
ptg

ptg

Praise for Previous Editions of A Practical

Guide to Ubuntu Linux

“I am so impressed by how Mark Sobell can approach a complex topic
in such an understandable manner. His command examples are espe-
cially useful in providing a novice (or even an advanced) administrator
with a cookbook on how to accomplish real-world tasks on Linux. He
is truly an inspired technical writer!”

—George Vish II
Senior Education Consultant
Hewlett-Packard Company

“Overall, I think it’s a great, comprehensive Ubuntu book that’ll be a
valuable resource for people of all technical levels.”

—John Dong
Ubuntu Forum Council Member
Backports Team Leader

“The JumpStart sections really offer a quick way to get things up and
running, allowing you to dig into the details of the book later.”

—Scott Mann
Aztek Networks

“This entire book is a real boon to any neophyte who does not have a
solid handle on getting their own answers. That group is the one that I
think will benefit the most from A Practical Guide to Ubuntu Linux®.
Random access is easy, but reading cover to cover would also give one
a nice foundational understanding of getting the most out of their
machine and even enough guidance to get their feet wet in the sysadmin
world. Anyone thrown into owning an Ubuntu server may find this to
be a handy lifeline.”

—JR Peck
Editor
GeekBook.org

“Very well thought out and simplified. [I] would buy another book from
this author (Mark Sobell).”

—Greg Dye
Electronic Tech

®

ptg

“Ubuntu is gaining popularity at the rate alcohol did during Prohibition,
and it’s great to see a well-known author write a book on the latest and
greatest version. Not only does it contain Ubuntu-specific information,
but it also touches on general computer-related topics, which will help
the average computer user to better understand what’s going on in the
background. Great work, Mark!”

—Daniel R. Arfsten
Pro/ENGINEER Drafter/Designer

“I would so love to be able to use this book to teach a class about not
just Ubuntu or Linux but about computers in general. It is thorough
and well written with good illustrations that explain important con-
cepts for computer usage.”

—Nathan Eckenrode
New York Local Community Team

“I read a lot of Linux technical information every day, but I’m rarely
impressed by tech books. I usually prefer online information sources
instead. Mark Sobell’s books are a notable exception. They’re clearly
written, technically accurate, comprehensive, and actually enjoyable
to read.”

—Matthew Miller
Senior Systems Analyst/Administrator
BU Linux Project
Boston University Office of
Information Technology

“Overall, A Practical Guide to Ubuntu Linux® by Mark G. Sobell pro-
vides all of the information a beginner to intermediate user of Linux
would need to be productive. The inclusion of the Live DVD of the
Gutsy Gibbon release of Ubuntu makes it easy for the user to test-drive
Linux without affecting his installed OS. I have no doubts that you will
consider this book money well spent.”

—Ray Lodato
Slashdot contributor
www.slashdot.org

“This is well-written, clear, comprehensive information for the Linux
user of any type, whether trying Ubuntu on for the first time and want-
ing to know a little about it, or using the book as a very good reference
when doing something more complicated like setting up a server. This

www.slashdot.org

ptg

book’s value goes well beyond its purchase price and it’ll make a great
addition to the Linux section of your bookshelf.”

—Linc Fessenden
Host of The LinuxLink TechShow
tllts.org

“The author has done a very good job at clarifying such a detail-oriented
operating system. I have extensive UNIX and Windows experience and this
text does an excellent job at bridging the gaps between Linux, Windows,
and UNIX. I highly recommend this book to both ‘newbs’ and experienced
users. Great job!”

—Mark Polczynski
Information Technology Consultant

“When I first started working with Linux just a short 10 years or so ago,
it was a little more difficult than now to get going. . . . Now, someone
new to the community has a vast array of resources available on the
web, or if they are inclined to begin with Ubuntu, they can literally find
almost every single thing they will need in the single volume of Mark
Sobell’s A Practical Guide to Ubuntu Linux®.

“I’m sure this sounds a bit like hyperbole. Everything a person would
need to know? Obviously not everything, but this book, weighing in at
just under 1200 pages, covers so much so thoroughly that there won’t
be much left out. From install to admin, networking, security, shell
scripting, package management, and a host of other topics, it is all
there. GUI and command line tools are covered. There is not really any
wasted space or fluff, just a huge amount of information. There are
screen shots when appropriate but they do not take up an inordinate
amount of space. This book is information-dense.”

—JR Peck
Editor
GeekBook.org

“Mark G. Sobell’s freshly revised reference work on Ubuntu Linux may
be the most impressive computer book I’ve seen in the last 10 years. If
you are currently stranded with a pile of abandoned computers on a
desert isle, I’m telling you, this is the book.”

—From a review at DesktopLinux.com
http://www.desktoplinux.com/
news/NS8801274918.html

http://www.desktoplinux.com/news/NS8801274918.html
http://www.desktoplinux.com/news/NS8801274918.html

ptg

Praise for Other Books by Mark G. Sobell

“I currently own one of your books, A Practical Guide to Linux®. I
believe this book is one of the most comprehensive and, as the title
says, practical guides to Linux I have ever read. I consider myself a
novice and I come back to this book over and over again.”

—Albert J. Nguyen

“Thank you for writing a book to help me get away from Windows XP
and to never touch Windows Vista. The book is great; I am learning a
lot of new concepts and commands. Linux is definitely getting easier
to use.”

—James Moritz

“I have been wanting to make the jump to Linux but did not have the
guts to do so—until I saw your familiarly titled A Practical Guide to
Red Hat® Linux® at the bookstore. I picked up a copy and am eagerly
looking forward to regaining my freedom.”

—Carmine Stoffo
Machine and Process Designer
to pharmaceutical industry

“I am currently reading A Practical Guide to Red Hat® Linux® and am
finally understanding the true power of the command line. I am new to
Linux and your book is a treasure.”

—Juan Gonzalez

 From the Library of WoweBook.Com

ptg

A Practical Guide to Ubuntu Linux

THIRD EDITION

®

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

A Practical Guide to Ubuntu Linux

THIRD EDITION

Mark G. Sobell

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

®

 From the Library of WoweBook.Com

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

Ubuntu® is a trademark of Canonical Ltd and is used under license from Canonical Ltd. Points of view or opinions in this
publication do not necessarily represent the policies or positions of Canonical Ltd or imply affiliation with Ubuntu,
www.ubuntu.com.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may
include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data
Sobell, Mark G.
 A practical guide to Ubuntu Linux / Mark G. Sobell.—3rd ed.
 p. cm.
 Includes index.
 ISBN 978-0-13-254248-7 (pbk. : alk. paper)
 1. Ubuntu (Electronic resource) 2. Linux. 3. Operating systems (Computers) I. Title.
 QA76.76.O63S59497 2010
 005.4'32—dc22
 2010024353

Copyright © 2011 Mark G. Sobell

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must
be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions,
write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-13-254248-7
ISBN-10: 0-13-254248-X

Printed in the United States of America on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, August 2010

 From the Library of WoweBook.Com

www.ubuntu.com

ptg

For my sons,
Zach, Sam, and Max,

each of whom is blooming
and bringing light into the world.

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

xxxiii

Brief Contents

Contents xiii
List of JumpStarts xxxvii
Preface xxxix

1 Welcome to Linux 1

PART I Installing Ubuntu Linux 23

2 Installation Overview 25

3 Step-by-Step Installation 51

PART II Getting Started with Ubuntu Linux 95

4 Introduction to Ubuntu Linux 97

5 The Linux Utilities 159

6 The Linux Filesystem 199

7 The Shell 237

PART III Digging into Ubuntu Linux 265

8 Linux GUIs: X and GNOME 267

9 The Bourne Again Shell 291

10 Networking and the Internet 371

 From the Library of WoweBook.Com

ptg

xii Brief Contents

PART IV System Administration 415

11 System Administration: Core Concepts 417

12 Files, Directories, and Filesystems 487

13 Downloading and Installing Software 517

14 Printing with CUPS 547

15 Building a Linux Kernel 571

16 Administration Tasks 593

17 Configuring and Monitoring a LAN 637

PART V Using Clients and Setting Up Servers 661

18 OpenSSH: Secure Network Communication 663

19 FTP: Transferring Files Across a Network 687

20 exim4: Setting Up Mail Servers, Clients, and More 713

21 NIS and LDAP 741

22 NFS: Sharing Filesystems 773

23 Samba: Linux and Windows File and Printer Sharing 797

24 DNS/BIND: Tracking Domain Names and Addresses 821

25 firestarter, gufw, and iptables: Setting Up a Firewall 863

26 Apache: Setting Up a Web Server 899

PART VI Programming Tools 951

27 Programming the Bourne Again Shell 953

28 The Perl Scripting Language 1041

PART VII Appendixes 1087

A Regular Expressions 1089

B Help 1099

C Security 1109

D The Free Software Definition 1129

Glossary 1133

JumpStart Index 1183

File Tree Index 1185

Utility Index 1189

Main Index 1195

 From the Library of WoweBook.Com

ptg

xxxiiiiiiiii

Contents

List of JumpStarts xxxvii
Preface xxxix

Chapter 1: Welcome to Linux 1

Ubuntu Linux 2
The History of UNIX and GNU–Linux 3

The Heritage of Linux: UNIX 3
Fade to 1983 4
Next Scene, 1991 5
The Code Is Free 5
Have Fun! 6

What Is So Good About Linux? 6
Why Linux Is Popular with Hardware Companies and Developers 10
Linux Is Portable 10
The C Programming Language 11

Overview of Linux 12
Linux Has a Kernel Programming Interface 12
Linux Can Support Many Users 13
Linux Can Run Many Tasks 13
Linux Provides a Secure Hierarchical Filesystem 13
The Shell: Command Interpreter and Programming Language 14
A Large Collection of Useful Utilities 16
Interprocess Communication 16
System Administration 17

 From the Library of WoweBook.Com

ptg

xiv Contents

Additional Features of Linux 17
GUIs: Graphical User Interfaces 17
(Inter)Networking Utilities 18
Software Development 19

Conventions Used in This Book 19
Chapter Summary 21
Exercises 22

PART I Installing Ubuntu Linux 23

Chapter 2: Installation Overview 25

The Live/Install Desktop CD and the Live/Install DVD 26
More Information 26
Planning the Installation 27

Considerations 27
Requirements 27
Processor Architecture 29
Interfaces: Installer and Installed System 30
Ubuntu Releases 31
Ubuntu Editions 32
Installing a Fresh Copy or Upgrading an Existing Ubuntu System? 32
Setting Up the Hard Disk 33
RAID 40
LVM: Logical Volume Manager 41

The Installation Process 42
Downloading and Burning a CD/DVD 43

The Easy Way to Download a CD ISO Image File 43
Other Ways to Download a CD/DVD ISO Image File 44
Verifying an ISO Image File 46
Burning the CD/DVD 47

Gathering Information About the System 47
Chapter Summary 49
Exercises 49
Advanced Exercises 49

Chapter 3: Step-by-Step Installation 51

Booting from a Live/Install Desktop CD or a Live/Install DVD 52
Live Session 52
Basic Instructions 53
Detailed Instructions 53
The Live/Install DVD 55
The Live/Install Desktop CD 56

 From the Library of WoweBook.Com

ptg

 Contents xv

The Welcome Screen 57
ubiquity: Installing Ubuntu Graphically 57

Graphical Partition Editors 63
gparted: The GNOME Partition Editor 64
palimpsest: The GNOME Disk Utility 66
ubiquity: Setting Up Partitions 70

Upgrading to a New Release 74
Installing KDE 75
Setting Up a Dual-Boot System 76

Creating Free Space on a Windows System 76
Installing Ubuntu Linux as the Second Operating System 77

Advanced Installation 77
The Disk Menu Screens 78
The Ubuntu Textual Installer 85

Chapter Summary 93
Exercises 94
Advanced Exercises 94

PART II Getting Started with Ubuntu Linux 95

Chapter 4: Introduction to Ubuntu Linux 97

Curbing Your Power: root Privileges/sudo 98
A Tour of the Ubuntu Desktop 99

Logging In on the System 100
Introduction 100
Launching Programs from the Desktop 102
Switching Workspaces 104
Setting Personal Preferences 104
Mouse Preferences 105
Working with Windows 106
Using Nautilus to Work with Files 107
The Update Manager 112
Changing Appearance (Themes) 113
Session Management 116
Getting Help 116
Feel Free to Experiment 116
Logging Out 117

Getting the Most Out of the Desktop 117
GNOME Desktop Terminology 117
Opening Files 118
Panels 118
The Main Menu 122
Windows 123
The Object Context Menu 126

 From the Library of WoweBook.Com

ptg

xvi Contents

Updating, Installing, and Removing Software Packages 131
Software Sources Window 131
The Ubuntu Software Center 132
synaptic: Finds, Installs, and Removes Software 133

Where to Find Documentation 136
Ubuntu Help Center 136
man: Displays the System Manual 136
apropos: Searches for a Keyword 139
info: Displays Information About Utilities 139
The ––help Option 142
HOWTOs: Finding Out How Things Work 142
Getting Help 143

More About Logging In 144
The Login Screen 145
What to Do If You Cannot Log In 146
Logging In Remotely: Terminal Emulators, ssh, and Dial-Up Connections 147
Logging In from a Terminal (Emulator) 147
Changing Your Password 148
Using Virtual Consoles 149

Working from the Command Line 150
Correcting Mistakes 150
Repeating/Editing Command Lines 152

Controlling Windows: Advanced Operations 153
Changing the Input Focus 153
Changing the Resolution of the Display 154
The Window Manager 155

Chapter Summary 156
Exercises 157
Advanced Exercises 158

Chapter 5: The Linux Utilities 159

Special Characters 160
Basic Utilities 161

ls: Lists the Names of Files 161
cat: Displays a Text File 162
rm: Deletes a File 162
less Is more: Display a Text File One Screen at a Time 162
hostname: Displays the System Name 163

Working with Files 163
cp: Copies a File 163
mv: Changes the Name of a File 164
lpr: Prints a File 165
grep: Searches for a String 166
head: Displays the Beginning of a File 166

 From the Library of WoweBook.Com

ptg

 Contents xvii

tail: Displays the End of a File 167
sort: Displays a File in Order 168
uniq: Removes Duplicate Lines from a File 168
diff: Compares Two Files 168
file: Identifies the Contents of a File 170

| (Pipe): Communicates Between Processes 170
Four More Utilities 171

echo: Displays Text 171
date: Displays the Time and Date 172
script: Records a Shell Session 172
todos: Converts Linux and Macintosh Files to Windows Format 173

Compressing and Archiving Files 174
bzip2: Compresses a File 174
bunzip2 and bzcat: Decompress a File 175
gzip: Compresses a File 175
tar: Packs and Unpacks Archives 176

Locating Commands 178
which and whereis: Locate a Utility 178
mlocate: Searches for a File 180

Obtaining User and System Information 180
who: Lists Users on the System 180
finger: Lists Users on the System 181
w: Lists Users on the System 183

Communicating with Other Users 184
write: Sends a Message 184
mesg: Denies or Accepts Messages 185

Email 185
Tutorial: Using vim to Create and Edit a File 186

Starting vim 186
Command and Input Modes 188
Entering Text 189
Getting Help 190
Ending the Editing Session 193
The compatible Parameter 193

Chapter Summary 193
Exercises 196
Advanced Exercises 197

Chapter 6: The Linux Filesystem 199

The Hierarchical Filesystem 200
Directory Files and Ordinary Files 200

Filenames 201
The Working Directory 204
Your Home Directory 204

 From the Library of WoweBook.Com

ptg

xviii Contents

Pathnames 205
Absolute Pathnames 205
Relative Pathnames 206

Working with Directories 207
mkdir: Creates a Directory 208
cd: Changes to Another Working Directory 209
rmdir: Deletes a Directory 210
Using Pathnames 211
mv, cp: Move or Copy Files 212
mv: Moves a Directory 212
Important Standard Directories and Files 213

Access Permissions 215
ls –l: Displays Permissions 215
chmod: Changes Access Permissions 216
Setuid and Setgid Permissions 218
Directory Access Permissions 220

ACLs: Access Control Lists 221
Enabling ACLs 222
Working with Access Rules 222
Setting Default Rules for a Directory 225

Links 226
Hard Links 228
Symbolic Links 230
rm: Removes a Link 232

Chapter Summary 232
Exercises 234
Advanced Exercises 236

Chapter 7: The Shell 237

The Command Line 238
Syntax 238
Processing the Command Line 240
Executing the Command Line 243
Editing the Command Line 243

Standard Input and Standard Output 243
The Screen as a File 244
The Keyboard and Screen as Standard Input and Standard Output 244
Redirection 245
Pipes 251

Running a Command in the Background 254
Filename Generation/Pathname Expansion 256

The ? Special Character 256
The * Special Character 257
The [] Special Characters 259

 From the Library of WoweBook.Com

ptg

 Contents xix

Builtins 261
Chapter Summary 261

Utilities and Builtins Introduced in This Chapter 262
Exercises 262
Advanced Exercises 264

PART III Digging into Ubuntu Linux 265

Chapter 8: Linux GUIs: X and GNOME 267

X Window System 268
Using X 270
Desktop Environments/Managers 275

The Nautilus File Browser Window 276
The View Pane 277
The Side Pane 277
Control Bars 278
Menubar 279

The Nautilus Spatial View 282
GNOME Utilities 284

Font Preferences 284
Pick a Font Window 284
Pick a Color Window 285
Run Application Window 286
Searching for Files 286
GNOME Terminal Emulator/Shell 287

Chapter Summary 288
Exercises 289
Advanced Exercises 289

Chapter 9: The Bourne Again Shell 291

Background 292
Shell Basics 293

Startup Files 293
Commands That Are Symbols 297
Redirecting Standard Error 297
Writing a Simple Shell Script 300
Separating and Grouping Commands 303
Job Control 307
Manipulating the Directory Stack 310

 From the Library of WoweBook.Com

ptg

xx Contents

Parameters and Variables 312
User-Created Variables 314
Variable Attributes 317
Keyword Variables 318

Special Characters 326
Processes 328

Process Structure 328
Process Identification 328
Executing a Command 330

History 330
Variables That Control History 330
Reexecuting and Editing Commands 332
The Readline Library 340

Aliases 346
Single Versus Double Quotation Marks in Aliases 347
Examples of Aliases 348

Functions 349
Controlling bash: Features and Options 352

Command-Line Options 352
Shell Features 352

Processing the Command Line 356
History Expansion 356
Alias Substitution 356
Parsing and Scanning the Command Line 356
Command-Line Expansion 357

Chapter Summary 365
Exercises 367
Advanced Exercises 369

Chapter 10: Networking and the Internet 371

Types of Networks and How They Work 373
Broadcast Networks 374
Point-to-Point Networks 374
Switched Networks 374
LAN: Local Area Network 375
WAN: Wide Area Network 376
Internetworking Through Gateways and Routers 376
Network Protocols 379
Host Address 381
CIDR: Classless Inter-Domain Routing 386
Hostnames 386

 From the Library of WoweBook.Com

ptg

 Contents xxi

Communicate over a Network 388
finger: Displays Information About Remote Users 389
Sending Mail to a Remote User 390
Mailing List Servers 390

Network Utilities 390
Trusted Hosts 391
OpenSSH Tools 391
telnet: Logs In on a Remote System 391
ftp: Transfers Files over a Network 393
ping: Tests a Network Connection 393
traceroute: Traces a Route over the Internet 394
host and dig: Query Internet Nameservers 396
jwhois: Looks Up Information About an Internet Site 396

Distributed Computing 397
The Client/Server Model 398
DNS: Domain Name Service 399
Ports 401
NIS: Network Information Service 401
NFS: Network Filesystem 401
Network Services 402
Common Daemons 402
Proxy Servers 405
RPC Network Services 406

Usenet 407
WWW: World Wide Web 409

URL: Uniform Resource Locator 410
Browsers 410
Search Engines 411

Chapter Summary 411
Exercises 412
Advanced Exercises 413

PART IV System Administration 415

Chapter 11: System Administration: Core Concepts 417

Running Commands with root Privileges 419
sudo: Running a Command with root Privileges 421
sudoers: Configuring sudo 426
Unlocking the root Account (Assigning a Password to root) 431
su: Gives You Another User’s Privileges 431

 From the Library of WoweBook.Com

ptg

xxii Contents

The Upstart Event-Based init Daemon 432
Software Package 433
Definitions 433
Jobs 435
SysVinit (rc) Scripts: Start and Stop System Services 440

System Operation 443
Runlevels 443
Booting the System 444
Recovery (Single-User) Mode 445
Going to Multiuser Mode 448
Logging In 448
Logging Out 450
Bringing the System Down 450
Crash 452

Avoiding a Trojan Horse 453
Getting Help 454
Textual System Administration Utilities 455

kill: Sends a Signal to a Process 455
Other Textual Utilities 457

Setting Up a Server 460
Standard Rules in Configuration Files 460
rpcinfo: Displays Information About portmap 462
The inetd and xinetd Superservers 464
Securing a Server 465
DHCP: Configures Network Interfaces 470

nsswitch.conf: Which Service to Look at First 475
How nsswitch.conf Works 475

PAM 478
More Information 479
Configuration Files, Module Types, and Control Flags 479
Example 481
Modifying the PAM Configuration 482

Chapter Summary 483
Exercises 484
Advanced Exercises 484

Chapter 12: Files, Directories, and Filesystems 487

Important Files and Directories 488
File Types 500

Ordinary Files, Directories, Links, and Inodes 500
Device Special Files 501

 From the Library of WoweBook.Com

ptg

 Contents xxiii

Filesystems 505
mount: Mounts a Filesystem 506
umount: Unmounts a Filesystem 509
fstab: Keeps Track of Filesystems 510
fsck: Checks Filesystem Integrity 512
tune2fs: Changes Filesystem Parameters 512
RAID Filesystem 514

Chapter Summary 514
Exercises 515
Advanced Exercises 515

Chapter 13: Downloading and Installing Software 517

JumpStart: Installing and Removing Packages Using aptitude 519
Finding the Package That Holds a File You Need 521
APT: Keeps the System Up-to-Date 522

Repositories 522
sources.list: Specifies Repositories for APT to Search 523
The APT Local Package Indexes and the APT Cache 524
The apt cron Script and APT Configuration Files 524
aptitude: Works with Packages and the Local Package Index 526
apt-cache: Displays Package Information 530
apt-get source: Downloads Source Files 532

dpkg: The Debian Package Management System 532
deb Files 533
dpkg: The Foundation of the Debian Package Management System 534

BitTorrent 539
Installing Non-dpkg Software 541

The /opt and /usr/local Directories 541
GNU Configure and Build System 542

wget: Downloads Files Noninteractively 543
Chapter Summary 544
Exercises 545
Advanced Exercises 545

Chapter 14: Printing with CUPS 547

Introduction 548
Prerequisites 548
More Information 549
Notes 549

JumpStart I: Configuring a Local Printer 549

 From the Library of WoweBook.Com

ptg

xxiv Contents

system-config-printer: Configuring a Printer 550
Configuration Selections 550
Setting Up a Remote Printer 552

JumpStart II: Setting Up a Local or Remote Printer Using the CUPS Web
Interface 555
Traditional UNIX Printing 558
Configuring Printers 560

The CUPS Web Interface 560
CUPS on the Command Line 561
Sharing CUPS Printers 565

Printing from Windows 566
Printing Using CUPS 566
Printing Using Samba 567

Printing to Windows 568
Chapter Summary 568
Exercises 569
Advanced Exercises 569

Chapter 15: Building a Linux Kernel 571

Prerequisites 572
Downloading the Kernel Source Code 573

aptitude: Downloading and Installing the Kernel Source Code 573
git: Obtaining the Latest Kernel Source Code 574
/usr/src/linux: The Working Directory 575

Read the Documentation 575
Configuring and Compiling the Linux Kernel 575

.config: Configures the Kernel 575
Customizing a Kernel 577
Cleaning the Source Tree 579
Compiling a Kernel Image File and Loadable Modules 579
Using Loadable Kernel Modules 580

Installing the Kernel, Modules, and Associated Files 582
Rebooting 583
GRUB: The Linux Boot Loader 583

Configuring GRUB 584
update-grub: Updates the grub.cfg File 587
grub-install: Installs the MBR and GRUB Files 589

dmesg: Displays Kernel Messages 589
Chapter Summary 590
Exercises 590
Advanced Exercises 591

 From the Library of WoweBook.Com

ptg

 Contents xxv

Chapter 16: Administration Tasks 593

Configuring User and Group Accounts 594
users-admin: Manages User Accounts 594
useradd: Adds a User Account 597
userdel: Removes a User Account 598
usermod: Modifies a User Account 598
groupadd: Adds a Group 598
groupdel: Removes a Group 598

Backing Up Files 599
Choosing a Backup Medium 600
Backup Utilities 600
Performing a Simple Backup 602
dump , restore: Back Up and Restore Filesystems 603

Scheduling Tasks 605
cron and anacron: Schedule Routine Tasks 605
at: Runs Occasional Tasks 608

System Reports 608
vmstat: Reports Virtual Memory Statistics 609
top: Lists Processes Using the Most Resources 610

parted: Reports on and Partitions a Hard Disk 611
Keeping Users Informed 614
Creating Problems 615
Solving Problems 616

Helping When a User Cannot Log In 616
Speeding Up the System 617
lsof: Finds Open Files 618
Keeping a Machine Log 618
Keeping the System Secure 619
Log Files and Mail for root 620
Monitoring Disk Usage 620
logrotate: Manages Log Files 622
Removing Unused Space from Directories 624
Disk Quota System 625
rsyslogd: Logs System Messages 625

MySQL 628
More Information 628
Terminology 628
Syntax and Conventions 628
Prerequisites 629
Notes 629
JumpStart: Setting Up MySQL 629
Options 630
The .my.cnf Configuration File 630
Working with MySQL 630

 From the Library of WoweBook.Com

ptg

xxvi Contents

Chapter Summary 635
Exercises 636
Advanced Exercises 636

Chapter 17: Configuring and Monitoring a LAN 637

Setting Up the Hardware 638
Connecting the Computers 638
Routers 638
NIC: Network Interface Card 639
Tools 640

Configuring the Systems 641
NetworkManager: Configures Network Connections 642

The NetworkManager Applet 642
Setting Up Servers 646
Introduction to Cacti 647

Configuring SNMP 648
Setting Up LAMP 648
The Cacti Poller 652
Configuring Cacti 652
Basic Cacti Administration 652
Setting Up a Remote Data Source 654

More Information 658
Chapter Summary 659
Exercises 660
Advanced Exercises 660

PART V Using Clients and Setting Up

Servers 661

Chapter 18: OpenSSH: Secure Network

Communication 663

Introduction to OpenSSH 664
How OpenSSH Works 664
Files 665
More Information 666

Running the ssh, scp, and sftp OpenSSH Clients 667
Prerequisites 667
JumpStart: Using ssh and scp to Connect to an OpenSSH Server 667

 From the Library of WoweBook.Com

ptg

 Contents xxvii

Configuring OpenSSH Clients 668
ssh: Connects to or Executes Commands on a Remote System 670
scp: Copies Files to and from a Remote System 672
sftp: A Secure FTP Client 674
~/.ssh/config and /etc/ssh/ssh_config Configuration Files 674

Setting Up an OpenSSH Server (sshd) 676
Prerequisites 676
Note 676
JumpStart: Starting an OpenSSH Server 677
Authorized Keys: Automatic Login 677
Command-Line Options 678
/etc/ssh/sshd_config Configuration File 679

Troubleshooting 680
Tunneling/Port Forwarding 681
Chapter Summary 684
Exercises 684
Advanced Exercises 685

Chapter 19: FTP: Transferring Files Across

a Network 687

Introduction to FTP 688
Security 688
FTP Connections 688
FTP Clients 689
More Information 689

Running the ftp and sftp FTP Clients 690
Prerequisites 690
JumpStart I: Downloading Files Using ftp 690
Anonymous FTP 694
Automatic Login 694
Binary Versus ASCII Transfer Mode 694
ftp Specifics 695

Setting Up an FTP Server (vsftpd) 699
Prerequisites 699
Notes 699
JumpStart II: Starting a vsftpd FTP Server 700
Testing the Setup 700
Configuring a vsftpd Server 701

Chapter Summary 711
Exercises 712
Advanced Exercises 712

 From the Library of WoweBook.Com

ptg

xxviii Contents

Chapter 20: exim4: Setting Up Mail Servers, Clients,

and More 713

 Introduction to exim4 714
Alternatives to exim4 715
More Information 715

Setting Up a Mail Server (exim4) 715
Prerequisites 715
Notes 716
JumpStart I: Configuring exim4 to Use a Smarthost 716
JumpStart II: Configuring exim4 to Send and Receive Mail 718

Working with exim4 Messages 720
Mail Logs 720
Working with Messages 721
Aliases and Forwarding 722
Related Programs 723

Configuring an exim4 Mail Server 724
Using a Text Editor to Configure exim4 724
The update-exim4.conf.conf Configuration File 724
dpkg-reconfigure: Configures exim4 726

SpamAssassin 727
How SpamAssassin Works 727
Prerequisites 728
Testing SpamAssassin 728
Configuring SpamAssassin 730

Additional Email Tools 731
Webmail 731
Mailing Lists 733
Setting Up an IMAP or POP3 Mail Server 735

Authenticated Relaying 736
Chapter Summary 738
Exercises 738
Advanced Exercises 739

Chapter 21: NIS and LDAP 741

Introduction to NIS 742
How NIS Works 742
More Information 744

Running an NIS Client 744
Prerequisites 745
Notes 745
Configuring an NIS Client 746
Testing the Setup 747
yppasswd: Changes NIS Passwords 748

 From the Library of WoweBook.Com

ptg

 Contents xxix

Setting Up an NIS Server 750
Prerequisites 750
Notes 751
Configuring the Server 751
Testing the Server 756
yppasswdd: The NIS Password Update Daemon 757

LDAP 758
More Information 760

Setting Up an LDAP Server 760
Prerequisites 760
Notes 760
Set up the Server 761
Add Entries to the Directory 764

Other Tools for Working with LDAP 767
Evolution Mail 767
Konqueror 770

Chapter Summary 770
Exercises 771
Advanced Exercises 771

Chapter 22: NFS: Sharing Filesystems 773

Introduction to NFS 774
More Information 776

Running an NFS Client 776
Prerequisites 776
JumpStart I: Mounting a Remote Directory Hierarchy 777
mount: Mounts a Directory Hierarchy 778
Improving Performance 780
/etc/fstab: Mounts Directory Hierarchies Automatically 781

Setting Up an NFS Server 782
Prerequisites 782
Notes 782
JumpStart II: Configuring an NFS Server Using shares-admin 783
Manually Exporting a Directory Hierarchy 785
Where the System Keeps NFS Mount Information 789
exportfs: Maintains the List of Exported Directory Hierarchies 791
Testing the Server Setup 792

automount: Mounts Directory Hierarchies on Demand 792
Chapter Summary 795
Exercises 795
Advanced Exercises 795

 From the Library of WoweBook.Com

ptg

xxx Contents

Chapter 23: Samba: Linux and Windows File and

Printer Sharing 797

Introduction to Samba 798
More Information 799
Notes 799
Samba Users, User Maps, and Passwords 799

Setting Up a Samba Server 800
Prerequisites 800
JumpStart: Configuring a Samba Server Using system-config-samba 800
swat: Configures a Samba Server 804
smb.conf: Manually Configuring a Samba Server 807

Working with Linux Shares from Windows 814
Browsing Shares 814
Mapping a Share 814

Working with Windows Shares from Linux 815
smbtree: Displays Windows Shares 815
smbclient: Connects to Windows Shares 815
Browsing Windows Networks 816
Mounting Windows Shares 816

Troubleshooting 817
Chapter Summary 819
Exercises 820
Advanced Exercises 820

Chapter 24: DNS/BIND: Tracking Domain Names

and Addresses 821

Introduction to DNS 822
Nodes, Domains, and Subdomains 822
Zones 824
Queries 825
Servers 826
Resource Records 827
DNS Queries and Responses 830
Reverse Name Resolution 831
How DNS Works 833
More Information 833
Notes 833

Setting Up a DNS Server 834
Prerequisites 834
JumpStart: Setting Up a DNS Cache 834
Configuring a DNS Server 836

 From the Library of WoweBook.Com

ptg

 Contents xxxi

Setting Up Different Types of DNS Servers 850
A Full-Functioned Nameserver 850
A Slave Server 854
A Split Horizon Server 855

Chapter Summary 860

Exercises 860

Advanced Exercises 861

Chapter 25: firestarter, gufw, and iptables:

Setting Up a Firewall 863

Introduction to firestarter 864
Notes 864
More Information 866

firestarter: Setting Up and Maintaining a Firewall 866
Prerequisites 866
JumpStart: Configuring a Firewall Using the firestarter Firewall Wizard 867
Maintaining a Firewall using firestarter 868

ufw: The Uncomplicated Firewall 874

gufw: The Graphical Interface to ufw 876
The Firewall Window 876
Adding Rules 877

Introduction to iptables 880
More Information 883
Prerequisites 883
Notes 883
Anatomy of an iptables Command 884

Building a Set of Rules Using iptables 885
Commands 885
Packet Match Criteria 887
Display Criteria 887
Match Extensions 887
Targets 890

Copying Rules to and from the Kernel 891

Sharing an Internet Connection Using NAT 892
Connecting Several Clients to a Single Internet Connection 893
Connecting Several Servers to a Single Internet Connection 896

Chapter Summary 896

Exercises 897

Advanced Exercises 897

 From the Library of WoweBook.Com

ptg

xxxii Contents

Chapter 26: Apache: Setting Up a Web Server 899

Introduction 900
More Information 901
Notes 901

Running a Web Server (Apache) 902
Prerequisites 902
JumpStart: Getting Apache Up and Running 903
Configuring Apache 905

Configuration Directives 909
Directives I: Directives You May Want to Modify as You Get Started 910
Contexts and Containers 915
Directives II: Advanced Directives 919

Configuration Files 932
The Ubuntu apache2.conf File 932
The Ubuntu default Configuration File 934

Advanced Configuration 935
Redirects 935
Content Negotiation 935
Server-Generated Directory Listings (Indexing) 937
Virtual Hosts 937

Troubleshooting 940
Modules 941

mod_cgi and CGI Scripts 942
mod_ssl 943
Authentication Modules and .htaccess 945
Scripting Modules 946
Multiprocessing Modules (MPMs) 947

webalizer: Analyzes Web Traffic 948
MRTG: Monitors Traffic Loads 948
Error Codes 948
Chapter Summary 949
Exercises 950
Advanced Exercises 950

PART VI Programming Tools 951

Chapter 27: Programming the Bourne Again Shell 953

Control Structures 954
if...then 954
if...then...else 958
if...then...elif 961

 From the Library of WoweBook.Com

ptg

 Contents xxxiii

for...in 967
for 968
while 970
until 974
break and continue 976
case 977
select 983
Here Document 985

File Descriptors 987
Parameters and Variables 990

Array Variables 990
Locality of Variables 992
Special Parameters 994
Positional Parameters 996
Expanding Null and Unset Variables 1001

Builtin Commands 1002
type: Displays Information About a Command 1003
read: Accepts User Input 1003
exec: Executes a Command or Redirects File Descriptors 1006
trap: Catches a Signal 1009
kill: Aborts a Process 1012
getopts: Parses Options 1012
A Partial List of Builtins 1015

Expressions 1016
Arithmetic Evaluation 1016
Logical Evaluation (Conditional Expressions) 1017
String Pattern Matching 1018
Operators 1019

Shell Programs 1024
A Recursive Shell Script 1025
The quiz Shell Script 1028

Chapter Summary 1034
Exercises 1036
Advanced Exercises 1038

Chapter 28: The Perl Scripting Language 1041

Introduction to Perl 1042
More Information 1042
Help 1043
perldoc 1043
Terminology 1045
Running a Perl Program 1046
Syntax 1047

 From the Library of WoweBook.Com

ptg

xxxiv Contents

Variables 1049
Scalar Variables 1051
Array Variables 1053
Hash Variables 1056

Control Structures 1057
if/unless 1057
if...else 1059
if...elsif...else 1060
foreach/for 1061
last and next 1062
while/until 1064

Working with Files 1066
Sort 1069
Subroutines 1071
Regular Expressions 1073

Syntax and the =~ Operator 1074
CPAN Modules 1079
Examples 1081
Chapter Summary 1085
Exercises 1085
Advanced Exercises 1086

PART VII Appendixes 1087

Appendix A: Regular Expressions 1089

Characters 1090
Delimiters 1090
Simple Strings 1090
Special Characters 1090

Periods 1091
Brackets 1091
Asterisks 1092
Carets and Dollar Signs 1092
Quoting Special Characters 1093

Rules 1093
Longest Match Possible 1093
Empty Regular Expressions 1094

Bracketing Expressions 1094
The Replacement String 1094

Ampersand 1095
Quoted Digit 1095

Extended Regular Expressions 1095
Appendix Summary 1097

 From the Library of WoweBook.Com

ptg

 Contents xxxv

Appendix B: Help 1099

Solving a Problem 1100
Finding Linux-Related Information 1101

Documentation 1101
Useful Linux Sites 1102
Linux Newsgroups 1103
Mailing Lists 1103
Words 1104
Software 1104
Office Suites and Word Processors 1106

Specifying a Terminal 1106

Appendix C: Security 1109

Encryption 1110
Public Key Encryption 1111
Symmetric Key Encryption 1112
Encryption Implementation 1113
GnuPG/PGP 1113

File Security 1115
Email Security 1115

MTAs (Mail Transfer Agents) 1115
MUAs (Mail User Agents) 1116

Network Security 1116
Network Security Solutions 1117
Network Security Guidelines 1117

Host Security 1119
Login Security 1120
Remote Access Security 1121
Viruses and Worms 1122
Physical Security 1122

Security Resources 1124
Appendix Summary 1127

Appendix D: The Free Software Definition 1129

Glossary 1133

JumpStart Index 1183

File Tree Index 1185

Utility Index 1189

Main Index 1195

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

xxxxxxxxxvvviiiiii

JumpStarts

JumpStarts get you off to a quick start when you need to use a client or set up a server.
Once you have the client or server up and running, you can refine its configuration
using the information presented in the sections following each JumpStart.

APT (Software Packages)

Installing and Removing Packages Using aptitude 519

CUPS (Printing)

Configuring a Local Printer 549
Setting Up a Local or Remote Printer Using the CUPS Web Interface 555

MySQL (Database)

Setting Up MySQL 629

OpenSSH (Secure Communication)

Using ssh and scp to Connect to an OpenSSH Server 667
Starting an OpenSSH Server 677

FTP (Download and Upload Files)

Downloading Files Using ftp 690
Starting a vsftpd FTP Server 700

 From the Library of WoweBook.Com

ptg

xxxviii JumpStarts

Email

Configuring exim4 to Use a Smarthost 716
Configuring exim4 to Send and Receive Mail 718

NFS (Network Filesystem)

Mounting a Remote Directory Hierarchy 777
Configuring an NFS Server Using shares-admin 783

Samba (Linux/Windows File Sharing)

Configuring a Samba Server Using system-config-samba 800

DNS (Domain Name Service)

Setting Up a DNS Cache 834

firestarter (Firewall)

Configuring a Firewall Using the firestarter Firewall Wizard 867

Apache (HTTP)

Getting Apache Up and Running 903

 From the Library of WoweBook.Com

ptg

xxxxxxxxxiiixxx

M Preface

Preface

The book Whether you are an end user, a system administrator, or a little of both, this book
explains with step-by-step examples how to get the most out of an Ubuntu Linux
system. In 28 chapters, this book takes you from installing an Ubuntu system
through understanding its inner workings to setting up secure servers that run on
the system.

The audience This book is designed for a wide range of readers. It does not require you to have
programming experience, although having some experience using a general-purpose
computer, such as a Windows, Macintosh, UNIX, or another Linux system is cer-
tainly helpful. This book is appropriate for

• Students who are taking a class in which they use Linux

• Home users who want to set up and/or run Linux

• Professionals who use Linux at work

• System administrators who need an understanding of Linux and the tools
that are available to them including the bash and Perl scripting languages

• Computer science students who are studying the Linux operating system

• Technical executives who want to get a grounding in Linux

Benefits A Practical Guide to Ubuntu Linux®, Third Edition, gives you a broad understand-
ing of many facets of Linux, from installing Ubuntu Linux through using and cus-
tomizing it. No matter what your background, this book provides the knowledge
you need to get on with your work. You will come away from this book under-
standing how to use Linux, and this book will remain a valuable reference for years
to come.

 From the Library of WoweBook.Com

ptg

xl Preface

New in this edition This edition includes many updates to the previous edition:

• Coverage of the MySQL relational database, which has been added to
Chapter 16 (page 628).

• An all-new section on the Cacti network monitoring tool, which has been
added to Chapter 17 (page 647).

• Coverage of the gufw firewall, which has been added to Chapter 25
(page 874).

• Updated chapters to reflect the Ubuntu 10.04 LTS (Lucid Lynx; main-
tained until 2013).

• Four indexes to make it easier to find what you are looking for quickly.
These indexes locate tables (page numbers followed by the letter t, defini-
tions (italic page numbers), and differentiate between light and compre-
hensive coverage (light and standard fonts).

◆ The JumpStart index (page 1183) lists all the JumpStart sections in
this book. These sections help you set up servers and clients as quickly
as possible.

◆ The File Tree index (page 1185) lists, in hierarchical fashion, most
files mentioned in this book. These files are also listed in the main
index.

◆ The Utility index (page 1189) locates all utilities mentioned in this
book. A page number in a light font indicates a brief mention of the
utility while the regular font indicates more substantial coverage.

◆ The revised Main index (page 1195) is designed for ease of use.

Overlap If you have read the second edition of A Practical Guide to Linux® Commands, Edi-
tors, and Shell Programming, you will notice some overlap between that book and the
one you are reading now. The first chapter; the chapters on the utilities and the file-
system; the appendix on regular expressions; and the Glossary are very similar in the
two books, as are the three chapters on the Bourne Again Shell (bash). Chapters that
appear in this book but do not appear in A Practical Guide to Linux® Commands,
Editors, and Shell Programming include Chapters 2 and 3 (installation), Chapters 4
and 8 (Ubuntu Linux and the GUI), Chapter 10 (networking), all of the chapters in
Part IV (system administration) and Part V (servers), and Appendix C (security).

Differences While this book explains how to use Linux from a graphical interface and from the
command line (a textual interface), A Practical Guide to Linux® Commands, Edi-
tors, and Shell Programming, Second Edition works exclusively with the command
line and covers Mac OS X in addition to Linux. It includes full chapters on the vim
and emacs editors, as well as chapters on the gawk pattern processing language, the
sed stream editor, and the rsync secure copy utility. In addition, it has a command
reference section that provides extensive examples of the use of 100 of the most

 From the Library of WoweBook.Com

ptg

Features of This Book xli

important Linux and Mac OS X utilities. You can use these utilities to solve prob-
lems without resorting to programming in C.

This Book Includes Ubuntu Lucid Lynx (10.04 LTS)

on a Live/Install DVD

This book includes a live/install DVD that holds the Lucid Lynx (10.04) release of
Ubuntu Linux. You can use this DVD to run a live Ubuntu session that displays the
GNOME desktop without making any changes to your computer: Boot from the
DVD, run an Ubuntu live session, and log off. Your system remains untouched:
When you reboot, it is exactly as it was before you ran the Ubuntu live session.
Alternatively, you can install Ubuntu from the live session. Chapter 2 helps you get
ready to install Ubuntu. Chapter 3 provides step-by-step instructions for installing
Ubuntu from this DVD. This book guides you through learning about, using, and
administrating an Ubuntu Linux system.

DVD features The included DVD incorporates all the features of the live/install Desktop CD as
well as many of the features of the Alternate and Server CDs. It also includes all
software packages supported by Ubuntu. You can use it to perform a graphical or
textual (command line) installation of either a graphical or a textual Ubuntu sys-
tem. If you do not have an Internet connection, you can use the DVD as a software
repository and install any supported software packages from it.

Features of This Book

This book is designed and organized so you can get the most out of it in the least
amount of time. You do not have to read this book straight through in page order.
Instead, once you are comfortable using Linux, you can use this book as a reference:
Look up a topic of interest in the table of contents or in an index and read about it.
Or think of the book as a catalog of Linux topics: Flip through the pages until a
topic catches your eye. The book includes many pointers to Web sites where you
can obtain additional information: Consider the Internet to be an extension of this
book.

A Practical Guide to Ubuntu Linux®, Third Edition, is structured with the following
features:

• Optional sections enable you to read the book at different levels, returning
to more difficult material when you are ready to delve into it.

• Caution boxes highlight procedures that can easily go wrong, giving you
guidance before you run into trouble.

 From the Library of WoweBook.Com

ptg

xlii Preface

• Tip boxes highlight ways you can save time by doing something differently
or situations when it may be useful or just interesting to have additional
information.

• Security boxes point out places where you can make a system more secure.
The security appendix presents a quick background in system security issues.

• Concepts are illustrated by practical examples throughout the book.

• Chapter summaries review the important points covered in each chapter.

• Review exercises are included at the end of each chapter for readers who
want to further hone their skills. Answers to even-numbered exercises can
be found at www.sobell.com.

• The glossary defines more than 500 commonly encountered terms.

• The chapters that cover servers include JumpStart sections that get you off
to a quick start using clients and setting up servers. Once a server is up and
running, you can test and modify its configuration as explained in the rest
of each of these chapters.

• This book provides resources for finding software on the Internet. It also
explains how to download and install software using Synaptic, aptitude,
the Ubuntu Software Center window, and BitTorrent. It details controlling
automatic updates using the Update Manager window.

• This book describes in detail many important GNU tools, including the
GNOME desktop, the Nautilus File Browser, the parted, palimpsest, and
gparted partition editors, the gzip compression utility, and many com-
mand-line utilities that come from the GNU project.

• Pointers throughout the text provide help in obtaining online documenta-
tion from many sources, including the local system, the Ubuntu Web site,
and other locations on the Internet.

• Many useful URLs point to Web sites where you can obtain software,
security programs and information, and more.

• The multiple comprehensive indexes help you locate topics quickly and
easily.

Key Topics Covered in This Book

This book contains a lot of information. This section distills and summarizes its
contents. In addition, “Details” (starting on page xlvi) describes what each chapter
covers. Finally, the table of contents provides more detail. This book:

 From the Library of WoweBook.Com

www.sobell.com

ptg

Key Topics Covered in This Book xliii

Installation • Describes how to download Ubuntu Linux ISO images from the Internet
and burn the Ubuntu live/install Desktop CD, the DVD, or the Ubuntu
Alternate or Server installation CD.

• Helps you plan the layout of the system’s hard disk. It includes a discus-
sion of partitions, partition tables, and mount points, and assists you in
using the ubiquity, palimpsest, or gparted graphical partition editor or the
Ubuntu textual partition editor to examine and partition the hard disk.

• Explains how to set up a dual-boot system so you can install Ubuntu
Linux on a Windows system and boot either operating system.

• Describes in detail how to install Ubuntu Linux from a live/install Desktop
CD or the live/install DVD using the ubiquity graphical installer. It also
explains how to use the textual installer found on the Alternate CD, the
Server CD, and the DVD. The graphical installer is fast and easy to use.
The textual installer gives you more options and works on systems with
less RAM (system memory).

• Covers testing an Ubuntu CD/DVD for defects, setting boot command-line
parameters (boot options), and creating a RAID array.

Working with
Ubuntu Linux

• Introduces the GNOME desktop (GUI) and explains how to use desktop
tools, including the Top and Bottom panels, panel objects, the Main menu,
object context menus, the Workspace Switcher, the Nautilus File Browser,
and the GNOME terminal emulator.

• Explains how to use the Appearance Preferences window to add and mod-
ify themes to customize your desktop to please your senses and help you
work more efficiently.

• Details how to set up 3D desktop visual effects that take advantage of
Compiz Fusion.

• Covers the Bourne Again Shell (bash) in three chapters, including an entire
chapter on shell programming that includes many sample shell scripts.
These chapters provide clear explanations and extensive examples of how
bash works both from the command line in day-to-day work and as a pro-
gramming language in which to write shell scripts.

• Explains the textual (command-line) interface and introduces more than
30 command-line utilities.

• Presents a tutorial on the vim textual editor.

• Covers types of networks, network protocols, and network utilities.

• Explains hostnames, IP addresses, and subnets, and explores how to use
host and dig to look up domain names and IP addresses on the Internet.

• Covers distributed computing and the client/server model.

 From the Library of WoweBook.Com

ptg

xliv Preface

• Explains how to use ACLs (Access Control Lists) to fine-tune user access
permissions.

System
administration

• Explains how to use the Ubuntu graphical and textual (command-line)
tools to configure the display, DNS, NFS, Samba, Apache, a firewall, a
network interface, and more. You can also use these tools to add users and
manage local and remote printers.

• Goes into detail about using sudo to allow specific users to work with root
privileges (become Superuser) and customizing the way sudo works by
editing the sudoers configuration file. It also explains how you can unlock
the root account if necessary.

• Describes how to use the following tools to download and install software
to keep a system up-to-date and to install new software:

◆ The Software Sources window controls which Ubuntu and third-party
software repositories Ubuntu downloads software packages from and
whether Ubuntu downloads updates automatically. You can also use
this window to cause Ubuntu to download and install security updates
automatically.

◆ If you do not have an Internet connection, you can use the Software
Sources window to set up the DVD included with this book as a soft-
ware repository. You can then install any software packages that
Ubuntu supports from this repository.

◆ Based on how you set up updates in the Software Sources window, the
Update Manager window appears on the desktop to let you know
when software updates are available. You can download and install
updates from the Update Manager window.

◆ The Ubuntu Software Center window provides an easy way to select,
download, and install a wide range of software packages.

◆ Synaptic allows you to search for, install, and remove software pack-
ages. It gives you more ways to search for packages than does the
Ubuntu Software Center window.

