the Library of Wow! eBook

ptg

265VFS Objects and Their Data Structures

VFS Objects and Their Data Structures
TheVFS is object-oriented.2 A family of data structures represents the common file
model.These data structures are akin to objects. Because the kernel is programmed
strictly in C, without the benefit of a language directly supporting object-oriented para-
digms, the data structures are represented as C structures.The structures contain both data
and pointers to filesystem-implemented functions that operate on the data.

The four primary object types of the VFS are

n The superblock object, which represents a specific mounted filesystem.
n The inode object, which represents a specific file.
n The dentry object, which represents a directory entry, which is a single component

of a path.
n The file object, which represents an open file as associated with a process.

Note that because the VFS treats directories as normal files, there is not a specific
directory object. Recall from earlier in this chapter that a dentry represents a component
in a path, which might include a regular file. In other words, a dentry is not the same as a
directory, but a directory is just another kind of file. Got it?

An operations object is contained within each of these primary objects.These objects
describe the methods that the kernel invokes against the primary objects:

n The super_operations object, which contains the methods that the kernel can
invoke on a specific filesystem, such as write_inode() and sync_fs()

n The inode_operations object, which contains the methods that the kernel can
invoke on a specific file, such as create() and link()

n The dentry_operations object, which contains the methods that the kernel can
invoke on a specific directory entry, such as d_compare() and d_delete()

n The file_operations object, which contains the methods that a process can
invoke on an open file, such as read() and write()

The operations objects are implemented as a structure of pointers to functions that
operate on the parent object. For many methods, the objects can inherit a generic func-
tion if basic functionality is sufficient. Otherwise, the specific instance of the particular
filesystem fills in the pointers with its own filesystem-specific methods.

2 People often miss this, or even deny it, but there are many examples of object-oriented programming

in the kernel. Although the kernel developers may shun C++ and other explicitly object-oriented lan-

guages, thinking in terms of objects is often useful. The VFS is a good example of how to do clean and

efficient OOP in C, which is a language that lacks any OOP constructs.

 From the Library of Wow! eBook

ptg

266 Chapter 13 The Virtual Filesystem

Again, note that objects refer to structures—not explicit class types, such as those in
C++ or Java.These structures, however, represent specific instances of an object, their
associated data, and methods to operate on themselves.They are very much objects.

The VFS loves structures, and it is comprised of a couple more than the primary
objects previously discussed. Each registered filesystem is represented by a
file_system_type structure.This object describes the filesystem and its capabilities. Fur-
thermore, each mount point is represented by the vfsmount structure.This structure con-
tains information about the mount point, such as its location and mount flags.

Finally, two per-process structures describe the filesystem and files associated with a
process.They are, respectively, the fs_struct structure and the file structure.

The rest of this chapter discusses these objects and the role they play in implementing
the VFS layer.

The Superblock Object
The superblock object is implemented by each filesystem and is used to store information
describing that specific filesystem.This object usually corresponds to the filesystem
superblock or the filesystem control block, which is stored in a special sector on disk (hence
the object’s name). Filesystems that are not disk-based (a virtual memory–based filesys-
tem, such as sysfs, for example) generate the superblock on-the-fly and store it in memory.

The superblock object is represented by struct super_block and defined in
<linux/fs.h>. Here is what it looks like, with comments describing each entry:

struct super_block {

struct list_head s_list; /* list of all superblocks */

dev_t s_dev; /* identifier */

unsigned long s_blocksize; /* block size in bytes */

unsigned char s_blocksize_bits; /* block size in bits */

unsigned char s_dirt; /* dirty flag */

unsigned long long s_maxbytes; /* max file size */

struct file_system_type s_type; /* filesystem type */

struct super_operations s_op; /* superblock methods */

struct dquot_operations *dq_op; /* quota methods */

struct quotactl_ops *s_qcop; /* quota control methods */

struct export_operations *s_export_op; /* export methods */

unsigned long s_flags; /* mount flags */

unsigned long s_magic; /* filesystem’s magic number */

struct dentry *s_root; /* directory mount point */

struct rw_semaphore s_umount; /* unmount semaphore */

struct semaphore s_lock; /* superblock semaphore */

int s_count; /* superblock ref count */

int s_need_sync; /* not-yet-synced flag */

atomic_t s_active; /* active reference count */

void *s_security; /* security module */

struct xattr_handler **s_xattr; /* extended attribute handlers */

 From the Library of Wow! eBook

ptg

267Superblock Operations

struct list_head s_inodes; /* list of inodes */

struct list_head s_dirty; /* list of dirty inodes */

struct list_head s_io; /* list of writebacks */

struct list_head s_more_io; /* list of more writeback */

struct hlist_head s_anon; /* anonymous dentries */

struct list_head s_files; /* list of assigned files */

struct list_head s_dentry_lru; /* list of unused dentries */

int s_nr_dentry_unused; /* number of dentries on list */

struct block_device *s_bdev; /* associated block device */

struct mtd_info *s_mtd; /* memory disk information */

struct list_head s_instances; /* instances of this fs */

struct quota_info s_dquot; /* quota-specific options */

int s_frozen; /* frozen status */

wait_queue_head_t s_wait_unfrozen; /* wait queue on freeze */

char s_id[32]; /* text name */

void *s_fs_info; /* filesystem-specific info */

fmode_t s_mode; /* mount permissions */

struct semaphore s_vfs_rename_sem; /* rename semaphore */

u32 s_time_gran; /* granularity of timestamps */

char *s_subtype; /* subtype name */

char *s_options; /* saved mount options */

};

The code for creating, managing, and destroying superblock objects lives in
fs/super.c.A superblock object is created and initialized via the alloc_super() func-
tion.When mounted, a filesystem invokes this function, reads its superblock off of the
disk, and fills in its superblock object.

Superblock Operations
The most important item in the superblock object is s_op, which is a pointer to the
superblock operations table.The superblock operations table is represented by struct
super_operations and is defined in <linux/fs.h>. It looks like this:

struct super_operations {

struct inode *(*alloc_inode)(struct super_block *sb);

void (*destroy_inode)(struct inode *);

void (*dirty_inode) (struct inode *);

int (*write_inode) (struct inode *, int);

void (*drop_inode) (struct inode *);

void (*delete_inode) (struct inode *);

void (*put_super) (struct super_block *);

void (*write_super) (struct super_block *);

int (*sync_fs)(struct super_block *sb, int wait);

int (*freeze_fs) (struct super_block *);

int (*unfreeze_fs) (struct super_block *);

 From the Library of Wow! eBook

ptg

268 Chapter 13 The Virtual Filesystem

int (*statfs) (struct dentry *, struct kstatfs *);

int (*remount_fs) (struct super_block *, int *, char *);

void (*clear_inode) (struct inode *);

void (*umount_begin) (struct super_block *);

int (*show_options)(struct seq_file *, struct vfsmount *);

int (*show_stats)(struct seq_file *, struct vfsmount *);

ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);

ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);

int (*bdev_try_to_free_page)(struct super_block*, struct page*, gfp_t);

};

Each item in this structure is a pointer to a function that operates on a superblock
object.The superblock operations perform low-level operations on the filesystem and
its inodes.

When a filesystem needs to perform an operation on its superblock, it follows the
pointers from its superblock object to the desired method. For example, if a filesystem
wanted to write to its superblock, it would invoke

sb->s_op->write_super(sb);

In this call, sb is a pointer to the filesystem’s superblock. Following that pointer into
s_op yields the superblock operations table and ultimately the desired write_super()
function, which is then invoked. Note how the write_super() call must be passed a
superblock, despite the method being associated with one.This is because of the lack of
object-oriented support in C. In C++, a call such as the following would suffice:

sb.write_super();

In C, there is no way for the method to easily obtain its parent, so you have to pass it.
Let’s take a look at some of the superblock operations that are specified by

super_operations:

n struct inode * alloc_inode(struct super_block *sb)

Creates and initializes a new inode object under the given superblock.
n void destroy_inode(struct inode *inode)

Deallocates the given inode.
n void dirty_inode(struct inode *inode)

Invoked by the VFS when an inode is dirtied (modified). Journaling filesystems such
as ext3 and ext4 use this function to perform journal updates.

n void write_inode(struct inode *inode, int wait)

Writes the given inode to disk.The wait parameter specifies whether the operation
should be synchronous.

n void drop_inode(struct inode *inode)

 From the Library of Wow! eBook

ptg

269Superblock Operations

Called by the VFS when the last reference to an inode is dropped. Normal Unix
filesystems do not define this function, in which case the VFS simply deletes the
inode.

n void delete_inode(struct inode *inode)

Deletes the given inode from the disk.
n void put_super(struct super_block *sb)

Called by the VFS on unmount to release the given superblock object.The caller
must hold the s_lock lock.

n void write_super(struct super_block *sb)

Updates the on-disk superblock with the specified superblock.The VFS uses this
function to synchronize a modified in-memory superblock with the disk.The caller
must hold the s_lock lock.

n int sync_fs(struct super_block *sb, int wait)

Synchronizes filesystem metadata with the on-disk filesystem.The wait parameter
specifies whether the operation is synchronous.

n void write_super_lockfs(struct super_block *sb)

Prevents changes to the filesystem, and then updates the on-disk superblock with
the specified superblock. It is currently used by LVM (the LogicalVolume Manager).

n void unlockfs(struct super_block *sb)

Unlocks the filesystem against changes as done by write_super_lockfs().
n int statfs(struct super_block *sb, struct statfs *statfs)

Called by the VFS to obtain filesystem statistics.The statistics related to the given
filesystem are placed in statfs.

n int remount_fs(struct super_block *sb, int *flags, char *data)

Called by the VFS when the filesystem is remounted with new mount options.The
caller must hold the s_lock lock.

n void clear_inode(struct inode *inode)

Called by the VFS to release the inode and clear any pages containing related data.
n void umount_begin(struct super_block *sb)

Called by the VFS to interrupt a mount operation. It is used by network filesystems,
such as NFS.

All these functions are invoked by the VFS, in process context.All except
dirty_inode() may all block if needed.

Some of these functions are optional; a specific filesystem can then set its value in the
superblock operations structure to NULL. If the associated pointer is NULL, the VFS either
calls a generic function or does nothing, depending on the operation.

 From the Library of Wow! eBook

ptg

270 Chapter 13 The Virtual Filesystem

The Inode Object
The inode object represents all the information needed by the kernel to manipulate a file
or directory. For Unix-style filesystems, this information is simply read from the on-disk
inode. If a filesystem does not have inodes, however, the filesystem must obtain the infor-
mation from wherever it is stored on the disk. Filesystems without inodes generally store
file-specific information as part of the file; unlike Unix-style filesystems, they do not sepa-
rate file data from its control information. Some modern filesystems do neither and store
file metadata as part of an on-disk database.Whatever the case, the inode object is con-
structed in memory in whatever manner is applicable to the filesystem.

The inode object is represented by struct inode and is defined in <linux/fs.h>.
Here is the structure, with comments describing each entry:

struct inode {

struct hlist_node i_hash; /* hash list */

struct list_head i_list; /* list of inodes */

struct list_head i_sb_list; /* list of superblocks */

struct list_head i_dentry; /* list of dentries */

unsigned long i_ino; /* inode number */

atomic_t i_count; /* reference counter */

unsigned int i_nlink; /* number of hard links */

uid_t i_uid; /* user id of owner */

gid_t i_gid; /* group id of owner */

kdev_t i_rdev; /* real device node */

u64 i_version; /* versioning number */

loff_t i_size; /* file size in bytes */

seqcount_t i_size_seqcount; /* serializer for i_size */

struct timespec i_atime; /* last access time */

struct timespec i_mtime; /* last modify time */

struct timespec i_ctime; /* last change time */

unsigned int i_blkbits; /* block size in bits */

blkcnt_t i_blocks; /* file size in blocks */

unsigned short i_bytes; /* bytes consumed */

umode_t i_mode; /* access permissions */

spinlock_t i_lock; /* spinlock */

struct rw_semaphore i_alloc_sem; /* nests inside of i_sem */

struct semaphore i_sem; /* inode semaphore */

struct inode_operations *i_op; /* inode ops table */

struct file_operations *i_fop; /* default inode ops */

struct super_block *i_sb; /* associated superblock */

struct file_lock *i_flock; /* file lock list */

struct address_space *i_mapping; /* associated mapping */

struct address_space i_data; /* mapping for device */

struct dquot *i_dquot[MAXQUOTAS]; /* disk quotas for inode */

struct list_head i_devices; /* list of block devices */

union {

 From the Library of Wow! eBook

ptg

271Inode Operations

struct pipe_inode_info *i_pipe; /* pipe information */

struct block_device *i_bdev; /* block device driver */

struct cdev *i_cdev; /* character device driver */

};

unsigned long i_dnotify_mask; /* directory notify mask */

struct dnotify_struct *i_dnotify; /* dnotify */

struct list_head inotify_watches; /* inotify watches */

struct mutex inotify_mutex; /* protects inotify_watches */

unsigned long i_state; /* state flags */

unsigned long dirtied_when; /* first dirtying time */

unsigned int i_flags; /* filesystem flags */

atomic_t i_writecount; /* count of writers */

void *i_security; /* security module */

void *i_private; /* fs private pointer */

};

An inode represents each file on a filesystem, but the inode object is constructed in
memory only as files are accessed.This includes special files, such as device files or pipes.
Consequently, some of the entries in struct inode are related to these special files. For
example, the i_pipe entry points to a named pipe data structure, i_bdev points to a
block device structure, and i_cdev points to a character device structure.These three
pointers are stored in a union because a given inode can represent only one of these (or
none of them) at a time.

It might occur that a given filesystem does not support a property represented in the
inode object. For example, some filesystems might not record an access timestamp. In that
case, the filesystem is free to implement the feature however it sees fit; it can store zero for
i_atime, make i_atime equal to i_mtime, update i_atime in memory but never flush it
back to disk, or whatever else the filesystem implementer decides.

Inode Operations
As with the superblock operations, the inode_operations member is important. It
describes the filesystem’s implemented functions that the VFS can invoke on an inode.As
with the superblock, inode operations are invoked via

i->i_op->truncate(i)

In this call, i is a reference to a particular inode. In this case, the truncate() operation
defined by the filesystem on which i exists is called on the given inode.The
inode_operations structure is defined in <linux/fs.h>:

struct inode_operations {

int (*create) (struct inode *,struct dentry *,int, struct nameidata *);

struct dentry * (*lookup) (struct inode *,struct dentry *, struct nameidata *);

int (*link) (struct dentry *,struct inode *,struct dentry *);

int (*unlink) (struct inode *,struct dentry *);

int (*symlink) (struct inode *,struct dentry *,const char *);

 From the Library of Wow! eBook

ptg

272 Chapter 13 The Virtual Filesystem

int (*mkdir) (struct inode *,struct dentry *,int);

int (*rmdir) (struct inode *,struct dentry *);

int (*mknod) (struct inode *,struct dentry *,int,dev_t);

int (*rename) (struct inode *, struct dentry *,

struct inode *, struct dentry *);

int (*readlink) (struct dentry *, char __user *,int);

void * (*follow_link) (struct dentry *, struct nameidata *);

void (*put_link) (struct dentry *, struct nameidata *, void *);

void (*truncate) (struct inode *);

int (*permission) (struct inode *, int);

int (*setattr) (struct dentry *, struct iattr *);

int (*getattr) (struct vfsmount *mnt, struct dentry *, struct kstat *);

int (*setxattr) (struct dentry *, const char *,const void *,size_t,int);

ssize_t (*getxattr) (struct dentry *, const char *, void *, size_t);

ssize_t (*listxattr) (struct dentry *, char *, size_t);

int (*removexattr) (struct dentry *, const char *);

void (*truncate_range)(struct inode *, loff_t, loff_t);

long (*fallocate)(struct inode *inode, int mode, loff_t offset,

loff_t len);

int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start,

u64 len);

};

The following interfaces constitute the various functions that the VFS may perform, or
ask a specific filesystem to perform, on a given inode:

n int create(struct inode *dir, struct dentry *dentry, int mode)

TheVFS calls this function from the creat() and open() system calls to create a new
inode associated with the given dentry object with the specified initial access mode.

n struct dentry * lookup(struct inode *dir, struct dentry *dentry)

This function searches a directory for an inode corresponding to a filename speci-
fied in the given dentry.

n int link(struct dentry *old_dentry,

struct inode *dir,

struct dentry *dentry)

Invoked by the link() system call to create a hard link of the file old_dentry in
the directory dir with the new filename dentry.

n int unlink(struct inode *dir,

struct dentry *dentry)

Called from the unlink() system call to remove the inode specified by the direc-
tory entry dentry from the directory dir.

 From the Library of Wow! eBook

ptg

273Inode Operations

n int symlink(struct inode *dir,

struct dentry *dentry,

const char *symname)

Called from the symlink() system call to create a symbolic link named symname to
the file represented by dentry in the directory dir.

n int mkdir(struct inode *dir,

struct dentry *dentry,

int mode)

Called from the mkdir() system call to create a new directory with the given ini-
tial mode.

n int rmdir(struct inode *dir,

struct dentry *dentry)

Called by the rmdir() system call to remove the directory referenced by dentry
from the directory dir.

n int mknod(struct inode *dir,

struct dentry *dentry,

int mode, dev_t rdev)

Called by the mknod() system call to create a special file (device file, named pipe, or
socket).The file is referenced by the device rdev and the directory entry dentry in
the directory dir.The initial permissions are given via mode.

n int rename(struct inode *old_dir,

struct dentry *old_dentry,

struct inode *new_dir,

struct dentry *new_dentry)

Called by the VFS to move the file specified by old_dentry from the old_dir
directory to the directory new_dir, with the filename specified by new_dentry.

n int readlink(struct dentry *dentry,

char *buffer, int buflen)

Called by the readlink() system call to copy at most buflen bytes of the full path
associated with the symbolic link specified by dentry into the specified buffer.

n int follow_link(struct dentry *dentry,

struct nameidata *nd)

Called by the VFS to translate a symbolic link to the inode to which it points.The
link pointed at by dentry is translated, and the result is stored in the nameidata
structure pointed at by nd.

n int put_link(struct dentry *dentry,

struct nameidata *nd)

Called by the VFS to clean up after a call to follow_link().

 From the Library of Wow! eBook

ptg

274 Chapter 13 The Virtual Filesystem

n void truncate(struct inode *inode)

Called by the VFS to modify the size of the given file. Before invocation, the inode’s
i_size field must be set to the desired new size.

n int permission(struct inode *inode, int mask)

Checks whether the specified access mode is allowed for the file referenced by
inode.This function returns zero if the access is allowed and a negative error code
otherwise. Most filesystems set this field to NULL and use the generic VFS method,
which simply compares the mode bits in the inode’s objects to the given mask.
More complicated filesystems, such as those supporting access control lists (ACLs),
have a specific permission() method.

n int setattr(struct dentry *dentry,

struct iattr *attr)

Called from notify_change() to notify a “change event” after an inode has been
modified.

n int getattr(struct vfsmount *mnt,

struct dentry *dentry,

struct kstat *stat)

Invoked by the VFS upon noticing that an inode needs to be refreshed from disk.
Extended attributes allow the association of key/values pairs with files.

n int setxattr(struct dentry *dentry,

const char *name,

const void *value,

size_t size, int flags)

Used by the VFS to set the extended attribute name to the value value on the file
referenced by dentry.

n ssize_t getxattr(struct dentry *dentry,

const char *name,

void *value, size_t size)

Used by the VFS to copy into value the value of the extended attribute name for
the specified file.

n ssize_t listxattr(struct dentry *dentry,

char *list, size_t size)

Copies the list of all attributes for the specified file into the buffer list.
n int removexattr(struct dentry *dentry,

const char *name)

Removes the given attribute from the given file.

 From the Library of Wow! eBook

ptg

275The Dentry Object

The Dentry Object
As discussed, the VFS treats directories as a type of file. In the path /bin/vi, both bin and
vi are files—bin being the special directory file and vi being a regular file.An inode
object represents each of these components. Despite this useful unification, the VFS often
needs to perform directory-specific operations, such as path name lookup. Path name
lookup involves translating each component of a path, ensuring it is valid, and following it
to the next component.

To facilitate this, the VFS employs the concept of a directory entry (dentry).A dentry is
a specific component in a path. Using the previous example, /, bin, and vi are all dentry
objects.The first two are directories and the last is a regular file.This is an important
point: Dentry objects are all components in a path, including files. Resolving a path and
walking its components is a nontrivial exercise, time-consuming and heavy on string
operations, which are expensive to execute and cumbersome to code.The dentry object
makes the whole process easier.

Dentries might also include mount points. In the path /mnt/cdrom/foo, the compo-
nents /, mnt, cdrom, and foo are all dentry objects.The VFS constructs dentry objects on-
the-fly, as needed, when performing directory operations.

Dentry objects are represented by struct dentry and defined in <linux/dcache.h>.
Here is the structure, with comments describing each member:

struct dentry {

atomic_t d_count; /* usage count */

unsigned int d_flags; /* dentry flags */

spinlock_t d_lock; /* per-dentry lock */

int d_mounted; /* is this a mount point? */

struct inode *d_inode; /* associated inode */

struct hlist_node d_hash; /* list of hash table entries */

struct dentry *d_parent; /* dentry object of parent */

struct qstr d_name; /* dentry name */

struct list_head d_lru; /* unused list */

union {

struct list_head d_child; /* list of dentries within */

struct rcu_head d_rcu; /* RCU locking */

} d_u;

struct list_head d_subdirs; /* subdirectories */

struct list_head d_alias; /* list of alias inodes */

unsigned long d_time; /* revalidate time */

struct dentry_operations *d_op; /* dentry operations table */

struct super_block *d_sb; /* superblock of file */

void *d_fsdata; /* filesystem-specific data */

unsigned char d_iname[DNAME_INLINE_LEN_MIN]; /* short name */

};

Unlike the previous two objects, the dentry object does not correspond to any sort of
on-disk data structure.The VFS creates it on-the-fly from a string representation of a path

 From the Library of Wow! eBook

ptg

276 Chapter 13 The Virtual Filesystem

name. Because the dentry object is not physically stored on the disk, no flag in struct
dentry specifies whether the object is modified (that is, whether it is dirty and needs to
be written back to disk).

Dentry State
A valid dentry object can be in one of three states: used, unused, or negative.

A used dentry corresponds to a valid inode (d_inode points to an associated inode)
and indicates that there are one or more users of the object (d_count is positive).A used
dentry is in use by the VFS and points to valid data and, thus, cannot be discarded.

An unused dentry corresponds to a valid inode (d_inode points to an inode), but the
VFS is not currently using the dentry object (d_count is zero). Because the dentry object
still points to a valid object, the dentry is kept around—cached—in case it is needed
again. Because the dentry has not been destroyed prematurely, the dentry need not be re-
created if it is needed in the future, and path name lookups can complete quicker than if
the dentry was not cached. If it is necessary to reclaim memory, however, the dentry can
be discarded because it is not in active use.

A negative dentry is not associated with a valid inode (d_inode is NULL) because either
the inode was deleted or the path name was never correct to begin with.The dentry is
kept around, however, so that future lookups are resolved quickly. For example, consider a
daemon that continually tries to open and read a config file that is not present.The
open() system calls continually returns ENOENT, but not until after the kernel constructs
the path, walks the on-disk directory structure, and verifies the file’s inexistence. Because
even this failed lookup is expensive, caching the “negative” results are worthwhile.
Although a negative dentry is useful, it can be destroyed if memory is at a premium
because nothing is actually using it.

A dentry object can also be freed, sitting in the slab object cache, as discussed in the
previous chapter. In that case, there is no valid reference to the dentry object in any VFS
or any filesystem code.

The Dentry Cache
After the VFS layer goes through the trouble of resolving each element in a path name
into a dentry object and arriving at the end of the path, it would be quite wasteful to
throw away all that work. Instead, the kernel caches dentry objects in the dentry cache or,
simply, the dcache.

The dentry cache consists of three parts:

n Lists of “used” dentries linked off their associated inode via the i_dentry field of
the inode object. Because a given inode can have multiple links, there might be
multiple dentry objects; consequently, a list is used.

 From the Library of Wow! eBook

ptg

277The Dentry Object

n A doubly linked “least recently used” list of unused and negative dentry objects.The
list is inserted at the head, such that entries toward the head of the list are newer
than entries toward the tail.When the kernel must remove entries to reclaim mem-
ory, the entries are removed from the tail; those are the oldest and presumably have
the least chance of being used in the near future.

n A hash table and hashing function used to quickly resolve a given path into the
associated dentry object.

The hash table is represented by the dentry_hashtable array. Each element is a
pointer to a list of dentries that hash to the same value.The size of this array depends on
the amount of physical RAM in the system.

The actual hash value is determined by d_hash().This enables filesystems to provide a
unique hashing function.

Hash table lookup is performed via d_lookup(). If a matching dentry object is found
in the dcache, it is returned. On failure, NULL is returned.

As an example, assume that you are editing a source file in your home directory,
/home/dracula/src/the_sun_sucks.c. Each time this file is accessed (for example,
when you first open it, later save it, compile it, and so on), the VFS must follow each
directory entry to resolve the full path: /, home, dracula, src, and finally
the_sun_sucks.c.To avoid this time-consuming operation each time this path name is
accessed, the VFS can first try to look up the path name in the dentry cache. If the lookup
succeeds, the required final dentry object is obtained without serious effort. Conversely, if
the dentry is not in the dentry cache, the VFS must manually resolve the path by walking
the filesystem for each component of the path.After this task is completed, the kernel
adds the dentry objects to the dcache to speed up any future lookups.

The dcache also provides the front end to an inode cache, the icache. Inode objects that
are associated with dentry objects are not freed because the dentry maintains a positive
usage count over the inode.This enables dentry objects to pin inodes in memory.As long
as the dentry is cached, the corresponding inodes are cached, too. Consequently, when a
path name lookup succeeds from cache, as in the previous example, the associated inodes
are already cached in memory.

Caching dentries and inodes is beneficial because file access exhibits both spatial and
temporal locality. File access is temporal in that programs tend to access and reaccess the
same files over and over.Thus when a file is accessed, there is a high probability that
caching the associated dentries and inodes will result in a cache hit in the near future. File
access is spatial in that programs tend to access multiple files in the same directory.Thus
caching directories entries for one file have a high probability of a cache hit, as a related
file is likely manipulated next.

 From the Library of Wow! eBook

ptg

278 Chapter 13 The Virtual Filesystem

Dentry Operations
The dentry_operations structure specifies the methods that the VFS invokes on direc-
tory entries on a given filesystem.

The dentry_operations structure is defined in <linux/dcache.h>:

struct dentry_operations {

int (*d_revalidate) (struct dentry *, struct nameidata *);

int (*d_hash) (struct dentry *, struct qstr *);

int (*d_compare) (struct dentry *, struct qstr *, struct qstr *);

int (*d_delete) (struct dentry *);

void (*d_release) (struct dentry *);

void (*d_iput) (struct dentry *, struct inode *);

char *(*d_dname) (struct dentry *, char *, int);

};

The methods are as follows:

n int d_revalidate(struct dentry *dentry,

struct nameidata *)

Determines whether the given dentry object is valid.The VFS calls this function
whenever it is preparing to use a dentry from the dcache. Most filesystems set this
method to NULL because their dentry objects in the dcache are always valid.

n int d_hash(struct dentry *dentry,

struct qstr *name)

Creates a hash value from the given dentry.The VFS calls this function whenever it
adds a dentry to the hash table.

n int d_compare(struct dentry *dentry,

struct qstr *name1,

struct qstr *name2)

Called by the VFS to compare two filenames, name1 and name2. Most filesystems
leave this at the VFS default, which is a simple string compare. For some filesystems,
such as FAT, a simple string compare is insufficient.The FAT filesystem is not case-
sensitive and therefore needs to implement a comparison function that disregards
case.This function requires the dcache_lock.

n int d_delete (struct dentry *dentry)

Called by the VFS when the specified dentry object’s d_count reaches zero.This
function requires the dcache_lock and the dentry’s d_lock.

n void d_release(struct dentry *dentry)

Called by the VFS when the specified dentry is going to be freed.The default func-
tion does nothing.

 From the Library of Wow! eBook

ptg

279The File Object

n void d_iput(struct dentry *dentry,

struct inode *inode)

Called by the VFS when a dentry object loses its associated inode (say, because the
entry was deleted from the disk). By default, the VFS simply calls the iput() func-
tion to release the inode. If a filesystem overrides this function, it must also call
iput() in addition to performing whatever filesystem-specific work it requires.

The File Object
The final primary VFS object that we shall look at is the file object.The file object is used
to represent a file opened by a process.When we think of the VFS from the perspective of
user-space, the file object is what readily comes to mind. Processes deal directly with files,
not superblocks, inodes, or dentries. It is not surprising that the information in the file
object is the most familiar (data such as access mode and current offset) or that the file
operations are familiar system calls such as read() and write().

The file object is the in-memory representation of an open file.The object (but not
the physical file) is created in response to the open() system call and destroyed in
response to the close() system call.All these file-related calls are actually methods
defined in the file operations table. Because multiple processes can open and manipulate a
file at the same time, there can be multiple file objects in existence for the same file.The
file object merely represents a process’s view of an open file.The object points back to the
dentry (which in turn points back to the inode) that actually represents the open file.The
inode and dentry objects, of course, are unique.

The file object is represented by struct file and is defined in <linux/fs.h>. Let’s
look at the structure, again with comments added to describe each entry:

struct file {

union {

struct list_head fu_list; /* list of file objects */

struct rcu_head fu_rcuhead; /* RCU list after freeing */

} f_u;

struct path f_path; /* contains the dentry */

struct file_operations *f_op; /* file operations table */

spinlock_t f_lock; /* per-file struct lock */

atomic_t f_count; /* file object’s usage count */

unsigned int f_flags; /* flags specified on open */

mode_t f_mode; /* file access mode */

loff_t f_pos; /* file offset (file pointer) */

struct fown_struct f_owner; /* owner data for signals */

const struct cred *f_cred; /* file credentials */

struct file_ra_state f_ra; /* read-ahead state */

u64 f_version; /* version number */

void *f_security; /* security module */

void *private_data; /* tty driver hook */

 From the Library of Wow! eBook

ptg

280 Chapter 13 The Virtual Filesystem

struct list_head f_ep_links; /* list of epoll links */

spinlock_t f_ep_lock; /* epoll lock */

struct address_space *f_mapping; /* page cache mapping */

unsigned long f_mnt_write_state; /* debugging state */

};

Similar to the dentry object, the file object does not actually correspond to any on-
disk data.Therefore, no flag in the object represents whether the object is dirty and needs
to be written back to disk.The file object does point to its associated dentry object via
the f_dentry pointer.The dentry in turn points to the associated inode, which reflects
whether the file itself is dirty.

File Operations
As with all the otherVFS objects, the file operations table is quite important.The opera-
tions associated with struct file are the familiar system calls that form the basis of the
standard Unix system calls.

The file object methods are specified in file_operations and defined in
<linux/fs.h>:

struct file_operations {

struct module *owner;

loff_t (*llseek) (struct file *, loff_t, int);

ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);

ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);

ssize_t (*aio_read) (struct kiocb *, const struct iovec *,

unsigned long, loff_t);

ssize_t (*aio_write) (struct kiocb *, const struct iovec *,

unsigned long, loff_t);

int (*readdir) (struct file *, void *, filldir_t);

unsigned int (*poll) (struct file *, struct poll_table_struct *);

int (*ioctl) (struct inode *, struct file *, unsigned int,

unsigned long);

long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);

long (*compat_ioctl) (struct file *, unsigned int, unsigned long);

int (*mmap) (struct file *, struct vm_area_struct *);

int (*open) (struct inode *, struct file *);

int (*flush) (struct file *, fl_owner_t id);

int (*release) (struct inode *, struct file *);

int (*fsync) (struct file *, struct dentry *, int datasync);

int (*aio_fsync) (struct kiocb *, int datasync);

int (*fasync) (int, struct file *, int);

int (*lock) (struct file *, int, struct file_lock *);

ssize_t (*sendpage) (struct file *, struct page *,

int, size_t, loff_t *, int);

unsigned long (*get_unmapped_area) (struct file *,

unsigned long,

 From the Library of Wow! eBook

ptg

281File Operations

unsigned long,

unsigned long,

unsigned long);

int (*check_flags) (int);

int (*flock) (struct file *, int, struct file_lock *);

ssize_t (*splice_write) (struct pipe_inode_info *,

struct file *,

loff_t *,

size_t,

unsigned int);

ssize_t (*splice_read) (struct file *,

loff_t *,

struct pipe_inode_info *,

size_t,

unsigned int);

int (*setlease) (struct file *, long, struct file_lock **);

};

Filesystems can implement unique functions for each of these operations, or they can
use a generic method if one exists.The generic methods tend to work fine on normal
Unix-based filesystems.A filesystem is under no obligation to implement all these meth-
ods—although not implementing the basics is silly—and can simply set the method to
NULL if not interested.

Here are the individual operations:

n loff_t llseek(struct file *file,

loff_t offset, int origin)

Updates the file pointer to the given offset. It is called via the llseek() system call.
n ssize_t read(struct file *file,

char *buf, size_t count,

loff_t *offset)

Reads count bytes from the given file at position offset into buf.The file pointer
is then updated.This function is called by the read() system call.

n ssize_t aio_read(struct kiocb *iocb,

char *buf, size_t count,

loff_t offset)

Begins an asynchronous read of count bytes into buf of the file described in iocb.
This function is called by the aio_read() system call.

n ssize_t write(struct file *file,

const char *buf, size_t count,

loff_t *offset)

Writes count bytes from buf into the given file at position offset.The file pointer
is then updated.This function is called by the write() system call.

 From the Library of Wow! eBook

ptg

282 Chapter 13 The Virtual Filesystem

n ssize_t aio_write(struct kiocb *iocb,

const char *buf,

size_t count, loff_t offset)

Begins an asynchronous write of count bytes into buf of the file described in iocb.
This function is called by the aio_write() system call.

n int readdir(struct file *file, void *dirent,

filldir_t filldir)

Returns the next directory in a directory listing.This function is called by the
readdir() system call.

n unsigned int poll(struct file *file,

struct poll_table_struct *poll_table)

Sleeps, waiting for activity on the given file. It is called by the poll() system call.
n int ioctl(struct inode *inode,

struct file *file,

unsigned int cmd,

unsigned long arg)

Sends a command and argument pair to a device. It is used when the file is an open
device node.This function is called from the ioctl() system call. Callers must hold
the BKL.

n int unlocked_ioctl(struct file *file,

unsigned int cmd,

unsigned long arg)

Implements the same functionality as ioctl() but without needing to hold the
BKL.The VFS calls unlocked_ioctl() if it exists in lieu of ioctl() when user-
space invokes the ioctl() system call.Thus filesystems need implement only one,
preferably unlocked_ioctl().

n int compat_ioctl(struct file *file,

unsigned int cmd,

unsigned long arg)

Implements a portable variant of ioctl() for use on 64-bit systems by 32-bit
applications.This function is designed to be 32-bit safe even on 64-bit architec-
tures, performing any necessary size conversions. New drivers should design their
ioctl commands such that all are portable, and thus enable compat_ioctl() and
unlocked_ioctl() to point to the same function. Like unlocked_ioctl(),
compat_ioctl() does not hold the BKL.

n int mmap(struct file *file,

struct vm_area_struct *vma)

Memory maps the given file onto the given address space and is called by the
mmap() system call.

 From the Library of Wow! eBook

ptg

283File Operations

n int open(struct inode *inode,

struct file *file)

Creates a new file object and links it to the corresponding inode object. It is called
by the open() system call.

n int flush(struct file *file)

Called by the VFS whenever the reference count of an open file decreases. Its pur-
pose is filesystem-dependent.

n int release(struct inode *inode,

struct file *file)

Called by the VFS when the last remaining reference to the file is destroyed—for
example, when the last process sharing a file descriptor calls close() or exits. Its
purpose is filesystem-dependent.

n int fsync(struct file *file,

struct dentry *dentry,

int datasync)

Called by the fsync() system call to write all cached data for the file to disk.
n int aio_fsync(struct kiocb *iocb,

int datasync)

Called by the aio_fsync() system call to write all cached data for the file associ-
ated with iocb to disk.

n int fasync(int fd, struct file *file, int on)

Enables or disables signal notification of asynchronous I/O.
n int lock(struct file *file, int cmd,

struct file_lock *lock)

Manipulates a file lock on the given file.
n ssize_t readv(struct file *file,

const struct iovec *vector,

unsigned long count,

loff_t *offset)

Called by the readv() system call to read from the given file and put the results
into the count buffers described by vector.The file offset is then incremented.

n ssize_t writev(struct file *file,

const struct iovec *vector,

unsigned long count,

loff_t *offset)

Called by the writev() system call to write from the count buffers described by
vector into the file specified by file.The file offset is then incremented.

n ssize_t sendfile(struct file *file,

loff_t *offset,

 From the Library of Wow! eBook

ptg

284 Chapter 13 The Virtual Filesystem

So Many Ioctls!
Not long ago, there existed only a single ioctl method. Today, there are three methods.
unlocked_ioctl() is the same as ioctl(), except it is called without the Big Kernel
Lock (BKL). It is thus up to the author of that function to ensure proper synchronization.
Because the BKL is a coarse-grained, inefficient lock, drivers should implement
unlocked_ioctl() and not ioctl().

compat_ioctl() is also called without the BKL, but its purpose is to provide a 32-bit com-
patible ioctl method for 64-bit systems. How you implement it depends on your existing ioctl
commands. Older drivers with implicitly sized types (such as long) should implement a
compat_ioctl() method that works appropriately with 32-bit applications. This generally
means translating the 32-bit values to the appropriate types for a 64-bit kernel. New drivers
that have the luxury of designing their ioctl commands from scratch should ensure all their
arguments and data are explicitly sized, safe for 32-bit apps on a 32-bit system, 32-bit apps
on a 64-bit system, and 64-bit apps on a 64-bit system. These drivers can then point the
compat_ioctl() function pointer at the same function as unlocked_ioctl().

size_t size,

read_actor_t actor,

void *target)

Called by the sendfile() system call to copy data from one file to another. It per-
forms the copy entirely in the kernel and avoids an extraneous copy to user-space.

n ssize_t sendpage(struct file *file,

struct page *page,

int offset, size_t size,

loff_t *pos, int more)

Used to send data from one file to another.
n unsigned long get_unmapped_area(struct file *file,

unsigned long addr,

unsigned long len,

unsigned long offset,

unsigned long flags)

Gets unused address space to map the given file.
n int check_flags(int flags)

Used to check the validity of the flags passed to the fcntl() system call when the
SETFL command is given.As with many VFS operations, filesystems need not
implement check_flags(); currently, only NFS does so.This function enables
filesystems to restrict invalid SETFL flags otherwise enabled by the generic fcntl()
function. In the case of NFS, combining O_APPEND and O_DIRECT is not enabled.

n int flock(struct file *filp,

int cmd,

struct file_lock *fl)

Used to implement the flock() system call, which provides advisory locking.

 From the Library of Wow! eBook

ptg

285Data Structures Associated with Filesystems

Data Structures Associated with Filesystems
In addition to the fundamental VFS objects, the kernel uses other standard data structures
to manage data related to filesystems.The first object is used to describe a specific variant
of a filesystem, such as ext3, ext4, or UDF.The second data structure describes a mounted
instance of a filesystem.

Because Linux supports so many different filesystems, the kernel must have a special
structure for describing the capabilities and behavior of each filesystem.The
file_system_type structure, defined in <linux/fs.h>, accomplishes this:

struct file_system_type {

const char *name; /* filesystem’s name */

int fs_flags; /* filesystem type flags */

/* the following is used to read the superblock off the disk */

struct super_block *(*get_sb) (struct file_system_type *, int,

char *, void *);

/* the following is used to terminate access to the superblock */

void (*kill_sb) (struct super_block *);

struct module *owner; /* module owning the filesystem */

struct file_system_type *next; /* next file_system_type in list */

struct list_head fs_supers; /* list of superblock objects */

/* the remaining fields are used for runtime lock validation */

struct lock_class_key s_lock_key;

struct lock_class_key s_umount_key;

struct lock_class_key i_lock_key;

struct lock_class_key i_mutex_key;

struct lock_class_key i_mutex_dir_key;

struct lock_class_key i_alloc_sem_key;

};

The get_sb() function reads the superblock from the disk and populates the
superblock object when the filesystem is loaded.The remaining functions describe the
filesystem’s properties.

There is only one file_system_type per filesystem, regardless of how many
instances of the filesystem are mounted on the system, or whether the filesystem is even
mounted at all.

Things get more interesting when the filesystem is actually mounted, at which point
the vfsmount structure is created.This structure represents a specific instance of a filesys-
tem—in other words, a mount point.

The vfsmount structure is defined in <linux/mount.h>. Here it is:

struct vfsmount {

struct list_head mnt_hash; /* hash table list */

 From the Library of Wow! eBook

ptg

286 Chapter 13 The Virtual Filesystem

struct vfsmount *mnt_parent; /* parent filesystem */

struct dentry *mnt_mountpoint; /* dentry of this mount point */

struct dentry *mnt_root; /* dentry of root of this fs */

struct super_block *mnt_sb; /* superblock of this filesystem */

struct list_head mnt_mounts; /* list of children */

struct list_head mnt_child; /* list of children */

int mnt_flags; /* mount flags */

char *mnt_devname; /* device file name */

struct list_head mnt_list; /* list of descriptors */

struct list_head mnt_expire; /* entry in expiry list */

struct list_head mnt_share; /* entry in shared mounts list */

struct list_head mnt_slave_list; /* list of slave mounts */

struct list_head mnt_slave; /* entry in slave list */

struct vfsmount *mnt_master; /* slave’s master */

struct mnt_namespace *mnt_namespace; /* associated namespace */

int mnt_id; /* mount identifier */

int mnt_group_id; /* peer group identifier */

atomic_t mnt_count; /* usage count */

int mnt_expiry_mark; /* is marked for expiration */

int mnt_pinned; /* pinned count */

int mnt_ghosts; /* ghosts count */

atomic_t __mnt_writers; /* writers count */

};

The complicated part of maintaining the list of all mount points is the relation
between the filesystem and all the other mount points.The various linked lists in
vfsmount keep track of this information.

The vfsmount structure also stores the flags, if any, specified on mount in the
mnt_flags field.Table 13.1 is a list of the standard mount flags.

Table 13.1 Standard Mount Flags

Flag Description

MNT_NOSUID Forbids setuid and setgid flags on binaries on this filesystem

MNT_NODEV Forbids access to device files on this filesystem

MNT_NOEXEC Forbids execution of binaries on this filesystem

These flags are most useful on removable devices that the administrator does not trust.
They are defined in <linux/mount.h> along with other, lesser used, flags.

Data Structures Associated with a Process
Each process on the system has its own list of open files, root filesystem, current working
directory, mount points, and so on.Three data structures tie together the VFS layer and
the processes on the system: files_struct, fs_struct, and namespace.

 From the Library of Wow! eBook

ptg

287Data Structures Associated with a Process

The files_struct is defined in <linux/fdtable.h>.This table’s address is pointed to
by the files entry in the processor descriptor.All per-process information about open
files and file descriptors is contained therein. Here it is, with comments:

struct files_struct {

atomic_t count; /* usage count */

struct fdtable *fdt; /* pointer to other fd table */

struct fdtable fdtab; /* base fd table */

spinlock_t file_lock; /* per-file lock */

int next_fd; /* cache of next available fd */

struct embedded_fd_set close_on_exec_init; /* list of close-on-exec fds */

struct embedded_fd_set open_fds_init /* list of open fds */

struct file *fd_array[NR_OPEN_DEFAULT]; /* base files array */

};

The array fd_array points to the list of open file objects. Because NR_OPEN_DEFAULT
is equal to BITS_PER_LONG, which is 64 on a 64-bit architecture; this includes room for
64 file objects. If a process opens more than 64 file objects, the kernel allocates a new
array and points the fdt pointer at it. In this fashion, access to a reasonable number of file
objects is quick, taking place in a static array. If a process opens an abnormal number of
files, the kernel can create a new array. If the majority of processes on a system opens
more than 64 files, for optimum performance the administrator can increase the
NR_OPEN_DEFAULT preprocessor macro to match.