◆ APT downloads and installs software packages from the Internet (or
the included DVD), keeping a system up-to-date and resolving depen-
dencies as it processes the packages. You can use APT from a graphical
interface (Synaptic) or from several textual interfaces (e.g., aptitude and
apt-get).

◆ BitTorrent is a good choice for distributing large amounts of data such
as the Ubuntu installation DVD and CDs. The more people who use
BitTorrent to download a file, the faster it works.

• Covers graphical system administration tools, including the many tools
available from the GNOME Main menu.

 From the Library of WoweBook.Com

ptg

Key Topics Covered in This Book xlv

• Explains system operation, including the boot process, init scripts, recov-
ery (single-user) and multiuser modes, and steps to take if the system
crashes.

• Describes how to use and program the new Upstart init daemon, which
replaces the System V init daemon.

• Explains how to set up and use the Cacti network monitor tool to graph
system and network information over time, including installing and setting
up the LAMP (Linux, Apache, MySQL, and PHP) stack.

• Provides instructions on installing and setting up a MySQL relational
database.

• Describes files, directories, and filesystems, including types of files and file-
systems, fstab (the filesystem table), and automatically mounted filesys-
tems, and explains how to fine-tune and check the integrity of filesystems.

• Covers backup utilities, including tar, cpio, dump, and restore.

• Describes compression/archive utilities, including gzip, bzip2, compress,
and zip.

• Explains how to customize and build a Linux kernel.

Security • Helps you manage basic system security issues using ssh (secure shell), vsftpd
(secure FTP server), Apache (Web server), iptables (firewalls), and more.

• Describes how to use the textual uncomplicated firewall (ufw) and its
graphical interface (gufw) to protect the system.

• Covers the use of firestarter to share an Internet connection over a LAN,
run a DHCP server, and set up a basic firewall to protect the system.

• Provides instructions on using iptables to share an Internet connection over
a LAN and to build advanced firewalls.

• Describes how to set up a chroot jail to help protect a server system.

• Explains how to use TCP wrappers to control who can access a server.

Clients and servers • Explains how to set up and use the most popular Linux servers, providing
a chapter on each: Apache, Samba, OpenSSH, exim4, DNS, NFS, FTP,
gufw and iptables, and NIS/LDAP (all of which are supported by Ubuntu
Linux).

• Describes how to set up a CUPS printer server.

• Explains how to set up and use a MySQL relational database.

• Describes how to set up and use a DHCP server either by itself or from
firestarter.

Programming • Provides a chapter on the Perl programming language and a full chapter
covering shell programming using bash, including many examples.

 From the Library of WoweBook.Com

ptg

xlvi Preface

Details

Chapter 1 Chapter 1 presents a brief history of Linux and explains some of the features that
make it a cutting-edge operating system. The “Conventions Used in This Book”
(page 19) section details the typefaces and terminology used in this book.

Part I Part I, “Installing Ubuntu Linux,” discusses how to install Ubuntu Linux. Chapter 2
presents an overview of the process of installing Ubuntu Linux, including hardware
requirements, downloading and burning a CD or DVD, and planning the layout of
the hard disk. Chapter 3 is a step-by-step guide to installing Ubuntu Linux from a
CD or DVD, using the graphical or textual installer.

Part II Part II, “Getting Started with Ubuntu Linux,” familiarizes you with Ubuntu Linux,
covering logging in, the GUI, utilities, the filesystem, and the shell. Chapter 4 intro-
duces desktop features, including the Top and Bottom panels and the Main menu;
explains how to use the Nautilus File Browser to manage files, run programs, and
connect to FTP and HTTP servers; covers finding documentation, dealing with login
problems, and using the window manager; and presents some suggestions on where
to find documentation, including manuals, tutorials, software notes, and HOWTOs.
Chapter 5 introduces the shell command-line interface, describes more than 30 use-
ful utilities, and presents a tutorial on the vim text editor. Chapter 6 discusses the
Linux hierarchical filesystem, covering files, filenames, pathnames, working with
directories, access permissions, and hard and symbolic links. Chapter 7 introduces
the Bourne Again Shell (bash) and discusses command-line arguments and options,
redirecting input to and output from commands, running programs in the back-
ground, and using the shell to generate and expand filenames.

Part III Part III, “Digging into Ubuntu Linux,” goes into more detail about working with
the system. Chapter 8 discusses the GUI (desktop) and includes a section on how to
run a graphical program on a remote system and have the display appear locally.
The section on GNOME describes several GNOME utilities and goes into more
depth about the Nautilus File Browser. Chapter 9 extends the bash coverage from
Chapter 7, explaining how to redirect error output, avoid overwriting files, and
work with job control, processes, startup files, important shell builtin commands,
parameters, shell variables, and aliases. Chapter 10 explains networks, network
security, and the Internet and discusses types of networks, subnets, protocols,
addresses, hostnames, and various network utilities. The section on distributed
computing describes the client/server model and some of the servers you can use on a
network. Details of setting up and using clients and servers are reserved until Part V.

Experienced users may want to skim Part II
tip If you have used a UNIX or Linux system before, you may want to skim or skip some or all of the

chapters in Part II. Two sections that all readers should take a look at are: “Conventions Used in
This Book” (page 19), which explains the typographic and layout conventions used in this book,
and “Where to Find Documentation” (page 136), which points out both local and remote sources
of Linux and Ubuntu documentation.

 From the Library of WoweBook.Com

ptg

Key Topics Covered in This Book xlvii

Part IV Part IV covers system administration. Chapter 11 discusses core concepts such as
the use of sudo, working with root privileges, system operation including a discus-
sion of the Upstart init daemon, chroot jails, TCP wrappers, general information
about how to set up a server, DHCP, and PAM. Chapter 12 explains the Linux file-
system, going into detail about types of files, including special and device files; the
use of fsck to verify the integrity of and repair filesystems; and the use of tune2fs to
change filesystem parameters. Chapter 13 explains how to keep a system up-to-date
by downloading software from the Internet and installing it, including examples
that use APT programs such as aptitude, apt-get, and apt-cache to perform these
tasks. It also covers the dpkg software packaging system and the use of some dpkg
utilities. Finally, it explains how to use BitTorrent from the command line to down-
load files. Chapter 14 explains how to set up the CUPS printing system so you can
print on both local and remote systems. Chapter 15 details customizing and build-
ing a Linux kernel. Chapter 16 covers additional administration tasks, including
setting up user accounts, backing up files, scheduling automated tasks, tracking disk
usage, solving general problems, and setting up a MySQL relational database.
Chapter 17 explains how to set up a local area network (LAN), including both
hardware (including wireless) and software configuration, and how to set up Cacti
to monitor the network.

Part V Part V goes into detail about setting up and running servers and connecting to them
using clients. Where appropriate, these chapters include JumpStart sections that get
you off to a quick start in using clients and setting up servers. The chapters in Part V
cover the following clients/servers:

• OpenSSH—Set up an OpenSSH server and use ssh, scp, and sftp to com-
municate securely over the Internet.

• FTP—Set up a vsftpd secure FTP server and use any of several FTP clients
to exchange files with the server.

• Email—Configure exim4 and use Webmail, POP3, or IMAP to retrieve
email; use SpamAssassin to combat spam.

• NIS and LDAP—Set up NIS to facilitate system administration of a LAN
and LDAP to maintain databases.

• NFS—Share filesystems between systems on a network.

• Samba—Share filesystems and printers between Windows and Linux
systems.

• DNS/BIND—Set up a domain nameserver to let other systems on the
Internet know the names and IP addresses of local systems they may need
to contact.

• firestarter, ufw, gufw, and iptables—Set up a firewall to protect local systems,
share a single Internet connection between systems on a LAN, and run a
DHCP server.

 From the Library of WoweBook.Com

ptg

xlviii Preface

• Apache—Set up an HTTP server that serves Web pages, which browsers
can then display. This chapter includes many suggestions for increasing
Apache security.

Part VI Part VI covers two important programming tools that are used extensively in
Ubuntu system administration and general-purpose programming. Chapter 27 con-
tinues where Chapter 9 left off, going into greater depth about shell programming
using bash, with the discussion enhanced by extensive examples. Chapter 28 intro-
duces the popular, feature-rich Perl programming language, including coverage of
regular expressions and file handling.

Part VII Part VII includes appendixes on regular expressions, helpful Web sites, system secu-
rity, and free software. This part also includes an extensive glossary with more than
500 entries plus the JumpStart index, the File Tree index, the Utility index, and a
comprehensive traditional index.

Supplements

The author’s home page (www.sobell.com) contains downloadable listings of the
longer programs from this book as well as pointers to many interesting and useful
Linux sites on the World Wide Web, a list of corrections to the book, answers to even-
numbered exercises, and a solicitation for corrections, comments, and suggestions.

Thanks

First and foremost, I want to thank Mark L. Taub, Editor-in-Chief, Prentice Hall,
who provided encouragement and support through the hard parts of this project.
Mark is unique in my 28 years of book writing experience: an editor who works
with the tools I write about. Because Mark runs Ubuntu on his home computer, we
shared experiences as I wrote this book. Mark, your comments and direction are
invaluable; this book would not exist without your help. Thank you, Mark T.

Molly Sharp of ContentWorks worked with me day-by-day during production of
this book providing help, listening to my rants, and keeping everything on track.
Thanks to Jill Hobbs, Copyeditor, who made the book readable, understandable,
and consistent; and Bob Campbell, Proofreader, who made each page sparkle and
found the mistakes that the author left behind.

Thanks also to the folks at Prentice Hall who helped bring this book to life, espe-
cially Julie Nahil, Full-Service Production Manager, who oversaw production of the
book; John Fuller, Managing Editor, who kept the large view in check; Stephane
Nakib, Marketing Manager; Kim Boedigheimer, Editorial Assistant, who attended
to the many details involved in publishing this book; Heather Fox, Publicist; Dan
Scherf, Media Developer; Cheryl Lenser, Senior Indexer; Sandra Schroeder, Design
Manager; Chuti Prasertsith, Cover Designer; and everyone else who worked behind
the scenes to make this book come into being.

 From the Library of WoweBook.Com

www.sobell.com

ptg

Thanks xlix

I am also indebted to Denis Howe, Editor of The Free On-Line Dictionary of Com-
puting (FOLDOC). Denis has graciously permitted me to use entries from his com-
pilation. Be sure to look at this dictionary (www.foldoc.org).

A big “thank you” to the folks who read through the drafts of the book and
made comments that caused me to refocus parts of the book where things were
not clear or were left out altogether: John Dong, Ubuntu Developer, Forums
Council Member; Nathan Handler; Andy Lester, author of Land the Tech Job
You Love: Why Skill and Luck Are Not Enough; Max Sobell, New York Univer-
sity; Scott James Remnant, Ubuntu Development Manager and Desktop Team Leader;
and Susan Lauber, Lauber System Solutions, Inc.

Thanks also to the people who helped with the first and second editions of this book:
David Chisnall, Swansea University; Scott Mann, Aztek Networks; Thomas Achtemi-
chuk, Mansueto Ventures; Daniel R. Arfsten, Pro/Engineer Drafter/Designer; Chris Coo-
per, Senior Education Consultant, Hewlett-Packard Education Services; Sameer Verma,
Associate Professor of Information Systems, San Francisco State University; Valerie
Chau, Palomar College and Programmers Guild; James Kratzer; Sean McAllister;
Nathan Eckenrode, New York Ubuntu Local Community Team; Christer Edwards;
Nicolas Merline; Michael Price; Mike Basinger, Ubuntu Community and Forums Coun-
cil Member; Joe Barker, Ubuntu Forums Staff Member; Matthew Miller, Senior Systems
Analyst/Administrator, BU Linux Project, Boston University Office of Information Tech-
nology; George Vish II, Senior Education Consultant, Hewlett-Packard; James Stock-
ford, Systemateka, Inc.; Stephanie Troeth, Book Oven; Doug Sheppard; Bryan Helvey, IT
Director, OpenGeoSolutions; and Vann Scott, Baker College of Flint.

Thanks also to the following people who helped with my previous Linux books,
which provided a foundation for this book: Chris Karr, Northwestern University;
Jesse Keating, Fedora Project; Carsten Pfeiffer, Software Engineer and KDE Devel-
oper; Aaron Weber, Ximian; Cristof Falk, Software Developer at CritterDesign;
Steve Elgersma, Computer Science Department, Princeton University; Scott Dier,
University of Minnesota; Robert Haskins, Computer Net Works; Lars Kellogg-
Stedman, Harvard University; Jim A. Lola, Principal Systems Consultant, Privateer
Systems; Eric S. Raymond, Cofounder, Open Source Initiative; Scott Mann; Randall
Lechlitner, Independent Computer Consultant; Jason Wertz, Computer Science
Instructor, Montgomery County Community College; Justin Howell, Solano Com-
munity College; Ed Sawicki, The Accelerated Learning Center; David Mercer;
Jeffrey Bianchine, Advocate, Author, Journalist; John Kennedy; and Jim Dennis,
Starshine Technical Services.

Thanks also to Dustin Puryear, Puryear Information Technology; Gabor Liptak,
Independent Consultant; Bart Schaefer, Chief Technical Officer, iPost; Michael J.
Jordan, Web Developer, Linux Online; Steven Gibson, Owner, SuperAnt.com; John
Viega, Founder and Chief Scientist, Secure Software; K. Rachael Treu, Internet
Security Analyst, Global Crossing; Kara Pritchard, K & S Pritchard Enterprises;
Glen Wiley, Capital One Finances; Karel Baloun, Senior Software Engineer, Look-
smart; Matthew Whitworth; Dameon D. Welch-Abernathy, Nokia Systems; Josh
Simon, Consultant; Stan Isaacs; and Dr. Eric H. Herrin II, Vice President, Herrin
Software Development. And thanks to Doug Hughes, long-time system designer

 From the Library of WoweBook.Com

www.foldoc.org

ptg

l Preface

and administrator, who gave me a big hand with the sections on system administra-
tion, networks, the Internet, and programming.

More thanks go to consultants Lorraine Callahan and Steve Wampler; Ronald
Hiller, Graburn Technology; Charles A. Plater, Wayne State University; Bob
Palowoda; Tom Bialaski, Sun Microsystems; Roger Hartmuller, TIS Labs at Net-
work Associates; Kaowen Liu; Andy Spitzer; Rik Schneider; Jesse St. Laurent; Steve
Bellenot; Ray W. Hiltbrand; Jennifer Witham; Gert-Jan Hagenaars; and Casper Dik.

A Practical Guide to Ubuntu Linux®, Third Edition, is based in part on two of my
previous UNIX books: UNIX System V: A Practical Guide and A Practical Guide to
the UNIX System. Many people helped me with those books, and thanks here go to
Pat Parseghian; Dr. Kathleen Hemenway; Brian LaRose; Byron A. Jeff, Clark Atlanta
University; Charles Stross; Jeff Gitlin, Lucent Technologies; Kurt Hockenbury;
Maury Bach, Intel Israel; Peter H. Salus; Rahul Dave, University of Pennsylvania;
Sean Walton, Intelligent Algorithmic Solutions; Tim Segall, Computer Sciences Cor-
poration; Behrouz Forouzan, DeAnza College; Mike Keenan, Virginia Polytechnic
Institute and State University; Mike Johnson, Oregon State University; Jandelyn
Plane, University of Maryland; Arnold Robbins and Sathis Menon, Georgia Institute
of Technology; Cliff Shaffer, Virginia Polytechnic Institute and State University; and
Steven Stepanek, California State University, Northridge, for reviewing the book.

I continue to be grateful to the many people who helped with the early editions of
my UNIX books. Special thanks are due to Roger Sippl, Laura King, and Roy
Harrington for introducing me to the UNIX system. My mother, Dr. Helen Sobell,
provided invaluable comments on the original manuscript at several junctures. Also,
thanks go to Isaac Rabinovitch, Professor Raphael Finkel, Professor Randolph
Bentson, Bob Greenberg, Professor Udo Pooch, Judy Ross, Dr. Robert Veroff,
Dr. Mike Denny, Joe DiMartino, Dr. John Mashey, Diane Schulz, Robert Jung, Charles
Whitaker, Don Cragun, Brian Dougherty, Dr. Robert Fish, Guy Harris, Ping Liao,
Gary Lindgren, Dr. Jarrett Rosenberg, Dr. Peter Smith, Bill Weber, Mike Bianchi,
Scooter Morris, Clarke Echols, Oliver Grillmeyer, Dr. David Korn, Dr. Scott
Weikart, and Dr. Richard Curtis.

Finally, thanks to Peter and his family for providing nourishment and a very com-
fortable place to work. I spent many hours reading the manuscript at JumpStart,
Peter’s neighborhood coffee and sandwich shop. If you are in the neighborhood
(24th & Guerrero in San Francisco), stop by and say “Hi.”

I take responsibility for any errors and omissions in this book. If you find one or
just have a comment, let me know (mgs@sobell.com) and I will fix it in the next
printing. My home page (www.sobell.com) contains a list of errors and credits those
who found them. It also offers copies of the longer scripts from the book and point-
ers to interesting Linux pages on the Internet.

Mark G. Sobell
San Francisco, California

 From the Library of WoweBook.Com

www.sobell.com

ptg

111

1Chapter1An operating system is the low-level software that schedules tasks,
allocates storage, and handles the interfaces to peripheral hard-
ware, such as printers, disk drives, the screen, keyboard, and
mouse. An operating system has two main parts: the kernel and
the system programs. The kernel allocates machine resources—
including memory, disk space, and CPU (page 1143) cycles—to all
other programs that run on the computer. The system programs
include device drivers, libraries, utility programs, shells (command
interpreters), configuration scripts and files, application programs,
servers, and documentation. They perform higher-level housekeep-
ing tasks, often acting as servers in a client/server relationship.
Many of the libraries, servers, and utility programs were written
by the GNU Project, which is discussed shortly.

In This Chapter

Ubuntu Linux 2

The History of UNIX and
GNU–Linux 3

The Heritage of Linux: UNIX 3

What Is So Good About Linux?. 6

Overview of Linux 12

Additional Features of Linux. 17

Conventions Used in This Book . . . 19

1

Welcome to Linux

 From the Library of WoweBook.Com

ptg

2 Chapter 1 Welcome to Linux

Linux kernel The Linux kernel was developed by Finnish undergraduate student Linus Torvalds,
who used the Internet to make the source code immediately available to others for
free. Torvalds released Linux version 0.01 in September 1991.

The new operating system came together through a lot of hard work. Programmers
around the world were quick to extend the kernel and develop other tools, adding
functionality to match that already found in both BSD UNIX and System V UNIX
(SVR4) as well as new functionality. The name Linux is a combination of Linus
and UNIX.

The Linux operating system, which was developed through the cooperation of
many, many people around the world, is a product of the Internet and is a free oper-
ating system. In other words, all the source code is free. You are free to study it,
redistribute it, and modify it. As a result, the code is available free of cost—no
charge for the software, source, documentation, or support (via newsgroups, mail-
ing lists, and other Internet resources). As the GNU Free Software Definition (repro-
duced in Appendix D) puts it:

Free beer “Free software” is a matter of liberty, not price. To understand the
concept, you should think of “free” as in “free speech,” not as in
“free beer.”

Ubuntu Linux

Distributions Various organizations package the Linux kernel and system programs as Linux dis-
tributions (visit distrowatch.com for more information). Some of the most popular
distributions are SUSE, Fedora, Ubuntu, Red Hat, Debian, and Mandriva. One of
the biggest differences between distributions typically is how the user installs the
operating system. Other differences include which graphical configuration tools are
installed by default and which tools are used to keep the system up-to-date.

Canonical Under the leadership of Mark Shuttleworth, Canonical Ltd. (www.canonical.com),
the sponsor of Ubuntu Linux, supports many, similar Linux distributions: Ubuntu
runs the GNOME desktop manager, Kubuntu (www.kubuntu.org) runs the KDE
desktop manager, Edubuntu (www.edubuntu.org) includes many school-related
applications, and Xubuntu (www.xubuntu.org) runs the lightweight Xfce desktop,
which makes it ideal for older, slower machines.

From its first release in October 2004, Ubuntu has been a community-oriented
project. Ubuntu maintains several structures that keep it functioning effectively, with
community members invited to participate in all structures. For more information
about Ubuntu governance, see www.ubuntu.com/community/processes/governance.

Ubuntu Linux is based on Debian Linux and focuses on enhancing usability, acces-
sibility, and internationalization. Although Ubuntu initially targeted the desktop

 From the Library of WoweBook.Com

www.canonical.com
www.edubuntu.org
www.xubuntu.org
www.kubuntu.org
www.ubuntu.com/community/processes/governance

ptg

The History of UNIX and GNU–Linux 3

user, recent releases have put increasing emphasis on the server market. With a new
release scheduled every six months, Ubuntu provides cutting-edge software.

An Ubuntu system uses the GNOME desktop manager (www.gnome.org) and
includes the OpenOffice.org suite of productivity tools, the Firefox Web browser,
the Pidgin (formerly Gaim) IM client, and an assortment of tools and games. To
keep software on a system up-to-date, Ubuntu uses Debian’s deb package format
and various APT-based tools.

The Ubuntu governance structure follows a benevolent dictator model: Mark
Shuttleworth is the Self-Appointed Benevolent Dictator for Life (SABDFL). The
structure includes the Technical Board, Ubuntu Community Council, Local Com-
munities (LoCos), and Masters of the Universe (MOTU; wiki.ubuntu.com/MOTU).
For more information about Ubuntu, see www.ubuntu.com/aboutus/faq.

The History of UNIX and GNU–Linux

This section presents some background on the relationships between UNIX and
Linux and between GNU and Linux.

The Heritage of Linux: UNIX

The UNIX system was developed by researchers who needed a set of modern com-
puting tools to help them with their projects. The system allowed a group of people
working together on a project to share selected data and programs while keeping
other information private.

Universities and colleges played a major role in furthering the popularity of the UNIX
operating system through the “four-year effect.” When the UNIX operating system
became widely available in 1975, Bell Labs offered it to educational institutions at
nominal cost. The schools, in turn, used it in their computer science programs, ensur-
ing that computer science students became familiar with it. Because UNIX was such
an advanced development system, the students became acclimated to a sophisticated
programming environment. As these students graduated and went into industry, they
expected to work in a similarly advanced environment. As more of them worked their
way up the ladder in the commercial world, the UNIX operating system found its way
into industry.

In addition to introducing students to the UNIX operating system, the Computer
Systems Research Group (CSRG) at the University of California at Berkeley made
significant additions and changes to it. In fact, it made so many popular changes
that one version of the system is called the Berkeley Software Distribution (BSD) of
the UNIX system (or just Berkeley UNIX). The other major version is UNIX
System V (SVR4), which descended from versions developed and maintained by
AT&T and UNIX System Laboratories.

 From the Library of WoweBook.Com

www.gnome.org
www.ubuntu.com/aboutus/faq

ptg

4 Chapter 1 Welcome to Linux

Fade to 1983

Richard Stallman (www.stallman.org) announced1 the GNU Project for creating an
operating system, both kernel and system programs, and presented the GNU Mani-
festo,2 which begins as follows:

GNU, which stands for Gnu’s Not UNIX, is the name for the com-
plete UNIX-compatible software system which I am writing so that
I can give it away free to everyone who can use it.

Some years later, Stallman added a footnote to the preceding sentence when he real-
ized that it was creating confusion:

The wording here was careless. The intention was that nobody
would have to pay for *permission* to use the GNU system. But
the words don’t make this clear, and people often interpret them as
saying that copies of GNU should always be distributed at little or
no charge. That was never the intent; later on, the manifesto men-
tions the possibility of companies providing the service of distribu-
tion for a profit. Subsequently I have learned to distinguish
carefully between “free” in the sense of freedom and “free” in the
sense of price. Free software is software that users have the free-
dom to distribute and change. Some users may obtain copies at no
charge, while others pay to obtain copies—and if the funds help
support improving the software, so much the better. The important
thing is that everyone who has a copy has the freedom to cooperate
with others in using it.

In the manifesto, after explaining a little about the project and what has been
accomplished so far, Stallman continues:

Why I Must Write GNU
I consider that the golden rule requires that if I like a program I must
share it with other people who like it. Software sellers want to divide
the users and conquer them, making each user agree not to share
with others. I refuse to break solidarity with other users in this way.
I cannot in good conscience sign a nondisclosure agreement or a
software license agreement. For years I worked within the Artificial
Intelligence Lab to resist such tendencies and other inhospitalities,
but eventually they had gone too far: I could not remain in an insti-
tution where such things are done for me against my will.

So that I can continue to use computers without dishonor, I have
decided to put together a sufficient body of free software so that I
will be able to get along without any software that is not free. I

1. www.gnu.org/gnu/initial-announcement.html

2. www.gnu.org/gnu/manifesto.html

 From the Library of WoweBook.Com

www.stallman.org
www.gnu.org/gnu/initial-announcement.html
www.gnu.org/gnu/manifesto.html

ptg

The History of UNIX and GNU–Linux 5

have resigned from the AI Lab to deny MIT any legal excuse to
prevent me from giving GNU away.

Next Scene, 1991

The GNU Project has moved well along toward its goal. Much of the GNU operating
system, except for the kernel, is complete. Richard Stallman later writes:

By the early ’90s we had put together the whole system aside from
the kernel (and we were also working on a kernel, the GNU Hurd,3

which runs on top of Mach4). Developing this kernel has been a lot
harder than we expected, and we are still working on finishing it.5

...[M]any believe that once Linus Torvalds finished writing the ker-
nel, his friends looked around for other free software, and for no
particular reason most everything necessary to make a UNIX-like
system was already available.

What they found was no accident—it was the GNU system. The
available free software6 added up to a complete system because the
GNU Project had been working since 1984 to make one. The GNU
Manifesto had set forth the goal of developing a free UNIX-like
system, called GNU. The Initial Announcement of the GNU
Project also outlines some of the original plans for the GNU sys-
tem. By the time Linux was written, the [GNU] system was almost
finished.7

Today the GNU “operating system” runs on top of the FreeBSD (www.freebsd.org)
and NetBSD (www.netbsd.org) kernels with complete Linux binary compatibility
and on top of Hurd pre-releases and Darwin (developer.apple.com/opensource)
without this compatibility.

The Code Is Free

The tradition of free software dates back to the days when UNIX was released to
universities at nominal cost, which contributed to its portability and success. This
tradition eventually died as UNIX was commercialized and manufacturers came to
regard the source code as proprietary, making it effectively unavailable. Another
problem with the commercial versions of UNIX related to their complexity. As each
manufacturer tuned UNIX for a specific architecture, the operating system became
less portable and too unwieldy for teaching and experimentation.

3. www.gnu.org/software/hurd/hurd.html

4. www.gnu.org/software/hurd/gnumach.html

5. www.gnu.org/software/hurd/hurd-and-linux.html

6. See Appendix D or www.gnu.org/philosophy/free-sw.html.

7. www.gnu.org/gnu/linux-and-gnu.html

 From the Library of WoweBook.Com

www.freebsd.org
www.netbsd.org
www.gnu.org/software/hurd/hurd.html
www.gnu.org/software/hurd/gnumach.html
www.gnu.org/software/hurd/hurd-and-linux.html
www.gnu.org/philosophy/free-sw.html
www.gnu.org/gnu/linux-and-gnu.html

ptg

6 Chapter 1 Welcome to Linux

MINIX Two professors created their own stripped-down UNIX look-alikes for educational
purposes: Doug Comer created XINU and Andrew Tanenbaum created MINIX.
Linus Torvalds created Linux to counteract the shortcomings in MINIX. Every time
there was a choice between code simplicity and efficiency/features, Tanenbaum
chose simplicity (to make it easy to teach with MINIX), which meant this system
lacked many features people wanted. Linux went in the opposite direction.

You can obtain Linux at no cost over the Internet (page 43). You can also obtain the
GNU code via the U.S. mail at a modest cost for materials and shipping. You can sup-
port the Free Software Foundation (www.fsf.org) by buying the same (GNU) code in
higher-priced packages, and you can buy commercial packaged releases of Linux
(called distributions), such as Ubuntu Linux, that include installation instructions,
software, and support.

GPL Linux and GNU software are distributed under the terms of the GNU General Public
License (GPL, www.gnu.org/licenses/licenses.html). The GPL says you have the right
to copy, modify, and redistribute the code covered by the agreement. When you
redistribute the code, however, you must also distribute the same license with the
code, thereby making the code and the license inseparable. If you get source code off
the Internet for an accounting program that is under the GPL and then modify that
code and redistribute an executable version of the program, you must also distribute
the modified source code and the GPL agreement with it. Because this arrangement is
the reverse of the way a normal copyright works (it gives rights instead of limiting
them), it has been termed a copyleft. (This paragraph is not a legal interpretation of
the GPL; it is intended merely to give you an idea of how it works. Refer to the GPL
itself when you want to make use of it.)

Have Fun!

Two key words for Linux are “Have Fun!” These words pop up in prompts and doc-
umentation. The UNIX—now Linux—culture is steeped in humor that can be seen
throughout the system. For example, less is more—GNU has replaced the UNIX
paging utility named more with an improved utility named less. The utility to view
PostScript documents is named ghostscript, and one of several replacements for the vi
editor is named elvis. While machines with Intel processors have “Intel Inside” logos
on their outside, some Linux machines sport “Linux Inside” logos. And Torvalds
himself has been seen wearing a T-shirt bearing a “Linus Inside” logo.

What Is So Good About Linux?

In recent years Linux has emerged as a powerful and innovative UNIX work-alike.
Its popularity has surpassed that of its UNIX predecessors. Although it mimics
UNIX in many ways, the Linux operating system departs from UNIX in several sig-
nificant ways: The Linux kernel is implemented independently of both BSD and Sys-
tem V, the continuing development of Linux is taking place through the combined

 From the Library of WoweBook.Com

www.fsf.org
www.gnu.org/licenses/licenses.html

ptg

What Is So Good About Linux? 7

efforts of many capable individuals throughout the world, and Linux puts the power
of UNIX within easy reach of both business and personal computer users. Using the
Internet, today’s skilled programmers submit additions and improvements to the
operating system to Linus Torvalds, GNU, or one of the other authors of Linux.

Standards In 1985, individuals from companies throughout the computer industry joined
together to develop the POSIX (Portable Operating System Interface for Computer
Environments) standard, which is based largely on the UNIX System V Interface
Definition (SVID) and other earlier standardization efforts. These efforts were
spurred by the U.S. government, which needed a standard computing environment
to minimize its training and procurement costs. Released in 1988, POSIX is a group
of IEEE standards that define the API (application programming interface), shell,
and utility interfaces for an operating system. Although aimed at UNIX-like systems,
the standards can apply to any compatible operating system. Now that these stan-
dards have gained acceptance, software developers are able to develop applications
that run on all conforming versions of UNIX, Linux, and other operating systems.

Applications A rich selection of applications is available for Linux—both free and commercial—
as well as a wide variety of tools: graphical, word processing, networking, security,
administration, Web server, and many others. Large software companies have
recently seen the benefit in supporting Linux and now have on-staff programmers
whose job it is to design and code the Linux kernel, GNU, KDE, or other software
that runs on Linux. For example, IBM (www.ibm.com/linux) is a major Linux sup-
porter. Linux conforms increasingly more closely to POSIX standards, and some
distributions and parts of others meet this standard. These developments indicate
that Linux is becoming mainstream and is respected as an attractive alternative to
other popular operating systems.

Peripherals Another aspect of Linux that appeals to users is the amazing range of peripherals that is
supported and the speed with which support for new peripherals emerges. Linux often
supports a peripheral or interface card before any company does. Unfortunately
some types of peripherals—particularly proprietary graphics cards—lag in their
support because the manufacturers do not release specifications or source code for
drivers in a timely manner, if at all.

Software Also important to users is the amount of software that is available—not just source
code (which needs to be compiled) but also prebuilt binaries that are easy to install
and ready to run. These programs include more than free software. Netscape, for
example, has been available for Linux from the start and included Java support
before it was available from many commercial vendors. Its sibling Mozilla/Thun-
derbird/Firefox is also a viable browser, mail client, and newsreader, performing
many other functions as well.

Platforms Linux is not just for Intel-based platforms (which now include Apple computers): It
has been ported to and runs on the Power PC—including older Apple computers
(ppclinux), Compaq’s (née Digital Equipment Corporation) Alpha-based machines,
MIPS-based machines, Motorola’s 68K-based machines, various 64-bit systems,
and IBM’s S/390. Nor is Linux just for single-processor machines: As of version 2.0,

 From the Library of WoweBook.Com

www.ibm.com/linux

ptg

8 Chapter 1 Welcome to Linux

it runs on multiple-processor machines (SMPs; page 1172). It also includes an O(1)
scheduler, which dramatically increases scalability on SMP systems.

Emulators Linux supports programs, called emulators, that run code intended for other operat-
ing systems. By using emulators you can run some DOS, Windows, and Macintosh
programs under Linux. For example, Wine (www.winehq.com) is an open-source
implementation of the Windows API that runs on top of the X Window System and
UNIX/Linux.

Virtual machines A virtual machine (VM or guest) appears to the user and to the software running on
it as a complete physical machine. It is, however, one of potentially many such VMs
running on a single physical machine (the host). The software that provides the vir-
tualization is called a virtual machine monitor (VMM) or hypervisor. Each VM can
run a different operating system from the other VMs. For example, on a single host
you could have VMs running Windows, Ubuntu 7.10, Ubuntu 8.04, and Fedora 9.

A multitasking operating system allows you to run many programs on a single
physical system. Similarly, a hypervisor allows you to run many operating systems
(VMs) on a single physical system.

VMs provide many advantages over single, dedicated machines:

• Isolation—Each VM is isolated from the other VMs running on the same
host: Thus, if one VM crashes or is compromised, the others are not
affected.

• Security—When a single server system running several servers is compro-
mised, all servers are compromised. If each server is running on its own
VM, only the compromised server is affected; other servers remain secure.

• Power consumption—Using VMs, a single powerful machine can replace
many less powerful machines, thereby cutting power consumption.

• Development and support—Multiple VMs, each running a different version
of an operating system and/or different operating systems, can facilitate
development and support of software designed to run in many environments.
With this organization you can easily test a product in different environments
before releasing it. Similarly, when a user submits a bug, you can reproduce
the bug in the same environment it occurred in.

• Servers—In some cases, different servers require different versions of sys-
tem libraries. In this instance, you can run each server on its own VM, all
on a single piece of hardware.

• Testing—Using VMs, you can experiment with cutting-edge releases of
operating systems and applications without concern for the base (stable)
system, all on a single machine.

• Networks—You can set up and test networks of systems on a single
machine.

 From the Library of WoweBook.Com

www.winehq.com

ptg

What Is So Good About Linux? 9

• Sandboxes—A VM presents a sandbox—an area (system) that you can
work in without regard for the results of your work or for the need to
clean up.

• Snapshots—You can take snapshots of a VM and return the VM to the
state it was in when you took the snapshot simply by reloading the VM
from the snapshot.

Xen Xen, which was created at the University of Cambridge and is now being developed
in the open-source community, is an open-source virtual machine monitor (VMM).
A VMM enables several virtual machines (VMs), each running an instance of a sep-
arate operating system, to run on a single computer. Xen isolates the VMs so that if
one crashes it does not affect any of the others. In addition, Xen introduces minimal
performance overhead when compared with running each of the operating systems
natively.

Using VMs, you can experiment with cutting-edge releases of operating systems and
applications without concern for the base (stable) system, all on a single machine.
You can also set up and test networks of systems on a single machine. Xen presents
a sandbox, an area (system) that you can work in without regard for the results of
your work or for the need to clean up.

The Lucid release of Ubuntu supports Xen 3.3. This book does not cover the instal-
lation or use of Xen. See help.ubuntu.com/community/Xen for information on run-
ning Xen under Ubuntu. For more information on Xen, refer to the Xen home page
at www.cl.cam.ac.uk/research/srg/netos/xen and to wiki.xensource.com/xenwiki.

VMware VMware, Inc. (www.vmware.com) offers VMware Server, a free, downloadable,
proprietary product you can install and run as an application under Ubuntu.
VMware Server enables you to install several VMs, each running a different
operating system, including Windows and Linux. VMware also offers a free
VMware player that enables you to run VMs you create with the VMware
Server.

KVM The Kernel-based Virtual Machine (KVM; kvm.qumranet.com and libvirt.org) is an
open-source VM and runs as part of the Linux kernel. It works only on systems
based on the Intel VT (VMX) CPU or the AMD SVM CPU; it is implemented as the
kvm, libvirt-bin, and ubuntu-vm-builder packages. For more information refer to
help.ubuntu.com/community/KVM.

Qemu Qemu (bellard.org/qemu), written by Fabrice Bellard, is an open-source VMM that
runs as a user application with no CPU requirements. It can run code written for a
different CPU than that of the host machine. For more information refer to
https://help.ubuntu.com/community/Installation/QemuEmulator.

VirtualBox VirtualBox (www.virtualbox.org) is a VM developed by Sun Microsystems. If you
want to run a virtual instance of Windows, you may want to investigate KVM
(help.ubuntu.com/community/KVM) and VirtualBox.

 From the Library of WoweBook.Com

www.cl.cam.ac.uk/research/srg/netos/xen
www.vmware.com
www.virtualbox.org
https://help.ubuntu.com/community/Installation/QemuEmulator

ptg

10 Chapter 1 Welcome to Linux

Why Linux Is Popular with Hardware Companies

and Developers

Two trends in the computer industry set the stage for the growing popularity of UNIX
and Linux. First, advances in hardware technology created the need for an operating
system that could take advantage of available hardware power. In the mid-1970s,
minicomputers began challenging the large mainframe computers because, in many
applications, minicomputers could perform the same functions less expensively. More
recently, powerful 64-bit processor chips, plentiful and inexpensive memory, and
lower-priced hard disk storage have allowed hardware companies to install multiuser
operating systems on desktop computers.

Proprietary
operating systems

Second, with the cost of hardware continually dropping, hardware manufacturers
could no longer afford to develop and support proprietary operating systems. A
proprietary operating system is one that is written and owned by the manufacturer
of the hardware (for example, DEC/Compaq owns VMS). Today’s manufacturers
need a generic operating system that they can easily adapt to their machines.

Generic operating
systems

A generic operating system is written outside of the company manufacturing the hard-
ware and is sold (UNIX, Windows) or given (Linux) to the manufacturer. Linux is a
generic operating system because it runs on different types of hardware produced by
different manufacturers. Of course, if manufacturers can pay only for development and
avoid per-unit costs (which they have to pay to Microsoft for each copy of Windows
they sell), they are much better off. In turn, software developers need to keep the prices
of their products down; they cannot afford to create new versions of their products to
run under many different proprietary operating systems. Like hardware manufacturers,
software developers need a generic operating system.

Although the UNIX system once met the needs of hardware companies and
researchers for a generic operating system, over time it has become more propri-
etary as manufacturers added support for their own specialized features and intro-
duced new software libraries and utilities. Linux emerged to serve both needs: It is a
generic operating system that takes advantage of available hardware power.

Linux Is Portable

A portable operating system is one that can run on many different machines. More
than 95 percent of the Linux operating system is written in the C programming lan-
guage, and C is portable because it is written in a higher-level, machine-independent
language. (The C compiler is written in C.)

Because Linux is portable, it can be adapted (ported) to different machines and can
meet special requirements. For example, Linux is used in embedded computers,
such as the ones found in cellphones, PDAs, and the cable boxes on top of many
TVs. The file structure takes full advantage of large, fast hard disks. Equally impor-
tant, Linux was originally designed as a multiuser operating system—it was not

 From the Library of WoweBook.Com

ptg

What Is So Good About Linux? 11

modified to serve several users as an afterthought. Sharing the computer’s power
among many users and giving them the ability to share data and programs are cen-
tral features of the system.

Because it is adaptable and takes advantage of available hardware, Linux runs on
many different microprocessor-based systems as well as mainframes. The popular-
ity of the microprocessor-based hardware drives Linux; these microcomputers are
getting faster all the time, at about the same price point. Linux on a fast microcom-
puter has become good enough to displace workstations on many desktops. This
widespread acceptance benefits both users, who do not like having to learn a new
operating system for each vendor’s hardware, and system administrators, who like
having a consistent software environment.

The advent of a standard operating system has given a boost to the development of
the software industry. Now software manufacturers can afford to make one version
of a product available on machines from different manufacturers.

The C Programming Language

Ken Thompson wrote the UNIX operating system in 1969 in PDP-7 assembly lan-
guage. Assembly language is machine dependent: Programs written in assembly
language work on only one machine or, at best, on one family of machines. For this
reason, the original UNIX operating system could not easily be transported to run
on other machines (it was not portable).

To make UNIX portable, Thompson developed the B programming language, a
machine-independent language, from the BCPL language. Dennis Ritchie developed
the C programming language by modifying B and, with Thompson, rewrote UNIX
in C in 1973. Originally, C was touted as a “portable assembler.” The revised oper-
ating system could be transported more easily to run on other machines.

That development marked the start of C. Its roots reveal some of the reasons why it
is such a powerful tool. C can be used to write machine-independent programs. A
programmer who designs a program to be portable can easily move it to any com-
puter that has a C compiler. C is also designed to compile into very efficient code.
With the advent of C, a programmer no longer had to resort to assembly language
to get code that would run well (that is, quickly—although an assembler will always
generate more efficient code than a high-level language).

C is a good systems language. You can write a compiler or an operating system in
C. It is a highly structured but is not necessarily a high-level language. C allows a
programmer to manipulate bits and bytes, as is necessary when writing an operat-
ing system. At the same time, it has high-level constructs that allow for efficient,
modular programming.

In the late 1980s the American National Standards Institute (ANSI) defined a stan-
dard version of the C language, commonly referred to as ANSI C or C89 (for the

 From the Library of WoweBook.Com

ptg

12 Chapter 1 Welcome to Linux

year the standard was published). Ten years later the C99 standard was published;
it is mostly supported by the GNU Project’s C compiler (named gcc). The original
version of the language is often referred to as Kernighan & Ritchie (or K&R) C,
named for the authors of the book that first described the C language.

Another researcher at Bell Labs, Bjarne Stroustrup, created an object-oriented pro-
gramming language named C++, which is built on the foundation of C. Because
object-oriented programming is desired by many employers today, C++ is preferred
over C in many environments. Another language of choice is Objective-C, which
was used to write the first Web browser. The GNU Project’s C compiler supports C,
C++, and Objective-C.

Overview of Linux

The Linux operating system has many unique and powerful features. Like other
operating systems, it is a control program for computers. But like UNIX, it is also a
well-thought-out family of utility programs (Figure 1-1) and a set of tools that
allow users to connect and use these utilities to build systems and applications.

Linux Has a Kernel Programming Interface

The Linux kernel—the heart of the Linux operating system—is responsible for allo-
cating the computer’s resources and scheduling user jobs so each one gets its fair
share of system resources, including access to the CPU; peripheral devices, such as
hard disk, DVD, and CD-ROM storage; printers; and tape drives. Programs interact
with the kernel through system calls, special functions with well-known names. A
programmer can use a single system call to interact with many kinds of devices. For
example, there is one write() system call, rather than many device-specific ones.

Figure 1-1 A layered view of the Linux operating system

Compilers
Database
Management
Systems

Word
Mail and
Message
Facilities

ShellsProcessors

Hardware

Linux Kernel

 From the Library of WoweBook.Com

ptg

Overview of Linux 13

When a program issues a write() request, the kernel interprets the context and passes
the request to the appropriate device. This flexibility allows old utilities to work with
devices that did not exist when the utilities were written. It also makes it possible to
move programs to new versions of the operating system without rewriting them
(provided the new version recognizes the same system calls).

Linux Can Support Many Users

Depending on the hardware and the types of tasks the computer performs, a Linux
system can support from 1 to more than 1,000 users, each concurrently running a
different set of programs. The per-user cost of a computer that can be used by many
people at the same time is less than that of a computer that can be used by only a
single person at a time. It is less because one person cannot generally take advantage
of all the resources a computer has to offer. That is, no one can keep all the printers
going constantly, keep all the system memory in use, keep all the disks busy reading
and writing, keep the Internet connection in use, and keep all the terminals busy at
the same time. By contrast, a multiuser operating system allows many people to use
all of the system resources almost simultaneously. The use of costly resources can be
maximized and the cost per user can be minimized—the primary objectives of a
multiuser operating system.

Linux Can Run Many Tasks

Linux is a fully protected multitasking operating system, allowing each user to run
more than one job at a time. Processes can communicate with one another but
remain fully protected from one another, just as the kernel remains protected from
all processes. You can run several jobs in the background while giving all your
attention to the job being displayed on the screen, and you can switch back and
forth between jobs. If you are running the X Window System (page 17), you can
run different programs in different windows on the same screen and watch all of
them. This capability helps users be more productive.

Linux Provides a Secure Hierarchical Filesystem

A file is a collection of information, such as text for a memo or report, an accumu-
lation of sales figures, an image, a song, or an executable program. Each file is
stored under a unique identifier on a storage device, such as a hard disk. The Linux
filesystem provides a structure whereby files are arranged under directories, which
are like folders or boxes. Each directory has a name and can hold other files and
directories. Directories, in turn, are arranged under other directories, and so forth,
in a treelike organization. This structure helps users keep track of large numbers of

 From the Library of WoweBook.Com

ptg

14 Chapter 1 Welcome to Linux

files by grouping related files in directories. Each user has one primary directory
and as many subdirectories as required (Figure 1-2).

Standards With the idea of making life easier for system administrators and software developers,
a group got together over the Internet and developed the Linux Filesystem Standard
(FSSTND), which has since evolved into the Linux Filesystem Hierarchy Standard
(FHS). Before this standard was adopted, key programs were located in different
places in different Linux distributions. Today you can sit down at a Linux system and
expect to find any given standard program at a consistent location (page 213).

Links A link allows a given file to be accessed by means of two or more names. The alter-
native names can be located in the same directory as the original file or in another
directory. Links can make the same file appear in several users’ directories, enabling
those users to share the file easily. Windows uses the term shortcut in place of link
to describe this capability. Macintosh users will be more familiar with the term
alias. Under Linux, an alias is different from a link; it is a command macro feature
provided by the shell (page 346).

Security Like most multiuser operating systems, Linux allows users to protect their data
from access by other users. It also allows users to share selected data and programs
with certain other users by means of a simple but effective protection scheme. This
level of security is provided by file access permissions, which limit the users who can
read from, write to, or execute a file. More recently, Linux has implemented Access
Control Lists (ACLs), which give users and administrators finer-grained control
over file access permissions.

The Shell: Command Interpreter and

Programming Language

In a textual environment, the shell—the command interpreter—acts as an interface
between you and the operating system. When you enter a command on the screen,
the shell interprets the command and calls the program you want. A number of
shells are available for Linux. The four most popular shells are

Figure 1-2 The Linux filesystem structure

/

etctmphome

hlssammax

notesbin

report log

 From the Library of WoweBook.Com

ptg

Overview of Linux 15

• The Bourne Again Shell (bash), an enhanced version of the original Bourne
Shell (the original UNIX shell).

• The Debian Almquist Shell (dash; page 292), a smaller version of bash,
with fewer features. Most startup shell scripts call dash in place of bash to
speed the boot process.

• The TC Shell (tcsh), an enhanced version of the C Shell, developed as part
of BSD UNIX.

• The Z Shell (zsh), which incorporates features from a number of shells,
including the Korn Shell.

Because different users may prefer different shells, multiuser systems can have sev-
eral different shells in use at any given time. The choice of shells demonstrates one
of the advantages of the Linux operating system: the ability to provide a customized
interface for each user.

Shell scripts Besides performing its function of interpreting commands from a keyboard and
sending those commands to the operating system, the shell is a high-level program-
ming language. Shell commands can be arranged in a file for later execution (Linux
calls these files shell scripts; Windows calls them batch files). This flexibility allows
users to perform complex operations with relative ease, often by issuing short com-
mands, or to build with surprisingly little effort elaborate programs that perform
highly complex operations.

Filename Generation

Wildcards and
ambiguous file

references

When you type commands to be processed by the shell, you can construct patterns
using characters that have special meanings to the shell. These characters are called
wildcard characters. The patterns, which are called ambiguous file references, are a
kind of shorthand: Rather than typing in complete filenames, you can type patterns;
the shell expands these patterns into matching filenames. An ambiguous file reference
can save you the effort of typing in a long filename or a long series of similar file-
names. For example, the shell might expand the pattern mak* to make-3.80.tar.gz.
Patterns can also be useful when you know only part of a filename or cannot remem-
ber the exact spelling of a filename.

Completion

In conjunction with the Readline library, the shell performs command, filename,
pathname, and variable completion: You type a prefix and press ESCAPE, and the shell
lists the items that begin with that prefix or completes the item if the prefix specifies
a unique item.

Device-Independent Input and Output

Redirection Devices (such as a printer or a terminal) and disk files appear as files to Linux pro-
grams. When you give a command to the Linux operating system, you can instruct
it to send the output to any one of several devices or files. This diversion is called
output redirection.

 From the Library of WoweBook.Com

ptg

16 Chapter 1 Welcome to Linux

Device
independence

In a similar manner, a program’s input, which normally comes from a keyboard, can
be redirected so that it comes from a disk file instead. Input and output are device
independent; that is, they can be redirected to or from any appropriate device.

As an example, the cat utility normally displays the contents of a file on the screen.
When you run a cat command, you can easily cause its output to go to a disk file
instead of the screen.

Shell Functions

One of the most important features of the shell is that users can use it as a program-
ming language. Because the shell is an interpreter, it does not compile programs
written for it but rather interprets programs each time they are loaded from the
disk. Loading and interpreting programs can be time-consuming.

Many shells, including the Bourne Again Shell, support shell functions that the shell
holds in memory so it does not have to read them from the disk each time you exe-
cute them. The shell also keeps functions in an internal format so it does not have to
spend as much time interpreting them.

Job Control

Job control is a shell feature that allows users to work on several jobs at once,
switching back and forth between them as desired. When you start a job, it is fre-
quently run in the foreground so it is connected to the terminal. Using job control,
you can move the job you are working with to the background and continue run-
ning it there while working on or observing another job in the foreground. If a
background job then needs your attention, you can move it to the foreground so it
is once again attached to the terminal. (The concept of job control originated with
BSD UNIX, where it appeared in the C Shell.)

A Large Collection of Useful Utilities

Linux includes a family of several hundred utility programs, often referred to as com-
mands. These utilities perform functions that are universally required by users. The
sort utility, for example, puts lists (or groups of lists) in alphabetical or numerical
order and can be used to sort lists by part number, last name, city, ZIP code, telephone
number, age, size, cost, and so forth. The sort utility is an important programming
tool that is part of the standard Linux system. Other utilities allow users to create,
display, print, copy, search, and delete files as well as to edit, format, and typeset text.
The man (for manual) and info utilities provide online documentation for Linux.

Interprocess Communication

Pipes and filters Linux enables users to establish both pipes and filters on the command line. A pipe
sends the output of one program to another program as input. A filter is a special
kind of pipe that processes a stream of input data to yield a stream of output data.

 From the Library of WoweBook.Com

ptg

Additional Features of Linux 17

A filter processes another program’s output, altering it as a result. The filter’s output
then becomes input to another program.

Pipes and filters frequently join utilities to perform a specific task. For example, you
can use a pipe to send the output of the sort utility to head (a filter that lists the first
ten lines of its input); you can then use another pipe to send the output of head to a
third utility, lpr, that sends the data to a printer. Thus, in one command line, you can
use three utilities together to sort and print part of a file.

System Administration

On a Linux system the system administrator is frequently the owner and only user
of the system. This person has many responsibilities. The first responsibility may
be to set up the system, install the software, and possibly edit configuration files.
Once the system is up and running, the system administrator is responsible for
downloading and installing software (including upgrading the operating system),
backing up and restoring files, and managing such system facilities as printers, ter-
minals, servers, and a local network. The system administrator is also responsible
for setting up accounts for new users on a multiuser system, bringing the system
up and down as needed, monitoring the system, and taking care of any problems
that arise.

Additional Features of Linux

The developers of Linux included features from BSD, System V, and Sun Microsys-
tems’ Solaris, as well as new features, in their operating system. Although most of
the tools found on UNIX exist for Linux, in some cases these tools have been
replaced by more modern counterparts. This section describes some of the popular
tools and features available under Linux.

GUIs: Graphical User Interfaces

The X Window System (also called X or X11) was developed in part by researchers at
MIT (Massachusetts Institute of Technology) and provides the foundation for the
GUIs available with Linux. Given a terminal or workstation screen that supports X, a
user can interact with the computer through multiple windows on the screen, display
graphical information, or use special-purpose applications to draw pictures, monitor
processes, or preview formatted output. X is an across-the-network protocol that
allows a user to open a window on a workstation or computer system that is remote
from the CPU generating the window.

Desktop manager Usually two layers run on top of X: a desktop manager and a window manager. A desk-
top manager is a picture-oriented user interface that enables you to interact with system
programs by manipulating icons instead of typing the corresponding commands to a shell.

 From the Library of WoweBook.Com

ptg

18 Chapter 1 Welcome to Linux

Ubuntu runs the GNOME desktop manager (Figure 1-3; www.gnome.org) by default,
but it can also run KDE (www.kde.org) and a number of other desktop managers.

Window manager A window manager is a program that runs under the desktop manager and allows
you to open and close windows, run programs, and set up a mouse so it has different
effects depending on how and where you click. The window manager also gives the
screen its personality. Whereas Microsoft Windows allows you to change the color of
key elements in a window, a window manager under X allows you to customize the
overall look and feel of the screen: You can change the way a window looks and
works (by giving it different borders, buttons, and scrollbars), set up virtual desktops,
create menus, and more.

Several popular window managers run under X and Linux. Ubuntu Linux provides
both Metacity (the default under GNOME) and kwin (the default under KDE).
Other window managers, such as Sawfish and WindowMaker, are also available.
Chapters 4 and 8 present information on GUIs.

(Inter)Networking Utilities

Linux network support includes many utilities that enable you to access remote sys-
tems over a variety of networks. In addition to sending email to users on other systems,
you can access files on disks mounted on other computers as if they were located on
the local system, make your files available to other systems in a similar manner, copy
files back and forth, run programs on remote systems while displaying the results on
the local system, and perform many other operations across local area networks
(LANs) and wide area networks (WANs), including the Internet.

Layered on top of this network access is a wide range of application programs that
extend the computer’s resources around the globe. You can carry on conversations
with people throughout the world, gather information on a wide variety of subjects,

Figure 1-3 A GNOME workspace

 From the Library of WoweBook.Com

www.gnome.org
www.kde.org

ptg

Conventions Used in This Book 19

and download new software over the Internet quickly and reliably. Chapter 10 dis-
cusses networks, the Internet, and the Linux network facilities.

Software Development

One of Linux’s most impressive strengths is its rich software development environ-
ment. Linux supports compilers and interpreters for many computer languages.
Besides C and C++, languages available for Linux include Ada, Fortran, Java, Lisp,
Pascal, Perl, and Python. The bison utility generates parsing code that makes it eas-
ier to write programs to build compilers (tools that parse files containing struc-
tured information). The flex utility generates scanners (code that recognizes lexical
patterns in text). The make utility and the GNU Configure and Build System make
it easier to manage complex development projects. Source code management sys-
tems, such as CVS, simplify version control. Several debuggers, including ups and
gdb, can help you track down and repair software defects. The GNU C compiler
(gcc) works with the gprof profiling utility to help programmers identify potential
bottlenecks in a program’s performance. The C compiler includes options to per-
form extensive checking of C code, thereby making the code more portable and
reducing debugging time. Table B-4 on page 1104 lists some sites you can down-
load software from.

Conventions Used in This Book

This book uses conventions to make its explanations shorter and clearer. The fol-
lowing paragraphs describe these conventions.

Widgets A widget is a simple graphical element that a user interacts with, such as a text box,
radio button, or combo box. When referring to a widget, this book specifies the
type of widget and its label. The term “tick” refers to the mark you put in a check
box, sometimes called a check mark. For example, “put a tick in the check box
labeled Run in terminal.” See the glossary for definitions of various widgets.

Tabs and frames Tabs allow windows to display sets of related information, one set at a time. For
example, Figure 4-12 on page 114 shows the Appearance Preferences window, which
has four tabs; the Theme tab is highlighted. A frame isolates a set of information
within a window. See Figure 14-3 on page 551 for an example.

Menu selection path The menu selection path is the name of the menu or the location of the menu, fol-
lowed by a colon, a SPACE, and the menu selections separated by markers. The
entire menu selection path appears in bold type. You can read Main menu: System
Preferences Appearance as “From the Main menu, select System; from System,
select Preferences; and then select Appearance.”

Text and examples The text is set in this type, whereas examples are shown in a monospaced font (also
called a fixed-width font):

$ cat practice
This is a small file I created
with a text editor.

 From the Library of WoweBook.Com

ptg

20 Chapter 1 Welcome to Linux

Items you enter Everything you enter at the keyboard is shown in a bold typeface. Within the text,
this bold typeface is used; within examples and screens, this one is used. In the pre-
vious example, the dollar sign ($) on the first line is a prompt that Linux displays, so
it is not bold; the remainder of the first line is entered by a user, so it is bold.

Utility names Names of utilities are printed in this sans serif typeface. This book references the
emacs text editor and the ls utility or ls command (or just ls) but instructs you to
enter ls –a on the command line. In this way the text distinguishes between utilities,
which are programs, and the instructions you give on the command line to invoke
the utilities.

Filenames Filenames appear in a bold typeface. Examples are memo5, letter.1283, and reports.
Filenames may include uppercase and lowercase letters; however, Linux is case sen-
sitive (page 1139), so memo5, MEMO5, and Memo5 name three different files.

Character strings Within the text, characters and character strings are marked by putting them in a
bold typeface. This convention avoids the need for quotation marks or other delim-
iters before and after a string. An example is the following string, which is displayed
by the passwd utility: Sorry, passwords do not match.

Buttons and labels Words appear in a bold typeface in the sections of the book that describe a GUI.
This font indicates you can click a mouse button when the mouse pointer is over
these words on the screen or over a button with this name: Click Next.

Keys and characters This book uses SMALL CAPS for three kinds of items:

• Keyboard keys, such as the SPACE bar and the RETURN,8 ESCAPE, and TAB keys.

• The characters that keys generate, such as the SPACEs generated by the SPACE bar.

• Keyboard keys that you press with the CONTROL key, such as CONTROL-D. (Even
though D is shown as an uppercase letter, you do not have to press the SHIFT

key; enter CONTROL-D by holding the CONTROL key down and pressing d.)

Prompts and
RETURNs

Most examples include the shell prompt—the signal that Linux is waiting for a
command—as a dollar sign ($), a hashmark (#), or sometimes a percent sign (%).
The prompt does not appear in a bold typeface in this book because you do not
enter it. Do not type the prompt on the keyboard when you are experimenting with
examples from this book. If you do, the examples will not work.

Examples omit the RETURN keystroke that you must use to execute them. An example
of a command line is

$ vim.tiny memo.1204

To use this example as a model for running the vim text editor, give the command
vim.tiny memo.1204 and press the RETURN key. (Press ESCAPE ZZ to exit from vim; see
page 186 for a vim tutorial.) This method of entering commands makes the examples
in the book correspond to what appears on the screen.

8. Different keyboards use different keys to move the cursor (page 1143) to the beginning of the next line. This
book always refers to the key that ends a line as the RETURN key. Your keyboard may have a RET, NEWLINE, ENTER,
RETURN, or other key. Use the corresponding key on your keyboard each time this book asks you to press RETURN.

 From the Library of WoweBook.Com

ptg

Chapter Summary 21

Definitions All glossary entries marked with FOLDOC are courtesy of Denis Howe, editor of the Free
Online Dictionary of Computing (foldoc.org), and are used with permission. This
site is an ongoing work containing definitions, anecdotes, and trivia.

optional Optional Information

Passages marked as optional appear in a gray box. This material is not central to the
ideas presented in the chapter but often involves more challenging concepts. A good
strategy when reading a chapter is to skip the optional sections and then return to
them when you are comfortable with the main ideas presented in the chapter. This is
an optional paragraph.

URLs (Web
addresses)

Web addresses, or URLs, have an implicit http:// prefix, unless ftp:// or https:// is
shown. You do not normally need to specify a prefix when the prefix is http://, but
you must use a prefix from a browser when you specify an FTP or secure HTTP site.
Thus you can specify a URL in a browser exactly as shown in this book.

Tip, caution, and
security boxes

The following boxes highlight information that may be helpful while you are using
or administrating a Linux system.

Chapter Summary

The Linux operating system grew out of the UNIX heritage to become a popular
alternative to traditional systems (that is, Windows) available for microcomputer
(PC) hardware. UNIX users will find a familiar environment in Linux. Distributions
of Linux contain the expected complement of UNIX utilities, contributed by pro-
grammers around the world, including the set of tools developed as part of the
GNU Project. The Linux community is committed to the continued development of
this system. Support for new microcomputer devices and features is added soon
after the hardware becomes available, and the tools available on Linux continue to
be refined. Given the many commercial software packages available to run on
Linux platforms and the many hardware manufacturers offering Linux on their sys-
tems, it is clear that the system has evolved well beyond its origin as an undergradu-
ate project to become an operating system of choice for academic, commercial,
professional, and personal use.

This is a tip box

tip A tip box may help you avoid repeating a common mistake or may point toward additional information.

This box warns you about something

caution A caution box warns you about a potential pitfall.

This box marks a security note

security A security box highlights a potential security issue. These notes are usually intended for system
administrators, but some apply to all users.

 From the Library of WoweBook.Com

ptg

22 Chapter 1 Welcome to Linux

Exercises

1. What is free software? List three characteristics of free software.

2. Why is Linux popular? Why is it popular in academia?

3. What are multiuser systems? Why are they successful?

4. What is the Free Software Foundation/GNU? What is Linux? Which parts
of the Linux operating system did each provide? Who else has helped build
and refine this operating system?

5. In which language is Linux written? What does the language have to do
with the success of Linux?

6. What is a utility program?

7. What is a shell? How does it work with the kernel? With the user?

8. How can you use utility programs and a shell to create your own applications?

9. Why is the Linux filesystem referred to as hierarchical?

10. What is the difference between a multiprocessor and a multiprocessing
system?

11. Give an example of when you would want to use a multiprocessing
system.

12. Approximately how many people wrote Linux? Why is this project
unique?

13. What are the key terms of the GNU General Public License?

 From the Library of WoweBook.Com

ptg

23

I

PART I

Installing Ubuntu Linux

CHAPTER 2

Installation Overview 25

CHAPTER 3

Step-by-Step Installation 51

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

222555

2Chapter2Installing Ubuntu Linux is the process of copying operating
system files from a CD, DVD, or USB flash drive to hard
disk(s) on a system and setting up configuration files so that
Linux runs properly on the hardware. Several types of installa-
tions are possible, including fresh installations, upgrades from
older releases of Ubuntu Linux, and dual-boot installations.

This chapter discusses the installation process in general: planning,
partitioning the hard disk, obtaining the files for the installation,
burning a CD or a DVD, and collecting information about the
hardware that may be helpful for installation and administration.
Chapter 3 covers the process of installing Ubuntu.

The ubiquity utility is a user-friendly graphical tool that installs
Ubuntu. To install Ubuntu Linux on standard hardware, you can
typically insert the live/install Desktop CD or a live/install DVD
and boot the system. After you answer a few questions, you are
done. Of course, sometimes you may want to customize the system
or you may be installing on nonstandard hardware: The installer
presents you with these kinds of choices as the installation process
unfolds. Ubuntu also provides a textual installer that gives you
more control over the installation. Refer to “Booting from a

In This Chapter

More Information 26

Planning the Installation 27

Setting Up the Hard Disk 33

LVM: Logical Volume Manager 41

The Installation Process 42

Downloading and Burning a
CD/DVD . 43

Using BitTorrent 46

Gathering Information About the
System . 47

2

Installation

Overview

 From the Library of WoweBook.Com

ptg

26 Chapter 2 Installation Overview

Live/Install Desktop CD or a Live/Install DVD” (page 52) and “Advanced Installation”
(page 77) for information about installing and customizing Ubuntu Linux.

The Live/Install Desktop CD and the Live/Install DVD

The live/install Desktop CD and the live/install DVD run Ubuntu without installing
it on the hard disk. To boot from a live/install Desktop CD or a live/install DVD,
make sure the computer is set up to boot from a CD/DVD; see “BIOS setup” and
“CMOS” on page 28 for more information. When you boot a live/install Desktop
CD/DVD, it brings up a GNOME desktop: You are running a live session. When
you exit from the live session, the system returns to the state it was in before you
booted from the CD/DVD. If the system has a Linux swap partition (most Linux
systems have one; see page 37), the live session uses it to improve its performance
but does not otherwise write to the hard disk. You can also install Ubuntu from a
live session.

Running a live session is a good way to test hardware and fix a system that will not
boot from the hard disk. You can use a live session before you upgrade an Ubuntu
system to a new release: In some cases a new kernel may not boot. A live session is
also ideal for people who are new to Ubuntu or Linux and want to experiment with
Ubuntu but are not ready to install Ubuntu on their system.

More Information

In addition to the following references, see “Where to Find Documentation” on
page 136 and refer to Appendix B for additional resources.

Web memtest86+: www.memtest.org
gparted (GNOME Partition Editor): gparted.sourceforge.net
Hardware compatibility: wiki.ubuntu.com/HardwareSupport
Swap space: help.ubuntu.com/community/SwapFaq
Partition HOWTO: tldp.org/HOWTO/Partition
Upgrading: www.ubuntu.com/getubuntu/upgrading
Boot command-line parameters: help.ubuntu.com/community/BootOptions and

www.tldp.org/HOWTO/BootPrompt-HOWTO.html
Releases: wiki.ubuntu.com/Releases
Release notes: www.ubuntu.com/getubuntu/releasenotes
Burning a CD: help.ubuntu.com/community/BurningIsoHowto
Installing from a USB flash drive:

help.ubuntu.com/community/Installation/FromUSBStick

Saving files during a live session
tip You cannot save a file to a live/install CD/DVD as these are readonly media. During a live session,

even though you may appear to save a file, it will not be there after you exit from the live session. To
save data from a live session, save it to a network share or a USB flash drive, or mail it to yourself.

 From the Library of WoweBook.Com

www.memtest.org
www.ubuntu.com/getubuntu/upgrading
www.tldp.org/HOWTO/BootPrompt-HOWTO.html
www.ubuntu.com/getubuntu/releasenotes

ptg

Planning the Installation 27

RAID: help.ubuntu.com/community/Installation/SoftwareRAID,
en.wikipedia.org/wiki/RAID, and raid.wiki.kernel.org/index.php/Linux_Raid

LVM Resource Page (includes many links): sourceware.org/lvm2
LVM HOWTO: www.tldp.org/HOWTO/LVM-HOWTO
BitTorrent: help.ubuntu.com/community/BitTorrent and azureus.sourceforge.net
ARM: wiki.ubuntu.com/ARM/LucidReleaseNotes
X.org release information: wiki.x.org

Download Ubuntu Easiest download: www.ubuntu.com/getubuntu
Released versions: releases.ubuntu.com
Minimal CD: help.ubuntu.com/community/Installation/MinimalCD
Older versions: old-releases.ubuntu.com/releases
Development images and unsupported releases: cdimage.ubuntu.com
Mac (PowerPC): wiki.ubuntu.com/PowerPCDownloads
BitTorrent torrent files: torrent.ubuntu.com/releases

Planning the Installation

The major decision when planning an installation is determining how to divide the
hard disk into partitions or, in the case of a dual-boot system, where to put the
Linux partitions. Once you have installed Ubuntu, you can decide which software
packages you want to add to the base system (or whether you want to remove
some). In addition to these topics, this section discusses hardware requirements for
Ubuntu Linux and fresh installations versus upgrades.

Considerations

GUI On most systems, except for servers, you probably want to install a graphical user
interface (a desktop). Ubuntu installs GNOME by default. See page 75 for informa-
tion about installing KDE.

Software and
services

As you install more software packages on a system, the number of updates and the
interactions between the packages increase. Server packages that listen for network
connections make the system more vulnerable by increasing the number of ways the
system can be attacked. Including additional services can also slow the system down.

If you want a system to learn on or a development system, additional packages and
services may be useful. For a more secure production system, it is best to install and
maintain the minimum number of packages required and to enable only needed ser-
vices. See page 432 for information on the Upstart init daemon, which starts and
stops system services.

Minimal CD The Minimal CD is small and provides a quick installation (page 32).

Requirements

Hardware This chapter and Chapter 3 cover installing Ubuntu on 32-bit Intel and compatible
processor architectures such as AMD as well as 64-bit processor architectures such as
AMD64 processors and Intel processors with Intel EM64T technology. Within these
processor architectures, Ubuntu Linux runs on much of the available hardware. You

 From the Library of WoweBook.Com

www.tldp.org/HOWTO/LVM-HOWTO
www.ubuntu.com/getubuntu

ptg

28 Chapter 2 Installation Overview

can view Ubuntu’s list of compatible and supported hardware at
wiki.ubuntu.com/HardwareSupport. Many Internet sites discuss Linux hardware;
use Google (www.google.com) to search for linux hardware, ubuntu hardware, or
linux and the specific hardware you want more information on (for example, linux
sata or linux a8n). In addition, many HOWTOs cover specific hardware. The Linux
Hardware Compatibility HOWTO is also available, although it may not be up-to-
date at the time you read it. Ubuntu Linux usually runs on the same systems Windows
runs on, unless the system includes a very new or unusual component.

The hardware required to run Ubuntu depends on which kind of system you want
to set up. A very minimal system that runs a textual (command-line) interface and
has very few software packages installed requires very different hardware from a
system that runs a GUI, has many installed packages, and supports visual effects
(page 115). Use the Alternate CD (page 32) if you are installing Ubuntu on a system
with less than 320 megabytes of RAM. If you want to run visual effects on the sys-
tem, look up visual effects on help.ubuntu.com.

A network connection is invaluable for keeping Ubuntu up-to-date. A sound card is
nice to have for multimedia applications. If you are installing Ubuntu on old or
minimal hardware and want to run a GUI, consider installing Xubuntu
(www.xubuntu.org), as it provides a lightweight desktop that uses system resources
more efficiently than Ubuntu does.

RAM (memory) An extremely minimal textual (command-line) system requires 48 megabytes of
RAM. A standard desktop system requires 320 megabytes, although you may be
able to use less RAM if you install Xubuntu. Installing Ubuntu from a live session
requires 256 megabytes, although it will run slowly if the system has less than 512
megabytes of RAM. Use the textual installer (page 85) if the system has less than
256 megabytes of RAM.

Linux makes good use of extra memory: The more memory a system has, the faster
it runs. Adding memory is one of the most cost-effective ways you can speed up a
Linux system.

CPU Ubuntu Linux requires a minimum of a 200-megahertz Pentium-class processor or the
equivalent AMD or other processor for textual mode and at least a 400-megahertz
Pentium II processor or the equivalent for graphical mode.

Hard disk space The amount of hard disk space Ubuntu requires depends on which edition of Ubuntu
Linux you install, which packages you install, how many languages you install, and
how much space you need for user data (your files). The operating system typically
requires 2–8 gigabytes, although a minimal system can make do with much less space.
Installing Ubuntu from a live session requires 4 gigabytes of space on a hard disk.

BIOS setup Modern computers can be set up to boot from a CD/DVD, hard disk, or USB flash
drive. The BIOS determines the order in which the system tries to boot from each
device. You may need to change this order: Make sure the BIOS is set up to try
booting from the CD/DVD before it tries to boot from the hard disk. See page 583
for more information.

CMOS CMOS is the persistent memory that stores hardware configuration information. To
change the BIOS setup, you need to edit the information stored in CMOS. When the

 From the Library of WoweBook.Com

www.google.com
www.xubuntu.org

ptg

Planning the Installation 29

system boots, it displays a brief message about how to enter System Setup or CMOS
Setup mode. Usually you need to press DEL or F2 while the system is booting. Press the
key that is called for and then move the cursor to the screen and line that deal with
booting the system. Generally there is a list of three or four devices that the system
tries to boot from; if the first attempt fails, the system tries the second device, and so
on. Manipulate the list so that the CD/DVD is the first choice, save the list, and
reboot. Refer to the hardware/BIOS manual for more information.

Processor Architecture

Ubuntu CDs and DVDs hold programs compiled to run on a specific processor archi-
tecture (class of processors, or CPUs). The following list describes each of the architec-
tures Ubuntu is compiled for. See help.ubuntu.com/community/ProcessorArch for a
detailed list of processors in each architecture. Because Linux source code is available to
everyone, a knowledgeable user can compile Ubuntu Linux to run on other processor
architectures.

Should I install 32-bit or 64-bit Ubuntu on a 64-bit-capable processor?

tip The following information may help you decide whether to install 32-bit or 64-bit Ubuntu on a 64-
bit-capable processor.

• EM64T/AMD64 processors can run either version of Ubuntu equally well.

• A 64-bit distribution allows each process to address more than 4 gigabytes of RAM.
Larger address space is the biggest advantage of a 64-bit distribution. It is typically
useful only for certain engineering/scientific computational work and when you are
running multiple virtual machines.

• A 64-bit processor is not faster than a 32-bit processor in general; most benchmarks show
more or less similar performance. In some cases the performance is better and in some
cases it is worse: There is no clear performance advantage for either type of processor.

• The memory model for 64-bit Linux makes pointers twice as big as those in 32-bit
Linux. This size difference translates to a more than 5 percent RAM usage increase,
depending on the application. If a system is low on RAM, this overhead may make
performance worse.

• ASLR (Address Space Layout Randomization) works better with the larger address
space provided by 64-bit Ubuntu. ALSR can help improve system security. See
en.wikipedia.org/wiki/Address_space_layout_randomization.

• Some multimedia encoders run 10–30 percent faster under 64-bit Ubuntu.

• Because more people are using 32-bit Linux, bugs in 32-bit Linux tend to be discovered
and fixed faster than those in 64-bit Linux.

• Ubuntu can set up Flashplayer and Java with a single click on 64-bit systems just as it
can on 32-bit systems. However, for some applications, such as Skype, you must
apply ugly workarounds to run them on 64-bit systems.

• There is no simple way to go back and forth between 32-bit and 64-bit versions of
Ubuntu without reinstalling Ubuntu.

• If you are not sure which distribution to use, install the 32-bit version of Ubuntu.

 From the Library of WoweBook.Com

ptg

30 Chapter 2 Installation Overview

i386 (Intel x86) Software on an Ubuntu PC (Intel x86) CD/DVD is compiled to run on Intel x86-
compatible processors, including most machines with Intel and AMD processors,
almost all machines that run Microsoft Windows, and newer Apple Macintosh
machines that use Intel processors. If you are not sure which type of processor a
machine has, assume it has this type of processor.

amd64 (AMD64
and Intel EM64T)

Software on an Ubuntu 64-bit PC (AMD64) CD/DVD is compiled to run on
AMD64 processors, including the Athlon64, Opteron, and Intel 64-bit processors
that incorporate EM64T technology, such as the EMT64 Xeon. Because some fea-
tures of proprietary third-party applications are not available for 64-bit architec-
ture, you may want to run Ubuntu compiled for a 32-bit (Intel x86) processor on a
system with a 64-bit processor.

armel+dove Dove refers to the Marvell Dove System-on-Chip (code name for the Armada 500).
This all-in-one chipset features an ARM general processor and a specific set of periph-
erals. For more information see www.ubuntu.com/products/whatisubuntu/arm and
wiki.ubuntu.com/ARM/LucidReleaseNotes.

powerpc (PowerPC) Ubuntu does not officially support the IBM/Motorola PowerPC (used by older
Apple Macintosh computers), but extensive community support for this processor
architecture is available. See wiki.ubuntu.com/PowerPCFAQ for more information
about running Ubuntu on a PowerPC. You can download PowerPC versions of
Ubuntu from wiki.ubuntu.com/PowerPCDownloads.

sparc (Sun SPARC) Ubuntu supports UltraSPARC machines, including those based on the multicore
UltraSPARC T1 (Niagara) processors.

ia64 (Intel IA-64) Ubuntu supports the Itanium family of 64-bit Intel processors.

Interfaces: Installer and Installed System

When you install Ubuntu, you have a choice of interfaces to use while you install it
(to work with the installer). You also have a choice of interfaces to use to work with
the installed system. This section describes the two basic interfaces: textual and
graphical.

Textual (CLI) A textual interface, also called a command-line interface (CLI) or character-based
interface, displays characters and some simple graphical symbols. It is line oriented;
you give it instructions using a keyboard only.

Graphical (GUI) A graphical user interface (GUI) typically displays a desktop (such as GNOME) and
windows; you give it instructions using a mouse and keyboard. You can run a textual
interface within a GUI by opening a terminal emulator window (page 125). A GUI
uses more computer resources (CPU time and memory) than a textual interface does.

Pseudographical A pseudographical interface is a textual interface that takes advantage of graphical
elements on a text-based display device such as a terminal. It may also use color.
This interface uses text elements, including simple graphical symbols, to draw rudi-
mentary boxes that emulate GUI windows and buttons. Pressing the TAB key fre-
quently moves the cursor from one element to the next and pressing the RETURN key
selects the element the cursor is on.

 From the Library of WoweBook.Com

www.ubuntu.com/products/whatisubuntu/arm

ptg

Planning the Installation 31

Advantages A GUI is user friendly, whereas the textual interface is compact, uses fewer system
resources, and can work on a text-only terminal or over a text-only connection.
Because it is more efficient, a textual interface is useful for older, slower systems and
systems with minimal amounts of RAM. Server systems frequently use a textual
interface because it allows the system to dedicate more resources to carrying out the
job it is set up to do and fewer resources to pleasing the system administrator. Not
running a GUI can also improve system security.

Even though it uses a graphical interface, Ubuntu’s live installer installs Ubuntu
faster than the textual installer. The live installer copies an installed system image to
the hard disk and then sets up the system, whereas the textual installer uses APT
and dpkg to unpack hundreds of packages one by one.

Installer interfaces Ubuntu provides a user-friendly graphical installer (ubiquity) as well as an efficient
pseudographical installer (debian-installer) that offers more options and gives you
greater control over the installation (Figure 2-1). Both interfaces accomplish the
same task: They enable you to tell the installer how you want it to configure
Ubuntu.

Ubuntu Releases

Canonical, the company that supports Ubuntu, distributes a new release about every
six months. Each release has both a number and a name. The number comprises the
last one or two digits of the year and the two digits of the month of the release. For
example, the 9.10 release was released in October 2009. In sequence, recent releases
are 7.10 (Gutsy Gibbon), 8.04 (Hardy Heron), 8.10 (Intrepid Ibex), 9.04 (Jaunty
Jackalope), 9.10 (Karmic Koala), and 10.04 (Lucid Lynx). Ubuntu supports (i.e.,
provides updates for, including security updates) each release for at least 18 months.
For a complete list of Ubuntu releases, see wiki.ubuntu.com/Releases.

LTS releases Some releases of Ubuntu are marked LTS (long-term support); for example, Lucid
Lynx is an LTS release. Canonical supports LTS releases for three years for a desktop

Figure 2-1 Graphical (left) and textual (pseudographical, right) installers

 From the Library of WoweBook.Com

ptg

32 Chapter 2 Installation Overview

system and for five years for a server system. LTS releases are designed for people
who are more interested in having a stable, unchanging operating system rather than
the latest, fastest version. Large and corporate installations, servers, and highly cus-
tomized distributions frequently fall into this category. You can install and upgrade
an LTS release just as you would any other release.

Ubuntu Editions

Each Ubuntu release disk is called an edition. Following is an overview of each disk.
Table 3-1 on page 78 lists the selections available on each disk menu.

DVD The DVD is a live/install DVD (page 26); you can use it to boot into a live session. You
can install Ubuntu from a live session (page 57). This DVD is available for PC and 64-
bit PC architectures (page 29), uses the graphical or textual installer, and installs an
Ubuntu system that displays either a graphical or a textual interface. The DVD includes
all software packages supported by Ubuntu, not just those installed by default. It is an
excellent resource for someone with a system that has no Internet connection.

Desktop CD The Desktop CD is a live/install CD (page 26); you can use it to boot into a live ses-
sion. You can install Ubuntu from a live session (page 57). This CD is available for
PC and 64-bit PC architectures (page 29), uses the graphical installer, and installs a
graphical (desktop) Ubuntu system.

Alternate CD The Alternate Install CD is not a live CD; it is intended for special installations only.
It presents more advanced installation options than the Desktop CD does. This CD
is available for PC and 64-bit PC architectures (page 29), uses the textual installer,
and installs an Ubuntu system that displays either a graphical or a textual interface.

Server CD The Server CD is not a live CD; it is intended for installation only. This CD is avail-
able for PC, 64-bit PC, and SPARC architectures (page 29). It uses the textual
installer and installs an Ubuntu system that displays a textual interface (no desk-
top). During installation, the Server CD gives you the option of installing any of
several servers including DNS and LAMP (Linux, Apache, MySQL, and PHP). A
system installed using this CD has no open ports (page 401) and includes only soft-
ware essential to a server.

Minimal CD Not an official edition, the Minimal CD is small (5–20 megabytes) and provides a
quick installation. Because it downloads software packages while it installs the
system, you do not have to update the packages immediately after you install the
system. Also, the Minimal CD installs only those packages required to install
Ubuntu, so installing with this CD results in a minimal system. You can install
additional packages once the system is up and running. The Minimal CD uses the
textual installer (page 85), which also allows this CD to be compact. For more
information see help.ubuntu.com/community/Installation/MinimalCD.

Installing a Fresh Copy or Upgrading an Existing

Ubuntu System?

Clean install An installation, sometimes referred to as a clean install, writes all fresh data to a
disk. The installation program overwrites all system programs and data as well as

 From the Library of WoweBook.Com

ptg

Planning the Installation 33

the kernel. You can preserve some user data during an installation depending on
where it is located and how you format/partition the hard disk. Alternatively, you
can perform a clean install on an existing system without overwriting data by set-
ting up a dual-boot system (page 76).

Upgrade An upgrade replaces all installed software packages with the most recent version
available on the new release. During an upgrade, the installation program preserves
both system configuration and user data files. An upgrade brings utilities that are
present in the old release up-to-date and installs new utilities. Before you upgrade a
system, back up all files on the system.

In general, all new features are provided by an upgrade. However, GRUB is not
automatically updated to GRUB 2 (page 584) during an upgrade. For information
on upgrading from GRUB to GRUB 2, see help.ubuntu.com/community/Grub2. See
page 74 for instructions on upgrading an Ubuntu system to a new release. See
www.ubuntu.com/getubuntu/releasenotes to learn about features that will not take
effect with an upgrade.

Setting Up the Hard Disk

Free space A hard disk must be prepared in several ways so Linux can write to and read from
it. Low-level formatting is the first step in preparing a disk for use. You do not need
to perform this task, as it is done at the factory where the hard disk is manufac-
tured. The next steps in preparing a hard disk for use are to write a partition table
to it and to create partitions on the disk. Finally, you need to create a filesystem on
each partition. The area of a partitioned disk that is not occupied by partitions is
called free space. A new disk has no partition table, no partitions, and no free space.
Under DOS/Windows, the term formatting means creating a filesystem on a parti-
tion; see “Filesystems” below.

Partitions A partition, or slice, is a logical section of a hard disk that has a device name, such
as /dev/sda1, so you can refer to it separately from other sections. For normal use,
you must create at least one partition on a hard disk (pages 34 and following).
From a live session, and after you install Ubuntu, you can use the GNOME Parti-
tion Utility (page 66) to view, resize, and create partitions on an existing system.
During installation, you can use the graphical partition editor (pages 60 and 70) or
the textual partition editor (page 87) to create partitions. After installation, you can
use parted (page 611) or fdisk to manipulate partitions. See /dev on page 488 for
more information on device names.

Partition table A partition table holds information about the partitions on a hard disk. Before the
first partition can be created on a disk, the program creating the partition must set

If you have a system running Ubuntu, upgrade instead of install

tip Ubuntu recommends that, if you have a system running Ubuntu and want to run a newer release,
you upgrade the release on the system. The rationale for this recommendation is twofold. First,
the upgrade path is more aggressively tested by Ubuntu developers than are the installers. Thus
you are less likely to run into problems with an update. Second, an upgrade preserves the system
settings and applications, making an upgrade easier perform than a clean install.

 From the Library of WoweBook.Com

www.ubuntu.com/getubuntu/releasenotes

ptg

34 Chapter 2 Installation Overview

up an empty partition table on the disk. As partitions are added, removed, and
modified, information about these changes is recorded in the partition table. If you
remove the partition table, you can no longer access information on the disk except
by extraordinary means.

Filesystems Before most programs can write to a partition, a data structure (page 1144), called
a filesystem, needs to be written to the partition. This data structure holds inodes
(page 501) that map locations on the disk that store files to the names of the files.
At the top of the data structure is a single unnamed directory. As will be explained
shortly, this directory joins the system directory structure when the filesystem is
mounted.

When the Ubuntu installer creates a partition, it automatically writes a filesystem to
the partition. You can use the mkfs (make filesystem; page 458) utility, which is sim-
ilar to the DOS/Windows format utility, to manually create a filesystem on a parti-
tion. Table 12-1 on page 505 lists some common types of filesystems. Ubuntu Linux
typically creates ext4 filesystems for data; unless you have reason to use another
filesystem type, use ext4. Windows uses FAT16, FAT32, and NTFS filesystems.
Apple uses HFS (Hierarchical Filesystem) and HFS+. OS X uses either HFS+ or
UFS. Different types of filesystems can coexist in different partitions on a single
hard disk, including both Windows and Linux filesystems.

Primary, Extended, and Logical Partitions

You can divide an IDE/ATA/SATA disk into a maximum of 63 partitions and a
SCSI disk into a maximum of 15 partitions. You can use each partition indepen-
dently for swap devices, filesystems, databases, other resources, and even other
operating systems.

Primary and
extended partitions

Unfortunately, disk partitions follow the template established for DOS machines a
long time ago. At most, a disk can hold four primary partitions. You can divide one
(and only one) of these primary partitions into multiple logical partitions; this
divided primary partition is called an extended partition. If you want more than
four partitions on a drive—and you frequently do—you must set up an extended
partition.

A typical disk is divided into three primary partitions (frequently numbered 1, 2,
and 3) and one extended partition (frequently numbered 4). The three primary par-
titions are the sizes you want the final partitions to be. The extended partition occu-
pies the rest of the disk. Once you establish the extended partition, you can
subdivide it into additional logical partitions (numbered 5 or greater), each of
which is the size you want. You cannot use the extended partition (number 4)—only
the logical partitions it holds. Figure 16-5 on page 611 illustrates the disk described
in this paragraph. See the Linux Partition HOWTO (tldp.org/HOWTO/Partition)
for more information.

 From the Library of WoweBook.Com

ptg

Planning the Installation 35

The Linux Directory Hierarchy

Namespace A namespace is a set of names (identifiers) in which each name is unique.

Windows versus
Linux

As differentiated from a Windows machine, a Linux system presents a single
namespace that holds all files, including directories, on the local system. The Linux
system namespace is called the directory hierarchy or directory tree. Under Win-
dows, C:\ is a separate namespace from D:\. The directory hierarchy rooted at C:\ is
separate from the directory hierarchy rooted at D:\ and there is no path or connec-
tion between them. Under Linux, the single system namespace is rooted at /, which
is the root directory. Under the root directory are top-level subdirectories such as
bin, boot, etc, home, and usr.

Absolute pathnames All files on a Linux system, including directories, have a unique identifier called an
absolute pathname. An absolute pathname traces a path through the directory hier-
archy starting at the root directory and ending at the file or directory identified by
the pathname. Thus the absolute pathname of the top-level directory named home
is /home. See page 205 for more information.

Slashes (/) in
pathnames

Within a pathname, a slash (/) follows (appears to the right of) the name of a direc-
tory. Thus /home/sam specifies that the ordinary or directory file named sam is
located in the directory named home, which is a subdirectory of the root directory
(/). The pathname /home/sam/ (with a trailing slash) specifies that sam is a direc-
tory file. In most instances this distinction is not important. The root directory is
implied when a slash appears at the left end of a pathname or when it stands alone.

Linux system
namespace

The Linux system namespace comprises the set of absolute pathnames of all files,
including directories, in the directory hierarchy of a system.

Mount Points

A filesystem on a partition holds no information about where it will be mounted in
the directory hierarchy (the top-level directory of a filesystem does not have a
name). When you use the installer to create most partitions, you specify the type of
filesystem to be written to the partition and the name of a directory that Ubuntu
associates with the partition.

Mounting a filesystem associates the filesystem with a directory in the directory
hierarchy. You can mount a filesystem on any directory in the directory hierarchy.

Skip this section for a basic installation

tip This section briefly describes the Linux directory hierarchy so you may better understand some
of the decisions you may need to make when you divide the hard disk into partitions while install-
ing Linux. You do not have to read this section to install Linux. You can use guided partitioning
(pages 60 and 70) to set up the disk and return to this section when and if you want to. See the
beginning of Chapter 6 for a more thorough explanation of the Linux directory hierarchy.

 From the Library of WoweBook.Com

ptg

36 Chapter 2 Installation Overview

The directory that you mount a filesystem on is called a mount point. The directory
you specify when you use the installer to create a partition is the mount point for
the partition. Most mount points are top-level subdirectories, with a few exceptions
(such as /usr/local, which is frequently used as a mount point).

For example, suppose the second partition on the first hard disk has the device
name /dev/sda2. To create an ext4 filesystem that you want to appear as /home in
the directory hierarchy, you must instruct Linux to mount the /dev/sda2 partition
on /home when the system boots. With this filesystem mounted on its normal
mount point, you can access it as the /home directory.

Filesystem
independence

The state of one filesystem does not affect other filesystems: One filesystem on a
drive may be corrupt and unreadable, while other filesystems function normally.
One filesystem may be full so you cannot write to it, while others have plenty of
room for more data.

/etc/fstab The file that holds the information relating partitions to mount points is /etc/fstab
(filesystem table; page 510). The associations stored in the fstab file are the normal
ones for the system, but you can easily override them. When you work in recovery
mode, you may mount a filesystem on the /target directory so you can repair the
filesystem. For example, if you mount on /target the partition holding the filesystem
normally mounted on /home, the directory you would normally find at /home/sam
will be found at /target/sam.

Naming partitions
and filesystems

A partition and any filesystem it holds have no name or identification other than a
device name (and a related UUID value—see page 510). Instead, the partition and
the filesystem are frequently referred to by the name of the partition’s normal
mount point. Thus “the /home partition” and “the /home filesystem” refer to the
partition that holds the filesystem normally mounted on the /home directory. See
page 506 for more information on mounting filesystems.

Partitioning a Disk

During installation, the installer calls a partition editor to set up disk partitions.
This section discusses how to plan partition sizes. Although this section uses the
term partition, planning and sizing LVs (logical volumes; page 41) works the same
way. For more information refer to pages 64 and 70 and to the Linux Partition
HOWTO at www.tldp.org/HOWTO/Partition.

Guided Partitioning

It can be difficult to plan partition sizes appropriately if you are not familiar with
Linux. During installation, Ubuntu provides guided partitioning. Without asking

Do not create files on mount points before mounting a filesystem
caution Do not put any files in a directory that is a mount point while a filesystem is not mounted on that

mount point. Any files in a directory that is used as a mount point are covered up while the file-
system is mounted on that directory; you will not be able to access them. They reappear when the
filesystem is unmounted.

 From the Library of WoweBook.Com

www.tldp.org/HOWTO/Partition

ptg

Planning the Installation 37

any questions, guided partitioning divides the portion of the disk allotted to Ubuntu
into two partitions. One partition is the swap partition, which can be any size from
512 megabytes to 2 or more gigabytes. The other partition is designated as / (root)
and contains the remainder of the disk space. The next section discusses the advan-
tages of manual partitioning.

Manual Partitioning: Planning Partitions

If you decide to manually partition the hard disk and set up partitions other than a
root partition (/) and a swap partition, first consider which kinds of activities will
occur under each top-level subdirectory. Then decide whether it is appropriate to
isolate that subdirectory by creating a filesystem in a partition and mounting it on
its own mount point. Advantages of creating additional filesystems include the fol-
lowing points:

• Separating data that changes frequently (e.g., /var and /home) from data
that rarely changes (e.g., /usr and /boot) can reduce fragmentation on the
less frequently changing filesystems, helping to maintain optimal system
performance.

• Isolating filesystems (e.g., /home) can preserve data when you reinstall
Linux.

• Additional filesystems can simplify backing up data on a system.

• If all directories are part of a single filesystem, and if a program then runs
amok or the system is the target of a DoS attack (page 1146), the entire
disk can fill up. System accounting and logging information, which may
contain data that can tell you what went wrong, may be lost. On a system
with multiple filesystems, such problems typically fill a single filesystem
and do not affect other filesystems. Data that may help determine what
went wrong will likely be preserved and the system is less likely to crash.

/ (root) The following paragraphs discuss the advantages of making each of the major
top-level subdirectories a separate, mountable filesystem. Any directories you do
not create filesystems for automatically become part of the root (/) filesystem.
For example, if you do not create a /home filesystem, /home is part of the root (/)
filesystem.

(swap) Linux temporarily stores programs and data on a swap partition when it does not
have enough RAM to hold all the information it is processing. The swap partition is

GiB versus GB
tip Historically a gigabyte (GB) meant either 230 (1,073,741,824) or 109 (1,000,000,000) bytes.

Recently the term gibibyte (giga binary byte; abbreviated as GiB) has been used to mean 230 bytes;
in turn, gigabyte is used more frequently to mean 109 bytes. Similarly, a mebibyte (MiB) is 220

(1,048,576) bytes. The Ubuntu partition editor uses mebibytes and gibibytes for specifying the
size of partitions. See wiki.ubuntu.com/UnitsPolicy for information about the Ubuntu policy
regarding this issue.

 From the Library of WoweBook.Com

ptg

38 Chapter 2 Installation Overview

also used when you hibernate (suspend to disk) a system. The size of the swap parti-
tion should be between one and two times the size of the RAM in the system, with a
minimum size of 256 megabytes and a maximum around 2 gigabytes. The worst-case
hibernation requires a swap size that is one and a half times the size of RAM. For
example, a system with 1 gigabyte of RAM should have a 1- to 2-gigabyte swap par-
tition. Although a swap partition is not required, most systems perform better when
one is present. On a system with more than one drive, having swap partitions on each
drive can improve performance even further. A swap partition is not mounted, so it is
not associated with a mount point. See swap on page 498 for more information.

/boot The /boot partition holds the kernel and other data the system needs when it boots.
This partition is typically approximately 100 megabytes, although the amount of
space required depends on how many kernel images you want to keep on hand. It
can be as small as 50 megabytes.

Although you can omit the /boot partition, it is useful in many cases. Many adminis-
trators put an ext2 filesystem on this partition because the data on it does not change
frequently enough to justify the overhead of the ext4 journal. Systems that use soft-
ware RAID (page 40) or LVM (page 41) require a separate /boot partition. Some
BIOSs, even on newer machines, require the /boot partition [or the / (root) partition
if there is no /boot partition] to appear near the beginning of the disk (page 583).

/var The name var is short for variable: The data in this partition changes frequently.
Because it holds the bulk of system logs, package information, and accounting data,
making /var a separate partition is a good idea. Then, if a user runs a job that con-
sumes all of the users’ disk space, system log files in /var/log will not be affected.
The /var partition can occupy from 500 megabytes to as much as several gigabytes
for extremely active systems with many verbose daemons and a lot of printer and
mail activity (the print queues reside in /var/spool/cups and incoming mail is stored
in /var/mail). For example, software license servers are often extremely active sys-
tems. By default, Apache content (the Web pages it serves) is stored on /var under
Ubuntu; you may want to change the location Apache uses.

Although such a scenario is unlikely, many files or a few large files may be created
under the /var directory. Creating a separate filesystem to hold the files in /var will
prevent these files from overrunning the entire directory structure, bringing the sys-
tem to a halt, and possibly creating a recovery problem.

Where to put the /boot partition

caution On some systems, the /boot partition must reside completely below cylinder 1023 of the hard disk.
An easy way to ensure compliance with this restriction is to make the /boot partition one of the
first partitions on the disk. When a system has more than one hard disk, the /boot partition must
also reside on a drive in the following locations:

• Multiple IDE or EIDE drives: the primary controller

• Multiple SCSI drives: ID 0 or ID 1

• Multiple IDE and SCSI drives: the primary IDE controller or SCSI ID 0

 From the Library of WoweBook.Com

ptg

Planning the Installation 39

/var/log Some administrators choose to put the log directory in a separate partition to isolate
system logs from other files in the /var directory.

/home It is a common strategy to put user home directories on their own filesystem. Such a
filesystem is usually mounted on /home. Having /home as a separate filesystem
allows you to perform a clean install without risking damage to or loss of user files.
Also, having a separate /home filesystem prevents a user from filling the directory
structure with her data; at most she can fill the /home filesystem, which will affect
other users but not bring the system down.

/usr Separating the /usr partition can be useful if you plan to export /usr to another sys-
tem and want the security that a separate partition can give. Many administrators
put an ext2 filesystem on this partition because the data on it does not change fre-
quently enough to justify the overhead of the ext4 journal. The size of /usr depends
on the number of packages you install. On a default system, it is typically 2–4
gigabytes.

/usr/local
and /opt

Both /usr/local and /opt are candidates for separation. If you plan to install many
packages in addition to Ubuntu Linux, such as on an enterprise system, you may
want to keep them on a separate partition. If you install the additional software in
the same partition as the users’ home directories, for example, it may encroach on
the users’ disk space. Many sites keep all /usr/local or /opt software on one server;
from there, they export the software to other systems. If you choose to create a
/usr/local or /opt partition, its size should be appropriate to the software you plan
to install.

Table 2-1 gives guidelines for minimum sizes for partitions used by Linux. Set the
sizes of other partitions, such as those for /home, /opt, and /usr/local, according to
need and the size of the hard disk. If you are not sure how you will use additional
disk space, you can create extra partitions using whatever names you like (for
example, /b01, /b02, and so on). Of course, you do not have to partition the entire
drive when you install Linux; you can wait until later to divide the additional space
into partitions.

Set up partitions to aid in making backups

tip Plan partitions based on which data you want to back up and how often you want to back it up.
One very large partition can be more difficult to back up than several smaller ones.

Table 2-1 Example minimum partition sizesa

Partition Example size

/boot 50–100 megabytes

/ (root) 1 gigabyte

(swap) One to two times the amount of RAM in the system with a minimum of 256
megabytes

 From the Library of WoweBook.Com

ptg

40 Chapter 2 Installation Overview

RAID

RAID (Redundant Array of Inexpensive/Independent Disks) employs two or more
hard disk drives or partitions in combination to improve fault tolerance and/or per-
formance. Applications and utilities see these multiple drives/partitions as a single
logical device. RAID, which can be implemented in hardware or software (Ubuntu
gives you this option), spreads data across multiple disks. Depending on which level
you choose, RAID can provide data redundancy to protect data in the case of hard-
ware failure. Although it can improve disk performance by increasing read/write
speed, software RAID uses quite a bit of CPU time, which may be a consideration.
True hardware RAID requires hardware designed to implement RAID and is not
covered in this book (but see “Fake RAID” on the next page).

RAID can be an effective addition to a backup. Ubuntu offers RAID software that
you can install either when you install an Ubuntu system or as an afterthought. The
Linux kernel automatically detects RAID arrays (sets of partitions) at boot time if
the partition ID is set to 0xfd (raid autodetect).