The second process-related structure is fs_struct, which contains filesystem informa-
tion related to a process and is pointed at by the fs field in the process descriptor.The
structure is defined in <linux/fs_struct.h>. Here it is, with comments:

struct fs_struct {

int users; /* user count */

rwlock_t lock; /* per-structure lock */

int umask; /* umask */

int in_exec; /* currently executing a file */

struct path root; /* root directory */

struct path pwd; /* current working directory */

};

This structure holds the current working directory (pwd) and root directory of the
current process.

The third and final structure is the namespace structure, which is defined in
<linux/mnt_namespace.h> and pointed at by the mnt_namespace field in the process
descriptor. Per-process namespaces were added to the 2.4 Linux kernel.They enable each
process to have a unique view of the mounted filesystems on the system—not just a
unique root directory, but an entirely unique filesystem hierarchy. Here is the structure,
with the usual comments:

struct mnt_namespace {

atomic_t count; /* usage count */

struct vfsmount *root; /* root directory */

 From the Library of Wow! eBook

ptg

struct list_head list; /* list of mount points */

wait_queue_head_t poll; /* polling waitqueue */

int event; /* event count */

};

The list member specifies a doubly linked list of the mounted filesystems that make
up the namespace.

These data structures are linked from each process descriptor. For most processes, the
process descriptor points to unique files_struct and fs_struct structures. For
processes created with the clone flag CLONE_FILES or CLONE_FS, however, these
structures are shared.3 Consequently, multiple process descriptors might point to the same
files_struct or fs_struct structure.The count member of each structure provides a
reference count to prevent destruction while a process is still using the structure.

The namespace structure works the other way around. By default, all processes share
the same namespace. (That is, they all see the same filesystem hierarchy from the same
mount table.) Only when the CLONE_NEWNS flag is specified during clone() is the process
given a unique copy of the namespace structure. Because most processes do not provide
this flag, all the processes inherit their parents’ namespaces. Consequently, on many sys-
tems there is only one namespace, although the functionality is but a single CLONE_NEWNS
flag away.

Conclusion
Linux supports a wide range of filesystems, from native filesystems, such as ext3 and ext4,
to networked filesystems, such as NFS and Coda—more than 60 filesystems alone in the
official kernel.The VFS layer provides these disparate filesystems with both a framework
for their implementation and an interface for working with the standard system calls.The
VFS layer, thus, both makes it clean to implement new filesystems in Linux and enables
those filesystems to automatically interoperate via the standard Unix system calls.

This chapter described the purpose of the VFS and discussed its various data structures,
including the all-important inode, dentry, and superblock objects. Chapter 14,“The Block
I/O Layer,” discusses how data physically ends up in a filesystem.

288 Chapter 13 The Virtual Filesystem

3 Threads usually specify CLONE_FILES and CLONE_FS and, thus, share a single files_struct

and fs_struct among themselves. Normal processes, on the other hand, do not specify these flags

and consequently have their own filesystems information and open files tables.

 From the Library of Wow! eBook

ptg

14
The Block I/O Layer

Block devices are hardware devices distinguished by the random (that is, not necessarily
sequential) access of fixed-size chunks of data.The fixed-size chunks of data are called
blocks.The most common block device is a hard disk, but many other block devices
exist, such as floppy drives, Blu-ray readers, and flash memory. Notice how these are all
devices on which you mount a filesystem—filesystems are the lingua franca of block
devices.

The other basic type of device is a character device. Character devices, or char devices, are
accessed as a stream of sequential data, one byte after another. Example character devices
are serial ports and keyboards. If the hardware device is accessed as a stream of data, it is
implemented as a character device. On the other hand, if the device is accessed randomly
(nonsequentially), it is a block device.

The difference comes down to whether the device accesses data randomly—in other
words, whether the device can seek to one position from another.As an example, consider
the keyboard.As a driver, the keyboard provides a stream of data. If you type wolf, the key-
board driver returns a stream with those four letters in exactly that order. Reading the
letters out of order, or reading any letter but the next one in the stream, makes little sense.
The keyboard driver is thus a char device; the device provides a stream of characters that
the user types onto the keyboard. Reading from the keyboard returns a stream first with
w, then o, then l, and ultimately f. When no keystrokes are waiting, the stream is empty.A
hard drive, conversely, is quite different.The hard drive’s driver might ask to read the con-
tents of one arbitrary block and then read the contents of a different block; the blocks
need not be consecutive. The hard disk’s data is accessed randomly, and not as a stream;
therefore, the hard disk is a block device.

Managing block devices in the kernel requires more care, preparation, and work than
managing character devices. Character devices have only one position—the current
one—whereas block devices must be able to navigate back and forth between any loca-
tion on the media. Indeed, the kernel does not have to provide an entire subsystem dedi-
cated to the management of character devices, but block devices receive exactly that.
Such a subsystem is a necessity partly because of the complexity of block devices.A large
reason, however, for such extensive support is that block devices are quite performance

 From the Library of Wow! eBook

ptg

290 Chapter 14 The Block I/O Layer

sensitive; getting every last drop out of your hard disk is much more important than
squeezing an extra percent of speed out of your keyboard. Furthermore, as you will see,
the complexity of block devices provides a lot of room for such optimizations.The topic
of this chapter is how the kernel manages block devices and their requests.This part of
the kernel is known as the block I/O layer. Interestingly, revamping the block I/O layer
was the primary goal for the 2.5 development kernel.This chapter covers the all-new
block I/O layer in the 2.6 kernel.

Anatomy of a Block Device
The smallest addressable unit on a block device is a sector. Sectors come in various powers
of two, but 512 bytes is the most common size.The sector size is a physical property of
the device, and the sector is the fundamental unit of all block devices—the device cannot
address or operate on a unit smaller than the sector, although many block devices can
operate on multiple sectors at one time. Most block devices have 512-byte sectors,
although other sizes are common. For example, many CD-ROM discs have 2-kilobyte
sectors.

Software has different goals and therefore imposes its own smallest logically addressable
unit, which is the block.The block is an abstraction of the filesystem—filesystems can be
accessed only in multiples of a block.Although the physical device is addressable at the
sector level, the kernel performs all disk operations in terms of blocks. Because the
device’s smallest addressable unit is the sector, the block size can be no smaller than the
sector and must be a multiple of a sector. Furthermore, the kernel (as with hardware and
the sector) needs the block to be a power of two.The kernel also requires that a block be
no larger than the page size (see Chapter 12,“Memory Management,” and Chapter 19,
“Portability”).1 Therefore, block sizes are a power-of-two multiple of the sector size and
are not greater than the page size. Common block sizes are 512 bytes, 1 kilobyte, and 4
kilobytes.

Somewhat confusingly, some people refer to sectors and blocks with different names.
Sectors, the smallest addressable unit to the device, are sometimes called “hard sectors” or
“device blocks.” Meanwhile, blocks, the smallest addressable unit to the filesystem, are
sometimes referred to as “filesystem blocks” or “I/O blocks.”This chapter continues to
call the two notions sectors and blocks, but you should keep these other terms in mind.
Figure 14.1 is a diagram of the relationship between sectors and buffers.

Other terminology, at least with respect to hard disks, is common—terms such as
clusters, cylinders, and heads.Those notions are specific only to certain block devices and, for
the most part, are invisible to user-space software.The reason that the sector is important

1 This is an artificial constraint that could go away in the future. Forcing the block to remain equal to

or smaller than the page size, however, simplifies the kernel.

 From the Library of Wow! eBook

ptg

291Buffers and Buffer Heads

hard disk block

sector

sector

mapping from sectors to blocks

Figure 14.1 Relationship between sectors and blocks.

to the kernel is because all device I/O must be done in units of sectors. In turn, the
higher-level concept used by the kernel—blocks—is built on top of sectors.

Buffers and Buffer Heads
When a block is stored in memory—say, after a read or pending a write—it is stored in a
buffer. Each buffer is associated with exactly one block.The buffer serves as the object that
represents a disk block in memory. Recall that a block is composed of one or more sec-
tors but is no more than a page in size.Therefore, a single page can hold one or more
blocks in memory. Because the kernel requires some associated control information to
accompany the data (such as from which block device and which specific block the buffer
is), each buffer is associated with a descriptor.The descriptor is called a buffer head and is
of type struct buffer_head.The buffer_head structure holds all the information that the
kernel needs to manipulate buffers and is defined in <linux/buffer_head.h>.

Take a look at this structure, with comments describing each field:

struct buffer_head {

unsigned long b_state; /* buffer state flags */

struct buffer_head *b_this_page; /* list of page’s buffers */

struct page *b_page; /* associated page */

sector_t b_blocknr; /* starting block number */

size_t b_size; /* size of mapping */

char *b_data; /* pointer to data within the page */

struct block_device *b_bdev; /* associated block device */

bh_end_io_t *b_end_io; /* I/O completion */

void *b_private; /* reserved for b_end_io */

struct list_head b_assoc_buffers; /* associated mappings */

struct address_space *b_assoc_map; /* associated address space */

atomic_t b_count; /* use count */

};

 From the Library of Wow! eBook

ptg

292 Chapter 14 The Block I/O Layer

Table 14.1 bh_state Flags

Status Flag Meaning

BH_Uptodate Buffer contains valid data.

BH_Dirty Buffer is dirty. (The contents of the buffer are newer than the con-
tents of the block on disk and therefore the buffer must eventually
be written back to disk.)

BH_Lock Buffer is undergoing disk I/O and is locked to prevent concurrent
access.

BH_Req Buffer is involved in an I/O request.

BH_Mapped Buffer is a valid buffer mapped to an on-disk block.

BH_New Buffer is newly mapped via get_block() and not yet accessed.

BH_Async_Read Buffer is undergoing asynchronous read I/O via
end_buffer_async_read().

BH_Async_Write Buffer is undergoing asynchronous write I/O via
end_buffer_async_write().

BH_Delay Buffer does not yet have an associated on-disk block (delayed
allocation).

BH_Boundary Buffer forms the boundary of contiguous blocks—the next block is
discontinuous.

BH_Write_EIO Buffer incurred an I/O error on write.

BH_Ordered Ordered write.

BH_Eopnotsupp Buffer incurred a “not supported” error.

BH_Unwritten Space for the buffer has been allocated on disk but the actual data
has not yet been written out.

BH_Quiet Suppress errors for this buffer.

The b_state field specifies the state of this particular buffer. It can be one or more of
the flags in Table 14.1.The legal flags are stored in the bh_state_bits enumeration,
which is defined in <linux/buffer_head.h>.

The bh_state_bits enumeration also contains as the last value in the list a
BH_PrivateStart flag.This is not a valid state flag but instead corresponds to the first
usable bit of which other code can make use.All bit values equal to and greater than
BH_PrivateStart are not used by the block I/O layer proper, so these bits are safe to use

 From the Library of Wow! eBook

ptg

293Buffers and Buffer Heads

by individual drivers who want to store information in the b_state field. Drivers can
base the bit values of their internal flags off this flag and rest assured that they are not
encroaching on an official bit used by the block I/O layer.

The b_count field is the buffer’s usage count.The value is incremented and decre-
mented by two inline functions, both of which are defined in <linux/buffer_head.h>:

static inline void get_bh(struct buffer_head *bh)

{

atomic_inc(&bh->b_count);

}

static inline void put_bh(struct buffer_head *bh)

{

atomic_dec(&bh->b_count);

}

Before manipulating a buffer head, you must increment its reference count via
get_bh() to ensure that the buffer head is not deallocated out from under you.When
finished with the buffer head, decrement the reference count via put_bh().

The physical block on disk to which a given buffer corresponds is the b_blocknr-th
logical block on the block device described by b_bdev.

The physical page in memory to which a given buffer corresponds is the page pointed
to by b_page. More specifically, b_data is a pointer directly to the block (that exists
somewhere in b_page), which is b_size bytes in length.Therefore, the block is located in
memory starting at address b_data and ending at address (b_data + b_size).

The purpose of a buffer head is to describe this mapping between the on-disk block
and the physical in-memory buffer (which is a sequence of bytes on a specific page).Act-
ing as a descriptor of this buffer-to-block mapping is the data structure’s only role in the
kernel.

Before the 2.6 kernel, the buffer head was a much more important data structure: It
was the unit of I/O in the kernel. Not only did the buffer head describe the disk-block-
to-physical-page mapping, but it also acted as the container used for all block I/O.This
had two primary problems. First, the buffer head was a large and unwieldy data structure
(it has shrunken a bit nowadays), and it was neither clean nor simple to manipulate data in
terms of buffer heads. Instead, the kernel prefers to work in terms of pages, which are
simple and enable for greater performance.A large buffer head describing each individual
buffer (which might be smaller than a page) was inefficient. Consequently, in the 2.6 ker-
nel, much work has gone into making the kernel work directly with pages and address
spaces instead of buffers. Some of this work is discussed in Chapter 16,“The Page Cache
and Page Writeback,” where the address_space structure and the pdflush daemons are
discussed.

The second issue with buffer heads is that they describe only a single buffer.When
used as the container for all I/O operations, the buffer head forces the kernel to break up
potentially large block I/O operations (say, a write) into multiple buffer_head structures.

 From the Library of Wow! eBook

ptg

294 Chapter 14 The Block I/O Layer

This results in needless overhead and space consumption.As a result, the primary goal of
the 2.5 development kernel was to introduce a new, flexible, and lightweight container
for block I/O operations.The result is the bio structure, which is discussed in the next
section.

The bio Structure
The basic container for block I/O within the kernel is the bio structure, which is defined
in <linux/bio.h>.This structure represents block I/O operations that are in flight
(active) as a list of segments.A segment is a chunk of a buffer that is contiguous in mem-
ory.Thus, individual buffers need not be contiguous in memory. By allowing the buffers
to be described in chunks, the bio structure provides the capability for the kernel to per-
form block I/O operations of even a single buffer from multiple locations in memory.
Vector I/O such as this is called scatter-gather I/O.

Here is struct bio, defined in <linux/bio.h>, with comments added for each field:

struct bio {

sector_t bi_sector; /* associated sector on disk */

struct bio *bi_next; /* list of requests */

struct block_device *bi_bdev; /* associated block device */

unsigned long bi_flags; /* status and command flags */

unsigned long bi_rw; /* read or write? */

unsigned short bi_vcnt; /* number of bio_vecs off */

unsigned short bi_idx; /* current index in bi_io_vec */

unsigned short bi_phys_segments; /* number of segments */

unsigned int bi_size; /* I/O count */

unsigned int bi_seg_front_size; /* size of first segment */

unsigned int bi_seg_back_size; /* size of last segment */

unsigned int bi_max_vecs; /* maximum bio_vecs possible */

unsigned int bi_comp_cpu; /* completion CPU */

atomic_t bi_cnt; /* usage counter */

struct bio_vec *bi_io_vec; /* bio_vec list */

bio_end_io_t *bi_end_io; /* I/O completion method */

void *bi_private; /* owner-private method */

bio_destructor_t *bi_destructor; /* destructor method */

struct bio_vec bi_inline_vecs[0]; /* inline bio vectors */

};

The primary purpose of a bio structure is to represent an in-flight block I/O
operation.To this end, the majority of the fields in the structure are housekeeping related.
The most important fields are bi_io_vec, bi_vcnt, and bi_idx. Figure 14.2 shows the
relationship between the bio structure and its friends.

 From the Library of Wow! eBook

ptg

295The bio Structure

I/O vectors
The bi_io_vec field points to an array of bio_vec structures.These structures are used as
lists of individual segments in this specific block I/O operation. Each bio_vec is treated
as a vector of the form <page, offset, len>, which describes a specific segment: the
physical page on which it lies, the location of the block as an offset into the page, and the
length of the block starting from the given offset.The full array of these vectors describes
the entire buffer.The bio_vec structure is defined in <linux/bio.h>:

struct bio_vec {

/* pointer to the physical page on which this buffer resides */

struct page *bv_page;

/* the length in bytes of this buffer */

unsigned int bv_len;

/* the byte offset within the page where the buffer resides */

unsigned int bv_offset;

};

In each given block I/O operation, there are bi_vcnt vectors in the bio_vec array
starting with bi_io_vec.As the block I/O operation is carried out, the bi_idx field is
used to point to the current index into the array.

In summary, each block I/O request is represented by a bio structure. Each request is
composed of one or more blocks, which are stored in an array of bio_vec structures.

page

page structures
involved in block I/O operation

page

page

page

bi_io_vec bi_idx

bio_vec
list of bio_vec structures, bio_vcnt in all

bio_vec bio_vec bio_vec

struct bio

Figure 14.2 Relationship between struct bio, struct
bio_vec, and struct page.

 From the Library of Wow! eBook

ptg

296 Chapter 14 The Block I/O Layer

These structures act as vectors and describe each segment’s location in a physical page in
memory.The first segment in the I/O operation is pointed to by b_io_vec. Each addi-
tional segment follows after the first, for a total of bi_vcnt segments in the list.As the
block I/O layer submits segments in the request, the bi_idx field is updated to point to
the current segment.

The bi_idx field is used to point to the current bio_vec in the list, which helps the
block I/O layer keep track of partially completed block I/O operations.A more impor-
tant usage, however, is to allow the splitting of bio structures.With this feature, drivers
implementing a Redundant Array of Inexpensive Disks (RAID, a hard disk setup that
enables single volumes to span multiple disks for performance and reliability purposes)
can take a single bio structure, initially intended for a single device and split it among the
multiple hard drives in the RAID array.All the RAID driver needs to do is copy the bio
structure and update the bi_idx field to point to where the individual drive should start
its operation.

The bio structure maintains a usage count in the bi_cnt field.When this field reaches
zero, the structure is destroyed and the backing memory is freed.The following two func-
tions manage the usage counters for you.

void bio_get(struct bio *bio)

void bio_put(struct bio *bio)

The former increments the usage count, whereas the latter decrements the usage
count (and, if the count reaches zero, destroys the bio structure). Before manipulating an
in-flight bio structure, be sure to increment its usage count to make sure it does not
complete and deallocate out from under you.When you finish, decrement the usage
count in turn.

Finally, the bi_private field is a private field for the owner (that is, creator) of the
structure.As a rule, you can read or write this field only if you allocated the bio structure.

The Old Versus the New
The difference between buffer heads and the new bio structure is important.The bio
structure represents an I/O operation, which may include one or more pages in memory.
On the other hand, the buffer_head structure represents a single buffer, which describes
a single block on the disk. Because buffer heads are tied to a single disk block in a single
page, buffer heads result in the unnecessary dividing of requests into block-sized chunks,
only to later reassemble them. Because the bio structure is lightweight, it can describe
discontiguous blocks and does not unnecessarily split I/O operations.

Switching from struct buffer_head to struct bio provided other benefits, as well:

n The bio structure can easily represent high memory, because struct bio deals with
only physical pages and not direct pointers.

n The bio structure can represent both normal page I/O and direct I/O (I/O opera-
tions that do not go through the page cache—see Chapter 16,“The Page Cache
and Page Writeback,” for a discussion on the page cache).

 From the Library of Wow! eBook

ptg

297I/O Schedulers

n The bio structure makes it easy to perform scatter-gather (vectored) block I/O
operations, with the data involved in the operation originating from multiple physi-
cal pages.

n The bio structure is much more lightweight than a buffer head because it contains
only the minimum information needed to represent a block I/O operation and not
unnecessary information related to the buffer itself.

The concept of buffer heads is still required, however; buffer heads function as descrip-
tors, mapping disk blocks to pages.The bio structure does not contain any information
about the state of a buffer—it is simply an array of vectors describing one or more seg-
ments of data for a single block I/O operation, plus related information. In the current
setup, the buffer_head structure is still needed to contain information about buffers
while the bio structure describes in-flight I/O. Keeping the two structures separate
enables each to remain as small as possible.

Request Queues
Block devices maintain request queues to store their pending block I/O requests.The
request queue is represented by the request_queue structure and is defined in
<linux/blkdev.h>.The request queue contains a doubly linked list of requests and asso-
ciated control information. Requests are added to the queue by higher-level code in the
kernel, such as filesystems.As long as the request queue is nonempty, the block device
driver associated with the queue grabs the request from the head of the queue and sub-
mits it to its associated block device. Each item in the queue’s request list is a single
request, of type struct request.

Individual requests on the queue are represented by struct request, which is also
defined in <linux/blkdev.h>. Each request can be composed of more than one bio
structure because individual requests can operate on multiple consecutive disk blocks.
Note that although the blocks on the disk must be adjacent, the blocks in memory need
not be; each bio structure can describe multiple segments (recall, segments are contiguous
chunks of a block in memory) and the request can be composed of multiple bio
structures.

I/O Schedulers
Simply sending out requests to the block devices in the order that the kernel issues them,
as soon as it issues them, results in poor performance. One of the slowest operations in a
modern computer is disk seeks. Each seek—positioning the hard disk’s head at the loca-
tion of a specific block—takes many milliseconds. Minimizing seeks is absolutely crucial
to the system’s performance.

Therefore, the kernel does not issue block I/O requests to the disk in the order they
are received or as soon as they are received. Instead, it performs operations called merging

 From the Library of Wow! eBook

ptg

298 Chapter 14 The Block I/O Layer

and sorting to greatly improve the performance of the system as a whole.2 The subsystem
of the kernel that performs these operations is called the I/O scheduler.

The I/O scheduler divides the resource of disk I/O among the pending block I/O
requests in the system. It does this through the merging and sorting of pending requests
in the request queue.The I/O scheduler is not to be confused with the process scheduler
(see Chapter 4,“Process Scheduling”), which divides the resource of the processor among
the processes on the system.The two subsystems are similar in nature but not the same.
Both the process scheduler and the I/O scheduler virtualize a resource among multiple
objects. In the case of the process scheduler, the processor is virtualized and shared among
the processes on the system.This provides the illusion of virtualization inherent in a mul-
titasking and timesharing operating system, such as any Unix. On the other hand, the I/O
scheduler virtualizes block devices among multiple outstanding block requests.This is
done to minimize disk seeks and ensure optimum disk performance.

The Job of an I/O Scheduler
An I/O scheduler works by managing a block device’s request queue. It decides the order
of requests in the queue and at what time each request is dispatched to the block device.
It manages the request queue with the goal of reducing seeks, which results in greater
global throughput.The modifier “global” here is important.An I/O scheduler, very openly,
is unfair to some requests at the expense of improving the overall performance of the
system.

I/O schedulers perform two primary actions to minimize seeks: merging and sorting.
Merging is the coalescing of two or more requests into one. Consider an example request
that is submitted to the queue by a filesystem—say, to read a chunk of data from a file. (At
this point, of course, everything occurs in terms of sectors and blocks and not files but
presume that the requested blocks originate from a chunk of a file.) If a request is already
in the queue to read from an adjacent sector on the disk (for example, an earlier chunk of
the same file), the two requests can be merged into a single request operating on one or
more adjacent on-disk sectors. By merging requests, the I/O scheduler reduces the over-
head of multiple requests down to a single request. More important only a single com-
mand needs to be issued to the disk and servicing the multiple requests can be done
without seeking. Consequently, merging requests reduces overhead and minimizes seeks.

Now, assume your fictional read request is submitted to the request queue, but there is
no read request to an adjacent sector.You therefore cannot merge this request with any
other request. Now, you could simply stick this request onto the tail of the queue. But,
what if there are other requests to a similar location on the disk? Would it not make sense
to insert this new request into the queue at a spot near other requests operating on physi-

2 This point must be stressed. A system without these features, or wherein these features are poorly

implemented, would perform poorly even with only a modest number of block I/O operations.

 From the Library of Wow! eBook

ptg

299I/O Schedulers

cally near sectors? In fact, I/O schedulers do exactly this.The entire request queue is kept
sorted, sectorwise, so that all seeking activity along the queue moves (as much as possible)
sequentially over the sectors of the hard disk.The goal is not just to minimize each indi-
vidual seek but to minimize all seeking by keeping the disk head moving in a straight
line.This is similar to the algorithm employed in elevators—elevators do not jump all
over, wildly, from floor to floor. Instead, they try to move gracefully in a single direction.
When the final floor is reached in one direction, the elevator can reverse course and
move in the other direction. Because of this similarity, I/O schedulers (or sometimes just
their sorting algorithm) are called elevators.

The Linus Elevator
Now let’s look at some real-life I/O schedulers.The first I/O scheduler is called the Linus
Elevator. (Yes, Linus has an elevator named after him!) It was the default I/O scheduler in
2.4. In 2.6, it was replaced by the following I/O schedulers that we will look at—how-
ever, because this elevator is simpler than the subsequent ones, while performing many of
the same functions, it serves as an excellent introduction.

The Linus Elevator performs both merging and sorting.When a request is added to
the queue, it is first checked against every other pending request to see whether it is a
possible candidate for merging.The Linus Elevator I/O scheduler performs both front and
back merging.The type of merging performed depends on the location of the existing
adjacent request. If the new request immediately proceeds an existing request, it is front
merged. Conversely, if the new request immediately precedes an existing request, it is
back merged. Because of the way files are laid out (usually by increasing sector number)
and the I/O operations performed in a typical workload (data is normally read from start
to finish and not in reverse), front merging is rare compared to back merging. Nonethe-
less, the Linus Elevator checks for and performs both types of merge.

If the merge attempt fails, a possible insertion point in the queue (a location in the
queue where the new request fits sectorwise between the existing requests) is then
sought. If one is found, the new request is inserted there. If a suitable location is not
found, the request is added to the tail of the queue.Additionally, if an existing request is
found in the queue that is older than a predefined threshold, the new request is added to
the tail of the queue even if it can be insertion sorted elsewhere.This prevents many
requests to nearby on-disk locations from indefinitely starving requests to other locations
on the disk. Unfortunately, this “age” check is not efficient. It does not provide any real
attempt to service requests in a given timeframe; it merely stops insertion-sorting requests
after a suitable delay.This improves latency but can still lead to request starvation, which
was the big must-fix of the 2.4 I/O scheduler.

In summary, when a request is added to the queue, four operations are possible. In
order, they are

1. If a request to an adjacent on-disk sector is in the queue, the existing request and
the new request merge into a single request.

 From the Library of Wow! eBook

ptg

300 Chapter 14 The Block I/O Layer

2. If a request in the queue is sufficiently old, the new request is inserted at the tail of
the queue to prevent starvation of the other, older, requests.

3. If a suitable location sector-wise is in the queue, the new request is inserted there.
This keeps the queue sorted by physical location on disk.

4. Finally, if no such suitable insertion point exists, the request is inserted at the tail of
the queue.

The Linus elevator is implemented in block/elevator.c.

The Deadline I/O Scheduler
The Deadline I/O scheduler sought to prevent the starvation caused by the Linus Eleva-
tor. In the interest of minimizing seeks, heavy disk I/O operations to one area of the disk
can indefinitely starve request operations to another part of the disk. Indeed, a stream of
requests to the same area of the disk can result in other far-off requests never being serv-
iced.This starvation is unfair.

Worse, the general issue of request starvation introduces a specific instance of the
problem known as writes starving reads.Write operations can usually be committed to disk
whenever the kernel gets around to them, entirely asynchronous with respect to the sub-
mitting application. Read operations are quite different. Normally, when an application
submits a read request, the application blocks until the request is fulfilled.That is, read
requests occur synchronously with respect to the submitting application.Although system
response is largely unaffected by write latency (the time required to commit a write
request), read latency (the time required to commit a read request) is important.Write
latency has little bearing on application performance,3 but an application must wait, twid-
dling its thumbs, for the completion of each read request. Consequently, read latency is
important to the performance of the system.

Compounding the problem, read requests tend to be dependent on each other. For
example, consider the reading of a large number of files. Each read occurs in small
buffered chunks.The application does not start reading the next chunk (or the next file,
for that matter) until the previous chunk is read from disk and returned to the application.
Worse, both read and write operations require the reading of various metadata, such as
inodes. Reading these blocks off the disk further serializes I/O. Consequently, if each read
request is individually starved, the total delay to such applications compounds and can
grow enormous. Recognizing that the asynchrony and interdependency of read requests
results in a much stronger bearing of read latency on the performance of the system, the
Deadline I/O scheduler implements several features to ensure that request starvation in
general, and read starvation in specific, is minimized.

3 We still do not want to delay write requests indefinitely, however, because the kernel wants to ensure

that data is eventually written to disk to prevent in-memory buffers from growing too large or too old.

 From the Library of Wow! eBook

ptg

301I/O Schedulers

Note that reducing request starvation comes at a cost to global throughput. Even the
Linus Elevator makes this compromise, albeit in a much milder manner.The Linus Eleva-
tor could provide better overall throughput (via a greater minimization of seeks) if it
always inserted requests into the queue sectorwise and never checked for old requests and
reverted to insertion at the tail of the queue.Although minimizing seeks is important,
indefinite starvation is not good either.The Deadline I/O scheduler, therefore, works
harder to limit starvation while still providing good global throughput. Make no mistake:
It is a tough act to provide request fairness, yet maximize global throughput.

In the Deadline I/O scheduler, each request is associated with an expiration time. By
default, the expiration time is 500 milliseconds in the future for read requests and 5 sec-
onds in the future for write requests.The Deadline I/O scheduler operates similarly to
the Linus Elevator in that it maintains a request queue sorted by physical location on disk.
It calls this queue the sorted queue.When a new request is submitted to the sorted queue,
the Deadline I/O scheduler performs merging and insertion like the Linus Elevator.4 The
Deadline I/O scheduler also, however, inserts the request into a second queue that
depends on the type of request. Read requests are sorted into a special read FIFO queue,
and write requests are inserted into a special write FIFO queue.Although the normal
queue is sorted by on-disk sector, these queues are kept FIFO. (Effectively, they are sorted
by time.) Consequently, new requests are always added to the tail of the queue. Under
normal operation, the Deadline I/O scheduler pulls requests from the head of the sorted
queue into the dispatch queue.The dispatch queue is then fed to the disk drive.This
results in minimal seeks.

If the request at the head of either the write FIFO queue or the read FIFO queue
expires (that is, if the current time becomes greater than the expiration time associated
with the request), the Deadline I/O scheduler then begins servicing requests from the
FIFO queue. In this manner, the Deadline I/O scheduler attempts to ensure that no
request is outstanding longer than its expiration time. See Figure 14.3.

Note that the Deadline I/O scheduler does not make any strict guarantees over
request latency. It is capable, however, of generally committing requests on or before their

4 Performing front merging is optional in the Deadline I/O scheduler, however. It is not always worth

the trouble because many workloads have few requests that can be front merged.

disk

dispatch queue

Read FIFO queue

Write FIFO queue

Sorted queue

Figure 14.3 The three queues of the Deadline I/O scheduler.

 From the Library of Wow! eBook

ptg

302 Chapter 14 The Block I/O Layer

expiration.This prevents request starvation. Because read requests are given a substantially
smaller expiration value than write requests, the Deadline I/O scheduler also works to
ensure that write requests do not starve read requests.This preference toward read
requests provides minimized read latency.

The Deadline I/O scheduler lives in block/deadline-iosched.c.

The Anticipatory I/O Scheduler
Although the Deadline I/O scheduler does a great job minimizing read latency, it does so
at the expense of global throughput. Consider a system undergoing heavy write activity.
Every time a read request is submitted, the I/O scheduler quickly rushes to handle the
read request.This results in the disk seeking over to where the read is, performing the
read operation, and then seeking back to continue the ongoing write operation, repeating
this little charade for each read request.The preference toward read requests is a good
thing, but the resulting pair of seeks (one to the location of the read request and another
back to the ongoing write) is detrimental to global disk throughput.The Anticipatory
I/O scheduler aims to continue to provide excellent read latency, but also provide excel-
lent global throughput.

First, the Anticipatory I/O scheduler starts with the Deadline I/O scheduler as its base.
Therefore, it is not entirely different.The Anticipatory I/O scheduler implements three
queues (plus the dispatch queue) and expirations for each request, just like the Deadline
I/O scheduler.The major change is the addition of an anticipation heuristic.

The Anticipatory I/O scheduler attempts to minimize the seek storm that accompa-
nies read requests issued during other disk I/O activity.When a read request is issued, it is
handled as usual, within its usual expiration period.After the request is submitted, how-
ever, the Anticipatory I/O scheduler does not immediately seek back and return to han-
dling other requests. Instead, it does absolutely nothing for a few milliseconds. (The actual
value is configurable; by default it is six milliseconds.) In those few milliseconds, there is a
good chance that the application will submit another read request.Any requests issued to
an adjacent area of the disk are immediately handled.After the waiting period elapses, the
Anticipatory I/O scheduler seeks back to where it left off and continues handling the
previous requests.

It is important to note that the few milliseconds spent in anticipation for more requests
are well worth it if they minimize even a modest percentage of the back-and-forth seek-
ing that results from the servicing of read requests during other heavy requests. If an adja-
cent I/O request is issued within the waiting period, the I/O scheduler just saved a pair
of seeks.As more and more reads are issued to the same area of disk, many more seeks are
prevented.

Of course, if no activity occurs within the waiting period, the Anticipatory I/O sched-
uler loses, and a few milliseconds are wasted.The key to reaping maximum benefit from
the Anticipatory I/O scheduler is correctly anticipating the actions of applications and
filesystems.This is done via a set of statistics and associated heuristics.The Anticipatory
I/O scheduler keeps track of per-process statistics pertaining to block I/O habits in hopes

 From the Library of Wow! eBook

ptg

303I/O Schedulers

of correctly anticipating the actions of applications.With a sufficiently high percentage of
correct anticipations, the Anticipatory I/O scheduler can greatly reduce the penalty of
seeking to service read requests, while still providing the attention to such requests that
system response requires.This enables the Anticipatory I/O scheduler to minimize read
latency, while also minimizing the number and duration of seeks.This results in low sys-
tem latency and high system throughput.

The Anticipatory I/O scheduler lives in the file block/as-iosched.c in the kernel
source tree. It performs well across most workloads. It is ideal for servers, although it
performs poorly on certain uncommon but critical workloads involving seek-happy
databases.

The Complete Fair Queuing I/O Scheduler
The Complete Fair Queuing (CFQ) I/O scheduler is an I/O scheduler designed for spe-
cialized workloads, but that in practice actually provides good performance across multi-
ple workloads. It is fundamentally different from the previous I/O schedulers that have
been covered, however.

The CFQ I/O scheduler assigns incoming I/O requests to specific queues based on
the process originating the I/O request. For example, I/O requests from process foo go in
foo’s queues, and I/O requests from process bar go in bar’s queue.Within each queue,
requests are coalesced with adjacent requests and insertion sorted.The queues are thus
kept sorted sectorwise, as with the other I/O scheduler’s queues.The difference with the
CFQ I/O scheduler is that there is one queue for each process submitting I/O.

The CFQ I/O scheduler then services the queues round robin, plucking a config-
urable number of requests (by default, four) from each queue before continuing on to the
next.This provides fairness at a per-process level, assuring that each process receives a fair
slice of the disk’s bandwidth.The intended workload is multimedia, in which such a fair
algorithm can guarantee that, for example, an audio player can always refill its audio
buffers from disk in time. In practice, however, the CFQ I/O scheduler performs well in
many scenarios.

The Complete Fair Queuing I/O scheduler lives in block/cfq-iosched.c. It is rec-
ommended for desktop workloads, although it performs reasonably well in nearly all
workloads without any pathological corner cases. It is now the default I/O scheduler in
Linux.

The Noop I/O Scheduler
A fourth and final I/O scheduler is the Noop I/O scheduler, so named because it is basi-
cally a noop—it does not do much.The Noop I/O scheduler does not perform sorting
or any other form of seek-prevention whatsoever. In turn, it has no need to implement
anything akin to the slick algorithms to minimize request latency that you saw in the pre-
vious three I/O schedulers.

The Noop I/O scheduler does perform merging, however, as its lone chore.When a
new request is submitted to the queue, it is coalesced with any adjacent requests. Other

 From the Library of Wow! eBook

ptg

304 Chapter 14 The Block I/O Layer

Table 14.2 Parameters Given to elevator Option

Parameter I/O Scheduler

as Anticipatory

cfq Complete Fair Queuing

deadline Deadline

noop Noop

than this operation, the Noop I/O Scheduler truly is a noop, merely maintaining the
request queue in near-FIFO order, from which the block device driver can pluck
requests.

The Noop I/O scheduler’s lack of hard work is with reason. It is intended for block
devices that are truly random-access, such as flash memory cards. If a block device has lit-
tle or no overhead associated with “seeking,” then there is no need for insertion sorting of
incoming requests, and the Noop I/O scheduler is the ideal candidate.

The Noop I/O scheduler lives in block/noop-iosched.c. It is intended only for ran-
dom-access devices.

I/O Scheduler Selection
You have now seen four different I/O schedulers in the 2.6 kernel. Each of these I/O
schedulers can be enabled and built into the kernel. By default, block devices use the
Complete Fair Queuing I/O scheduler.This can be overridden via the boot-time option
elevator=foo on the kernel command line, where foo is a valid and enabled I/O Sched-
uler. See Table 14.2.

For example, the kernel command line option elevator=as would enable use of the
Anticipatory I/O scheduler for all block devices, overriding the default Complete Fair
Queuing scheduler.

Conclusion
In this chapter, we discussed the fundamentals of block devices, and we looked at the data
structures used by the block I/O layer: the bio, representing in-flight I/O; the
buffer_head, representing a block-to-page mapping; and the request structure, repre-
senting a specific I/O request.We followed the I/O request on its brief but important life,
culminating in the I/O scheduler.We discussed the dilemmas involved in scheduling I/O
and went over the four I/O schedulers currently in the Linux kernel, and the old Linus
Elevator from 2.4.

Next up, we tackle the process address space.

 From the Library of Wow! eBook

ptg

15
The Process Address Space

Chapter 12,“Memory Management,” looked at how the kernel manages physical mem-
ory. In addition to managing its own memory, the kernel also has to manage the memory
of user-space processes.This memory is called the process address space, which is the repre-
sentation of memory given to each user-space process on the system. Linux is a virtual
memory operating system, and thus the resource of memory is virtualized among the
processes on the system.An individual process’s view of memory is as if it alone has full
access to the system’s physical memory. More important, the address space of even a single
process can be much larger than physical memory.This chapter discusses how the kernel
manages the process address space.

Address Spaces
The process address space consists of the virtual memory addressable by a process and the
addresses within the virtual memory that the process is allowed to use. Each process is
given a flat 32- or 64-bit address space, with the size depending on the architecture.The
term flat denotes that the address space exists in a single range. (For example, a 32-bit
address space extends from the address 0 to 4294967295.) Some operating systems pro-
vide a segmented address space, with addresses existing not in a single linear range, but
instead in multiple segments. Modern virtual memory operating systems generally have a
flat memory model and not a segmented one. Normally, this flat address space is unique
to each process.A memory address in one process’s address space is completely unrelated
to that same memory address in another process’s address space. Both processes can have
different data at the same address in their respective address spaces.Alternatively, processes
can elect to share their address space with other processes.We know these processes as
threads.

A memory address is a given value within the address space, such as 4021f000.This
particular value identifies a specific byte in a process’s 32-bit address space.Although a
process can address up to 4GB of memory (with a 32-bit address space), it doesn’t have
permission to access all of it.The interesting part of the address space is the intervals of
memory addresses, such as 08048000-0804c000, that the process has permission to access.

 From the Library of Wow! eBook

ptg

306 Chapter 15 The Process Address Space

These intervals of legal addresses are called memory areas.The process, through the kernel,
can dynamically add and remove memory areas to its address space.

The process can access a memory address only in a valid memory area. Memory areas
have associated permissions, such as readable, writable, and executable, that the associated
process must respect. If a process accesses a memory address not in a valid memory area,
or if it accesses a valid area in an invalid manner, the kernel kills the process with the
dreaded “Segmentation Fault” message.

Memory areas can contain all sorts of goodies, such as

n A memory map of the executable file’s code, called the text section.
n A memory map of the executable file’s initialized global variables, called the data

section.
n A memory map of the zero page (a page consisting of all zeros, used for purposes

such as this) containing uninitialized global variables, called the bss section.1

n A memory map of the zero page used for the process’s user-space stack. (Do not
confuse this with the process’s kernel stack, which is separate and maintained and
used by the kernel.)

n An additional text, data, and bss section for each shared library, such as the C library
and dynamic linker, loaded into the process’s address space.

n Any memory mapped files.
n Any shared memory segments.
n Any anonymous memory mappings, such as those associated with malloc().2

All valid addresses in the process address space exist in exactly one area;memory areas do not
overlap.As you can see, there is a separate memory area for each different chunk of memory
in a running process: the stack,object code,global variables,mapped file, and so on.

The Memory Descriptor
The kernel represents a process’s address space with a data structure called the memory
descriptor.This structure contains all the information related to the process address space.
The memory descriptor is represented by struct mm_struct and defined in

1 The term “BSS” is historical. It stands for block started by symbol. Uninitialized variables are not

stored in the executable object because they do not have any associated value. But the C standard

decrees that uninitialized global variables are assigned certain default values (basically, all zeros), so

the kernel loads the variables (without value) from the executable into memory and maps the zero

page over the area, thereby giving the variables the value zero, without having to waste space in the

object file with explicit initializations.
2 Newer versions of glibc implement malloc() via mmap(), in addition to brk().

 From the Library of Wow! eBook

ptg

307The Memory Descriptor

<linux/mm_types.h>. Let’s look at the memory descriptor, with comments added
describing each field:

struct mm_struct {

struct vm_area_struct *mmap; /* list of memory areas */

struct rb_root mm_rb; /* red-black tree of VMAs */

struct vm_area_struct *mmap_cache; /* last used memory area */

unsigned long free_area_cache; /* 1st address space hole */

pgd_t *pgd; /* page global directory */

atomic_t mm_users; /* address space users */

atomic_t mm_count; /* primary usage counter */

int map_count; /* number of memory areas */

struct rw_semaphore mmap_sem; /* memory area semaphore */

spinlock_t page_table_lock; /* page table lock */

struct list_head mmlist; /* list of all mm_structs */

unsigned long start_code; /* start address of code */

unsigned long end_code; /* final address of code */

unsigned long start_data; /* start address of data */

unsigned long end_data; /* final address of data */

unsigned long start_brk; /* start address of heap */

unsigned long brk; /* final address of heap */

unsigned long start_stack; /* start address of stack */

unsigned long arg_start; /* start of arguments */

unsigned long arg_end; /* end of arguments */

unsigned long env_start; /* start of environment */

unsigned long env_end; /* end of environment */

unsigned long rss; /* pages allocated */

unsigned long total_vm; /* total number of pages */

unsigned long locked_vm; /* number of locked pages */

unsigned long saved_auxv[AT_VECTOR_SIZE]; /* saved auxv */

cpumask_t cpu_vm_mask; /* lazy TLB switch mask */

mm_context_t context; /* arch-specific data */

unsigned long flags; /* status flags */

int core_waiters; /* thread core dump waiters */

struct core_state *core_state; /* core dump support */

spinlock_t ioctx_lock; /* AIO I/O list lock */

struct hlist_head ioctx_list; /* AIO I/O list */

};

The mm_users field is the number of processes using this address space. For example, if
two threads share this address space, mm_users is equal to two.The mm_count field is the
primary reference count for the mm_struct.All mm_users equate to one increment of
mm_count.Thus, in the previous example, mm_count is only one. If nine threads shared an
address space, mm_users would be nine, but again mm_count would be only one. Only
when mm_users reaches zero (when all threads using an address space exit) is mm_count
decremented.When mm_count finally reaches zero, there are no remaining references to

 From the Library of Wow! eBook

ptg

308 Chapter 15 The Process Address Space

this mm_struct, and it is freed.When the kernel operates on an address space and needs to
bump its associated reference count, the kernel increments mm_count. Having two coun-
ters enables the kernel to differentiate between the main usage counter (mm_count) and
the number of processes using the address space (mm_users).

The mmap and mm_rb fields are different data structures that contain the same thing: all
the memory areas in this address space.The former stores them in a linked list, whereas
the latter stores them in a red-black tree.A red-black tree is a type of binary tree; like all
binary trees, searching for a given element is an O(log n) operation. For further discus-
sion on red-black trees, see “Lists and Trees of Memory Areas,” later in this chapter.

Although the kernel would normally avoid the extra baggage of using two data struc-
tures to organize the same data, the redundancy comes in handy here.The mmap data
structure, as a linked list, allows for simple and efficient traversing of all elements. On the
other hand, the mm_rb data structure, as a red-black tree, is more suitable to searching for a
given element. Memory areas are discussed in more detail later in this chapter.The kernel
isn’t duplicating the mm_struct structures; just the containing objects. Overlaying a linked
list onto a tree, and using both to access the same set of data, is sometimes called a
threaded tree.

All of the mm_struct structures are strung together in a doubly linked list via the
mmlist field.The initial element in the list is the init_mm memory descriptor, which
describes the address space of the init process.The list is protected from concurrent access
via the mmlist_lock, which is defined in kernel/fork.c.

Allocating a Memory Descriptor
The memory descriptor associated with a given task is stored in the mm field of the task’s
process descriptor. (The process descriptor is represented by the task_struct structure,
defined in <linux/sched.h>.) Thus, current->mm is the current process’s memory
descriptor.The copy_mm() function copies a parent’s memory descriptor to its child dur-
ing fork().The mm_struct structure is allocated from the mm_cachep slab cache via the
allocate_mm() macro in kernel/fork.c. Normally, each process receives a unique
mm_struct and thus a unique process address space.

Processes may elect to share their address spaces with their children by means of the
CLONE_VM flag to clone().The process is then called a thread. Recall from Chapter 3,
“Process Management,” that this is essentially the only difference between normal
processes and so-called threads in Linux; the Linux kernel does not otherwise differentiate
between them.Threads are regular processes to the kernel that merely share certain
resources.

In the case that CLONE_VM is specified, allocate_mm() is not called, and the process’s mm
field is set to point to the memory descriptor of its parent via this logic in copy_mm():

if (clone_flags & CLONE_VM) {

/*

* current is the parent process and

* tsk is the child process during a fork()

 From the Library of Wow! eBook

ptg

309Virtual Memory Areas

*/

atomic_inc(¤t->mm->mm_users);

tsk->mm = current->mm;

}

Destroying a Memory Descriptor
When the process associated with a specific address space exits, the exit_mm(), defined in
kernel/exit.c, function is invoked.This function performs some housekeeping and
updates some statistics. It then calls mmput(), which decrements the memory descriptor’s
mm_users user counter. If the user count reaches zero, mmdrop() is called to decrement
the mm_count usage counter. If that counter is finally zero, the free_mm() macro is
invoked to return the mm_struct to the mm_cachep slab cache via kmem_cache_free(),
because the memory descriptor does not have any users.

The mm_struct and Kernel Threads
Kernel threads do not have a process address space and therefore do not have an associ-
ated memory descriptor.Thus, the mm field of a kernel thread’s process descriptor is NULL.
This is the definition of a kernel thread—processes that have no user context.

This lack of an address space is fine because kernel threads do not ever access any user-
space memory. (Whose would they access?) Because kernel threads do not have any pages
in user-space, they do not deserve their own memory descriptor and page tables. (Page
tables are discussed later in the chapter.) Despite this, kernel threads need some of the
data, such as the page tables, even to access kernel memory.To provide kernel threads the
needed data, without wasting memory on a memory descriptor and page tables, or wast-
ing processor cycles to switch to a new address space whenever a kernel thread begins
running, kernel threads use the memory descriptor of whatever task ran previously.

Whenever a process is scheduled, the process address space referenced by the process’s
mm field is loaded.The active_mm field in the process descriptor is then updated to refer
to the new address space. Kernel threads do not have an address space and mm is NULL.
Therefore, when a kernel thread is scheduled, the kernel notices that mm is NULL and keeps
the previous process’s address space loaded.The kernel then updates the active_mm field
of the kernel thread’s process descriptor to refer to the previous process’s memory
descriptor.The kernel thread can then use the previous process’s page tables as needed.
Because kernel threads do not access user-space memory, they make use of only the
information in the address space pertaining to kernel memory, which is the same for all
processes.

Virtual Memory Areas
The memory area structure, vm_area_struct, represents memory areas. It is defined in
<linux/mm_types.h>. In the Linux kernel, memory areas are often called virtual memory
areas (abbreviated VMAs).

 From the Library of Wow! eBook

ptg

310 Chapter 15 The Process Address Space

The vm_area_struct structure describes a single memory area over a contiguous
interval in a given address space.The kernel treats each memory area as a unique memory
object. Each memory area possesses certain properties, such as permissions and a set of
associated operations. In this manner, each VMA structure can represent different types of
memory areas—for example, memory-mapped files or the process’s user-space stack.This
is similar to the object-oriented approach taken by the VFS layer (see Chapter 13). Here’s
the structure, with comments added describing each field:

struct vm_area_struct {

struct mm_struct *vm_mm; /* associated mm_struct */

unsigned long vm_start; /* VMA start, inclusive */

unsigned long vm_end; /* VMA end , exclusive */

struct vm_area_struct *vm_next; /* list of VMA’s */

pgprot_t vm_page_prot; /* access permissions */

unsigned long vm_flags; /* flags */

struct rb_node vm_rb; /* VMA’s node in the tree */

union { /* links to address_space->i_mmap or i_mmap_nonlinear */

struct {

struct list_head list;

void *parent;

struct vm_area_struct *head;

} vm_set;

struct prio_tree_node prio_tree_node;

} shared;

struct list_head anon_vma_node; /* anon_vma entry */

struct anon_vma *anon_vma; /* anonymous VMA object */

struct vm_operations_struct *vm_ops; /* associated ops */

unsigned long vm_pgoff; /* offset within file */

struct file *vm_file; /* mapped file, if any */

void *vm_private_data; /* private data */

};

Recall that each memory descriptor is associated with a unique interval in the
process’s address space.The vm_start field is the initial (lowest) address in the interval,
and the vm_end field is the first byte after the final (highest) address in the interval.That is,
vm_start is the inclusive start, and vm_end is the exclusive end of the memory interval.
Thus, vm_end – vm_start is the length in bytes of the memory area, which exists over
the interval [vm_start, vm_end). Intervals in different memory areas in the same address
space cannot overlap.

The vm_mm field points to this VMA’s associated mm_struct. Note that each VMA is
unique to the mm_struct with which it is associated.Therefore, even if two separate
processes map the same file into their respective address spaces, each has a unique
vm_area_struct to identify its unique memory area. Conversely, two threads that share
an address space also share all the vm_area_struct structures therein.

 From the Library of Wow! eBook

ptg

311Virtual Memory Areas

VMA Flags
The vm_flags field contains bit flags, defined in <linux/mm.h>, that specify the behavior
of and provide information about the pages contained in the memory area. Unlike per-
missions associated with a specific physical page, the VMA flags specify behavior for
which the kernel is responsible, not the hardware. Furthermore, vm_flags contains infor-
mation that relates to each page in the memory area, or the memory area as a whole, and
not specific individual pages.Table 15.1 is a listing of the possible vm_flags values.

Table 15.1 vm_flags

Flag Effect on the VMA and Its Pages

VM_READ Pages can be read from.

VM_WRITE Pages can be written to.

VM_EXEC Pages can be executed.

VM_SHARED Pages are shared.

VM_MAYREAD The VM_READ flag can be set.

VM_MAYWRITE The VM_WRITE flag can be set.

VM_MAYEXEC The VM_EXEC flag can be set.

VM_MAYSHARE The VM_SHARE flag can be set.

VM_GROWSDOWN The area can grow downward.

VM_GROWSUP The area can grow upward.

VM_SHM The area is used for shared memory.

VM_DENYWRITE The area maps an unwritable file.

VM_EXECUTABLE The area maps an executable file.

VM_LOCKED The pages in this area are locked.

VM_IO The area maps a device’s I/O space.

VM_SEQ_READ The pages seem to be accessed sequentially.

VM_RAND_READ The pages seem to be accessed randomly.

VM_DONTCOPY This area must not be copied on fork().

VM_DONTEXPAND This area cannot grow via mremap().

VM_RESERVED This area must not be swapped out.

VM_ACCOUNT This area is an accounted VM object.

VM_HUGETLB This area uses hugetlb pages.

VM_NONLINEAR This area is a nonlinear mapping.

 From the Library of Wow! eBook

ptg

312 Chapter 15 The Process Address Space

Let’s look at some of the more important and interesting flags in depth.The VM_READ,
VM_WRITE, and VM_EXEC flags specify the usual read, write, and execute permissions for the
pages in this particular memory area.They are combined as needed to form the appropriate
access permissions that a process accessing this VMA must respect. For example, the object
code for a process might be mapped with VM_READ and VM_EXEC but not VM_WRITE. On
the other hand, the data section from an executable object would be mapped VM_READ
and VM_WRITE, but VM_EXEC would make little sense. Meanwhile, a read-only memory
mapped data file would be mapped with only the VM_READ flag.

The VM_SHARED flag specifies whether the memory area contains a mapping that is
shared among multiple processes. If the flag is set, it is intuitively called a shared mapping. If
the flag is not set, only a single process can view this particular mapping, and it is called a
private mapping.

The VM_IO flag specifies that this memory area is a mapping of a device’s I/O space.
This field is typically set by device drivers when mmap() is called on their I/O space. It
specifies, among other things, that the memory area must not be included in any process’s
core dump.The VM_RESERVED flag specifies that the memory region must not be swapped
out. It is also used by device driver mappings.

The VM_SEQ_READ flag provides a hint to the kernel that the application is performing
sequential (that is, linear and contiguous) reads in this mapping.The kernel can then opt
to increase the read-ahead performed on the backing file.The VM_RAND_READ flag speci-
fies the exact opposite: that the application is performing relatively random (that is, not
sequential) reads in this mapping.The kernel can then opt to decrease or altogether dis-
able read-ahead on the backing file.These flags are set via the madvise() system call with
the MADV_SEQUENTIAL and MADV_RANDOM flags, respectively. Read-ahead is the act of read-
ing sequentially ahead of requested data, in hopes that the additional data will be needed
soon. Such behavior is beneficial if applications are reading data sequentially. If data access
patterns are random, however, read-ahead is not effective.

VMA Operations
The vm_ops field in the vm_area_struct structure points to the table of operations asso-
ciated with a given memory area, which the kernel can invoke to manipulate the VMA.
The vm_area_struct acts as a generic object for representing any type of memory area,
and the operations table describes the specific methods that can operate on this particular
instance of the object.

The operations table is represented by struct vm_operations_struct and is defined in
<linux/mm.h>:

struct vm_operations_struct {

void (*open) (struct vm_area_struct *);

void (*close) (struct vm_area_struct *);

int (*fault) (struct vm_area_struct *, struct vm_fault *);

int (*page_mkwrite) (struct vm_area_struct *vma, struct vm_fault *vmf);

int (*access) (struct vm_area_struct *, unsigned long ,

void *, int, int);

};

 From the Library of Wow! eBook

ptg

313Virtual Memory Areas

Here’s a description for each individual method:

n void open(struct vm_area_struct *area)

This function is invoked when the given memory area is added to an address space.
n void close(struct vm_area_struct *area)

This function is invoked when the given memory area is removed from an
address space.

n int fault(struct vm_area_sruct *area, struct vm_fault *vmf)

This function is invoked by the page fault handler when a page that is not present
in physical memory is accessed.

n int page_mkwrite(struct vm_area_sruct *area, struct vm_fault *vmf)

This function is invoked by the page fault handler when a page that was read-only
is being made writable.

n int access(struct vm_area_struct *vma, unsigned long address, void

*buf, int len, int write)

This function is invoked by access_process_vm() when get_user_pages() fails.

Lists and Trees of Memory Areas
As discussed, memory areas are accessed via both the mmap and the mm_rb fields of the
memory descriptor.These two data structures independently point to all the memory area
objects associated with the memory descriptor. In fact, they both contain pointers to the
same vm_area_struct structures, merely represented in different ways.

The first field, mmap, links together all the memory area objects in a singly linked list.
Each vm_area_struct structure is linked into the list via its vm_next field.The areas are
sorted by ascending address.The first memory area is the vm_area_struct structure to
which mmap points.The last structure points to NULL.

The second field, mm_rb, links together all the memory area objects in a red-black tree.
The root of the red-black tree is mm_rb, and each vm_area_struct structure in this
address space is linked to the tree via its vm_rb field.

A red-black tree is a type of balanced binary tree. Each element in a red-black tree is
called a node.The initial node is called the root of the tree. Most nodes have two children:
a left child and a right child. Some nodes have only one child, and the final nodes, called
leaves, have no children. For any node, the elements to the left are smaller in value,
whereas the elements to the right are larger in value. Furthermore, each node is assigned a
color (red or black, hence the name of this tree) according to two rules:The children of a
red node are black, and every path through the tree from a node to a leaf must contain
the same number of black nodes.The root node is always red. Searching of, insertion to,
and deletion from the tree is an O(log(n)) operation.

The linked list is used when every node needs to be traversed.The red-black tree is
used when locating a specific memory area in the address space. In this manner, the ker-

 From the Library of Wow! eBook

ptg

314 Chapter 15 The Process Address Space

nel uses the redundant data structures to provide optimal performance regardless of the
operation performed on the memory areas.

Memory Areas in Real Life
Let’s look at a particular process’s address space and the memory areas inside.This task
uses the useful /proc filesystem and the pmap(1) utility.The example is a simple user-
space program, which does absolutely nothing of value, except act as an example:

int main(int argc, char *argv[])

{

return 0;

}

Take note of a few of the memory areas in this process’s address space. First, you know
there is the text section, data section, and bss.Assuming this process is dynamically linked
with the C library, these three memory areas also exist for libc.so and again for ld.so.
Finally, there is also the process’s stack.

The output from /proc/<pid>/maps lists the memory areas in this process’s address
space:

rlove@wolf:~$ cat /proc/1426/maps

00e80000-00faf000 r-xp 00000000 03:01 208530 /lib/tls/libc-2.5.1.so

00faf000-00fb2000 rw-p 0012f000 03:01 208530 /lib/tls/libc-2.5.1.so

00fb2000-00fb4000 rw-p 00000000 00:00 0

08048000-08049000 r-xp 00000000 03:03 439029 /home/rlove/src/example

08049000-0804a000 rw-p 00000000 03:03 439029 /home/rlove/src/example

40000000-40015000 r-xp 00000000 03:01 80276 /lib/ld-2.5.1.so

40015000-40016000 rw-p 00015000 03:01 80276 /lib/ld-2.5.1.so

4001e000-4001f000 rw-p 00000000 00:00 0

bfffe000-c0000000 rwxp fffff000 00:00 0

The data is in the form

start-end permission offset major:minor inode file

The pmap(1) utility3 formats this information in a bit more readable manner:

rlove@wolf:~$ pmap 1426

example[1426]

00e80000 (1212 KB) r-xp (03:01 208530) /lib/tls/libc-2.5.1.so

00faf000 (12 KB) rw-p (03:01 208530) /lib/tls/libc-2.5.1.so

00fb2000 (8 KB) rw-p (00:00 0)

08048000 (4 KB) r-xp (03:03 439029) /home/rlove/src/example

3 The pmap(1) utility displays a formatted listing of a process’s memory areas. It is a bit more readable

than the /proc output, but it is the same information. It is found in newer versions of the procps

package.

 From the Library of Wow! eBook

ptg

315Manipulating Memory Areas

08049000 (4 KB) rw-p (03:03 439029) /home/rlove/src/example

40000000 (84 KB) r-xp (03:01 80276) /lib/ld-2.5.1.so

40015000 (4 KB) rw-p (03:01 80276) /lib/ld-2.5.1.so

4001e000 (4 KB) rw-p (00:00 0)

bfffe000 (8 KB) rwxp (00:00 0) [stack]

mapped: 1340 KB writable/private: 40 KB shared: 0 KB

The first three rows are the text section, data section, and bss of libc.so, the C library.
The next two rows are the text and data section of our executable object.The following
three rows are the text section, data section, and bss for ld.so, the dynamic linker.The
last row is the process’s stack.

Note how the text sections are all readable and executable, which is what you expect
for object code. On the other hand, the data section and bss (which both contain global
variables) are marked readable and writable, but not executable.The stack is, naturally,
readable, writable, and executable—not of much use otherwise.

The entire address space takes up about 1340KB, but only 40KB are writable and pri-
vate. If a memory region is shared or nonwritable, the kernel keeps only one copy of the
backing file in memory.This might seem like common sense for shared mappings, but the
nonwritable case can come as a bit of a surprise. If you consider that a nonwritable map-
ping can never be changed (the mapping is only read from), it is clear that it is safe to load
the image only once into memory.Therefore, the C library needs to occupy only
1212KB in physical memory and not 1212KB multiplied by every process using the
library. Because this process has access to about 1340KB worth of data and code, yet
consumes only about 40KB of physical memory, the space savings from such sharing is
substantial.

Note the memory areas without a mapped file on device 00:00 and inode zero.This is
the zero page, which is a mapping that consists of all zeros. By mapping the zero page
over a writable memory area, the area is in effect “initialized” to all zeros.This is impor-
tant in that it provides a zeroed memory area, which is expected by the bss. Because the
mapping is not shared, as soon as the process writes to this data, a copy is made (à la copy-
on-write) and the value updated from zero.

Each of the memory areas associated with the process corresponds to a
vm_area_struct structure. Because the process was not a thread, it has a unique
mm_struct structure referenced from its task_struct.

Manipulating Memory Areas
The kernel often has to perform operations on a memory area, such as whether a given
address exists in a given VMA.These operations are frequent and form the basis of the
mmap() routine, which is covered in the next section.A handful of helper functions are
defined to assist these jobs.

These functions are all declared in <linux/mm.h>.

 From the Library of Wow! eBook

ptg

316 Chapter 15 The Process Address Space

find_vma()
The kernel provides a function, find_vma(), for searching for the VMA in which a given
memory address resides. It is defined in mm/mmap.c:

struct vm_area_struct * find_vma(struct mm_struct *mm, unsigned long addr);

This function searches the given address space for the first memory area whose vm_end
field is greater than addr. In other words, this function finds the first memory area that
contains addr or begins at an address greater than addr. If no such memory area exists,
the function returns NULL. Otherwise, a pointer to the vm_area_struct structure is
returned. Note that because the returned VMA may start at an address greater than addr,
the given address does not necessarily lie inside the returned VMA.The result of the
find_vma() function is cached in the mmap_cache field of the memory descriptor.
Because of the probability of an operation on one VMA being followed by more opera-
tions on that same VMA, the cached results have a decent hit rate (about 30–40% in prac-
tice). Checking the cached result is quick. If the given address is not in the cache, you
must search the memory areas associated with this memory descriptor for a match.This is
done via the red-black tree:

struct vm_area_struct * find_vma(struct mm_struct *mm, unsigned long addr)

{

struct vm_area_struct *vma = NULL;

if (mm) {

vma = mm->mmap_cache;

if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {

struct rb_node *rb_node;

rb_node = mm->mm_rb.rb_node;

vma = NULL;

while (rb_node) {

struct vm_area_struct * vma_tmp;

vma_tmp = rb_entry(rb_node,

struct vm_area_struct, vm_rb);

if (vma_tmp->vm_end > addr) {

vma = vma_tmp;

if (vma_tmp->vm_start <= addr)

break;

rb_node = rb_node->rb_left;

} else

rb_node = rb_node->rb_right;

}

if (vma)

mm->mmap_cache = vma;

}

 From the Library of Wow! eBook

ptg

317Manipulating Memory Areas

}

return vma;

}

The initial check of mmap_cache tests whether the cached VMA contains the desired
address. Note that simply checking whether the VMA’s vm_end field is bigger than addr
would not ensure that this is the first such VMA that is larger than addr.Thus, for the
cache to be useful here, the given addr must lie in the VMA—thankfully, this is just the
sort of scenario in which consecutive operations on the same VMA would occur.

If the cache does not contain the desired VMA, the function must search the red-black
tree. If the current VMA’s vm_end is larger than addr, the function follows the left child;
otherwise, it follows the right child.The function terminates as soon as a VMA is found
that contains addr. If such a VMA is not found, the function continues traversing the tree
and returns the first VMA it found that starts after addr. If no VMA is ever found, NULL is
returned.

find_vma_prev()
The find_vma_prev() function works the same as find_vma(), but it also returns the
last VMA before addr.The function is also defined in mm/mmap.c and declared in
<linux/mm.h>:

struct vm_area_struct * find_vma_prev(struct mm_struct *mm, unsigned long addr,

struct vm_area_struct **pprev)

The pprev argument stores a pointer to the VMA preceding addr.

find_vma_intersection()
The find_vma_intersection()function returns the first VMA that overlaps a given
address interval.The function is defined in <linux/mm.h> because it is inline:

static inline struct vm_area_struct *

find_vma_intersection(struct mm_struct *mm,

unsigned long start_addr,

unsigned long end_addr)

{

struct vm_area_struct *vma;

vma = find_vma(mm, start_addr);

if (vma && end_addr <= vma->vm_start)

vma = NULL;

return vma;

}

The first parameter is the address space to search, start_addr is the start of the inter-
val, and end_addr is the end of the interval.

 From the Library of Wow! eBook

ptg

318 Chapter 15 The Process Address Space

Obviously, if find_vma() returns NULL, so would find_vma_intersection(). If
find_vma() returns a valid VMA, however, find_vma_intersection() returns the same
VMA only if it does not start after the end of the given address range. If the returned
memory area does start after the end of the given address range, the function returns
NULL.

mmap() and do_mmap(): Creating an Address
Interval
The do_mmap()function is used by the kernel to create a new linear address interval. Say-
ing that this function creates a new VMA is not technically correct, because if the created
address interval is adjacent to an existing address interval, and if they share the same per-
missions, the two intervals are merged into one. If this is not possible, a new VMA is cre-
ated. In any case, do_mmap() is the function used to add an address interval to a process’s
address space—whether that means expanding an existing memory area or creating a new
one.

The do_mmap() function is declared in <linux/mm.h>:

unsigned long do_mmap(struct file *file, unsigned long addr,

unsigned long len, unsigned long prot,

unsigned long flag, unsigned long offset)

This function maps the file specified by file at offset offset for length len.The
file parameter can be NULL and offset can be zero, in which case the mapping will not
be backed by a file. In that case, this is called an anonymous mapping. If a file and offset are
provided, the mapping is called a file-backed mapping.

The addr function optionally specifies the initial address from which to start the
search for a free interval.

The prot parameter specifies the access permissions for pages in the memory area.The
possible permission flags are defined in <asm/mman.h> and are unique to each supported
architecture, although in practice each architecture defines the flags listed in Table 15.2.

Table 15.2 Page Protection Flags

Flag Effect on the Pages in the New Interval

PROT_READ Corresponds to VM_READ

PROT_WRITE Corresponds to VM_WRITE

PROT_EXEC Corresponds to VM_EXEC

PROT_NONE Cannot access page

 From the Library of Wow! eBook

ptg

319mmap() and do_mmap(): Creating an Address Interval

Table 15.3 Map Type Flags

Flag Effect on the New Interval

MAP_SHARED The mapping can be shared.

MAP_PRIVATE The mapping cannot be shared.

MAP_FIXED The new interval must start at the given address addr.

MAP_ANONYMOUS The mapping is not file-backed, but is anonymous.

MAP_GROWSDOWN Corresponds to VM_GROWSDOWN.

MAP_DENYWRITE Corresponds to VM_DENYWRITE.

MAP_EXECUTABLE Corresponds to VM_EXECUTABLE.

MAP_LOCKED Corresponds to VM_LOCKED.

MAP_NORESERVE No need to reserve space for the mapping.

MAP_POPULATE Populate (prefault) page tables.

MAP_NONBLOCK Do not block on I/O.

The flags parameter specifies flags that correspond to the remaining VMA flags.
These flags specify the type and change the behavior of the mapping.They are also
defined in <asm/mman.h>. See Table 15.3.

If any of the parameters are invalid, do_mmap() returns a negative value. Otherwise, a
suitable interval in virtual memory is located. If possible, the interval is merged with an
adjacent memory area. Otherwise, a new vm_area_struct structure is allocated from the
vm_area_cachep slab cache, and the new memory area is added to the address space’s
linked list and red-black tree of memory areas via the vma_link() function. Next, the
total_vm field in the memory descriptor is updated. Finally, the function returns the ini-
tial address of the newly created address interval.

The do_mmap() functionality is exported to user-space via the mmap() system call.The
mmap()system call is defined as

void * mmap2(void *start,

size_t length,

int prot,

int flags,

int fd,

off_t pgoff)

This system call is named mmap2() because it is the second variant of mmap().The
original mmap() took an offset in bytes as the last parameter; the current mmap2() receives
the offset in pages.This enables larger files with larger offsets to be mapped.The original

 From the Library of Wow! eBook

ptg

320 Chapter 15 The Process Address Space

mmap(), as specified by POSIX, is available from the C library as mmap(), but is no longer
implemented in the kernel proper, whereas the new version is available as mmap2(). Both
library calls use the mmap2() system call, with the original mmap() converting the offset
from bytes to pages.

munmap() and do_munmap(): Removing an
Address Interval
The do_munmap() function removes an address interval from a specified process address
space.The function is declared in <linux/mm.h>:

int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)

The first parameter specifies the address space from which the interval starting at
address start of length len bytes is removed. On success, zero is returned. Otherwise, a
negative error code is returned.

The munmap()system call is exported to user-space as a means to enable processes to
remove address intervals from their address space; it is the complement of the mmap() sys-
tem call:

int munmap(void *start, size_t length)

The system call is defined in mm/mmap.c and acts as a simple wrapper to do_munmap():

asmlinkage long sys_munmap(unsigned long addr, size_t len)

{

int ret;

struct mm_struct *mm;

mm = current->mm;

down_write(&mm->mmap_sem);

ret = do_munmap(mm, addr, len);

up_write(&mm->mmap_sem);

return ret;

}

Page Tables
Although applications operate on virtual memory mapped to physical addresses, proces-
sors operate directly on those physical addresses. Consequently, when an application
accesses a virtual memory address, it must first be converted to a physical address before
the processor can resolve the request. Performing this lookup is done via page tables. Page
tables work by splitting the virtual address into chunks. Each chunk is used as an index
into a table.The table points to either another table or the associated physical page.

In Linux, the page tables consist of three levels.The multiple levels enable a sparsely
populated address space, even on 64-bit machines. If the page tables were implemented as

 From the Library of Wow! eBook

ptg

321Page Tables

a single static array, their size on even 32-bit architectures would be enormous. Linux uses
three levels of page tables even on architectures that do not support three levels in hard-
ware. (For example, some hardware uses only two levels or implements a hash in hard-
ware.) Using three levels is a sort of “greatest common denominator”—architectures with
a less complicated implementation can simplify the kernel page tables as needed with
compiler optimizations.

The top-level page table is the page global directory (PGD), which consists of an array
of pgd_t types. On most architectures, the pgd_t type is an unsigned long.The entries
in the PGD point to entries in the second-level directory, the PMD.

The second-level page table is the page middle directory (PMD), which is an array of
pmd_t types.The entries in the PMD point to entries in the PTE.

The final level is called simply the page table and consists of page table entries of type
pte_t. Page table entries point to physical pages.

In most architectures, page table lookups are handled (at least to some degree) by hard-
ware. In normal operation, hardware can handle much of the responsibility of using the
page tables.The kernel must set things up, however, in such a way that the hardware is
happy and can do its thing. Figure 15.1 diagrams the flow of a virtual to physical address
lookup using page tables.

Each process has its own page tables (threads share them, of course).The pgd field of
the memory descriptor points to the process’s page global directory. Manipulating and
traversing page tables requires the page_table_lock, which is located inside the associ-
ated memory descriptor.

Page table data structures are quite architecture-dependent and thus are defined in
<asm/page.h>.

Because nearly every access of a page in virtual memory must be resolved to its corre-
sponding address in physical memory, the performance of the page tables is very critical.
Unfortunately, looking up all these addresses in memory can be done only so quickly.To
facilitate this, most processors implement a translation lookaside buffer, or simply TLB,

struct mm_struct

PGD

pgd_t

pgd_t

pgd_t

pgd_t

pgd_t

pgd_t

pgd_t

pgd_t

pgd_t

PMD

pmd_t

pmd_t

pmd_t

pmd_t

pmd_t

pmd_t

pmd_t

pmd_t

pmd_t

PTE

pte_t

pte_t

pte_t

pte_t

pte_t

pte_t

pte_t

pte_t

pet_t

struct page

physical page

Figure 15.1 Virtual-to-physical address lookup.

 From the Library of Wow! eBook

ptg

322 Chapter 15 The Process Address Space

which acts as a hardware cache of virtual-to-physical mappings.When accessing a virtual
address, the processor first checks whether the mapping is cached in the TLB. If there is a
hit, the physical address is immediately returned. Otherwise, if there is a miss, the page
tables are consulted for the corresponding physical address.

Nonetheless, page table management is still a critical—and evolving—part of the ker-
nel. Changes to this area in 2.6 include allocating parts of the page table out of high
memory. Future possibilities include shared page tables with copy-on-write semantics. In
that scheme, page tables would be shared between parent and child across a fork().When
the parent or the child attempted to modify a particular page table entry, a copy would be
created, and the two processes would no longer share that entry. Sharing page tables
would remove the overhead of copying the page table entries on fork().

Conclusion
In this suspense-laden chapter, we looked at the abstraction of virtual memory provided
to each process.We looked at how the kernel represents the process address space (via
struct mm_struct) and how the kernel represents regions of memory within that space
(struct vm_area_struct).We covered how the kernel creates (via mmap()) and destroys
(via munmap()) these memory regions. Finally, we covered page tables. Because Linux is a
virtual memory–based operating system, these concepts are essential to its operation and
process model.

The next chapter covers the page cache, a general in-memory data cache used to fulfill
all page I/O, and how the kernel performs page-based data writeback.

 From the Library of Wow! eBook

ptg

16
The Page Cache and

Page Writeback

The Linux kernel implements a disk cache called the page cache.The goal of this cache is
to minimize disk I/O by storing data in physical memory that would otherwise require
disk access.This chapter deals with the page cache and the process by which changes to
the page cache are propagated back to disk, which is called page writeback.

Two factors comingle to make disk caches a critical component of any modern oper-
ating system. First, disk access is several orders of magnitude slower than memory access—
milliseconds versus nanoseconds.Accessing data from memory rather than the disk is
much faster, and accessing data from the processor’s L1 or L2 cache is faster still. Second,
data accessed once will, with a high likelihood, find itself accessed again in the near
future.This principle—that access to a particular piece of data tends to be clustered in
time—is called temporal locality, which ensures that if data is cached on its first access, there
is a high probability of a cache hit (access to data in the cache) in the near future. Given
that memory is so much faster than disk, coupled with the fact that once-used is likely
twice-used data, an in-memory cache of the disk is a large performance win.

Approaches to Caching
The page cache consists of physical pages in RAM, the contents of which correspond to
physical blocks on a disk.The size of the page cache is dynamic; it can grow to consume
any free memory and shrink to relieve memory pressure.We call the storage device being
cached the backing store because the disk stands behind the cache as the source of the
canonical version of any cached data.Whenever the kernel begins a read operation—for
example, when a process issues the read() system call—it first checks if the requisite data
is in the page cache. If it is, the kernel can forgo accessing the disk and read the data
directly out of RAM.This is called a cache hit. If the data is not in the cache, called a cache
miss, the kernel must schedule block I/O operations to read the data off the disk.After
the data is read off the disk, the kernel populates the page cache with the data so that any
subsequent reads can occur out of the cache. Entire files need not be cached; the page

 From the Library of Wow! eBook

ptg

324 Chapter 16 The Page Cache and Page Writeback

cache can hold some files in their entirety while storing only a page or two of other files.
What is cached depends on what has been accessed.

Write Caching
This explains how data ends up in the page cache via read operations, but what happens
when a process writes to disk, for example via the write() system call? Generally speak-
ing, caches can implement one of three different strategies. In the first strategy, called no-
write, the cache simply does not cache write operations.A write operation against a piece
of data stored in the cache would be written directly to disk, invalidating the cached data
and requiring it to be read from disk again on any subsequent read. Caches rarely employ
this strategy because it not only fails to cache write operations, but it also makes them
costly by invalidating the cache.

In the second strategy, a write operation would automatically update both the in-
memory cache and the on-disk file.This approach is called a write-through cache because
write operations immediately go through the cache to the disk.This approach has the ben-
efit of keeping the cache coherent—synchronized and valid for the backing store—without
needing to invalidate it. It is also simple.

The third strategy, employed by Linux, is called write-back.1 In a write-back cache,
processes perform write operations directly into the page cache.The backing store is not
immediately or directly updated. Instead, the written-to pages in the page cache are
marked as dirty and are added to a dirty list. Periodically, pages in the dirty list are written
back to disk in a process called writeback, bringing the on-disk copy in line with the in-
memory cache.The pages are then marked as no longer dirty.The term “dirty” can be
confusing because what is actually dirty is not the data in the page cache (which is up to
date) but the data on disk (which is out of date).A better term would be unsynchronized.
Nonetheless, we say the cache contents, not the invalid disk contents, are dirty.A write-
back is generally considered superior to a write-through strategy because by deferring the
writes to disk, they can be coalesced and performed in bulk at a later time.The downside
is complexity.

Cache Eviction
The final piece to caching is the process by which data is removed from the cache, either
to make room for more relevant cache entries or to shrink the cache to make available
more RAM for other uses.This process, and the strategy that decides what to remove, is
called cache eviction. Linux’s cache eviction works by selecting clean (not dirty) pages and

1 Some books or operating systems call such a strategy a copy-back or write-behind cache. All three

names are synonyms. Linux and other Unix systems use the noun “write-back” to refer to the

caching strategy and the verb “writeback” to refer to the action of writing cached data back to the

backing store. This book follows that usage.

 From the Library of Wow! eBook

ptg

325Approaches to Caching

simply replacing them with something else. If insufficient clean pages are in the cache, the
kernel forces a writeback to make more clean pages available.The hard part is deciding
what to evict.The ideal eviction strategy evicts the pages least likely to be used in the
future. Of course, knowing what pages are least likely to be accessed requires knowing the
future, which is why this hopeful strategy is often referred to as the clairvoyant algorithm.
Such a strategy is ideal, but impossible to implement.

Least Recently Used
Cache eviction strategies attempt to approximate the clairvoyant algorithm with what
information they have access to. One of the more successful algorithms, particularly for
general-purpose page caches, is called least recently used, or LRU.An LRU eviction strategy
requires keeping track of when each page is accessed (or at least sorting a list of pages by
access time) and evicting the pages with the oldest timestamp (or at the start of the sorted
list).This strategy works well because the longer a piece of cached data sits idle, the less
likely it is to be accessed in the near future. Least recently used is a great approximation of
most likely to be used. However, one particular failure of the LRU strategy is that many
files are accessed once and then never again. Putting them at the top of the LRU list is
thus not optimal. Of course, as before, the kernel has no way of knowing that a file is
going to be accessed only once. But it does know how many times it has been accessed in
the past.

The Two-List Strategy
Linux, therefore, implements a modified version of LRU, called the two-list strategy. Instead
of maintaining one list, the LRU list, Linux keeps two lists: the active list and the inactive
list. Pages on the active list are considered “hot” and are not available for eviction. Pages
on the inactive list are available for cache eviction. Pages are placed on the active list only
when they are accessed while already residing on the inactive list. Both lists are maintained
in a pseudo-LRU manner: Items are added to the tail and removed from the head, as with
a queue.The lists are kept in balance: If the active list becomes much larger than the inac-
tive list, items from the active list’s head are moved back to the inactive list, making them
available for eviction.The two-list strategy solves the only-used-once failure in a classic
LRU and also enables simpler, pseudo-LRU semantics to perform well.This two-list
approach is also known as LRU/2; it can be generalized to n-lists, called LRU/n.

We now know how the page cache is populated (via reads and writes), how it is syn-
chronized in the face of writes (via writeback), and how old data is evicted to make way
for new data (via a two-list strategy). Let’s now consider a real-world scenario to see how
the page cache benefits the system.Assume you are working on a large software project—
the Linux kernel, perhaps—and have many source files open.As you open and read
source code, the files are stored in the page cache. Jumping around from file to file is
instantaneous as the data is cached.As you edit the files, saving them appears instanta-
neous as well because the writes only need to go to memory, not the disk.When you
compile the project, the cached files enable the compilation to proceed with far fewer
disk accesses, and thus much more quickly. If the entire source tree is too big to fit in

 From the Library of Wow! eBook

ptg

326 Chapter 16 The Page Cache and Page Writeback

memory, some of it must be evicted—and thanks to the two-list strategy, any evicted files
will be on the inactive list and likely not one of the source files you are directly editing.
Later, hopefully when you are not compiling, the kernel will perform page writeback and
update the on-disk copies of the source files with any changes you made.This caching
results in a dramatic increase in system performance.To see the difference, compare how
long it takes to compile your large software project when “cache cold”—say, fresh off a
reboot—versus “cache warm.”

The Linux Page Cache
The page cache, as its name suggests, is a cache of pages in RAM.The pages originate
from reads and writes of regular filesystem files, block device files, and memory-mapped
files. In this manner, the page cache contains chunks of recently accessed files. During a
page I/O operation, such as read(),2 the kernel checks whether the data resides in the
page cache. If the data is in the page cache, the kernel can quickly return the requested
page from memory rather than read the data off the comparatively slow disk. In the rest
of this chapter, we explore the data structures and kernel facilities that maintain Linux’s
page cache.

The address_space Object
A page in the page cache can consist of multiple noncontiguous physical disk blocks.3

Checking the page cache to see whether certain data has been cached is made difficult
because of this noncontiguous layout of the blocks that constitute each page.Therefore, it
is not possible to index the data in the page cache using only a device name and block
number, which would otherwise be the simplest solution.

Furthermore, the Linux page cache is quite general in what pages it can cache. Indeed,
the original page cache introduced in System V Release 4 cached only filesystem data.
Consequently, the SVR4 page cache used its equivalent of the inode object, called
struct vnode, to manage the page cache.The Linux page cache aims to cache any page-
based object, which includes many forms of files and memory mappings.

Although the Linux page cache could work by extending the inode structure (dis-
cussed in Chapter 13,“The Virtual Filesystem”) to support page I/O operations, such a

2 As you saw in Chapter 13, “The Virtual Filesystem,” it is not the read() and write() system

calls that perform the actual page I/O operation, but the filesystem-specific methods specified by

file->f_op->read() and file->f_op->write().
3 For example, a physical page is 4KB in size on the x86 architecture, whereas a disk block on many

filesystems can be as small as 512 bytes. Therefore, 8 blocks might fit in a single page. The blocks

need not be contiguous because the files might be laid out all over the disk.

 From the Library of Wow! eBook

ptg

327The Linux Page Cache

choice would confine the page cache to files.To maintain a generic page cache—one not
tied to physical files or the inode structure—the Linux page cache uses a new object to
manage entries in the cache and page I/O operations.That object is the address_space
structure.Think of address_space as the physical analogue to the virtual
vm_area_struct introduced in Chapter 15,“The Process Address Space.”While a single
file may be represented by 10 vm_area_struct structures (if, say, five processes each
mmap() it twice), the file has only one address_space structure—just as the file may have
many virtual addresses but exist only once in physical memory. Like much else in the
Linux kernel, address_space is misnamed.A better name is perhaps page_cache_entity
or physical_pages_of_a_file.

The address_space structure is defined in <linux/fs.h>:

struct address_space {

struct inode *host; /* owning inode */

struct radix_tree_root page_tree; /* radix tree of all pages */

spinlock_t tree_lock; /* page_tree lock */

unsigned int i_mmap_writable; /* VM_SHARED ma count */

struct prio_tree_root i_mmap; /* list of all mappings */

struct list_head i_mmap_nonlinear; /* VM_NONLINEAR ma list */

spinlock_t i_mmap_lock; /* i_mmap lock */

atomic_t truncate_count; /* truncate re count */

unsigned long nrpages; /* total number of pages */

pgoff_t writeback_index; /* writeback start offset */

struct address_space_operations *a_ops; /* operations table */

unsigned long flags; /* gfp_mask and error flags */

struct backing_dev_info *backing_dev_info; /* read-ahead information */

spinlock_t private_lock; /* private lock */

struct list_head private_list; /* private list */

struct address_space *assoc_mapping; /* associated buffers */

};

The i_mmap field is a priority search tree of all shared and private mappings in this
address space.A priority search tree is a clever mix of heaps and radix trees.4 Recall from
earlier that while a cached file is associated with one address_space structure, it can
have many vm_area_struct structures—a one-to-many mapping from the physical pages
to many virtual pages.The i_mmap field allows the kernel to efficiently find the mappings
associated with this cached file.

There are a total of nrpages in the address space.
The address_space is associated with some kernel object. Normally, this is an inode.

If so, the host field points to the associated inode.The host field is NULL if the associated

4 The kernel implementation is based on the radix priority search tree proposed by Edward M.

McCreight in SIAM Journal of Computing, volume 14, number 2, pages 257–276, May 1985.

 From the Library of Wow! eBook

ptg

328 Chapter 16 The Page Cache and Page Writeback

object is not an inode—for example, if the address_space is associated with the
swapper.

address_space Operations
The a_ops field points to the address space operations table, in the same manner as the
VFS objects and their operations tables.The operations table is represented by struct
address_space_operations and is also defined in <linux/fs.h>:

struct address_space_operations {

int (*writepage)(struct page *, struct writeback_control *);

int (*readpage) (struct file *, struct page *);

int (*sync_page) (struct page *);

int (*writepages) (struct address_space *,

struct writeback_control *);

int (*set_page_dirty) (struct page *);

int (*readpages) (struct file *, struct address_space *,

struct list_head *, unsigned);

int (*write_begin)(struct file *, struct address_space *mapping,

loff_t pos, unsigned len, unsigned flags,

struct page **pagep, void **fsdata);

int (*write_end)(struct file *, struct address_space *mapping,

loff_t pos, unsigned len, unsigned copied,

struct page *page, void *fsdata);

sector_t (*bmap) (struct address_space *, sector_t);

int (*invalidatepage) (struct page *, unsigned long);

int (*releasepage) (struct page *, int);

int (*direct_IO) (int, struct kiocb *, const struct iovec *,

loff_t, unsigned long);

int (*get_xip_mem) (struct address_space *, pgoff_t, int,

void **, unsigned long *);

int (*migratepage) (struct address_space *,

struct page *, struct page *);

int (*launder_page) (struct page *);

int (*is_partially_uptodate) (struct page *,

read_descriptor_t *,

unsigned long);

int (*error_remove_page) (struct address_space *,

struct page *);

};

These function pointers point at the functions that implement page I/O for this
cached object. Each backing store describes how it interacts with the page cache via its
own address_space_operations. For example, the ext3 filesystem defines its operations
in fs/ext3/inode.c.Thus, these are the functions that manage the page cache, including
the most common: reading pages into the cache and updated data in the cache.Thus, the
readpage() and writepage()methods are most important. Let’s look at the steps

 From the Library of Wow! eBook

ptg

329The Linux Page Cache

involved in each, starting with a page read operation. First, the Linux kernel attempts to
find the request data in the page cache.The find_get_page() method is used to perform
this check; it is passed an address_space and page offset.These values search the page
cache for the desired data:

page = find_get_page(mapping, index);

Here, mapping is the given address_space and index is the desired offset into the
file, in pages. (Yes, calling the address_space structure mapping just furthers the naming
confusion. I’m replicating the kernel’s naming for consistency, but I do not condone it.) If
the page does not exist in the cache, find_get_page()returns NULL and a new page is
allocated and added to the page cache:

struct page *page;

int error;

/* allocate the page ... */

page = page_cache_alloc_cold(mapping);

if (!page)

/* error allocating memory */

/* ... and then add it to the page cache */

error = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);

if (error)

/* error adding page to page cache */

Finally, the requested data can be read from disk, added to the page cache, and
returned to the user:

error = mapping->a_ops->readpage(file, page);

Write operations are a bit different. For file mappings, whenever a page is modified,
the VM simply calls

SetPageDirty(page);

The kernel later writes the page out via the writepage() method.Write operations
on specific files are more complicated.The generic write path in mm/filemap.c performs
the following steps:

page = __grab_cache_page(mapping, index, &cached_page, &lru_pvec);

status = a_ops->prepare_write(file, page, offset, offset+bytes);

page_fault = filemap_copy_from_user(page, offset, buf, bytes);

status = a_ops->commit_write(file, page, offset, offset+bytes);

First, the page cache is searched for the desired page. If it is not in the cache, an entry
is allocated and added. Next, the kernel sets up the write request and the data is copied
from user-space into a kernel buffer. Finally, the data is written to disk.