Software RAID, as implemented in the kernel, is much cheaper than hardware
RAID. Not only does this approach avoid the need for specialized RAID disk con-
trollers, but it also works with the less expensive ATA disks as well as SCSI disks.

Partition Example size

/home As large as necessary; depends on the number of users and the type of work
they do

/tmp Minimum of 500 megabytes

/usr Minimum of 2–16 gigabytes; depends on which and how many software pack-
ages you install

/var Minimum of 500 megabytes—much larger if you are running a server

a. The sizes in this table assume you create all partitions separately. For example, if you create a 1-gigabyte
/ (root) partition and do not create a /usr partition, in most cases you will not have enough room to store
all of the system programs.

Table 2-1 Example minimum partition sizesa (continued)

RAID does not replace backups

caution The purposes of RAID are to improve performance and/or to minimize downtime in the case of a
disk failure. RAID does not replace backups.

Do not use RAID as a replacement for regular backups. If the system experiences a catastrophic
failure, RAID is useless. Earthquake, fire, theft, and other disasters may leave the entire system
inaccessible (if the hard disks are destroyed or missing). RAID also does not take care of the simple
case of replacing a file when a user deletes it by accident. In these situations, a backup on a remov-
able medium (which has been removed) is the only way you will be able to restore a filesystem.

 From the Library of WoweBook.Com

ptg

Planning the Installation 41

Fake RAID Ubuntu does not officially support motherboard-based RAID (known as fake
RAID) but accepts it through the dmraid driver set. Linux software RAID is almost
always better than fake RAID. See help.ubuntu.com/community/FakeRaidHowto
for more information.

The partition editor on the Alternate CD gives you the choice of implementing
RAID level 0, 1, or 5. For levels 1 and 5, be sure to put member partitions on differ-
ent drives. That way, if one drive fails, your data will be preserved.

• RAID level 0 (striping)—Improves performance but offers no redundancy.
The storage capacity of the RAID device is equal to that of the member
partitions or disks.

• RAID level 1 (mirroring)—Provides simple redundancy, improving data
reliability, and can improve the performance of read-intensive applica-
tions. The storage capacity of the RAID device is equal to one of the mem-
ber partitions or disks.

• RAID level 5 (disk striping with parity)—Provides redundancy and
improves performance (most notably, read performance). The storage
capacity of the RAID device is equal to that of the member partitions or
disks, minus one of the partitions or disks (assuming they are all the same
size).

• RAID level 6 (disk striping with double parity)—Improves upon level 5
RAID by protecting data when two disks fail at once. Level 6 RAID is inef-
ficient with a small number of drives.

• RAID level 10 (mirroring and striping)—A combination of RAID 1 and
RAID 0 (also called RAID 1+0), RAID 10 uses mirroring to improve fault
tolerance and striping to improve performance. Multiple RAID 1 arrays
(mirroring) are overlaid with a RAID 0 array (striping). The storage capac-
ity of the RAID device is equal to one-half that of the member partitions or
disks. You must use at least four partitions or disks.

For more information see help.ubuntu.com/community/Installation/SoftwareRAID
and raid.wiki.kernel.org/index.php/Linux_Raid.

LVM: Logical Volume Manager

The Logical Volume Manager (LVM2, which this book refers to as LVM) allows
you to change the size of logical volumes (LVs, the LVM equivalent of partitions) on
the fly. With LVM, if you make a mistake in setting up LVs or if your needs change,
you can make LVs either smaller or larger without affecting user data. You must
choose to use LVM at the time you install the system or add a hard disk; you cannot
retroactively apply it to a disk full of data. LVM supports IDE and SCSI drives as
well as multiple devices such as those found in RAID arrays.

 From the Library of WoweBook.Com

ptg

42 Chapter 2 Installation Overview

LVM groups disk components (partitions, hard disks, or storage device arrays), called
physical volumes (PVs), into a storage pool, or virtual disk, called a volume group
(VG). See Figure 2-2. You allocate a portion of a VG to create a logical volume.

An LV is similar in function to a traditional disk partition in that you can create a file-
system on an LV. It is much easier, however, to change and move LVs than partitions:
When you run out of space on a filesystem on an LV, you can grow (expand) the LV
and its filesystem into empty or new disk space, or you can move the filesystem to a
larger LV. For example, you can add a hard disk to a system and incorporate it into an
LV to expand the capacity of that LV. LVM’s disk space manipulation is transparent
to users; service is not interrupted.

LVM also eases the burden of storage migration. When you outgrow the PVs or
need to upgrade them, LVM can move data to new PVs. To read more about LVM,
refer to the resources listed on page 26.

The Installation Process

The following steps outline the process of installing Ubuntu Linux from a CD/DVD.
See Chapter 3 for specifics.

1. Make sure the BIOS is set to boot from the CD/DVD (page 28). Insert the
installation CD/DVD in and reset the computer. The computer boots from
the CD/DVD and displays a language overlay (Figure 3-1, page 52) over a
disk menu (Figure 3-3, page 54).

2. You can press function keys to display options, make a selection from the
disk menu, and begin bringing up a live session or installing Ubuntu when
you are ready. With a live/install DVD, you can also do nothing: A
live/install DVD starts to bring up the system after 30 seconds. When the
Welcome screen appears, click Try Ubuntu to bring up a live session or

Figure 2-2 LVM: Logical Volume Manager

Disk A
40 GB

Disk B
80 GB

Disk C
40 GB

Disk D
20 GB

/ (root) home var usr (swap)

boot

40 + 80 + 40 + 20 GB
(– boot partition)

Physical volumes (PVs)

Boot partition

Volume group (VG)

Logical volumes (LVs)

 From the Library of WoweBook.Com

ptg

Downloading and Burning a CD/DVD 43

click Install Ubuntu to begin installation. The installation CDs wait for
you to select an item from the menu. One of the menu items checks the
installation medium.

3. As part of the process of bringing up a live session or installing Ubuntu,
Ubuntu Linux creates RAM disks (page 1168) that it uses in place of the
hard disk used for a normal boot operation. The installer copies tools
required for the installation or to bring up a system from a live/install
Desktop CD or a live/install DVD to the RAM disks. The use of RAM
disks allows the installation process to run through the specification and
design phases without writing to the hard disk and enables you to opt out
of the installation at any point before the last step of the installation. If
you opt out before this point, the system is left in its original state. The
RAM disks also allow a live session to leave the hard disk untouched.

4. The installer prompts you with questions about how you want to configure
Ubuntu Linux.

5. When the installer is finished collecting information, it displays the Ready
to install screen (Figure 3-9, page 63). When you click Install, it writes the
operating system files to the hard disk.

6. The installer prompts you to remove the CD/DVD and press RETURN; it then
reboots the system.

7. The Ubuntu Linux system is ready for you to log in and use.

Downloading and Burning a CD/DVD

There are several ways to obtain an Ubuntu CD/DVD. Ubuntu makes available
releases of Linux as CD and DVD ISO image files (named after the ISO 9660 stan-
dard that defines the CD filesystem). This section describes how to download one of
these images and burn a CD/DVD. You can also purchase a CD/DVD from a Web
site. If you cannot obtain Ubuntu by any other means, you can point a browser at
shipit.ubuntu.com to display a Web page with links that enable you to request a free
CD from Ubuntu (but first read blog.canonical.com/?p=264).

The Easy Way to Download a CD ISO Image File

This section explains the easiest way to download a CD ISO image file. This tech-
nique works in most situations; it is straightforward but limited. For example, it
does not allow you to use BitTorrent to download the file nor does it download a
DVD image.

You can find ISO images for all supported architectures here

tip If you cannot find an ISO image for a CD that supports the type of hardware you want to install
Ubuntu on, go to this site: cdimage.ubuntu.com/ports/releases/10.04/release.

 From the Library of WoweBook.Com

ptg

44 Chapter 2 Installation Overview

To begin, point a browser at www.ubuntu.com and click Download Ubuntu. Select
a location from the drop-down list labeled Download location and click Begin
Download. If the browser gives you a choice of what to do with the file, save it to
the hard disk. The browser saves the ISO image file to the hard disk. Continue read-
ing at “Burning the CD/DVD” on page 47.

Other Ways to Download a CD/DVD ISO Image File

This section explains how to download a release that is not listed on the Ubuntu
download page or a DVD image, and how to download a torrent that enables you
to use BitTorrent to download the ISO image file. See “Download Ubuntu” on
page 27 for other locations you can download Ubuntu from.

Browser When you use a Web browser to download a file, the browser contacts a Web
(HTTP) or FTP server and downloads the file from that server. If too many people
download files from a server at the same time, the downloads become slower.

BitTorrent BitTorrent efficiently distributes large amounts of static data, such as ISO image files.
Unlike using a browser to download a file from a single server, BitTorrent distributes
the functions of a server over its clients. As each client downloads a file, it becomes a
server for the parts of the file it has downloaded. To use BitTorrent, you must down-
load a small file called a torrent (or have a Web browser do it for you). This file,
which holds information that allows clients to communicate with one another, has a
filename extension of .torrent. As more people use a torrent to download a file at the

Figure 2-3 An Ubuntu mirror I

 From the Library of WoweBook.Com

www.ubuntu.com

ptg

Downloading and Burning a CD/DVD 45

same time, the downloads become faster. Downloading an ISO image file using
BitTorrent is covered later in this section.

Mirrors Many sites mirror (hold copies of) the Ubuntu ISO image files and BitTorrent tor-
rent files. Some mirrors use HTTP, while others use FTP; you can use a browser to
download files from either type of site. FTP and HTTP sites appear slightly differ-
ent. Point a browser at www.ubuntu.com/getubuntu/downloadmirrors to locate a
mirror site. Scroll down a bit until you reach the list of mirror sites. Then scroll
through the list of mirror sites, find a site near you, and click that site’s URL. The
browser displays a page similar to the one shown in Figure 2-3.

Click any link on the page that includes the name or release number (e.g., Lucid or
10.04; page 31) of the version of Ubuntu you want to install. The browser displays
a page similar to the one shown in Figure 2-4.

Downloading an ISO
image file

At this point, some sites display a page with two links: Parent Directory and release.
If the browser displays this page, click release. The browser displays a page with the
name and number of the release at the top, followed by a description of the differ-
ent types of CDs. At the bottom of the page is a list of files, with each line showing
the name of the file, the date and time it was created, and its size. Each filename is a

Figure 2-4 An Ubuntu mirror II

 From the Library of WoweBook.Com

www.ubuntu.com/getubuntu/downloadmirrors

ptg

46 Chapter 2 Installation Overview

link. The following two lines describe the Intel x86 desktop ISO image file for Lucid
Lynx (10.04) and the torrent file that enables you to use BitTorrent to download the
same ISO image file. The ISO image file is almost 700 megabytes; the torrent file is
28 kilobytes.

ubuntu-10.04-desktop-i386.iso 29-Apr-2010 08:56 699M
ubuntu-10.04-desktop-i386.iso.torrent 29-Apr-2010 12:07 28K

Click the filename/link that specifies the release (e.g., 10.04; page 31), edition (e.g.,
desktop or alternate; page 32), and architecture (e.g., i386 or amd64; page 29) you
want to download. For example, clicking ubuntu-10.04-desktop-i386.iso down-
loads the CD ISO image for the Lucid (release 10.04) desktop edition for the i386
architecture. Save the file to the hard disk. Next download the file named
SHA1SUMS (at the top of the list) to the same directory. An easy way to save a file
is to right-click it, select Save Link/Target As, and save the file to a directory that
has enough space for the file. See the next section for an explanation of how to use
the SHA1SUMS file to verify that the ISO image file downloaded correctly.

Downloading a DVD To download a DVD ISO image file, go to cdimage.ubuntu.com/releases and follow
the instructions under “Downloading an ISO image file.” You can identify DVD
ISO image files by the string dvd in their names. Make sure you have room for the
file on the hard disk: A DVD ISO image file occupies about 4 gigabytes. A DVD
image takes about five times as long to download as a CD image.

Using BitTorrent As mentioned earlier, you can use BitTorrent to obtain an ISO image file. BitTorrent
is especially effective for downloading an ISO image file shortly after a new release
of Ubuntu is made available.

To download a torrent, point a browser at releases.ubuntu.com and click the filename
of the torrent. You can identify a torrent file by its filename extension of .torrent. A
BitTorrent client should start automatically and ask where to put the downloaded file.
You can also download the torrent manually. To do so, follow the instructions under
“Downloading an ISO image file” on page 45. Once you have a BitTorrent client such
as Transmission (www.transmission-bt.com; installed with most Ubuntu editions), you
can start downloading the file from the command line (page 539) or by clicking it in a
file browser such as Nautilus (page 107).

Verifying an ISO Image File

This section assumes you have an ISO image file and a SHA1SUMS file saved on
the hard disk and explains how to verify that the ISO IMAGE file is correct. The
SHA1SUMS file contains the SHA1 (page 1171) sums for each of the available ISO

You can download and burn the CD/DVD on any operating system

tip You can download and burn the CD/DVD on any computer that is connected to the Internet, has a
browser, has enough space on the hard disk to hold the ISO image file (about 700 megabytes for
a CD and 4 gigabytes for a DVD), and can burn a CD/DVD. You can often use ftp (page 690) or,
on a Linux system, Nautilus menubar: File Places Connect to Server (page 280) in place of
a browser to download the file.

 From the Library of WoweBook.Com

www.transmission-bt.com

ptg

Gathering Information About the System 47

image files. When you process a file using the sha1sum utility, sha1sum generates a
number based on the file. If that number matches the corresponding number in the
SHA1SUMS file, the downloaded file is correct. You can run the following com-
mands from a terminal emulator:

$ grep desktop-i386 SHA1SUMS ; sha1sum ubuntu-10.04-desktop-i386.iso
d43587393603bd6fe111514579d8c821a27deb09 *ubuntu-10.04-desktop-i386.iso
d43587393603bd6fe111514579d8c821a27deb09 ubuntu-10.04-desktop-i386.iso

Computing an SHA1 sum for a large file takes a while. The two long strings that the
preceding command displays must be identical. If they are not, you must download
the file again.

Burning the CD/DVD

An ISO image file is an exact image of what needs to be on the CD/DVD. Putting
that image on a CD/DVD involves a different process than copying files to a
CD/DVD. For that reason, CD/DVD burning software has a special selection for
burning an ISO image, which bears a label similar to Record CD from CD Image or
Burn CD Image. Refer to the instructions for the software you are using for infor-
mation on how to burn an ISO image file to a CD/DVD.

Gathering Information About the System

It is not difficult to install and bring up an Ubuntu Linux system. Nevertheless, the
more you know about the process before you start, the easier it will be. The installa-
tion software collects information about the system and can help you make decisions
during the installation process. However, the system will work better when you
know how you want to partition the hard disk rather than letting the installation
program create partitions without your input. There are many details, and the more
details you take control of, the more pleased you are likely to be with the finished
product. Finding the information that this section asks for will help ensure you end
up with a system you understand and know how to change when necessary. To an
increasing extent, the installation software probes the hardware and figures out what
it is. Newer equipment is more likely to report on itself than older equipment is.

Make sure the software is set up to burn an ISO image
tip Burning an ISO image is not the same as copying files to a CD/DVD. Make sure the CD/DVD burning

software is set up to burn an ISO image. If you simply copy the ISO file to a CD/DVD, it will not work
when you try to install Ubuntu Linux. See help.ubuntu.com/community/BurningIsoHowto for infor-
mation on burning an ISO image.

You must use 700-megabyte CD-ROM blanks
tip When you burn an Ubuntu Linux CD from an ISO image, you must use a 700-megabyte blank. A

650-megabyte blank will not work because there is too much data to fit on it.

 From the Library of WoweBook.Com

ptg

48 Chapter 2 Installation Overview

It is critical to have certain pieces of information before you start. One thing Linux
can never figure out is all the relevant names and IP addresses (unless you are using
DHCP, in which case the addresses are set up for you).

Following is a list of items you may need information about. Gather as much
information about each item as you can: manufacturer, model number, size
(megabytes, gigabytes, and so forth), number of buttons, chipset (for cards), and
so on. Some items, such as the network interface card, may be built into the
motherboard.

• Hard disks.

• Memory. You don’t need it for installation, but it is good to know.

• SCSI interface card.

• Network interface card (NIC).

• Video interface card (including the amount of video RAM/memory).

• Sound card and compatibility with standards, such as SoundBlaster.

• Mouse (PS/2, USB, AT, and number of buttons).

• Monitor (size and maximum resolution).

• IP addresses and names, unless you are using DHCP (page 470; most rout-
ers are set up as DHCP servers), in which case the IP addresses are auto-
matically assigned to the system. Most of this information comes from the
system administrator or ISP.

◆ System hostname (anything you like).

◆ System address.

◆ Network mask (netmask).

◆ Gateway address (the connecting point to the network or Internet) or
a phone number when you use a dial-up connection.

◆ Addresses for nameservers, also called DNS addresses.

◆ Domain name (not required).

Test the ISO image file and test the CD/DVD

tip It is a good idea to test the ISO image file and the burned CD/DVD before you use it to install
Ubuntu Linux. When you boot the system from the CD/DVD, Ubuntu gives you the option of
checking the CD/DVD for defects (see the tip on page 56). A bad file on a CD may not show up
until you finish installing Ubuntu Linux and have it running. At that point, it may be difficult and
time-consuming to figure out where the problem lies. Testing the file and CD/DVD takes a few min-
utes but can save you hours of trouble if something is not right. If you decide to perform one test
only, test the CD/DVD.

 From the Library of WoweBook.Com

ptg

Advanced Exercises 49

Chapter Summary

A live/install Desktop CD or a live/install DVD can run a live Ubuntu session with-
out installing Ubuntu on the system. You can install Ubuntu from a live session.
Running a live session is a good way to test hardware and fix a system that will not
boot from the hard disk.

Before you download or otherwise obtain an Ubuntu CD or DVD, make sure you
are using a medium that is appropriate to the hardware you are installing it on and
to the purposes the system will be used for. Ubuntu has three editions: Desktop (the
most common), Alternate (for special cases), and Server. The Ubuntu live DVD
combines features of all three of these editions.

When you install Ubuntu Linux, you copy operating system files from a CD or
DVD to hard disk(s) on a system and set up configuration files so that Linux runs
properly on the hardware. Operating system files are stored on a CD or DVD as
ISO image files. You can use a Web browser or BitTorrent to download an ISO
image file. It is a good idea to test the ISO image file when it is downloaded and the
burned CD/DVD before you use it to install Ubuntu Linux.

When you install Ubuntu, you can let the installer decide how to partition the hard
disk (guided partitioning) or you can manually specify how you want to partition it.

Exercises

1. Briefly, what does the process of installing an operating system such as
Ubuntu Linux involve?

2. What is an installer?

3. Would you set up a GUI on a server system? Why or why not?

4. A system boots from the hard disk. To install Linux, you need it to boot
from a CD/DVD. How can you make the system boot from a CD/DVD?

5. What is free space on a hard disk? What is a filesystem?

6. What is an ISO image? How do you burn an ISO image to a CD/DVD?

Advanced Exercises

7. Give two reasons why RAID cannot replace backups.

8. What are RAM disks? How are they used during installation?

9. What is SHA1? How does it work to ensure that an ISO image file you
download is correct?

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

555111

3Chapter 2 covered planning the installation of Ubuntu Linux:
determining the requirements; performing an upgrade versus a
clean installation; planning the layout of the hard disk; obtaining
the files you need for the installation, including downloading and
burning CD/DVD ISO images; and collecting information about
the system. This chapter focuses on installing Ubuntu. Frequently
the installation is quite simple, especially if you have done a good
job of planning. Sometimes you may run into a problem or have
a special circumstance; this chapter gives you tools to use in these
cases. Read as much of this chapter as you need to; once you
have installed Ubuntu Linux, continue with Chapter 4, which
covers getting started using the Ubuntu desktop. If you install a
textual (command-line) system, continue with Chapter 5.

In This Chapter

Booting from a Live/Install
Desktop CD or a Live/Install
DVD. 52

ubiquity: Installing Ubuntu
Graphically 57

gparted: The GNOME Partition
Editor . 64

palimpsest: The GNOME Disk
Utility . 66

ubiquity: Setting Up Partitions. . . . 70

Setting Up a Dual-Boot System . . . 76

Advanced Installation. 77

The Disk Menu Screens 78

The Ubuntu Textual Installer. 85

Manual Partitioning 87

Setting Up a RAID Array 91

3

Step-by-Step

Installation

 From the Library of WoweBook.Com

ptg

52 3 Step-by-Step Installation

Booting from a Live/Install Desktop CD or a

Live/Install DVD

Ubuntu is commonly installed from a live/install Desktop CD or a live/install DVD.
You can also start a live session from these disks. This section describes how to per-
form both tasks using each of these disks. Follow the “Basic Instructions” (on the
next page) if you want to get going quickly. See “Detailed Instructions” on page 53
if you run into problems using the basic instructions, if you want to customize your
installation, or if you simply want to know more about what is going on when you
install Ubuntu.

Live Session

The live/install Desktop CD and the live/install DVD give you a chance to preview
Ubuntu without installing it. Boot from either disk as explained in this section to
begin a live session and work with Ubuntu as explained in Chapter 4. When you are
finished, remove the CD/DVD and reboot the system; the system boots as it did
before the live session.

Because a live session does not write to the hard disk (other than using a Linux
swap partition if one is available), none of the work you save will be available once
you reboot. You can use Webmail or another method, such as writing data to a USB
flash drive, to transfer files you want to preserve to another system.

Figure 3-1 The language overlay with the countdown timer at the left

Countdown
timer

 From the Library of WoweBook.Com

ptg

Booting from a Live/Install Desktop CD or a Live/Install DVD 53

Basic Instructions

DVD Boot the system from the live/install DVD and do not press any keys. A short time
after the countdown timer at the left of the screen (under the language overlay in
Figure 3-1) goes from 30 to 0, Ubuntu displays the Welcome screen (Figure 3-2).
Use the mouse to highlight the language you want to use (from the list on the left)
and then click Try Ubuntu 10.04 to start a live session or click Install Ubuntu 10.04
to install Ubuntu.

CD Boot the system from the live/install Desktop CD and do not press any keys to bring
up a live system running in English.

Detailed Instructions

Booting the system Before Ubuntu can display a desktop or install itself on a hard disk from a
live/install Desktop CD or a live/install DVD, the Ubuntu operating system must be
read into memory (booted). This process can take a few minutes on older, slower
systems and systems with minimal RAM (memory).

To boot from a live/install Desktop CD or a live/install DVD, insert the disk in the
computer and turn on or reset the system. What Ubuntu displays depends on which
of the two disks you use. The ubiquity installer handles all installation tasks. Much
of this chapter describes how to use ubiquity.

Installation media This book covers four disks: the live/install DVD, the live/install Desktop CD, the
Server CD, and the Alternate CD. This section covers basic operations with the first
two of these disks. See “Advanced Installation” on page 77 for more advanced
operations and descriptions of the Server CD and the Alternate CD.

Figure 3-2 The Welcome screen of the Install window

 From the Library of WoweBook.Com

ptg

54 3 Step-by-Step Installation

Language overlay The language overlay, shown in Figure 3-1 on page 52, allows you to choose a lan-
guage to work with (the default language). The default language is the one a live sys-
tem displays, the one the installer uses when you install Ubuntu, and the language
Ubuntu displays by default once it is installed. As you install Ubuntu, you can
change the default language from the Welcome screen as explained on page 57.

All four disks can display the language overlay. However, the live/install Desktop
CD displays the language overlay only when you interrupt the boot process by
pressing a key and the live/install DVD removes the language overlay unless you
interrupt the boot process by pressing a key. The following sections go into detail
about these differences.

CD and DVD menus Each of the installation media displays a unique menu. Most of the menu selections
are a subset of the selections available on the live/install DVD menu (Figure 3-3).
The following sections describe three selections available on the live/install Desktop
CD and the live/install DVD—those that allow you to bring up a live Ubuntu ses-
sion, install Ubuntu on the hard disk, and test the installation medium for defects.
See “Advanced Installation” on page 77 for information about more advanced
operations and descriptions of the Server CD and the Alternate CD.

The Ubuntu logo
and progress dots

As the system boots, it displays an Ubuntu logo and progress dots that turn on and
off in sequence to indicate the system is working. Refer to “Seeing What Is Going
On” on page 57 if you want to display system messages in place of the logo and
progress dots.

Problems Refer to “BIOS setup” on page 28 if the system does not boot from the CD/DVD. If
you encounter problems with the display while you are booting a live session or

Figure 3-3 The live/install DVD menu screen

 From the Library of WoweBook.Com

ptg

Booting from a Live/Install Desktop CD or a Live/Install DVD 55

installing Ubuntu, reboot the system, perform an advanced installation (page 77),
and use the F4 Modes menu to set the nomodeset parameter (Figure 3-22, page 81).
If that tactic does not work, install Ubuntu using the textual installer on the DVD.

The Live/Install DVD

When you boot from a live/install DVD (and not from a CD), Ubuntu displays a
language overlay over the DVD menu screen (Figure 3-1, page 52). A timer that
counts down from 30 seconds appears to the left of the overlay (20 s appears in
the figure). As the timer counts down, whether you press a key determines what
happens next.

Bring up a live
session

If you do not press a key, after the timer counts down to zero, Ubuntu displays a
logo and progress dots and then brings up a live session running a GNOME desktop
(Figure 3-4) running in English.

Install Ubuntu If you press any key before the timer reaches zero, the system stops its countdown
with the language overlay still displayed. You can then use the ARROW keys to high-
light a language for the installer or live system to use and press RETURN to select the
highlighted language and expose the DVD menu screen (Figure 3-3). On this screen
you can use the ARROW keys to highlight a selection and press RETURN to make the selec-
tion. The first three selections bring up a live system, install Ubuntu on the hard
disk, and check the DVD for defects. For more information refer to “Advanced
Installation” on page 77.

Figure 3-4 The GNOME desktop displayed by a live session

 From the Library of WoweBook.Com

ptg

56 3 Step-by-Step Installation

The Live/Install Desktop CD

When you boot from a live/install desktop CD, Ubuntu displays the initial boot
screen, a mostly blank screen with keyboard layout and accessibility symbols at the
bottom (Figure 3-5). While the initial boot screen is displayed, whether you press a
key determines what happens next. If you do not press a key, after a few seconds
Ubuntu displays a logo and progress dots and then displays the Welcome screen of
the Install window (Figure 3-2). To select a default language other than English
from this screen, see “Changing the default language” on page 57.

Bring up a live
session

From the Welcome screen, click Try Ubuntu 10.04 to bring up a live session running
a GNOME desktop (Figure 3-4).

Install Ubuntu From the Welcome screen, click Install Ubuntu 10.04 to install Ubuntu on the hard
disk; continue with the Where are you? screen as described on page 59.

If you press a key while the initial boot screen is displayed, Ubuntu displays the lan-
guage overlay covering the Desktop CD menu. This screen looks similar to
Figure 3-1 on page 52 except that no countdown timer is visible because the system
is not counting down; instead it is waiting for your input. You can use the ARROW

Figure 3-5 The symbols on the initial boot screen

Check the CD/DVD for defects
tip Testing the CD/DVD takes a few minutes but can save you much aggravation if the installation fails

or you run into problems after installing Ubuntu due to bad media. Whether you burned your own
CD/DVD, purchased it, or are using the disk included with this book, it is a good idea to verify that
the contents of the CD/DVD is correct.

With the DVD menu screen or one of the CD menu screens displayed, use the ARROW keys to high-
light Check disc for Defects and press RETURN. Checking the CD/DVD takes a few minutes—Ubuntu
keeps you apprised of its progress. When Ubuntu finishes checking the CD/DVD, it displays the
result of its testing. Press RETURN to reboot the system.

 From the Library of WoweBook.Com

ptg

Booting from a Live/Install Desktop CD or a Live/Install DVD 57

keys to highlight a language for the installer to use and press RETURN to select the lan-
guage and expose the CD menu screen (similar to Figure 3-3 on page 54). On this
screen you can use the ARROW keys to highlight a selection and press RETURN to make
the selection. For more information refer to “Advanced Installation” on page 77.

The Welcome Screen

Two varieties of the Welcome screen exist. One screen, shown in Figure 3-2, allows
you to choose between bringing up a live Ubuntu system and installing Ubuntu on
the hard disk. It has two buttons: Try Ubuntu 10.04 and Install Ubuntu 10.04. The
other screen, which is similar to the one shown in Figure 3-2, simply marks the start
of the installation process. It has three buttons: Quit, Back (grayed out and non-
functional because you cannot go back from this screen), and Forward.

Quit button When you click Quit, Ubuntu displays a GNOME desktop running under a live
session (Figure 3-4, page 55).

Changing the default
language

Along the left side of both Welcome screens is a list box (page 1157) that holds a list
of languages. The highlighted language is the language the live session or the
installer/installed system will use. If the highlighted language is not the language
you want, use the ARROW keys or the mouse to highlight your desired language before
proceeding. See “The Function Keys” on page 79 for information about changing
the language, keyboard layout, and accessibility features used by a live session and
the installer/installed system.

optional Seeing What Is Going On

If you are curious and want to see what Ubuntu is doing as it boots, perform an
advanced installation (page 77) and remove quiet and splash from the boot command
line (Figure 3-22, page 81): With the DVD menu screen or one of the CD menu
screens displayed, press F6 to display the boot command line and a drop-down list.
Next press ESCAPE to close the drop-down list. Then press BACKSPACE or DEL to back up
and erase quiet and splash from the boot command line. If you have not added any-
thing to this line, you can remove the two hyphens at the end of the line. If you have
added to this line, use the LEFT ARROW key to back up over—but not remove—whatever
you added, the hyphens, and the SPACE on each side of them. Then remove quiet and
splash. Press RETURN. Now, as Ubuntu boots, it displays information about what it is
doing. Text scrolls on the screen, although sometimes too rapidly to read.

ubiquity: Installing Ubuntu Graphically

This section covers the ubiquity graphical installer, written mostly in Python, that
installs Ubuntu. You can also install Ubuntu using the textual installer (debian-
installer; page 85).

Before you start, see what is on the hard disk

tip Unless you are certain you are working with a new disk, or you are sure the data on the disk is of no
value, it is a good idea to see what is on the hard disk before you start installing Ubuntu. You can use
the palimpsest disk utility to mount partitions on a hard disk. You can then examine the files in
these partitions and see what is on the disk. See page 66 for more information on palimpsest.

 From the Library of WoweBook.Com

ptg

58 3 Step-by-Step Installation

Using the Mouse to Work with the Install

Window Screens

You can use either the mouse or the keyboard to make selections from the Install
window screens. To select a language from the Welcome screen using the mouse,
left-click the language you want to use in the list box at the left. If the language you
want does not appear on the displayed portion of the list, click or drag the scroll-
bar (Figure 3-2 on page 53 and Figure 4-16 on page 123) to display more lan-
guages; then click the language you want to use. Ubuntu highlights the language
you click. Once you select a language, you are finished working with the Welcome
screen. Click the button labeled Forward or Install Ubuntu 10.04 to display the
next screen.

Using the Keyboard to Work with the Install

Window Screens

To use the keyboard to make selections, first use the TAB key to move the highlight to
the object you want to work with. On the Welcome screen, the objects are the
selected item in the list box and the buttons labeled or Install Ubuntu 10.04 or
Quit, Back, and Forward.

List box With a language in the list box highlighted, use the UP ARROW and DOWN ARROW keys to
move the highlight to the language you want to use. The list scrolls automatically
when you move the highlight to the next, undisplayed entry in the list.

Button Once you select a language, you are finished working with the Welcome screen. Use
the TAB key to highlight the button labeled Forward or the button labeled Install
Ubuntu 10.04. The button turns orange with an orange border when it is high-
lighted. Press RETURN to display the next screen.

Drop-down list To make a selection from a drop-down list, such as the one in the box labeled
Region shown in Figure 2-1 on page 31, use the TAB key to highlight the box and
then use the ARROW keys to move the highlight from one item to the next. With the
selection you want to choose highlighted, press RETURN.

Starting the Installation

This book describes using the mouse to make selections from a graphical interface;
you can use the keyboard if you prefer.

Welcome Screen

The Welcome screen of the Install window (Figure 3-2) contains a welcome message
and a list of languages for you to choose from. The language you choose will be the
one ubiquity uses as you install the system and the default language for the installed
system; you can change this default once the system is installed (page 145). Click
Forward.

Ubuntu displays the Setting up the clock window and, if it can connect to a network
time server, sets the clock. You can click Skip to bypass this step.

 From the Library of WoweBook.Com

ptg

Booting from a Live/Install Desktop CD or a Live/Install DVD 59

Where are You?

As the first step in installing Ubuntu, ubiquity displays the Where are you? screen.
This screen allows you to specify the time zone where the computer is located. You
can use the map or the drop-down lists labeled Region and Time Zone to specify
the time zone. When you click the name of a city on the map, the appropriate region
appears in the box labeled Region and the name of the time zone or a city within
the time zone appears in the box labeled Time Zone.

To use the Region drop-down list, click the down arrow at the right end of the box
labeled Region; ubiquity expands the box into a list of parts of the world. Click the
region you want to select. Now, repeat this process with the box labeled Time
Zone. Click Forward.

Keyboard Layout

The Keyboard layout screen (Figure 3-6) allows you to specify the type of keyboard
to be used by the installed system. (See “F3 Keymap” on page 79 to change the lay-
out of the keyboard ubiquity uses during installation.) When ubiquity displays the
Keyboard layout screen, the radio button (page 1167) labeled Suggested option is
selected and the name of a keyboard layout appears to the right of these words. If
the suggested option is acceptable, click Forward.

Anytime the Keyboard layout screen is displayed, you can highlight the text box at
the bottom of the screen and type some letters to see if the selected option is correct
for the keyboard you are using.

Figure 3-6 The Keyboard layout screen

 From the Library of WoweBook.Com

ptg

60 3 Step-by-Step Installation

When you select the radio button labeled Guess keymap and click Guess, ubiquity
leads you through a series of questions and, based on your answers, tries to deter-
mine which type of keyboard you are using. Click Forward when you are satisfied
with the result.

When you select the radio button labeled Choose your own, ubiquity activates the
two list boxes below these words. Select a country and keyboard type from these list
boxes and click Forward.

Prepare Disk Space

The Prepare disk space screen controls how ubiquity partitions the hard disk. See
page 36 for a discussion of the issues involved in partitioning a hard disk.

Guided Partitioning

With a single, clean hard disk—a hard disk with nothing installed on it, as it comes
from the factory (i.e., no partition table)—the ubiquity partition editor displays a
Prepare disk space screen similar to the one shown in Figure 3-7. In this case, the
simplest way to partition the disk is to allow the ubiquity partitioner to do it for you.
This technique is called guided partitioning. By default, the radio button labeled
Erase and use the entire disk is selected and the name of the only hard disk in the
system is displayed in the drop-down list below these words. If the system has two
or more hard disks, you must select from this list the disk where you want to install
Ubuntu. Click Forward. The ubiquity partition editor creates two partitions on the
hard disk: a small swap partition (page 37) and a root partition (/, page 37) that
occupies the rest of the disk.

The ubiquity partition editor does not partition the disk at this time. At any time
before you click Install on the Ready to install screen, you can change your mind
about how you want to partition the disk. Click the button labeled Back. You may
have to back up through several screens to display the Prepare disk space screen
again, but you can then set up the disk the way you want it.

See “Advanced Guided Partitioning” on page 70 for information on using the other
selections in the Prepare disk space screen.

Migrate Documents and Settings

If you are installing Ubuntu on a system that already has one or more operating sys-
tems installed on it, and you are not overwriting those operating systems, the
Migrate documents and settings screen displays a list of accounts and settings from
the existing operating systems. For example, if you are creating a dual-boot system
on a system that already has Windows installed on it, this screen shows the
accounts from the Windows system and a list of programs and settings. It might
show your name from the Windows system and, under that, Internet Explorer and
My Documents. Put ticks in the check boxes adjacent to those items you want to
migrate to the Ubuntu system. On the lower portion of the screen, enter the infor-
mation necessary to create an Ubuntu user to receive the migrated information.
Click Forward.

 From the Library of WoweBook.Com

ptg

Booting from a Live/Install Desktop CD or a Live/Install DVD 61

Who Are You?

The Who are you? screen (Figure 3-8, next page) sets up the first Ubuntu user. This
user can use sudo (page 98) to administer the system, including setting up additional
users (page 594). Enter the full name of the user in the text box labeled What is
your name?. As you type, ubiquity enters the first name from the name you are enter-
ing in the box labeled What name do you want to use to log in?. Press TAB to move
the cursor to this box. If you want to use a different username, press BACKSPACE

(page 151) to erase the username and enter a new one. Press TAB.

Enter the same password in the two (adjacent) boxes labeled Choose a password to
keep your account safe. The strength of the password is displayed to the right of the
password boxes. Although ubiquity accepts any password, it is a good idea to choose
a stronger (more secure) password if the system is connected to the Internet. See
“Changing Your Password” on page 148 for a discussion of password security.

The final text box specifies the name of the computer. For use on a local network
and to connect to the Internet with a Web browser or other client, you can use a
simple name such as fox8. If you are setting up a server system, see “FQDN” on
page 823 for information on names that are valid on the Internet.

The three radio buttons at the bottom of the window configure the login process for
the user you are specifying. Select Require my password to log in to cause Ubuntu
to require a password for you log in on the system.

Select Require my password to log in and to decrypt my home folder if you are set-
ting up an encrypted home folder.

Figure 3-7 The ubiquity partition editor showing one empty hard disk

 From the Library of WoweBook.Com

ptg

62 3 Step-by-Step Installation

Select Log in automatically if you want Ubuntu to log you in automatically when
the system boots—select this option only if you trust everyone who has physical
access to the system. Click Forward.

Ready to Install

The final screen ubiquity displays is the Ready to install screen (Figure 3-9). At this
point, the ubiquity partition editor has not yet written to the disk. Thus, if you click
Quit at this point, the hard disk will remain untouched. This screen summarizes
your answers to the questions ubiquity asked in the previous screens. Click Advanced
to display the Advanced Options window, which allows you to choose whether to
install a boot loader (normally you want to) and whether to set up a network proxy
(page 405). Click OK to close the Advanced Options window. If everything looks
right in the summary, click Install. The installer begins installing Ubuntu on the
hard disk.

The ubiquity installer displays messages to keep you informed of its progress. When
the new system is installed, Ubuntu displays the Installation Complete window,
which gives you the choice of continuing the live session (Continue Testing) or

Figure 3-8 The Install window, Who are you? screen

When ubiquity writes to the hard disk
caution You can abort the installation by clicking the Quit button at any point, up to and including when

the Ready to install screen (Figure 3-9) is displayed, without making any changes to the hard disk.
Once you click Install in this screen, ubiquity writes to the hard disk.

 From the Library of WoweBook.Com

ptg

Graphical Partition Editors 63

rebooting the system so you can use the newly installed copy of Ubuntu. Click
Restart Now to reboot the system.

The installer displays the Ubuntu logo and progress dots. When it has finished shutting
down the system, it asks you to remove the disk (so you do not reboot from the
CD/DVD) and press RETURN. After you complete these steps, Ubuntu reboots the system
and displays the Ubuntu GNOME login screen (Figure 4-1, page 100).

Log in as the user you specified on the Who are you? screen and continue with
Chapter 4.

Graphical Partition Editors

A partition editor displays and can add, delete, and modify partitions on a hard
disk. This section describes three graphical partition editors you can use to config-
ure a hard disk in the process of installing Ubuntu. The gparted and palimpsest par-
tition editors are available from a live session. The other partition editor is part of
the ubiquity installer and is not available by itself. See page 87 for information on
using the textual partition editor, which is available when you use the textual
installer. After you install Ubuntu Linux, you can use parted (page 611) or palimp-
sest (page 66) to view and manipulate partitions. The gparted partition editor is not

Figure 3-9 The Install window, Ready to install screen

 From the Library of WoweBook.Com

ptg

64 3 Step-by-Step Installation

available from an installed system unless you install the gparted package
(page 519). If you want a basic set of partitions, you can allow ubiquity to partition
the hard disk automatically using guided partitioning.

See “Setting Up the Hard Disk” on page 33 for a discussion of free space, parti-
tions, partition tables, and filesystems. “Manual Partitioning: Planning Partitions”
on page 37 discusses some of the filesystems for which you may want to set up par-
titions if you choose to partition the hard disk manually.

Unless you are certain the hard disk you are installing Ubuntu Linux on has nothing
on it (it is a new disk) or you are sure the disk holds no information of value, it is a
good idea to examine the disk before you start the installation. The gparted and pal-
impsest partition editors, which are available from a live session, are good tools for
this job.

gparted: The GNOME Partition Editor

Open a GParted window by selecting Main menu: System Administration
GParted as shown in Figure 3-10.

The gparted utility displays the layout of the hard disk and can be used to resize par-
titions, such as when you are setting up a dual-boot system by adding Ubuntu to a
Windows system (page 76). Although you can create partitions using gparted, you
cannot specify the mount point (page 35) for a partition—this step must wait until
you are installing Ubuntu and using the ubiquity partition editor.

An Empty Hard Disk

The gparted utility shows one large unallocated space for a new hard disk (empty,
with no partition table). An exclamation point in a triangle is a warning; on a new
disk it indicates an unrecognized file system (there is no partition table). If you have
more than one hard disk, use the list box in the upper-right corner of the window to
select which disk gparted displays information about. Figure 3-11 shows an empty

Figure 3-10 Selecting gparted from the Main menu

 From the Library of WoweBook.Com

ptg

Graphical Partition Editors 65

200-gibibyte (page 1150) hard disk on the device named /dev/sda. Figure 3-7 on
page 61 shows the ubiquity partition editor ready to partition an empty drive similar
to the one shown in Figure 3-11.

Resizing a Partition

Although you can resize a partition using the ubiquity partition editor while you are
installing Ubuntu, you may find it easier to see what you are doing when you use
the gparted partition editor from a live session for this task. This section explains
how to use gparted to resize a partition.

Figure 3-12 (next page) shows gparted displaying information about a hard disk
with a single partition that occupies the entire disk. This partition holds a single
200-gibibyte NTFS filesystem. The process of resizing a partition is the same
regardless of the type of partition, so you can use the following technique to resize
Windows, Linux, or other types of partitions.

To install Ubuntu on this system, you must resize (shrink) the partition to make
room for Ubuntu. To resize the partition, right-click to highlight the line that
describes the partition and click the arrow pointing to a line on the toolbar at the
top of the window. The partition editor opens a small Resize/Move window, as
shown in Figure 3-12.

At the top of the Resize/Move window is a graphical representation of the partition.
Initially the partition occupies the whole disk. The spin box labeled New Size (MiB)

Figure 3-11 The gparted utility displaying an empty disk drive

Always back up the data on a hard disk

caution If you are installing Ubuntu on a disk that holds important data, back up the data before you start
the installation. Things can and do go wrong. The power may go out in the middle of an installa-
tion, corrupting the data on the hard disk. There may be a bug in the partitioning software that
destroys a filesystem. Although it is unlikely, you might make a mistake and format a partition
holding data you want to keep.

 From the Library of WoweBook.Com

ptg

66 3 Step-by-Step Installation

shows the number of mebibytes occupied by the partition—in this case, the whole
disk. The two spin boxes labeled Free Space show no free space.

You can specify how the partition should be resized by (right-clicking and) dragging
one of the triangles at the ends of the graphical representation of the partition or by
entering the number of mebibytes you want to shrink the Windows partition to in
the spin box labeled New Size (MiB). The value in one of the spin boxes labeled Free
Space increases when you make this change (as shown in Figure 3-12). Click
Resize/Move to add the resize operation to the list of pending operations at the bot-
tom of the window. Click the green check mark on the toolbar to resize the partition.

Deleting a Partition

Before you delete a partition, make sure it does not contain any data you need. To
use gparted to delete a partition, highlight the partition you want to delete, click the
circle with a line through it, and then click the green check mark on the toolbar.

palimpsest: The GNOME Disk Utility

The palimpsest graphical disk utility can create, remove, and modify partitions and
filesystems on many types of media, including internal and external hard disks,
CD/DVDs, and USB flash drives. It can encrypt partitions and change passwords on
already encrypted partitions.

Open the Palimpsest Disk Utility window by selecting Main menu: System
Administration Disk Utility (just above GParted in Figure 3-10 on page 64). To

Figure 3-12 The gparted partition editor displaying a disk drive
holding a Windows system

 From the Library of WoweBook.Com

ptg

Graphical Partition Editors 67

display information about a hard disk, click a hard disk under Storage
Devices/Peripheral Devices on the left side of the window.

With a hard disk selected, the palimpsest Disk Utility window is divided into three
sections (Figure 3-13): Storage Devices holds a list of CD/DVD drives, hard disks,
and other devices; Drive holds information about the hard disk that is highlighted
in the list of storage devices; and Volumes displays information about the partition
that is highlighted in the graphical representation of the hard drive.

When you select a hard disk in the Storage Devices section, palimpsest displays
information about that disk in the Drive section of the window. Click one of the
partitions in the graphical representation of the hard disk and palimpsest displays
information about that partition in the Volumes section.

From this window you can view, create, and delete partitions. Although you can
create partitions using palimpsest, you cannot specify the mount point (page 35) for
a partition—this step must wait until you are installing Ubuntu and using the ubiq-
uity partition editor. You can save time if you use palimpsest to examine a hard disk
and ubiquity to set up the partitions you install Ubuntu on.

Displaying the Contents of a Filesystem

To display the contents of a filesystem, select the partition holding the filesystem as
described above and click Mount Volume in the Volumes section of the Disk Utility
window. Figure 3-13 shows Unmount Volume because the partition is already
mounted. When palimpsest mounts the highlighted filesystem, the mounted file-
system appears as a directory (folder) on the desktop. When you click the mount
point (the link following Mount Point: mounted at) in the Volumes section or
double-click the directory icon on the desktop, Nautilus displays the filesystem in a
file browser window (page 107). When you have finished examining the contents of
the filesystem, click Unmount Volume to unmount the filesystem.

Figure 3-13 The palimpsest Disk Utility window

Drive section

Volumes section

Graphical representation

Storage Devices

Peripheral Devices

section

of volumes

 From the Library of WoweBook.Com

ptg

68 3 Step-by-Step Installation

Writing a Partition Table

A new disk does not have a partition table (page 33) and looks similar to the disk
highlighted in Figure 3-14. In the Drive section of a Disk Utility window, Not Parti-
tioned follows the Partitioning label, the graphical representation of the disk is
marked Unknown, and Usage is blank. If the disk you are working with already has
a partition table, skip to the next section.

To partition a hard disk, click Format Drive in the Drive section of the Disk Utility
window: palimpsest opens a Format window holding a drop-down list labeled
Scheme. Select a scheme. In most cases you will want to accept the default scheme
of Master Boot Record. Click Format. After checking that you really want to for-
mat the drive, palimpsest creates the partition table. Now Master Boot Record fol-
lows the Partitioning label, the graphical representation of the disk is marked Free
(free space; page 33), and Unallocated Space follows the Usage label.

If you want to create a single filesystem that occupies the entire disk drive, instead
of following the instructions in the preceding paragraph, click Format Volume in
the Volumes section of the Disk Utility window: palimpsest opens a Format whole-
disk volume window. To create a filesystem, follow the instructions for the Create
partition window in the next section.

Creating a Partition and a Filesystem

Once you have created a partition table, you will be able to create a partition that
holds a filesystem in the free space. When you click Create Partition, palimpsest
opens a Create partition window (Figure 3-15).

Figure 3-14 The palimpsest Disk Utility showing a disk without a partition table

 From the Library of WoweBook.Com

ptg

Graphical Partition Editors 69

In this window, use the slider labeled Size, or the adjacent spin box, to specify the
size of the new partition. Next specify a filesystem type; ext4 filesystems are the
most common. You can optionally enter a disk label in the text box labeled Name.
This name is not the mount point for the disk. Typically you will want to own the
filesystem, so allow the tick to remain in the check box labeled Take ownership of
file system. If you want the filesystem to be encrypted, put a tick in the check box
labeled Encrypt underlying device. Click Create. After checking with you, palimp-
sest creates the filesystem. Now the graphical representation of the disk is divided
to represent the division of the hard disk and Usage corresponds to the highlighted
section of the graphical representation (Filesystem or Unallocated Space). If you did
not use all the free space, you can create additional partitions and filesystems in the
same manner.

Deleting a Partition

Before deleting a partition, make sure it does not contain any data you need. To use
the palimpsest utility to delete a partition, highlight the partition you want to delete
in the graphical representation of the hard disk and click Delete Partition. After
checking with you, palimpsest deletes the partition.

Using SMART to Display Disk Performance Information

SMART (Self-Monitoring, Analysis, and Reporting Technology) monitors hard
disks and attempts to predict hard disk failures. To see a SMART report for a disk
on the system, highlight the disk in the Storage Devices section and click Smart Data
in the Drive section; palimpsest displays a window similar to the one shown in

Figure 3-15 The palimpsest Create partition window

 From the Library of WoweBook.Com

ptg

70 3 Step-by-Step Installation

Figure 3-16. From this window you can run various self-tests and scroll through the
information at the bottom of the window.

ubiquity: Setting Up Partitions

While you are installing Ubuntu, ubiquity offers two ways to partition a disk: guided
and manual. Guided partitioning sets up two partitions—one for swap space
(page 37) and one for / (root, where the entire Ubuntu filesystem gets mounted;
page 37). The amount of space occupied by root depends on which guided option
you select. Manual partitioning enables you to set up partitions of any type and
size; you can also specify the mount point for each partition.

Advanced Guided Partitioning

“Prepare Disk Space” on page 60 explained how to use guided partitioning to parti-
tion an empty disk. This section explains how guided partitioning works on a disk
that is already partitioned.

Depending on the contents of the hard disk you are installing Ubuntu on, the ubiq-
uity partition editor presents different choices. Figure 3-17 shows the Prepare disk
space screen for a hard disk with one partition that occupies the entire disk. That
partition holds a Windows system. This screen shows all possible choices. In some
cases, not all of these choices appear. Click the radio button adjacent to a choice to
select it. The choices possible are outlined here:

• Install them side by side, choosing between them each startup—Allows
you to shrink a partition and use the space freed up by this operation to
install Ubuntu. You can use this choice to set up a dual-boot system

Figure 3-16 SMART data as displayed by palimpsest

 From the Library of WoweBook.Com

ptg

Graphical Partition Editors 71

(page 76) on a system where a single Windows partition occupies the
whole disk. This section describes how to use the ubiquity partition editor
to resize a partition. See “Resizing a Partition” on page 65 for instructions
on using gparted to resize a partition.

This choice includes a slider with a handle that allows you to specify how
you want to resize the partition. See Figure 3-17. Click and drag the han-
dle to specify the new size of the partition you are resizing and, by default,
the size of the new partition where Ubuntu will be installed.

• Erase and use the entire disk—Deletes all information on the disk and
installs Ubuntu on the entire disk. After deleting information from the
disk, this choice uses guided partitioning as explained on page 60.

Using the whole disk for Ubuntu is easy. Before you start, make certain the
disk does not contain any information you need. Once you rewrite the
partition table, the data will be gone for good. If you are not sure about
the contents of the disk, use palimpsest (page 66) to take a look.

• Use the largest continuous free space—Installs Ubuntu in the largest chunk
of free space on the disk. Because free space holds no data, this technique
does not change any data on the disk. This choice uses guided partitioning
(as explained on page 60) on the free space. If an operating system occu-
pies the existing partition, this choice sets up a dual-boot system (page 76).

Figure 3-17 The Prepare disk space screen showing a hard disk with a Windows
partition occupying the entire disk

Handle

 From the Library of WoweBook.Com

ptg

72 3 Step-by-Step Installation

• Specify partitions manually (advanced)—Gives you total control over the
size, placement, and naming of partitions where Ubuntu is installed. See
the next section.

When you are done working with the Prepare disk space screen, click Forward.

Manual Partitioning

This section explains how to use the ubiquity partition editor to create a partition on
an empty hard disk. Figure 3-7 on page 61 shows the Prepare disk space screen for
an empty hard disk. To create partitions manually, select Specify the Partitions
Manually (advanced) and click Forward. The ubiquity partition editor displays a
Prepare partitions screen that shows a device without any partitions—only free
space. Before you can create partitions, you must set up a partition table (page 33).
To do so, highlight the device name (e.g., /dev/sda) and click New partition table.
The partition editor asks you to confirm that you want to create a new, empty par-
tition table. Click Continue to create a partition table that contains only free space.
Now ubiquity displays a screen that looks similar to the one in Figure 3-18. (Note:
214,748 MiB [mebibytes; page 1159] equals 200 GB [gigabytes; page 1150]—
Figure 3-18 should show MiB in place of MB.) The hard disk at /dev/sda has a par-
tition table without any partitions; it contains only free space.

To create a partition, highlight the line containing free space in the Device column
and click Add. The ubiquity partition editor displays a Create partition window
(Figure 3-19), which asks you to specify whether you want to create a primary or a
logical partition (page 34), what size the partition should be (in megabytes),
whether the partition should appear at the beginning or end of the free space, what

Figure 3-18 An empty hard disk with a partition table

 From the Library of WoweBook.Com

ptg

Graphical Partition Editors 73

type the partition should be (Use as), and what name the mount point (page 35) for
the partition should have. Because Linux does not mount a swap partition, you can-
not specify a mount point for a type swap partition. If you are unsure of which type
a partition should be, choose ext4 (page 505). Click OK.

After a few moments the Prepare partitions screen displays the new partition
(Figure 3-20). To create another partition, highlight the line containing free space
and repeat the preceding steps. Remember to create a swap partition (page 37).
When you have finished creating partitions, click Forward.

The Prepare partitions screen displays five buttons immediately below the frame
that lists the disks and partitions. Some of these buttons are grayed out (inactive)

Figure 3-19 The Create partition window

Figure 3-20 The Prepare partitions screen displaying a new partition

 From the Library of WoweBook.Com

ptg

74 3 Step-by-Step Installation

depending on what is highlighted in the frame above. The button labeled Revert is
always active. When a device is highlighted, the button labeled New Partition Table
is active. Clicking this button creates a new partition table, thereby destroying any
existing partition table. Highlighting a partition gives you the choice of editing or
deleting the partition. Editing a partition you just created allows you to change only
its type and mount point. You must delete and re-create a partition to change any of
its other attributes. As mentioned earlier, highlighting the line containing free space
allows you to create a new partition.

Upgrading to a New Release

Upgrading a system is the process of installing a new release of Ubuntu over an older
one. All user and configuration files are preserved and all software is upgraded to the
most recent version consistent with the new release of Ubuntu. Ubuntu advises against
upgrading systems that have had packages installed from repositories (page 522) it does
not control. These packages may corrupt the software package database, causing the
upgrade to fail. For release notes that detail features that will not take effect with an
upgrade, see www.ubuntu.com/getubuntu/releasenotes.

Before you upgrade a system, it is a good idea to back up all user files on the system.
Also make sure the drop-down list labeled Show new distribution releases in the
Updates tab of the Software Sources window (page 132) displays the type of release
you want to upgrade to.

The following procedure assumes you have a desktop system connected to the Inter-
net. Even with a fast Internet connection, this process takes a long time. Follow
these steps to upgrade a system:

Use a standard upgrade procedure

caution Do not use procedures for upgrading to a new release of Ubuntu other than the ones specified in
this section or at www.ubuntu.com/getubuntu/upgrading. Specifically, do not use apt-get dist-
upgrade, aptitude full-upgrade, or any Debian tools.

Upgrading from an LTS release to a non-LTS release

tip When you start the Update Manager from the Main menu, it does not offer you the option of
upgrading from an LTS release to a non-LTS release. To upgrade from an LTS release to a non-
LTS release, you must enter update-manager –c on a command line (from a terminal emulator or
Run Command window [ALT-F2]) to open the Update Manager window.

Watch out for Pop-up windows

tip During the installation phase of an upgrade, some packages open windows that ask questions
about how you want to handle the upgrade of a package. These windows can be hidden by other
windows on the workspace. If the upgrade stops for no apparent reason, drag windows around to
see if a window with a question in it is hidden below another window. When you respond to the
question, the upgrade will continue.

 From the Library of WoweBook.Com

www.ubuntu.com/getubuntu/releasenotes
www.ubuntu.com/getubuntu/upgrading

ptg

Installing KDE 75

1. Open the Update Manager window (Figure 4-11, page 112) by selecting
Main menu: System Administration Update Manager.

2. Regardless of whether the window says You can install nn updates or
not, click Check. This step ensures the software package database is up-
to-date.

3. If the window displays You can install nn updates, click Install Updates.
This step ensures all software packages on the system are up-to-date.

4. At this point, if a new release is available, the window displays the mes-
sage New distribution release ‘XX.XX’ is available. Click Upgrade.

5. The utility displays the Release Notes window. Read the release notes and
then click Upgrade.

6. The utility downloads the upgrade tool and updates some files.

7. You are asked if you want to start the upgrade. Click Start Upgrade.

8. When the upgrade is complete, reboot the system.

See www.ubuntu.com/getubuntu/upgrading for more detailed instructions on
upgrading Ubuntu.

Installing KDE

You can install KDE in one of two ways. The first approach installs KDE only: Fol-
low the instructions in Chapter 2 and this chapter but instead of downloading and
burning an Ubuntu CD/DVD, download a Kubuntu CD/DVD from
www.kubuntu.org, burn it, and use that disk to install Linux.

The second approach requires the system to be connected to the Internet and
installs KDE plus a host of other programs (e.g., Amarok, Kate) in addition to
GNOME. After you install Ubuntu as explained in this chapter, use Synaptic
(page 133) or aptitude (page 526) to perform the following steps. This process takes
a while; you will be downloading and installing more than 200 software packages.

1. Ensure the software package database is up-to-date: From Synaptic, click
Reload. To use aptitude, give the command sudo aptitude update from a
command line, terminal emulator, or Run Application window (ALT-F2).

2. Ensure all software packages on the system are up-to-date: From Synaptic,
click Mark All Upgrades and then click Apply. To use aptitude, give the
command sudo aptitude safe-upgrade from a command line, terminal
emulator, or Run Application window (ALT-F2).

3. Install the KDE software: From Synaptic, search for and install the
kubuntu-desktop virtual package (page 526). To use aptitude, give the
command sudo aptitude install kubuntu-desktop from a command line,
terminal emulator, or Run Application window (ALT-F2).

 From the Library of WoweBook.Com

www.ubuntu.com/getubuntu/upgrading
www.kubuntu.org

ptg

76 3 Step-by-Step Installation

After the software is downloaded, while it is being installed, debconf asks if you
want to use the gdm (GNOME) or kdm (KDE) display manager. Either one works
with either desktop. One way to choose which display manager to use is to select
the one associated with the desktop you will be using most often.

Once KDE is installed, reboot the system. From the Login screen, follow the
instructions on page 145 to display the Sessions drop-down list and select the ses-
sion you want to run (GNOME or KDE).

Setting Up a Dual-Boot System

A dual-boot system is one that can boot one of two (or more) operating systems.
This section describes how to add Ubuntu to a system that can boot Windows,
thereby creating a system that can boot Windows or Linux. You can use the same
technique for adding Ubuntu to a system that runs a different version or distribu-
tion of Linux. One issue in setting up a dual-boot system is finding disk space for
the new Ubuntu system. The next section discusses several ways to create the
needed space.

Creating Free Space on a Windows System

Typically you install Ubuntu Linux in free space on a hard disk. To add Ubuntu
Linux to a Windows system, you must have enough free space on a hard disk that
already holds Windows. There are several ways to provide or create this free
space. The following paragraphs discuss these options in order from easiest to
most difficult.

Add a new hard disk Add another hard disk to the system and install Linux on the new disk, which
contains only free space. This technique is very easy and clean but requires a new
hard disk.

Use existing
free space

If there is sufficient free space on the Windows disk, you can install Linux there.
This technique is the optimal choice, but there is rarely enough free space on an
installed Windows system to use it.

Resize Windows
partitions

Windows partitions typically occupy the entire disk, making resizing a Windows
partition the technique most commonly used to free up space. Windows systems
typically use NTFS, FAT32, and/or FAT16 filesystems. You can use the gparted par-
tition editor to examine and resize an existing Windows partition to open up free
space in which to install Linux (page 65). You can also use the ubiquity partition edi-
tor while you are installing Ubuntu for the same purpose. See “Install them side-by-
side...” on page 70.

Remove a Windows
partition

If you can delete a big enough Windows partition, you can install Linux in its place.
To delete a Windows partition, you must have multiple partitions under Windows
and be willing to lose the data in the partition you delete. In many cases, you can

 From the Library of WoweBook.Com

ptg

Advanced Installation 77

preserve the data by moving it from the partition you will delete to another Win-
dows partition.

Once you are sure a partition contains no useful information, you can use a gparted
(page 66) or palimpsest (page 69) to delete it . After deleting the partition, you can
install Ubuntu Linux in the free space opened by removal of the partition.

Installing Ubuntu Linux as the Second Operating System

When enough free space on a Windows system is available (see the previous sec-
tion), you can install Ubuntu Linux. On the ubiquity Prepare disk space screen, select
Use the largest continuous free space (page 71). Alternatively, if you are installing
Ubuntu on its own hard disk, select Erase and use the entire disk (page 71) and click
the radio button next to the disk you want to install Ubuntu on. Click Forward.
After the installation is complete, when you boot from the hard disk, you will be
able to choose which operating system you want to run.

Advanced Installation

This section explains how to install Ubuntu from each of the four disk menus: the
DVD menu, the Desktop CD menu, the Alternate CD menu, and the Server CD
menu. It also describes using the Ubuntu textual installer from the DVD.

Each menu screen includes a menu centered on the screen and a list of function key
names and labels along the bottom. Figure 3-3 on page 54 shows the DVD menu
screen.

The DVD menu The Ubuntu DVD includes most of the selections from each of the CDs and includes
all software packages supported by Ubuntu, not just those installed by default. If
the system you are installing is not connected to the Internet, you can install soft-
ware packages from the DVD but you will have no way to update the system.

The Desktop CD
menu

The Desktop CD can bring up a live session, install Ubuntu on a hard disk, and res-
cue a broken system.

The Server CD menu The Server CD uses the textual installer (page 85) to install a minimal system with a
textual interface and no open ports. The installed system is appropriate for a server.

The Alternate CD
menu

The Alternate CD uses the textual installer (page 85) to install a system that uses a
graphical interface or one that uses a textual interface. It is not a live CD (i.e., it
does not bring up a desktop to install from). The textual installer does not require
as much RAM to install Ubuntu and presents more installation options than the
graphical installer.

Ubuntu displays the language overlay (page 54) on top of each of these four menus.
After you select a language from the overlay, you can work with the disk menu. The
language you select from the language overlay is the default language. As you install
Ubuntu, you can change the default language from the Welcome screen (page 58).

 From the Library of WoweBook.Com

ptg

78 3 Step-by-Step Installation

The Disk Menu Screens

Each of the four disk menus holds different selections. In addition, the F4 key dis-
plays different selections from each of these menus. This section discusses each of
the menu selections and describes what happens when you press each of the func-
tion keys from each of these menus. The final part of this section covers boot com-
mand-line parameters.

Menu Selections

The Minimal CD (page 32) does not display a menu, but rather displays a boot:
prompt. Enter linux RETURN to start a textual installation from this disk or enter help
RETURN to display more information.

Table 3-1 details the menu selections available from each installation disk. The fol-
lowing paragraphs describe what each menu selection does. With the Try Ubuntu
without installing and Install Ubuntu selections, you can further modify the instal-
lation by pressing F4. Pressing F4 while Install Ubuntu in text mode is highlighted on
the DVD menu also modifies the installation. See “F4 Modes” on page 80 for more
information.

Try Ubuntu without installing—Boots to a live session (page 52). You can install
Ubuntu from a live session.

Install Ubuntu—Boots an X session with the Metacity window manager and ubiquity
installer, rather than launching a full GNOME desktop. For systems with minimal
RAM, this selection installs Ubuntu more quickly than installing from a live session.

Table 3-1 Menu selections on Ubuntu CD/DVD

Name of CD/DVD .

Menu selection
DVD Desktop Server Alternate

Try Ubuntu without installing X X

Install Ubuntu X X Xa

Install Ubuntu in text mode X

Check disc for defects X X X X

Test memory X X X X

Boot from first hard disk X X X X

Rescue a broken system Xa

a. Runs in text mode.

Xa Xa

Install Ubuntu Server Xa Xa

Install Ubuntu Enterprise Cloud X Xa

 From the Library of WoweBook.Com

ptg

Advanced Installation 79

Install Ubuntu in text mode—Installs a graphical Ubuntu system using the debian-
install textual installer. For more information refer to “The Ubuntu Textual
Installer” on page 85.

Check disc for defects—Verifies the contents of the CD/DVD you are booting from;
see the tip on page 56. Ubuntu reboots the system after checking the disk.

Test memory—Runs memtest86+, a GPL-licensed, stand-alone memory test utility
for x86-based computers. Press C to configure the test; press ESCAPE to exit and
reboot. For more information see www.memtest.org.

Boot from first hard disk—Boots the system from the first hard disk. This selection
frequently has the same effect as booting the system without the CD/DVD
(depending on how the BIOS [page 28] is set up).

Rescue a broken system—Provides tools to repair a system that will not boot or that
has a problem with the filesystem mounted at / (root). See page 83.

Install Ubuntu Server—Installs a textual Ubuntu server system using the textual
installer. For more information refer to “The Ubuntu Textual Installer” on page 85.
During the installation, the installer displays the Software selection screen, which
asks if you want to install various servers, including a DNS server (Chapter 24), a
LAMP server (includes Apache [Chapter 26], MySQL [page 628], and PHP), an
OpenSSH server (Chapter 18), a Samba server (Chapter 23), and others. Use the
ARROW keys to move the highlight to the space between the brackets ([]) and press the
SPACE bar to select a choice.

Install Ubuntu Enterprise Cloud—Brings up a private cloud. For more information
see www.ubuntu.com/cloud/private.

The boot: prompt You can press ESCAPE from any of these menus to display a boot: prompt.

The Function Keys

Along the bottom of each menu screen is a row of labeled function key names.
Pressing each function key displays information or a menu that may be helpful if
you experience a problem while booting Ubuntu or working in a live session. Some
of the keys allow you to change boot parameters.

F1 Help The F1 key displays the help window shown in Figure 3-21 (next page). Pressing a
function key while this window is visible displays yet another help window. Pressing
a function key when this window is not displayed has the effect described in the fol-
lowing paragraphs. Press ESCAPE to close the help window.

F2 Language The F2 key displays the language overlay (Figure 3-1, page 52). Use the ARROW keys to
highlight the language you want the live session or the installer/installed system to
use and press RETURN. Ubuntu gives you the opportunity to change this selection for
the installed system as you install the system.

F3 Keymap The F3 key displays a country overlay. Use the ARROW keys to highlight the country of
the keyboard layout you want the live session or the installer/installed system to use

 From the Library of WoweBook.Com

www.memtest.org
www.ubuntu.com/cloud/private

ptg

80 3 Step-by-Step Installation

and press RETURN. Ubuntu gives you the opportunity to change this selection as you
install the system.

F4 Modes The F4 key displays a different set of startup modes depending on which CD/DVD you
booted from. The F4 key is effective only when either the Try Ubuntu without install-
ing or Install Ubuntu selection is highlighted. An exception is when you are installing
from the live/install DVD and the Install Ubuntu in text mode selection is high-
lighted. See Table 3-2 for a list of which modes are available from which CD/DVD.

Following is a list of all available modes:

• Normal—Starts Ubuntu in normal mode, as though you had not
pressed F4.

• OEM install (for manufacturers)—Allows a manufacturer or reseller to
preinstall Ubuntu but leaves some configuration details, such as creation
of a user account, to the purchaser.

• Use driver update disk—Installs Ubuntu with an updated driver.

• Install an LTSP server—Installs a Linux Terminal Server Project server. For
more information refer to “Diskless systems” on page 774.

• Install a command-line system—Installs a textual Ubuntu system (no
graphical interface [GUI] or desktop; only a textual interface [page 30]).

• Install a minimal system—Installs the absolute minimum set of packages
required for a working Ubuntu system as specified by the ubuntu-minimal
virtual package (page 526). In earlier releases, this setup was called JeOS;
it is useful for routers and other systems that must occupy minimal disk
space. Contrast a minimal system with the default server system, which
installs additional packages such as Python and rsync.

Figure 3-21 The Menu screen, F1 help window

 From the Library of WoweBook.Com

ptg

Advanced Installation 81

• Install a minimal virtual machine—Installs a virtual machine (page 8) that
will use the least amount of disk space possible.

• Install a server—Installs a Ubuntu server. With this selection you will be
prompted for the type of server(s) you want to install.

F5 Accessibility The F5 key displays a list of features, such as a high-contrast display and a Braille
terminal, that can make Ubuntu more accessible for some people. Use the ARROW keys
to highlight the feature you want the live session or the installer/installed system to
use and press RETURN.

F6 Other Options The F6 key displays part of the boot command line and a drop-down list holding a
menu of parameters (Figure 3-22). Use the ARROW keys to highlight the parameter

Table 3-2 F4 selections on the CD/DVD with the Try Ubuntu or Install Ubuntu
selection highlighted

DVD DVDa Desktop Server Alternate

Normal X X X X X

OEM install (for manufacturers) X X X X X

Use driver update disk X X

Install an LTSP server X X

Install a command-line system X X

Install a minimal system X

Install a minimal virtual machine X

Install a server X

a. With Install in text mode highlighted.

Figure 3-22 The Desktop menu screen after pressing F6

Boot command
line

 From the Library of WoweBook.Com

ptg

82 3 Step-by-Step Installation

you want to add to the boot command line (discussed in the next section) and press
RETURN to select the highlighted parameter. Press ESCAPE to close the list.

With the drop-down list closed, the ARROW keys can once again be used to move the
highlight on the disk menu; the boot command line changes to reflect the highlighted
selection.

On the Alternate and Server CDs, F6 also offers Expert mode. When you select
this mode, the installer asks more questions about how you want to configure the
system.

One special selection in this menu is Free software only. This selection installs free
software only; it does not install proprietary software, including proprietary device
drivers.

Alternatively, you can enter the parameters you wish to add after the double hyphen
at the end of the displayed portion of the boot command line and press RETURN to
boot the system. If you remove quiet and splash from this line, Ubuntu displays
information about what it is doing while it boots (page 57).

Boot Command-Line Parameters (Boot Options)

Following are some of the parameters you can add to the boot command line (see
“F6 Other Options” on the previous page). You can specify multiple parameters sep-
arated by SPACEs. See help.ubuntu.com/community/BootOptions (Common Boot
Options) and The Linux BootPrompt-HowTo for more information.

noacpi Disables ACPI (Advanced Configuration and Power Interface). Useful for systems
that do not support ACPI or that have problems with their ACPI implementation.
Also acpi=off. The default is to enable ACPI.

noapic Disables APIC (Advanced Programmable Interrupt Controller). The default is to
enable APIC.

noapm Disables APM (Advanced Power Management). Also apm=off. The default is to
enable APM.

nodmraid Disables DMRAID (Device-Mapper Software Raid), also called fake raid (page 41).
The default is to enable DMRAID.

edd=on Enables EDD (BIOS Enhanced Disk Drive services).

noframebuffer Turns off the framebuffer (video memory). Useful if problems occur when the
graphical phase of the installation starts. Particularly useful for systems with LCD
displays. Also framebuffer=false.

irqpoll Changes the way the kernel handles interrupts.

nolapic Disables local APIC. The default is to enable local APIC.

nomodeset Disables KMS (kernel-mode-setting technology), which may help some older
graphics chips work properly. Include this parameter if the display does not work
properly as you boot from a CD/DVD.

 From the Library of WoweBook.Com

ptg

Advanced Installation 83

Virtual Consoles

While it is running, Ubuntu opens a shell on each of the six virtual consoles (also
called virtual terminals; page 149). You can display a virtual console by pressing
CONTROL-ALT-Fx, where x is the virtual console number and Fx is the function key that
corresponds to the virtual console number.

At any time during the installation, you can switch to a virtual console and give
shell commands to display information about processes and files. Do not give com-
mands that change any part of the installation process. To switch back to the graph-
ical installation screen, press CONTROL-ALT-F7. To switch to the textual (pseudographical)
installation screen, press CONTROL-ALT-F1.

Rescuing a Broken System

The Rescue a broken system selection on the Alternate CD, Server CD, and
live/install DVD brings up Ubuntu but does not install it. After beginning a textual
installation (page 85), asking a few questions, and detecting the system’s disks and
partitions, Ubuntu presents a menu from which you can select the device you want
to mount as the root filesystem (Figure 3-23).

Use the ARROW keys to highlight the device holding the filesystem you want Ubuntu to
mount as the root filesystem while you are rescuing it. If you choose the wrong
device, you can easily return to this menu and select a different device. Press RETURN

to select the highlighted device.

Figure 3-23 Selecting the root filesystem while rescuing a broken system

Rescuing a broken system versus recovery mode

tip To rescue a broken system, boot Ubuntu from an Alternate CD, a Server CD, or a live/install DVD,
and select Rescue a broken system from the Disk menu. Ubuntu displays the pseudographical
Rescue Operations menu (Figure 3-24). This section explains how to rescue a broken system.

When you bring a system up in recovery mode (classically called single-user mode), Ubuntu
boots from the hard disk and displays the pseudographical Recovery menu (Figure 11-2,
page 447) as explained on page 445.

 From the Library of WoweBook.Com

ptg

84 3 Step-by-Step Installation

Once you select a device, Ubuntu displays the Rescue Operations menu (Figure 3-24).
The following paragraphs list the selections on the Rescue Operations menu:

• Execute a shell in /dev/xxx—Mounts the device you selected (/dev/xxx) as
/ (root) and spawns a root shell (e.g., dash or bash; Chapter 7) if a shell is
available on the mounted device. You are working with root privileges
(page 98) and can make changes to the filesystem on the device you
selected. You have access only to the shell and utilities on the mounted file-
system, although you may be able to mount other filesystems. If the
mounted filesystem does not include a shell, you must use the next selec-
tion. Give an exit command to return to the Rescue Operations menu.

• Execute a shell in the installer environment—Mounts the device you
selected (/dev/xxx) as /target; runs Busybox (www.busybox.net), a size-
and resource-optimized collection of Linux-like utilities; and spawns a
shell. You are running a minimal Busybox shell with root privileges
(page 98). You have access to the many BusyBox utilities and can use nano
to edit files, but some familiar utilities to may not be available and others
may take fewer parameters than their Linux counterparts. You can make
changes to the filesystem on the device you selected, which is mounted on
/target. You can mount other filesystems. Give an exit command to return
to the Rescue Operations menu.

• Reinstall the GRUB boot loader—Updates the GRUB boot loader by
prompting for a device and running update-grub (page 587) and grub-install
(page 589) to update GRUB and install it on the device you specify. A typ-
ical system has GRUB installed on the MBR (master boot record) of the
first hard disk (e.g., /dev/sda). This selection will not upgrade from GRUB
legacy to GRUB 2; see the tip on page 584.

• Choose a different root file system—Returns to the previous step where
you can select a filesystem to work with.

• Reboot the system—Reboots the system. Remove the CD/DVD if you
want to boot from the hard disk.

Figure 3-24 The Rescue Operations menu

 From the Library of WoweBook.Com

www.busybox.net

ptg

Advanced Installation 85

The Ubuntu Textual Installer

The Ubuntu textual installer (debian-installer) gives you more control over the
installation process than the Ubuntu graphical installer (page 57) does. The textual
installer displays a pseudographical (page 30) interface and uses fewer system
resources, including less RAM, than the graphical installer does, making it ideal for
older systems. You can install either a graphical (desktop) or textual (command-
line) system using the textual installer, depending on which CD/DVD you use and
which selections you make from the disk menu and the F4 menu.

Many of the screens the textual installer displays parallel the screens displayed by
the graphical installer. Within the textual installer’s screens, TAB moves between
items, the ARROW keys move between selections in a list, and RETURN selects the high-
lighted item and causes the installer to display the next screen. A few screens include
brackets ([]) that function similarly to check boxes; they use an asterisk in place of
a tick. Use the ARROW keys to move the highlight to the space between the brackets.
Press the SPACE bar to place an asterisk between the brackets and select the adjacent
choice. Press the SPACE bar again to remove the asterisk.

The textual installer main menu (the contents of this menu varies—Figure 3-25
shows an example) allows you to go directly to any step of the installation process
or enter recovery mode (see “Rescuing a Broken System” on page 83). At the lower-

Figure 3-25 The Ubuntu installer main menu

 From the Library of WoweBook.Com

ptg

86 3 Step-by-Step Installation

left corner of most textual installer screens is <Go Back>. See Figure 3-26 for an
example. Use the TAB key to highlight this item and press RETURN to display the Ubuntu
installer main menu. You may have to back up through several screens to display
this menu.

The first screen the textual installer displays is Choose a language (Figure 3-26). Use
the UP and DOWN arrow keys to select a language. You can type the first letter of the
language to move the highlight to the vicinity of the language you want to choose.
This language will be the default language for the installer/installed system; you can
change the default once the system is installed (page 145). Press RETURN to select the
highlighted language and display the next screen.

The installer steps through a series of screens, each of which has an explanation and
asks a question. Use the ARROW keys and/or TAB key to highlight an answer or selection
and press RETURN to make a selection on each of the screens. After a few screens, the
installer detects and installs programs from the CD/DVD, detects the network hard-
ware, and configures it with DHCP (if available).

As it is configuring the network, the installer asks you for the hostname of the sys-
tem you are installing. For use on a local network and to connect to the Internet
with a Web browser or other client, you can make up a simple name. If you are set-
ting up a server, see “FQDN” on page 823 for information on names that are valid
on the Internet.

After this step, the installer asks which time zone the computer is in, continues
detecting hardware, starts the partition editor, and displays the Partitioning method
screen (Figure 3-27). Many of the selections available from the textual partition edi-
tor parallel those available from the graphical partition editor. This section
describes how to use the textual partition editor to partition a hard disk manually.

Figure 3-26 The Choose a language screen

 From the Library of WoweBook.Com

ptg

Advanced Installation 87

Page 70 describes guided partitioning using the graphical partition editor. Guided
partitioning using the textual installer is similar but offers more options.

Manual Partitioning

When you select Manual from the Partitioning method screen (Figure 3-27), the
textual partition editor displays the Partition overview screen, which lists the hard
disks in the system and partitions on those disks. If a hard disk has no partitions,
the partition editor displays only information about the hard disk. Figure 3-28
shows a single 200-gigabyte hard disk (highlighted) that has no partition table (and
no partitions). (Note: 214.7 GB equals 200 GiB—Figure 3-28 should show GiB in
place of GB. See the tip on page 37.)

If you want to set up RAID, see page 91 before continuing.

Creating a
partition table

If the Partition overview screen shows no partitions and no free space on a hard
disk, as it does in Figure 3-28, the hard disk does not have a partition table: You
need to create one. If this screen shows at least one partition or some free space, the
disk has a partition table and you can skip this step and continue with “Creating a
partition” on the next page.

Figure 3-27 The Partitioning method screen

Figure 3-28 The Partition overview screen I

 From the Library of WoweBook.Com

ptg

88 3 Step-by-Step Installation

The iSCSI (page 1155) selection creates a partition on a remote system.

To create a partition table, highlight the disk you want to create a partition table on
and press RETURN. The installer asks if you want to create a new partition table on the
device and warns that doing so will destroy all data on the disk. Highlight Yes and
press RETURN. The installer displays the Partition overview screen showing the disk with
a single block of free space as large as the disk (Figure 3-29). The Partition overview
screen displays additional choices because the hard disk now has a partition table.

Creating a partition To create a partition, highlight the line containing the words FREE SPACE and press
RETURN. The partition editor asks how you want to use the free space; highlight Create
a new partition and press RETURN. Next the partition editor asks you to specify the size
of the new partition. You can enter either a percentage (e.g., 50%) or a number of
gigabytes followed by GB (e.g., 30 GB). Press RETURN. The partition editor then asks
you to specify the type of the new partition (primary or logical; page 34) and asks
whether you want to create the partition at the beginning or the end of the free
space. It does not usually matter where you create the partition. After answering
each of these questions, press RETURN. The partition editor then displays the Partition
settings screen (Figure 3-30).

To change a setting on the Partition settings screen, use the ARROW keys to move the
highlight to the setting you want to change and press RETURN. The partition editor
displays a screen that allows you to change the setting.

Specifying a
partition type

(Use as)

The first line, labeled Use as, allows you to specify the type of filesystem the installer
creates on the partition. This setting defaults to ext4, which is a good choice for most
normal filesystems. If you want to change the filesystem type, move the highlight to

Figure 3-29 The Partition overview screen II

Ubuntu officially supports ext3 and ext4 filesystems only

caution The ext3 and ext4 filesystems are the only type of filesystems officially supported by Ubuntu
(other than swap). Set up other types of filesystems—such as JFS, XFS, or reiserfs—only if you
know what you are doing. Filesystems other than ext3 and ext4 may be more likely to become cor-
rupted when the system crashes and may exhibit unusual performance characteristics (e.g., XFS
runs slowly with small files and may take a long time to upgrade).

 From the Library of WoweBook.Com

ptg

Advanced Installation 89

this line and press RETURN; the installer displays the How to use this partition screen
(Figure 3-31). You can select ext2 for /boot and /usr, swap area (page 37), RAID
(page 91), LVM (page 41), or another type of filesystem. Table 12-1 on page 505
lists some common types of filesystems. Move the highlight to the selection you want
and press RETURN. The partition editor redisplays the Partition settings screen, which
now reflects the selection you made. For a swap area, there is nothing else to set up;
skip to “Done setting up the partition” on the next page.

Specifying a mount
point

The mount point defaults to / (root). To change the mount point for the filesystem,
highlight the line labeled Mount point and press RETURN. The partition editor displays a

Figure 3-30 The Partition settings screen

Figure 3-31 The How to use this partition screen

 From the Library of WoweBook.Com

ptg

90 3 Step-by-Step Installation

screen that allows you to specify a mount point (Figure 3-32). Select a mount point; if
the mount point you want to use is not listed, select Enter manually. Press RETURN.

The bootable flag Typically the only other setting you need to change is the bootable flag. Turn this
flag on for the /boot partition if the system has one; otherwise, turn it on for the /
(root) partition. To change the state of the bootable flag, highlight the line labeled
Bootable flag on the Partition settings screen and press RETURN. After a moment, the
partition editor redisplays the screen, now showing the changed state of this flag.

Done setting up
the partition

When you are satisfied with the partition settings, highlight Done setting up the
partition and press RETURN. The partition editor displays the Partition overview
screen showing the new partition setup. To create another partition, repeat the steps
starting with “Creating a partition” on page 88. To modify a partition, highlight
the partition and press RETURN.

Writing the
partitions to disk

When you are satisfied with the design of the partition table(s), highlight Finish par-
titioning and write changes to disk and press RETURN. After giving you another chance
to back out, the partition editor writes the partitions to the hard disk.

Continuing the
installation

The installer continues by installing the base system and asking you to set up a user
account. It gives you the option of setting up an encrypted home directory and spec-
ifying an HTTP proxy and continues installing the system.

Specifying software
packages

Next the installer displays the Software selection screen (Figure 3-33), which allows
you to specify the packages to be installed. The Ubuntu desktop package is specified
by default. Use the ARROW keys to move the highlight and use the SPACE bar to add and
remove the asterisk next to each selection. The asterisk indicates an item is selected.
The last selection, Manual package selection, installs the selected packages; you can
install additional packages once the system has been installed.

Figure 3-32 The Mount point for this partition screen

 From the Library of WoweBook.Com

ptg

Advanced Installation 91

GRUB The Configuring grub-pc screen asks you to confirm that you want to write the
boot loader to the MBR (master boot record) of the first hard drive. Unless you
have another boot manager in the MBR, such as Smart Boot Manager, another
operating system’s GRUB, or the Windows 7 bootmgr boot loader, and want to
manually edit that boot manager to boot Ubuntu from the boot sector on the
Ubuntu partition, choose to write the boot loader to the MBR. When all selections
are correct, highlight Yes and press RETURN.

Finishing the
installation

Finally the installer asks if the system clock is set to UTC (page 1179). When the
installer displays the Installation Complete window, remove the CD/DVD and click
Continue to reboot the system.

Setting Up a RAID Array

To set up a RAID array (page 40), you must first create two or more partitions of
the same size. Usually these partitions will be on different hard disks. You create
RAID partitions as explained in the preceding section, except instead of making the
partitions of type ext4 or swap, you declare each to be a RAID volume. (RAID par-
titions are referred to as volumes.) Once you have two or more RAID volumes, the
partition editor allows you to combine these volumes into a RAID array that looks
and acts like a single partition.

The following example uses 100 gigabytes from each of two new hard disks to set
up a 100-gigabyte RAID 1 array that is mounted on /home. Follow the instructions
on page 87 to create a new partition table on each hard disk. Then create two 100-
gigabyte partitions, one on each disk. When the partition editor displays the How
to use this partition screen (Figure 3-31, page 89), follow the instructions on
page 88 and specify a partition type of physical volume for RAID.

Figure 3-33 The Software selection screen

 From the Library of WoweBook.Com

ptg

92 3 Step-by-Step Installation

Figure 3-34 shows the partition editor screen after setting up the RAID volumes. Once
you have at least two RAID volumes, the partition editor adds the Configure software
RAID selection as the top line of its menu (this line is highlighted in Figure 3-34).

Highlight Configure software RAID, press RETURN, and confirm you want to write
changes to the hard disk. From the next screen, select Create MD device (MD
stands for multidisk) and press RETURN. Then select RAID 0, 1, 5, 6, or 10 and press
RETURN. The different types of RAID arrays are described on page 41. The partition
editor then asks you to specify the number of active devices (2) and the number of
spares (0) in the RAID array. The values the partition editor enters in these fields are
based on your previous input and are usually correct. Next select the active devices
for the RAID array (use the SPACE bar to put an asterisk before each device;
Figure 3-35) and press RETURN.

Figure 3-34 The partition editor ready to set up RAID

Figure 3-35 Specifying the active devices in the RAID array

 From the Library of WoweBook.Com

ptg

Chapter Summary 93

Highlight Finish on the next screen (the one that asks if you want to create an MD
device again) and press RETURN. Now you need to tell the installer where to mount the
RAID array. Highlight the RAID array. In the example, this line contains #1 100.0
GB (this line is highlighted in Figure 3-36, but is shown after the partition is cre-
ated). Press RETURN. Highlight Use as: do not use and press RETURN. The installer dis-
plays the How to use this partition screen (Figure 3-31, page 89). Highlight the type
of filesystem you want to create on the RAID array (typically ext4) and press RETURN.
Continue to set up the RAID array as you would any other partition by following
the instructions under “Creating a partition” on page 88. In the example, the full
100 gigabytes is used for an ext4 filesystem mounted on /home.

To complete this example, create a bootable / (root) partition using the rest of the
free space on the first drive and a 4-gigabyte swap partition on the second drive.
Figure 3-36 shows the Partition overview screen that includes these changes. High-
light Finish partitioning and write changes to disk (you may have to scroll down to
expose this line) and press RETURN.

Chapter Summary

Most installations of Ubuntu Linux begin by booting from the live/install DVD or
the live/install Desktop CD and running a live session that displays a GNOME
desktop. To start the installation, double-click the object on the desktop labeled
Install.

Figure 3-36 The finished partition tables

 From the Library of WoweBook.Com

ptg

94 3 Step-by-Step Installation

Ubuntu provides a graphical installer (ubiquity) on the live/install Desktop CD/DVD;
it offers a textual installer (debian-install) on the Alternate and Server CDs and the
DVD. Both installers identify the hardware present in the system, build the filesys-
tems, and install the Ubuntu Linux operating system. The ubiquity installer does not
write to the hard disk until it displays the Ready to install screen or warns you it is
about to write to the disk. Until that point, you can back out of the installation
without making any changes to the hard disk.

A dual-boot system can boot one of two operating systems—frequently either Win-
dows or Linux. You can use the GNOME Partition Editor (gparted) or the GNOME
Disk Utility (palimpsest) from a live session to examine the contents of a hard disk
and to resize partitions to make room for Ubuntu when setting up a dual-boot sys-
tem. During installation from a live session, you can use the ubiquity partition editor
to add, delete, and modify partitions.

Exercises

1. How do you start a live session? List two problems you could encounter
and explain what you would do to fix them.

2. What steps should you take before you start a live session the first time or
install Ubuntu with a new CD/DVD? How would you do it?

3. What is guided partitioning?

4. What is ubiquity?

5. Describe the ubiquity partition editor. How does it differ from the partition
editor found on the Alternate and Server CDs?

6. When is it beneficial to use an ext2 filesystem instead of an ext4 filesystem?

Advanced Exercises

7. What is a virtual console? During installation, for what purposes can you
use a virtual console? If the system is displaying a virtual console, how do
you display the graphical installation screen instead?

8. What steps would you take to have the system display all the things it is
doing as it boots from a live/install Desktop CD/DVD?

 From the Library of WoweBook.Com

ptg

95

I

PART II

Getting Started with

Ubuntu Linux

CHAPTER 4

Introduction to Ubuntu Linux 97

CHAPTER 5

The Linux Utilities 159

CHAPTER 6

The Linux Filesystem 199

CHAPTER 7

The Shell 237

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

999777

4Chapter4One way or another you are sitting in front of a computer that
is running Ubuntu Linux. After describing root (Superuser)
privileges, this chapter takes you on a tour of the system to
give you some ideas about what you can do with it. The tour
does not go into depth about choices, options, menus, and so
on; that is left for you to experiment with and to explore in
greater detail in Chapter 8 and throughout later chapters of
this book. Instead, this chapter presents a cook’s tour of the
Linux kitchen: As you read it, you will have a chance to sample
the dishes that you will enjoy more fully as you read the rest of
this book.

Following the tour is a section that describes where to find
Linux documentation (page 136). The next section offers
more about logging in on the system, including information
about passwords (page 144). The chapter concludes with a
more advanced, optional section about working with Linux
windows (page 153).

Be sure to read the warning about the dangers of misusing the
powers of root (sudo) in the next section. While heeding that

In This Chapter

Curbing Your Power: root
Privileges/sudo 98

A Tour of the Ubuntu Desktop 99

Mouse Preferences 105

Using Nautilus to Work with
Files . 107

The Update Manager 112

Updating, Installing, and
Removing Software
Packages 131

Where to Find Documentation . . . 136

More About Logging In 144

What to Do If You Cannot
Log In . 146

Working from the Command
Line. 150

Controlling Windows: Advanced
Operations 153

4

Introduction to

Ubuntu Linux

 From the Library of WoweBook.Com

ptg

98 Chapter 4 Introduction to Ubuntu Linux

warning, feel free to experiment with the system: Give commands, create files,
click objects, choose items from menus, follow the examples in this book, and
have fun.

Curbing Your Power: root Privileges/sudo

When you enter your password to run a program (not when you log in on the
system) or when you use sudo from the command line, you are working with
root privileges and have extraordinary systemwide powers. A person working
with root privileges is sometimes referred to as Superuser or administrator. When
working with root privileges, you can read from or write to any file on the sys-
tem, execute programs that ordinary users cannot, and more. On a multiuser
system you may not be permitted to run certain programs, but someone—the
system administrator—can, and that person maintains the system. When you are
running Linux on your own computer, the first user you set up, usually when
you install Ubuntu, is able to use sudo and its graphical counterpart, gksudo, to
run programs with root privileges.

There are two primary ways to gain root privileges. First, when you start a program
that requires root privileges, a dialog box pops up asking you to Enter your password

root account

tip Most Linux systems include an account for a user named root. This user has special privileges and
is sometimes referred to as Superuser. On a classic system a user can log in and work as root by
providing the root password.

As installed, Ubuntu has a root account but no password for the account: The root account is
locked. The next section explains how you can use sudo and provide your password to run a
command with root privileges. This book uses the phrase “working with root privileges” to
distinguish this temporary escalation of privileges from the classic scenario wherein a user
can work with root privileges for an entire session. See page 419 for more information on root
privileges.

Who is allowed to run sudo?

security The first user you set up when you install Ubuntu can administer the system: This user can
use sudo to execute any command. When you add user accounts, you can specify whether
they are allowed to administer the system. See page 594 and Figure 16-3 on page 596 for
more information.

In this chapter and in Chapter 8, when this book says you have to enter your password, it assumes
you have permission to administer the system. If not, you must get an administrator to perform
the task.

 From the Library of WoweBook.Com

ptg

A Tour of the Ubuntu Desktop 99

to perform administrative tasks. After you enter your password, the program runs
with root privileges. Second, if you use the sudo utility (for textual applications;
page 421) or gksudo utility (for graphical applications; page 423) from the command
line (such as from a terminal emulator; page 125) and provide your password, the
command you enter runs with root privileges. In both cases you cease working with
root privileges when the command finishes or when you exit from the program you
started with root privileges. For more information refer to “Running Commands with
root Privileges” on page 419.

A Tour of the Ubuntu Desktop

This section presents new words (for some readers) in a context that explains the
terms well enough to get you started with the Linux desktop. If you would like
exact definitions as you read this section, refer to “GNOME Desktop Terminology”
on page 117 and to the Glossary. The Glossary also describes the data entry widgets
(page 1180), such as the combo box (page 1141), drop-down list (page 1146), list
box (page 1157), and text box (page 1176).

GNOME GNOME (www.gnome.org), a product of the GNU project (page 5), is the user-
friendly default desktop manager under Ubuntu. KDE, the K Desktop Environment,
is a powerful desktop manager and complete set of tools you can use in place of
GNOME (www.kde.org/community/whatiskde). The version of Ubuntu that runs
KDE is named Kubuntu.

This tour describes GNOME, a full-featured, mature desktop environment that
boasts a rich assortment of configurable tools. After discussing logging in, this
section covers desktop features—including panels, objects, and workspaces—
and explains how to move easily from one workspace to another. It describes
several ways to launch objects (run programs) from the desktop, how to set up
the desktop to meet your needs and please your senses, and how to manipulate
windows. As the tour continues, it explains how to work with files and folders
using the Nautilus File Browser window, one of the most important GNOME
tools. The tour concludes with a discussion of the Update Manager, the tool
that allows you to keep a system up-to-date with the click of a button; getting
help; and logging out.

Do not experiment while you are working with root privileges

caution Feel free to experiment when you are not working with root privileges. When you are working with
root privileges, do only what you have to do and make sure you know exactly what you are doing.
After you have completed the task at hand, revert to working as yourself. When working with root
privileges, you can damage the system to such an extent that you will need to reinstall Linux to
get it working again.

 From the Library of WoweBook.Com

www.gnome.org
www.kde.org/community/whatiskde

ptg

100 Chapter 4 Introduction to Ubuntu Linux

Logging In on the System

When you boot a standard Ubuntu system, GDM (GNOME display manager)
displays a Login screen (Figure 4-1) on the system console. In the middle of the
screen is a window that holds a list of names. When you click a name, Ubuntu
displays a text box labeled Password. In addition, in the panel at the bottom of
the screen, Ubuntu displays icons that allow you to work in a different language,
select a different keyboard layout, change your accessibility preferences (e.g.,
make the text larger and easier to read), and restart or shut down the system. For
more information refer to “The Login Screen” on page 145.

To log in, click your name. A text box labeled Password appears. Enter your
password and press RETURN. If Ubuntu displays an error message, try clicking your
name and entering your password again. Make sure the CAPS LOCK key is not on
(Ubuntu displays a message if it is) because the routine that verifies your entries
is case sensitive. See page 146 if you need help with logging in and page 148 if
you want to change your password. The system takes a moment to set things up
and then displays a workspace (Figure 4-2).

Introduction

You can use the desktop as is or you can customize it until it looks and functions
nothing like the initial desktop. If you have a computer of your own, you may want
to add a user (page 594) and work as that user while you experiment with the desk-
top. When you figure out which features you like, you can log in as yourself and
implement those features. That way you need not concern yourself with “ruining”
your desktop and not being able to get it back to a satisfactory configuration.

Figure 4-1 The Ubuntu GNOME Login screen

 From the Library of WoweBook.Com

ptg

A Tour of the Ubuntu Desktop 101

Panels and objects When you log in, GNOME displays a workspace that includes Top and Bottom
panels (bars) that are essential to getting your work done easily and efficiently
(Figure 4-2). Each of the panels holds several icons and words called objects. (But-
tons, applets, and menus, for example, are all types of objects.) When you click an
object, something happens.

A panel does not allow you to do anything you could not do otherwise, but rather
collects objects in one place and makes your work with the system easier. Because
the panels are easy to configure, you can set them up to hold those tools you use fre-
quently. You can create additional panels to hold different groups of tools.

Workspaces and
the desktop

What you see displayed on the screen is a workspace. Initially Ubuntu configures
GNOME with four workspaces. The desktop, which is not displayed all at once, is
the collection of all workspaces. “Switching Workspaces” on page 104 describes
some of the things you can do with workspaces.

Figure 4-2 The initial workspace

Firefox Web browser

Main menu Clock

Workspace Switcher

Trash

Tooltip

Sound

Bottom panel

NetworkManager

Top panel

Session Indicator

Indicator

Show Desktop

Do not remove objects or panels yet

caution You can add and remove panels and objects as you please. Until you are comfortable working with
the desktop and have finished reading this section, however, it is best not to remove any panels
or objects from the desktop.

Click and right-click

tip This book uses the term click when you need to click the left mouse button. It uses the term right-
click when you need to click the right mouse button. See page 105 for instructions on adapting
the mouse for left-handed use.

 From the Library of WoweBook.Com

ptg

102 Chapter 4 Introduction to Ubuntu Linux

Launching Programs from the Desktop

This section describes three of the many ways you can start a program running from
the desktop.

Click an object The effect of clicking an object depends on what the object is designed to do. Click-
ing an object may, for example, start a program, display a menu or a folder, or open
a file, a window, or a dialog box.

For example, to start the Firefox Web browser, (left-) click the Firefox object (the
blue and orange globe on the Top panel; see Figure 4-2. GNOME opens a window
running Firefox. When you are done using Firefox, click the small x at the left end
of the titlebar at the top of the window. GNOME closes the window.

When you (left-) click the date and time near the right end of the Top panel, the
Clock applet displays a calendar for the current month. (If you double-click a date
on the calendar, the object opens the Evolution calendar to the date you
clicked—but first you have to set up Evolution.) Click the date and time again to
close the calendar.

Select from the
Main menu

The second way to start a program is by selecting it from a menu. The Main menu
is the object at the left end of the Top panel that includes the words Applications,
Places, and System. Click one of these words to display the corresponding menu.
Each menu selection that holds a submenu displays a triangle (pointing to the right)
to the right of the name of the menu (Figure 4-3). When you move the mouse
pointer over one of these selections and leave it there for a moment (this action is
called hovering), the menu displays the submenu. When you allow the mouse cursor
to hover over one of the submenu selections, GNOME displays a tooltip
(page 118).

Figure 4-3 Main menu: Applications Accessories Terminal

 From the Library of WoweBook.Com

ptg

A Tour of the Ubuntu Desktop 103

Experiment with the Main menu. Start Sudoku (Main menu: Applications
Games Sudoku), a terminal emulator (Main menu: Applications Accessories
Terminal), and other programs from the Applications menu. The Places and System
menus are discussed on page 122.