Because the previous steps are performed during all page I/O operations, all page I/O
is guaranteed to go through the page cache. Consequently, the kernel attempts to satisfy

 From the Library of Wow! eBook

ptg

330 Chapter 16 The Page Cache and Page Writeback

all read requests from the page cache. If this fails, the page is read in from disk and added
to the page cache. For write operations, the page cache acts as a staging ground for the
writes.Therefore, all written pages are also added to the page cache.

Radix Tree
Because the kernel must check for the existence of a page in the page cache before initi-
ating any page I/O, such a check must be quick. Otherwise, the overhead of searching
and checking the page cache could nullify any benefits the cache might provide. (At least
if the cache hit rate is low—the overhead would have to be awful to cancel out the bene-
fit of retrieving the data from memory in lieu of disk.)

As you saw in the previous section, the page cache is searched via the address_space
object plus an offset value. Each address_space has a unique radix tree stored as
page_tree.A radix tree is a type of binary tree.The radix tree enables quick searching for
the desired page, given only the file offset. Page cache searching functions such as
find_get_page() call radix_tree_lookup(), which performs a search on the given tree
for the given object.

The core radix tree code is available in generic form in lib/radix-tree.c. Users of
the radix tree need to include <linux/radix-tree.h>.

The Old Page Hash Table
Prior to the 2.6 kernel, the page cache was not searched via the radix tree. Instead, a
global hash was maintained over all the pages in the system.The hash returned a doubly
linked list of entries that hash to the same given value. If the desired page were in the
cache, one of the items in the list was the corresponding page. Otherwise, the page was
not in the page cache and the hash function returned NULL.

The global hash had four primary problems:

n A single global lock protected the hash. Lock contention was quite high on even
moderately sized machines, and performance suffered as a result.

n The hash was larger than necessary because it contained all the pages in the page
cache, whereas only pages pertaining to the current file were relevant.

n Performance when the hash lookup failed (that is, the given page was not in the
page cache) was slower than desired, particularly because it was necessary to walk
the chains off of a given hash value.

n The hash consumed more memory than other possible solutions.

The introduction of the radix tree-based page cache in 2.6 solved these issues.

The Buffer Cache
Individual disk blocks also tie into the page cache, by way of block I/O buffers. Recall
from Chapter 14,“The Block I/O Layer,” that a buffer is the in-memory representation
of a single physical disk block. Buffers act as descriptors that map pages in memory to

 From the Library of Wow! eBook

ptg

331The Flusher Threads

disk blocks; thus, the page cache also reduces disk access during block I/O operations by
both caching disk blocks and buffering block I/O operations until later.This caching is
often referred to as the buffer cache, although as implemented it is not a separate cache but
is part of the page cache.

Block I/O operations manipulate a single disk block at a time.A common block I/O
operation is reading and writing inodes.The kernel provides the bread() function to
perform a low-level read of a single block from disk.Via buffers, disk blocks are mapped
to their associated in-memory pages and cached in the page cache.

The buffer and page caches were not always unified; doing so was a major feature of
the 2.4 Linux kernel. In earlier kernels, there were two separate disk caches: the page
cache and the buffer cache.The former cached pages; the latter cached buffers.The two
caches were not unified:A disk block could exist in both caches simultaneously.This led
to wasted effort synchronizing the two cached copies and memory wasted in duplicating
cached items.Today, we have one disk cache: the page cache.The kernel still needs to use
buffers, however, to represent disk blocks in memory. Conveniently, the buffers describe
the mapping of a block onto a page, which is in the page cache.

The Flusher Threads
Write operations are deferred in the page cache.When data in the page cache is newer
than the data on the backing store, we call that data dirty. Dirty pages that accumulate in
memory eventually need to be written back to disk. Dirty page writeback occurs in three
situations:

n When free memory shrinks below a specified threshold, the kernel writes dirty data
back to disk to free memory because only clean (nondirty) memory is available for
eviction.When clean, the kernel can evict the data from the cache and then shrink
the cache, freeing up more memory.

n When dirty data grows older than a specific threshold, sufficiently old data is writ-
ten back to disk to ensure that dirty data does not remain dirty indefinitely.

n When a user process invokes the sync() and fsync() system calls, the kernel per-
forms writeback on demand.

These three jobs have rather different goals. In fact, two separate kernel threads per-
formed the work in older kernels (see the following section). In 2.6, however, a gang5 of
kernel threads, the flusher threads, performs all three jobs.

First, the flusher threads need to flush dirty data back to disk when the amount of free
memory in the system shrinks below a specified level.The goal of this background write-
back is to regain memory consumed by dirty pages when available physical memory is

5 The term “gang” is commonly used in computer science to denote a group of things that can oper-

ate in parallel.

 From the Library of Wow! eBook

ptg

332 Chapter 16 The Page Cache and Page Writeback

Table 16.1 Page Writeback Settings

Variable Description

dirty_background_ratio As a percentage of total memory, the number of
pages at which the flusher threads begin writeback of
dirty data.

dirty_expire_interval In milliseconds, how old data must be to be written
out the next time a flusher thread wakes to perform
periodic writeback.

dirty_ratio As a percentage of total memory, the number of
pages a process generates before it begins writeback
of dirty data.

dirty_writeback_interval In milliseconds, how often a flusher thread should
wake up to write data back out to disk.

laptop_mode A Boolean value controlling laptop mode. See the fol-
lowing section.

low. The memory level at which this process begins is configured by the
dirty_background_ratio sysctl.When free memory drops below this threshold, the ker-
nel invokes the wakeup_flusher_threads() call to wake up one or more flusher threads
and have them run the bdi_writeback_all () function to begin writeback of dirty
pages.This function takes as a parameter the number of pages to attempt to write back.
The function continues writing out data until two conditions are true:

n The specified minimum number of pages has been written out.
n The amount of free memory is above the dirty_background_ratio threshold.

These conditions ensure that the flusher threads do their part to relieve low-memory
conditions.Writeback stops prior to these conditions only if the flusher threads write
back all the dirty pages and there is nothing left to do.

For its second goal, a flusher thread periodically wakes up (unrelated to low-memory
conditions) and writes out old dirty pages.This is performed to ensure that no dirty pages
remain in memory indefinitely. During a system failure, because memory is volatile, dirty
pages in memory that have not been written to disk are lost. Consequently, periodically
synchronizing the page cache with the disk is important. On system boot, a timer is ini-
tialized to wake up a flusher thread and have it run the wb_writeback() function.This
function then writes back all data that was modified longer than dirty_expire_interval
milliseconds ago.The timer is then reinitialized to expire again in dirty_writeback_
interval milliseconds. In this manner, the flusher threads periodically wake up and write
to disk all dirty pages older than a specified limit.

The system administrator can set these values either in /proc/sys/vm or via sysctl.
Table 16.1 lists the variables.

 From the Library of Wow! eBook

ptg

333The Flusher Threads

The flusher code lives in mm/page-writeback.c and mm/backing-dev.c and the
writeback mechanism lives in fs/fs-writeback.c.

Laptop Mode
Laptop mode is a special page writeback strategy intended to optimize battery life by mini-
mizing hard disk activity and enabling hard drives to remain spun down as long as possi-
ble. It is configurable via /proc/sys/vm/laptop_mode. By default, this file contains a zero
and laptop mode is disabled.Writing a one to this file enables laptop mode.

Laptop mode makes a single change to page writeback behavior. In addition to per-
forming writeback of dirty pages when they grow too old, the flusher threads also piggy-
back off any other physical disk I/O, flushing all dirty buffers to disk. In this manner, page
writeback takes advantage that the disk was just spun up, ensuring that it will not cause
the disk to spin up later.

This behavioral change makes the most sense when dirty_expire_interval and
dirty_writeback_interval are set to large values—say, 10 minutes.With writeback so
delayed, the disk is spun up infrequently, and when it does spin up, laptop mode ensures
that the opportunity is well utilized. Because shutting off the disk drive is a significant
source of power savings, laptop mode can greatly improve how long a laptop lasts on bat-
tery.The downside is that a system crash or other failure can lose a lot of data.

Many Linux distributions automatically enable and disable laptop mode, and modify
other writeback tunables, when going on and off battery.This enables a machine to bene-
fit from laptop mode when on battery power and then automatically return to normal
page writeback behavior when plugged into AC.

History: bdflush, kupdated, and pdflush
Prior to the 2.6 kernel, the job of the flusher threads was met by two other kernel
threads, bdflush and kupdated.

The bdflush kernel thread performed background writeback of dirty pages when
available memory was low.A set of thresholds was maintained, similar to the flusher
threads’, and bdflush was awakened via wakeup_bdflush() whenever free memory
dropped below those thresholds.

Two main differences distinguish bdflush and the current flusher threads.The first,
which is discussed in the next section, is that there was always only one bdflush daemon,
whereas the number of flusher threads is a function of the number of disk spindles.The
second difference is that bdflush was buffer-based; it wrote back dirty buffers. Conversely,
the flusher threads are page-based; they write back whole pages. Of course, the pages can
correspond to buffers, but the actual I/O unit is a full page and not a single buffer.This is
beneficial as managing pages is easier than managing buffers because pages are a more
general and common unit.

Because bdflush flushes buffers only when memory is low or the number of buffers is
too large, the kupdated thread was introduced to periodically write back dirty pages. It
served an identical purpose to the wb_writeback() function.

 From the Library of Wow! eBook

ptg

334 Chapter 16 The Page Cache and Page Writeback

In the 2.6 kernel, bdflush and kupdated gave way to the pdflush threads. Short for page
dirty flush (more of those confusing names), the pdflush threads performed similar to the
flusher threads of today.The main difference is that the number of pdflush threads is
dynamic, by default between two and eight, depending on the I/O load of the system.
The pdflush threads are not associated with any specific disk; instead, they are global to all
disks in the system.This allows for a simple implementation.The downside is that pdflush
can easily trip up on congested disks, and congestion is easy to cause with modern hard-
ware. Moving to per-spindle flushing enables the I/O to perform synchronously, simplify-
ing the congestion logic and improving performance.The flusher threads replaced the
pdflush threads in the 2.6.32 kernel.The per-spindle flushing is the main difference; the
rest of this section is also applicable to pdflush and thus any 2.6 kernel.

Avoiding Congestion with Multiple Threads
One of the major flaws in the bdflush solution was that bdflush consisted of one thread.
This led to possible congestion during heavy page writeback where the single bdflush
thread would block on a single congested device queue (the list of I/O requests waiting
to submit to disk), whereas other device queues would sit relatively idle. If the system has
multiple disks and the associated processing power, the kernel should keep each disk busy.
Unfortunately, even with plenty of data needing writeback, bdflush can become stuck
handling a single queue and fail to keep all disks saturated.This occurs because the
throughput of disks is a finite—and unfortunately comparatively small—number. If only a
single thread is performing page writeback, that single thread can easily spend a long time
waiting for a single disk because disk throughput is such a limiting quantity.To mitigate
this, the kernel needs to multithread page writeback. In this manner, no single device
queue can become a bottleneck.

The 2.6 kernel solves this problem by enabling multiple flusher threads to exist. Each
thread individually flushes dirty pages to disk, allowing different flusher threads to con-
centrate on different device queues.With the pdflush threads, the number of threads was
dynamic, and each thread tried to stay busy grabbing data from the per-superblock dirty
list and writing it back to disk.The pdflush approach prevents a single busy disk from
starving other disks.This is all good, but what if each pdflush thread were to get hung up
writing to the same, congested, queue? In that case, the performance of multiple pdflush
threads would not be an improvement over a single thread.The memory consumed, how-
ever, would be significantly greater.To mitigate this effect, the pdflush threads employ
congestion avoidance:They actively try to write back pages whose queues are not con-
gested.As a result, the pdflush threads spread out their work and refrain from merely
hammering on the same busy device.

This approach worked fairly well, but the congestion avoidance was not perfect. On
modern systems, congestion is easy to cause because I/O bus technology improves at a
slower rate than the rest of the computer—processors keep getting faster according to
Moore’s Law, but hard drives are only marginally quicker than they were two decades
ago. Moreover, aside from pdflush, no other part of the I/O system employs congestion

 From the Library of Wow! eBook

ptg

335Conclusion

avoidance.Thus, in certain cases pdflush can avoid writing back on a specific disk far
longer than desired.With the current flusher threads model, available since 2.6.32, the
threads are associated with a block device, so each thread grabs data from its per-block
device dirty list and writes it back to its disk.Writeback is thus synchronous and the
threads, because there is one per disk, do not need to employ complicated congestion
avoidance.This approach improves fairness and decreases the risk of starvation.

Because of the improvements in page writeback, starting with the introduction of
pdflush and continuing with the flusher threads, the 2.6 kernel can keep many more disks
saturated than any earlier kernel. In the face of heavy activity, the flusher threads can
maintain high throughput across multiple disks.

Conclusion
This chapter looked at Linux’s page cache and page writeback.We saw how the kernel
performs all page I/O through the page cache and how this page cache, by storing data in
memory, significantly improves the performance of the system by reducing the amount of
disk I/O.We discussed how writes are maintained in the page cache through a process
called write-back caching, which keeps pages “dirty” in memory and defers writing the
data back to disk.The flusher “gang” of kernel threads handles this eventual page writeback.

Over the last few chapters, we have built a solid understanding of memory and filesys-
tem management. Now let’s segue over to the topic of device drivers and modules to see
how the Linux kernel provides a modular and dynamic infrastructure for the run-time
insertion and removal of kernel code.

 From the Library of Wow! eBook

ptg

17
Devices and Modules

In this chapter, we discuss four kernel components related to device drivers and device
management:

n Device types—Classifications used in all Unix systems to unify behavior of com-
mon devices

n Modules—The mechanism by which the Linux kernel can load and unload object
code on demand

n Kernel objects—Support for adding simple object-oriented behavior and a par-
ent/child relationship to kernel data structures

n Sysfs—A filesystem representation of the system’s device tree

Device Types
In Linux, as with all Unix systems, devices are classified into one of three types:

n Block devices
n Character devices
n Network devices

Often abbreviated blkdevs, block devices are addressable in device-specified chunks called
blocks and generally support seeking, the random access of data. Example block devices
include hard drives, Blu-ray discs, and memory devices such as flash. Block devices are
accessed via a special file called a block device node and generally mounted as a filesystem.
We discuss filesystems in Chapter 13,“The Virtual Filesystem,” and block devices in
Chapter 14,“The Block I/O Layer.”

Often abbreviated cdevs, character devices are generally not addressable, providing
access to data only as a stream, generally of characters (bytes). Example character devices
include keyboards, mice, printers, and most pseudo-devices. Character devices are
accessed via a special file called a character device node. Unlike with block devices, applica-
tions interact with character devices directly through their device node.

 From the Library of Wow! eBook

ptg

338 Chapter 17 Devices and Modules

Sometimes called Ethernet devices after the most common type of network devices,
network devices provide access to a network (such as the Internet) via a physical adapter
(such as your laptop’s 802.11 card) and a specific protocol (such as IP). Breaking Unix’s
“everything is a file” design principle, network devices are not accessed via a device node
but with a special interface called the socket API.

Linux provides a handful of other device types, but they are specialized to a single task
and not common. One exception is miscellaneous devices, often abbreviated miscdevs, which
are actually a simplified form of character devices. Miscellaneous devices enable a device
driver author to represent simple devices easily, trading functionality for common
infrastructure.

Not all device drivers represent physical devices. Some device drivers are virtual, pro-
viding access to kernel functionality.We call these pseudo devices; some of the most com-
mon are the kernel random number generator (accessible at /dev/random and
/dev/urandom), the null device (accessible at /dev/null), the zero device (accessible at
/dev/zero), the full device (accessible at /dev/full), and the memory device (accessible at
/dev/mem). Most device drivers, however, represent physical hardware.

Modules
Despite being “monolithic,” in the sense that the whole kernel runs in a single address
space, the Linux kernel is modular, supporting the dynamic insertion and removal of code
from itself at runtime. Related subroutines, data, and entry and exit points are grouped
together in a single binary image, a loadable kernel object, called a module. Support for
modules allows systems to have only a minimal base kernel image, with optional features
and drivers supplied via loadable, separate objects. Modules also enable the removal and
reloading of kernel code, facilitate debugging, and allow for the loading of new drivers on
demand in response to the hot plugging of new devices.

This chapter looks at the magic behind modules in the kernel and how you can write
your own module.

Hello, World!
Unlike development on core subsystems of the kernel—which is much of the material
discussed thus far—module development is more like writing a new application, at least
in the sense that modules have entry points and exit points and live in their own files.

It might be cliché, but it would be a travesty to have the opportunity to write a Hello,
World! and not capitalize on the occasion. Here is a Hello,World! kernel module:

/*

* hello.c – The Hello, World! Kernel Module

*/

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

 From the Library of Wow! eBook

ptg

339Modules

/*

* hello_init – the init function, called when the module is loaded.

* Returns zero if successfully loaded, nonzero otherwise.

*/

static int hello_init(void)

{

printk(KERN_ALERT “I bear a charmed life.\n”);

return 0;

}

/*

* hello_exit – the exit function, called when the module is removed.

*/

static void hello_exit(void)

{

printk(KERN_ALERT “Out, out, brief candle!\n”);

}

module_init(hello_init);

module_exit(hello_exit);

MODULE_LICENSE(“GPL”);

MODULE_AUTHOR(“Shakespeare”);

MODULE_DESCRIPTION(“A Hello, World Module”);

This is as simple a kernel module as one can get.The hello_init() function is regis-
tered as this module’s entry point via module_init().The kernel invokes hello_init()
when the module is loaded.The call to module_init()is not actually a function call but a
macro that assigns its sole parameter as the initialization function for this module.All init
functions must have the form,

int my_init(void);

Because init functions are typically not directly invoked by external code, you don’t
need to export the function beyond file-level scope, and it can be marked as static.

Init functions return an int. If initialization (or whatever your init function does) was
successful, the function must return zero. On failure, the function must unwind any ini-
tialization and return nonzero.

This init function merely prints a simple message and returns zero. In actual modules,
init functions register resources, initialize hardware, allocate data structures, and so on. If
this file were compiled statically into the kernel image, the init function would be stored
in the kernel image and run on kernel boot.

The module_exit() function registers a module’s exit point. In this example, we reg-
ister the function hello_exit().The kernel invokes the exit point when the module is
removed from memory. Exit functions might free resources, shutdown and reset hardware,

 From the Library of Wow! eBook

ptg

340 Chapter 17 Devices and Modules

and perform other cleanup before returning. Simply put, exit functions are responsible for
undoing whatever the init function and lifetime of the module did—essentially cleaning
up after the module.After the exit function returns, the module is unloaded.

Exit functions must have the form

void my_exit(void);

As with the init function, you probably want to mark it static.
If this file were compiled into the static kernel image, the exit function would not be

included, and it would never be invoked because if it were not a module, the code could
never be removed from memory.

The MODULE_LICENSE() macro specifies the copyright license for this file. Loading a
non-GPL module into memory results in the tainted flag being set in the kernel.The
copyright license serves two purposes. First, it is for informational purposes; many kernel
developers give bug reports less credence when the tainted flag is set in an oops, because
they presume a binary-only module (that is, a module that they cannot debug) was loaded
into the kernel. Second, non-GPL modules cannot invoke GPL-only symbols.We cover
GPL-only symbols in the section “Exported Symbols” later in this chapter.

Finally, the MODULE_AUTHOR()and MODULE_DESCRIPTION() macros provide, respec-
tively, the module’s author and a brief description of the module.The value of these
macros is entirely informational.

Building Modules
In the 2.6 kernel, building modules is easier than in previous versions, thanks to the new
kbuild build system.The first decision in building modules is deciding where the module
source is to live.You can add the module source to the kernel source proper, either as a
patch or by eventually merging your code into the official tree.Alternatively, you can
maintain and build your module source outside the source tree.

Living in the Source Tree
Ideally, your module is an official part of Linux and thus lives in the kernel source tree.
Getting your work into the kernel proper might require more work at first, but it is the
preferred path because when your code is in the Linux kernel, the entire kernel commu-
nity can help maintain and debug it.

When you decide to place your module in the kernel source tree, the next step is
deciding where in the tree your module is to live. Drivers are stored in subdirectories of
the drivers/ directory in the root of the kernel source tree. Inside drivers/, class, type,
and specific device further organize drivers. For example, drivers for character devices live
in drivers/char/, block devices live in drivers/block/, and USB devices live in
drivers/usb/.The rules are flexible because many devices belong in multiple cate-
gories—for instance, many USB devices are character devices, but they reside in
drivers/usb/ not drivers/char/. Despite such complications, when you get the hang
of it, the organization is understandable and descriptive.

 From the Library of Wow! eBook

ptg

341Modules

Let’s assume you have a character device and want to store it in drivers/char/. Inside
this directory are numerous C source files and a handful of other directories. Drivers with
only one or two source files might simply stick their source in this directory. Drivers with
multiple source files or other accompanying data might create a new subdirectory.There
is no hard and fast rule. Presume that you want to create your own subdirectory. Let’s fur-
ther assume that your driver is for a fishing pole with a computer interface, the Fish Mas-
ter XL 3000, so you need to create a fishing subdirectory inside drivers/char/.

Next, you need to add a line to the Makefile in drivers/char/. So you edit
drivers/char/Makefile and add

obj-m += fishing/

This causes the build system to descend into the fishing/ subdirectory whenever it
compiles modules. More likely, your driver’s compilation is contingent on a specific con-
figuration option; for example, perhaps CONFIG_FISHING_POLE (see the section “Manag-
ing Configuration Options” later in this chapter for how to add a new configuration
option). In that case, you would instead add the line

obj-$(CONFIG_FISHING_POLE) += fishing/

Finally, inside drivers/char/fishing/, you add a new Makefile with the following line:

obj-m += fishing.o

The build system now descends into fishing/ and builds the module fishing.ko
from fishing.c.Yes, confusingly, you write an extension of .o but the module is com-
piled as .ko.As before, more likely your fishing pole driver’s compilation is conditional
on a configuration option. So you probably want to write the following:

obj-$(CONFIG_FISHING_POLE) += fishing.o

One day, your fishing pole driver might get so complicated—autodetection of fishing
line test is just the latest “must have!”—that it grows to occupy more than one source file.
No problem, anglers! You simply make your Makefile read the following:

obj-$(CONFIG_FISHING_POLE) += fishing.o

fishing-objs := fishing-main.o fishing-line.o

Now, fishing-main.c and fishing-line.c will be compiled and linked into
fishing.ko whenever CONFIG_FISHING_POLE is set.

Finally, you might need to pass to the C compiler additional compile flags during the
build process solely for your file.To do so, simply add a line such as the following to your
Makefile:

EXTRA_CFLAGS += -DTITANIUM_POLE

If you opted to place your source file(s) in drivers/char/ and not create a new sub-
directory, you would merely place the preceding lines (that you placed in your Makefile
in drivers/char/fishing/) into drivers/char/Makefile.

 From the Library of Wow! eBook

ptg

342 Chapter 17 Devices and Modules

To compile, run the kernel build process as usual. If your module’s build was condi-
tioned on a configuration option, as it was with CONFIG_FISHING_POLE, make sure that
the option is enabled before beginning.

Living Externally
If you prefer to maintain and build your module outside the kernel source tree, to live the
life of an outsider, simply create a Makefile in your own source directory with this single
line:

obj-m := fishing.o

This compiles fishing.c into fishing.ko. If your source spans multiple files, two
lines will suffice:

obj-m := fishing.o

fishing-objs := fishing-main.o fishing-line.o

This example compiles fishing-main.c and fishing-line.c into fishing.ko.
The main difference in living externally is the build process. Because your module

lives outside the kernel tree, you need to instruct make on how to find the kernel source
files and base Makefile.This is also easy:

make -C /kernel/source/location SUBDIRS=$PWD modules

In this example, /kernel/source/location is the location of your configured kernel
source tree. Recall that you should not store your working copy of the kernel source tree
in /usr/src/linux but somewhere else, easily accessible, in your home directory.

Installing Modules
Compiled modules are installed into /lib/modules/version/kernel/, where each
directory under kernel/ corresponds to the module’s location in the kernel source tree.
For example, with a kernel version of 2.6.34, the compiled fishing pole module would
live at /lib/modules/2.6.34/kernel/drivers/char/fishing.ko if you stuck it
directly in drivers/char/.

The following build command is used to install compiled modules into the correct
location:

make modules_install

This needs to be run as root.

Generating Module Dependencies
The Linux module utilities understand dependencies.This means that module chum can
depend on module bait, and when you load the chum module, the module loader auto-
matically loads the bait module.This dependency information must be generated. Most

 From the Library of Wow! eBook

ptg

343Modules

Linux distributions generate the mapping automatically and keep it up to date on each
boot.To build the module dependency information, as root simply run

depmod

To perform a quick update, rebuilding only the information for modules newer than
the dependency information, run as root

depmod -A

The module dependency information is stored in the file
/lib/modules/version/modules.dep.

Loading Modules
The simplest way to load a module is via insmod.This utility is basic. It simply asks the
kernel to load the module you specify.The insmod program does not perform any
dependency resolution or advanced error checking. Usage is trivial.As root, simply run
this command:

insmod module.ko

Here, module.ko is the filename of the module that you want to load.To load the fish-
ing pole module, you would run this command as root:

insmod fishing.ko

In a similar fashion, to remove a module, you use the rmmod utility.As root, simply
run the following, where module is the name of an already-loaded module:

rmmod module

For example, this command removes the fishing pole module:

rmmod fishing

These utilities, however, are unintelligent.The utility modprobe provides dependency
resolution, error checking and reporting, configurable behavior, and more advanced fea-
tures. Its use is highly encouraged.

To insert a module into the kernel via modprobe, run as root:

modprobe module [module parameters]

Here, module is the name of the module to load.Any following arguments are taken as
parameters to pass to the module on load. See the section “Module Parameters” for a dis-
cussion on module parameters.

The modprobe command attempts to load not only the requested module, but also any
modules on which it depends. Consequently, it is the preferred mechanism for loading
kernel modules.

The modprobe command can also be used to remove modules from the kernel.To
remove a module, as root, run

modprobe –r modules

 From the Library of Wow! eBook

ptg

344 Chapter 17 Devices and Modules

Here, modules specifies one or more modules to remove. Unlike rmmod, modprobe also
removes any modules on which the given module depends, if they are unused. Section 8
of the Linux manual pages provides a reference on its other, less used, options.

Managing Configuration Options
An earlier section in this chapter looked at compiling the fishing pole module only if the
CONFIG_FISHING_POLE configuration option was set. Configuration options have been
discussed in earlier chapters, too, but now let’s look at actually adding a new one, continu-
ing with the fishing pole device driver example.

Thanks to the new “kbuild” system in the 2.6 kernel, adding new configuration
options is easy.All you have to do is add an entry to the Kconfig file responsible for the
applicable branch of the kernel source tree. For drivers, this is usually the directory in
which the source lives. If the fishing pole driver lives in drivers/char/, you use
drivers/char/Kconfig.

If you created a new subdirectory and want a new Kconfig file to live there, you need
to source it from an existing Kconfig.You do this by adding a line such as the following
to an existing Kconfig file:

source “drivers/char/fishing/Kconfig”

In this example, you would add this line to drivers/char/Kconfig.
Entries in Kconfig are easy to add. Our fishing pole module would look like this:

config FISHING_POLE

tristate “Fish Master 3000 support”

default n

help

If you say Y here, support for the Fish Master 3000 with computer

interface will be compiled into the kernel and accessible via a

device node. You can also say M here and the driver will be built as a

module named fishing.ko.

If unsure, say N.

The first line defines what configuration option this entry represents. Note that the
CONFIG_ prefix is assumed and not written.

The second line states that this option is a tristate, meaning that it can be built into the
kernel (Y), built as a module (M), or not built at all (N).To remove the option of building
as a module—say, if this option represented a feature and not a device driver—use the
directive bool instead of tristate.The quoted text following the directive provides the
name of this option in the various configuration utilities.

The third line specifies the default for this option, which is not built (n).You can also
specify the default as built into the kernel (y) or built as a module (m). For device drivers,
the default is usually to not build it (n).

 From the Library of Wow! eBook

ptg

345Modules

The help directive signifies that the rest of the test, indented as it is, is the help text for
this entry.The various configuration tools can display this text when requested. Because
this text is for developers building their own kernels, it can be succinct and technical. End
users do not typically build kernels and, if they did, they could presumably understand the
configuration help.

There are other options, too.The depends directive specifies options that must be set
before this option can be set. If the dependencies are not met, the option is disabled. For
example, if you added the following directive to the Kconfig entry, the device driver
could not be enabled (y or m) until the CONFIG_FISH_TANK option is enabled:

depends on FISH_TANK

The select directive is like depends, except that it forces the given option if our
option is selected.The select directive should not be used as frequently as depends
because it automatically enables other configuration options.The following line enables
CONFIG_BAIT whenever CONFIG_FISHING_POLE is enabled:

select BAIT

For both select and depends, you can request multiple options via &&.With depends,
you can also specify that an option not be enabled by prefixing the option with an excla-
mation mark. For example

depends on EXAMPLE_DRIVERS && !NO_FISHING_ALLOWED

This line specifies that the driver depends on CONFIG_EXAMPLE_DRIVERS being set and
CONFIG_NO_FISHING_ALLOWED being unset.

The tristate and bool options can be followed by the directive if, which makes the
entire option conditional on another configuration option. If the condition is not met,
the configuration option is not only disabled but also does not appear in the configura-
tion utilities. For example, this directive instructs the configuration system to display an
option only if CONFIG_OCEAN is set. Here, deep sea mode is available only if CONFIG_OCEAN
is enabled:

bool “Deep Sea Mode” if OCEAN

The if directive can also follow the default directive, enforcing the default only if
the conditional is met.

The configuration system exports several meta-options to help make configuration
easier.The option CONFIG_EMBEDDED is enabled only if the users specified that they want
to see options designed for disabling key features (presumably to save precious memory
on embedded systems).The option CONFIG_BROKEN_ON_SMP is used to specify a driver
that is not SMP-safe. Normally this option is not set, forcing the user to explicitly
acknowledge the brokenness. New drivers, of course, should not use this flag.The option
CONFIG_DEBUG_KERNEL enables the selection of debugging-related options. Finally, the
CONFIG_EXPERIMENTAL option is used to flag options that are experimental or otherwise

 From the Library of Wow! eBook

ptg

346 Chapter 17 Devices and Modules

of beta quality.The option defaults to off, again forcing users to explicitly acknowledge
the risk before they enable your driver.

Module Parameters
The Linux kernel provides a simple framework, enabling drivers to declare parameters
that the user can specify on either boot or module load and then have these parameters
exposed in your driver as global variables.These module parameters also show up in sysfs
(see later in this chapter). Consequently, creating and managing module parameters that
can be specified in a myriad of convenient ways is trivial.

Defining a module parameter is done via the macro module_param():

module_param(name, type, perm);

Here, name is the name of both the parameter exposed to the user and the variable
holding the parameter inside your module.The type argument holds the parameter’s data
type; it is one of byte, short, ushort, int, uint, long, ulong, charp, bool, or invbool.
These types are, respectively, a byte, a short integer, an unsigned short integer, an integer,
an unsigned integer, a long integer, an unsigned long integer, a pointer to a char, a
Boolean, and a Boolean whose value is inverted from what the user specifies.The byte
type is stored in a single char and the Boolean types are stored in variables of type int.
The rest are stored in the corresponding primitive C types. Finally, the perm argument
specifies the permissions of the corresponding file in sysfs.The permissions can be speci-
fied in the usual octal format, for example 0644 (owner can read and write, group can
read, everyone else can read), or by ORing together the usual S_Ifoo defines, for exam-
ple S_IRUGO | S_IWUSR (everyone can read; user can also write).A value of zero disables
the sysfs entry altogether.

The macro does not declare the variable for you.You must do that before using the
macro.Therefore, typical use might resemble

/* module parameter controlling the capability to allow live bait on the pole */

static int allow_live_bait = 1; /* default to on */

module_param(allow_live_bait, bool, 0644); /* a Boolean type */

This would be in the outermost scope of your module’s source file. In other words,
allow_live_bait is global to the file.

It is possible to have the internal variable named differently than the external parame-
ter.This is accomplished via module_param_named():

module_param_named(name, variable, type, perm);

Here, name is the externally viewable parameter name, and variable is the name of
the internal global variable. For example

static unsigned int max_test = DEFAULT_MAX_LINE_TEST;

module_param_named(maximum_line_test, max_test, int, 0);

 From the Library of Wow! eBook

ptg

347Modules

Normally, you would use a type of charp to define a module parameter that takes a
string.The kernel copies the string provided by the user into memory and points your
variable to the string. For example

static char *name;

module_param(name, charp, 0);

If so desired, it is also possible to have the kernel copy the string directly into a charac-
ter array that you supply.This is done via module_param_string():

module_param_string(name, string, len, perm);

Here, name is the external parameter name, string is the internal variable name, len is
the size of the buffer named by string (or some smaller size, but that does not make
much sense), and perm is the sysfs permissions (or zero to disable a sysfs entry altogether).
For example

static char species[BUF_LEN];

module_param_string(specifies, species, BUF_LEN, 0);

You can accept a comma-separated list of parameters stored in a C array via
module_param_array():

module_param_array(name, type, nump, perm);

Here, name is again the external parameter and internal variable name, type is the data
type, and perm is the sysfs permissions.The new argument, nump, is a pointer to an integer
in which the kernel stores the number of entries stored into the array. Note that the array
pointed to by name must be statically allocated.The kernel determines the array’s size at
compile-time and ensures that it does not cause an overrun. Use is simple. For example

static int fish[MAX_FISH];

static int nr_fish;

module_param_array(fish, int, &nr_fish, 0444);

You can name the internal array something different than the external parameter with
module_param_array_named():

module_param_array_named(name, array, type, nump, perm);

The parameters are identical to the other macros.
Finally, you can document your parameters by using MODULE_PARM_DESC():

static unsigned short size = 1;

module_param(size, ushort, 0644);

MODULE_PARM_DESC(size, “The size in inches of the fishing pole.”);

All these macros require the inclusion of <linux/module.h>.

 From the Library of Wow! eBook

ptg

348 Chapter 17 Devices and Modules

Exported Symbols
When modules are loaded, they are dynamically linked into the kernel.As with user-
space, dynamically linked binaries can call only into external functions explicitly exported
for use. In the kernel, this is handled via special directives called EXPORT_SYMBOL() and
EXPORT_SYMBOL_GPL().

Exported functions are available for use by modules. Functions not exported cannot be
invoked from modules.The linking and invoking rules are much more stringent for mod-
ules than code in the core kernel image. Core code can call any nonstatic interface in the
kernel because all core source files are linked into a single base image. Exported symbols,
of course, must be nonstatic, too.The set of exported kernel symbols are known as the
exported kernel interfaces.

Exporting a symbol is easy.After the function is declared, it is usually followed by an
EXPORT_SYMBOL(). For example

/*

* get_pirate_beard_color - return the color of the current pirate’s beard.

* @pirate is a pointer to a pirate structure

* the color is defined in <linux/beard_colors.h>.

*/

int get_pirate_beard_color(struct pirate *p)

{

return p->beard.color;

}

EXPORT_SYMBOL(get_pirate_beard_color);

Presuming that get_pirate_beard_color() is also declared in an accessible header
file, any module can now access it.

Some developers want their interfaces accessible to only GPL-compliant modules.The
kernel linker enforces this restriction through use of the MODULE_LICENSE() directive. If
you want the previous function accessible to only modules that labeled themselves as
GPL-licensed, use instead

EXPORT_SYMBOL_GPL(get_pirate_beard_color);

If your code is configurable as a module, you must ensure that when compiled as a
module all interfaces that it uses are exported. Otherwise linking errors (and a broken
module) result.

The Device Model
A significant new feature in the 2.6 Linux kernel is the addition of a unified device model.
The device model provides a single mechanism for representing devices and describing
their topology in the system. Such a system provides several benefits:

n Minimization of code duplication
n A mechanism for providing common facilities, such as reference counting

 From the Library of Wow! eBook

ptg

349The Device Model

n The capability to enumerate all the devices in the system, view their status, and see
to what bus they attach

n The capability to generate a complete and valid tree of the entire device structure
of the system, including all buses and interconnections

n The capability to link devices to their drivers and vice versa
n The capability to categorize devices by their class, such as input device, without the

need to understand the physical device topology
n The capability to walk the tree of devices from the leaves up to the root, powering

down devices in the correct order

The initial motivation for the device model was this final point: providing an accurate
device tree to facilitate power management.To implement device-level power manage-
ment in the kernel, you need to build a tree representing the device topology in the sys-
tem: for example, what drive connects to what controller, and what device connects to
what bus.When powering down, the kernel must power down the lower (leaf) nodes of
the tree before the higher nodes. For example, the kernel needs to turn off a USB mouse
before it turns off the USB controller, and the kernel must power down the USB con-
troller before the PCI bus.To do this accurately and efficiently for the entire system, the
kernel needs a tree of devices.

Kobjects
At the heart of the device model is the kobject, short for kernel object, which is represented
by struct kobject and defined in <linux/kobject.h>.The kobject is similar to the
Object class in object-oriented languages such as C# or Java. It provides basic facilities,
such as reference counting, a name, and a parent pointer, enabling the creation of a hierar-
chy of objects.

Without further ado:

struct kobject {

const char *name;

struct list_head entry;

struct kobject *parent;

struct kset *kset;

struct kobj_type *ktype;

struct sysfs_dirent *sd;

struct kref kref;

unsigned int state_initialized:1;

unsigned int state_in_sysfs:1;

unsigned int state_add_uevent_sent:1;

unsigned int state_remove_uevent_sent:1;

unsigned int uevent_suppress:1;

};

The name pointer points to the name of this kobject.

 From the Library of Wow! eBook

ptg

350 Chapter 17 Devices and Modules

The parent pointer points to this kobject’s parent. In this manner, kobjects build an
object hierarchy in the kernel and enable the expression of the relationship between mul-
tiple objects.As you shall see, this is actually all that sysfs is: a user-space filesystem repre-
sentation of the kobject object hierarchy inside the kernel.

The sd pointer points to a sysfs_dirent structure that represents this kobject in sysfs.
Inside this structure is an inode structure representing the kobject in the sysfs filesystem.

The kref structure provides reference counting.The ktype and kset structures
describe and group kobjects.We look at them in the next two subsections.

Kobjects are usually embedded in other structures and are generally not interesting on
their own. Instead, a more important structure, such as struct cdev, defined in
<linux/cdev.h>, has a kobj member:

/* cdev structure - object representing a character device */

struct cdev {

struct kobject kobj;

struct module *owner;

const struct file_operations *ops;

struct list_head list;

dev_t dev;

unsigned int count;

};

When kobjects are embedded inside other structures, the structures receive the stan-
dardized functions that a kobject provides. Most important, the structure’s embedded
kobject now enables the structure to become part of an object hierarchy. For example, the
cdev structure is presentable in an object hierarchy via the parent pointer cdev-
>kobj.parent and the list cdev->kobj.entry.

Ktypes
Kobjects are associated with a specific type, called a ktype, short for kernel object type.
Ktypes are represented by struct kobj_type and defined in <linux/kobject.h>:

struct kobj_type {

void (*release)(struct kobject *);

const struct sysfs_ops *sysfs_ops;

struct attribute **default_attrs;

};

Ktypes have the simple job of describing default behavior for a family of kobjects.
Instead of each kobject defining its own behavior, the behavior is stored in a ktype, and
kobjects of the same “type” point at the same ktype structure, thus sharing the same
behavior.

The release pointer points to the deconstructor called when a kobject’s reference
count reaches zero.This function is responsible for freeing any memory associated with
this kobject and otherwise cleaning up.

 From the Library of Wow! eBook

ptg

351The Device Model

The sysfs_ops variable points to a sysfs_ops structure.This structure describes the
behavior of sysfs files on read and write. It’s covered in more detail in the section “Adding
Files to sysfs.”

Finally, default_attrs points to an array of attribute structures.These structures
define the default attributes associated with this kobject.Attributes represent properties
related to a given object. If this kobject is exported to sysfs, the attributes are exported as
files.The last entry in the array must be NULL.

Ksets
Ksets, short for kernel object sets, are aggregate collections of kobjects. Ksets work as the
base container class for a set of kernel objects, collecting related kobjects, such as “all
block devices,” together in a single place. Ksets might sound similar to ktypes and prompt
the question,“Why have both?” Ksets group related kernel objects together, whereas
ktypes enable kernel objects (functionally related or not) to share common operations.
The distinction is kept to allow kobjects of identical ktypes to be grouped into different
ksets.That is, there are only a handful of ktypes, but many ksets, in the Linux kernel.

The kset pointer points at a kobject’s associated kset. ksets are represented by the kset
structure, which is declared in <linux/kobject.h>:

struct kset {

struct list_head list;

spinlock_t list_lock;

struct kobject kobj;

struct kset_uevent_ops *uevent_ops;

};

In this structure, list is a linked list of all kobjects in this kset, list_lock is a spinlock
protecting this entry in the list (see Chapter 10,“Kernel Synchronization Methods,” for a
discussion on spinlocks), kobj is a kobject representing the base class for this set, and
uevent_ops points to a structure that describes the hotplug behavior of kobjects in this
kset. Uevent, short for user events, is a mechanism for communicating with user-space
information about the hotplugging and hot removal of devices from a system.

Interrelation of Kobjects, Ktypes, and Ksets
The handful of structures thus far discussed is confusing not because of their number
(there are only three) or their complexity (they are all fairly simple), but because they are
all interrelated. In the world of kobjects, it is hard to discuss one structure without dis-
cussing the others.With the basics of each structure covered, however, you can develop a
firm understanding of their relationships.

The important key object is the kobject, represented by struct kobject.The kobject
introduces basic object properties—such as reference counting, parent-child relationship,
and naming—to kernel data structures.The kobject structure provides these features in a
standard unified way. Kobjects, in and of themselves, are not particularly useful. Instead,

 From the Library of Wow! eBook

ptg

352 Chapter 17 Devices and Modules

kobjects are typically embedded in other data structures, giving those containing struc-
tures the features of the kobject.