Use the Run
Application window

You can also start a program by pressing ALT-F2 to display the Run Application window
(Figure 4-4). As you start to type firefox in the text box at the top of the window, for
example, the window recognizes what you are typing and displays the Firefox logo
and the rest of the word firefox. Click Run to start Firefox.

optional
Running textual

applications
You can run command-line utilities, which are textual (not graphical), from the Run
Applications window. When you run a textual utility from this window, you must
put a tick in the check box labeled Run in terminal (click the check box to put a tick
in it; click it again to remove the tick). The tick tells GNOME to run the command
in a terminal emulator window. When the utility finishes running, GNOME closes
the window.

For example, type vim.tiny (the name of a text-based editor) in the text box, put a tick
in the check box labeled Run in terminal, and click Run. GNOME opens a Terminal
(emulator) window and runs the vim text editor in that window. When you exit from
vim (press ESCAPE:q!RETURN sequentially to do so), GNOME closes the Terminal window.

You can run a command-line utility that only displays output and then terminates.
Because the window closes as soon as the utility is finished running, and because
most utilities run quickly, you will probably not see the output. Type the following
command in the text box to run the df (disk free; page 774) utility and keep the win-
dow open until you press RETURN (remember to put a tick in the check box labeled
Run in terminal):

bash -c "df -h ; read"

This command starts a bash shell (Chapter 7) that executes the command line follow-
ing the –c option. The command line holds two commands separated by a semicolon.
The second command, read (page 1003), waits for you to press RETURN before terminat-
ing. Thus the output from the df –h command remains on the screen until you press
RETURN. Replace read with sleep 10 to have the window remain open for ten seconds.

Figure 4-4 The Run Application window

 From the Library of WoweBook.Com

ptg

104 Chapter 4 Introduction to Ubuntu Linux

Switching Workspaces

Workspace Switcher Each rectangle in the Workspace Switcher applet (or just Switcher)—the group of
rectangles near the right end of the Bottom panel—represents a workspace
(Figure 4-2, page 101). When you click a rectangle, the Switcher displays the corre-
sponding workspace and highlights the rectangle to indicate which workspace is
displayed. You can also press CONTROL-ALT-RIGHT ARROW to display the workspace to the
right of the current workspace; pressing CONTROL-ALT-LEFT ARROW works in the opposite
direction.

Click the rightmost rectangle in the Switcher (not the Trash applet to its right) and
then select Main menu: System Preferences Mouse. GNOME opens the Mouse
Preferences window. The Switcher rectangle that corresponds to the workspace you
are working in displays a small rectangle. This rectangle corresponds in size and loca-
tion within the Switcher rectangle to the window within the workspace. Click and
hold the left mouse button with the mouse pointer on the titlebar at the top of the
window and drag the window to the edge of the desktop. The small rectangle within
the Switcher moves to the corresponding location within the Switcher rectangle.

Now click a different rectangle in the Switcher and open another application—for
example, the Ubuntu Help Center (click the blue question mark on the Top panel).
With the Ubuntu Help Center window in one workspace and the Mouse Preferences
window in another, you can click the corresponding rectangles in the Switcher to
switch back and forth between the workspaces (and applications).

You can move a window from one workspace to another by right-clicking the Win-
dow List applet (page 121) on the Bottom panel and selecting one of the choices
that starts with Move.

Setting Personal Preferences

You can set preferences for many objects on the desktop, including those on the panels.

Workspace Switcher To display the Workspace Switcher Preferences window (Figure 4-5), first right-
click anywhere on the Switcher to display the Switcher menu and then select Prefer-
ences. (The window looks different when visual effects [page 115] are enabled.)
Specify the number of workspaces you want in the spin box labeled Number of
workspaces. The number of workspaces the Switcher displays changes as you
change the number in the spin box—you can see the result of your actions before
you close the Preferences window. Four workspaces is typically a good number to
start with. Click Close.

Right-click to display an Object context menu
tip A context menu is one that is appropriate to its context. When you right-click an object, it displays

an Object context menu. Each object displays its own context menu, although similar objects have
similar context menus. Most Object context menus have either a Preferences or Properties selec-
tion. See the following section, “Setting Personal Preferences,” and page 126 for more informa-
tion on Object context menus.

 From the Library of WoweBook.Com

ptg

A Tour of the Ubuntu Desktop 105

Clock applet The Clock applet has an interesting Preferences window. Right-click the Clock
applet (Figure 4-2, page 101) and select Preferences. GNOME displays the General
tab of the Clock Preferences window. This tab enables you to customize the date
and time displayed on the Top panel. The clock immediately reflects the changes
you make in this window. Click the Locations tab and then the Add button and
enter the name of the city you are in or near to cause the Clock applet to display
weather information.

Different objects display different Preferences windows. In contrast, objects that
launch programs display Properties windows and do not have Preferences windows.
Experiment with different Preferences and Properties windows and see what happens.

Mouse Preferences

The Mouse Preferences window (Figure 4-6, next page) enables you to change the
characteristics of the mouse to suit your needs. To display this window, select Main
menu: System Preferences Mouse or give the command gnome-mouse-properties
from a terminal emulator or Run Application window (ALT-F2). The Mouse Preferences
window has two tabs: General and Accessibility (and a third, Touchpad, on a laptop).

Left-handed mouse Click the General tab. To change the orientation of the mouse buttons for use by a
left-handed person, click the radio button labeled Left-handed. If you change the
setup of the mouse buttons, remember to reinterpret the descriptions in this book
accordingly. That is, when this book asks you to click the left button or does not
specify a button to click, click the right button, and vice versa. See “Remapping
Mouse Buttons” on page 274 for information on changing the orientation of the
mouse buttons from the command line.

Figure 4-5 The Workspace Switcher Preferences window

 From the Library of WoweBook.Com

ptg

106 Chapter 4 Introduction to Ubuntu Linux

Double-click
timeout

Use the Double-Click Timeout slider to change the speed with which you must
double-click a mouse button to have the system recognize your action as a double-
click rather than as two single clicks. You can also control the acceleration and
sensitivity of the mouse. The Drag and Drop Threshold specifies how far you
must drag an object before the system considers the action to be the drag part of a
drag-and-drop operation.

You can control different aspects of mouse clicks from the Accessibility tab.

Working with Windows

To resize a window, position the mouse pointer over an edge of the window; the
pointer turns into an arrow pointing to a line. When the pointer is an arrow point-
ing to a line, you can click and drag the side of a window. When you position the
mouse pointer over a corner of the window, you can resize both the height and the
width of the window simultaneously.

To move a window, click and drag the titlebar (the bar across the top of the window
with the name of the window in it). Alternatively, when you hold the ALT key down
you can move a window by clicking and dragging any part of the window. For fun,
try moving the window past either side of the workspace. What happens? The result
depends on how visual effects (page 115) is set.

Titlebar At the left of the titlebar are three icons that control the window (Figure 4-17,
page 123). Clicking the down arrow, which usually appears in the middle of the set

Figure 4-6 The Mouse Preferences window, General tab

 From the Library of WoweBook.Com

ptg

A Tour of the Ubuntu Desktop 107

of icons, minimizes (iconifies) the window so that the only indication of the window
is the object with the window’s name in it on the Bottom panel (a Window List
applet; page 121). Click the Window List applet to toggle the window between visi-
ble and minimized. Clicking the up arrow icon, which usually appears at the right
end of the three icons, maximizes the window (displays the window at its maximum
size) and changes the up arrow to a rectangle. Clicking the rectangle returns the
window to its normal size. Double-clicking the titlebar toggles the window between
its normal and maximum size.

Terminating a
program

Clicking the x closes the window and usually terminates the program running in
the window. In some cases you may need to click several times. Some programs,
such as Rhythmbox Music Player, do not terminate, but rather continue to run in
the background. When in this state, the program displays an icon on the Top
panel. Click the icon and select Quit from the drop-down list to terminate the
program.

Using Nautilus to Work with Files

Nautilus, the GNOME file manager, is a simple, powerful file manager. You can
use it to create, open, view, move, and copy files and folders as well as to execute
programs and scripts. One of its most basic and important functions is to create
and manage the desktop. This section introduces Nautilus and demonstrates the
correspondence between Nautilus and the desktop. See page 276 for more detailed
information on Nautilus.

Terms: folder and
directory

Nautilus displays the File Browser window, which displays the contents of a folder.
The terms folder and directory are synonymous; “folder” is frequently used in
graphical contexts, whereas “directory” may be used in textual or command-line
contexts. This book uses these terms interchangeably.

Term: File Browser This book sometimes uses the terms File Browser window and File Browser when
referring to the Nautilus File Browser window.

Opening Nautilus Select Main menu: Places Home Folder to open a Nautilus File Browser window
that shows the files in your home folder.

Double-clicking an object in a File Browser window has the same effect as double-
clicking an object on the desktop: Nautilus takes an action appropriate to the
object. For example, when you double-click a text file, Nautilus opens the file with
a text editor. When you double-click an OpenOffice.org document, Nautilus opens
the file with OpenOffice.org. If the file is executable, Nautilus runs it. If the file is a
folder, Nautilus opens the folder and displays its contents in place of what had pre-
viously appeared in the window.

From within a Nautilus File Browser window, you can open a folder in a new tab.
To do so, middle-click the folder or right-click the folder and select Open in New
Tab from the drop-down list; Nautilus displays a new tab named for the folder you
clicked. Click the tab to display contents of the directory.

 From the Library of WoweBook.Com

ptg

108 Chapter 4 Introduction to Ubuntu Linux

The Two Faces of Nautilus

The appearance of Nautilus differs depending on how it is set up: It can display a
Spatial view or a File Browser window. Figure 4-7 shows an example of each type
of display. By default, Ubuntu displays browser windows. See page 282 for infor-
mation on the Spatial view.

The Desktop Directory

The files on the desktop are held in a directory that has a pathname (page 205) of
/home/username/Desktop, where username is your login name or, if you are logged
in on a live session, ubuntu. The simple directory name is Desktop. When you select
Main menu: Places Desktop, GNOME opens a File Browser window showing the
files on the desktop (Figure 4-8). Initially there are no files. The buttons below the
toolbar and to the right of Places show the pathname of the directory Nautilus is
displaying (/sam/Desktop in the Figure 4-8).

To see the correspondence between the graphical desktop and the Desktop direc-
tory, right-click anywhere within the large clear area of the Desktop File Browser
window. Select Create Document Empty File. Nautilus creates a new file on the
desktop and displays its object in this window. When you create this file, GNOME
highlights the name new file under the file: You can type any name you like at this
point. Press RETURN when you are finished entering the name. If you double-click the
new file, Nautilus assumes it is a text file and opens the file in a gedit window. (The
gedit utility is a simple text editor.) Type some text and click Save on the toolbar.
Close the window either by using the File menu or by clicking the x at the left end of
the titlebar. You have created a text document on the desktop. You can now double-
click the document object on the desktop or in the File Browser window to open
and edit it.

Next, create a folder by right-clicking the root window (any empty part of the
workspace) and selecting Create Folder. You can name this folder in the same way

Figure 4-7 The Nautilus Spatial view (left) and File Browser window (right)

 From the Library of WoweBook.Com

ptg

A Tour of the Ubuntu Desktop 109

you named the file you created previously. The folder object appears on the desktop
and within the Desktop File Browser window.

On the desktop, drag the file until it is over the folder; the folder opens. Release the
mouse button to drop the file into the folder; GNOME moves the file to the folder.
Again on the desktop, double-click the folder you just moved the file to. GNOME
opens another File Browser window, this one displaying the contents of the folder.
The file you moved to the folder appears in the new window. Now drag the file from
the window to the previously opened Desktop File Browser window. The file is back
on the desktop, although it may be hidden by one of the File Browser windows.

Next, open a word processing document by selecting Main menu: Applications
Office OpenOffice.org Word Processor. Type some text and click the Save icon
(the arrow pointing down to a hard disk drive) or select menubar: File Save to
save the document. OpenOffice.org displays a Save window (Figure 4-9, next page).
Type the name you want to save the document as (use memo for now) in the text
box labeled Name. You can specify the directory in which you want to save the doc-
ument in one of two ways: by using the drop-down list labeled Save in folder or by
using the Browse for other folders section of the Save window.

Click the plus sign (+) to the left of Browse for other folders to open this section of
the window. When you open this section, the plus sign changes to a minus sign (–);
click the minus sign to close this section. Figure 4-9 shows the Save window with
this section closed. With the Browse for other folders section closed, you can select
a directory from the drop-down list labeled Save in folder. This technique is quick
and easy, but presents a limited number of choices of folders. By default, it saves the
document in Documents (/home/username/Documents). If you want to save the
document to the desktop, click Desktop in this drop-down list and then click Save.
OpenOffice.org saves the document with a filename extension of .odt, which indi-
cates it is an OpenOffice.org word processing document. The object for this type of
file has some text and a stripe or picture in it.

Figure 4-8 Part of a workspace with a Nautilus File Browser window

 From the Library of WoweBook.Com

ptg

110 Chapter 4 Introduction to Ubuntu Linux

optional
Browse/Save

window
With the Browse for other folders section opened (click the plus sign [+] to the left
of Browse for other folders), the Save window grays out the drop-down list labeled
Save in folder and expands the Browse for other folders section, as shown in
Figure 4-10. This expanded section holds two large side-by-side list boxes: Places
and Name. The list box labeled Places displays directories and locations on the sys-
tem, including File System. The list box labeled Name lists the files within the
directory highlighted in Places.

The Browse for other folders section of the Save window allows you to look through
the filesystem and select a directory or file. GNOME utilities and many applications
use this window, although sometimes applications call it a Browse window. In this

Figure 4-9 The Save window

Figure 4-10 The Save window with Browse for other folders open

 From the Library of WoweBook.Com

ptg

A Tour of the Ubuntu Desktop 111

example, the word processor calls it a Save window and uses it to locate the direc-
tory where the document will be saved.

Assume you want to save a file in the /tmp directory. Click File System in the list
box on the left. The list box on the right displays the files and directories in the root
directory (represented by /; see “Absolute Pathnames” on page 205 for more infor-
mation). Next, double-click tmp in the list box on the right. The buttons above the
list box on the left change to reflect the directory displayed in the list box on the
right. Click Save.

The buttons above the left-side list box represent directories. The right-side list box
displays the directories found within the directory named in the highlighted (darker)
button. This directory is the one you would save the file to if you clicked Save at
this point. Click one of these buttons to display the corresponding directory in the
list box on the right and then click Save to save the file in that directory.

When you have finished editing the document, close the window. If you have made
any changes since you last saved it, the word processor asks if you want to save the
document. If you choose to save it, the word processor saves the revised version
over (in the same file as) the version you saved previously. Now the memo.odt
object appears on the desktop and in the Desktop File Browser window. Double-
click either object to open it.

The Desktop
directory is special

In summary, the Desktop directory is like any other directory, except that GNOME
displays its contents on the desktop (in every workspace). It is as though the desk-
top is a large, plain Desktop File Browser window. You can work with the Desktop
directory because it is always displayed. Within the GUI, you must use a utility, such
as Nautilus, to display and work with the contents of any other directory.

Selecting Objects

The same techniques can be used to select one or more objects in a File Browser
window or on the desktop. Select an object by clicking it once; GNOME highlights
the object. Select additional objects by holding down the CONTROL key while you click
each object. To select a group of adjacent objects, highlight the first object and then,
while holding down the SHIFT key, click the last object; GNOME highlights all objects
between the two objects you clicked. Alternatively, you can use the mouse pointer
to drag a box around a group of objects.

To experiment with these techniques, open a File Browser window displaying your
home folder. Display the Examples folder by double-clicking it. Select a few objects,
right-click, and select Copy. Now move the mouse pointer over an empty part of the
desktop, right-click, and select Paste. You have copied the selected objects from the
Examples folder to the desktop. You can drag and drop objects to move them.

Emptying the Trash

Selecting Move to Trash from an object’s context menu moves the selected (high-
lighted) object to the Trash directory. Because files in the trash take up space on the

 From the Library of WoweBook.Com

ptg

112 Chapter 4 Introduction to Ubuntu Linux

hard disk (just as any files do), it is a good idea to remove them periodically. All File
Browser windows allow you to permanently delete all files in the Trash directory by
selecting File Browser menubar: File Empty Trash. To view the files in the trash,
click the Trash applet at the right end of the Bottom panel (Figure 4-2, page 101);
Nautilus displays the Trash File Browser window. Select Empty Trash from the
Trash applet context menu to permanently remove all files from the trash. (This
selection does not appear if there are no files in the trash.) Alternatively, you can
right-click an object in the Trash File Browser window and select Delete Perma-
nently to remove only that object (file) or you can select Restore to move the file
back to its original location. You can drag and drop files to and from the trash just
as you can with any other folder.

The Update Manager

On systems connected to the Internet, Ubuntu notifies you when software updates
are available by opening the Update Manager window (Figure 4-11). You can open
this window manually by selecting Main menu: System Administration Update
Manager or by giving the command update-manager from a terminal emulator or
Run Application window (ALT-F2).

Figure 4-11 The Update Manager window

 From the Library of WoweBook.Com

ptg

A Tour of the Ubuntu Desktop 113

When the Update Manager window opens, it displays the message Starting Update
Manager; after a moment it displays the number of available updates. If no updates
are available, the window displays the message Your system is up-to-date. If you
have reason to believe the system is not aware of available updates, click Check.
The update-manager asks for your password, reloads its database, and checks for
updates again.

If updates are available, click Install Updates. The Update Manager asks for your
password, displays the Downloading Package Files window, and counts the pack-
ages as it downloads them. Next the Update Manager displays the Applying
Changes window with the message Installing software and describes the steps it is
taking to install the packages. When it is finished, the Update Manager displays the
message Your system is up-to-date. Click Close. If the updates require you to reboot
the system, the Update Manager asks if you want to restart the system now or later.
Selecting now restarts the system immediately. Selecting later closes the Update
Manager window and turns the Session Indicator applet (Figure 4-2, page 101) red.
Click this applet and select Restart Required from the drop-down list as soon as you
are ready to reboot the system. For more information refer to “Updating, Installing,
and Removing Software Packages” on page 131.

Changing Appearance (Themes)

One of the most exciting aspects of a Linux desktop is the flexibility it offers in
allowing you to change its appearance. You can change not only the backgrounds,
but also window borders (including the titlebar), icons, the buttons used by applica-
tions, and more. To see some examples of what you can do, visit art.gnome.org.

Themes In a GUI, a theme is a recurring pattern and overall look that (ideally) pleases the
eye and is easy to interpret and use. You can work with desktop themes at several
levels. The first and easiest choice is to leave well enough alone. Ubuntu comes with
a good-looking theme named Ambiance. If you are not interested in changing the
way the desktop looks, continue with the next section.

The next choice, which is almost as easy, is to select one of the alternative themes
that comes with Ubuntu. You can also modify one of these themes, changing the
background, fonts, or interface. In addition, you can download themes from many
sites on the Internet and change them in the same ways.

The next level is customizing a theme, which changes the way the theme looks—for
example, changing the icons used by a theme. At an even higher level, you can
design and code your own theme. For more information see the tutorials at
art.gnome.org.

Appearance
Preferences window

The key to changing the appearance of the desktop is the Appearance Preferences
window. Display this window by choosing Main menu: System Preferences
Appearance or by right-clicking the root window (any empty area on a workspace)

 From the Library of WoweBook.Com

ptg

114 Chapter 4 Introduction to Ubuntu Linux

and selecting Change Desktop Background. The Appearance Preferences window
has four tabs:

• The Theme tab (Figure 4-12) enables you to select one of several themes.
Click a theme and the workspace immediately reflects the use of that
theme. Ambiance is the default Ubuntu theme; select this theme to make
the workspace appear as it did when you installed the system. Once you
select a theme, you can either click Close if you are satisfied with your
choice or click the other tabs to modify the theme.

• The Background tab enables you to specify a wallpaper or color for the
desktop background. To specify a wallpaper, click one of the samples in
the Wallpaper frame or click Add and choose a file—perhaps a picture—
you want to use as wallpaper. (Clicking Add displays the Add Wallpaper
window; see “Browse/Save window” on page 110 for instructions on
selecting a file using this window.) Then choose the style you want
GNOME to use to apply the wallpaper. For example, Zoom makes the
picture you chose fit the workspace.

You can also specify a color for the background: either solid or a gradi-
ent between two colors. To use a color, you must first select No Desktop
Background from the Wallpaper frame: Allow the mouse pointer to
hover over each of the wallpapers displayed in the Wallpaper frame until
you find one that displays the tooltip No Desktop Background. Select
that (non)wallpaper. (Initially the icon for this wallpaper appears at the

Figure 4-12 The Appearance Preferences window, Theme tab

 From the Library of WoweBook.Com

ptg

A Tour of the Ubuntu Desktop 115

upper-left corner of the wallpaper icons.) Next select Solid color from the
drop-down list labeled Colors and click the colored box to the right of
this list. GNOME displays the Pick a Color window. Click a color you
like from the ring and adjust the color by dragging the little circle within
the triangle. Click OK when you are done. The color you chose becomes
the background color of the desktop. See page 285 for more information
on the Pick a Color window.

• The Fonts tab (Figure 8-8, page 284) enables you to specify which fonts
you want GNOME to use in different places on the desktop. You can also
change how GNOME renders the fonts (page 284).

Visual effects • The Visual Effects tab enables you to select one of three levels of visual
effects: None, Normal, and Extra. The Normal and Extra effects replace
the Metacity window manager with Compiz Fusion (compiz.org), which
implements 3D desktop visual effects. (Compiz is the name of the core; the
plugins are called Compiz Fusion.) When you install Ubuntu, Ubuntu
determines what the hardware is capable of running and sets the proper
level of effects. One of the most dramatic visual effects is wiggly windows:
To see this effect, select Normal or Extra and drag a window around using
its titlebar. You can use the simple-ccsm (Compizconfig settings manager)
package to configure Compiz. If you experience problems with the system,
select None.

The changes you make in the Background, Fonts, and Visual Effects tabs are used
by any theme you select, including ones you customize. When you have finished
making changes in the Appearance Preferences window tabs, you can either click
Close to use the theme as you have modified it or return to the Theme tab to cus-
tomize the theme.

Customizing
a theme

From the Theme tab of the Appearance Preferences window, select the theme you
want to customize or continue with the theme you modified in the preceding sec-
tions. Click Customize to open the Customize Theme window. Go through each
tab in this window; choose entries and watch how each choice changes the work-
space. Not all tabs work with all themes. When you are satisfied with the result,
click Close.

After you customize a theme, it is named Custom. When you customize another
theme, those changes overwrite the Custom theme. For this reason it is best to save
a customized theme by clicking Save As and specifying a unique name for the
theme. After you save a theme, it appears among the themes listed in the Theme tab.

Visual effects can cause problems
caution Selecting Normal or Extra in the Visual Effects tab can cause unexpected graphical artifacts,

shorten battery life, reduce performance in 3D applications and video playback, and in some rare
cases cause the system to lock up. If you are having problems with an Ubuntu system, try select-
ing None in the Visual Effects tab and see if the problem goes away.

 From the Library of WoweBook.Com

ptg

116 Chapter 4 Introduction to Ubuntu Linux

Session Management

A session starts when you log in and ends when you log out or reset the session.
With fully GNOME-compliant applications, GNOME can manage sessions so the
desktop looks the same when you log in as it did when you saved a session or
logged out: The same windows will be positioned as they were on the same work-
spaces, and programs will be as you left them.

The Startup Applications Preferences window allows you to select which applica-
tions you want to run each time you log in. It also allows you to save automatically
those applications that were running and those windows that were open when you
logged out; they will start running when you log on again. To open the Startup
Applications Preferences window, select Main menu: System Preferences Startup
Applications or give the command gnome-session-properties from a terminal emu-
lator or Run Application window (ALT-F2). You must give this command while logged
in as yourself (not while working with root privileges).

To save a session, first make sure you have only those windows open that you
want to appear the next time you log in. Then open the Startup Applications
Preferences window. Click the Options tab and then click Remember currently
running applications. The window displays Your session has been saved. Each time
you log in, the same windows will appear as when you clicked Remember cur-
rently running applications. If you want GNOME to remember what you were
doing each time you log off, put a tick in the check box labeled Automatically
remember running applications when logging out.

Getting Help

Ubuntu provides help in many forms. Clicking the question mark object on the Top
panel displays the Ubuntu Help Center window, which provides information about
Ubuntu. To display other information, click a topic in the list on the left side of this
window. You can also enter text to search for in the text box labeled Search and
press RETURN. In addition, most windows provide a Help object or menu. See “Where
to Find Documentation” on page 136 for more resources.

Feel Free to Experiment

Try selecting different items from the Main menu and see what you discover. Fol-
lowing are some applications you may want to explore:

• The gedit text editor is a simple text editor. Select Main menu: Applications
Accessories gedit Text Editor to access it.

• OpenOffice.org’s Writer is a full-featured word processor that can import
and export Microsoft Word documents. Select Main menu: Applications
Office OpenOffice.org Word Processor. The Office menu also offers a
dictionary, presentation manager, and spreadsheet.

 From the Library of WoweBook.Com

ptg

Getting the Most Out of the Desktop 117

• Firefox is a powerful, full-featured Web browser. Click the blue and
orange globe object on the Top panel to start Firefox. You can also select
Main menu: Applications Internet Firefox Web Browser.

• Empathy is a graphical IM (instant messaging) client that allows you to
chat on the Internet with people who are using IM clients such as AOL,
MSN, and Yahoo! To start Empathy, select Main menu: Applications
Internet Empathy IM Client.

The first time you start Empathy, it opens a window that says Welcome to
Empathy. Follow the instructions to access an existing IM account or open
a new one. Visit live.gnome.org/Empathy for more information.

Logging Out

To log out, click the Session Indicator button (Figure 4-2, page 101) at the upper-
right corner of the workspace. GNOME displays a drop-down list; select Log Out.

You can also choose to shut down or restart the system, among other options. From
a textual environment, press CONTROL-D or give the command exit in response to the
shell prompt.

Getting the Most Out of the Desktop

The GNOME desktop is a powerful tool with many features. This section covers
many aspects of its panels, the Main menu, windows, terminal emulation, and ways
to update, install, and remove software. Chapter 8 continues where this chapter
leaves off, discussing the X Window System, covering Nautilus in more detail, and
describing a few of the GNOME utilities.

GNOME Desktop Terminology

The following terminology, which is taken from the GNOME Users Guide, estab-
lishes a foundation for discussing the GNOME desktop. Figure 4-2 on page 101
shows the initial Ubuntu GNOME desktop.

Desktop The desktop comprises all aspects of the GNOME GUI. While you are working with
GNOME, you are working on the desktop. There is always exactly one desktop.

Panels Panels are bars that appear on the desktop and hold (panel) objects. Initially there
are two panels: one along the top of the screen (the Top Edge panel, or just Top
panel) and one along the bottom (the Bottom Edge panel, or just Bottom panel).
You can add and remove panels. You can place panels at the top, bottom, and both
sides of the desktop, and you can stack more than one panel at any of these loca-
tions. The desktop can have no panels, one panel, or several panels. See the next
page for more information on panels.

 From the Library of WoweBook.Com

ptg

118 Chapter 4 Introduction to Ubuntu Linux

Panel objects Panel objects appear as words or icons on panels. You can click these objects to dis-
play menus, run applets, or launch programs. The five types of panel objects are
applets, launchers, buttons, menus, and drawers. See page 120 for more informa-
tion on panel objects.

Windows A graphical application typically displays a window and runs within that window.
At the top of most windows is a titlebar you can use to move, resize, and close the
window. The root window is the unoccupied area of the workspace and is fre-
quently obscured. The desktop can have no windows, one window, or many win-
dows. Although most windows have decorations (page 155), some, such as the
Logout window, do not.

Workspaces Workspaces divide the desktop into one or more areas, with one such area filling
the screen at any given time. Initially there are four workspaces. Because panels and
objects on the desktop are features of the desktop, all workspaces display the same
panels and objects. By default, a window appears in a single workspace. The
Switcher (page 104) enables you to display any one of several workspaces.

Tooltips Tooltips (Figure 4-2, page 101) is a minicontext help system that you activate by
moving the mouse pointer over a button, icon, window border, or applet (such as
those on a panel) and allowing it to hover there. When the mouse pointer hovers
over an object, GNOME displays a brief explanation of the object called a tooltip.

Opening Files

By default, you double-click an object to open it; alternatively, you can right-click
the object and select Open from the drop-down list. When you open a file,
GNOME figures out the appropriate tool to use by determining the file’s MIME
(page 1160) type. GNOME associates each filename extension with a MIME type
and each MIME type with a program. Initially GNOME uses the filename exten-
sion to try to determine a file’s MIME type. If it does not recognize the filename
extension, it examines the file’s magic number (page 1158).

For example, when you open a file with a filename extension of ps, GNOME calls
the Evince document viewer, which displays the PostScript file in a readable format.
When you open a text file, GNOME uses gedit to display and allow you to edit the
file. When you open a directory, GNOME displays its contents in a File Browser
window. When you open an executable file such as Firefox, GNOME runs the exe-
cutable. When GNOME uses the wrong tool to open a file, the tool generally issues
an error message. See “Open With” on page 130 for information on how to use a
tool other than the default tool to open a file.

Panels

As explained earlier, panels are the bars that initially appear at the top and bottom
of the desktop. They are part of the desktop, so they remain consistent across
workspaces.

 From the Library of WoweBook.Com

ptg

Getting the Most Out of the Desktop 119

The Panel (Context) Menu

Right-clicking an empty part of a panel displays the Panel (Context) menu. Aside
from help and informational selections, this menu has four selections.

Add to Panel Selecting Add to Panel displays the Add to Panel window (Figure 4-13). You can
drag an object from this window to a panel, giving you the choice of which panel
the object appears on. You can also highlight an object and click Add to add the
object to the panel whose menu you used to display this window. Many objects in
this window are whimsical: Try Eyes and select Bloodshot from its preferences win-
dow, or try Fish. One of the more useful objects is Search for Files. When you click
this object on the panel, it displays the Search for Files window (page 286).

Properties Selecting Properties displays the Panel Properties window (Figure 4-14, next page).
This window has two tabs: General and Background.

In the General tab, Orientation selects which side of the desktop the panel appears
on. Size adjusts the width of the panel. Expand causes the panel to span the width
or height of the workspace—without a tick in this check box, the panel is centered
and just wide enough to hold its objects. Autohide causes the panel to disappear
until you bump the mouse pointer against the side of the workspace. Hide buttons
work differently from autohide: Show hide buttons displays buttons at each end
of the panel. When you click one of these buttons, the panel slides out of view,

Figure 4-13 The Add to Panel window

 From the Library of WoweBook.Com

ptg

120 Chapter 4 Introduction to Ubuntu Linux

leaving only a button remaining. When you click that button, the panel slides
back into place.

If you want to see what stacked panels look like, use the Orientation drop-down list
to change the location of the panel you are working with. If you are working with
the Top panel, select Bottom, and vice versa. Like Preferences windows, Properties
windows lack Apply and Cancel buttons; they implement changes immediately. Use
the same procedure to put the panel back where it was.

The Background tab of the Panel Properties window enables you to specify a color
and transparency or an image for the panel. See “Pick a Color Window” on
page 285 for instructions on changing the color of the panel. Once you have
changed the color, move the slider labeled Style to make the color of the panel more
or less transparent. If you do not like the effect, click the radio button labeled None
(use system theme) to return the panel to its default appearance. Click Close.

Delete This Panel Selecting Delete This Panel does what you might expect. Be careful with this selec-
tion: When it removes a panel, it removes all objects on the panel and you will need
to reconstruct the panel if you want it back as it was.

New Panel Selecting New Panel adds a new panel to the desktop. GNOME decides where it
goes. You can then move the panel to somewhere else using the drop-down list
labeled Orientation in the General tab of the Panel Properties window for the new
panel.

Panel Objects

The icons and words on a panel, called panel objects, display menus, launch pro-
grams, and present information. The panel object with the blue and orange globe,
for example, starts Firefox. The Indicator applet (the envelope icon; Figure 4-2 on
page 101) can start Evolution (www.gnome.org/projects/evolution), an email and
calendaring application. The Session Indicator applet (Figure 4-2, page 101) can log

Figure 4-14 The Panel Properties window, General tab

 From the Library of WoweBook.Com

www.gnome.org/projects/evolution

ptg

Getting the Most Out of the Desktop 121

you out or shut down the system. You can start almost any utility or program on
the system using a panel object. This section describes the various types of panel
objects.

Applets An applet is a small program that displays its user interface on or adjacent to the
panel. You interact with the applet using its Applet panel object. The Clock (date
and time) and Workspace Switcher (both shown in Figure 4-2 on page 101) are
applets.

Window List applet Although not a distinct type of object, the Window List applet is a unique and
important tool. One Window List applet (Figure 4-15) appears on the Bottom panel
for each open or iconified window on the displayed workspace. Left-clicking this
object minimizes its window or restores the window if it is minimized. Right-click
this object to display the Window Operations menu (page 124). If a window is bur-
ied under other windows, click its Window List applet to make it visible.

Launchers When you open a launcher, it can execute a command, start an application, display
the contents of a folder or file, open a URI in a Web browser, and so on. In addition
to appearing on panels, launchers can appear on the desktop. The Firefox object is a
launcher: It starts the Firefox application. Under Main menu: Applications, you can
find launchers that start other applications. Under Main menu: Places, the Home
Folder, Documents, Desktop, and Computer objects are launchers that open File
Browser windows to display folders.

Buttons A button performs a single, simple action. The Sound button (Figure 4-2, page 101)
displays a volume control. The Show Desktop button, which may appear at the left
end of the Bottom panel, minimizes all windows on the workspace.

Menus A menu displays a list of selections you can choose from. Some of the selections can
be submenus with more selections. All other selections are launchers. The next sec-
tion discusses the Main menu.

Drawers A drawer is an extension of a panel. You can put the same objects in a drawer that
you can put on a panel, including another drawer. When you click a drawer object,
the drawer opens; you can then click an object in the drawer the same way you click
an object on a panel.

The Panel Object Context Menus

Three selections are unique to Panel Object context menus (right-click a panel
object to display this menu). The Remove from Panel selection does just that. The
Move selection allows you to move the object within the panel and to other panels;
you can also move an object by dragging it with the middle mouse button. The
Lock to Panel selection locks the object in position so it cannot be moved. When
you move an object on a panel, it can move through other objects. If the other

Figure 4-15 Window List applets

 From the Library of WoweBook.Com

ptg

122 Chapter 4 Introduction to Ubuntu Linux

object is not locked, it can displace the object if necessary. The Move selection is
grayed out when the object is locked.

The Main Menu

The Main menu appears at the left end of the Top panel and includes Applications,
Places, and System. Click one of these words to display the corresponding menu.

Applications The Applications menu holds several submenus, each named for a category of appli-
cations (e.g., Games, Graphics, Internet, Office—the list varies depending on the
software installed on the system). The last selection, Ubuntu Software Center, is dis-
cussed on page 132. Selections from the submenus launch applications—peruse
these selections, hovering over those you are unsure of to display the associated
tooltips.

Places The Places menu holds a variety of launchers, most of which open a File Browser
window. The Home Folder, Desktop, and Documents objects display your directo-
ries with corresponding names. The Computer, CD/DVD Creator, and Network
objects display special locations. Each of these locations enables you to access file
manager functions. A special URI (page 1179) specifies each of these locations. For
example, the CD/DVD Creator selection displays the burn:/// URI, which enables
you to burn a CD or DVD. The Connect to Server selection opens a window that
allows you to connect to various types of servers, including SSH and FTP servers
(see “File” on page 280). Below these selections are mounted filesystems; click one
of them to display the top-level directory of that filesystem. The Search for Files
selection enables you to search for files (page 286).

System The System menu holds two submenus as well as selections that provide support.
The two submenus are key to configuring your account and setting up and main-
taining the system.

The Preferences submenu establishes the characteristics of your account; each user
can establish her own preferences. Click some of these selections to become familiar
with the various ways you can customize your account on an Ubuntu system.

The Administration submenu controls the way the system works. For example,
Administration Printing (page 550) sets up and configures printers you can use
from the system and Administration Software Sources (page 131) controls which
repositories you can download software from and how often the system checks for
updated software. Most of these selections require you to be a system administrator
and enter your password to make changes. These menu selections are discussed
throughout this book.

Copying launchers
to a panel

You can copy any launcher from the Main menu to the Top panel or the desktop.
Instead of left-clicking the menu selection, right-click it. GNOME displays a drop-
down list that enables you to add the launcher to the Top panel or desktop.

 From the Library of WoweBook.Com

ptg

Getting the Most Out of the Desktop 123

Windows

In a workspace, a window is a region that runs, or is controlled by, a particular pro-
gram (Figure 4-16). Because you can control the look and feel of windows—even
the buttons they display—your windows may not look like the ones shown in this
book. Each window in a workspace has a Window List applet (page 121) on the
Bottom panel.

Titlebar A titlebar (Figures 4-16 and 4-17) appears at the top of most windows and controls
the window it is attached to. You can change the appearance and function of a title-
bar, but it will usually have at least the functionality of the buttons shown in
Figure 4-17.

The minimize (iconify) button collapses the window so that the only indication of
its presence is its Window List applet on the Bottom panel; click this applet to
restore the window. Click the maximize button to expand the window so that it

Figure 4-16 A typical window

Buttons

Toolbar

Vertical scrollbar

Menubar

Window contents

Titlebar

Figure 4-17 A window titlebar

Minimize

Maximize

Close

Window
title

 From the Library of WoweBook.Com

ptg

124 Chapter 4 Introduction to Ubuntu Linux

occupies the whole workspace; click the same button (now displaying a square in
place of the up arrow) on the titlebar of a maximized window to restore the win-
dow to its former size. You can also double-click the titlebar to maximize and
restore a window. Clicking the close button closes the window and usually termi-
nates the program running in it. To reposition the window, left-click the titlebar and
drag the window to the desired location.

Window Operations
menu

The Window Operations menu contains operations that you most commonly need
to perform on any window. Right-click either the titlebar or the Window List applet
(page 121) to display this menu. You can use this menu to move a window to
another workspace, keep the window on top of or below other windows, and cause
the window to always be visible on the displayed workspace.

Toolbar A toolbar (Figure 4-16, preceding page) usually appears near the top of a window
and contains icons, text, applets, menus, and more. Many kinds of toolbars exist.
The titlebar is not a toolbar; rather, it is part of the window decorations placed
there by the window manager (page 155).

Changing the Input Focus (Window Cycling)

The window with the input focus is the one that receives keyboard characters and
commands you type. In addition to using the Window List applet (page 121), you
can change which window on the displayed workspace has the input focus by using
the keyboard; this process is called window cycling. When you press ALT-TAB,
GNOME displays in the center of the workspace a box that holds icons represent-
ing the programs running in the windows in the workspace. It also shifts the input
focus to the window that was active just before the currently active window, mak-
ing it easy to switch back and forth between two windows. When you hold ALT and
press TAB multiple times, the focus moves from window to window. Holding ALT and
SHIFT and repeatedly pressing TAB cycles in the other direction. See page 153 for more
information on the input focus.

Cutting and Pasting Objects Using the Clipboard

There are two similar ways to cut/copy and paste objects and text on the desktop
and both within and between windows. In the first method, you use the clipboard,
technically called the copy buffer, to copy or move objects or text. To do so, you
explicitly copy an object or text to the buffer and then paste it somewhere else.
Applications that follow the user interface guidelines use CONTROL-X to cut, CONTROL-C to
copy, and CONTROL-V to paste. Application context menus frequently provide these
same options.

You may not be familiar with the second method to copy and paste text—using the
selection or primary buffer, which always contains the text you most recently selected
(highlighted). You cannot use this method to copy objects. Clicking the middle mouse
button (click the scroll wheel on a mouse that has one) pastes the contents of the

 From the Library of WoweBook.Com

ptg

Getting the Most Out of the Desktop 125

selection buffer at the location of the mouse pointer. If you are using a two-button
mouse, click both buttons at the same time to simulate clicking the middle button.

With both these techniques, start by highlighting an object or text to select it. You
can drag a box around multiple objects to select them or drag the mouse pointer
over text to select it. Double-click to select a word or triple-click to select a line or a
paragraph.

Next, to use the clipboard, explicitly copy (CONTROL-C) or cut (CONTROL-X) the objects or
text. If you want to use the selection buffer, skip this step.

To paste the selected objects or text, position the mouse pointer where you want to
put it and then either press CONTROL-V (clipboard method) or press the middle mouse
button (selection buffer method).

When using the clipboard, you can give as many commands as you like between the
CONTROL-C or CONTROL-X and CONTROL-V, as long as you do not press CONTROL-C or CONTROL-X

again. When using the selection buffer, you can give other commands after selecting
text and before pasting it, as long as you do not select (highlight) other text.

Using the Root Window

The root window is any part of a workspace that is not occupied by a window,
panel, or object. It is the part of the workspace where you can see the background.
To view the root window when it is obscured, click the Show Desktop button at the
left end of the Bottom panel to minimize the windows in the workspace.

Desktop menu Right-click the root window to display the Desktop menu, which enables you to
create a folder, launcher, or document. The Change Desktop Background selection
opens the Appearance Preferences window (page 113) to its Background tab.

Running Commands from a Terminal Emulator/Shell

A terminal emulator is a window that presents a command-line interface (CLI); it
functions as a textual (character-based) terminal and is displayed in a graphical
environment.

To display the GNOME terminal emulator named Terminal (Figure 4-18, next page),
select Main menu: Applications Accessories Terminal or enter the command
gnome-terminal from a Run Application window (ALT-F2). Because you are already

Use SHIFT-CONTROL-C and SHIFT-CONTROL-V within a terminal emulator

tip The CONTROL-C, CONTROL-X, and CONTROL-V characters do not work in a terminal emulator window
because the shell running in the window intercepts them before the terminal emulator can receive
them. However, you can use SHIFT-CONTROL-C and SHIFT-CONTROL-X, respectively, in their place. There
is no keyboard shortcut for CONTROL-X. You can also use the selection buffer in this environment
or use copy/paste from the Edit selection on the menubar or from the context menu (right-click).

 From the Library of WoweBook.Com

ptg

126 Chapter 4 Introduction to Ubuntu Linux

logged in and are creating a subshell in a desktop environment, you do not need to log
in again. Once you have opened a terminal emulator window, try giving the com-
mand man man to read about the man utility (page 136), which displays Linux man-
ual pages. Chapter 5 describes utilities you can run from a terminal emulator.

You can run character-based programs that would normally run on a terminal or
from the console in a terminal emulator window. You can also start graphical pro-
grams, such as xeyes, from this window. A graphical program opens its own window.

When you are typing in a terminal emulator window, several characters, including

*, ?, |, [, and], have special meanings. Avoid using these characters until you have
read “Special Characters” on page 160.

The shell Once you open a terminal emulator window, you are communicating with the com-
mand interpreter called the shell. The shell plays an important part in much of your
communication with Linux. When you enter a command at the keyboard in
response to the shell prompt on the screen, the shell interprets the command and
initiates the appropriate action—for example, executing a program; calling a com-
piler, a Linux utility, or another standard program; or displaying an error message
indicating you entered a command incorrectly. When you are working on a GUI,
you bypass the shell and execute a program by clicking an object or a name. Refer
to Chapter 7 for more information on the shell.

The Object Context Menu

When you right-click an object or group of objects either on the desktop or in a
File Browser window, GNOME displays an Object context menu. Different types
of objects display different context menus, but most context menus share com-
mon selections. Figure 4-19 shows context menus for an OpenOffice.org spread-
sheet file and for a plain text file. Table 4-1 lists some common Object context
menu selections.

Figure 4-18 A Terminal (emulator) window

 From the Library of WoweBook.Com

ptg

Getting the Most Out of the Desktop 127

Figure 4-19 The Object context menus for a spreadsheet (left) and a text file (right)

Table 4-1 Object context menu selections

Open Runs an executable file. Opens a file with an appropriate application. Opens a
folder in a File Browser window. Same as double-clicking the object.

Open in New
Window

(From a File Browser window only.) Opens a folder in a new File Browser win-
dow instead of replacing the contents of the current window. Same as holding
down SHIFT while double-clicking a folder in a Browser window.

Open with "App" Opens the file using the application named App. When this selection appears
as the first selection in the menu, App is the default application that GNOME
uses to open this type of file. See page 130 for information on changing this
default.

Open with ➤ A triangle appearing to the right of a selection indicates the selection is a
menu. Allow the mouse pointer to hover over the selection to display the sub-
menu. Each submenu selection is an Open with "App" selection (above). The
last selection in the submenu is Open with Other Application (below).

Browse Folder (On the desktop only.) Opens a folder in a File Browser window. Same as
double-clicking a folder on the desktop.

Open with Other
Application

Displays the Open With menu, which allows you to select an application to
open this type of file. The next time you use the Object context menu to open
this type of file, the application you selected appears as an Open with "App"
selection (above). Does not change the default application for this type of file.
See page 130 for information on changing the default application.

Cut Removes the object and places it on the clipboard (page 124).

Copy Copies the object to the clipboard (page 124).

 From the Library of WoweBook.Com

ptg

128 Chapter 4 Introduction to Ubuntu Linux

The Object Properties Window

The Object Properties window displays information about a file, such as its owner,
permissions, size, location, MIME type, ways to work with it, and so on. This win-
dow is titled filename Properties, where filename is the name of the file you clicked
to open the window. To display this window, right-click an object and select Proper-
ties from the drop-down list. The Properties window initially displays some basic
information. Click the tabs at the top of the window to display additional informa-
tion. Different sets of tabs appear for different types of files. You can modify the set-
tings in this window only if you have permission to do so. This section describes the
six tabs most commonly found in Object Properties windows.

Basic The Basic tab displays information about the file, including its MIME type, and
enables you to select a custom icon for the file and change its name. To change the
name of the file, use the text box labeled Name. If the filename is not listed in a text
box, you do not have permission to change it. An easy way to change the icon is to
open a File Browser window at /usr/share/icons. Work your way down through the
directories until you find an icon you like, and then drag and drop it on the icon to
the left of Name in the Basic tab of the Object Properties window. This technique
does not work for files that are links (indicated by the arrow emblem at the upper
right of the object).

Extract Here Extracts the contents of an archive and some other types of files, such as some
documents, to a directory with the same name as the original file plus _FILES.
If you do not have permission to write to the working directory (page 204), this
menu selection appears as Extract To.

Extract To Extracts the contents of an archive and some other types of files, such as some
documents, to a directory you select using the Browse/Save window
(page 110). This selection appears only if you do not have permission to write
to the working directory (page 204). Otherwise, this menu selection appears
as Extract Here.

Make Link Creates a symbolic link to the object in the same directory as the object. You
can then move the link to a different directory where it may be more useful. For
more information refer to “Symbolic Links” on page 230.

Move to Trash Moves the object to the trash (page 111).

Send to Opens a Send To window that allows you to email the object.

Create Archive Opens the Create Archive window, which allows you to specify a format and a
name for an archive containing one or more objects (page 280).

Sharing Options Opens the Folder Sharing window, which allows you to share a folder using
Samba (Chapter 23).

Properties Displays the Object Properties window (see the next section).

Table 4-1 Object context menu selections (continued)

 From the Library of WoweBook.Com

ptg

Getting the Most Out of the Desktop 129

Emblems The Emblems tab (Figure 4-20, left) allows you to add and remove emblems associ-
ated with the file by placing or removing a tick in the check box next to an emblem.
Figure 4-16 on page 123 shows some emblems on file objects. Nautilus displays
emblems in both its Icon and List views, although there may not be room for more
than one emblem in the List view. Emblems are displayed on the desktop as well.
You can also place an emblem on an object by dragging the emblem from the Side
pane/Emblems and dropping it on an object in the View pane (page 277) of a File
Browser window.

Permissions The Permissions tab (Figure 4-20, right) allows the owner of a file to change the
file’s permissions (page 215) and to change the group (see /etc/group on page 492)
the file is associated with to any group the owner is associated with. When running
with root privileges, you can also change the owner of the file. The command
gksudo nautilus, when given from a terminal emulator window, opens a File
Browser window running with root privileges (but read the caution on page 98).
Nautilus grays out items you are not allowed to change.

Using the drop-down lists, you can give the owner (called user elsewhere; see the tip
about chmod on page 217), group, and others read or read and write permission for
a file. Alternatively, you can prohibit the group and others from accessing the file by
specifying permissions as None. Put a tick in the check box labeled Execute to give
all users permission to execute the file. This tab does not give you as fine-grained
control over assigning permissions as chmod (page 216) does.

Permissions for a directory work as explained on page 220. Owner, group, and
others can be allowed to list files in a directory, access (read and—with the proper
permissions—execute) files, or create and delete files. Group and others permissions

Figure 4-20 The Object Properties window: Emblems tab (left);
Permissions tab (right)

 From the Library of WoweBook.Com

ptg

130 Chapter 4 Introduction to Ubuntu Linux

can also be set to None. A tick in the check box labeled Execute allows the directory
to be searched. Click Apply Permissions to Enclosed Files to apply the permissions
in the Permissions tab to all files in the directory.

Open With When you ask GNOME to open a file that is not executable (by double-clicking its
icon or right-clicking and selecting the first Open with selection), GNOME deter-
mines which application or utility it will use to open the file. GNOME uses several
techniques to determine the MIME (page 1160) type of a file and selects the default
application based on that determination.

The Open With tab (Figure 4-21) enables you to change which applications
GNOME can use to open the file and other files of the same MIME type (typically
files with the same filename extension). Click the Add button to add to the list of
applications. Highlight an application and click Remove to remove an application
from the list. You cannot remove the default application.

When you add an application, GNOME adds that application to the Open With
list, but does not change the default application it uses to open that type of file.
Click the radio button next to an application to cause that application to become
the default application that GNOME uses to open this type of file.

When a file has fewer than four applications in the Open With tab, the Object con-
text menu displays all applications in that menu. With four or more applications,
the Object context menu provides an Open With submenu (Figure 4-21).

Notes The Notes tab provides a place to keep notes about the file.

Share The Share tab, which appears on Property windows of folders only, allows you to
use Samba (Chapter 23) to share the folder.