Kobjects are associated with a specific ktype, which is represented by struct
kobj_type and pointed at by the ktype variable inside of the kobject. ktypes define some
default properties of related kobjects: destruction behavior, sysfs behavior, and default
attributes.The ktype structure is not well named; think of ktypes not as a grouping but as
a set of shared operations.

Kobjects are then grouped into sets, called ksets, which are represented by struct
kset. Ksets provide two functions. First, their embedded kobject acts as a base class for a
group of kobjects. Second, ksets aggregate together related kobjects. In sysfs, kobjects are
the individual directories in the filesystem. Related directories—say, perhaps all subdirec-
tories of a given directory—might be in the same kset.

Figure 17.1 depicts the relationship between these data structures.

Managing and Manipulating Kobjects
With the basic internals of kobjects and friends behind you, it’s time to look at the
exported interfaces used for managing and manipulating kobjects. Most of the time,
driver writers do not have to deal with kobjects directly. Instead, kobjects are embedded
in some class-specific structure (as you saw with the character device structure) and man-
aged “behind the scenes” by the associated driver subsystem. Nonetheless, kobjects are not
intended to remain hidden and can seep through into driver code or you might be hack-
ing on the driver subsystem itself.

The first step in using a kobject is declaring and initializing it. kobjects are initialized
via the function kobject_init, which is declared in <linux/kobject.h>:

subsystem

kset kobj

subsystem

kset kobj

kobj kobj

kobj

kobj

• • •

• • •

• • •
• • •

kobj kobj

Figure 17.1 Relationship between kobjects, ksets, and subsystems.

 From the Library of Wow! eBook

ptg

353The Device Model

void kobject_init(struct kobject *kobj, struct kobj_type *ktype);

The function’s first parameter is the kobject to initialize. Before calling this function,
the kobject must be zeroed.This might normally happen during the initialization of the
larger function in which the kobject is embedded. If not, a simple call to memset()does
the trick:

memset(kobj, 0, sizeof (*kobj));

It is safe to initialize parent and kset after the zeroing. For example

struct kobject *kobj;

kobj = kmalloc(sizeof (*kobj), GFP_KERNEL);

if (!kobj)

return -ENOMEM;

memset(kobj, 0, sizeof (*kobj));

kobj->kset = my_kset;

kobject_init(kobj, my_ktype);

This multistep effort is handled automatically by kobject_create(), which returns a
newly allocated kobject:

struct kobject * kobject_create(void);

Usage is simple:

struct kobject *kobj;

kobj = kobject_create();

if (!kobj)

return –ENOMEM;

Most uses of kobjects should favor kobject_create() or a related helper function
rather than directly manipulate the structure.

Reference Counts
One of the primary features provided by kobjects is a unified reference counting system.
After initialization, the kobject’s reference count is set to one. So long as the reference
count is nonzero, the object continues to exist in memory and is said to be pinned.Any
code that holds a reference to the object first elevates the reference count.When the code
is finished with the object, the reference count is decremented. Bumping the reference
count is called getting a reference to the object, and decrementing the reference count is
called putting a reference to the object.When the reference count reaches zero, the object
can be destroyed and any associated memory freed.

 From the Library of Wow! eBook

ptg

354 Chapter 17 Devices and Modules

Incrementing and Decrementing Reference Counts
Incrementing the reference count is done via kobject_get(), declared in
<linux/kobject.h>:

struct kobject * kobject_get(struct kobject *kobj);

This function returns a pointer to the kobject or NULL on failure.
Decrementing the reference count is done via kobject_put(), also declared in

<linux/kobject.h>:

void kobject_put(struct kobject *kobj);

If the provided kobject’s reference count reaches zero, the release function pointed at
by the ktype associated with the kobject is invoked, any associated memory is freed, and
the object is no longer valid.

Krefs
Internally, the kobject reference counting is provided by the kref structure, which is
defined in <linux/kref.h>:

struct kref {

atomic_t refcount;

};

The lone member is an atomic variable used to hold the reference count.A structure is
used simply to provide type checking. Before using a kref, you must initialize it via
kref_init():

void kref_init(struct kref *kref)

{

atomic_set(&kref->refcount, 1);

}

As you can see, this function simply initializes the internal atomic_t to one. Conse-
quently, krefs are pinned with a reference count of one as soon as they are initialized; this
is the same behavior as kobjects.

To obtain a reference to a kref, use kref_get(), declared in <linux/kref.h>:

void kref_get(struct kref *kref)

{

WARN_ON(!atomic_read(&kref->refcount));

atomic_inc(&kref->refcount);

}

This function bumps the reference count. It has no return value.To drop a reference to
a kref, use kref_put(), declared in <linux/kref.h>:

int kref_put(struct kref *kref, void (*release) (struct kref *kref))

{

WARN_ON(release == NULL);

 From the Library of Wow! eBook

ptg

355sysfs

WARN_ON(release == (void (*)(struct kref *))kfree);

if (atomic_dec_and_test(&kref->refcount)) {

release(kref);

return 1;

}

return 0;

}

This function drops the reference count by one and calls the provided release()
function if the count is now zero.As noted by the ominous WARN_ON() statement, the
provided release() function cannot simply be kfree() but must be a specialized func-
tion that accepts struct kref as its lone argument and has no return value.The function
returns zero, unless the put reference was the last reference to the object, in which case it
returns one. Normally, callers of kref_put() are unconcerned with the return value.

Rather than having kernel code implement its own reference counting via atomic_t
types and simple “get” and “put” wrapper functions, developers are encouraged to use the
kref type and its helpers to provide a common and known-correct reference counting
mechanism in the kernel.

All these functions are defined in lib/kref.c and declared in <linux/kref.h>.

sysfs
The sysfs filesystem is an in-memory virtual filesystem that provides a view of the kobject
hierarchy. It enables users to view the device topology of their system as a simple filesys-
tem. Using attributes, kobjects can export files that enable kernel variables to be read
from and optionally written to.

Although the intended purpose of the device model was initially to provide a device
topology for power management reasons, an offshoot was sysfs.To facilitate debugging,
the device model’s developer decided to export the tree as a filesystem.This quickly
proved quite useful, at first as a replacement for device-related files that previously found
themselves in /proc, and later as a powerful view into the system’s object hierarchy.
Indeed, sysfs, originally called driverfs, predated kobjects. Eventually sysfs made it clear
that a new object model would be quite beneficial, and kobject was born.Today, every
system with a 2.6 kernel has sysfs. Most systems mount it at /sys.

The magic behind sysfs is simply tying kobjects to directory entries via the dentry
member inside each kobject. Recall from Chapter 12 that the dentry structure represents
directory entries. By linking kobjects to dentries, kobjects trivially map to directories.
Exporting the kobjects as a filesystem is now as easy as building a tree of the dentries in
memory. But wait! kobjects already form a tree, our beloved device model.With kobjects
mapping to dentries and the object hierarchy already forming an in-memory tree, sysfs
became trivial.

Figure 17.2 is a partial view of the sysfs filesystem as mounted at /sys.

 From the Library of Wow! eBook

ptg

356 Chapter 17 Devices and Modules

|-- block

| |-- loop0 -> ../devices/virtual/block/loop0

| |-- md0 -> ../devices/virtual/block/md0

| |-- nbd0 -> ../devices/virtual/block/nbd0

| |-- ram0 -> ../devices/virtual/block/ram0

| `-- xvda -> ../devices/vbd-51712/block/xvda

|-- bus

| |-- platform

| |-- serio

|-- class

| |-- bdi

| |-- block

| |-- input

| |-- mem

| |-- misc

| |-- net

| |-- ppp

| |-- rtc

| |-- tty

| |-- vc

| `-- vtconsole

|-- dev

| |-- block

| `-- char

|-- devices

| |-- console-0

| |-- platform

| |-- system

| |-- vbd-51712

| |-- vbd-51728

| |-- vif-0

| `-- virtual

|-- firmware

|-- fs

| |-- ecryptfs

| |-- ext4

| |-- fuse

| `-- gfs2

|-- kernel

| |-- config

| |-- dlm

| |-- mm

| |-- notes

| |-- uevent_helper

| |-- uevent_seqnum

| `-- uids

`-- module

 |-- ext4

 |-- i8042

 |-- kernel

 |-- keyboard

 |-- mousedev

 |-- nbd

 |-- printk

 |-- psmouse

 |-- sch_htb

 |-- tcp_cubic

 |-- vt

 `-- xt_recent

Figure 17.2 A partial view of the /sys tree.

 From the Library of Wow! eBook

ptg

357sysfs

The root of the sysfs contains at least 10 directories: block, bus, class, dev, devices,
firmware, fs, kernel, module, and power.The block directory contains one directory for
each of the registered block devices on the system. Each of those directories, in turn, con-
tains any partitions on the block device.The bus directory provides a view of the system
buses.The class directory contains a view of the devices on the system organized by
high-level function.The dev directory is a view of registered device nodes.The devices
directory is a view of the device topology of the system. It maps directly to the hierarchy
of device structures inside the kernel.The firmware directory contains a system-specific
tree of low-level subsystems such as ACPI, EDD, EFI, and so on.The fs directory con-
tains a view of registered filesystems.The kernel directory contains kernel configuration
options and status information while the modules directory contains a view of the sys-
tem’s loaded modules.The power directory contains systemwide power management data.
Not all systems have all directories and yet other systems have directories not mentioned
here.

The most important directory is devices, which exports the device model to the
world.The directory structure is the actual device topology of the system. Much of the
data in other directories is simply alternative organizations of the data in the devices
directory. For example, /sys/class/net/ organizes devices by the high-level concept of
registered network interfaces. Inside this directory might be the subdirectory eth0, which
contains the symlink device back to the actual device directory in devices.

Take a look at /sys on a Linux system that you have access to. Such an accurate view
into the system’s device is neat, and seeing the interconnection between the high-level
concepts in class versus the low-level physical devices in devices and the actual drivers
in bus is informative.The whole experience is even more rewarding when you realize
that this data is provided free, as a side effect of the kernel maintaining a device hierarchy,
and that this is the representation of the system as maintained inside the kernel.1

Adding and Removing kobjects from sysfs
Initialized kobjects are not automatically exported to sysfs.To represent a kobject to sysfs,
you use kobject_add():

int kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...);

A given kobject’s location in sysfs depends on the kobject’s location in the object hier-
archy. If the kobject’s parent pointer is set, the kobject maps to a subdirectory in sysfs
inside its parent. If the parent pointer is not set, the kobject maps to a subdirectory inside

1 If you find sysfs interesting, you might be interested in HAL, a hardware abstraction layer, which can

be found at http://www.freedesktop.org/wiki/Software/hal. HAL builds an in-memory database based

on the data in sysfs, linking together the concepts of class, device, and driver. On top of this data, HAL

provides a rich API enabling for smarter, more hardware-aware applications.

 From the Library of Wow! eBook

http://www.freedesktop.org/wiki/Software/hal

ptg

358 Chapter 17 Devices and Modules

kset->kobj. If neither the parent nor the kset fields are set in the given kobject, the
kobject is assumed to have no parent and maps to a root-level directory in sysfs. In most
use cases, one or both of parent and kset should be set appropriately before
kobject_add() is called. Regardless, the name of the directory representing the kobject
in sysfs is given by fmt, which accepts a printf()-style format string.

The helper function kobject_create_and_add() combines the work of
kobject_create() and kobject_add() into one function:

struct kobject * kobject_create_and_add(const char *name, struct kobject *parent);

Note that kobject_create_and_add() receives the name of the kobject’s directory as
a direct pointer, name, while kobject_add() uses printf()-style formatting.

Removing a kobject’s sysfs representation is done via kobject_del():

void kobject_del(struct kobject *kobj);

All of these functions are defined in lib/kobject.c and declared in
<linux/kobject.h>.

Adding Files to sysfs
Kobjects map to directories, and the complete object hierarchy maps nicely to the com-
plete sysfs directory structure, but what about files? Sysfs is nothing but a pretty tree with-
out files to provide actual data.

Default Attributes
A default set of files is provided via the ktype field in kobjects and ksets. Consequently,
all kobjects of the same type have the same default set of files populating their sysfs
directories.The kobj_type structure contains a member, default_attrs, that is an array
of attribute structures.Attributes map kernel data to files in sysfs.

The attribute structure is defined in <linux/sysfs.h>:

/* attribute structure - attributes map kernel data to a sysfs file */

struct attribute {

const char *name; /* attribute’s name */

struct module *owner; /* owning module, if any */

mode_t mode; /* permissions */

};

The name member provides the name of this attribute.This will be the filename of the
resulting file in sysfs.The owner member points to a module structure representing the
owning module, if any. If a module does not own this attribute, this field is NULL.The
mode member is a mode_t type that specifies the permissions for the file in sysfs. Read-
only attributes probably want to set this to S_IRUGO if they are world-readable and
S_IRUSR if they are only owner-readable.Writable attributes probably want to set mode to
S_IRUGO | S_IWUSR.All files and directories in sysfs are owned by uid zero and gid zero.

 From the Library of Wow! eBook

ptg

359sysfs

Although default_attrs lists the default attributes, sysfs_ops describes how to use
them.The sysfs_ops member is a pointer to a structure of the same name, which is
defined in <linux/sysfs.h>:

struct sysfs_ops {

/* method invoked on read of a sysfs file */

ssize_t (*show) (struct kobject *kobj,

struct attribute *attr,

char *buffer);

/* method invoked on write of a sysfs file */

ssize_t (*store) (struct kobject *kobj,

struct attribute *attr,

const char *buffer,

size_t size);

};

The show() method is invoked when the sysfs entry is read from user-space. It must
copy the value of the attribute given by attr into the buffer provided by buffer.The
buffer is PAGE_SIZE bytes in length; on x86, PAGE_SIZE is 4096 bytes.The function
should return the size in bytes of data actually written into buffer on success or a nega-
tive error code on failure.

The store() method is invoked on write. It must read the size bytes from buffer
into the variable represented by the attribute attr.The size of the buffer is always
PAGE_SIZE or smaller.The function should return the size in bytes of data read from
buffer on success or a negative error code on failure.

Because this single set of functions must handle file I/O requests on all attributes, they
typically need to maintain some sort of generic mapping to invoke a handler specific to
each attribute.

Creating New Attributes
Generally, the default attributes provided by the ktype associated with a kobject are suffi-
cient. Indeed, the purpose of ktype is to provide common operations to kobjects. Sharing
ktypes between kobjects not only simplifies programming, but also provides code consoli-
dation and a uniform look and feel to sysfs directories of related objects.

Nonetheless, often some specific instance of a kobject is somehow special. It wants or
even needs its own attributes—perhaps to provide data or functionality not shared by the
more general ktype.To this end, the kernel provides the sysfs_create_file() interface
for adding new attributes on top of the default set:

int sysfs_create_file(struct kobject *kobj, const struct attribute *attr);

This function associates the attribute structure pointed at by attr with the kobject
pointed at by kobj. Before it is invoked, the given attribute should be filled out.This
function returns zero on success and a negative error code otherwise.

 From the Library of Wow! eBook

ptg

360 Chapter 17 Devices and Modules

Note that the sysfs_ops specified in the kobject’s ktype is invoked to handle this new
attribute.The existing default show() and store() methods must be capable of handling
the newly created attribute.

In addition to creating actual files, it is possible to create symbolic links. Creating a
symlink in sysfs is easy:

int sysfs_create_link(struct kobject *kobj, struct kobject *target, char *name);

This function creates a link named name in the directory mapped from kobj to the
directory mapped from target.This function returns zero on success and a negative error
code otherwise.

Destroying Attributes
Removing an attribute is handled via sysfs_remove_file():

void sysfs_remove_file(struct kobject *kobj, const struct attribute *attr);

Upon call return, the given attribute no longer appears in the given kobject’s directory.
Symbolic links created with sysfs_create_link() can be removed with

sysfs_remove_link():

void sysfs_remove_link(struct kobject *kobj, char *name);

Upon return, the symbolic link name in the directory mapped from kobj is removed.
All four of these functions are declared in <linux/kobject.h>.The

sysfs_create_file() and sysfs_remove_file() functions are defined in
fs/sysfs/file.c.The sysfs_create_link() and sysfs_remove_link() functions are
defined in fs/sysfs/symlink.c.

sysfs Conventions
The sysfs filesystem is currently the place for implementing functionality previously
reserved for ioctl() calls on device nodes or the procfs filesystem. Instead of these dep-
recated kernel interfaces, today kernel developers implement such functionality as sysfs
attributes in the appropriate directory. For example, instead of a new ioctl() on a device
node, add a sysfs attribute in the driver’s sysfs directory. Such an approach avoids the type-
unsafe use of obscure ioctl() arguments and the haphazard mess of /proc.

To keep sysfs clean and intuitive, however, developers must follow certain conventions.
First, sysfs attributes should export one value per file.Values should be text-based and
map to simple C types.The goal is to avoid the highly structured or highly messy repre-
sentation of data we have today in /proc. Providing one value per file makes reading and
writing trivial from the command line and enables C programs to easily slurp the kernel’s
data from sysfs into their own variables. In situations in which the one-value-per-file rule
results in an inefficient representation of data, it is acceptable to place multiple values of
the same type in one file. Delineate them as appropriate; a simple space probably makes
the most sense. Ultimately, think of sysfs attributes as mapping to individual kernel

 From the Library of Wow! eBook

ptg

361sysfs

variables (as they usually do), and keep in mind ease of manipulation from user-space,
particularly from the shell.

Second, organize data in sysfs in a clean hierarchy. Correctly parent kobjects so that
they map intuitively into the sysfs tree.Associate attributes with the correct kobject and
keep in mind that the kobject hierarchy exists not only in the kernel, but also as an
exported tree to user-space. Keep the sysfs tree organized and hierarchical.

Finally, remember that sysfs provides a kernel-to-user service and is thus a sort of
user-space ABI. User programs can rely on the existence, location, value, and behavior of
sysfs directories and files. Changing existing files in any way is discouraged, and modify-
ing the behavior of a given attribute but keeping its name and location is surely begging
for trouble.

These simple conventions should enable sysfs to provide a rich and intuitive interface
to user-space. Use sysfs correctly and user-space developers can have a simple and clean,
yet powerful and intuitive, interface to the kernel.

The Kernel Events Layer
The Kernel Event Layer implements a kernel-to-user notification system on top of kob-
jects.After the release of 2.6.0, it became clear that a mechanism for pushing events out of
the kernel and up into user-space was needed, particularly for desktop systems that
needed a more integrated and asynchronous system.The idea was to have the kernel push
events up the stack: Hard drive full! Processor is overheating! Partition mounted!

Early revisions of the event layer came and went, and it was not long before the whole
thing was tied intimately to kobjects and sysfs.The result, it turns out, is pretty neat.The
Kernel Event Layer models events as signals emitting from objects—specifically, kobjects.
Because kobjects map to sysfs paths, the source of each event is a sysfs path. If the event in
question has to do with your first hard drive, /sys/block/hda is the source address.
Internally, inside the kernel, we model the event as originating from the backing kobject.

Each event is given a verb or action string representing the signal.The strings are terms
such as modified or unmounted that describe what happened.

Finally, each event has an optional payload. Rather than pass an arbitrary string to
user-space that provides the payload, the kernel event layer represents payloads as sysfs
attributes.

Internally, the kernel events go from kernel-space out to user-space via netlink.
Netlink is a high-speed multicast socket that transmits networking information. Using
netlink means that obtaining kernel events from user-space is as simple as blocking on a
socket.The intention is for user-space to implement a system daemon that listens on the
socket, processes any read events, and transmits the events up the system stack. One
possible proposal for such a user-space daemon is to tie the events into D-BUS,2 which

2 More information on D-BUS is available at http://dbus.freedesktop.org/.

 From the Library of Wow! eBook

http://dbus.freedesktop.org/

ptg

362 Chapter 17 Devices and Modules

already implements a systemwide messaging bus. In this manner, the kernel can emit sig-
nals just as any other component in the system.

To send events out to user-space from your kernel code, use kobject_uevent():

int kobject_uevent(struct kobject *kobj, enum kobject_action action);

The first parameter specifies the kobject emitting this signal.The actual kernel event
contains the sysfs path to which this kobject maps.

The second parameter specifies the action or verb describing this signal.The actual ker-
nel event contains a string that maps to the provided enum kobject_action value.
Rather than directly provide the string, the function uses an enumeration to encourage
value reuse, provide type safety, and prevent typos and other mistakes.The enumerations
are defined in <linux/kobject.h> and have the form KOBJ_foo. Current values include
KOBJ_MOVE, KOBJ_ONLINE, KOBJ_OFFLINE, KOBJ_ADD, KOBJ_REMOVE, and KOBJ_CHANGE.
These values map to the strings “move,”“online,”“offline,”“add,”“remove,” and
“change,” respectively.Adding new action values is acceptable, so long as an existing
value is insufficient.

Using kobjects and attributes not only encourages events that fit nicely in a sysfs-based
world, but also encourages the creation of new kobjects and attributes to represent objects
and data not yet exposed through sysfs.

This and related functions are defined in lib/kobject_uevent.c and declared in
<linux/kobject.h>.

Conclusion
In this chapter, we looked at the kernel functionality used to implement device drivers
and manage the device tree, including modules, kobjects (and the related ksets and
ktypes), and sysfs.This functionality is important to device driver authors because it
enables them to write modular, advanced drivers.

In the final three chapters, we switch the discussion from specific Linux kernel subsys-
tems to general kernel issues, starting in the next chapter with a treatment on debugging
the Linux kernel.

 From the Library of Wow! eBook

ptg

18
Debugging

One factor that differentiates kernel development from user-space development is the
hardship associated with debugging. It is difficult, relative to user-space, to debug the ker-
nel.To complicate the matter, the stakes are much higher.A fault in the kernel can bring
down the whole system.

Success in debugging the kernel—and ultimately, success in kernel development as a
whole—is largely a function of your experience and understanding of the operating sys-
tem. Sure, looks and charm help, too, but to successfully debug kernel issues, you need to
understand the kernel.This chapter looks at approaches to debugging the kernel.

Getting Started
Kernel debugging is often a long, head-scratching endeavor. Some bugs have perplexed
the entire kernel development community for months. Fortunately, for every one of these
laborious issues, there are many simple bugs with an equally simple fix.With luck, all your
bugs will remain simple and trivial.You will not know that, however, until you start inves-
tigating. For that, you need

n A bug. It might sound silly, but you need a well-defined and specific bug. It helps if
it is reliably reproducible (at least for someone), but unfortunately bugs are not
always well behaved or well defined.

n A kernel version on which the bug exists. Knowing where the bug first appeared is
even better. If you do not yet know that, this chapter can teach you a trick for
quickly determining it.

n Knowledge of the associated kernel code or luck. Debugging the kernel is tricky,
and the more you understand the surrounding code, the better.

Most of this chapter’s techniques presume that you can reliably reproduce the bug.
Your success in debugging relies on your ability to duplicate the problem. If you cannot,
fixing the bug is limited to conceptualizing the problem and finding a flaw in the code.
This does often happen, but chances of success are obviously much larger if you can
reproduce the problem.

 From the Library of Wow! eBook

ptg

364 Chapter 18 Debugging

It might seem strange that there are bugs that someone cannot reproduce. In user-
space programs, bugs are quite often a straightforward affair. For example, doing foo makes
my application dump core. Bugs in the kernel are often much less clear.The interactions
between the kernel, user-space, and hardware are often quite delicate. Race conditions
might rear their ugly heads only once in a million iterations of an algorithm. Poorly
designed or even miscompiled code can result in acceptable performances on some sys-
tems but terrible performances on others. It is common for some specific configuration,
on some random machine, under some odd workload, to trigger a bug otherwise unseen.
The more information you have when tackling a bug, the better. Many times, if you can
reliably reproduce the bug, you are more than halfway home.

Bugs in the Kernel
Bugs in the kernel vary widely.They occur for myriad reasons and manifest themselves in
just as many forms. Bugs range from clearly incorrect code (for example, not storing the
correct value in the proper place) to synchronization errors (not properly locking a shared
variable) to incorrectly managing hardware (sending the wrong operation to the wrong
control register).They manifest themselves as everything from poor performance to
incorrect behavior to corrupt data to a deadlocked system.

Often, it is a long chain of events that leads from the error in the code to the error
witnessed by the user. For example, a shared structure without a reference count might
cause a race condition.Without proper accounting, one process might free the structure
whereas another process still wants to use it. Later on, the second process may attempt to
use the no longer existent structure through a now invalid pointer.This might result in a
NULL pointer dereference, reading of garbage data, or nothing bad at all (if the data was
not yet overwritten).The NULL pointer dereference causes an oops, whereas the garbage
data leads to corruption (and then bad behavior or an oops).The user reports the oops or
incorrect behavior.The kernel developer must then work backward from the error and
see that the data was accessed after it was freed, there was a race, and the fix is to add
proper reference counting on the shared structure.

Debugging the kernel might sound difficult, but in reality, the kernel is not unlike any
other large software project.The kernel does have unique issues, such as timing con-
straints and race conditions, which are a consequence of allowing multiple threads of exe-
cution inside the kernel.

Debugging by Printing
The kernel print function printk() behaves almost identically to the C library printf()
function. Indeed, throughout this book we have made use of few real differences. For
most intentions, this is fine; printk() is simply the name of the kernel’s formatted print
function. It does have some special features, however.

 From the Library of Wow! eBook

ptg

365Debugging by Printing

Robustness
One property of printk() easily taken for granted is its robustness.The printk() func-
tion is callable from just about anywhere in the kernel at any time. It can be called from
interrupt or process context. It can be called while any lock is held. It can be called
simultaneously on multiple processors, yet it does not require the caller to hold a lock.

It is a resilient function.This is important because the usefulness of printk() rests on
the fact that it is always there and always works.

A chink in the armor of printk()’s robustness does exist. It is unusable before a cer-
tain point in the kernel boot process, prior to console initialization. Indeed, if the console
is not initialized, where is the output supposed to go? This is normally not an issue, unless
you debug issues early in the boot process (for example, in setup_arch(), which per-
forms architecture-specific initialization). Such debugging is a challenge to begin with,
and the absence of any sort of print method only compounds the problem.

There is some hope, but not a lot. Hardcore architecture hackers use the hardware that
does work (say, a serial port) to communicate with the outside world.This is not fun for
most people.The solution is a printk() variant that can output to the console early in
the boot process: early_printk().The behavior is the same as printk(), only the name
and its capability to work earlier are changed.This is not a portable solution, however,
because not all supported architectures have such a method implemented. It might be
your best hope, however, if the architecture you use does implement it—most, including
x86, do.

Unless you need to write to the console early in the boot process, you can rely on
printk() to always work.

Loglevels
The major difference in usage between printk() and printf()is the capability of the
former to specify a loglevel.The kernel uses the loglevel to decide whether to print the
message to the console.The kernel displays all messages with a loglevel below a specified
value on the console.

You specify a loglevel like this:

printk(KERN_WARNING “This is a warning!\n”);

printk(KERN_DEBUG “This is a debug notice!\n”);

printk(“I did not specify a loglevel!\n”);

The KERN_WARNING and KERN_DEBUG strings are simple defines found in
<linux/kernel.h>.They expand to a string such as “<4>” or “<7>” that is concatenated
onto the front of the printk() message.The kernel then decides which messages to print
on the console based on this specified loglevel and the current console loglevel,
console_loglevel.Table 18.1 is a full listing of the available loglevels.

 From the Library of Wow! eBook

ptg

366 Chapter 18 Debugging

If you do not specify a loglevel, it defaults to DEFAULT_MESSAGE_LOGLEVEL, which is
currently KERN_WARNING. Because this value might change, you should always specify a
loglevel for your messages.

The kernel defines the most important loglevel, KERN_EMERG, as <0>, and it defines
KERN_DEBUG, the least critical loglevel, as <7>. For example, after the preprocessor is done,
the previous examples resemble the following:

printk(“<4>This is a warning!\n”);

printk(“<7>This is a debug notice!\n”);

printk(“<4>did not specify a loglevel!\n”);

The avenue that you take with your printk() loglevels is up to you. Of course, nor-
mal messages that you intend to keep around should have the appropriate loglevel. But
the debugging messages you sprinkle everywhere when trying to get a handle on a prob-
lem—admit it, we all do it and it works—can have any loglevel you want. One option is
to leave your default console loglevel where it is and make all your debugging messages
KERN_CRIT or so. Conversely, you can make the debugging messages KERN_DEBUG and
change your console loglevel. Each has pros and cons; you decide.

The Log Buffer
Kernel messages are stored in a circular buffer of size LOG_BUF_LEN.This size is config-
urable at compile time via the CONFIG_LOG_BUF_SHIFT option.The default for a
uniprocessor machine is 16KB. In other words, the kernel can simultaneously store 16KB
of kernel messages. If the message queue is at this maximum and another call to printk()
is made, the new message overwrites the oldest one.The log buffer is called circular
because the reading and writing occur in a circular pattern.

Using a circular buffer has multiple advantages. Because it is easy to simultaneously
write to and read from a circular buffer, even interrupt context can easily use printk().

Table 18.1 Available Loglevels

Loglevel Description

KERN_EMERG An emergency condition; the system is probably dead.

KERN_ALERT A problem that requires immediate attention.

KERN_CRIT A critical condition.

KERN_ERR An error.

KERN_WARNING A warning.

KERN_NOTICE A normal, but perhaps noteworthy, condition.

KERN_INFO An informational message.

KERN_DEBUG A debug message—typically superfluous.

 From the Library of Wow! eBook

ptg

367Oops

Furthermore, it makes log maintenance easy. If there are too many messages, new mes-
sages simply overwrite the older ones. If there is a problem that results in the generation
of many messages, the log simply overwrites itself in lieu of uncontrollably consuming
memory.The lone disadvantage of a circular buffer—the possibility of losing messages—is
a small price to pay for the simplicity and robustness it affords.

syslogd and klogd
On a standard Linux system, the user-space klogd daemon retrieves the kernel messages
from the log buffer and feeds them into the system log file via the syslogd daemon.To
read the log, the klogd program can either read the /proc/kmsg file or call the syslog()
system call. By default, it uses the /proc approach. In either case, klogd blocks until there
are new kernel messages to read. It then wakes up, reads any new messages, and processes
them. By default, it sends the messages to the syslogd daemon.

The syslogd daemon appends all the messages it receives to a file, which is by default
/var/log/messages. It is configurable via /etc/syslog.conf.

You can have klogd change the console loglevel when it loads by specifying the -c
flag when you start it.

Transposing printf() and printk()
When you first start developing kernel code, you most likely will often transpose
printf()for printk().This transposition is only natural, as you cannot deny years of
repetition using printf() in user-space development.With luck, this mistake will not last
long because the repeated linker errors will eventually grow rather annoying.

Someday, you might find yourself accidentally using printk() instead of printf() in
your user-space code.When that day comes, you can say you are a true kernel hacker.

Oops
An oops is the usual way a kernel communicates to the user that something bad hap-
pened. Because the kernel is the supervisor of the entire system, it cannot simply fix itself
or kill itself as it can when user-space goes awry. Instead, the kernel issues an oops.This
involves printing an error message to the console, dumping the contents of the registers,
and providing a back trace.A failure in the kernel is hard to manage, so the kernel must
jump through many hoops to issue the oops and clean up after itself. Often, after an oops
the kernel is in an inconsistent state. For example, the kernel could have been in the mid-
dle of processing important data when the oops occurred. It might have held a lock or
been in the middle of talking to hardware.The kernel must gracefully back out of its cur-
rent context and try to resume control of the system. In many cases, this is not possible. If
the oops occurred in interrupt context, the kernel cannot continue and it panics.A panic
results in an instant halt of the system. If the oops occurred in the idle task (pid zero) or

 From the Library of Wow! eBook

ptg

the init task (pid one), the result is also a panic because the kernel cannot continue with-
out these important processes. If the oops occurs in any other process, however, the kernel
kills the process and tries to continue executing.

An oops might occur for multiple reasons, including a memory access violation or an
illegal instruction.As a kernel developer, you will often deal with (and undoubtedly
cause) oopses.

What follows is an oops example from a PPC machine, in the timer handler of the
tulip network interface card:

Oops: Exception in kernel mode, sig: 4

Unable to handle kernel NULL pointer dereference at virtual address 00000001

NIP: C013A7F0 LR: C013A7F0 SP: C0685E00 REGS: c0905d10 TRAP: 0700

Not tainted

MSR: 00089037 EE: 1 PR: 0 FP: 0 ME: 1 IR/DR: 11

TASK = c0712530[0] ‘swapper’ Last syscall: 120

GPR00: C013A7C0 C0295E00 C0231530 0000002F 00000001 C0380CB8 C0291B80 C02D0000

GPR08: 000012A0 00000000 00000000 C0292AA0 4020A088 00000000 00000000 00000000

GPR16: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

GPR24: 00000000 00000005 00000000 00001032 C3F7C000 00000032 FFFFFFFF C3F7C1C0

Call trace:

[c013ab30] tulip_timer+0x128/0x1c4

[c0020744] run_timer_softirq+0x10c/0x164

[c001b864] do_softirq+0x88/0x104

[c0007e80] timer_interrupt+0x284/0x298

[c00033c4] ret_from_except+0x0/0x34

[c0007b84] default_idle+0x20/0x60

[c0007bf8] cpu_idle+0x34/0x38

[c0003ae8] rest_init+0x24/0x34

PC users might marvel at the number of registers (a whopping 32!).An oops on x86-
32, which you might be more familiar with, is a little simpler.The important information,
however, is identical for all the architectures: the contents of the registers and the back
trace.

The back trace shows the exact function call chain leading up to the problem. In this
case, you can see exactly what happened:The machine was idle and executing the idle
loop, cpu_idle(), which calls default_idle() in a loop.The timer interrupt occurred,
which resulted in the processing of timers.A timer handler, the tulip_timer() function,
was executed, which performed a NULL pointer dereference.You can even use the offsets
(those numbers such as 0x128/0x1c4 to the right of the functions) to find exactly the
offending line.

The register contents can be equally useful, although less commonly so.With a
decoded copy of the function in assembly, the register values help you re-create the exact
events leading to the problem. Seeing an unexpected value in a register might shine some
light on the root of the issue. In this case, you can see which registers held NULL (a value

368 Chapter 18 Debugging

 From the Library of Wow! eBook

ptg

369Oops

of all zeros) and discover which variable in the function had the unexpected value. In sit-
uations such as this, the problem is often a race—in this case, between the timer and
some other part of this network card. Debugging a race condition is always a challenge.

ksymoops
The previous oops is said to be decoded because the memory addresses are translated into
the functions they represent.An undecoded version of the previous oops is shown here:

NIP: C013A7F0 LR: C013A7F0 SP: C0685E00 REGS: c0905d10 TRAP: 0700

Not tainted

MSR: 00089037 EE: 1 PR: 0 FP: 0 ME: 1 IR/DR: 11

TASK = c0712530[0] ‘swapper’ Last syscall: 120

GPR00: C013A7C0 C0295E00 C0231530 0000002F 00000001 C0380CB8 C0291B80 C02D0000

GPR08: 000012A0 00000000 00000000 C0292AA0 4020A088 00000000 00000000 00000000

GPR16: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

GPR24: 00000000 00000005 00000000 00001032 C3F7C000 00000032 FFFFFFFF C3F7C1C0

Call trace: [c013ab30] [c0020744] [c001b864] [c0007e80] [c00061c4]

[c0007b84] [c0007bf8] [c0003ae8]

The addresses in the back trace need to be converted into symbolic names.This is
done via the ksymoops command in conjunction with the System.map generated during
kernel compile. If you use modules, you also need some module information. ksymoops
tries to figure out most of this information, so you can usually invoke it via

ksymoops saved_oops.txt

The program then spits out a decoded version of the oops. If the default information
ksymoops uses is unacceptable, or you want to provide alternative locations for the infor-
mation, the program understands various options. ksymoops’ manual page has a lot of
information that you should read before using it.The ksymoops program most likely
came with your distribution.

kallsyms
Thankfully, dealing with ksymoops is no longer a requirement.This is a big deal, because
although developers might have had little problem using it, end users often mismatched
System.map files or failed to decode oopses altogether.

The 2.5 development kernel introduced the kallsyms feature, which is enabled via
the CONFIG_KALLSYMS configuration option.This option stores in the kernel the sym-
bolic name of function addresses mapped into the kernel image so that the kernel can
print decoded back traces. Consequently, decoding oopses no longer requires
System.map or ksymoops. On the downside, the size of the kernel increases a bit because
the address-to-symbol mappings must reside in permanently mapped kernel memory. It
is worth the memory use, however, during not only development but also deployment.
The configuration option CONFIG_KALLSYMS_ALL additionally stores the symbolic name
of all symbols, not only functions.This is generally needed only by specialized debuggers.

 From the Library of Wow! eBook

ptg

The CONFIG_KALLSYMS_EXTRA_PASS option causes the kernel build process to make a
second pass over the kernel’s object code. It is useful only when debugging kallsyms
itself.

Kernel Debugging Options
Multiple configure options that you can set during compile to aid in debugging and test-
ing kernel code are available.These options are in the Kernel Hacking menu of the Ker-
nel Configuration Editor.They all depend on CONFIG_DEBUG_KERNEL.When hacking on
the kernel, consider enabling as many of these options as practical.

Some of the options are rather useful, enabling slab layer debugging, high-memory
debugging, I/O mapping debugging, spin-lock debugging, and stack-overflow checking.
One of the most useful settings, however, is sleep-inside-spinlock checking, which actu-
ally does much more.

Starting with 2.5, the kernel has an excellent infrastructure for detecting all sorts of
atomicity violations. Recall from Chapter 9,“An Introduction to Kernel Synchroniza-
tion,” that atomic refers to something’s capability to execute without division; the code
completes without interruption or it does not complete at all. Code that holds a spin lock
or has disabled kernel preemption is atomic. Code cannot sleep while atomic—sleeping
while holding a lock is a recipe for deadlock.

Thanks to kernel preemption, the kernel has a central atomicity counter.The kernel
can be set such that if a task sleeps while atomic, or even does something that might sleep,
the kernel prints a warning and provides a back trace. Potential bugs that are detectable
include calling schedule() while holding a lock, issuing a blocking memory allocation
while holding a lock, or sleeping while holding a reference to per-CPU data.This
debugging infrastructure catches a lot of bugs and is highly recommended.

The following options make the best use of this feature:

CONFIG_PREEMPT=y

CONFIG_DEBUG_KERNEL=y

CONFIG_KALLSYMS=y

CONFIG_DEBUG_SPINLOCK_SLEEP=y

Asserting Bugs and Dumping Information
A number of kernel routines make it easy to flag bugs, provide assertions, and dump
information.Two of the most common are BUG()and BUG_ON().When called, they cause
an oops, which results in a stack trace and an error message dumped to the kernel.Why
these statements cause an oops is architecture-dependent. Most architectures define BUG()
and BUG_ON() as illegal instructions, which result in the desired oops.You normally use
these routines as assertions, to flag situations that should not happen:

if (bad_thing)

BUG();

370 Chapter 18 Debugging

 From the Library of Wow! eBook

ptg

371Magic SysRq Key

Or even better

BUG_ON(bad_thing);

Most kernel developers believe that BUG_ON() is easier to read and more self-docu-
menting compared to BUG().Also, BUG_ON() wraps its assertion in an unlikely() state-
ment. Do note that some developers have discussed the idea of having an option to
compile BUG_ON() statements away, saving space in embedded kernels.This means that
your assertion inside a BUG_ON() should not have any side effects.The macro
BUILD_BUG_ON() performs the same purpose, but at compile time. If the provided state-
ment evaluates to true at compile time, the compilation aborts with an error.

A more critical error is signaled via panic().A call to panic() prints an error message
and then halts the kernel. Obviously, you want to use it only in the worst of situations:

if (terrible_thing)

panic(“terrible_thing is %ld!\n”, terrible_thing);

Sometimes, you just want a simple stack trace issued on the console to help you in
debugging. In those cases, dump_stack()is used. It simply dumps the contents of the reg-
isters and a function back trace to the console:

if (!debug_check) {

printk(KERN_DEBUG “provide some information...\n”);

dump_stack();

}

Magic SysRq Key
A possible lifesaver is the Magic SysRq key, which is enabled via the CONFIG_MAGIC_SYSRQ
configure option.The SysRq (system request) key is a standard key on most keyboards.
On the i386 and PPC, it is accessible via Alt+PrintScreen.When this configure option is
enabled, special combinations of keys enable you to communicate with the kernel
regardless of what else it is doing.This enables you to perform some useful tasks in the
face of a dying system.

In addition to the configure option, there is a sysctl to toggle this feature on and off.To
turn it on:

echo 1 > /proc/sys/kernel/sysrq

From the console, you can hit SysRq-h for a list of available options. SysRq-s syncs
dirty buffers to disk, SysRq-u unmounts all filesystems, and SysRq-b reboots the machine.
Issuing these three key combinations in a row is a safer way to reboot a dying machine
than simply hitting the machine reset switch.

If the machine is badly locked, it might not respond to any Magic SysRq combina-
tions, or it might fail to complete a given command.With luck, however, these options
might save your data or aid in debugging.Table 18.2 is a listing of the supported SysRq
commands.

 From the Library of Wow! eBook

ptg

Table 18.2 Supporting SysRq Commands

Key Command Description

SysRq-b Reboots the machine

SysRq-e Sends a SIGTERM to all processes except init

SysRq-h Displays SysRq help on the console

SysRq-i Sends a SIGKILL to all processes except init

SysRq-k Secures Access Key: kills all programs on this console

SysRq-l Sends a SIGKILL to all processes including init

SysRq-m Dumps memory information to console

SysRq-o Shuts down the machine

SysRq-p Dumps registers to console

SysRq-r Turns off keyboard raw mode

SysRq-s Syncs all mounted filesystems to disk

SysRq-t Dumps task information to console

SysRq-u Unmounts all mounted filesystems

The file Documentation/sysrq.txt in the kernel source tree has more information.
The actual implementation is in drivers/char/sysrq.c.The Magic SysRq Key is a vital
tool for aiding in debugging or saving a dying system. Because it provides powerful capa-
bilities to any user on the console, however, you should exercise caution on important
machines. For your development machine, however, it is a great help.

The Saga of a Kernel Debugger
Many kernel developers have long demanded an in-kernel debugger. Unfortunately, Linus
does not want a debugger in his tree. He believes that debuggers lead to bad fixes by mis-
informed developers. No one can argue with his logic—a fix derived from real under-
standing of the code is certainly more likely to be correct. Nonetheless, plenty of kernel
developers want an official in-kernel debugger. Because it is unlikely to happen anytime
soon, a number of patches have arisen that add kernel-debugging support to the standard
Linux kernel. Despite being external unofficial patches, these tools are quite well featured
and powerful. Before you delve into these solutions, however, it’s a good idea to look at
how much help the standard Linux debugger, gdb, can give you.

gdb
You can use the standard GNU debugger to glimpse inside a running kernel. Starting the
debugger on the kernel is about the same as debugging a running process:

gdb vmlinux /proc/kcore

372 Chapter 18 Debugging

 From the Library of Wow! eBook

ptg

373Poking and Probing the System

The vmlinux file is the uncompressed kernel image stored in the root of the build
directory, not the compressed zImage or bzImage.

The optional /proc/kcore parameter acts as a core file, to let gdb actually peek into
the memory of the running kernel.You need to be root to read it.

You can issue just about any of the gdb commands for reading information. For exam-
ple, to print the value of a variable:

p global_variable

To disassemble a function:

disassemble function

If you compile the kernel with the -g flag (add -g to the CFLAGS variable in the kernel
Makefile), gdb can provide much more information. For example, you can dump the
contents of structures and follow pointers.You also get a much larger kernel, so do not
routinely compile with debugging information included.

Unfortunately, this is about the limit of what gdb can do. It cannot modify kernel data
in any way. It is unable to single-step through kernel code or set breakpoints.The inabil-
ity to modify kernel data structures is a large downside.Although it is undoubtedly useful
for it to disassemble functions on occasion, it would be much more useful if it could
modify data, too.

kgdb
kgdb is a patch that enables gdb to fully debug the kernel remotely over a serial line. It
requires two computers.The first runs a kernel patched with kgdb.The second debugs
the first over the serial line (a null modem cable connecting the two machines) using gdb.
With kgdb, the entire feature set of gdb is accessible: reading and writing any variables,
settings breakpoints, setting watch points, single stepping, and so on! Special versions of
kgdb even enable function execution.

Setting up kgdb and the serial line is a little tricky, but when complete, debugging is
simple.The patch installs plenty of documentation in Documentation/—check it out.

Different people maintain the kgdb patch for various architectures and kernel releases.
Searching online is your best bet for finding a patch for a given kernel.

Poking and Probing the System
As you gain experience in kernel debugging, you gain little tricks to help you poke and
probe the kernel for answers. Because kernel debugging can prove rather challenging,
every little tip and trick helps. Let’s look at a couple.

Using UID as a Conditional
If the code you are developing is process-related, sometimes you can develop alternative
implementations without breaking the existing code.This is helpful if you are rewriting
an important system call and would like a fully functional system with which to debug it.

 From the Library of Wow! eBook

ptg

For example, assume you are rewriting the fork() algorithm to take advantage of an
exciting new feature. Unless you get everything right on the first try, it would not be easy
to debug the system:A nonfunctioning fork() system call is certain to result in a non-
functioning system.As always, there is hope.

Often, it is safe to keep the remaining algorithm in place and construct your replace-
ment on the side.You can achieve this by using the user id (UID) as a conditional with
which to decide which algorithm to use:

if (current->uid != 7777) {

/* old algorithm .. */

} else {

/* new algorithm .. */

}

All users except UID 7777 will use the old algorithm.You can create a special user,
with UID 7777, for testing the new algorithm.This makes it much easier to test critical
process-related code.

Using Condition Variables
If the code in question is not in process context, or if you want a more global method of
controlling the feature, you can use a condition variable.This approach is even simpler
than using the UID. Simply create a global variable and use it as a conditional check in
your code. If the variable is zero, you follow one code path. If it is nonzero, you follow
another.The variable can be set via an interface you export or a poke from the debugger.

Using Statistics
Sometimes you want to get a feel for how often a specific event occurs. Sometimes you
want to compare multiple events and generate some ratios for comparison.You can do
this easily by creating statistics and a mechanism to export their values.

For instance, say you want to look at the occurrence of foo and the occurrence of bar.
In a file, ideally the one where these events occur, declare two global variables:

unsigned long foo_stat = 0;

unsigned long bar_stat = 0;

For each occurrence of these events, increment the appropriate variable.Then export
the data however you feel fit. For example, you can create a file in /proc with the values
or write a system call.Alternatively, simply read them via a debugger.

Note that this approach is not particularly SMP-safe. Ideally, you would use atomic
operations. For a trivial one-time debugging statistic, however, you normally do not need
such protection.

374 Chapter 18 Debugging

 From the Library of Wow! eBook

ptg

375Poking and Probing the System

Rate and Occurrence Limiting Your Debugging
Often, you want to stick some debugging checks (with some corresponding print state-
ments) in an area to sniff out a problem. In the kernel, however, some functions are called
many times per second. If you stick a call to printk() in such a function, the system is
overwhelmed with debugging output and quickly grows unusable.

Two relatively simple tricks exist to prevent this problem.The first is rate limiting,
which is useful when you want to watch the progression of an event, but the event occurs
rather often.To prevent a deluge of debugging output, you print your debug message (or
do whatever you are doing) only every few seconds. For example

static unsigned long prev_jiffy = jiffies; /* rate limiting */

if (time_after(jiffies, prev_jiffy + 2*HZ)) {

prev_jiffy = jiffies;

printk(KERN_ERR “blah blah blah\n”);

}

In this example, the debug message is printed at most every 2 seconds.This prevents
any flood of information on the console, and the computer remains usable.You might
need the rate limiting to be larger or smaller, depending on your needs.

If you are only using printk(),you can use a special function to rate limit your
printk()calls:

if (error && printk_ratelimit())

printk(KERN_DEBUG “error=%d\n”, error);

The printk_ratelimit() function returns zero if rate limiting is in effect and
nonzero otherwise. By default, the function allows only one message every 5 seconds but
allows an initial burst of up to ten messages before that cap is enforced.These parameters
are tunable via the printk_ratelimit and printk_ratelimit_burst sysctl, respec-
tively.

Another sticky situation arises if you try to determine if a codepath is exercised in a
particular way. Unlike the previous example, you do not want real-time notification.This
is an especially sticky situation if it is of the sort where if it is triggered once, it is trig-
gered a lot.The solution here is not to rate limit the debugging, but occurrence limit it:

static unsigned long limit = 0;

if (limit < 5) {

limit++;

printk(KERN_ERR “blah blah blah\n”);

}

This example caps the debugging output to five.After five such messages, the condi-
tional is always false.

 From the Library of Wow! eBook

ptg

In both examples, the variables should be static and local to the function, as shown.
This enables the variable’s values to persist across function calls.

Neither of these examples are SMP- or preempt-safe, although a quick switch to
atomic operators makes them safe. For temporary debugging checks, you often need not
be so fastidious.

Binary Searching to Find the Culprit Change
It is usually useful to know when a bug was introduced into the kernel source. If you
know that a bug occurred in version 2.6.33, but not 2.4.29, you have a clear picture of
the changes that occurred to cause the bug.The bug fix is often as simple as reverting or
otherwise fixing the bad change.

Many times, however, you do not know what kernel version introduced the bug.You
know that the bug is in the current kernel, but it seemed to have always been in the cur-
rent kernel! With a little effort, you can find the offending change.With the change in
hand, the bug fix is usually near.

To start, you need a reliably reproducible problem—preferably, a bug that you can ver-
ify immediately after boot. Next, you need a known-good kernel.You might already
know this. For example, if you know a couple months back the kernel worked, grab a
kernel from that period. If you are wrong, try an earlier release. It shouldn’t be too hard to
find a kernel without the bug.

Next, you need a known-bad kernel.To make things easier, start with the earliest ker-
nel you know to have the bug.

Now, you begin a binary search from the known-bad kernel down to the known-
good kernel. Let’s look at an example.Assume the latest known-good kernel is 2.6.11 and
the earliest known-bad is 2.6.20. Start by picking a kernel in the middle, such as 2.6.15.
Test 2.6.15 for the bug. If 2.6.15 works, you know the problem began in a later kernel, so
try a kernel in between 2.6.15 and 2.6.20—say, 2.6.17. On the other hand, if 2.6.15 does
not work, you know the problem is in an earlier kernel, so you might try 2.6.13. Rinse
and repeat.

Eventually you should narrow the problem down to two subsequently released ker-
nels—one of which has the bug and one of which does not.You then have a clear picture
of the changes that caused the bug.This approach beats looking at every kernel!

Binary Searching with Git
The git source management tool provides a useful mechanism for performing binary
searches. If you use git to control your copy of the Linux source tree, it can automate the
binary search process. Moreover, the git tool performs the binary search at the revision
level, actually pinpointing the specific commit that introduced the bug. Unlike many git-
related tasks, binary searching with git is not hard.To start, you tell git you want to begin
a binary search:

$ git bisect start

376 Chapter 18 Debugging

 From the Library of Wow! eBook

ptg

377When All Else Fails: The Community

You then provide git with the earliest broken revision:

$ git bisect bad <revision>

If the latest version of the kernel is your known-earliest offender, you do not need to
provide a revision:

$ git bisect bad

You then provide git with the latest working revision:

$ git bisect good v2.6.28

Git then automatically checks out the Linux source tree bisecting the provided bad
and good revisions.You then compile, run, and test that revision. If it works, you run:

$ git bisect good

If it does not work—that is, if the given kernel revision demonstrates the bug—you run

$ git bisect bad

On each command, git again bisects the tree on a per-revision basis, returning the next
bisection as needed.You repeat the process until there are no more bisections possible. Git
then prints the offending revision number.

This can be a long process, but git does make it easy. If you think you know the source
of the bug—say, it is clear in x86-specific boot code—you can instruct git to only bisect
among commits touching a specified list of directories:

$ git bisect start — arch/x86

When All Else Fails: The Community
Perhaps you have tried everything that you can think of.You have slaved over the key-
board for countless hours—indeed, perhaps countless days—and the solution still escapes
you. If the bug is in the mainstream Linux kernel, you can always elicit the help of the
other developers in the kernel community.

A brief, but complete, email sent to the kernel mailing list describing the bug and your
findings might help aid in discovery of a solution.After all, no one likes bugs.

Chapter 20,“Patches, Hacking, and the Community,” specifically addresses the com-
munity and its primary forum, the Linux Kernel Mailing List (LKML).

 From the Library of Wow! eBook

ptg

378 Chapter 18 Debugging

Conclusion
This chapter covered debugging the kernel, the process of determining why implementa-
tion diverges from intention.We looked at several techniques, from built-in kernel debug
infrastructure to debuggers, from logging to binary searching with git. Because debugging
the Linux kernel can be a significantly more difficult task than debugging a user-space
application, the material in this chapter is crucial to anyone intending to actually write
kernel code.

In the next chapter, we cover another general topic: portability in the Linux kernel.
Onward!

 From the Library of Wow! eBook

ptg

19
Portability

Linux is a portable operating system that supports a wide range of computer architec-
tures. Portability refers to how easily—if at all—code can move from one system architec-
ture to another.We know that Linux is portable because it has already been ported to
various systems. But this portability did not occur overnight—it requires diligence and a
constant eye toward writing portable code. Consequently, it is now easy, relatively speak-
ing, to bring Linux up on a new system.This chapter discusses how to write portable
code—the issues you need to keep in mind when writing both core kernel code and
device drivers.

Portable Operating Systems
Some operating systems are designed with portability as a primary feature.As little code as
possible is machine-specific.Assembly is kept to a minimum, and interfaces and features
are sufficiently general and abstract so that they work on a wide range of architectures.
The obvious benefit is the relative ease with which a new architecture can be supported.
In some cases, highly portable and simple operating systems can be moved to a new archi-
tecture with just a few hundred lines of unique code.The downside is that architecture-
specific features are not supported, and code cannot be hand-tuned for a specific machine.
With this design choice, optimal code is traded for portable code. Some examples of
highly portable operating systems are Minix, NetBSD, and many academic systems.

On the opposite side are operating systems that trade all portability for highly cus-
tomized, optimal code.As much as possible, code is written in assembly or otherwise
designed for a specific architecture. Kernel features are designed around specific architec-
tural features. Consequently, moving the operating system to a new architecture is tanta-
mount to rewriting the kernel from scratch and, even if possible, the operating system
might be ill-suited for use on other architectures.With this design decision, portable code
is traded for optimal code. Such systems are often harder to maintain than more portable
systems. Of course, these systems need not be more efficient than a more portable system;
their willingness to disregard portability, however, allows for a no-compromise design.
Microsoft DOS and Windows 95 are two examples of this design decision.

 From the Library of Wow! eBook

ptg

380 Chapter 19 Portability

Linux takes the middle road toward portability.As much as practical, interfaces and
core code are architecture-independent C code.Where performance is critical, however,
kernel features are tuned for each architecture. For example, much fast-path and low-level
code is architecture-dependent and often written in assembly.This approach enables
Linux to remain portable without foregoing optimizations.Where portability would hin-
der performance, performance generally wins. Otherwise, code is kept portable.

Generally, exported kernel interfaces are architecture-independent. If any parts of the
function need to be unique for each supported architecture (either for performance rea-
sons or as a necessity), that code is implemented in separate functions and called as
needed. Each supported architecture then implements its architecture-specific functions
and links them into the kernel image.

A good example is the scheduler.The large majority of the scheduler is written in
architecture-independent C and lives in kernel/sched.c.A few jobs of the scheduler,
such as switching processor state or swapping out the address space, are architecture-
dependent. Consequently, the C method context_switch(), which switches from one
process to another, calls the methods switch_to() and switch_mm(), to switch processor
state and switch address space, respectively.

The code for switch_to() and switch_mm() is independently implemented by each
architecture that Linux supports.When Linux is ported to a new architecture, the new
architecture must provide an implementation for these functions.

Architecture-specific files are located in arch/architecture/, where architecture is
a short name representing each architecture in Linux.As an example, the Intel x86 archi-
tecture is given the short name x86. (This architecture supports both x86-32 and x86-
64.) Architecture-specific files for these machines live in arch/x86.The supported
architectures in the 2.6 kernel series are alpha, arm, avr32, blackfin, cris, frv, h8300,
ia64, m32r, m68k, m68knommu, mips, mn10300, parisc, powerpc, s390, sh, sparc, um, x86,
and xtensa.A more complete listing of these architectures is in Table 19.1, later in this
chapter.

History of Portability in Linux
When Linus first unleashed Linux on the unsuspecting world, it ran only on Intel i386
machines.Although the operating system was rather generalized and well written, porta-
bility was not a major concern. In fact, Linus even once suggested Linux would never run
on anything but the i386 architecture! In 1993, however, work began on porting Linux to
the Digital Alpha architecture.The Digital Alpha was a modern high-performance RISC-
based architecture with 64-bit memory addressing.This is a stark contrast to Linus’s origi-
nal 386. Nonetheless, the initial port of Linux to the Alpha took about a year, and the
Alpha became the first officially supported architecture after x86.This port was perhaps
rather difficult because it had the unwelcome challenge of being the first. Instead of sim-
ply grafting support for the Alpha onto the kernel, pieces of the kernel were rewritten as

 From the Library of Wow! eBook

ptg

381Word Size and Data Types

needed with portability in mind.1 Although this made for more work overall, the result
was much cleaner and future porting was made much easier.

Although the first releases of Linux supported only the Intel i386 architecture, the 1.2
kernel series added support for Digital Alpha, MIPS, and SPARC—although support was
somewhat experimental.

With the release of the 2.0 kernel, Linux officially added support for the Motorola 68k
and PowerPC.Additionally, the architectures previously supported in 1.2 were labeled
official and stable.

The 2.2 kernel series brought even more architecture support with the addition of
ARM, IBM S/390, and UltraSPARC.A few years later, 2.4 nearly doubled the number of
supported architectures to 15, as support was added for the CRIS, IA-64, 64-bit MIPS,
HP PA-RISC, 64-bit IBM S/390, and Hitachi SH.

The current kernel, 2.6, brought the number of supported architectures to 21 with the
addition of AVR, FR-V, Motorola 68k without MMU, M32xxx, H8/300, IBM POWER,
Xtensa, and a version of the kernel that runs in a virtual machine under Linux, known as
Usermode Linux.

Each of these architectures supports various chip and machine types. Some supported
architectures, such as ARM and PowerPC, each support many different chips and
machine types. Others, such as x86 and SPARC, support both 32-bit and 64-bit variants
of their processors.Therefore, although Linux runs under 21 broad architectures, it runs
on many more machines!

Word Size and Data Types
A word is the amount of data that a machine can process at one time.This fits into the
document analogy that includes characters (usually 8 bits) and pages (many words, often
4KB or 8KB worth) as other measurements of data.A word is an integer number of
bytes—for example, one, two, four, or eight.When someone talks about the “n-bits” of a
machine, they are generally talking about the machine’s word size. For example, when
people say that the Intel i7 is a 64-bit chip, they are referring to its word size, which is 64
bits, or eight bytes.

The size of a processor’s general-purpose registers (GPRs) is equal to its word size.The
widths of the components in a given architecture—for example, the memory bus—are
usually at least as wide as the word size.Typically, at least in the architectures that Linux
supports, the virtual memory address space is equal to the word size, although the physical
address space is sometimes less. Consequently, the size of a pointer is equal to the word
size.Additionally, the size of the C type long is equal to the word size, whereas the size of

1 This is a common occurrence in Linux kernel development. If something is going to be done at all, it

must be done right. Kernel developers are not averse to rewriting large amounts of code in the name of

perfection.

 From the Library of Wow! eBook

ptg

382 Chapter 19 Portability

the int type is sometimes less than that of the word size. For example, the Alpha has a 64-
bit word size. Consequently, registers, pointers, and the long type are 64 bits in length.
The int type, however, is 32-bits long.The Alpha can access and manipulate 64 bits—one
word—at a time.

Words, Doublewords, and Confusion
Some operating systems and processors do not call the standard data size a word. Instead,
a word is some fixed size based on history or arbitrary naming decisions. For example, some
operating systems might partition data sizes into bytes (8 bits), words (16 bits), double
words (32 bits), and quad words (64 bits), despite the fact that the system in question may
be 32 bits. Windows NT-based systems, such as Windows 7, employ this naming scheme. In
this book—and Linux in general—a word is the standard data size of the processor, as previ-
ously discussed.

Each supported architecture under Linux defines BITS_PER_LONG in <asm/types.h> to
the length of the C long type, which is the system word size.A full listing of all supported
architectures and their word size is in Table 19.1.

Table 19.1 Supported Linux Architectures

Architecture Description Word Size

alpha Digital Alpha 64 bits

arm ARM and StrongARM 32 bits

avr AVR 32 bits

blackfin Blackfin 32 bits

cris CRIS 32 bits

frv FR-V 32 bits

h8300 H8/300 32 bits

ia64 IA-64 64 bits

m32r M32xxx 32 bits

m68k Motorola 68k 32 bits

m68knommu m68k without MMU 32 bits

mips MIPS 32 and 64 bits

parisc HP PA-RISC 32 and 64 bits

powerpc PowerPC 32 and 64 bits

s390 IBM S/390 32 and 64 bits

Sh Hitachi SH 32 bits

Sparc SPARC 32 and 64 bits

Um Usermode Linux 32 and 64 bits

x86 x86-32 and x86-64 32 and 64 bits

 From the Library of Wow! eBook

ptg

383Word Size and Data Types

Traditionally, Linux implemented 32- and 64-bit variants of a given architecture sepa-
rately. For example, early in the 2.6 kernel series there existed both i386 & x86-64, mips
& mips64, and ppc & ppc64 architectures.An effort, now complete, has unified these
architectures under a single directory in arch/, capable of supporting both 32 and 64-bits
from a single codebase.

The C standard explicitly leaves the size of the standard variable types up to implemen-
tations.2 The uncertainty in the standard C types across architectures is both a pro and a
con. On the plus side, the standard types can take advantage of the word size of various
architectures, and types need not explicitly specify a size.The size of the C long type is
guaranteed to be the machine’s word size. On the downside, however, code cannot assume
that the standard C types have any specific size. Furthermore, there is no guarantee that an
int is the same size as a long.3

The situation grows even more confusing because there doesn’t need to be a relation
between the types in user-space and kernel-space.The sparc64 architecture provides a
32-bit user-space; therefore, pointers and both the int and long types are 32-bit. In
kernel-space, however, sparc64 has a 32-bit int type and 64-bit pointers and long
types.This is not the norm, however.

Some rules to keep in mind:

n As dictated by the ANSI C standard, a char is always 1 byte.
n Although there is no rule that the int type be 32 bits, it is in Linux on all currently

supported architectures.
n The same goes for the short type, which is 16 bits on all current architectures,

although no rule explicitly decrees that.
n Never assume the size of a pointer or a long, which can be either 32 bits or 64 bits

on the currently supported machines in Linux.
n Because the size of a long varies on different architectures, never assume that
sizeof(int) is equal to sizeof(long).

n Likewise, do not assume that a pointer and an int are the same size.

Operating systems use a simple mnemonic to describe what sizes their types are. For
example, 64-bit Windows is said to be LLP64, which means that long and pointer types

2 With the exception of char, which is always 1 byte.
3 On the 64-bit architectures supported in Linux, in fact, an int and a long are not the same size; an

int is 32 bits and a long is 64 bits. Linux’s supported 32-bit architectures define both int and long

to 32 bits.

Table 19.1 Supported Linux Architectures

Architecture Description Word Size

xtensa Xtensa 32 bits

 From the Library of Wow! eBook

ptg

384 Chapter 19 Portability

are 64 bits. 64-bit Linux systems are LP64: long and pointer types are 64-bit. 32-bit Linux
systems are ILP32: int, long, and pointer types are all 32-bit.The mnemonic is useful for
showing at a glance what type of operating system implements its word size, because that
choice involves a trade off.

Consider ILP64, LP64, and LLP64. In ILP64, the int, long, and pointer types are all 64
bits in size.This makes programming easier because the main C types are the same size
(size mismatch between integers and pointers is a frequent source of programming error),
but it has the downside that the common integer type is much larger than often needed.
In LP64, programmers can use differently sized integer types, but must be mindful that the
size of an int type is smaller than that of a pointer.With LLP64, programmers are stuck
with both int and long types of the same size and also have to worry about a size mis-
match between all integers and pointers. Most programmers greatly prefer LP64, the
model Linux employs.

Opaque Types
Opaque data types do not reveal their internal format or structure.They are about as
“black box” as you can get in C.There is not a lot of language support for them. Instead,
developers declare a typedef, call it an opaque type, and hope no one typecasts it back to
a standard C type.All use is generally through a special set of interfaces that the developer
creates.An example is the pid_t type, which stores a process identification number.The
actual size of this type is not revealed—although anyone can cheat and take a peak and see
that it is an int. If no code makes explicit use of this type’s size, it can be changed without
too much hassle. Indeed, this was once the case: In older Unix systems, pid_t was declared
as a short.

Another example of an opaque type is atomic_t.As discussed in Chapter 10,“Kernel
Synchronization Methods,” this type holds an integer value that can be manipulated atom-
ically.Although this type is an int, using the opaque type helps ensure that the data is
used only in the special atomic operation functions.The opaque type also helps hide the
usable size of atomic_t, which was not always the full 32 bits because of architectural lim-
itations on 32-bit SPARC.

Other examples of opaque types in the kernel include dev_t, gid_t, and uid_t.
Keep the following rules in mind when dealing with opaque types:

n Do not assume the size of the type. It might be 32-bit on some systems and 64-bit
on others. Moreover, kernel developers are free to change its size over time.

n Do not convert the type back to a standard C type.
n Be size agnostic.Write your code so that the actual storage and format of the type

can change.

Special Types
Some data in the kernel, despite not being represented by an opaque type, requires a spe-
cific data type. One example is the flags parameter used in interrupt control, which
should always be stored in an unsigned long.

 From the Library of Wow! eBook

ptg

385Word Size and Data Types

When storing and manipulating specific data, always pay careful attention to the data
type that represents the type and use it. It is a common mistake to store one of these val-
ues in another type, such as unsigned int.Although this will not result in a problem on
32-bit architectures, 64-bit machines will have trouble.

Explicitly Sized Types
Often, as a programmer, you need explicitly sized data in your code.This is usually to
match external requirements, such as those imposed by hardware, networking, or binary
files. For example, a sound card might have a 32-bit register, a networking packet might
have a 16-bit field, or an executable file might have an 8-bit cookie. In these cases, the
data type that represents the data needs to be exactly the right size.

The kernel defines these explicitly sized data types in <asm/types.h>, which is
included by <linux/types.h>.Table 19.2 is a complete listing.

The signed variants are rarely used.
These explicit types are merely typedefs to standard C types. On a 64-bit machine,

they may look like this:

typedef signed char s8;

typedef unsigned char u8;

typedef signed short s16;

typedef unsigned short u16;

typedef signed int s32;

typedef unsigned int u32;

typedef signed long s64;

typedef unsigned long u64;

On a 32-bit machine, however, they are likely defined as follows:

typedef signed char s8;

typedef unsigned char u8;

Table 19.2 Explicitly Sized Data Types

Type Description

s8 Signed byte

u8 Unsigned byte

s16 Signed 16-bit integer

u16 Unsigned 16-bit integer

s32 Signed 32-bit integer

u32 Unsigned 32-bit integer

s64 Signed 64-bit integer

u64 Unsigned 64-bit integer

 From the Library of Wow! eBook

ptg

386 Chapter 19 Portability

typedef signed short s16;

typedef unsigned short u16;

typedef signed int s32;

typedef unsigned int u32;

typedef signed long long s64;

typedef unsigned long long u64;

These types can be used only inside the kernel, in code that is never revealed to user-
space (say, inside a user-visible structure in a header file).This is for reasons of namespace.
The kernel also defines user-visible variants of these types, which are simply the same type
prefixed by two underscores. For example, the unsigned 32-bit integer type that is safe to
export to user-space is __u32.This type is the same as u32; the only difference is the
name.You can use either name inside the kernel, but if the type is user-visible, you must
use the underscored prefixed version to prevent polluting user-space’s namespace.

Signedness of Chars
The C standard says that the char data type can be either signed or unsigned. It is the
responsibility of the compiler, the processor, or both to decide what the suitable default
for the char type is.

On most architectures, char is signed by default and thus has a range from –128 to
127. On a few other architectures, such as ARM, char is unsigned by default and has a
range from 0 to 255.

For example, on systems where a char is by default unsigned, this code ends up storing
255 instead of –1 in i:

char i = -1;

On other machines, where char is by default signed, this code correctly stores –1 in i.
If the programmer’s intention is to store –1, the previous code should be

signed char i = -1;

And if the programmer really intends to store 255, the code should read

unsigned char = 255;

If you use char in your code, assume it can be either a signed char or an unsigned
char. If you need it to be explicitly one or the other, declare it as such.

Data Alignment
Alignment refers to a piece of data’s location in memory.A variable is naturally aligned if it
exists at a memory address that is a multiple of its size. For example, a 32-bit type is natu-
rally aligned if it is located in memory at an address that is a multiple of 4 (that is, its low-
est 2 bits are zero).Thus, a data type with size 2n bytes must have an address with the n
least significant bits set to zero.

Some architectures have stringent requirements on the alignment of data. On some
systems, usually RISC-based ones, a load of unaligned data results in a processor trap (a

 From the Library of Wow! eBook

ptg

387Data Alignment

handled error). On other systems, accessing unaligned data works but results in a degrada-
tion of performance.When writing portable code, alignment issues must be avoided, and
all types should be naturally aligned.

Avoiding Alignment Issues
The compiler generally prevents alignment issues by naturally aligning all data types. In
fact, alignment issues are normally not major concerns of the kernel developers—the gcc
developers worry about them so other programmers need not. Issues arise, however, when
a programmer plays too closely with pointers and accesses data outside the environment
anticipated by the compiler.

Accessing an aligned address with a recast pointer of a larger-aligned address causes an
alignment issue (whatever that might mean for a particular architecture).That is, this is
bad news:

char wolf[] = “Like a wolf”;

char *p = &wolf[1];

unsigned long l = *(unsigned long *)p;

This example treats the pointer to a char as a pointer to an unsigned long, which
might result in the 32- or 64-bit unsigned long value being loaded from an address that
is not a multiple of 4 or 8, respectively.

This sort of convoluted access might look obscure, and it usually is. Nevertheless, it comes
up; so be careful.The real-world examples are generally not so obvious or convoluted.

Alignment of Nonstandard Types
As mentioned, the aligned address of a standard data type is a multiple of the size of that
data type. Nonstandard (complex) C types have the following alignment rules:

n The alignment of an array is the alignment of the base type; thus, each element is
further aligned correctly.

n The alignment of a union is the alignment of the largest included type.
n The alignment of a structure is such that an array of the structure will have each

element of the array properly aligned.

Structures also introduce padding, which introduces other issues.

Structure Padding
Structures are padded so that each element of the structure is naturally aligned.This
ensures that when the processor accesses a given element in the structure, that element is
aligned. For example, consider this structure on a 32-bit machine:

struct animal_struct {

char dog; /* 1 byte */

unsigned long cat; /* 4 bytes */

 From the Library of Wow! eBook

ptg

388 Chapter 19 Portability

unsigned short pig; /* 2 bytes */

char fox; /* 1 byte */

};

The structure is not laid out exactly like this in memory because the natural alignment
of the structure’s members is insufficient. Instead, the compiler creates the structure such
that in memory, the struct resembles the following:

struct animal_struct {

char dog; /* 1 byte */

u8 __pad0[3]; /* 3 bytes */

unsigned long cat; /* 4 bytes */

unsigned short pig; /* 2 bytes */

char fox; /* 1 byte */

u8 __pad1; /* 1 byte */

};

The padding variables exist to ensure proper natural alignment.The first padding pro-
vides a 3-byte waste-of-space to place cat on a 4-byte boundary.This automatically aligns
the remaining types because they are all smaller than cat.The second and final padding is
to pad the size of the struct.The extra byte ensures the structure is a multiple of 4, and
thus each member of an array of this structure is naturally aligned.

Note that sizeof(animal_struct) returns 12 for either of these structures on most 32-
bit machines.The C compiler automatically adds this padding to ensure proper alignment.

You can often rearrange the order of members in a structure to obviate the need for
padding.This gives you properly aligned data without the need for padding and therefore
a smaller structure:

struct animal_struct {

unsigned long cat; /* 4 bytes */

unsigned short pig; /* 2 bytes */

char dog; /* 1 byte */

char fox; /* 1 byte */

};

This structure is only 8 bytes in size. It might not always be possible to rearrange struc-
ture definitions, however. For example, if this structure were specified as part of a standard
or already used in existing code, its order is set in stone, although such requirements are
less common in the kernel (which lacks a formal ABI) than user-space. Often, you might
want to use a specific order for other reasons—for example, to best lay out variables to
optimize cache behavior. Note that ANSI C specifies that the compiler must never
change the order of members in a structure4—it is always up to you, the programmer.The

4 If the compiler could arbitrarily change the order of items in a structure, any existing code using the

structure would break. In C, functions calculate the location of variables in a structure simply by adding

offsets to the base address of the structure.

 From the Library of Wow! eBook

ptg

389Byte Order

compiler can help you out, however:The -Wpadded flag instructs gcc to generate a
warning whenever padding is added to a structure.

Kernel developers need to be aware of structure padding when using structures whole-
sale—that is, when sending them out over the network or when saving a structure directly
to disk, because the required padding might differ among various architectures.This is one
reason C does not have a native structure comparison operator.The padding in a structure
might contain gibberish, and it is not possible to do a byte-by-byte comparison of one
structure to another.The C designers (correctly) felt it is best for the programmer to write
a comparison function unique to each situation, taking advantage of the structure’s layout.

Byte Order
Byte ordering is the order of bytes within a word. Processors can number the bytes in a
word such that the least significant bit is either the first (left-most) or last (right-most)
value in the word.The byte ordering is called big-endian if the most significant byte is
encoded first, with the remaining bytes decreasing in significance.The byte ordering is
called little-endian if the least significant byte is encoded first, with the remaining bytes
growing in significance.

Never assume any given byte ordering when writing kernel code (unless you are writ-
ing code for a specific architecture, of course).The Linux kernel supports machines of
both byte orders—including machines that can select from either ordering upon boot—
and generic code must be compatible with either.

Figure 19.1 is an example of a big-endian byte ordering. Figure 19.2 is an example of a
little-endian byte ordering.

The x86 architecture, in both 32- and 64-bit variants, is little-endian. Most other archi-
tectures are big-endian.

Let’s look at what this encoding means in practice. Consider the number 1027, stored
as a four-byte integer in binary:

00000000 00000000 00000100 00000011

Byte #

0 1 2 3

more
significant

less
significant

Figure 19.1 Big-endian byte ordering.

 From the Library of Wow! eBook

ptg

390 Chapter 19 Portability

Byte #

3 2 1 0

less
significant

more
significant

Figure 19.2 Little-endian byte ordering.

The internal storage in memory is different on big- versus little-endian, as shown in
Table 19.3.

Notice how the big-endian architecture stores the most significant bytes in its smallest
address.This is the exact inverse of little-endian.

As a final example, here is a simple code snippet to test whether a given architecture is
big- or little-endian:

int x = 1;

if (*(char *)&x == 1)

/* little endian */

else

/* big endian */

This works either in user-space or inside the kernel.

History of Big- and Little-Endian
The terms big-endian and little-endian derive from Jonathan Swift’s 1726 satirical novel,
Gulliver’s Travels. In the novel, the fictional Lilliputians’ major political issue is whether eggs
should be cracked open on the big end or the little end. Those who favor the big end are
big-endians, whereas those who favor the small are little-endians.

The similarity between the Lilliputians and our big-endian versus little-endian debate is that
the argument is rooted deeper in politics than technical merits.

Table 19.3 Big Versus Little Endian

Address Big Endian Little Endian

0 00000000 00000011

1 00000000 00000100

2 00000100 00000000

3 00000011 00000000

 From the Library of Wow! eBook

ptg

391Page Size

Each supported architecture in Linux defines one of __BIG_ENDIAN or
__LITTLE_ENDIAN in <asm/byteorder.h> in correspondence to the machine’s byte order.

This header file also includes a family of macros from include/linux/byteorder/,
which help with conversions to and from the various orderings.The most commonly
needed macros are

u23 __cpu_to_be32(u32); /* convert cpu’s byte order to big-endian */

u32 __cpu_to_le32(u32); /* convert cpu’s byte order to little-endian */

u32 __be32_to_cpu(u32); /* convert big-endian to cpu’s byte order */

u32 __le32_to_cpus(u32); /* convert little-endian to cpu’s byte order */

These convert from one byte order to another. In the case that the orders are the same
(for example, if converting from native ordering to big-endian, and the processor is big-
endian), the macros do nothing. Otherwise, they return the converted value.

Time
The measurement of time is another kernel concept that can differ between architectures
or even kernel revisions. Never assume the frequency of the timer interrupt or the num-
ber of jiffies per second. Instead, always use HZ to scale your units of time correctly.This is
important because not only can the timer frequency differ among the various architec-
tures, but it can also change on a given architecture from one kernel release to the next.

For example, HZ is 100 on the x86 platforms.That is, the timer interrupt occurs 100
times per second, or every 10 milliseconds. Earlier in the 2.6 kernel series, however, HZ
was 1000 on x86. On other architectures, the value differs:Alpha has HZ equal to 1024
and ARM has it equal to 100.

Never simply compare jiffies to a number such as 100 and assume that always
means the same thing.To scale time appropriately, multiply or divide by HZ. For example

HZ /* one second */

(2*HZ) /* two seconds */

(HZ/2) /* half a second */

(HZ/100) /* 10 ms */

(2*HZ/100) /* 20 ms */

HZ is defined in <asm/param.h>.The subject is discussed further in Chapter 10.

Page Size
When working with pages of memory, never assume the page size. It is a common mis-
take for x86-32 programmers to assume that the page size is 4KB.Although this is true
on x86-32 machines, other architectures have different sizes. Some architectures support
multiple page sizes, in fact! Table 19.4 lists each support architecture’s valid page size(s).

 From the Library of Wow! eBook

ptg

392 Chapter 19 Portability

When working with pages of memory, use PAGE_SIZE as the size of a page, in bytes.
The value PAGE_SHIFT is the number of bits to left-shift an address to derive its page
number. For example, on x86-32 with 4KB pages, PAGE_SIZE is 4096 and PAGE_SHIFT is
12.These values are defined in <asm/page.h>.

Processor Ordering
Recall from Chapter 9,“An Introduction to Kernel Synchronization,” and Chapter 10
that architectures have varying degrees of processor ordering. Some have strict ordering
constraints in which all loads and stores occur in the order prescribed by the code. Other
chips have weak ordering, and loads and stores are reordered as the processor sees fit.

Table 19.4 Architecture Page Size(s)

Architecture PAGE_SHIFT PAGE_SIZE

alpha 13 8KB

arm 12, 14, 15 4KB, 16KB, 32KB

avr 12 4KB

cris 13 8KB

blackfin 12 4KB

frv 14 16KB

h8300 12 4KB

12, 13, 14, 16 4KB, 8KB, 16KB, 64KB

m32r 12 4KB

m68k 12, 13 4KB, 8KB

m68knommu 12 4KB

mips 12 4KB

mn10300 12 4KB

parisc 12 4KB

powerpc 12 4KB

s390 12 4KB

sh 12 4KB

sparc 12, 13 4KB, 8KB

um 12 4KB

x86 12 4KB

xtensa 12 4KB

 From the Library of Wow! eBook

ptg

393Conclusion

In your code, if you depend on data ordering, ensure that even the weakest ordered
processor commits your load and stores in the right order by using the appropriate barri-
ers, such as rmb() and wmb(). Chapter 10 has more information.

SMP, Kernel Preemption, and High Memory
It might seem somewhat incorrect to include symmetrical multiprocessing, kernel pre-
emption, and high memory in a discussion of portability.After all, these are not machine
characteristics that affect an operating system, but instead they are features of the Linux
kernel that are indeed somewhat architecture-agnostic.They represent, however, impor-
tant configuration options that you should always assume are available in your code.That
is, always program for an SMP/preempt/highmem system and you will always be safe, in
any configuration. In addition to the previous portability rules, you need to follow these
as well:

n Always assume your code will run on an SMP system and use appropriate locking.
n Always assume your code will run with kernel preemption enabled and use appro-

priate locking and kernel preemption statements.
n Always assume your code will run on a system with high memory (memory not

permanently mapped) and use kmap() as needed.

Conclusion
Writing portable, clean, proper code for the Linux kernel has two major implications:

n Always code for the greatest common factor:Assume anything can happen and any
potential constraint is in place.

n Always assume that only the lowest common denominator is available: Do not
assume any given kernel feature is available and require only the minimum archi-
tectural features.

Writing portable code requires awareness of many issues, including wordsize, data type
size, alignment, padding, byte order, signedness, endianness, page size, and processor
load/store ordering. In the majority of kernel programming, the primary concern is in
ensuring that data types are used correctly. Nonetheless, one day an archaic architecture
issue will arise, so it is important to understand portability issues and always write clean,
portable code inside the kernel.

 From the Library of Wow! eBook

ptg

20
Patches, Hacking, and the

Community

One of the greatest benefits of Linux is the large community of users and developers
that surround it.The community provides eyes to check your code, experts to provide
advice, and users to test and report issues. Most important, the community is the final
arbiter of what code is accepted into Linus’ official kernel tree. Understanding how the
system works is extremely important.

The Community
If the Linux kernel community had to call somewhere home, it would be the Linux Ker-
nel Mailing List.The Linux Kernel Mailing List (or as the regulars abbreviate it, just lkml) is
the location of the majority of the announcements, discussions, debates, and flame wars
over the kernel. New features are discussed, and most code is posted to the list before any
action is taken.The list sees upward of 300 messages a day, so it is not for the faint of
heart. Subscribing (or at least reading a digest or the archives) is recommended for anyone
interested in serious kernel development.You can learn a lot simply by watching the wiz-
ards at work.

You can subscribe by sending the following message in plain text to
majordomo@vger.kernel.org:

subscribe linux-kernel <your@email.address>

You can get more information at http://vger.kernel.org/ and a FAQ is available at
http://www.tux.org/lkml/.

Numerous websites and other mailing lists pertain to the kernel specifically and
Linux in general.An excellent resource for beginning kernel hackers is http://kernel-
newbies.org/—a website that, of all things, caters to those cutting their teeth on the ker-
nel.Two other excellent sources of kernel information are http://www.lwn.net/, Linux
Weekly News, which has a great kernel news section, and http://www.kerneltrap.org/,
Kernel Trap, which provides insightful commentary on kernel development.

 From the Library of Wow! eBook

http://vger.kernel.org/
http://www.tux.org/lkml/
http://kernelnewbies.org/
http://kernelnewbies.org/
http://www.lwn.net/
http://www.kerneltrap.org/

ptg

396 Chapter 20 Patches, Hacking, and the Community

Linux Coding Style
The Linux Kernel, like any large software project, has a defined coding style that stipulates
the formatting, style, and layout of your code.This is done not because the Linux kernel
style is superior (although it might be) or because your style is illegible, but because
consistency of coding style is crucial to productivity in coding.Yet it is often argued that cod-
ing style is irrelevant because it does not affect the compiled object code. In a large proj-
ect, such as the kernel, in which many developers are involved, consistency of coding style
is crucial. Consistency implies familiarity, which leads to ease of reading, lack of confu-
sion, and further expectations that code will continue to follow a given style.This
increases the number of developers who can read your code, and the amount of code in
which you can read. In an open-source project, the more eyes the better.

It is not so important what style is chosen as long as one is indeed selected and used
exclusively. Fortunately, Linus long ago laid out the style we should use and most code
sticks to it.The majority of the style is covered in Linus’s usual humor in the file
Documentation/CodingStyle in the kernel source tree.

Indention
The stylistic convention for indention is to use tabs that are eight characters in length.
This does not mean it is okay to use eight spaces for indention. Each level of indention is
a tab over from the previous, and a tab is eight characters in length. For example:

static void get_new_ship(const char *name)

{

if (!name)

name = DEFAULT_SHIP_NAME;

get_new_ship_with_name(name);

}

For unclear reasons, this rule is one of the most commonly broken, despite its high
impact on readability. Eight-character tabs make clearly identifying indention of different
code blocks orders of magnitude easier after hours of hacking.The downside, of course, of
eight character tabs is that after several levels of indention, not much usable space is left
on the line.This is compounded by 80-character line length limits (see subsequent sec-
tion). Linus’ rejoinder to this is that your code should not be so complex and convoluted
as to require more than two or three levels of indention. Need you go that deep, he
argues, you should refactor your code to pull out layers of complexity (and thus levels of
indention) into separate functions.

Switch Statements
Subordinate case labels should be indented to the same level as the parent switch state-
ment, which helps alleviate the impact of eight character tabs. For example:

switch (animal) {

 From the Library of Wow! eBook

ptg

397Linux Coding Style

case ANIMAL_CAT:

handle_cats();

break;

case ANIMAL_WOLF:

handle_wolves();

/* fall through */

case ANIMAL_DOG:

handle_dogs();

break;

default:

printk(KERN_WARNING “Unknown animal %d!\n”, animal);

}

It is common (and good) practice to comment when deliberately falling through from
one case statement to another, as shown in this example.

Spacing
This section covers the spacing around symbols and keywords, not the spacing used in
indention, which we covered in the last two sections. Generally speaking, Linux coding
style dictates spaces around most keywords and no spaces between functions and their
parentheses. For example:

if (foo)

while (foo)

for (i = 0; i < NR_CPUS; i++)

switch (foo)

Conversely, functions, macros, and keywords that look like functions—such as sizeof,
typeof, and alignof—similarly have no space between the keyword and the parenthesis.

wake_up_process(task);

size_t nlongs = BITS_TO_LONG(nbits);

int len = sizeof(struct task_struct);

typeof(*p)

__alignof__(struct sockaddr *)

__attribute__((packed))

Within parentheses, there is no space proceeding or preceding the argument, as previ-
ously shown. For example, this is verboten:

int prio = task_prio(task); /* BAD STYLE! */

Around most binary and tertiary operators, put a space on either side of the operator.
For example:

int sum = a + b;

int product = a * b;

int mod = a % b;

int ret = (bar) ? bar : 0;

 From the Library of Wow! eBook

ptg

398 Chapter 20 Patches, Hacking, and the Community

return (ret ? 0 : size);

int nr = nr ? : 1; /* allowed shortcut, same as “nr ? nr : 1” */

if (x < y)

if (tsk->flags & PF_SUPERPRIV)

mask = POLLIN | POLLRDNORM;

Conversely, around most unary operators, put no space between the operator and the
operand:

if (!foo)

int len = foo.len;

struct work_struct *work = &dwork->work;

foo++;

—bar;

unsigned long inverted = ~mask;

Getting the spacing right around the dereference operator is particularly important.
The correct style is

char *strcpy(char *dest, const char *src)

Placing a space on either side of the dereference operator is incorrect style:

char * strcpy(char * dest, const char * src) /* BAD STYLE */

Also incorrect is the C++ style of placing the dereference operator next to the type:

char* strcpy(char* dest, const char* src) /* BAD STYLE */

Braces
Brace placement is personal, and few technical reasons exist for one convention over the
other, but we have to agree on something.The accepted kernel style is to put the opening
brace on the first line, at the end of the statement.The closing brace goes on a new line as
the first character. Following is an example:

if (strncmp(buf, “NO_”, 3) == 0) {

neg = 1;

cmp += 3;

}

If the following token is a continuation of the same statement, the closing brace is not
on a line by itself, but on a line shared with that token. For example:

if (ret) {

sysctl_sched_rt_period = old_period;

sysctl_sched_rt_runtime = old_runtime;

} else {

def_rt_bandwidth.rt_runtime = global_rt_runtime();

def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());

}

 From the Library of Wow! eBook

ptg

399Linux Coding Style

And this example:

do {

percpu_counter_add(&ca->cpustat[idx], val);

ca = ca->parent;

} while (ca);

This rule is broken for functions, because functions cannot nest inside functions:

unsigned long func(void)

{

/* ... */

}

Finally, statements that do not need braces can omit them. For example, the following is
encouraged but not required:

if (cnt > 63)

cnt = 63;

The logic behind all this is K&R.1 Most of Linux coding style follows K&R Style,
which is the C coding style used in that famous book.