Figure 4-21 The Object Properties window, Open With tab, and the
Object context menu, Open With submenu for the same file

 From the Library of WoweBook.Com

ptg

Updating, Installing, and Removing Software Packages 131

Updating, Installing, and Removing

Software Packages

Ubuntu software comes in packages that include all necessary files, instructions so a
program can automatically install and remove the software, and a list of other
packages the package depends on. There are many ways to search for and install
software packages. The Update Manager window (page 112) appears each time
updates are available for software on the system. The Ubuntu Software Center win-
dow (Figure 4-23, page 133) is an easy way to install popular software. The synaptic
utility (page 133) is more complex and gives you a wider selection of software.
Chapter 13 explains how to work with software packages from the command line.

Software Sources Window

Repositories Repositories hold collections of software packages and related information. The
Software Sources window controls which categories of packages Ubuntu installs,
which repositories it downloads the packages from, how automatic updating works,
and more. Open this window by selecting Main menu: System Administration
Software Sources (you will need to supply your password) or by giving the command
gksudo software-properties-gtk from a terminal emulator or Run Application win-
dow (ALT-F2). The Software Sources window has five tabs, which are discussed next.

Ubuntu Software The Ubuntu Software tab controls which categories of packages (page 522) APT
(page 522) and synaptic install and the Update Manager updates automatically.
Typically all categories have ticks in their check boxes except for Source code.
Put a tick in this check box if you want to download source code. If the drop-
down list labeled Download from does not specify a server near you, use the list
to specify one.

If the system does not have an Internet connection, put a tick in one of the
check boxes in the frame labeled Installable from CD-ROM/DVD; APT will then
install software from that source. If you do have an Internet connection,
remove the tick from that check box. You can specify a new CD/DVD in the
Other Software tab.

Add only repositories you know to be trustworthy

security Adding software from sources other than the official Ubuntu repositories can cause the system to
not work properly and cause updates to fail. Even worse, it can make the system vulnerable to
attack.

The package installation process runs with root privileges. Regard adding a repository as giving
the person in control of that repository the sudo password. Do not add a third-party repository
unless you trust it implicitly.

 From the Library of WoweBook.Com

ptg

132 Chapter 4 Introduction to Ubuntu Linux

Other Software You can add, edit, and remove repositories from the Other Software tab. See the
adjacent security box concerning adding repositories. Unless you are working with
software that is not distributed by Ubuntu, you do not need to add any repositories.
To add a CD/DVD as a repository, click Add CD-ROM.

Updates The top part of the Updates tab (Figure 4-22) specifies which types of updates you
want the Update Manager to monitor. Typically you will want to monitor impor-
tant security updates and recommended updates. In the middle section of this tab
you can specify if and how often the Update Manager will check for updates and
what to do when it finds updates. The drop-down list labeled Show new distribu-
tion releases allows you to specify whether you want the Update Manager to inform
you when you can upgrade the system to a new release of Ubuntu and whether you
are interested in all releases or just LTS (page 31) releases.

Authentication The Authentication tab holds keys for trusted software providers. Ubuntu uses keys
to authenticate software, which protects the system against malicious software.
Typically Ubuntu provides these keys automatically.

Statistics The Statistics tab allows you to participate in a software popularity contest.

The Ubuntu Software Center

You can use the Ubuntu Software Center window (Figure 4-23) to add and remove
applications from the system. It is simpler and has fewer selections than synaptic

Figure 4-22 The Software Sources window, Updates tab

 From the Library of WoweBook.Com

ptg

Updating, Installing, and Removing Software Packages 133

(described next). Open this window by selecting Main menu: Applications
Ubuntu Software Center or by giving the command software-center from a terminal
emulator or Run Application window (ALT-F2).

When you select a category of applications from the window when you first open it,
the Ubuntu Software Center displays a list of applications in that category on the
right side of the window. If you know the name of the application you want to
install, you can query for it by entering the name or part of the name of the applica-
tion in the text box at the upper-right corner of the window. The Ubuntu Software
Center displays a list of applications that satisfy your query.

Scroll through the applications displayed on the right side of the window. When you
click/highlight an application, the window displays two buttons: More Info and
Install. Click the first button to display information about the application. When
you click Install, the Ubuntu Software Center asks for your password and starts
downloading and installing the application. While it is working, you can search for
and select additional applications to install. When it is finished, the Ubuntu Soft-
ware Center puts a green check mark next to the name of the package. Close the
window. Packages you installed should be available on the Main menu.

optional

synaptic: Finds, Installs, and Removes Software

This section describes how to use synaptic to find, download, install, and remove
software packages. Open the Synaptic Package Manager window by selecting
System Administration Synaptic Package Manager from the Main menu or by

Figure 4-23 The Add/Remove Applications window

 From the Library of WoweBook.Com

ptg

134 Chapter 4 Introduction to Ubuntu Linux

giving the command gksudo synaptic from a terminal emulator or Run Application
window (ALT-F2). Figure 4-24 shows the initial window. The first time you run synap-
tic, it reminds you to reload package information regularly. You can do so by click-
ing Reload on the toolbar.

The Synaptic Package Manager window displays a lot of information. Maximizing
this window and widening the left column (by dragging the handle) may make it
easier to use. When the Sections button is highlighted in the left column, the top of
the left column holds a list box containing categories of software. Initially All is
selected in this list box, causing the window to display all software packages in the
list box at the top of the right column.

You can shorten the list of packages in the list box by searching for a package. To
do so, display the Find window by clicking Search on the toolbar. Enter the name or
part of the name of the package you are looking for in the text box labeled Search.
(Alternatively, you can search using the text box labeled Quick search on the main
Synaptic window.) For example, to display all packages related to exim4, enter
exim4 in the text box labeled Search and select Description and Name from the
drop-down list labeled Look in (Figure 4-25). Click Search. The Synaptic Package
Manager window displays the list of packages meeting the search criteria specified

Figure 4-24 The Synaptic Package Manager window

Figure 4-25 The Find window

Category list box

Handle

Sections button

 From the Library of WoweBook.Com

ptg

Updating, Installing, and Removing Software Packages 135

in the list box at the top of the right column. When you click a package name in this
list, synaptic displays a description of the package in the frame below the list.

The following example explains how to use synaptic to locate, download, and install
a chess program. With the Synaptic Package Manager window open, search for
chess. The synaptic utility displays a list of chess-related packages in the righthand
list box. Click several packages, one at a time, reading the descriptions in the frame
at the lower right of the window.

Assume you decide to install Dream Chess (the dreamchess package; see the
www.dreamchess.org Web site). When you click the check box to the left of dream-
chess, synaptic displays a list of options. Because this package is not installed, all
selections except Mark for Installation are grayed out (Figure 4-26); click this selec-
tion. Because the dreamchess package is dependent on other packages that are not
installed, synaptic displays a window asking if you want to mark additional required
changes (Figure 4-27). This window lists the additional packages synaptic needs to
install so Dream Chess will run. Click Mark to mark the additional packages; these
packages are then highlighted in green.

Figure 4-26 The Synaptic Package Manager window displaying chess programs

Figure 4-27 Mark additional required changes screen

 From the Library of WoweBook.Com

www.dreamchess.org

ptg

136 Chapter 4 Introduction to Ubuntu Linux

To apply the changes you have marked, click Apply on the toolbar; synaptic displays
a Summary window. (If you were installing and/or removing several packages, this
summary would be longer.) Click Apply. The synaptic utility keeps you informed of
its progress. When it is done, it displays the Changes applied window. Click Close
and then close the Synaptic Package Manager window. Now Dream Chess appears
on the Main menu: Applications Games menu.

Where to Find Documentation

Distributions of Linux, including Ubuntu, typically do not come with hardcopy ref-
erence manuals. However, its online documentation has always been one of Linux’s
strengths. The man (or manual) and info pages have been available via the man and
info utilities since early releases of the operating system. Ubuntu provides a graphi-
cal help center. Not surprisingly, with the ongoing growth of Linux and the Internet,
the sources of documentation have expanded as well. This section discusses some of
the places you can look for information on Linux in general and on Ubuntu in par-
ticular. See also Appendix B.

Ubuntu Help Center

To display the Ubuntu Help Center window (Figure 4-28), click the blue object
with a question mark in it on the Top panel or select Main menu: System Help
and Support. Click topics in this window until you find the information you are
looking for. You can also search for a topic using the text box labeled Search.

man: Displays the System Manual

In addition to the graphical Ubuntu Help Center, the textual man utility displays
(man) pages from the system documentation. This documentation is helpful when
you know which utility you want to use but have forgotten exactly how to use it.
You can also refer to the man pages to get more information about specific topics or
to determine which features are available with Linux. Because the descriptions in
the system documentation are often terse, they are most helpful if you already
understand the basic functions of a utility.

Because man is a character-based utility, you need to open a terminal emulator win-
dow (page 125) to run it. You can also log in on a virtual terminal (page 149) and
run man from there.

Online man pages

tip The Ubuntu manpages.ubuntu.com site holds dynamically generated copies of man pages from
every package of every supported Ubuntu release. In addition to presenting man pages in easy-
to-read HTML format, this site does not require you to install the package holding a utility to read
its man page. It also allows you to read man pages for a release you do not have installed.

 From the Library of WoweBook.Com

ptg

Where to Find Documentation 137

To find out more about a utility, give the command man, followed by the name of
the utility. Figure 4-29 shows man displaying information about itself; the user
entered a man man command.

Figure 4-28 The Ubuntu Help Center window

Figure 4-29 The man utility displaying information about itself

 From the Library of WoweBook.Com

ptg

138 Chapter 4 Introduction to Ubuntu Linux

less (pager) The man utility automatically sends its output through a pager—usually less
(page 162), which displays one screen at a time. When you access a manual page in
this manner, less displays a prompt [e.g., Manual page man(1) line 1] at the bottom
of the screen after it displays each screen of text and waits for you to request
another screen of text by pressing the SPACE bar. You can also use the PAGE UP, PAGE DOWN,
UP ARROW, and DOWN ARROW keys to navigate the text. Pressing h (help) displays a list of
less commands. Pressing q (quit) stops less and causes the shell to display a prompt.
You can search for topics covered by man pages using the apropos utility (page 139).

Manual sections Based on the FHS (Filesystem Hierarchy Standard; page 213), the Linux system
manual and the man pages are divided into ten sections, where each section
describes related tools:

1. User Commands

2. System Calls

3. Subroutines

4. Devices

5. File Formats

6. Games

7. Miscellaneous

8. System Administration

9. Kernel

10. New

This layout closely mimics the way the set of UNIX manuals has always been
divided. Unless you specify a manual section, man displays the earliest occurrence in
the manual of the word you specify on the command line. Most users find the infor-
mation they need in sections 1, 6, and 7; programmers and system administrators
frequently need to consult the other sections.

In some cases the manual contains entries for different tools with the same name.
For example, the following command displays the man page for the passwd utility
from section 1 of the system manual:

$ man passwd

To see the man page for the passwd file from section 5, enter this command:

$ man 5 passwd

The preceding command instructs man to look only in section 5 for the man page. In
documentation you may see this man page referred to as passwd(5). Use the –a
option (see the adjacent tip) to view all man pages for a given subject (press qRETURN

to display each subsequent man page). For example, give the command man –a
passwd to view all man pages for passwd.

 From the Library of WoweBook.Com

ptg

Where to Find Documentation 139

apropos: Searches for a Keyword

When you do not know the name of the command required to carry out a particular
task, you can use apropos with a keyword to search for it. This utility searches for
the keyword in the short description line of all man pages and displays those that
contain a match. The man utility, when called with the –k (keyword) option, pro-
vides the same output as apropos.

The database apropos uses, named whatis, is not available on Ubuntu systems when
they are first installed, but is built automatically by crond (page 605) using mandb.
If apropos does not produce any output, give the command sudo mandb.

The following example shows the output of apropos when you call it with the who
keyword. The output includes the name of each command, the section of the man-
ual that contains it, and the brief description from the man page. This list includes
the utility you need (who) and identifies other, related tools you might find useful:

$ apropos who
at.allow (5) - determine who can submit jobs via at or batch
at.deny (5) - determine who can submit jobs via at or batch
from (1) - print names of those who have sent mail
w (1) - Show who is logged on and what they are doing.
w.procps (1) - Show who is logged on and what they are doing.
who (1) - show who is logged on
whoami (1) - print effective userid

whatis The whatis utility is similar to apropos but finds only complete word matches for the
name of the utility:

$ whatis who
who (1) - show who is logged on

info: Displays Information About Utilities

The textual info utility is a menu-based hypertext system developed by the GNU
project (page 4) and distributed with Ubuntu. It includes a tutorial on itself and
documentation on many Linux shells, utilities, and programs developed by the
GNU project (www.gnu.org/software/texinfo/manual/info). Figure 4-30 (next page)
shows the screen that info displays when you give the command info coreutils (the
coreutils software package holds the Linux core utilities).

Options

tip An option modifies the way a utility or command works. Options are usually specified as one or
more letters that are preceded by one or two hyphens. An option typically appears following the
name of the utility you are calling and a SPACE. Other arguments (page 1135) to the command fol-
low the option and a SPACE. For more information refer to “Options” on page 239.

 From the Library of WoweBook.Com

www.gnu.org/software/texinfo/manual/info

ptg

140 Chapter 4 Introduction to Ubuntu Linux

Because the information on this screen is drawn from an editable file, your display
may differ from the screens shown in this section. You can press any of the follow-
ing keys while the initial info screen is displayed:

• h to go through an interactive tutorial on info

• ? to list info commands

• SPACE to scroll through the menu of items for which information is available

• m followed by the name of the menu you want to display or a SPACE to dis-
play a list of menus

• q or CONTROL-C to quit

The notation info uses to describe keyboard keys may not be familiar to you. The
notation C-h is the same as CONTROL-H. Similarly, M-x means hold down the META or ALT

key and press x. (On some systems you need to press ESCAPE and then x to duplicate
the function of META-X.)

After giving the command info coreutils, press the SPACE bar a few times to scroll
through the display. Type /sleepRETURN to search for the string sleep. When you type
/, the cursor moves to the bottom line of the window and displays Search for string
[string]:, where string is the last string you searched for. Press RETURN to search for
string or enter the string you want to search for. Typing sleep displays sleep on that
line, and pressing RETURN displays the next occurrence of sleep.

Figure 4-30 The initial screen displayed by the command info coreutils

man and info display different information

tip The info utility displays more complete and up-to-date information on GNU utilities than does
man. When a man page displays abbreviated information on a utility that is covered by info, the
man page refers to info. The man utility frequently displays the only information available on
non-GNU utilities. When info displays information on non-GNU utilities, it is frequently a copy of
the man page.

 From the Library of WoweBook.Com

ptg

Where to Find Documentation 141

Now type /RETURN (or /sleepRETURN) to search for the next occurrence of sleep as
shown in Figure 4-31. The asterisk at the left end of the line indicates that this entry
is a menu item. Following the asterisk is the name of the menu item and a descrip-
tion of the item.

Each menu item is a link to the info page that describes the item. To jump to that
page, search for or use the ARROW keys to move the cursor to the line containing the
menu item and press RETURN. With the cursor positioned as it is in Figure 4-31, press
RETURN to display information on sleep. Alternatively, you can type the name of the
menu item in a menu command to view the information: To display information on
sleep, for example, you can give the command m sleep, followed by RETURN. When
you type m (for menu), the cursor moves to the bottom line of the window (as it did
when you typed /) and displays Menu item:. Typing sleep displays sleep on that line,
and pressing RETURN displays information about the menu item you have chosen.

Figure 4-32 (on the next page) shows the top node of information on sleep. A node
groups a set of information you can scroll through by pressing the SPACE bar. To dis-
play the next node, press n. Press p to display the previous node.

As you read through this book and learn about new utilities, you can use man or info
to find out more about those utilities. If you can print PostScript documents, you
can print a manual page by using the man utility with the –t option. For example,

Figure 4-31 The screen displayed by the command info coreutils
after you type /sleepRETURN twice

You may find pinfo easier to use than info

tip The pinfo utility is similar to info but is more intuitive if you are not familiar with the emacs edi-
tor. This utility runs in a textual environment, as does info. When it is available, pinfo uses color
to make its interface easier to use. If pinfo is not installed on the system, use synaptic
(page 133) to install the pinfo package. Run pinfo from a terminal emulator or Run Application
window (ALT-F2) and select Run in terminal.

 From the Library of WoweBook.Com

ptg

142 Chapter 4 Introduction to Ubuntu Linux

man –t cat | lpr prints information about the cat utility. You can also use a Web
browser to display the documentation at manpages.ubuntu.com, www.tldp.org,
help.ubuntu.com, help.ubuntu.com/community, or answers.launchpad.net/ubuntu
and then print the desired information from the browser.

The ––help Option

Another tool you can use in a textual environment is the ––help option. Most GNU
utilities provide a ––help option that displays information about the utility. Non-
GNU utilities may use a –h or –help option to display help information.

$ cat --help
Usage: cat [OPTION] [FILE]...
Concatenate FILE(s), or standard input, to standard output.

 -A, --show-all equivalent to -vET
 -b, --number-nonblank number nonblank output lines
 -e equivalent to -vE
 -E, --show-ends display $ at end of each line
...

If the information that ––help displays runs off the screen, send the output through
the less pager (page 138) using a pipe (page 170):

$ ls --help | less

HOWTOs: Finding Out How Things Work

A HOWTO document explains in detail how to do something related to
Linux—from setting up a specialized piece of hardware to performing a system
administration task to setting up specific networking software. Mini-HOWTOs
offer shorter explanations. As with Linux software, one person or a few people gen-
erally are responsible for writing and maintaining a HOWTO document, but many
people may contribute to it.

Figure 4-32 The info page on the sleep utility

 From the Library of WoweBook.Com

www.tldp.org

ptg

Where to Find Documentation 143

The Linux Documentation Project (LDP, page 144) site houses most HOWTO and
mini-HOWTO documents. Use a Web browser to visit www.tldp.org, click HOW-
TOs, and pick the index you want to use to find a HOWTO or mini-HOWTO. You
can also use the LDP search feature on its home page to find HOWTOs and other
documents.

Getting Help

GNOME provides tooltips (page 118), a context-sensitive Help system, and Ubuntu
provides the Ubuntu Help Center discussed on page 136.

Finding Help Locally

/usr/share/doc The /usr/src/linux/Documentation (present only if you install the kernel source
code, as explained in Chapter 15) and /usr/share/doc directories often contain more
detailed and different information about a utility than either man or info provides.
Frequently this information is meant for people who will be compiling and modify-
ing the utility, not just using it. These directories hold thousands of files, each con-
taining information on a separate topic.

Using the Internet to Get Help

The Internet provides many helpful sites related to Linux. Aside from sites that offer
various forms of documentation, you can enter an error message from a program
you are having a problem with in a search engine such as Google (www.google.com,
or its Linux-specific version at www.google.com/linux). Enclose the error message
within double quotation marks to improve the quality of the results. The search will
likely yield a post concerning your problem and suggestions about how to solve it.
See Figure 4-33.

Figure 4-33 Google reporting on an error message

 From the Library of WoweBook.Com

www.tldp.org
www.google.com
www.google.com/linux

ptg

144 Chapter 4 Introduction to Ubuntu Linux

Ubuntu Web sites The Ubuntu Web site is a rich source of information. The following list identifies
some locations that may be of interest:

• Ubuntu documentation is available at help.ubuntu.com.

• Ubuntu community documentation is available at
help.ubuntu.com/community.

• You can find answers to many questions at
answers.launchpad.net/ubuntu.

• The Ubuntu forums (ubuntuforums.org) is another good place to find
answers to questions.

• You can talk with other Ubuntu users using IRC (Internet relay chat). See
help.ubuntu.com/community/InternetRelayChat for a list of Ubuntu IRC
channels available via the freenode IRC service.

• You can subscribe to Ubuntu mailing lists; see lists.ubuntu.com.

• You can search for information about packages and find out which pack-
age contains a specific file at packages.ubuntu.com.

GNU GNU manuals are available at www.gnu.org/manual. In addition, you can visit the
GNU home page (www.gnu.org) to obtain other documentation and GNU resources.
Many of the GNU pages and resources are available in a variety of languages.

The Linux
Documentation

Project

The Linux Documentation Project (www.tldp.org; Figure 4-34), which has been
around for almost as long as Linux, houses a complete collection of guides, HOW-
TOs, FAQs, man pages, and Linux magazines. The home page is available in
English, Portuguese, Spanish, Italian, Korean, and French. It is easy to use and sup-
ports local text searches. It also provides a complete set of links you can use to find
almost anything you want related to Linux (click Links in the Search box or go to
www.tldp.org/links). The links page includes sections on general information,
events, getting started, user groups, mailing lists, and newsgroups, with each section
containing many subsections.

More About Logging In

Refer to “Logging In on the System” on page 100 for information about logging in.
This section covers options you can choose from the Login screen and solutions to
common login problems. It also describes how to log in from a terminal and from a
remote system.

Always use a password

security Unless you are the only user of a system; the system is not connected to any other systems, the
Internet, or a modem; and you are the only one with physical access to the system, it is poor prac-
tice to maintain a user account without a password.

 From the Library of WoweBook.Com

www.gnu.org/manual
www.gnu.org
www.tldp.org
www.tldp.org/links

ptg

More About Logging In 145

The Login Screen

The Login screen (Figure 4-1, page 100) presents a list of users who are allowed to
log in on the system. On the panel at the bottom of the screen are two buttons.
Click the button depicting a person in a circle to select from a list of accessibility
preferences that may make it easier for some people to use the system. Click the
button depicting a broken circle with a vertical line running through the break to
restart or shut down the system. Click your name from the list of users to log in.

Once you have clicked your name, the login screen displays a text box labeled
Password. In addition, it adds drop-down lists labeled Language, Keyboard, and
Sessions to the panel at the bottom of the screen. Enter your password in the text
box and press RETURN to log in.

Languages Before you log in, the drop-down list labeled Language displays the name of the lan-
guage the upcoming session will use. To change the language of the upcoming and
future sessions, click the arrow at the right end of the list and select a language from
the drop-down list. If the language you want is not listed, select Other; Ubuntu dis-
plays the Languages window. Select the language you want from this window, click
OK, and then log in. The change in language preference affects window titles,
prompts, error messages, and other textual items displayed by GNOME and many
applications.

Keyboard You can change the keyboard layout that the upcoming and future sessions expect
from the drop-down list labeled Keyboard.

Sessions You can use the drop-down list labeled Sessions to choose between window manag-
ers for the upcoming and future sessions. Click the arrow at the right end of the list,

Figure 4-34 The Linux Documentation Project home page

 From the Library of WoweBook.Com

ptg

146 Chapter 4 Introduction to Ubuntu Linux

select a session from the drop-down list, and continue logging in. Selections in this
list vary but can include the following choices:

◆ GNOME—Brings up the GNOME desktop environment.

◆ KDE—Brings up the KDE desktop environment (if you have installed
Kubuntu or KDE; page 75).

◆ Failsafe GNOME—Brings up a default GNOME session without run-
ning any startup scripts. Use this choice to fix problems that prevent
you from logging in normally.

◆ xterm—Brings up an xterm terminal emulator window without a desk-
top manager and without running any startup scripts. This setup
allows you to log in on a minimal desktop when your standard login
does not work well enough to allow you to log in to fix a problem.
Give the command exit from the xterm window to log out and display
the Login screen.

What to Do If You Cannot Log In

If you enter either your username or your password incorrectly, the system displays
an error message after you enter both your username and your password. This mes-
sage indicates that you have entered either the username or the password incorrectly
or that they are not valid. It does not differentiate between an unacceptable user-
name and an unacceptable password—a strategy meant to discourage unauthorized
people from guessing names and passwords to gain access to the system.

Following are some common reasons why logins fail:

• The username and password are case sensitive. Make sure the CAPS LOCK key
is off and enter your username and password exactly as specified or as you
set them up.

• You are not logging in on the right machine. The login/password combina-
tion may not be valid if you are trying to log in on the wrong machine. On
a larger, networked system, you may have to specify the machine you want
to connect to before you can log in.

• Your username is not valid. The login/password combination may not be
valid if you have not been set up as a user. If you are the system adminis-
trator, refer to “Configuring User and Group Accounts” on page 594.
Otherwise, check with the system administrator.

• A filesystem is full. When a filesystem critical to the login process is full, it
may appear as though you have logged in successfully, but after a moment
the Login screen reappears. You must boot the system in recovery mode
(page 445) and delete some files.

• The account is disabled. The root account is disabled by default. An
administrator may disable other accounts. Often the root account is not
allowed to log in over a network. Use sudo (page 421) if you need to work
with root privileges.

 From the Library of WoweBook.Com

ptg

More About Logging In 147

Refer to “Changing Your Password” on page 148 if you want to change your
password.

Logging In Remotely: Terminal Emulators, ssh,

and Dial-Up Connections

When you are not using a console, terminal, or other device connected directly to
the Linux system you are logging in on, you are probably connected to the Linux
system using terminal emulation software on another system. Running on the local
system, this software connects to the remote Linux system via a network (Ethernet,
asynchronous phone line, PPP, or other type) and allows you to log in.

When you log in via a dial-up line, the connection is straightforward: You instruct
the local emulator program to contact the remote Linux system, it dials the phone,
and the remote system displays a login prompt. When you log in via a directly con-
nected network, you either use ssh (secure; page 670) or telnet (not secure;
page 391) to connect to the remote system. The ssh program has been implemented
on many operating systems, not just Linux. Many user interfaces to ssh include a
terminal emulator. From an Apple, Windows, or UNIX machine, open the program
that runs ssh and give it the name or IP address (refer to “Host Address” on
page 381) of the system you want to log in on. For examples and more details on
working with a terminal emulator, refer to “Running Commands from a Terminal
Emulator/Shell” on page 125. The next section provides more information about
logging in from a terminal emulator.

Logging In from a Terminal (Emulator)

Before you log in on a terminal, terminal emulator, or other textual device, the sys-
tem displays a message called issue (stored in the /etc/issue file) that identifies the
version of Ubuntu running on the system. A sample issue message follows:

Ubuntu 10.04 LTS plum tty2

This message is followed by a prompt to log in. Enter your username and password
in response to the system prompts. If you are using a terminal (page 1176) and the
screen does not display the login: prompt, check whether the terminal is plugged in
and turned on, and then press the RETURN key a few times. If login: still does not
appear, try pressing CONTROL-Q (Xoff). If you are using a workstation (page 1181), run
ssh (page 670), telnet (page 391), or whatever communications/emulation software
you use to log in on the system.

Once the shell prompt (or just prompt) appears, you have successfully logged in; this
prompt shows the system is ready for you to give a command. The first shell prompt

Make sure TERM is set correctly
tip No matter how you connect, make sure you have the TERM variable set to the type of terminal your

emulator is emulating. For more information refer to “Specifying a Terminal” on page 1106.

 From the Library of WoweBook.Com

ptg

148 Chapter 4 Introduction to Ubuntu Linux

line may be preceded by a short message called the message of the day, or motd
(page 494), which is stored in the /etc/motd file. Ubuntu establishes a prompt of
[user@host: directory]$, where user is your username, host is the name of the system,
and directory is the name of the directory you are working in. A tilde (~) represents
your home directory. For information on how to change the prompt, refer to page 321.

Changing Your Password

If someone else assigned you a password, it is a good idea to give yourself a new one.
For security reasons, none of the passwords you enter is displayed by any utility.

To change your password, select Main menu: System Preferences About Me and
click Change Password. From a command line, give the command passwd.

The first item the system asks for is your current (old) password. This password is
verified to ensure that an unauthorized user is not trying to alter your password.
Then the system requests a new password.

To be relatively secure, a password should contain a combination of numbers,
uppercase and lowercase letters, and punctuation characters. It should also meet the
following criteria:

Did you log in last?
security When you log in to a textual environment, after you enter your username and password, the sys-

tem displays information about the last login on this account, showing when it took place and
where it originated. You can use this information to determine whether anyone has accessed the
account since you last used it. If someone has, perhaps an unauthorized user has learned your
password and logged in as you. In the interest of maintaining security, advise the system admin-
istrator of any circumstances that make you suspicious—and change your password.

Protect your password

security Do not allow someone to find out your password: Do not put your password in a file that is not
encrypted, allow someone to watch you type your password, or give your password to someone
you do not know (a system administrator never needs to know your password). You can always
write your password down and keep it in a safe, private place.

Choose a password that is difficult to guess

security Do not use phone numbers, names of pets or kids, birthdays, words from a dictionary (not even
a foreign language), and so forth. Do not use permutations of these items or a l33t-speak variation
of a word: Modern dictionary crackers may also try these permutations.

Differentiate between important and less important passwords
security It is a good idea to differentiate between important and less important passwords. For example,

Web site passwords for blogs or download access are not very important; it is acceptable to use
the same password for these types of sites. However, your login, mail server, and bank account
Web site passwords are critical: Never use these passwords for an unimportant Web site.

 From the Library of WoweBook.Com

ptg

More About Logging In 149

• Must be at least six characters long (or longer if the system administrator
sets it up that way). Seven or eight characters is a good compromise
between length and security.

• Should not be a word in a dictionary of any language, no matter how
seemingly obscure.

• Should not be the name of a person, place, pet, or other thing that might
be discovered easily.

• Should contain at least two letters and one digit or punctuation character.

• Should not be your username, the reverse of your username, or your user-
name shifted by one or more characters.

Only the first item is mandatory. Avoid using control characters (such as CONTROL-H)
because they may have a special meaning to the system, making it impossible for
you to log in. If you are changing your password, the new password should differ
from the old one by at least three characters. Changing the case of a character does
not make it count as a different character. Refer to “Keeping the System Secure” on
page 619 for more information about choosing a password.

After you enter your new password, the system asks you to retype it to ensure you
did not make a mistake when you entered it the first time. If the new password is
the same both times you enter it, your password is changed. If the passwords differ,
you made an error in one of them. In this situation the system displays an error mes-
sage or does not allow you to click the OK button. If the password you enter is not
long enough, the system displays a message similar to The password is too short.

When you successfully change your password, you change the way you log in. If
you forget your password, a user running with root privileges can change it and tell
you the new password.

Using Virtual Consoles

When running Linux on a personal computer, you will frequently work with the
display and keyboard attached to the computer. Using this physical console, you can
access as many as 63 virtual consoles (also called virtual terminals). Some are set up
to allow logins; others act as graphical displays. To switch between virtual consoles,
hold the CONTROL and ALT keys down and press the function key that corresponds to
the console you want to view. For example, CONTROL-ALT-F5 displays the fifth virtual
console. This book refers to the console you see when you press CONTROL-ALT-F1 as the
system console, or just console.

By default, five or six virtual consoles are active and have textual login sessions run-
ning. When you want to use both textual and graphical interfaces, you can set up a

pwgen helps you pick a password
security The pwgen utility (install the pwgen package) generates a list of almost random passwords. With

a little imagination, you can pronounce, and therefore remember, some of these passwords.

 From the Library of WoweBook.Com

ptg

150 Chapter 4 Introduction to Ubuntu Linux

textual session on one virtual console and a graphical session on another. By
default, a graphical session runs on virtual console number 8.

Working from the Command Line

Before the introduction of the graphical user interface (GUI), UNIX and then Linux
provided only a command-line (textual) interface (CLI). Today, a CLI is available
when you log in from a terminal, a terminal emulator, or a textual virtual console,
or when you use ssh (secure; page 667) or telnet (not secure; page 391) to log in on
a system.

This section introduces the Linux CLI. Chapter 5 describes some of the more impor-
tant utilities you can use from the command line. Most of the examples in Parts IV
and V of this book use the CLI, adding examples of graphical tools where available.

Advantages
of the CLI

Although the concept may seem antiquated, the CLI has a place in modern comput-
ing. In some cases an administrator may use a command-line tool either because a
graphical equivalent does not exist or because the graphical tool is not as powerful
or flexible as the textual one. Frequently, on a server system, a graphical interface
may not even be installed. The first reason for this omission is that a GUI consumes
a lot of system resources; on a server, those resources are better dedicated to the
main task of the server. Additionally, security considerations mandate that a server
system run as few tasks as possible because each additional task can make the sys-
tem more vulnerable to attack.

You can also write scripts using the CLI. Using scripts, you can easily reproduce
tasks on multiple systems, enabling you to scale the tasks to larger environments.
When you are the administrator of only a single system, using a GUI is often the eas-
iest way to configure the system. When you act as administrator for many systems,
all of which need the same configuration installed or updated, a script can make the
task go more quickly. Writing a script using command-line tools is frequently easy,
whereas the same task can be difficult to impossible using graphical tools.

Pseudographical
interface

Before the introduction of GUIs, resourceful programmers created textual interfaces
that included graphical elements such as boxes, borders outlining rudimentary win-
dows, highlights, and, more recently, color. These textual interfaces, called pseudo-
graphical interfaces, bridge the gap between textual and graphical interfaces.

One example of a modern utility that uses a pseudographical interface is the dpkg-
reconfigure utility, which reconfigures an installed software package.

Correcting Mistakes

This section explains how to correct typographical and other errors you may make
while you are logged in on a textual display. Because the shell and most other utili-
ties do not interpret the command line or other text until after you press RETURN, you
can readily correct your typing mistakes before you press RETURN.

 From the Library of WoweBook.Com

ptg

Working from the Command Line 151

You can correct such mistakes in several ways: erase one character at a time, back
up a word at a time, or back up to the beginning of the command line in one step.
After you press RETURN, it is too late to correct a mistake: At that point, you must
either wait for the command to run to completion or abort execution of the pro-
gram (page 151).

Erasing a Character

While entering characters from the keyboard, you can back up and erase a mistake
by pressing the erase key once for each character you want to delete. The erase key
backs over as many characters as you wish. It does not, in general, back up past the
beginning of the line.

The default erase key is BACKSPACE. If this key does not work, try pressing DEL or
CONTROL-H. If these keys do not work, give the following stty1 command to set the erase
and line kill (see “Deleting a Line”) keys to their default values:

$ stty ek

Deleting a Word

You can delete a word you entered by pressing CONTROL-W. A word is any sequence of
characters that does not contain a SPACE or TAB. When you press CONTROL-W, the cursor
moves left to the beginning of the current word (as you are entering a word) or the
previous word (when you have just entered a SPACE or TAB), removing the word.

Deleting a Line

Any time before you press RETURN, you can delete the line you are entering by press-
ing the (line) kill key. When you press this key, the cursor moves to the left, erasing
characters as it goes, back to the beginning of the line. The default line kill key is
CONTROL-U. If this key does not work, try CONTROL-X. If these keys do not work, give the
stty command described under “Erasing a Character.”

Aborting Execution

Sometimes you may want to terminate a running program. For example, you may
want to stop a program that is performing a lengthy task such as displaying the

1. The command stty is an abbreviation for set teletypewriter, the first terminal UNIX was run on. Today
stty is commonly thought of as meaning set terminal.

CONTROL-Z suspends a program
tip Although it is not a way of correcting a mistake, you may press the suspend key (typically

CONTROL-Z) by mistake and wonder what happened. If you see a message containing the word
Stopped, you have just stopped your job using job control (page 255). If you give the command
fg to continue your job in the foreground, you should return to where you were before you pressed
the suspend key. For more information refer to “bg: Sends a Job to the Background” on page 309.

 From the Library of WoweBook.Com

ptg

152 Chapter 4 Introduction to Ubuntu Linux

contents of a file that is several hundred pages long or copying a large file that is
not the one you meant to copy.

To terminate a program from a textual display, press the interrupt key (CONTROL-C or
sometimes DELETE or DEL). When you press this key, the Linux operating system sends
a termination signal to the program you are running and to the shell. Exactly what
effect this signal has depends on the program. Some programs stop execution imme-
diately, some ignore the signal, and some take other actions. When the shell receives
a termination signal, it displays a prompt and waits for another command.

If these methods do not terminate the program, try sending the program a quit sig-
nal (CONTROL-\). If all else fails, try pressing the suspend key (typically CONTROL-Z), giving
a jobs command to verify the number of the job running the program, and using kill
to abort the job. The job number is the number within the brackets at the left end of
the line displayed by jobs ([1]). In the next example, the kill command (page 455)
uses –TERM to send a termination signal2 to the job specified by the job number,
which is preceded by a percent sign (%1). You can omit –TERM from the com-
mand, as kill sends a termination signal by default.

$ bigjob
^Z
[1]+ Stopped bigjob
$ jobs
[1]+ Stopped bigjob
$ kill -TERM %1
$ RETURN
[1]+ Killed bigjob

The kill command returns a prompt; press RETURN again to see the confirmation mes-
sage. For more information refer to “Running a Command in the Background” on
page 254.

Repeating/Editing Command Lines

To repeat a previous command, press the UP ARROW key. Each time you press this key,
the shell displays an earlier command line. To reexecute the displayed command
line, press RETURN. Press the DOWN ARROW key to browse through the command lines in
the other direction.

You can also repeat the previous command using !!. This technique is useful if you
forgot to use sudo (page 421) before a command. In this case, if you type sudo !!,
the shell will repeat the previous command preceded by sudo.

The command ^old^new^ reruns the previous command, substituting the first
occurrence of old with new. Also, on a command line, the shell replaces the charac-
ters !$ with the last argument (word) of the previous command. The following

2. When the termination signal does not work, use the kill signal (–KILL). A running program cannot
ignore a kill signal; it is sure to abort the program (page 455).

 From the Library of WoweBook.Com

ptg

Controlling Windows: Advanced Operations 153

example shows the user correcting the filename meno to memo using ^n^m^ and
then printing the file named memo by giving the command lpr !$. The shell replaces
!$ with memo, the last argument of the previous command.

$ cat meno
cat: meno: No such file or directory
$ ^n^m^
cat memo
This is the memo file.
$ lpr !$
lpr memo

The RIGHT and LEFT ARROW keys move the cursor back and forth along the displayed
command line. At any point along the command line, you can add characters by
typing them. Use the erase key to remove characters from the command line.

For information about more complex command-line editing, see page 332.

optional

Controlling Windows: Advanced Operations

Refer to “Windows” on page 123 for an introduction to working with windows
under Ubuntu. This section explores the following topics: changing the input focus
on the workspace, changing the resolution of the display, and understanding more
about the window manager.

Changing the Input Focus

When you type on the keyboard, the window manager (page 155) directs the char-
acters you type somewhere, usually to a window. The active window is the window
accepting input from the keyboard; it is said to have the input focus. Depending on
how you set up your account, you can use the mouse in one of three ways to change
the input focus (you can also use the keyboard; see page 124):

• Click-to-focus (explicit focus)—Gives the input focus to a window when
you click the window. That window continues to accept input from the
keyboard regardless of the location of the mouse pointer. The window
loses the focus when you click another window. Although clicking the
middle or right mouse button also activates a window, use only the left
mouse button for this purpose; other buttons may have unexpected effects
when you use them to activate a window.

• Focus-follows-mouse (sloppy focus, enter-only, or focus-under-mouse)—
Gives the input focus to a window when you move the mouse pointer onto
the window. That window maintains the input focus until you move the
mouse pointer onto another window, at which point the new window gets

 From the Library of WoweBook.Com

ptg

154 Chapter 4 Introduction to Ubuntu Linux

the focus. When you move the mouse pointer off a window and onto the
root window, the window that had the input focus does not lose it.

• Focus-strictly-under-mouse (enter-exit focus)—Gives the input focus to a
window when you move the mouse pointer onto the window. That win-
dow maintains the input focus until you move the mouse pointer off the
window, at which point no window has the focus. When you move the
mouse pointer off a window and onto the root window, the window that
had the input focus loses it, and input from the keyboard is lost.

You can use the Window Preferences window to change the focus policy. To display
this window, select Main menu: System Preferences Windows or give the com-
mand gnome-window-properties from a terminal emulator or Run Application win-
dow (ALT-F2). Put a tick in the check box next to Select windows when the mouse
moves over them to select the focus-follows-mouse policy. When there is no tick in
this check box, click-to-focus is in effect. Click Close. Focus-strictly-under-mouse is
not available from this window.

To determine which window has the input focus, compare the window borders. The
border color of the active window is different from the others or, on a monochrome dis-
play, is darker. Another indication that a window is active is that the keyboard cursor is
a solid rectangle; in windows that are not active, the cursor is an outline of a rectangle.

Use the following tests to determine which keyboard focus method you are using. If
you position the mouse pointer in a window and that window does not get the
input focus, your window manager is configured to use the click-to-focus method. If
the border of the window changes, you are using the focus-follows-mouse or focus-
strictly-under-mouse method. To determine which of the latter methods you are
using, start typing something, with the mouse pointer positioned on the active win-
dow. Then move the mouse pointer over the root window and continue typing. If
characters continue to appear within the window, you are using focus-follows-
mouse; otherwise, you are using focus-strictly-under-mouse.

Changing the Resolution of the Display

The X server (the basis for the Linux graphical interface; page 268) starts at a spe-
cific display resolution and color depth (page 1141). Although you can change the
color depth only when you start an X server, you can change the resolution while
the X server is running. The number of resolutions available depends both on the
display hardware and on the configuration of the X server. Many users prefer to
do most of their work at a higher resolution but might want to switch to a lower
resolution for some tasks, such as playing games. You can switch between display
resolutions by pressing either CONTROL-ALT-KEYPAD-+ or CONTROL-ALT-KEYPAD- –, using the +
and – keys on the keyboard’s numeric keypad. You can also use the Monitor Reso-
lution Settings window (Main menu: System Preferences Monitors) to change
the resolution of the display.

 From the Library of WoweBook.Com

Admin
Text Box
Download form www.eBookTM.com

ptg

Controlling Windows: Advanced Operations 155

Changing to a lower resolution has the effect of zooming in on the display; as a
result, you may no longer be able to view the entire workspace at once. To scroll the
display, push the mouse pointer against the edge of the screen.

The Window Manager

A window manager—the program that controls the look and feel of the basic
GUI—runs under a desktop manager (such as GNOME or KDE) and controls all
aspects of the windows in the X Window System environment. The window man-
ager defines the appearance of the windows on the desktop and controls how you
operate and position them: open, close, move, resize, minimize, and so on. It may
also handle some session management functions, such as how a session is paused,
resumed, restarted, or ended (page 116).

Window decorations A window manager controls window decorations—that is, the titlebar and border
of a window. Aside from the aesthetic aspects of changing window decorations, you
can alter their functionality by modifying the number and placement of buttons on
the titlebar.

The window manager takes care of window manipulation so client programs do not
need to do so. This setup is very different from that of many other operating sys-
tems, and the way that GNOME deals with window managers is different from
how other desktop environments work. Window managers do more than simply
manage windows—they provide a useful, good-looking, graphical shell where you
can work. Their open design allows users to define their own policies, down to the
fine details.

Theoretically GNOME is not dependent on any particular window manager and
can work with any of several window managers. Because of their flexibility, you
would not see major parts of the desktop environment change if you were to switch
from one window manager to another. A desktop manager collaborates with the
window manager to make your work environment intuitive and easy to use.
Although the desktop manager does not control window placement, it does get
information from the window manager about window placement.

Ubuntu Window Managers

Metacity and Compiz—the default window managers for GNOME—provide win-
dow management and start many components through GNOME panel objects.
They also communicate with and facilitate access to other components in the envi-
ronment. The Visual Effects tab of the Appearance Preferences window (page 115)
allows you to switch between Metacity and Compiz.

Using the standard X libraries, programmers have created other window managers,
including blackbox, fluxbox, and WindowMaker. You can use synaptic (page 133)
to install any of these packages.

 From the Library of WoweBook.Com

ptg

156 Chapter 4 Introduction to Ubuntu Linux

Chapter Summary

As with many operating systems, your access to a Linux system is authorized when
you log in. To do so, you enter your username and password on the Login screen.
You can change your password at any time while you are logged in. Choose a pass-
word that is difficult to guess and that conforms to the criteria imposed by the util-
ity that changes your password.

The system administrator is responsible for maintaining the system. On a single-
user system, you are the system administrator. On a small, multiuser system, you or
another user may act as the system administrator, or this job may be shared. On a
large, multiuser system or a network of systems, there is frequently a full-time sys-
tem administrator. When extra privileges are required to perform certain system
tasks, the system administrator uses sudo to obtain extra privileges, called root priv-
ileges. An administrator working with root privileges is sometimes referred to as
Superuser.

Do not work with root privileges as a matter of course. When you have to do some-
thing that requires root privileges, work with root privileges for only as long as
absolutely necessary; revert to working as yourself as soon as possible.

Understanding the desktop and its components is essential to getting the most out
of the Ubuntu GUI. Its panels offer a convenient way to launch applications, either
by clicking objects or by using the Main menu. The Main menu is a multilevel menu
you can work with to customize and maintain the system and to start many com-
monly used applications. A window is the graphical manifestation of an applica-
tion. You can control its size, location, and appearance by clicking buttons on the
window’s titlebar. A terminal emulator allows you to use the Linux command-line
interface from a graphical environment. You can use a terminal emulator to launch
both textual and graphical programs.

Panels and menus enable you to select an object (which can be just about anything
on the system). On a panel, you generally click an object; on a menu, you typically
click text in a list.

The GNOME environment provides users with a variety of interests and experience
levels—the casual user, the office worker, the power user, and the programmer/sys-
tem designer—with a space to work in and a set of tools to work with. GNOME
also provides off-the-shelf productivity and many ways to customize its look, feel,
and response.

Nautilus is GNOME’s simple, yet powerful file manager. It can create, open, dis-
play, move, and copy files and directories as well as execute programs and scripts.
One of its most basic and important functions is to create and manage the desktop.

The man utility provides online documentation for system utilities. This utility is
helpful both to new Linux users and to experienced users, who must often delve
into system documentation for information on the finer points of a utility’s behav-

 From the Library of WoweBook.Com

ptg

Exercises 157

ior. The info utility also helps the beginner and the expert alike. It provides a tutorial
on its use and documentation on many Linux utilities.

The textual or command-line interface (CLI) continues to have a place in modern
computing. For example, sometimes a graphical tool does not exist or may not be as
powerful or flexible as its textual counterpart. Security concerns on a server system
mandate that the system run as few tasks as possible. Because each additional task
can make a server more vulnerable to attack, frequently these systems do not have
GUIs installed.

Exercises

1. The system displays the following message when you attempt to log in
with an incorrect username or an incorrect password:

Login incorrect

a. This message does not indicate whether your username, your password,
or both are invalid. Why does it not reveal this information?

b. Why does the system wait for a couple of seconds to respond after you
supply an incorrect username or password?

2. Give three examples of poor password choices. What is wrong with each?

3. Is fido an acceptable password? Give several reasons why or why not.

4. What is a context menu? How does a context menu differ from other
menus?

5. What appears when you right-click the root window? How can you use
this object?

6. How would you swap the effects of the right and left buttons on a mouse?
What is the drag-and-drop threshold? How would you change it?

7. What are the primary functions of the Main menu?

8. What is the input focus? When no window has the input focus, what hap-
pens to the letters you type on the keyboard? Which type of input focus
would you prefer to work with? Why?

9. What are the functions of a Window Operations menu? How do you dis-
play this menu?

10. What is a panel? Name a few objects on the panels and explain what you
can use them for. What do the Workspace Switcher applet and the Win-
dow List applet do?

11. What are tooltips? How are they useful?

 From the Library of WoweBook.Com

ptg

158 Chapter 4 Introduction to Ubuntu Linux

Advanced Exercises

12. How does the mouse pointer change when you move it to the edge of a
window? What happens when you left-click and drag the mouse pointer
when it looks like this? Repeat this experiment with the mouse pointer at
the corner of a window.

13. Assume you have started a window manager without a desktop manager.
What would be missing from the screen? Describe what a window man-
ager does. How does a desktop manager make it easier to work with a
GUI?

14. When the characters you type do not appear on the screen, what might be
wrong? How can you fix this problem?

15. What happens when you run vim.tiny from the Run Application window
without specifying that it be run in a terminal? Where does the output go?

16. The example on page 138 shows that the man pages for passwd appear in
sections 1 and 5 of the system manual. Explain how you can use man to
determine which sections of the system manual contain a manual page
with a given name.

17. How many man pages are in the Devices subsection of the system manual?
(Hint: Devices is a subsection of Special Files.)

 From the Library of WoweBook.Com

ptg

111555999

5Chapter5When Linus Torvalds introduced Linux and for a long time there-
after, Linux did not have a graphical user interface (GUI): It ran
on character-based terminals only, using a command-line interface
(CLI), also referred to as a textual interface. All the tools ran from
a command line. Today the Linux GUI is important but many
people—especially system administrators—run many command-
line utilities. Command-line utilities are often faster, more power-
ful, or more complete than their GUI counterparts. Sometimes
there is no GUI counterpart to a textual utility; some people just
prefer the hands-on feeling of the command line.

When you work with a command-line interface, you are working
with a shell (Chapters 7, 9, and 27). Before you start working with
a shell, it is important that you understand something about the
characters that are special to the shell, so this chapter starts with a
discussion of special characters. The chapter then describes five
basic utilities: ls, cat, rm, less, and hostname. It continues by
describing several other file manipulation utilities as well as utili-
ties that display who is logged in; that communicate with other
users; that print, compress, and decompress files; and that pack
and unpack archive files.

In This Chapter

Special Characters 160

Basic Utilities 161

less Is more: Display a Text File
One Screen at a Time 162

Working with Files. 163

lpr: Prints a File 165

| (Pipe): Communicates Between
Processes 170

Compressing and Archiving
Files . 174

Obtaining User and System
Information 180

Tutorial: Using vim to Create
and Edit a File 186

5

The Linux Utilities

 From the Library of WoweBook.Com

ptg

160 Chapter 5 The Linux Utilities

Special Characters

Special characters, which have a special meaning to the shell, are discussed in “File-
name Generation/Pathname Expansion” on page 256. These characters are men-
tioned here so that you can avoid accidentally using them as regular characters until
you understand how the shell interprets them. For example, it is best to avoid using
any of the following characters in a filename (even though emacs and some other
programs do) because they make the file harder to reference on the command line:

& ; | * ? ' " ‘ [] () $ < > { } # / \ ! ~

Whitespace Although not considered special characters, RETURN, SPACE, and TAB have special mean-
ings to the shell. RETURN usually ends a command line and initiates execution of a
command. The SPACE and TAB characters separate elements on the command line and
are collectively known as whitespace or blanks.