Line Length
Lines of source code should be kept to fewer than 80 characters in length.This allows
code to fit lengthwise on a standard 80×24 terminal.

There is no accepted standard on what to do in cases where code absolutely must
wrap 80 characters. Some developers just allow the line to wrap, letting their editor han-
dle the chore of displaying the code in a readable fashion. Other developers break up the
lines, manually inserting line breaks where appropriate, perhaps starting each new line a
tab stop over from the original.

Similarly, some developers line up function parameters that wrap lines with the open
parenthesis. For example:

static void get_new_parrot(const char *name,

unsigned long disposition,

unsigned long feather_quality)

Other developers break up the lines but do not line the parameters up, instead use a
standard two tabs:

int find_pirate_flag_by_color(const char *color,

const char *name, int len)

1 The C Programming Language, by Brian Kernighan and Dennis Ritchie (Prentice Hall, ISBN# 0-13-11-

362-8), nicknamed K&R, is the bible of C, written by C’s author and his colleague.

 From the Library of Wow! eBook

ptg

400 Chapter 20 Patches, Hacking, and the Community

As there is no definitive rule in this case, the choice is left up to you, the developer.
Many kernel contributors, including myself, prefer the former example: Manually break
up lines greater than 80 characters in length, trying to align the resulting new lines
cleanly with the previous line.

Naming
No name should employ CamelCase, Studly Caps, or other mixed case schemes. Calling a
local variable idx or even just i is perfectly fine if it is clear what it does.A cute name
such as theLoopIndex is unacceptable. Hungarian notation (encoding the variable type in
the variable name) is unnecessary and should never be used.This is C, not Java; Unix, not
Windows.

Nonetheless, global variables and functions should have descriptive names, in lowercase
and delimited via an underscore as needed. Calling a global function atty() is confusing;
a name such as get_active_tty() is much more acceptable.This is Linux, not BSD.

Functions
As a rule of thumb, functions should not exceed one or two screens of text and should
have fewer than ten local variables.A function should do one thing and do it well.There
is no harm in breaking a function into a series of smaller functions. If you are worried
about function call overhead, employ inline functions via the inline keyword.

Comments
Commenting your code is important, but the commenting must be done correctly. Gen-
erally, you want to describe what and why your code is doing what it is doing, not how it is
doing it.The how should be apparent from the code itself. If not, you might need to
rethink and refactor what you wrote.Additionally, comments should not include who
wrote a function, the modification date, or other trivial nonsense. Such information is
generally acceptable at the top of the source file, however.

The kernel uses C-style comments, even though gcc supports C++-style comments,
too.The general style of a comment in the kernel resembles:

/*

* get_ship_speed() - return the current speed of the pirate ship

* We need this to calculate the ship coordinates. As this function can sleep,

* do not call while holding a spinlock.

*/

In comments, important notes are often prefixed with ”XXX:”, and bugs are often pre-
fixed with ”FIXME:” like so:

/*

 From the Library of Wow! eBook

ptg

401Linux Coding Style

* FIXME: We assume dog == cat which may not be true in the future

*/

The kernel has a facility for self-generating documentation. It is based on GNOME-
doc, but slightly modified and renamed Kernel-doc.To create the standalone documenta-
tion in HTML format, run

make htmldocs

Or for postscript

make psdocs

You can use the system to document your functions by following a special format for
your comments:

/**

* find_treasure – find ‘X marks the spot’

* @map – treasure map

* @time – time the treasure was hidden

*

* Must call while holding the pirate_ship_lock.

*/

void find_treasure(int map, struct timeval *time)

{

/* ... */

}

For more information, see Documentation/kernel-doc-nano-HOWTO.txt.

Typedefs
The Linux kernel developer community employs a strong dislike of the typedef opera-
tor.Their rationale is

n typedef hides the real type of data structures.
n Because the type is hidden, code is more prone to do bad things, such as pass a

structure by value on the stack.
n typedef is just being lazy.

Therefore, to avoid ridicule, avoid typedef.
Of course, there are a few good uses of typedefs: hiding an architecture-specific imple-

mentation of a variable or providing forward compatibility when a type may change.
Decide carefully whether the typedef is truly needed or exists just to reduce the number
of characters you need to type.

 From the Library of Wow! eBook

ptg

402 Chapter 20 Patches, Hacking, and the Community

Use Existing Routines
Do not reinvent the wheel.The kernel provides string manipulation functions, compression
routines, and a linked list interface, so use them.

Do not wrap existing interfaces in generic interfaces. Often you see code that was
obviously ported from one operating system to Linux, and various kernel interfaces are
wrapped in some gross glue function. No one likes this, so just use the provided interfaces
directly.

Minimize ifdefs in the Source
Putting ifdef preprocessor directives directly in the C source is frowned upon.You
should never do something like the following in your functions:

...

#ifdef CONFIG_FOO

foo();

#endif

...

Instead, define foo() to nothing if CONFIG_FOO is not set:

#ifdef CONFIG_FOO

static int foo(void)

{

/* .. */

}

#else

static inline int foo(void) { }

#endif /* CONFIG_FOO */

Then, you can unconditionally call foo(). Let the compiler do the work for you.

Structure Initializers
Labeled identifiers need to be used to initialize structures.This is good because it prevents
structure changes from resulting in incorrect initialization. It also enables values to be
omitted. Unfortunately, C99 adopted quite an ugly format for labeled identifiers, and gcc
is deprecating usage of the previous GNU-style labeled identifier, which was rather hand-
some. Consequently, kernel code needs to use the new C99 labeled identifier format,
however ugly it is:

struct foo my_foo = {

.a = INITIAL_A,

.b = INITIAL_B,

};

In this code, a and b are members of struct foo and INITIAL_A and INITIAL_B are
their initialized values, respectively. If a field is not set, it is set to its default value per
ANSI C (for example, pointers are NULL, integers are zero, and floats are 0.0). For exam-

 From the Library of Wow! eBook

ptg

403Submitting Bug Reports

ple, if struct foo also has int c as a member, the previous statement would initialize c
to zero.

Fixing Up Code Ex Post Facto
If a pile of code falls into your lap that fails to even mildly resemble the Linux kernel
coding style, do not fret.A little elbow grease and the indent utility can make everything
perfect. indent, an excellent GNU utility found on most Linux systems, formats source
according to given rules.The default settings are for the GNU coding style, which is not
too pretty.To get the utility to follow the Linux kernel style, execute the following:

indent -kr -i8 -ts8 -sob -l80 -ss -bs -psl <file>

This instructs the utility to format the code according to the kernel coding style.
Alternatively, the script scripts/Lindent automatically invokes indent with the desired
options.

Chain of Command
Kernel hackers are the developers who work on the kernel. Some do it for pay, some as a
hobby, but nearly all for fun. Kernel hackers with significant contributions are listed in the
CREDITS file in the root of the kernel source tree.

Most parts of the kernel have an associated maintainer.The maintainer is the individual
(or individuals) who is in charge of specific parts of the kernel. For example, each individ-
ual driver has an associated maintainer. Each kernel subsystem—for example, network-
ing—also has an associated maintainer.The maintainer for a specific driver or subsystem is
usually listed in the file MAINTAINERS, which is also located in the root of the kernel
source tree.

There is a special type of maintainer, known as the kernel maintainer.This individual
actually maintains the kernel tree. Historically, Linus maintains the development kernel
(where the real fun is) and the stable kernel for some period after development ends.
Shortly after a development kernel becomes a stable kernel, Linus passes the torch to one
of the top kernel developers.That developer continues to maintain the tree while Linus
begins work on the new development tree. Given the “new world order” in which devel-
opment on 2.6 continues in perpetuity, Linus remains the maintainer of the 2.6 kernel
series.Another developer maintains the 2.4 series, which is in a strict bug-fix-only mode.

Submitting Bug Reports
If you encounter a bug, the best course of action is to write a fix, create a patch, test it,
and submit it as discussed in the following sections. Of course, you can also report the
problem and get someone to fix it for you.

 From the Library of Wow! eBook

ptg

404 Chapter 20 Patches, Hacking, and the Community

The most important part of submitting a bug report is fully describing the problem.
Describe the symptoms, any system output, and a fully decoded oops (if there is an oops).
More important, if you can, provide steps to reliably reproduce the problem and a brief
description of your hardware.

Deciding to whom to send the bug report is the next step.The file MAINTAINERS, in
the root of the kernel source tree, lists the individuals associated with each driver and sub-
system—they should receive any issues related to the code they maintain. If you cannot
find an interested party, send the report to the Linux Kernel Mailing List at linux-ker-
nel@vger.kernel.org. Even if you do find a maintainer, CC the kernel mailing list.

The files REPORTING-BUGS and Documentation/oops-tracing.txt provide more
information.

Patches
All changes to the Linux kernel are distributed in the form of patches, which are the out-
put of the GNU diff(1) program in a form that is readable by the patch(1) program.

Generating Patches
The simplest way to generate a patch is to have two source trees, one that is the vanilla
stock kernel and another that is the stock tree with your modifications.A common
scheme is to name the stock tree linux-x.y.z (which is what the source tarball extracts
to, initially) and to name your modified tree simply linux.Then, to generate a patch of
the two trees, issue the following command from one directory below your trees:

diff -urN linux-x.y.z/ linux/ > my-patch

This is typically done somewhere in your home, and not /usr/src/linux so that
you do not need to be root.The -u flag specifies that the unified diff format should be
used.Without this, the patch is ugly and not readable by humans.The -r flag instructs
diff to recursively diff all directories, and the -N flag specifies that new files in the mod-
ified tree should be included in the diff.Alternatively, if you need to diff only a single
file, you can do

diff -u linux-x.y.z/some/file linux/some/file > my-patch

You need to always diff the trees from one directory below your source trees.This cre-
ates a patch that is usable by others, even if their directory names differ.To apply a patch
made in this format, do the following from the root of your source tree:

patch -p1 < ../my-patch

In this example, the patch is named my-patch and is created one directory below the
current.The -p1 flag instructs diff to strip the first directory from the patch.This
enables you to apply a patch regardless of the directory-naming convention used by the
patch maker.

 From the Library of Wow! eBook

ptg

405Patches

A useful utility is diffstat, which generates a histogram of a patch’s changes (line
additions and removals).To generate the output on one of your patches, do

diffstat -p1 my-patch

It is often useful to include this output when you post a patch to lkml. Because the
patch(1) program ignores all lines until a diff is detected, you can even include a short
description at the top of the patch.

Generating Patches with Git
If you use Git to manage your source tree, you need to use Git to likewise generate your
patches—there is no point going through all the aforementioned manual steps and bear
the complexity of Git. Generating patches with Git is an easy two-part process. First, you
need to author and then locally commit your changes. Making changes to a Git tree is the
same as a standard source tree.You do not need to do anything special to edit a file stored
in Git.After you make your changes, you need to commit them to your Git repository:

git commit -a

The -a flag instructs Git to commit all your changes. If you only want to commit
changes to a specific file, you can do that, too:

git commit some/file.c

Even with the -a flag, however, Git will not commit new files until they are explicitly
added to the repository.To add a file and then commit it (and all other changes), issue the
following two commands:

git add some/other/file.c

git commit -a

When you run git commit, Git enables you to enter a change log. Make this entry ver-
bose and complete, fully explaining the commit. (We cover exactly what to include in the
next section.) You can create multiple commits against your repository.Thanks to Git’s
design, subsequent commits can even be against the same file, building off of each other.
When you have a commit (or two) in your tree, you can generate a patch for each com-
mit, which you can treat as you do the patches described in the previous section:

git format-patch origin

This generates patches for all commits in your repository and not in the original tree.
Git creates the patches in the root of your kernel source tree.To generate patches for only
the last N commits, you can execute the following:

git format-patch -N

For example, this command generates a patch for only the last commit:

git format-patch -1

 From the Library of Wow! eBook

ptg

406 Chapter 20 Patches, Hacking, and the Community

Submitting Patches
Patches should be generated as described in the previous section. If the patch touches a spe-
cific driver or subsystem, the patch should be sent to the maintainer listed in MAINTAINER.
Either way, the Linux Kernel Mailing List at linux-kernel@vger.kernel.org should be
carbon copied.The patch should be sent to the kernel maintainer (for example, Linus)
only after extensive discussion, or if the patch is trivial and clearly correct.

Typically, the subject line of the email containing the patch is of the form “[PATCH]
brief description.”The body of the email describes in technical detail the changes your
patch makes and the rationale behind them. Be as specific as possible. Somewhere in the
email, note the kernel version against which the patch was created.

Most kernel developers want to read your patch inline with your email and optionally
save the whole thing to a single file. Consequently, it is best to insert the patch directly
inline in the email, at the end of your message. Be aware that some email clients might
wrap lines or otherwise change formatting; this breaks the patch and annoys developers. If
your email client does this, see whether it has an “Insert Inline,”“Preformat,” or similar
feature. Otherwise, attaching the patch as plain text without encoding works, too.

If your patch is large or contains several logical changes, you should break the patch
into chunks, with each chunk representing a logical change. For example, if you both
introduce a new API and change a handful of drivers to use it, you can break the changes
into two patches (the new API and then the driver changeover) and two emails. If any
chunk requires a previous patch, explicitly state that.

After posting, remain patient and wait for a reply. Do not be discouraged by any nega-
tive response—at least you got a response! Discuss the issues and provide updated patches
as needed. If you fail to receive any response, try to discover what was wrong and resolve
the issues. Solicit additional comments from the mailing list and maintainer.With luck,
you might see your changes in a future kernel release—congratulations!

Conclusion
The most important quality of any hacker is desire and drive—an itch to scratch, and the
determination to scratch it.This book provided a tour of key parts of the kernel, dis-
cussing interfaces, data structures, algorithms, and rationale. It provided an insider’s view
of the kernel, in a practical fashion, to satisfy your curiosity or get you off the ground
running in your kernel endeavors.

As I have said before, however, the only way to start is by reading and writing code.
Linux provides a community that not only enables but also encourages both activities—so
start reading and coding! Happy hacking!

 From the Library of Wow! eBook

ptg

Bibliography

This bibliography lists works complementary to this book. Note that the absolute best
“additional reading” to complement this book is the kernel source.Working on Linux, we
are all gifted with full and unrestricted access to the source code for an entire modern
operating system. Do not take that for granted. Dive in! Read and write code!

Books on Operating System Design
These books cover OS Design as discussed in an undergraduate course.They all tackle the
concepts, algorithms, problems, and solutions involved in designing a functional operating
system. I recommend them all, but if I had to pick only one, the Deitel book is both
comprehensive and enjoyably readable.

Deitel, H., P. Deitel, and D. Choffnes. Operating Systems. Prentice Hall, 2003.An awe-
some tour de force on the theory of operating systems, with some excellent case studies
putting the theory to practice.

Tanenbaum,Andrew. Modern Operating Systems. Prentice Hall, 2007.A strong overview
of the standard operating system design issues, plus discussion on many of the concepts
used in today’s modern operating systems, such as UNIX and Windows.

Tanenbaum,Andrew. Operating Systems: Design and Implementation. Prentice Hall, 2006.
A great introductory work on both the design and implementation of a Unix-like system,
Minix.

Silberschatz,A., P. Galvin, and G. Gagne. Operating System Concepts. John Wiley and
Sons, 2008.Also known as “the dinosaur book,” for the seemingly irrelevant dinosaurs on
the cover.A great introduction to OS design.The book has frequent revisions; any of
them should do fine.

Books on Unix Kernels
These books tackle the design and implementation of Unix kernels.The first five discuss
a specific flavor of Unix, and the later two focus on issues common to all Unix variants. If
you were only going to buy two of these books, I’d insist on these last two.

Bach, Maurice. The Design of the Unix Operating System. Prentice Hall, 1986.A good
discussion on the design of Unix System V Release 2.

 From the Library of Wow! eBook

ptg

408 Bibliography

McKusick, M., K. Bostic, M. Karels, and J. Quarterman. The Design and Implementation
of the 4.4BSD Operating System.Addison-Wesley, 1996.A good discussion on the design of
the 4.4BSD system by the system designers.

McKusick, M. and G. Neville-Neil. The Design and Implementation of the FreeBSD Oper-
ating System.Addison-Wesley, 2004.A good discussion on the design and implementation
of FreeBSD 5.2.

McDougall, R and J. Mauro. Solaris Internals: Solaris and OpenSolaris Kernel Architecture.
Prentice Hall, 2006.An interesting discussion on the core subsystems and algorithms in
the Solaris kernel.

Cooper, C., and C. Moore. HP-UX 11i Internals. Prentice Hall, 2004.A look at the
internals of HP-UX and the PA-RISC architecture.

Vahalia, Uresh. Unix Internals:The New Frontiers. Prentice Hall, 1995.A superb book on
modern Unix features, such as thread management and kernel preemption.

Schimmel, Curt. UNIX Systems for Modern Architectures: Symmetric Multiprocessing and
Caching for Kernel Programmers.Addison-Wesley, 1994.A superb book on the perils of sup-
porting a modern Unix on a modern architecture. Highly recommended.

Books on Linux Kernels
These books, as with this one, discuss the Linux kernel.There are not too many good
books in this category.These two, however, I recommend.

Benvenuti, Christian. Understanding Linux Network Internals. O’Reilly and Associates,
2005.A deep dive into Linux networking.

Corbet, J.,A. Rubini, and G. Kroah-Hartman. Linux Device Drivers. O’Reilly and Asso-
ciates, 2005.An excellent discussion on how to write device drivers for the 2.6 kernel,
with a focus on the programming interfaces supporting various types of devices.

Books on Other Kernels
Understanding your competitors never hurts.These books discuss the design and imple-
mentation of operating systems other than Linux. See what they got right and what they
got wrong.

Kogan, M. and H. Deitel. The Design of OS/2.Addison-Wesley, 1996.An interesting
look at OS/2 2.0.

Singh,Amit. Mac OS X Internals:A Systems Approach.Addison-Wesley Professional,
2006.A treatise on the entire Mac OS X system that is as deep as it is wide.

Solomon, D., and M. Russinovich. Windows Internals: Covering Windows Server 2008 and
Windows Vista. Microsoft Press, 2009.An interesting look at a rather non-Unix operating
system.

 From the Library of Wow! eBook

ptg

409Websites

Books on the Unix API
In-depth discussions of the Unix system and its API are important not only for writing
powerful user-space programs, but for also understanding the responsibilities of the kernel.

Love, Robert. Linux System Programming. O’Reilly and Associates, 2007. My own work
on system-level Linux programming, covering the Linux system call and libc API and
attention to Linux-specific tricks and tips.

Stevens,W.R. and S. Rago. Advanced Programming in the UNIX Environment.Addison-
Wesley, 2008.An excellent if not definitive discussion on the Unix system call interface.

Stevens,W. Richard. UNIX Network Programming,Volume 1. Prentice Hall, 2004.A clas-
sic text on the sockets API used by Unix systems.

Books on the C Programming Language
The Linux kernel, along with much of the Linux system, is written in C.These two
books own that subject.

Kernighan, B. and D. Ritchie.The C Programming Language. Prentice Hall, 1988.The
definitive book on C programming language, written by the author of C and his
coworker.

van der Linden, Peter. Expert C Programming. Prentice Hall, 1994.A great discussion on
some of the less understood details in C.The author has a wonderful sense of humor.

Other Works
This is a collection of other books not strictly related to operating systems, but discussing
topics that undoubtedly affect them.

Hofstadter, Douglas. Gödel, Escher, Bach:An Eternal Golden Braid. Basic Books, 1999.A
profound and indispensable look at human thought that delves wildly into multiple sub-
jects, including computer science.

Knuth, Donald. The Art of Computer Programming,Volume 1.Addison-Wesley, 1997.An
invaluable tome on the fundamental algorithms of computer science, including best- and
worst-fit algorithms used in memory management.

Websites
Kernel.org.The official repository of the kernel source. It is also home to a large num-

ber of the core kernel hacker’s patches. www.kernel.org.
Linux Weekly News.An excellent news site with smart, accurate commentary on the

week’s Linux news, including kernel happenings. Highly recommended. www.lwn.net.
OS News. Operating System News, along with original articles, interviews, and

reviews. www.osnews.com.

 From the Library of Wow! eBook

www.kernel.org
www.osnews.com
www.lwn.net

ptg

Index

64-bit atomic operations, 180-181

A
absolute time, 207

abstraction layer, VFS (Virtual Filesystem),
262-263

account_process_tick() function, 219

action modifiers, gfp_mask flags, 239-240

action string, Kernel Event Layer, 361

activate task() function, 61

address intervals

creating, 318-320
removing, 320

address_space object, page caches,
326-328

address_space operations, page caches,
328-330

Advanced Programming in the UNIX
Environment, 409

advisory locks, 166

AIX (IBM), 2

algorithms, 109-111

asymptotic behavior, 109
big-o notation, 109
big-theta notation, 109-110
clairvoyant, 325
complexity, 109-110

time complexity, 110-111
listing of, 110-111
process scheduler, 46-50
scalability, 109

 From the Library of Wow! eBook

ptg

scheduling algorithms, priority-based
scheduling, 44

alignment of data, 386-387

issues, 387
nonstandard types, 387
structure padding, 387-389

alloc pages() function, 236, 259

alloc_page() function, 236

alloc_percpu() function, 258

allocating

memory, 237-244
memory descriptor, 308
process descriptors, 25-26
UIDs (unique identification numbers),

101-102
which method to use, 259

allocating memory, 231, 237, 260

choosing method, 259
high memory mappings, 253

permanent mappings, 254
temporary mappings, 254-255

kfree() function, 243-244
kmalloc() function, 238-244

gfp_mask flags, 238-243
pages, 231-232

obtaining, 235-237
per-CPU allocations, 255-256
slab layers, 245-246

design, 246-249
interface, 249-252

statically allocating on
stack, 252-253

vmalloc() function, 244-245
zones, 233-235

allow interrupts flag, 127

anonymous mapping, 318

Anticipatory I/O scheduler, 302-303

APIC timer, 217

APIs

system calls, 70
UNIX Network Programming, 409

applications

hardware, relationship, 6
interrupt handlers, writing,

118-119
kernel, relationship, 6

arch directory, kernel source tree, 13

arguments, system calls, 71

arrays, per-CPU data, 255

Art of Computer Programming, The,
Volume 1, 409

assembly, inline assembly, 19

asserting bugs, 370-371

associative arrays. See maps

asymptotic behavior, algorithms, 109

asynchronous interrupts, 114

atomic context, 115

atomic high memory mappings,
254-255

atomic operations, synchronization
methods, 175

64-bit operations, 180-181
bitwise operations, 181-183
converting, 177
counter implementation, 177
defining, 177
increments, 175-176
integer operations, 176-179
interfaces, 176
nonatomic bit operations, 183
overhead advantages, 179
testing, 177

atomic_t data type, 384

atomicity, ordering, compared, 179

412 algorithms

 From the Library of Wow! eBook

ptg

B
Bach, Maurice, 407

backing stores, 323

balanced binary search trees, self-balanced
binary search trees

rbtrees, 106-108
red-black trees, 105-106

barrier operations, ordering, 179

barrier() function, 206

barriers

functions, 204-205
memory reads/writes, 203-206

bdflush kernel thread, 333-334

behaviors, system calls, 71-72

Bell Laboratories, Unix developmental
history, 1

Benvenuti, Christian, 408

Berkeley Software Distributions (BSD), 2

BH interface, tasklets, 148

bh_state flags (buffers), 292

big-endian byte ordering, 389-391

big-o notation, 109

big-theta notation, 109-110

binary searching, git source management
tool, 376-377

binary semaphores, 191-192

binary trees, 103-104

BSTs (binary search trees), 104
self-balanced binary search trees, 105

rbtrees, 106-108
red-black trees, 105-106

binding system calls, 79-81

bio structure, block I/O layer,
294-295

bitwise atomic operations, 181-183

BKL (Big Kernel Lock), 198-199

block device nodes, 337

block devices, 289-290, 337

buffer heads, 291
buffers, 291-294
sectors, 290-291

block directory, kernel source code, 13

block I/O layer, 290

bi_cnt field, 296
bi_idx field, 296
bi_io_vecs field, 295
bi_private field, 296
bi_vcnt field, 295
bio structure, 294-295
I/O vectors, 295-296
segments, 294
versus buffer heads, 296-297

blocks, 289-290, 337

BLOCK_SOFTIRQ tasklet, 140

BogoMIPS value, 227

Booleans, 14

Bostic, K., 408

bottom halves

disabling, 157-159
interrupt handlers, 115,

133-135
benefits, 134-135
BH interface, 135-136
task queues, 135

locking between, 157
mechanism selection criteria,

156-157
softirqs, 136-141
spin locks, 187-188
tasklets, 136, 142-148
version terminology, 137
work queues, 149-156

braces, coding style, 398-399

branch annotation, GNU C, 19-20

413branch annotation, GNU C

 From the Library of Wow! eBook

ptg

BSTs (binary search trees), 104

buffer caches, 330-331

buffers, blocks, 291-294

bug reports, submitting,
403-404

BUG() routine, 370

BUG_ON() routine, 370

bugs

asserting, 370-371
range of, 364
reproducing, 363-364

building

Booleans, 14-15
kernel, 13-16
modules, 340-342
noise minimization, 15
spawning multiple jobs, 16

busy looping, timers, 225-226

byte ordering, 389-391

C
C library, 5

system calls, 70-71
C Programming Language, The,

399, 409

C++-style comments, 400

cache eviction, 324-325

cache hits, 323

cache misses, 323

caches, 246

cache miss, 323
caching

backing stores, 323
buffer caches, 330-331
cache eviction, 324-325
cache hits, 323
page cache, 324

page caches, 323-326
address_space object, 326-328
address_space operations, 328-330
global hash, 330
radix tree, 330

page caching, filesystem files, 326
write caching, 324
write-through caches, 324

cdevs. See character devices

CFQ (Complete Fair Queuing) I/O
scheduler, 303

CFS Schedulers, 172

character device nodes, 337

character devices, 289, 337

characters, word size, 381

child tasks, reparenting, 38

Choffnes, David R., 407

circular linked lists, 86-87

clairvoyant algorithm, 325

classes, process scheduler, 46-47

cli() function, 128

clocks, real-time clock (RTC), 217

clone() function, flags, 34-35

clone() system call, 32-34

clusters, 290

coarse locking, 172

code, interrupt-safe code, 168

codes, locks, compared, 186

coding style

braces, 398-399
comments, 400-401
consistency, 396
existing routines, 402
fixing ex post facto, 403
functions, 400
ifdef preprocessor directives, 402
importance of, 396

414 BSTs

 From the Library of Wow! eBook

ptg

indention, 396
line length, 399-400
naming conventions, 400
productivity, 396
spacing, 397-398
structure initializers, 402-403
switch statements, 396-397
typedefs, 401

commands

modprobe, 343
SysRq, 371

Comments, coding style, 400-401

community help resources, debugging, 377

complete() function, 198

Completely Fair Scheduler, 43

completion variables, 197-198

concurrency

causes, 167
interrupts, 167
kernel, 21
kernel preemption, 167
pseudo-concurrency, 167
sleeping, 167
softirqs, 167
symmetrical multiprocessing, 167
tasklets, 167
true concurrency, 167

concurrent programming, threads, 33

cond_resched() function, 226

condition variables, debugging, 374

conditionals, UIDs, 373-374

CONFIG options, 168

configuration, kernel, 14-15

configuration options, modules, managing,
344-346

congestion, avoiding with multiple threads,
334-335

contended threads, 184

contention, locks, 171

context

interrupts, 115
processes, 29
system calls, 78-81

context switch() function, 62

context_switch() method, 380

context switching, process scheduler, 62

controlling interrupts, 127-130

converting atomic operations, 177

Cooper, Chris, 408

cooperative multitasking, process scheduler,
41-42

copy-on-write (COW) pages, 31

copy_process() function, 32

Corbet, Jonathan, 408

counters, implementing, atomic operations, 177

counting semaphores, 191-192

COW (copy-on-write) pages, 31

CREDITS file, 403

critical regions, multiple threads of execu-
tion, 162

crypto directory, kernel source tree, 13

ctime() library call, 221

current date and time, 207, 220-221

CVS, 11

cylinders, 290

D
D-BUS, Kernel Event Layer, 361

data section (processes), 23

data structures

binary trees, 103-104
BSTs (binary search trees), 104
self-balanced binary search trees,

105-108

415data structures

 From the Library of Wow! eBook

ptg

choosing, 108
filesystems, 285-288
freeing, slab layers, 245-252
linked lists, 85

adding a node to, 90-91
circular linked lists, 86-87
defining, 89-90
deleting a node from, 91-92
doubly linked lists, 85-86
iterating through backward, 94
iterating while removing, 95
kernel implementation, 88-90
manipulating, 90-92
moving nodes, 92
navigating through, 87-88
singly linked lists, 85-86
splicing nodes, 92
traversing, 93-96

maps, 100-101
UIDs (unique identification

numbers), 100-103
queues, 96-97

creating, 97-98
dequeuing data, 98
destroying, 99
enqueuing data, 98
kfifo, 97-100
obtaining size of, 98
resetting, 99

VFS (Virtual Filesystem), 265-266
data types

atomic_t, 384
char, 386
dev_t, 384
explicitly sized data types, 385-386
gid_t, 384
opaque data types, 384

pid_t, 384
portability, 384
special data types, 384-385
uid_t, 384
usage rules, 384

deactivating timers, 223

Deadline I/O scheduler, 300-302

deadlocks

ABBA, 170
threads, 169-171

debuggers in-kernel debugger,
372-373

debugging, 363-364, 378

atomicity, 370
binary searching, 376-377
BUG() routine, 370
bugs

asserting, 370-371
reproducing, 363-364

community help resources, 377
condition variables, 374
difficulty of, 363
dump information, 370-371
dump stack() routine, 371
kernel options, 370
Magic SysRq key commands,

371-372
occurrence limiting, 375-376
oops, 367-369

kallsyms, 369-370
kysmoops, 369

panic() routine, 371
printing, 364-367
rate limiting, 375-376
spin locks, 186
statistics, 374
UID as a conditional, 373-374

416 data structures

 From the Library of Wow! eBook

ptg

declaring

kobjects, 352-353
linked lists, 88
tasklets, 144-145

decoded version, oops, 369

deferences, 92

defining

atomic operations, 177
linked lists, 89-90

Deitel, Harvey, 407-408

Deitel, Paul, 407

del_timer_sync() function, 223

delays, timers, 226-227

denoting system calls, 73-74

dentries, sysfs, 355

dentry object, VFS (Virtual Filesystem), 265,
275-276

caches, 276-277
operations, 278-279
states, 276

dequeuing data, 98

design, slab layers, 246-252

Design and Implementation of the 4.4BSD
Operating System, The, 408

Design of OS/2, The, 408

Design of the Unix Operating System,
The, 407

dev_t data type, 384

development kernel, 8-10

maintenance, 403
device model

benefits, 348-349
kobjects, 349-350

declaring, 352-353
embedding, 350
managing, 352-353
sysfs filesystem, 355-362

ksets, 351
ktypes, 350-351
name pointer, 349
parent pointer, 350
reference counts, 353-355

incrementing and
decrementing, 354

kref structure, 354-355
sd pointer, 350
structures, 351-352

devices, 337

block devices, 289-290
buffer heads, 291
buffers, 291-294
sectors, 290-291

character devices, 289, 337
drivers, 114
glock devices, 337
miscellaneous devices, 338
network devices, 338

Dijkstra, Edsger Wybe, 192

directories, 264

directory object, VFS (Virtual
Filesystem), 265

dirty lists, 324

dirty page writeback, 331

disable irq nosync() function, 129

disable irq() function, 129-130

disable_irq() function, 130

disable_irq_nosync() function, 130

disabling

bottom halves, 157-159
interrupts, 127-129
kernel preemption, 201-202

do mmap() function, 318-319

do softirq() function, 138-141

do timer() function, 218

417do timer() function,

 From the Library of Wow! eBook

ptg

documentation

coding style, 396
self-generating documentation, 401

Documentation directory, kernel source
tree, 13

doublewords, 382

doubly linked lists, 85-86

down interruptible() function, 193-194

down trylock() function, 193-194

down() function, 194

downgrade write() function, 195

do_exit() function, 36

do_IRQ() function, 123-125

do_munmap() function, 320

do_timer() function, 218

drivers, 114

RTC (real-time clock) driver, 120-122
drivers directory, kernel source tree, 13

dump information, debugging, 370-371

dump_stack() function, 371

dynamic timers, 207, 222

E
early printk() function, 365

elements, 85

elevators, I/O schedulers, 299-300

embedding kobjects, 350

enable_irq() function, 130

enabling interrupts, 127-128

enqueuing data, 98

entity structure, process scheduler, 50

entry points, scheduler, 57-58

epoch, 220

Ethernet devices. See network devices

events, relationship with time, 207

eviction (cache), 324-325

exceptions, 114

exec() function, 31

executable files, 29

execution, softirqs, 138-140

exokernel, 7

Expert C Programming, 409

explicitly sized data types, 385-386

exported symbols, modules, 348

F
fair scheduling, 48-50

family tree, processes, 29-30

fields, memory descriptor, 307-308

file attributes, kobjects, 358-359

conventions, 360-361
creating, 359-360
destroying, 360

file metadata, 264

file object, VFS (Virtual Filesystem), 265,
279-280

operations, 280-284
file-backed mapping, 318

files, 263

header files, 17
kobjects, adding to, 358-361
metadata, 264

filesystem

abstraction layer, 262-263
interface, 261-262
UNIX filesystems, 264

filesystem blocks, 290

filesystem files, page caching, 326

filesystem interface, 261

filesystems, 263, 264. See also VFS (Virtual
Filesystem)

data structures, 285-288
Linux, support, 288
metadata, 264

418 documentation

 From the Library of Wow! eBook

ptg

UNIX filesystems, 263
VFS (Virtual Filesystem)

data structures, 265-266
objects, 265-266

files_struct data structure, 287

find_get_page() method, 329

find_vma() function, 316-317

find_vma prev() function, 317

find_vma_intersection() function, 317

firmware directory, kernel source
code, 13

fixed-size stacks, 20

flags

clone() function, 34-35
interrupt handlers, 116-117
map type flags, 319
page protection flags, 319
VMAs (virtual memory areas),

311-312
flat address spaces, 305

floating point instructions, 20

flush scheduled work() function, 154

flusher threads, 331-335

flushing work queues, 154

fork() function, 24, 31-34

forking, 32

free lists, 245

free percpu() function, 258

free_irq() function, 118

freeing

data structures, slab layers, 245-252
interrupt handlers, 118

freeing pages, 237

frequencies, timer interrupts, 209

front/back merging, I/O scheduler,
299-300

fs directory, kernel source tree, 13

fs_struct data structure, 287

ftime() library call, 221

functions

account_process_tick(), 219
cli(), 128
clone(), 34-35
coding style, 400
context_switch(), 62
copy_process(), 32
disable_irq(), 129-130
disable_irq_nosync(), 130
do_exit(), 36
do_IRQ(), 123-125
do_mmap(), 318-320
do_munmap(), 320
do_softirq(), 138
enable_irq(), 130
exec(), 31
find_vma prev(), 317
find_vma(), 316-317
find_vma_intersection(), 317
fork(), 31-32, 34
free_irq(), 118
hello_init(), 339
idr_destroy(), 103
inline functions, 18-19, 400
in_interrupt(), 130
in_irq(), 130
irqs_disabled(), 130
kfree() function, 243-244
kmalloc(), 238-244

gfp_mask flags, 238-243
kthread_create(), 36
likely(), 20
list_add(), 91
list_del(), 91
list_for_each(), 93

419functions

 From the Library of Wow! eBook

ptg

list_for_each_entry(), 96
list_move(), 92
list_splice(), 92
local_bh_disable(), 157
local_irq_disable(), 130
local_irq_enable(), 130
local_irq_restore(), 130
local_irq_save(), 130
malloc(), 238
mmap(), 319-320
munmap(), 320
nice(), 66
open(), 5
panic(), 371
printf(), 5, 17, 364-367
printk(), 17, 364-367, 375
raise_softirq(), 141
read(), 326
relationship with time, 207
request_irq(), 118
schedule_timeout(),

227-230
strcpy(), 5
tasklet_disable(), 145
tasklet_disable_nosync(), 145
tasklet_enable(), 146
tasklet_kill(), 146
tick_periodic(), 219
unlikely(), 20
update_curr(), 51-52
vfork(), 33-34
vmalloc(), 244-245
void local_bh_disable(), 158
void local_bh_enable(), 158
wait(), 24
wake_up_process(), 36
write(), 5

G
Gagne, Greg, 407

Galvin, Peter Baer, 407

gcc (GNU Compiler Collection), 18

gdb, 373

generating patches, 404-405

get bh() function, 293

get cpu() function, 202

get sb() function, 285

get_cpu_var() function, 258

get_free_page() function, 236

get_zeroed_page() function, 237

gettimeofday() function, 221

gettimeofday() system call, 221

gfp_mask flags, kmalloc() function, 238-243

gid_t data type, 384

git source management tool, 11-12

binary searching, 376-377
generating patches, 405

global hash, page caches, 330

global variables, jiffies, 212-216

GNU C, 18

branch annotation, 19-20
inline assembly, 19
inline functions, 18-19

GNU debugger, 372-373

GNU General Public License (GPL), 4

Goüdel, Escher, Bach, 409

granularity, locking, 171

H
hackers, 403

HAL (hardware abstraction layer), 357

halves

division of work, 134
interrupt handlers, 115-116

420 functions

 From the Library of Wow! eBook

ptg

handlers, system calls, 73-74

hard real-time scheduling policies, 64

hard sectors. See sectors

hardware, applications, relationship, 6

header files, 17

heads, 290

Hello, World! module, 338-340

hello_init() function, 339

HI_SOFTIRQ tasklet, 140

high memory, 393

high memory mappings, 253-255

hitting, timers, 208

Hofstadter, Douglas, 409

HP-UX (Hewlett Packard), 2

HP-UX 11i Internals, 408

HRTIMER_SOFTIRQ tasklet, 140

Hungarian notation, 400

Hz values, 208-212

jiffies global variable, 216

I
I/O block layer, request queues, 297

I/O blocks, 290

I/O schedulers, 297-298

Anticipatory I/O scheduler, 302-303
CFQ (Complete Fair Queuing) I/O

scheduler, 303
Deadline I/O scheduler, 300-302
front/back merging, 299-300
Linus Elevator, 299-300
merging/sorting functions, 298-299
minimized read latency, 302-303
Noop I/O scheduler, 303-304
request starvation prevention, 300-302
selection options, 304

I/O-bound processes, versus processor-
bound processes, 43-44

idle process, operating systems, 6

idr_destroy() function, 103

IEEE (Institute of Electrical and Electronics
Engineers), 70

ifdef preprocessor directives, coding
style, 402

implementation

interrupt handlers, 123-126
softirqs, 137-140
system calls, 74-78
tasklets, 142-144
timers, 224
work queues, 149-153

implementing system calls, 82-83

in interrupt() function, 130

in-kernel debugger, 372-373

in_interrupt() function, 130

in_irq() function, 130

include directory, kernel source tree, 13

incremental patches, 12

increments, atomic operations, 175-176

indent utility, 403

indention, coding style, 396

indexes, softirqs, 140-141

init completion() function, 198

init directory, kernel source tree, 13

initialization, semaphores, 192

inline functions, 400

GNU C, 18-19
inode, 264

inode object, VFS (Virtual Filesystem), 265,
270-274

inodes, page caches, 331

installation

kernel, 16
modules, 342
source code, 12

421installation

 From the Library of Wow! eBook

ptg

integer atomic operations, 176-179

64-bit atomic operations, 180-181
interfaces

atomic operations, 176
filesystem, 261-262
slab layers, 249-252
wrapping, 402

internal representation, jiffies global
variable, 213-214

internal values, timers, 222

interprocess communication (IPC)
mechanism, 7

interrupt context, 5

kernels, 122
stack space, 122-123

interrupt handlers, 5, 113

bottom halves, 115-116, 133-135
benefits, 134-135
BH interface, 135-136
softirqs, 136-141
task queues, 135
tasklets, 136

controlling interrupts, 127-130
do_IRQ() function, 123-125
flags, 116-117
freeing, 118
free_irq() function, 118
function of, 114-115
implementing, 123-126
interrupt-safe code, 168
limitations, 133
locks, 185-186
reentrancy, 119
registering, 116
request_irq() function, 118
RTC (real-time clock) driver, 120-122
shared, 119-120

speed of, 122
timer, 217-220
top half, 115
top halves, 133
when to use, 135
writing, 118-119

interrupt request (IRQ), 114

interrupt service routine (ISR). See interrupt
handlers

interrupt stacks, 122

interrupt-safe code, 168

interrupts, 5, 113-114, 117, 131

asynchronous, 114
concurrency, 167
context, 115
controlling, 127-130
disable irq nosync() function, 130
disabling, 127-129
enable irq() function, 130
enabling, 127-128
in interrupt() function, 130
in irq() function, 130
irqs disabled() function, 130
local irq disable() function, 130
local irq enable() function, 130
local irq save() function, 130
synchronous, 114
timers, frequencies, 209

ioctl() method, 284

IPC (interprocess communication)
mechanism, 7

ipc directory, kernel source tree, 13

IRIX (SGI), 2

IRQ (interrupt request), 114

irqs_disabled() function, 130

ISR (interrupt service routine), 114

iterating linked lists, 94-95

422 integer atomic operations

 From the Library of Wow! eBook

ptg

J
jiffies, 391

origins of term, 212-213
sequential locks, 200

jiffies global variable, 212-213

HZ values, 216
internal representation, 213-214
wraparounds, 214-216

K
kallsyms, 369-370

Karels, Michael J., 408

kbuild build system, building modules,
340-342

KERN ALERT loglevel, printk() function, 366

KERN CRIT loglevel, printk() function, 366

KERN DEBUG loglevel, printk() function, 366

KERN EMERG loglevel, printk() function, 366

KERN ERR loglevel, printk() function, 366

KERN INFO loglevel, printk() function, 366

KERN NOTICE loglevel, printk() function, 366

KERN WARNING loglevel, printk() function,
366

kernel

applications, relationship, 6
building, 13-16
C library, 17
concurrency, 21
configuring, 14-15
debugging help resources, 377
defined, 4
development kernel, 8-10
downloading, 11
fixed-size stack, 20
floating point instructions, 20
hardware, 5

relationship, 6

implementing, linked lists, 88-90
installing, 16
interrupt context, 5
interrupt handlers, 5
lack of memory protection, 20
modules, 7
monolithic, 7
naming conventions, 9
portability, 21
preemption, concurrency, 167
producer and consumer

pattern, 96
root directories, 12-13
rules, 16-21
small, fixed-size, 21
source tree, 12-13
stable kernel, 8-9, 11
structure, 88
synchronization, 21
system calls, 71
vendor kernels, 14

kernel directory, kernel source
tree, 13

Kernel Event Layer

D-BUS, 361
kobjects, 361-362
netlink, 361
parameters, 362
payloads, 361
verb strings, 361

kernel locked() function, 199

kernel maintainer, 403

kernel messages

klogd daemon, 367
log buffer, 366-367
oops, 367-370
syslogd daemon, 367

423kernel messages

 From the Library of Wow! eBook

ptg

Kernel Newbies website, 395

kernel objects, 337

kernel preemption, 7, 393

per-CPU data, 256
process scheduler, 63-64

kernel random number
generator, 338

kernel threads, 35-36

memory descriptor, 309
pdflush task, 35

kernel timers. See timers

Kernel Traffic website, 395

kernel-space, 29

Kernel.org, 409

Kernighan, Brian, 399, 409

kfifo queues, 97-100

creating, 97-98
dequeuing data, 98
destroying, 99
enqueuing data, 98
obtaining size of, 98
resetting, 99

kfree() function, 243-244

kgdb, 373

klogd daemon, kernel
messages, 367

kmalloc() function, 238-244, 259

gfp_mask flags, 238-243
Knuth, Donald, 409

kobjects

device model, 349-350
managing, 352-353

file attributes, 358-359
conventions, 360-361
creating, 359-360
destroying, 360

sysfs filesystem, 355
adding and removing from,

357-358
adding files, 358-361
dentries, 355
Kernel Event Layer, 361-362
root directories, 357

kobject_create() function, 353

Kogan, Michael, 408

kqdb debugger, 373

kref structure, device model reference
counts, 354-355

kref_put() function, 354

Kroah-Hartman, Greg, 408

ksets, device model, 351

ksoftirqd task, 35

ksoftirqd threads, tasklets, 146-147

kthreadd kernel process, 36

kthread_create() function, 36

ktypes, device model, 350-351

kupdated kernel thread, 333-334

kysmoops, 369

L
laptop mode, page writeback, 333

last-in/first-out (LIFO) ordering, 94

least recently used (LRU), cache eviction,
325

lib directory, kernel source tree, 13

libc functions, 17

lifecycle, processes, 24

lightweight processes, threads, 34

likely() function, 20

limitations, interrupt handlers, 133

line length, coding style, 399-400

linked lists, 85

circular linked lists, 86-87

424 Kernel Newbies website

 From the Library of Wow! eBook

ptg

declaring, 88
defining, 89-90
doubly linked lists, 85-86
iterating through backward, 94
iterating while removing, 95
kernel implementation, 88-90
manipulating, 90-92
memory, 313
navigating through, 87-88
nodes

adding to, 90-91
deleting from, 91-92
moving, 92
splicing, 92

singly linked lists, 85-86
traversing, 93-96

Linus Elevator, I/O schedulers, 299-300

Linux, 1

development history, 3
dynamic loading, 8
filesystems, support, 288
kernel development community, 10
object-oriented device model, 8
open source status, 4
portability, 380-381
preemptive nature, 8
scalability, 171
symmetrical multiprocessor (SMP), 8
thread implementation, 33-36
thread support, 8
Unix, 3
versus Unix kernel, 6, 8

Linux Device Drivers, 408

Linux kernel community, 395

Linux Kernel Mailing List (lkml), 10, 395

Linux System Programming, 409

Linux Weekly News, 395, 409

list for each() function, 93

list move() function, 92

list splice() function, 92

lists, VMAs (virtual memory areas), 313-314

list_add() function, 91

list_del() function, 91

list_for_each_entry() function, 96

little-endian byte ordering, 389-391

lkml (Linux Kernel Mailing List), 10, 395

loading

modules, 343-344
managing configuration options,

344-346
local bh disable() function, 157

local bh enable() function, 157-158

local_irq_disable() function, 130

local_irq_enable() function, 130

local_irq_restore() function, 130

local_irq_save() function, 130

lock contention, 171

lock kernel() function, 199

locking

coarse locking, 172
granularity, 171
need of protection, 168-169
race conditions, 165-166

locking between bottom halves, 157

locks, 165

acquiring, 193
advisory, 166
BKL (Big Kernel Lock), 198-199
busying wait, 166
contention, 171
deadlocks, threads, 169-171
debugging, 186
functions, 193
mutexes, 195-197

425locks

 From the Library of Wow! eBook

ptg

non-recursive nature, 185
releasing, 193
semaphores, 190-191

binary semaphores, 191-192
counting semaphores, 191-192
creating, 192-193
implementing, 193-194
initializing, 192
reader-writer semaphores, 194-195

sequential locks, 200-201
spin locks, 183-187

bottom halves, 187-188
debugging, 186
methods, 184-187
reader-writer spin locks, 188-190

use in interrupt handlers, 185-186
versus code, 186
voluntary, 166

log buffers, kernel messages, 366-367

loglevels, printk() function, 365-366

looking up UIDs (unique identification
numbers), 102-103

Love, Robert, 409

LRU (least recently used), cache eviction,
325

M
Mac OS X Internals: A Systems

Approach, 408

Magic SysRq key commands,
371-372

maintainers, 403

malloc() function, 238, 306

map type flags, 319

mapping, 100

anonymous mapping, 318
file-backed mapping, 318

VMAs (virtual memory areas), 312
mappings (high memory), 253

permanent mappings, 254
temporary mappings, 254-255

maps, UIDs (unique identification
numbers), 100

allocating, 101-102
looking up, 102
removing, 103

Mauro, Jim, 408

mb() function, 204-205

McCreight, Edward M., 327

McDougall, Richard, 408

McKusick, Marshall Kirk, 408

mdelay() function, 227

memory

allocation, 231, 260
choosing method, 259
high memory mappings,

253-255
kfree() function, 243-244
kmalloc() function, 238-244
pages, 231-232, 235-237
per-CPU allocations, 255-258
slab layers, 245-252
statically allocating on stack,

252-253
vmalloc() function, 244-245
zones, 233-235

high memory, 393
linked list, 313
memory areas, 305-306
memory descriptor, 306
mmap field, 313
MMUs (memory management

units), 231
objects, pinned, 353

426 locks

 From the Library of Wow! eBook

ptg

pages, 231-233
freeing, 237
obtaining, 235-244
zeroed pages, 236-237
zones, 233-235

process address space, 305
red-black tree, 313
VMAs (virtual memory areas),

309-310, 314-315
flags, 311-312
lists, 313-314
locating, 316-317
operations, 312-313
private mapping, 312
shared mapping, 312
trees, 313-314

memory areas, 314-315. See also VMAs
(virtual memory areas)

lists, 313-314
manipulating, 315-318
trees, 313-314

memory descriptor, 306

allocating, 308
destroying, 309
fields, 307-308
kernel threads, 309
mm struct, 309

memory maps, 306

memory-management unit (MMU), 6

memory protection, kernel, lack of, 20

memory reads/writes, 203-206

memset() function, 353

merging functions, I/O scheduler, 298-299

message passing, 7

metadata files, 264

methods

context_switch(), 380

ioctl(), 284
readpage(), 328
spin locks, 184-187
switch_mm(), 380
switch_to(), 380
synchronization methods, 175

64-bit atomic operations, 180-181
atomic operations, 175-179
barriers, 203-206
bitwise atomic operations, 181-183
BKL (Big Kernel Lock), 198-199
completion variables, 197-198
mutexes, 195-197
nonatomic bit operations, 183
ordering, 203-206
preemption disabling, 201-202
semaphores, 190-195
sequential locks, 200-201
spin locks, 183-190

writepage(), 328
microkernel designs, monolithic designs,

compared, 7

microkernels, message passing, 7

migration threads, 66

miscellaneous devices, 338

mm directory, kernel source tree, 13

mm struct, memory descriptor, 309

mmap() function, 306, 319

MMUs (memory management units), 6, 231

mod timer() function, 223

Modern Operating Systems, 407

modprobe command, 343

modules, 14, 337-338

building, 340-342
configuration options, managing,

344-346
dependencies, generating, 342

427modules

 From the Library of Wow! eBook

ptg

exported symbols, 348
Hello,World!, 338-340
installing, 342
kernel, 7
living externally of kernel source

tree, 342
loading, 343-344
parameters, 346-347
removing, 343
source trees, 340-342

MODULE_AUTHOR() macro, 340

MODULE_DESCRIPTION() macro, 340

module_exit() function, 339

module_init() macro, 339

MODULE_LICENSE() macro, 340

monolithic kernel, microkernel designs,
compared, 7

Moore, Chris, 408

Morton, Andrew, 9

mount flags, 286

mount points, 263

multiplexing system calls, 74

multiprocessing, symmetrical
multiprocessing, 161

concurrency, 167
multitasking, 41-42

munmap() function, 320

mutexes, 191, 195-197

N
name pointer, device model, 349

namespace data structure, 287-288

namespaces, 263

naming conventions

coding style, 400
kernel, 9

net directory, kernel source tree, 13

NET_RX_SOFTIRQ tasklet, 140

NET_TX_SOFTIRQ tasklet, 140

netlink, Kernel Event Layer, 361

network devices, 338

Neville-Neil, George V., 408

nice values, processes, 44

nice() function, 66

nodes, 85

linked lists
adding to, 90-91
deleting from, 91-92
moving, 92
splicing, 92

nonatomic bit operations, 183

Noop I/O scheduler, 303-304

notation, Hungarian notation, 400

numbers, system calls, 72

O
O(1) scheduler, 42-43

object-oriented device model, Linux, 8

objects

pinned, 353
VFS (Virtual Filesystem), 265-266

dentry, 265, 275-279
directory, 265
file, 265, 279-284
inode, 265, 270-274
operations, 265
superblock, 265-269

occurrence limiting, debugging, 375-376

oops, kernel messages, 367-370

opaque data types, 384

operations, VMAs (virtual memory areas),
312-313

open softirq() function, 141

open() function, 5

428 modules

 From the Library of Wow! eBook

ptg

open() system call, 261

Operating System Concepts, 407

operating systems, 4

general activities, 5
idle process, 6
kernel-space, 5
multitasking, 41
portability, 379-380
scalability, 171
supervisor, 4
system calls, 5
tickless operations, 212

Operating Systems, 407

Operating Systems: Design and
Implementation, 407

operations object, VFS (Virtual
Filesystem), 265

order preservation, 100

ordering

atomicity, compared, 179
barrier operations, 179
memory reads/writes, 203-206

OS News. com, 409

P
PAE (Physical Address Extension), 253

page caches, 323-326

address_space object, 326-328
address_space operations, 328-330
buffer caches, 330-331
filesystem files, 326
flusher threads, 331-335
global hash, 330
radix tree, 330
readpage() method, 328
writepage() method, 328

page_count() function, 232

page global directory (PGD), 321

page middle directory (PMD), 321

page protection flags, 319

page size, architectures, 391-392

page tables, 320-322

future management possibilities, 322
levels, 320-321

page writeback, 323

bdflush kernel thread, 333-334
dirty page writeback, 331
kupdated kernel thread, 333-334
laptop mode, 333
pdflush kernel thread, 333-334
settings, 332

pageable kernel memory, 8

pages (memory), 231-233

freeing, 237
obtaining, 235-236

kfree() function, 243-244
kmalloc() function, 238-244
vmalloc() function, 244-245
zeroed pages, 236-237

word size, 381
zones, 233-235

panic() function, 371

parallelism, threads, 33

parameter passing, system calls, 74

parameters

Kernel Event Layer, 362
modules, 346-347
system calls, verifying, 75-78

parent pointer, device model, 350

parentless tasks, 38-40

patches

generating, 404-405
incremental, 12
submitting, 406

429patches

 From the Library of Wow! eBook

ptg

payloads, Kernel Event Layer, 361

pdflush kernel thread, 333-334

pdflush task, 35

per-CPU allocations, 255-256

percpu interface, 256-258
per-CPU data

benefits, 258-259
thrashing the cache, 258

percpu interface, 256-258

at compile-time, 256-257
at runtime, 257-258

performance, system calls, 72

permanent high memory mappings, 254

PGD (page global directory), 321

PID (process identification), 26

pid_t data type, 384

pinned objects, 353

PIT (programmable interrupt timer), 217

PMD (page middle directory), 321

Pointers, dereferences, 92

policy (scheduler), 43-46

I/O-bound processes, 43-44
priority-based scheduling, 44
processor-bound processes, 43-44
timeslices, 45

poll() system call, 211

polling, 113

popping, timers, 208

portability, 21, 379

byte ordering, 389-391
data alignment, 386-389
data types, 384
high memory, 393
implications of, 393
kernel preemption, 393
Linux, 380-381
operating systems, 379-380

page size architecture, 391
processor ordering, 392
scheduler, 380
SMP (symmetrical multiprocessing), 393
time, 391
word size, 381-384

POSIX, system calls, 70

preempt count() function, 202

preempt disable() function, 202

preempt enable no resched() function, 202

preempt enable() function, 202

preemption

kernel, concurrency, 167
process scheduler, 62

kernel preemption, 63-64
user preemption, 62-63

preemption disabling, 201-202

preemptive multitasking, process
scheduler, 41

printf() function, 5, 17, 364

loglevels, 365-366
transposing, 367

printing, debugging, 364-367

printk() function, 17, 375

debugging, 364-366
loglevels, 365-366
nonrobustness of, 365
robustness of, 365
transposing, 367

priority-based scheduling, 44

private mapping, VMAs (virtual memory
areas), 312

/proc/interrupts file, 126-127

process address space

address intervals
creating, 318-319
removing, 320

430 payloads, Kernel Event Layer

 From the Library of Wow! eBook

ptg

flat versus segmented, 305
memory areas, manipulating, 315-318
memory descriptors, 306-308

allocating, 308
destroying, 309
kernel threads, 309
mm struct, 309

overview, 305
page tables, 320-322
VMAs (virtual memory areas),

309-310, 314-315
flags, 311-312
lists, 313-314
operations, 312-313
trees, 313-314

process descriptors

allocating, 25-26
states, 27-29
storing, 26-27
task list, 24
TASK_INTERRUPTIBLE

process, 27
TASK_RUNNING process, 27
TASK_STOPPED process, 28
TASK_UNINTERRUPTIBLE

process, 28
process descriptors (task list), 24-25

process scheduler, 41

algorithm, 46-50
classes, 46-47
Completely Fair Scheduler

scheduler, 43
context switching, 62
cooperative multitasking, 41-42
entity structure, 50
entry point, 57-58
evolution, 42-43
fair scheduling, 48-50

implementing, 50-59, 61
O(1) scheduler, 42-43
policy, 43-46

I/O-bound processes, 43-44
priority-based scheduling, 44
processor-bound processes, 43-44
timeslices, 45

preemption, 62-64
preemptive multitasking, 41
process selection, 52-57
real-time scheduling policies, 64-65
Rotating Staircase Deadline

scheduler, 43
system calls, 65-67
time accounting, 50-52
timeslices, 42
Unix systems, 47-48
virtual runtime, 51-52
yielding, 42

process states, 27-29

processes

adding to trees, 54-55
address space, 23
context, 29
creating, 31
data structures, 286-288
defined, 23
I/O-bound processes, 43-44
lifecycle of, 24
nice values, 44
real-time, 44
real-time processes, 44
removing from trees, 56-57
resources, 23-24
runnable processes, 41
scalability, 171
task list, 24

431processes

 From the Library of Wow! eBook

ptg

tasks, 24
terminating, 24, 36-40
threads, 305
timeslice count, 211
virtual memory, 23
virtual processor, 23

processor affinity system calls, 66

processor ordering, 392

processor time, yielding, 66

processor-bound processors versus
I/O-bound processes, 43-44

procfs virtual filesystem, 126-127

producer and consumer programming
pattern, kernel, 96

programs, processes, 24

pseudo-concurrency processes, 167

put bh() function, 293

put_cpu_var() function, 258

Q
quantum slice. See timeslices

Quarterman, John S., 408

queues, 96-97

creating, 97-98
dequeuing data, 98
destroying, 99
enqueuing data, 98
kfifo, 97-100
obtaining size of, 98
resetting, 99

R
race conditions

ATM processing example, 163
locking, 165-166
multiple threads of execution, 162
timers, 224

radix trees, page caches, 330

Rago, Stephen, 409

raise softirq irqoff() function, 141

raise softirq() function, 141

rate limiting, debugging, 375-376

rbtrees, 106-108

RCU_SOFTIRQ tasklet, 140

read barrier depends() function, 204-205

read lock irq() function, 189

read lock irqsave() function, 189

read lock() function, 189

read seqbegin() function, 220

read seqretry() function, 220

read unlock irq() function, 189

read unlock irqrestore() function, 189

read unlock() function, 189

read() function, 326

read() system call, 261

reader-writer semaphores, 194-195

reader-writer spin locks, 188-190

readpage() method, 328

read_barrier_depends() function, 205

real-time clock (RTC) driver, 120-122, 217

real-time priority, 44

real-time scheduling policies, 64-65

red-black binary trees, 105-106

red-black trees, memory, 313

reentrancy, interrupt handlers, 119

reference counts, device model, 353-355

registration, interrupt handlers, 116

relative time, 207

reparenting child tasks, 38

REPORTING-BUGS file, 404

request queues, I/O block layer, 297

request_irq() function, 118

Ritchie, Dennis, 1-3, 399, 409

rmb() function, 204-205

432 processes

 From the Library of Wow! eBook

ptg

root directories, sysfs file system, 357

Rotating Staircase Deadline scheduler, 43

routines, coding style, 402

RTC (real-time clock) driver, 120-122, 217

Rubini, Alessandro, 408

rules, kernel, 16-21

run local timers() function, 219

run_local_timers() function, 224

run_timer_softirq() function, 224

runnable processes, 41

Russinovich, Mark, 408

rw lock init() function, 190

S
samples directory, kernel source code, 13

scalability, 171

algorithms, 109
sched_getaffinity() system call, 66

sched_getparam() system call, 66

sched_getscheduler() system call, 66

sched_get_priority_max() system call, 66

sched_get_priority_min() system call, 66

sched_setaffinity() system call, 66

sched_setparam() system call, 66

sched_setscheduler() system call, 66

SCHED_SOFTIRQ tasklet, 140

sched_yield() system call, 66-67

schedule delayed work() function, 154-155

scheduler, 41

algorithm, 46-50
classes, 46-47
Completely Fair Scheduler

scheduler, 43
context switching, 62
cooperative multitasking, 41-42
entity structure, 50
entry point, 57-58

evolution, 42-43
fair scheduling, 48-50
implementing, 50-61
O(1) scheduler, 42-43
policy, 43-46

I/O-bound processes, 43-44
priority-based scheduling, 44
processor-bound processes, 43-44
timeslices, 45

preemption, 62
kernel preemption, 63-64
user preemption, 62-63

preemptive multitasking, 41
process selection, 52-57
real-time scheduling policies, 64-65
Rotating Staircase Deadline

scheduler, 43
system calls, 65-67
time accounting, 50-52
timeslices, 42
Unix systems, 47-48
virtual runtime, 51-52
yielding, 42

schedule_timeout() function, 227-230

scheduler_tick() function, 218-219

scheduling

tasklets, 143-146
work queues, 153-154

Schimmel, Curt, 408

scripts directory, kernel source tree, 13

sd pointer, device model, 350

sectors, block devices, 290-291

security directory, kernel source
tree, 13

segmented address spaces, 305

segments, block I/O layer, 294-295

select() system call, 211

433select() system call

 From the Library of Wow! eBook

ptg

self-balanced binary search trees, 105

rbtrees, 106-108
red-black trees, 105-106

self-generating documentation, 401

sema init() function, 193

semaphores, 190-191

binary semaphores, 191-192
counting semaphores, 191-192
creating, 192-193
implementing, 193-194
initializing, 192
mutexes, compared, 197
reader-writer semaphores, 194-195
upping, 192

seqlocks, 220

Sequent DYNIX/ptx, 2

sequential locks, 200-201

settimeofday() system call, 221

settings, page writeback, 332

shared interrupt handlers, 119-120

shared mapping, VMAs (virtual memory
areas), 312

SIAM Journal of Computing, 327

side effects, system calls, 71

Silberschatz, Abraham, 407

Singh, Amit, 408

single-page kernel stacks, statically
allocating memory, 252-253

singly linked lists, 85-86

slab allocator, 25

“Slab Allocator: An Object-Caching Kernel
Memory Allocator,” 246

slab layers

design of, 246
inode data structure example, 247-249
interface, 249-252
memory allocation, 245-252
tenets of, 246

sleep, wait queues, 229

sleeping concurrency, 167

sleeping locks, 192

behaviors, 191
mutexes, 195-197

versus semaphores, 197
versus spin locks, 197

semaphores, 190-191
binary semaphores, 191-192
counting semaphores, 191-192
creating, 192-193
implementing, 193-194
initializing, 192
reader-writer semaphores, 194-195

versus spin locks, 191
SMP (symmetrical multiprocessing), 8

portability, 393
smp mb() function, 205-206

smp read barrier depends() function, 205

smp rmb() function, 205-206

smp wmb() function, 205-206

smp_read_barrier_depends() function, 206

soft real-time scheduling policies, 64

softirqs

assigning indexes, 140-141
bottom half mechanism, 137-138
bottom half mechanism, executing, 140
bottom half mechanism, index

assignments, 140
bottom halves, 136-141, 188
concurrency, 167
executing, 138-140
handler, 138
handlers, registering, 141
implementing, 137-140
ksoftirqd threads, 146-147
raising, 141
types, 140

Solaris (Sun), 2

434 self-balanced binary search trees

 From the Library of Wow! eBook

ptg

Solaris Internals: Solaris and OpenSolaris
Kernel Architecture, 408

Solomon, David, 408

sorting functions, I/O scheduler, 298-299

sound directory, kernel source tree, 13

source code, 11-12

source trees, 12-13

modules, 340-342
spacing coding style, 397-398

special data types, 384-385

spin is locked() method, 187

spin lock init() method, 186

spin lock irq() function, 186

spin lock irqsave() method, 187

spin locks, 183-186

bottom halves, 187-188
debugging, 186
methods, 184-187
mutexes, compared, 197
reader-writer spin locks, 188-190

spin try lock() method, 186

spin unlock() method, 187

spin_is_locked() method, 187

spin_lock() method, 187

spin_lock_init() method, 187

spin_lock_irq() method, 186

spin_lock_irqsave() method, 185

spin_trylock() method, 187

spin_unlock_irq() method, 187

spin_unlock_irqrestore() method, 185-187

spins, 184

stable kernel, 8-10

maintenance, 403
stacks

interrupt context, 122-123
interrupt stacks, 122
statically allocating memory on,

252-253

statements, switch statements, coding style,
396-397

statically allocating memory on stack,
252-253

statistics, debugging, 374

Stevens, W. Richard, 409

storing process descriptors, 26-27

structure padding, data alignment, 387-389

strcpy() function, 5

STREAMS, 8

structure initializers, coding style, 402-403

submitting

bug reports, 403-404
patches, 406

subscribing to Linux Kernel Mailing List
(LKML), 395

superblock data structure, 264

superblock object, VFS (Virtual Filesystem),
265-269

Swift, Jonathan, 390

switch statements, coding style, 396-397

switch_mm() method, 380

switch_to() method, 380

symmetrical multiprocessing

concurrency, 167
introduction of, 161-162

symmetrical multiprocessor (SMP), 8

synchronization, 162-168, 172

kernel, 21
reasons, 162-163

synchronization methods, 175

atomic operations, 175
64-bit operations, 180-181
bitwise operations, 181-183
converting, 177
counter implementation, 177
defining, 177
increments, 175-176

435synchronization methods

 From the Library of Wow! eBook

ptg

integer operations, 176-179
interfaces, 176
nonatomic bit operations, 183
overhead advantages, 179
testing, 177

barriers, 203-206
BKL (Big Kernel Lock), 198-199
completion variables, 197-198
mutexes, 195-197
ordering, 203-206
preemption disabling, 201-202
semaphores, 190-191

binary semaphores, 191-192
counting semaphores, 191-192
creating, 192-193
implementing, 193-194
initializing, 192
reader-writer semaphores, 194-195

sequential locks, 200-201
spin locks, 183-186

bottom halves, 187-188
reader-writer spin locks, 188-190

synchronous interrupts, 114

syscalls. See system calls

sysfs, 337

sysfs filesystem, 355

adding and removing kobjects,
357-358

adding files, 358-361
dentries, 355
Kernel Event Layer, 361-362
root directories, 357

syslogd daemon, kernel messages, 367

SysRq commands, 371

system call() function, 73

system calls, 5, 69

accessing, 71

accessing from user-space, 81-82
alternatives, 82-83
API (Application Programming

Interface), 70
arguments, 71
behaviors, 71-72
binding, 79-81
C library, 70-71
clone(), 32
context, 78-81
denoting correct calls, 73
handlers, 73-74
implementation, 74-78
kernel, 71
multiplexing, 74
numbers, 72
parameter passing, 74
performance, 72
POSIX, 70
process scheduler, 65-67
processor affinity, 66
processor time, yielding, 66
pros and cons, 82
purpose of, 69
return values, 71
scheduler, 65-66
sched_getaffinity(), 66
sched_getscheduler(), 66
sched_get_priority_max(), 66
sched_setaffinity(), 66
sched_setparam(), 66
sched_setscheduler(), 66
sched_yield(), 67
side effects, 71
verifying, 75-78

system timers, 207-208, 217

system uptime, 207-208

436 synchronization methods

 From the Library of Wow! eBook

ptg

T
Tanenbaum, Andrew, 407

tarball

installing, 12
source code, 11

task lists, 24-25

task queues, bottom halves, 135

TASK_INTERRUPTIBLE process, 27

TASK_RUNNING process, 27

TASK_STOPPED process, 28

task_struct, 24

TASK_TRACED process, 28

TASK_UNINTERRUPTIBLE process, 28

tasklet action() function, 143

tasklet disable() function, 145

tasklet disable nosync() function, 145

tasklet enable() function, 146

tasklet handlers, writing, 145

tasklet hi action() function, 143

tasklet hi schedule() function, 143

tasklet kill() function, 146

tasklet schedule() function, 143

tasklets, 137

BH interface, 148
bottom half mechanism, 142-143
bottom halves, 136
concurrency, 167
declaring, 144-145
implementing, 142-144
ksoftirqd threads, 146-147
scheduling, 143-146
softirq types, 140
structure, 142

TASKLET_SOFTIRQ tasklet, 140

tasks, 24

ksoftirqd, 35
parentless tasks, 38-40

pdflush, 35
sleeping, 58-61
waking up, 61

temporal locality, 323

temporary high memory mappings,
254-255

terminating processes, 36-40

testing atomic operations, 177

text section (processes), 23

Thompson, Ken, 1, 3

thrashing the cache per-CPU data, 258

thread support, Linux, 8

thread_info structure, 26

threads, 23, 34, 305

avoiding congestion, 334-335
bdflush, 333-334
concurrent programming, 33
contended, 184
creating, 34
deadlocks, 169-171
flusher threads, 331-335
kernel, 35-36
ksoftirqd, 146-147
kupdated, 333-334
lightweight processes, 34
Linux implementation, 33-36
migration threads, 66
parellelism, 33
pdflush, 333-334
worker threads, 149

threads of execution, 23

critical regions, 162
defined, 161
race conditions, 162

tick rate, Hz (hertz), 208-212

tick_periodic() function, 217, 219-220

tickless operating system, 212

437tickless operating system

 From the Library of Wow! eBook

ptg

time

absolute time, 207
current date and time, 220-221
HZ, 391
importance of, 207
kernel’s concept of, 208
releative time, 207

time accounting, process scheduler, 50-52

time complexity, algorithms, 110-111

time stamp counter (TSC), 217

time() system call, 221

timeouts, wait queues, sleeping on, 229

timer interrupt, 207-208

timer interrupt handler, 217-220

TIMER_SOFTIRQ tasklet, 140

timers

busy looping, 225-226
delaying execution, 225-230
deleting, 223
dynamic timers, 207, 222
hitting, 208
implementation, 224-230
internal values, 222
interrupt handler, 217-220
interrupts, frequencies, 209
kernel, 136
modifying, 223
popping, 208
popularity of, 222
purpose of, 222
race conditions, 224
small delays, 226-227
system timer, 217
using, 222-223

timeslice count, processes, 211

timeslices

process scheduler, 42
process scheduler policy, 45

timespec data structure, 220

tools directory, kernel source code, 13

top halves, interrupt handlers, 115, 133

Torvalds, Linus, 3

transposition, printk() function, 367

traversing linked lists, 93-96

trees

adding processes to, 54-55
removing processes from, 56-57
VMAs (virtual memory areas), 313-314

tristates, 14

Tru64 (Digital), 2

true concurrency, 167

try to wake up() function, 61

two-list strategy, cache eviction, 325-326

type flags, 241-242

typedefs, coding style, 401

U
udelay() function, 227

UIDs (unique identification numbers), 100

allocating, 101-102
looking up, 102
removing, 103

uid_t data type, 384

Understanding Linux Network Internals, 408

University of California at Berkeley, BSD
(Berkeley Software Distributions), 2

Unix, 1

characteristics, 2-3
creators, 1
development history, 1-2
evolution, 3
filesystems, 263-264
Linux, compared, 6-8
popularity of, 1

Unix Internals: The New Frontiers, 408

Unix systems, scheduling, 47-48

438 time

 From the Library of Wow! eBook

ptg

UNIX Systems for Modern Architectures:
Symmetric Multiprocessing and Caching, 408

unlikely() function, 20

unlock kernel() function, 199

up() function, 193-194

update_curr() functions, 51-52

update_process_times() function, 218, 224

update_wall_time() function, 218

upping semaphores, 192

user preemption, process scheduler, 62-63

user spaces, jiffies global variable, 216

user-space, 5

accessing system calls, 81-82
usr directory, kernel source tree, 13

utilities, diffstat, 405

V
Vahalia, Uresh, 408

van der Linden, Peter, 409

variables

completion variables, 197-198
condition variables, debugging, 374
global variables, jiffies, 212-216
xtime, 220

vendor kernels, 14

verb string, Kernel Event Layer, 361

vfork() function, 33-34

VFS (Virtual Filesystem), 261

data structures, 265-266, 285-286
processes, 286-288

file system type structure, 266
interface, 261-262
Linux filesystems, 288
objects, 265-266

dentry, 265, 275-279
directory, 265
file, 265, 279-284

inode, 265, 270-274
operations, 265
superblock, 265-269

vfsmount structure, 285-286

virt directory, kernel source code, 13

virtual device drivers, 338

Virtual Filesystem (VFS)

dentry object, 275, 278
file object, 282
inode object, 270-272
superblock object, 267
vfsmount structure, 266

Virtual Filesystem (VFS). See VFS (Virtual
Filesystem)

virtual memory, VMAs (virtual memory
areas), 309-310, 314-315

flags, 311-312
lists, 313-314
operations, 312-313
private mapping, 312
shared mapping, 312
trees, 313-314

virtual runtime, processes, 51-52

virtual-to-physical address lookup, 321

vmalloc() function, 244-245, 259

VMAs (virtual memory areas), 309-310,
314-315

flags, 311-312
lists, 313-314
locating, 316-317
operations, 312-313
private mapping, 312
shared mapping, 312
trees, 313-314

void local bh disable() function, 158

void local bh enable() function, 158

voluntary locks, 166

439voluntary locks

 From the Library of Wow! eBook

ptg

VSF

abstraction layer, 262-263
UNIX filesystems, 263-264

W-X-Y
wait for completion() function, 198

wait queues, 58-59

sleeping on, 229
wait() function, 24

wake up() function, 61

wake_up_process() function, 36

websites, Linux Kernel Mailing List
(LKML), 395

Windows Internals: Covering Windows Server
2008 and Windows Vista, 408

wmb() function, 204-205

word size, 381-384

characters, 381
doublewords, 382
pages, 381
usage rules, 383

work queue handler, 153

work queues, 137, 151

bottom half mechanism, 149, 153
old task queues, 155-156
queue creation, 154-155
relationships among data structures,

152-153
run_workqueue() function,

151-152
thread data structure, 149
thread data structures, 150-151
work creation, 153
work flushing, 154
work scheduling, 153

creating, 154-155
implementing, 149-153
scheduling, 153-154

worker thread() function, 151

worker threads, 149

wraparounds, jiffies global variables,
214-216

wrapping interfaces, 402

write caching, 324

write lock irq() function, 189

write lock irqsave() function, 189

write lock() function, 189

write trylock() function, 190

write unlock irq() function, 189

write unlock irqrestore() function, 190

write unlock() function, 189

write() function, 5

write() system call, 261

write-through caches, 324

writepage() method, 328

writes starving reads, 300

writing

interrupt handler, 118-119
tasklet handlers, 145

xtime variable, 220-221

yield() system call, 67

yielding

process scheduler, 42
processor time, 66

Z
zeroed pages, obtaining, 236-237

zone modifiers, gfp_mask flags, 240

zones, 234

pages, 233-235
ZONE_DMA, 233-235
ZONE_DMA32, 233
ZONE_HIGHMEM, 233
ZONE_NORMAL, 233

440 VSF

 From the Library of Wow! eBook

	Table of Contents
	1 Introduction to the Linux Kernel
	History of Unix
	Along Came Linus: Introduction to Linux
	Overview of Operating Systems and Kernels
	Linux Versus Classic Unix Kernels
	Linux Kernel Versions
	The Linux Kernel Development Community
	Before We Begin

	2 Getting Started with the Kernel
	Obtaining the Kernel Source
	Using Git
	Installing the Kernel Source
	Using Patches

	The Kernel Source Tree
	Building the Kernel
	Configuring the Kernel
	Minimizing Build Noise
	Spawning Multiple Build Jobs
	Installing the New Kernel

	A Beast of a Different Nature
	No libc or Standard Headers
	GNU C
	No Memory Protection
	No (Easy) Use of Floating Point
	Small, Fixed-Size Stack
	Synchronization and Concurrency
	Importance of Portability

	Conclusion

	3 Process Management
	The Process
	Process Descriptor and the Task Structure
	Allocating the Process Descriptor
	Storing the Process Descriptor
	Process State
	Manipulating the Current Process State
	Process Context
	The Process Family Tree

	Process Creation
	Copy-on-Write
	Forking
	vfork()

	The Linux Implementation of Threads
	Creating Threads
	Kernel Threads

	Process Termination
	Removing the Process Descriptor
	The Dilemma of the Parentless Task

	Conclusion

	4 Process Scheduling
	Multitasking
	Linux’s Process Scheduler
	Policy
	I/O-Bound Versus Processor-Bound Processes
	Process Priority
	Timeslice
	The Scheduling Policy in Action

	The Linux Scheduling Algorithm
	Scheduler Classes
	Process Scheduling in Unix Systems
	Fair Scheduling

	The Linux Scheduling Implementation
	Time Accounting
	Process Selection
	The Scheduler Entry Point
	Sleeping and Waking Up

	Preemption and Context Switching
	User Preemption
	Kernel Preemption

	Real-Time Scheduling Policies
	Scheduler-Related System Calls
	Scheduling Policy and Priority-Related System Calls
	Processor Affinity System Calls
	Yielding Processor Time

	Conclusion

	5 System Calls
	Communicating with the Kernel
	APIs, POSIX, and the C Library
	Syscalls
	System Call Numbers
	System Call Performance

	System Call Handler
	Denoting the Correct System Call
	Parameter Passing

	System Call Implementation
	Implementing System Calls
	Verifying the Parameters

	System Call Context
	Final Steps in Binding a System Call
	Accessing the System Call from User-Space
	Why Not to Implement a System Call

	Conclusion

	6 Kernel Data Structures
	Linked Lists
	Singly and Doubly Linked Lists
	Circular Linked Lists
	Moving Through a Linked List
	The Linux Kernel’s Implementation
	Manipulating Linked Lists
	Traversing Linked Lists

	Queues
	kfifo
	Creating a Queue
	Enqueuing Data
	Dequeuing Data
	Obtaining the Size of a Queue
	Resetting and Destroying the Queue
	Example Queue Usage

	Maps
	Initializing an idr
	Allocating a New UID
	Looking Up a UID
	Removing a UID
	Destroying an idr

	Binary Trees
	Binary Search Trees
	Self-Balancing Binary Search Trees

	What Data Structure to Use, When
	Algorithmic Complexity
	Algorithms
	Big-O Notation
	Big Theta Notation
	Time Complexity

	Conclusion

	7 Interrupts and Interrupt Handlers
	Interrupts
	Interrupt Handlers
	Top Halves Versus Bottom Halves
	Registering an Interrupt Handler
	Interrupt Handler Flags
	An Interrupt Example
	Freeing an Interrupt Handler

	Writing an Interrupt Handler
	Shared Handlers
	A Real-Life Interrupt Handler

	Interrupt Context
	Implementing Interrupt Handlers
	/proc/interrupts

	Interrupt Control
	Disabling and Enabling Interrupts
	Disabling a Specific Interrupt Line
	Status of the Interrupt System

	Conclusion

	8 Bottom Halves and Deferring Work
	Bottom Halves
	Why Bottom Halves?
	A World of Bottom Halves

	Softirqs
	Implementing Softirqs
	Using Softirqs

	Tasklets
	Implementing Tasklets
	Using Tasklets
	ksoftirqd
	The Old BH Mechanism

	Work Queues
	Implementing Work Queues
	Using Work Queues
	The Old Task Queue Mechanism

	Which Bottom Half Should I Use?
	Locking Between the Bottom Halves
	Disabling Bottom Halves
	Conclusion

	9 An Introduction to Kernel Synchronization
	Critical Regions and Race Conditions
	Why Do We Need Protection?
	The Single Variable

	Locking
	Causes of Concurrency
	Knowing What to Protect

	Deadlocks
	Contention and Scalability
	Conclusion

	10 Kernel Synchronization Methods
	Atomic Operations
	Atomic Integer Operations
	64-Bit Atomic Operations
	Atomic Bitwise Operations

	Spin Locks
	Spin Lock Methods
	Other Spin Lock Methods
	Spin Locks and Bottom Halves

	Reader-Writer Spin Locks
	Semaphores
	Counting and Binary Semaphores
	Creating and Initializing Semaphores
	Using Semaphores

	Reader-Writer Semaphores
	Mutexes
	Semaphores Versus Mutexes
	Spin Locks Versus Mutexes

	Completion Variables
	BKL: The Big Kernel Lock
	Sequential Locks
	Preemption Disabling
	Ordering and Barriers
	Conclusion

	11 Timers and Time Management
	Kernel Notion of Time
	The Tick Rate: HZ
	The Ideal HZ Value
	Advantages with a Larger HZ
	Disadvantages with a Larger HZ

	Jiffies
	Internal Representation of Jiffies
	Jiffies Wraparound
	User-Space and HZ

	Hardware Clocks and Timers
	Real-Time Clock
	System Timer

	The Timer Interrupt Handler
	The Time of Day
	Timers
	Using Timers
	Timer Race Conditions
	Timer Implementation

	Delaying Execution
	Busy Looping
	Small Delays
	schedule_timeout()

	Conclusion

	12 Memory Management
	Pages
	Zones
	Getting Pages
	Getting Zeroed Pages
	Freeing Pages

	kmalloc()
	gfp_mask Flags
	kfree()

	vmalloc()
	Slab Layer
	Design of the Slab Layer
	Slab Allocator Interface

	Statically Allocating on the Stack
	Single-Page Kernel Stacks
	Playing Fair on the Stack

	High Memory Mappings
	Permanent Mappings
	Temporary Mappings

	Per-CPU Allocations
	The New percpu Interface
	Per-CPU Data at Compile-Time
	Per-CPU Data at Runtime

	Reasons for Using Per-CPU Data
	Picking an Allocation Method
	Conclusion

	13 The Virtual Filesystem
	Common Filesystem Interface
	Filesystem Abstraction Layer
	Unix Filesystems
	VFS Objects and Their Data Structures
	The Superblock Object
	Superblock Operations
	The Inode Object
	Inode Operations
	The Dentry Object
	Dentry State
	The Dentry Cache

	Dentry Operations
	The File Object
	File Operations
	Data Structures Associated with Filesystems
	Data Structures Associated with a Process
	Conclusion

	14 The Block I/O Layer
	Anatomy of a Block Device
	Buffers and Buffer Heads
	The bio Structure
	I/O vectors
	The Old Versus the New

	Request Queues
	I/O Schedulers
	The Job of an I/O Scheduler
	The Linus Elevator
	The Deadline I/O Scheduler
	The Anticipatory I/O Scheduler
	The Complete Fair Queuing I/O Scheduler
	The Noop I/O Scheduler
	I/O Scheduler Selection

	Conclusion

	15 The Process Address Space
	Address Spaces
	The Memory Descriptor
	Allocating a Memory Descriptor
	Destroying a Memory Descriptor
	The mm_struct and Kernel Threads

	Virtual Memory Areas
	VMA Flags
	VMA Operations
	Lists and Trees of Memory Areas
	Memory Areas in Real Life

	Manipulating Memory Areas
	find_vma()
	find_vma_prev()
	find_vma_intersection()
	mmap() and do_mmap(): Creating an Address Interval
	munmap() and do_munmap(): Removing an Address Interval

	Page Tables
	Conclusion

	16 The Page Cache and Page Writeback
	Approaches to Caching
	Write Caching
	Cache Eviction

	The Linux Page Cache
	The address_space Object
	address_space Operations
	Radix Tree
	The Old Page Hash Table

	The Buffer Cache
	The Flusher Threads
	Laptop Mode
	History: bdflush, kupdated, and pdflush
	Avoiding Congestion with Multiple Threads

	Conclusion

	17 Devices and Modules
	Device Types
	Modules
	Hello, World!
	Building Modules
	Installing Modules
	Generating Module Dependencies
	Loading Modules
	Managing Configuration Options
	Module Parameters
	Exported Symbols

	The Device Model
	Kobjects
	Ktypes
	Ksets
	Interrelation of Kobjects, Ktypes, and Ksets
	Managing and Manipulating Kobjects
	Reference Counts

	sysfs
	Adding and Removing kobjects from sysfs
	Adding Files to sysfs
	The Kernel Events Layer

	Conclusion

	18 Debugging
	Getting Started
	Bugs in the Kernel
	Debugging by Printing
	Robustness
	Loglevels
	The Log Buffer
	syslogd and klogd
	Transposing printf() and printk()

	Oops
	ksymoops
	kallsyms

	Kernel Debugging Options
	Asserting Bugs and Dumping Information
	Magic SysRq Key
	The Saga of a Kernel Debugger
	gdb
	kgdb

	Poking and Probing the System
	Using UID as a Conditional
	Using Condition Variables
	Using Statistics
	Rate and Occurrence Limiting Your Debugging

	Binary Searching to Find the Culprit Change
	Binary Searching with Git
	When All Else Fails: The Community
	Conclusion

	19 Portability
	Portable Operating Systems
	History of Portability in Linux
	Word Size and Data Types
	Opaque Types
	Special Types
	Explicitly Sized Types
	Signedness of Chars

	Data Alignment
	Avoiding Alignment Issues
	Alignment of Nonstandard Types
	Structure Padding

	Byte Order
	Time
	Page Size
	Processor Ordering
	SMP, Kernel Preemption, and High Memory
	Conclusion

	20 Patches, Hacking, and the Community
	The Community
	Linux Coding Style
	Indention
	Switch Statements
	Spacing
	Braces
	Line Length
	Naming
	Functions
	Comments
	Typedefs
	Use Existing Routines
	Minimize ifdefs in the Source
	Structure Initializers
	Fixing Up Code Ex Post Facto

	Chain of Command
	Submitting Bug Reports
	Patches
	Generating Patches
	Generating Patches with Git
	Submitting Patches

	Conclusion

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W-X-Y
	Z