Quoting special
characters

If you need to use a character that has a special meaning to the shell as a regular
character, you can quote (or escape) it. When you quote a special character, you
keep the shell from giving it special meaning. The shell treats a quoted special char-
acter as a regular character. However, a slash (/) is always a separator in a path-
name, even when you quote it.

Backslash To quote a character, precede it with a backslash (\). When two or more special
characters appear together, you must precede each with a backslash (for example,
you would enter ** as **). You can quote a backslash just as you would quote
any other special character—by preceding it with a backslash (\\).

Single quotation
marks

Another way of quoting special characters is to enclose them between single quotation
marks: '**'. You can quote many special and regular characters between a pair of sin-
gle quotation marks: 'This is a special character: >'. The regular characters are inter-
preted as usual, and the shell also interprets the special characters as regular characters.

The only way to quote the erase character (CONTROL-H), the line kill character
(CONTROL-U), and other control characters (try CONTROL-M) is by preceding each with a
CONTROL-V. Single quotation marks and backslashes do not work. Try the following:

$ echo 'xxxxxxCONTROL-U'
$ echo xxxxxxCONTROL-V CONTROL-U

optional Although you cannot see the CONTROL-U displayed by the second of the preceding pair
of commands, it is there. The following command sends the output of echo
(page 171) through a pipe (page 170) to od (octal display, see the od man page) to
display CONTROL-U as octal 25 (025):

$ echo xxxxxxCONTROL-V CONTROL-U | od -c
0000000 x x x x x x 025 \n
0000010

The \n is the NEWLINE character that echo sends at the end of its output.

 From the Library of WoweBook.Com

ptg

Basic Utilities 161

Basic Utilities

One of the important advantages of Linux is that it comes with thousands of utili-
ties that perform myriad functions. You will use utilities whenever you work with
Linux, whether you use them directly by name from the command line or indirectly
from a menu or icon. The following sections discuss some of the most basic and
important utilities; these utilities are available from a CLI. Some of the more impor-
tant utilities are also available from a GUI; others are available only from a GUI.

Folder/directory The term directory is used extensively in the next sections. A directory is a resource
that can hold files. On other operating systems, including Windows and Macintosh,
and frequently when speaking about a Linux GUI, a directory is referred to as a
folder. That is a good analogy: A traditional manila folder holds files just as a direc-
tory does.

ls: Lists the Names of Files

Using the editor of your choice, create a small file named practice. (A tutorial on the
vim editor appears on page 186.) After exiting from the editor, you can use the ls
(list) utility to display a list of the names of the files in your home directory. In the
first command in Figure 5-1, ls lists the name of the practice file. (You may also see
files that the system or a program created automatically.) Subsequent commands in
Figure 5-1 display the contents of the file and remove the file. These commands are
described next.

Run these utilities from a command line

tip This chapter describes command-line, or textual, utilities. You can experiment with these utilities
from a terminal, a terminal emulator within a GUI (page 125), or a virtual console (page 149).

In this chapter you work in your home directory

tip When you log in on the system, you are working in your home directory. In this chapter that is the
only directory you use: All the files you create in this chapter are in your home directory. Chapter 6
goes into more detail about directories.

$ ls
practice
$ cat practice
This is a small file that I created
with a text editor.
$ rm practice
$ ls
$ cat practice
cat: practice: No such file or directory
$

Figure 5-1 Using ls, cat, and rm on the file named practice

 From the Library of WoweBook.Com

ptg

162 Chapter 5 The Linux Utilities

cat: Displays a Text File

The cat utility displays the contents of a text file. The name of the command is
derived from catenate, which means to join together, one after the other.
(Figure 7-8 on page 247 shows how to use cat to string together the contents of
three files.)

A convenient way to display the contents of a file to the screen is by giving the com-
mand cat, followed by a SPACE and the name of the file. Figure 5-1 shows cat display-
ing the contents of practice. This figure shows the difference between the ls and cat
utilities: The ls utility displays the name of a file, whereas cat displays the contents
of a file.

rm: Deletes a File

The rm (remove) utility deletes a file. Figure 5-1 shows rm deleting the file named
practice. After rm deletes the file, ls and cat show that practice is no longer in the
directory. The ls utility does not list its filename, and cat says that no such file exists.
Use rm carefully.

less Is more: Display a Text File One Screen at a Time

Pagers When you want to view a file that is longer than one screen, you can use either the -
less utility or the more utility. Each of these utilities pauses after displaying a screen
of text; press the SPACE bar to display the next screen of text. Because these utilities
show one page at a time, they are called pagers. Although less and more are very
similar, they have subtle differences. At the end of the file, for example, less displays
an END message and waits for you to press q before returning you to the shell. In
contrast, more returns you directly to the shell. While using both utilities you can
press h to display a Help screen that lists commands you can use while paging
through a file. Give the commands less practice and more practice in place of the cat
command in Figure 5-1 to see how these commands work. Use the command less
/etc/adduser.conf instead if you want to experiment with a longer file. Refer to the
less and more man pages for more information.

A safer way of removing files
tip You can use the interactive form of rm to make sure that you delete only the file(s) you intend to

delete. When you follow rm with the –i option (see page 139 for a tip on options) and the name
of the file you want to delete, rm displays the name of the file and then waits for you to respond
with y (yes) before it deletes the file. It does not delete the file if you respond with a string that
begins with a character other than y.

$ rm -i toollist
rm: remove regular file 'toollist'? y

Optional: You can create an alias (page 346) for rm –i and put it in your startup file (page 204) so
that rm always runs in interactive mode.

 From the Library of WoweBook.Com

ptg

Working with Files 163

hostname: Displays the System Name

The hostname utility displays the name of the system you are working on. Use this
utility if you are not sure that you are logged in on the right machine.

$ hostname
bravo.example.com

Working with Files

This section describes utilities that copy, move, print, search through, display, sort,
and compare files.

cp: Copies a File

The cp (copy) utility (Figure 5-2) makes a copy of a file. This utility can copy any
file, including text and executable program (binary) files. You can use cp to make a
backup copy of a file or a copy to experiment with.

The cp command line uses the following syntax to specify source and destination
files:

cp source-file destination-file

The source-file is the name of the file that cp will copy. The destination-file is the
name that cp assigns to the resulting (new) copy of the file.

Filename completion

tip After you enter one or more letters of a filename (following a command) on a command line, press
TAB and the Bourne Again Shell will complete as much of the filename as it can. When only one
filename starts with the characters you entered, the shell completes the filename and places a
SPACE after it. You can keep typing or you can press RETURN to execute the command at this point.
When the characters you entered do not uniquely identify a filename, the shell completes what it
can and waits for more input. When pressing TAB does not change the display, press TAB again to
display a list of possible completions. For more information refer to “Pathname Completion” on
page 342.

$ ls
memo
$ cp memo memo.copy
$ ls
memo memo.copy

Figure 5-2 cp copies a file

 From the Library of WoweBook.Com

ptg

164 Chapter 5 The Linux Utilities

The cp command line in Figure 5-2 copies the file named memo to memo.copy. The
period is part of the filename—just another character. The initial ls command shows
that memo is the only file in the directory. After the cp command, a second ls shows
two files in the directory, memo and memo.copy.

Sometimes it is useful to incorporate the date in the name of a copy of a file. The
following example includes the date January 30 (0130) in the copied file:

$ cp memo memo.0130

Although it has no significance to Linux, the date can help you find a version of a
file you created on a certain date. Including the date can also help you avoid over-
writing existing files by providing a unique filename each day. For more informa-
tion refer to “Filenames” on page 201.

Use scp (page 667) or ftp (page 687) when you need to copy a file from one system
to another on a common network.

mv: Changes the Name of a File

The mv (move) utility can rename a file without making a copy of it. The mv com-
mand line specifies an existing file and a new filename using the same syntax as cp:

mv existing-filename new-filename

The command line in Figure 5-3 changes the name of the file memo to memo.0130.
The initial ls command shows that memo is the only file in the directory. After you
give the mv command, memo.0130 is the only file in the directory. Compare this
result to that of the cp example in Figure 5-2.

The mv utility can be used for more than changing the name of a file. Refer to “mv,
cp: Move or Copy Files” on page 212. See the mv info page for more information.

cp can destroy a file

caution If the destination-file exists before you give a cp command, cp overwrites it. Because cp over-
writes (and destroys the contents of) an existing destination-file without warning, you must take
care not to cause cp to overwrite a file that you need. The cp –i (interactive) option prompts you
before it overwrites a file. See page 139 for a tip on options.

The following example assumes that the file named orange.2 exists before you give the cp com-
mand. The user answers y to overwrite the file:

$ cp –i orange orange.2
cp: overwrite 'orange.2'? y

mv can destroy a file

caution Just as cp can destroy a file, so can mv. Also like cp, mv has a –i (interactive) option. See the
caution box labeled “cp can destroy a file.”

 From the Library of WoweBook.Com

ptg

Working with Files 165

lpr: Prints a File

The lpr (line printer) utility places one or more files in a print queue for printing.
Linux provides print queues so that only one job is printed on a given printer at a
time. A queue allows several people or jobs to send output simultaneously to a sin-
gle printer with the expected results. On systems that have access to more than one
printer, you can use lpstat –p to display a list of available printers. Use the –P option
to instruct lpr to place the file in the queue for a specific printer—even one that is
connected to another system on the network. The following command prints the file
named report:

$ lpr report

Because this command does not specify a printer, the output goes to the default
printer, which is the printer when you have only one printer.

The next command line prints the same file on the printer named mailroom:

$ lpr -P mailroom report

You can see which jobs are in the print queue by giving an lpstat –o command or by
using the lpq utility:

$ lpq
lp is ready and printing
Rank Owner Job Files Total Size
active max 86 (standard input) 954061 bytes

In this example, Max has one job that is being printed; no other jobs are in the
queue. You can use the job number (86 in this case) with the lprm utility to remove
the job from the print queue and stop it from printing:

$ lprm 86

You can send more than one file to the printer with a single command. The follow-
ing command line prints three files on the printer named laser1:

$ lpr -P laser1 05.txt 108.txt 12.txt

Refer to Chapter 14 for information on setting up a printer and defining the default
printer.

$ ls
memo
$ mv memo memo.0130
$ ls
memo.0130

Figure 5-3 mv renames a file

 From the Library of WoweBook.Com

ptg

166 Chapter 5 The Linux Utilities

grep: Searches for a String

The grep1 utility searches through one or more files to see whether any contain a
specified string of characters. This utility does not change the file it searches but
simply displays each line that contains the string.

The grep command in Figure 5-4 searches through the file memo for lines that con-
tain the string credit and displays the single line that meets this criterion. If memo
contained such words as discredit, creditor, or accreditation, grep would have dis-
played those lines as well because they contain the string it was searching for. The
–w (words) option causes grep to match only whole words. Although you do not
need to enclose the string you are searching for in single quotation marks, doing so
allows you to put SPACEs and special characters in the search string.

The grep utility can do much more than search for a simple string in a single file.
Refer to the grep info page and Appendix A, “Regular Expressions,” for more
information.

head: Displays the Beginning of a File

By default the head utility displays the first ten lines of a file. You can use head to
help you remember what a particular file contains. For example, if you have a file
named months that lists the 12 months of the year in calendar order, one to a line,
then head displays Jan through Oct (Figure 5-5).

This utility can display any number of lines, so you can use it to look at only the
first line of a file, at a full screen, or even more. To specify the number of lines

$ cat memo

Helen:

In our meeting on June 6 we
discussed the issue of credit.
Have you had any further thoughts
about it?

 Max

$ grep 'credit' memo
discussed the issue of credit.

Figure 5-4 grep searches for a string

1. Originally the name grep was a play on an ed—an original UNIX editor, available on Ubuntu
Linux—command: g/re/p. In this command g stands for global, re is a regular expression delimited by
slashes, and p means print.

 From the Library of WoweBook.Com

ptg

Working with Files 167

displayed, include a hyphen followed by the number of lines you want head to
display. For example, the following command displays only the first line of
months:

$ head -1 months
Jan

The head utility can also display parts of a file based on a count of blocks or charac-
ters rather than lines. Refer to the head info page for more information.

tail: Displays the End of a File

The tail utility is similar to head but by default displays the last ten lines of a file.
Depending on how you invoke it, this utility can display fewer or more than ten
lines, use a count of blocks or characters rather than lines to display parts of a file,
and display lines being added to a file that is changing. The tail command in
Figure 5-5 displays the last five lines (Aug through Dec) of the months file.

You can monitor lines as they are added to the end of the growing file named logfile
with the following command:

$ tail -f logfile

Press the interrupt key (usually CONTROL-C) to stop tail and display the shell prompt.
Refer to the tail info page for more information.

$ head months
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct

$ tail -5 months
Aug
Sep
Oct
Nov
Dec

Figure 5-5 head displays the first ten lines of a file

 From the Library of WoweBook.Com

ptg

168 Chapter 5 The Linux Utilities

sort: Displays a File in Order

The sort utility displays the contents of a file in order by lines but does not change
the original file.

Figure 5-6 shows cat displaying the file named days, which contains the name of
each day of the week on a separate line in calendar order. The sort utility then dis-
plays the file in alphabetical order.

The sort utility is useful for putting lists in order. The –u option generates a sorted
list in which each line is unique (no duplicates). The –n option puts a list of numbers
in numerical order. Refer to the sort info page for more information.

uniq: Removes Duplicate Lines from a File

The uniq (unique) utility displays a file, skipping adjacent duplicate lines, but does
not change the original file. If a file contains a list of names and has two successive
entries for the same person, uniq skips the extra line (Figure 5-7).

If a file is sorted before it is processed by uniq, this utility ensures that no two lines
in the file are the same. (Of course, sort can do that all by itself with the –u option.)
Refer to the uniq info page for more information.

diff: Compares Two Files

The diff (difference) utility compares two files and displays a list of the differences
between them. This utility does not change either file; it is useful when you want to
compare two versions of a letter or a report or two versions of the source code for a
program.

The diff utility with the –u (unified output format) option first displays two lines
indicating which of the files you are comparing will be denoted by a plus sign (+)

$ cat days
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

$ sort days
Friday
Monday
Saturday
Sunday
Thursday
Tuesday
Wednesday

Figure 5-6 sort displays the lines of a file in order

 From the Library of WoweBook.Com

ptg

Working with Files 169

and which by a minus sign (–). In Figure 5-8, a minus sign indicates the colors.1 file;
a plus sign indicates the colors.2 file.

The diff –u command breaks long, multiline text into hunks. Each hunk is preceded
by a line starting and ending with two at signs (@@). This hunk identifier indicates
the starting line number and the number of lines from each file for this hunk. In
Figure 5-8, the hunk covers the section of the colors.1 file (indicated by a minus
sign) from the first line through the sixth line. The +1,5 then indicates that the hunk
covers colors.2 from the first line through the fifth line.

Following these header lines, diff –u displays each line of text with a leading minus
sign, a leading plus sign, or a SPACE. A leading minus sign indicates that the line
occurs only in the file denoted by the minus sign. A leading plus sign indicates that
the line occurs only in the file denoted by the plus sign. A line that begins with a
SPACE (neither a plus sign nor a minus sign) occurs in both files in the same location.
Refer to the diff info page for more information.

$ cat dups
Cathy
Fred
Joe
John
Mary
Mary
Paula

$ uniq dups
Cathy
Fred
Joe
John
Mary
Paula

Figure 5-7 uniq removes duplicate lines

$ diff -u colors.1 colors.2
--- colors.1 2010-07-29 16:41:11.000000000 -0700
+++ colors.2 2010-07-29 16:41:17.000000000 -0700
@@ -1,6 +1,5 @@
red
+blue
green
yellow
-pink
-purple
orange

Figure 5-8 diff displaying the unified output format

 From the Library of WoweBook.Com

ptg

170 Chapter 5 The Linux Utilities

file: Identifies the Contents of a File

You can use the file utility to learn about the contents of any file on a Linux system
without having to open and examine the file yourself. In the following example, file
reports that letter_e.bz2 contains data that was compressed by the bzip2 utility
(page 174):

$ file letter_e.bz2
letter_e.bz2: bzip2 compressed data, block size = 900k

Next file reports on two more files:

$ file memo zach.jpg
memo: ASCII text
zach.jpg: JPEG image data, ... resolution (DPI), 72 x 72

Refer to the file man page for more information.

| (Pipe): Communicates Between Processes

Because pipes are integral to the functioning of a Linux system, this chapter intro-
duces them for use in examples. Pipes are covered in detail beginning on page 251.

A process is the execution of a command by Linux (page 328). Communication
between processes is one of the hallmarks of both UNIX and Linux. A pipe (written
as a vertical bar, |, on the command line and appearing as a solid or broken vertical
line on a keyboard) provides the simplest form of this kind of communication. Sim-
ply put, a pipe takes the output of one utility and sends that output as input to
another utility. Using UNIX/Linux terminology, a pipe takes standard output of one
process and redirects it to become standard input of another process. (For more
information refer to “Standard Input and Standard Output” on page 243.) Most of
what a process displays on the screen is sent to standard output. If you do not redi-
rect it, this output appears on the screen. Using a pipe, you can redirect standard
output so it becomes standard input of another utility. For example, a utility such as
head can take its input from a file whose name you specify on the command line fol-
lowing the word head, or it can take its input from standard input. The following
command line sorts the lines of the months file (Figure 5-5, page 167) and uses head
to display the first four months of the sorted list:

$ sort months | head -4
Apr
Aug
Dec
Feb

The next command line displays the number of files in a directory. The wc (word
count) utility with the –w (words) option displays the number of words in its stan-
dard input or in a file you specify on the command line:

$ ls | wc -w
14

 From the Library of WoweBook.Com

ptg

Four More Utilities 171

You can use a pipe to send output of a program to the printer:

$ tail months | lpr

Four More Utilities

The echo and date utilities are two of the most frequently used members of the large
collection of Linux utilities. The script utility records part of a session in a file, and
todos makes a copy of a text file that can be read on either a Windows or a
Macintosh machine.

echo: Displays Text

The echo utility copies the characters you type on the command line after echo to
the screen. Figure 5-9 shows some examples. The last example shows what the shell
does with an unquoted asterisk (*) on the command line: It expands the asterisk
into a list of filenames in the directory.

The echo utility is a good tool for learning about the shell and other Linux utilities.
Some examples on page 257 use echo to illustrate how special characters, such as
the asterisk, work. Throughout Chapters 7, 9, and 27, echo helps explain how shell
variables work and how you can send messages from shell scripts to the screen.
Refer to the coreutils info page, echo section for more information.

optional You can use echo to create a simple file by redirecting its output to a file:

$ echo 'My new file.' > myfile
$ cat myfile
My new file.

The greater than (>) sign tells the shell to send the output of echo to the file named
myfile instead of to the screen. For more information refer to “Redirecting Standard
Output” on page 246.

$ ls
memo memo.0714 practice
$ echo Hi
Hi
$ echo This is a sentence.
This is a sentence.
$ echo star: *
star: memo memo.0714 practice
$

Figure 5-9 echo copies the command line (but not the word echo) to the screen

 From the Library of WoweBook.Com

ptg

172 Chapter 5 The Linux Utilities

date: Displays the Time and Date

The date utility displays the current date and time:

$ date
Thu Jan 21 10:24:00 PST 2010

The following example shows how you can choose the format and select the con-
tents of the output of date:

$ date +"%A %B %d"
Thursday January 21

Refer to the date info page for more information.

script: Records a Shell Session

The script utility records all or part of a login session, including your input and the
system’s responses. This utility is useful only from character-based devices, such as a
terminal or a terminal emulator. It does capture a session with vim; however, because
vim uses control characters to position the cursor and display different typefaces,
such as bold, the output will be difficult to read and may not be useful. When you cat
a file that has captured a vim session, the session quickly passes before your eyes.

By default script captures the session in a file named typescript. To specify a different
filename, follow the script command with a SPACE and the filename. To append to a
file, use the –a option after script but before the filename; otherwise script over-
writes an existing file. Following is a session being recorded by script:

$ script
Script started, file is typescript
$ whoami
sam
$ ls -l /bin | head -5
total 6632
-rwxr-xr-x 1 root root 818232 2010-04-10 05:10 bash
-rwxr-xr-x 1 root root 30200 2010-02-08 02:54 bunzip2
-rwxr-xr-x 1 root root 1269432 2010-01-22 08:23 busybox
-rwxr-xr-x 1 root root 30200 2010-02-08 02:54 bzcat
$ exit
exit
Script done, file is typescript

Use the exit command to terminate a script session. You can then view the file you
created using cat, less, more, or an editor. Following is the file that was created by
the preceding script command:

$ cat typescript
Script started on Mon Sep 27 20:54:59 2010
$ whoami
sam

 From the Library of WoweBook.Com

ptg

Four More Utilities 173

$ ls -l /bin | head -5
total 6632
-rwxr-xr-x 1 root root 818232 2010-04-10 05:10 bash
-rwxr-xr-x 1 root root 30200 2010-02-08 02:54 bunzip2
-rwxr-xr-x 1 root root 1269432 2010-01-22 08:23 busybox
-rwxr-xr-x 1 root root 30200 2010-02-08 02:54 bzcat
$ exit
exit

Script done on Mon Sep 27 20:55:29 2010

If you will be editing the file with vim, emacs, or another editor, you can use fromdos
(below) to eliminate from the typescript file the ^M characters that appear at the
ends of the lines. Refer to the script man page for more information.

todos: Converts Linux and Macintosh Files to

Windows Format

If you want to share a text file you created on a Linux system with someone on a
Windows or Macintosh system, you need to convert the file before the person on
the other system can read it easily. The todos (to DOS) utility converts a Linux text
file so it can be read on a Windows or Macintosh system. This utility is part of the
tofrodos software package; give the command sudo aptitude install tofrodos to
install this package. Give the following command to convert a file named memo.txt
(created with a text editor) to a DOS-format file:

$ todos memo.txt

You can now email the file as an attachment to someone on a Windows or Macintosh
system. Without any options, todos overwrites the original file. Use the –b (backup)
option to cause todos to make a copy of the file with a .bak filename extension before
modifying it.

fromdos You can use the fromdos utility to convert Windows or Macintosh files so they can
be read on a Linux system:

$ fromdos memo.txt

See the todos and fromdos man pages for more information.

tr You can also use tr (translate) to change a Windows or Macintosh text file into a
Linux text file. In the following example, the –d (delete) option causes tr to remove
RETURNs (represented by \r) as it makes a copy of the file:

$ cat memo | tr -d '\r' > memo.txt

The greater than (>) symbol redirects the standard output of tr to the file named
memo.txt. For more information refer to “Redirecting Standard Output” on
page 246. Converting a file the other way without using todos is not as easy.

 From the Library of WoweBook.Com

ptg

174 Chapter 5 The Linux Utilities

Compressing and Archiving Files

Large files use a lot of disk space and take longer than smaller files to transfer from
one system to another over a network. If you do not need to look at the contents of
a large file often, you may want to save it on a CD, DVD, or another medium and
remove it from the hard disk. If you have a continuing need for the file, retrieving a
copy from another medium may be inconvenient. To reduce the amount of disk
space you use without removing the file entirely, you can compress the file without
losing any of the information it holds. Similarly a single archive of several files
packed into a larger file is easier to manipulate, upload, download, and email than
multiple files. You may frequently download compressed, archived files from the
Internet. The utilities described in this section compress and decompress files and
pack and unpack archives.

bzip2: Compresses a File

The bzip2 utility compresses a file by analyzing it and recoding it more efficiently.
The new version of the file looks completely different. In fact, because the new file
contains many nonprinting characters, you cannot view it directly. The bzip2 utility
works particularly well on files that contain a lot of repeated information, such as
text and image data, although most image data is already in a compressed format.

The following example shows a boring file. Each of the 8,000 lines of the letter_e
file contains 72 e’s and a NEWLINE character that marks the end of the line. The file
occupies more than half a megabyte of disk storage.

$ ls -l
-rw-rw-r-- 1 sam sam 584000 2010-03-01 22:31 letter_e

The –l (long) option causes ls to display more information about a file. Here it
shows that letter_e is 584,000 bytes long. The –v (verbose) option causes bzip2 to
report how much it was able to reduce the size of the file. In this case, it shrank the
file by 99.99 percent:

$ bzip2 -v letter_e
letter_e: 11680.00:1, 0.001 bits/byte, 99.99% saved, 584000 in, 50 out.
$ ls -l
-rw-rw-r-- 1 sam sam 50 2010-03-01 22:31 letter_e.bz2

.bz2 filename
extension

Now the file is only 50 bytes long. The bzip2 utility also renamed the file, appending
.bz2 to its name. This naming convention reminds you that the file is compressed;
you would not want to display or print it, for example, without first decompressing
it. The bzip2 utility does not change the modification date associated with the file,
even though it completely changes the file’s contents.

Keep the original file by using the –k option

tip The bzip2 utility (and its counterpart, bunzip2) remove the original file when they compress or
decompress a file. Use the –k (keep) option to keep the original file.

 From the Library of WoweBook.Com

ptg

Compressing and Archiving Files 175

In the following, more realistic example, the file zach.jpg contains a computer
graphics image:

$ ls -l
-rw-r--r-- 1 sam sam 33287 2010-03-01 22:40 zach.jpg

The bzip2 utility can reduce the size of the file by only 28 percent because the image
is already in a compressed format:

$ bzip2 -v zach.jpg
zach.jpg: 1.391:1, 5.749 bits/byte, 28.13% saved, 33287 in, 23922 out.

$ ls -l
-rw-r--r-- 1 sam sam 23922 2010-03-01 22:40 zach.jpg.bz2

Refer to the bzip2 man page, www.bzip.org, and the Bzip2 mini-HOWTO (see
page 142 for instructions on obtaining this document) for more information.

bunzip2 and bzcat: Decompress a File

You can use the bunzip2 utility to restore a file that has been compressed with bzip2:

$ bunzip2 letter_e.bz2
$ ls -l
-rw-rw-r-- 1 sam sam 584000 2010-03-01 22:31 letter_e
$ bunzip2 zach.jpg.bz2
$ ls -l
-rw-r--r-- 1 sam sam 33287 2010-03-01 22:40 zach.jpg

The bzcat utility displays a file that has been compressed with bzip2. The equivalent
of cat for .bz2 files, bzcat decompresses the compressed data and displays the
decompressed data. Like cat, bzcat does not change the source file. The pipe in the
following example redirects the output of bzcat so instead of being displayed on the
screen it becomes the input to head, which displays the first two lines of the file:

$ bzcat letter_e.bz2 | head -2
ee
ee

After bzcat is run, the contents of letter_e.bz is unchanged; the file is still stored on
the disk in compressed form.

bzip2recover The bzip2recover utility supports limited data recovery from media errors. Give the
command bzip2recover followed by the name of the compressed, corrupted file
from which you want to try to recover data.

gzip: Compresses a File

gunzip and zcat The gzip (GNU zip) utility is older and less efficient than bzip2. Its flags and opera-
tion are very similar to those of bzip2. A file compressed by gzip is marked by a .gz
filename extension. Linux stores manual pages in gzip format to save disk space;
likewise, files you download from the Internet are frequently in gzip format. Use
gzip, gunzip, and zcat just as you would use bzip2, bunzip2, and bzcat, respectively.
Refer to the gzip info page for more information.

 From the Library of WoweBook.Com

www.bzip.org

ptg

176 Chapter 5 The Linux Utilities

compress The compress utility can also compress files, albeit not as well as gzip. This utility
marks a file it has compressed by adding .Z to its name.

tar: Packs and Unpacks Archives

The tar utility performs many functions. Its name is short for tape archive, as its
original function was to create and read archive and backup tapes. Today it is used
to create a single file (called a tar file, archive, or tarball) from multiple files or
directory hierarchies and to extract files from a tar file. The cpio utility (page 602)
performs a similar function.

In the following example, the first ls shows the sizes of the files g, b, and d. Next tar
uses the –c (create), –v (verbose), and –f (write to or read from a file) options to cre-
ate an archive named all.tar from these files. Each line of output displays the name
of the file tar is appending to the archive it is creating.

The tar utility adds overhead when it creates an archive. The next command shows
that the archive file all.tar occupies about 9,700 bytes, whereas the sum of the sizes
of the three files is about 6,000 bytes. This overhead is more appreciable on smaller
files, such as the ones in this example:

$ ls -l g b d
-rw-r--r-- 1 zach other 1178 2010-08-20 14:16 b
-rw-r--r-- 1 zach zach 3783 2010-08-20 14:17 d
-rw-r--r-- 1 zach zach 1302 2010-08-20 14:16 g

$ tar -cvf all.tar g b d
g
b
d
$ ls -l all.tar
-rw-r--r-- 1 zach zach 9728 2010-08-20 14:17 all.tar

$ tar -tvf all.tar
-rw-r--r-- zach /zach 1302 2010-08-20 14:16 g
-rw-r--r-- zach /other 1178 2010-08-20 14:16 b
-rw-r--r-- zach /zach 3783 2010-08-20 14:17 d

The final command in the preceding example uses the –t option to display a table of
contents for the archive. Use –x instead of –t to extract files from a tar archive. Omit
the –v option if you want tar to do its work silently.2

gzip versus zip
tip Do not confuse gzip and gunzip with the zip and unzip utilities. These last two are used to pack

and unpack zip archives containing several files compressed into a single file that has been
imported from or is being exported to a system running Windows. The zip utility constructs a zip
archive, whereas unzip unpacks zip archives. The zip and unzip utilities are compatible with
PKZIP, a Windows program that compresses and archives files.

2. Although the original UNIX tar did not use a leading hyphen to indicate an option on the command
line, the GNU/Linux version accepts hyphens, but works as well without them. This book precedes tar

options with a hyphen for consistency with most other utilities.

 From the Library of WoweBook.Com

ptg

Compressing and Archiving Files 177

You can use bzip2, compress, or gzip to compress tar files, making them easier to
store and handle. Many files you download from the Internet will already be in one
of these formats. Files that have been processed by tar and compressed by bzip2 fre-
quently have a filename extension of .tar.bz2 or .tbz. Those processed by tar and
gzip have an extension of .tar.gz or .tz, whereas files processed by tar and compress
use .tar.Z as the extension.

You can unpack a tarred and gzipped file in two steps. (Follow the same procedure if
the file was compressed by bzip2, but use bunzip2 instead of gunzip.) The next exam-
ple shows how to unpack the GNU make utility after it has been downloaded
(ftp.gnu.org/pub/gnu/make/make-3.80.tar.gz):

$ ls -l mak*
-rw-r--r-- 1 sam sam 1564560 2010-04-12 15:51 make-3.81.tar.gz

$ gunzip mak*
$ ls -l mak*
-rw-r--r-- 1 sam sam 6072320 2010-04-12 15:51 make-3.81.tar

$ tar -xvf mak*
make-3.81/
make-3.81/config/
make-3.81/config/dospaths.m4
...
make-3.81/tests/run_make_tests.pl
make-3.81/tests/test_driver.pl

The first command lists the downloaded tarred and gzipped file: make-3.80.tar.gz
(about 1.2 megabytes). The asterisk (*) in the filename matches any characters in
any filenames (page 257), so ls displays a list of files whose names begin with mak;
in this case there is only one. Using an asterisk saves typing and can improve accu-
racy with long filenames. The gunzip command decompresses the file and yields
make-3.80.tar (no .gz extension), which is about 4.8 megabytes. The tar command
creates the make-3.80 directory in the working directory and unpacks the files into it.

$ ls -ld mak*
drwxr-xr-x 8 sam sam 4096 2006-03-31 22:42 make-3.81
-rw-r--r-- 1 sam sam 6072320 2010-04-12 15:51 make-3.81.tar
$ ls -l make-3.80
total 1816
-rw-r--r-- 1 sam sam 53838 2006-03-31 22:39 ABOUT-NLS
-rw-r--r-- 1 sam sam 4918 2006-02-11 14:16 acinclude.m4
-rw-r--r-- 1 sam sam 33872 2006-03-31 22:39 aclocal.m4
-rw-r--r-- 1 sam sam 14231 2002-10-14 14:54 alloca.c
...
-rw-r--r-- 1 sam sam 16907 2006-02-11 14:16 vmsjobs.c
-rw-r--r-- 1 sam sam 17397 2006-02-11 14:16 vpath.c
drwxr-xr-x 6 sam sam 4096 2006-03-31 22:42 w32

After tar extracts the files from the archive, the working directory contains two files
whose names start with mak: make-3.80.tar and make-3.80. The –d (directory)
option causes ls to display only file and directory names, not the contents of directo-
ries as it normally does. The final ls command shows the files and directories in the
make-3.80 directory. Refer to the tar info page for more information.

 From the Library of WoweBook.Com

ptg

178 Chapter 5 The Linux Utilities

optional You can combine the gunzip and tar commands on one command line with a pipe
(|), which redirects the output of gunzip so that it becomes the input to tar:

$ gunzip -c make-3.81.tar.gz | tar -xvf -

The –c option causes gunzip to send its output through the pipe instead of creating a file.
The final hyphen (–) causes tar to read from standard input. Refer to “Pipes” (page 251)
and gzip (page 175) for more information about how this command line works.

A simpler solution is to use the –z option to tar. This option causes tar to call gunzip
(or gzip when you are creating an archive) directly and simplifies the preceding com-
mand line to

$ tar -xvzf make-3.81.tar.gz

In a similar manner, the –j option calls bzip2 or bunzip2.

Locating Commands

The whereis and mlocate utilities can help you find a command whose name you
have forgotten or whose location you do not know. When multiple copies of a util-
ity or program are present, which tells you which copy you will run. The mlocate
utility searches for files on the local system.

which and whereis: Locate a Utility

When you give Linux a command, the shell searches a list of directories for a pro-
gram with that name and runs the first one it finds. This list of directories is called a
search path. For information on how to change the search path, refer to “PATH:
Where the Shell Looks for Programs” on page 319. If you do not change the search
path, the shell searches only a standard set of directories and then stops searching.
However, other directories on the system may also contain useful utilities.

which The which utility locates utilities by displaying the full pathname of the file for the
utility. (Chapter 6 contains more information on pathnames and the structure of the

tar: the –x option may extract a lot of files

caution Some tar archives contain many files. To list the files in the archive without unpacking them, run
tar with the –t option and the name of the tar file. In some cases you may want to create a new
directory (mkdir [page 208]), move the tar file into that directory, and expand it there. That way
the unpacked files will not mingle with existing files, and no confusion will occur. This strategy
also makes it easier to delete the extracted files. Depending on how they were created, some tar
files automatically create a new directory and put the files into it; the –t option indicates where tar
will place the files you extract.

tar: the –x option can overwrite files

caution The –x option to tar overwrites a file that has the same filename as a file you are extracting. Follow
the suggestion in the preceding caution box to avoid overwriting files.

 From the Library of WoweBook.Com

ptg

Locating Commands 179

Linux filesystem.) The local system may include several utilities that have the same
name. When you type the name of a utility, the shell searches for the utility in your
search path and runs the first one it finds. You can find out which copy of the utility
the shell will run by using which. In the following example, which reports the loca-
tion of the tar utility:

$ which tar
/bin/tar

The which utility can be helpful when a utility seems to be working in unexpected
ways. By running which, you may discover that you are running a nonstandard
version of a tool or a different one from the one you expected. (“Important Stan-
dard Directories and Files” on page 213 provides a list of standard locations for
executable files.) For example, if tar is not working properly and you find that you
are running /usr/local/bin/tar instead of /bin/tar, you might suspect that the local
version is broken.

whereis The whereis utility searches for files related to a utility by looking in standard loca-
tions instead of using your search path. For example, you can find the locations for
files related to tar:

$ whereis tar
tar: /bin/tar /usr/include/tar.h /usr/share/man/man1/tar.1.gz ...

In this example whereis finds three references to tar: the tar utility file, a tar header
file, and the tar man page.

which versus whereis

tip Given the name of a utility, which looks through the directories in your search path (page 319),
in order, and locates the utility. If your search path includes more than one utility with the specified
name, which displays the name of only the first one (the one you would run).

The whereis utility looks through a list of standard directories and works independently of your
search path. Use whereis to locate a binary (executable) file, any manual pages, and source code
for a program you specify; whereis displays all the files it finds.

which, whereis, and builtin commands

caution Both the which and whereis utilities report only the names for utilities as they are found on the
disk; they do not report shell builtins (utilities that are built into a shell; see page 261). When you
use whereis to try to find where the echo command (which exists as both a utility program and
a shell builtin) is kept, you get the following result:

$ whereis echo
echo: /bin/echo /usr/share/man/man1/echo.1.gz

The whereis utility does not display the echo builtin. Even the which utility reports the wrong
information:

$ which echo
/bin/echo

Under bash you can use the type builtin (page 1003) to determine whether a command is a builtin:
$ type echo
echo is a shell builtin

 From the Library of WoweBook.Com

ptg

180 Chapter 5 The Linux Utilities

mlocate: Searches for a File

The mlocate utility searches for files on the local system:

$ mlocate upstart
/etc/init/upstart-udev-bridge.conf
/etc/network/if-down.d/upstart
/etc/network/if-up.d/upstart
/lib/init/upstart-job
/sbin/upstart-udev-bridge
...

This utility is part of the mlocate software package; give the command sudo apti-
tude install mlocate to install this package. Before you can use mlocate, the updatedb
utility must build or update the mlocate database. Typically the database is updated
once a day by a cron script (page 605).

Obtaining User and System Information

This section covers utilities that provide information about who is using the system,
what those users are doing, and how the system is running.

To find out who is using the local system, you can employ one of several utilities
that vary in the details they provide and the options they support. The oldest utility,
who, produces a list of users who are logged in on the local system, the device each
person is using, and the time each person logged in.

The w and finger utilities show more detail, such as each user’s full name and the
command line each user is running. You can use the finger utility to retrieve infor-
mation about users on remote systems if the local system is attached to a network.
Table 5-1 on page 183 summarizes the output of these utilities.

who: Lists Users on the System

The who utility displays a list of users who are logged in on the local system. In
Figure 5-10 the first column who displays shows that Sam, Max, and Zach are logged
in. (Max is logged in from two locations.) The second column shows the device that
each user’s terminal, workstation, or terminal emulator is connected to. The third col-
umn shows the date and time the user logged in. An optional fourth column shows (in
parentheses) the name of the system that a remote user logged in from.

If you are not on a network, skip to the vim tutorial

tip If you are the only user on a system that is not connected to a network, you may want to skip to
the tutorial on the vim editor on page 186. If you are not on a network but are set up to send and
receive email, read “Email” on page 185.

 From the Library of WoweBook.Com

ptg

Obtaining User and System Information 181

The information that who displays is useful when you want to communicate with a
user on the local system. When the user is logged in, you can use write (page 184)
to establish communication immediately. If who does not list the user or if you do
not need to communicate immediately, you can send email to that person
(page 185).

If the output of who scrolls off the screen, you can redirect the output through a
pipe (|, page 170) so that it becomes the input to less, which displays the output one
screen at a time. You can also use a pipe to redirect the output through grep to look
for a specific name.

If you need to find out which terminal you are using or what time you logged in,
you can use the command who am i:

$ who am i
max tty2 2010-07-25 16:42

finger: Lists Users on the System

You can use finger to display a list of users who are logged in on the local system.
In addition to usernames, finger supplies each user’s full name along with infor-
mation about which device the user’s terminal is connected to, how recently the
user typed something on the keyboard, when the user logged in, and what con-
tact information is available. If the user has logged in over the network, the name
of the remote system is shown as the user’s location. For example, in Figure 5-11
Max is logged in from the remote system named coffee. The asterisks (*) in front
of the device names in the Tty column indicate that the user has blocked mes-
sages sent directly to his terminal (refer to “mesg: Denies or Accepts Messages”
on page 185).

$ who
sam tty4 2010-07-25 17:18
max tty2 2010-07-25 16:42
zach tty1 2010-07-25 16:39
max pts/4 2010-07-25 17:27 (coffee)

Figure 5-10 who lists who is logged in

$ finger
Login Name Tty Idle Login Time Office ...
max Max Wild *tty2 Jul 25 16:42
max Max Wild pts/4 3 Jul 25 17:27 (coffee)
sam Sam the Great *tty4 29 Jul 25 17:18
zach Zach Brill *tty1 1:07 Jul 25 16:39

Figure 5-11 finger I: lists who is logged in

 From the Library of WoweBook.Com

ptg

182 Chapter 5 The Linux Utilities

You can also use finger to learn more about an individual by specifying a username
on the command line. In Figure 5-12, finger displays detailed information about
Max. Max is logged in and actively using one of his terminals (tty2); he has not
used his other terminal (pts/4) for 3 minutes and 7 seconds. You also learn from
finger that if you want to set up a meeting with Max, you should contact Zach at
extension 1693.

.plan and .project Most of the information in Figure 5-12 was collected by finger from system files.
The information shown after the heading Plan:, however, was supplied by Max. The
finger utility searched for a file named .plan in Max’s home directory and displayed
its contents.

(Filenames that begin with a period, such as .plan, are not normally listed by ls and
are called hidden filenames [page 204].) You may find it helpful to create a .plan file
for yourself; it can contain any information you choose, such as your schedule,
interests, phone number, or address. In a similar manner, finger displays the contents
of the .project and .pgpkey files in your home directory. If Max had not been logged
in, finger would have reported only his user information, the last time he logged in,
the last time he read his email, and his plan.

$ finger max
Login: max Name: Max Wild
Directory: /home/max Shell: /bin/bash
On since Fri Jul 25 16:42 (PDT) on tty2 (messages off)
On since Fri Jul 25 17:27 (PDT) on pts/4 from coffee
 3 minutes 7 seconds idle
New mail received Fri Jul 25 17:16 2010 (PDT)
 Unread since Fri Jul 25 16:44 2010 (PDT)
Plan:
I will be at a conference in Hawaii all next week.
If you need to see me, contact Zach Brill, x1693.

Figure 5-12 finger II: lists details about one user

finger can be a security risk

security On systems where security is a concern, the system administrator may disable finger. This utility
can reveal information that can help a malicious user break into a system.

$ w
 17:47:35 up 1 day, 8:10, 6 users, load average: 0.34, 0.23, 0.26
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
sam tty4 - 17:18 29:14m 0.20s 0.00s vi memo
max tty2 - 16:42 0.00s 0.20s 0.07s w
zach tty1 - 16:39 1:07 0.05s 0.00s run_bdgt
max pts/4 coffee 17:27 3:10m 0.24s 0.24s -bash

Figure 5-13 The w utility

 From the Library of WoweBook.Com

ptg

Obtaining User and System Information 183

You can also use finger to display a user’s username. For example, on a system with
a user named Helen Simpson, you might know that Helen’s last name is Simpson
but might not guess her username is hls. The finger utility, which is not case sensi-
tive, can search for information on Helen using her first or last name. The following
commands find the information you seek as well as information on other users
whose names are Helen or Simpson:

$ finger HELEN
Login: hls Name: Helen Simpson.
...
$ finger simpson
Login: hls Name: Helen Simpson.
...

See page 389 for information about using finger over a network.

w: Lists Users on the System

The w utility displays a list of the users who are logged in. As discussed in the sec-
tion on who, the information that w displays is useful when you want to communi-
cate with someone at your installation.

The first column in Figure 5-13 shows that Max, Zach, and Sam are logged in. The
second column shows the name of the device file each user’s terminal is connected
to. The third column shows the system that a remote user is logged in from. The
fourth column shows the time each user logged in. The fifth column indicates how
long each user has been idle (how much time has elapsed since the user pressed a
key on the keyboard). The next two columns identify how much computer proces-
sor time each user has used during this login session and on the task that user is run-
ning. The last column shows the command each user is running.

The first line that the w utility displays includes the time of day, the period of time
the computer has been running (in days, hours, and minutes), the number of users
logged in, and the load average (how busy the system is). The three load average
numbers represent the number of jobs waiting to run, averaged over the past 1, 5,
and 15 minutes. Use the uptime utility to display just this line. Table 5-1 compares
the w, who, and finger utilities.

Table 5-1 Comparison of w, who, and finger

Information displayed w who finger

Username x x x

Terminal-line identification (tty) x x x

Login time (and day for old logins) x

Login date and time x x

Idle time x x

 From the Library of WoweBook.Com

ptg

184 Chapter 5 The Linux Utilities

Communicating with Other Users

You can use the utilities discussed in this section to exchange messages and files
with other users either interactively or through email.

write: Sends a Message

The write utility sends a message to another user who is logged in. When you and
another user use write to send messages to each other, you establish two-way com-
munication. Initially a write command (Figure 5-14) displays a banner on the other
user’s terminal, saying that you are about to send a message.

The syntax of a write command line is

write username [terminal]

The username is the username of the user you want to communicate with. The ter-
minal is an optional device name that is useful if the user is logged in more than
once. You can display the usernames and device names of all users who are logged
in on the local system by using who, w, or finger.

To establish two-way communication with another user, you and the other user must
each execute write, specifying the other’s username as the username. The write utility
then copies text, line by line, from one keyboard/display to the other (Figure 5-15).
Sometimes it helps to establish a convention, such as typing o (for “over”) when you
are ready for the other person to type and typing oo (for “over and out”) when you
are ready to end the conversation. When you want to stop communicating with the
other user, press CONTROL-D at the beginning of a line. Pressing CONTROL-D tells write to

Information displayed w who finger

Program the user is executing x

Location the user logged in from x

CPU time used x

Full name (or other information from /etc/passwd) x

User-supplied vanity information x

System uptime and load average x

Table 5-1 Comparison of w, who, and finger (continued)

$ write max
Hi Max, are you there? o

Figure 5-14 The write utility I

 From the Library of WoweBook.Com

ptg

Email 185

quit, displays EOF (end of file) on the other user’s terminal, and returns you to the
shell. The other user must do the same.

If the Message from banner appears on your screen and obscures something you are
working on, press CONTROL- L or CONTROL- R to refresh the screen and remove the banner.
Then you can clean up, exit from your work, and respond to the person who is
writing to you. You have to remember who is writing to you, however, because the
banner will no longer appear on the screen.

mesg: Denies or Accepts Messages

By default, messages to your screen are blocked. Give the following mesg command
to allow other users to send you messages:

$ mesg y

If Max had not given this command before Zach tried to send him a message, Zach
might have seen the following message:

$ write max
write: max has messages disabled

You can block messages by entering mesg n. Give the command mesg by itself to
display is y (for “yes, messages are allowed”) or is n (for “no, messages are not
allowed”).

If you have messages blocked and you write to another user, write displays the fol-
lowing message because, even if you are allowed to write to another user, the user
will not be able to respond to you:

$ write max
write: write: you have write permission turned off.

Email

Email enables you to communicate with users on the local system and, if the instal-
lation is part of a network, with other users on the network. If you are connected to
the Internet, you can communicate electronically with users around the world.

Email utilities differ from write in that email utilities can send a message when the
recipient is not logged in. In this case the email is stored until the recipient reads it.
These utilities can also send the same message to more than one user at a time.

$ write max
Hi Max, are you there? o

Message from max@bravo.example.com on pts/0 at 16:23 ...
Yes Zach, I'm here. o

Figure 5-15 The write utility II

 From the Library of WoweBook.Com

ptg

186 Chapter 5 The Linux Utilities

Many email programs are available for Linux, including the original character-based
mail program, Mozilla/Thunderbird, pine, mail through emacs, KMail, and evolution.
Another popular graphical email program is sylpheed (sylpheed.good-day.net).

Two programs are available that can make any email program easier to use and
more secure. The procmail program (www.procmail.org) creates and maintains
email servers and mailing lists; preprocesses email by sorting it into appropriate files
and directories; starts various programs depending on the characteristics of incom-
ing email; forwards email; and so on. The GNU Privacy Guard (GPG or GNUpg,
page 1113) encrypts and decrypts email and makes it almost impossible for an
unauthorized person to read.

Refer to Chapter 20 for more information on setting email clients and servers.

Network addresses If the local system is part of a LAN, you can generally send email to and receive
email from users on other systems on the LAN by using their usernames. Someone
sending Max email on the Internet would need to specify his domain name
(page 1146) along with his username. Use this address to send email to the author
of this book: mgs@sobell.com.

Tutorial: Using vim to Create and Edit a File

This section explains how to start vim, enter text, move the cursor, correct text, save
the file to the disk, and exit from vim. The tutorial discusses three of the modes of
operation of vim and explains how to switch from one mode to another.

vimtutor In addition to working with this tutorial, you may want to try vim’s instructional
program, named vimtutor. Give its name as a command to run it.

Specifying a
terminal

Because vim takes advantage of features that are specific to various kinds of termi-
nals, you must tell it what type of terminal or terminal emulator you are using. On
many systems, and usually when you work on a terminal emulator, your terminal
type is set automatically. If you need to specify your terminal type explicitly, refer to
“Specifying a Terminal” on page 1106.

Starting vim

Start vim with the following command to create and edit a file named practice:

$ vim practice

When you press RETURN, the command line disappears, and the screen looks similar to
the one shown in Figure 5-16.

The tildes (~) at the left of the screen indicate that the file is empty. They disappear
as you add lines of text to the file. If your screen looks like a distorted version of the
one shown in Figure 5-16, your terminal type is probably not set correctly.

vimtutor and vim help files are not installed by default
tip To run vimtutor and to get help as described on page 190, you must install the vim-runtime pack-

age; give the command sudo aptitude install vim-runtime to install this package.

 From the Library of WoweBook.Com

www.procmail.org

ptg

Tutorial: Using vim to Create and Edit a File 187

If you start vim with a terminal type that is not in the terminfo database, vim dis-
plays an error message and the terminal type defaults to ansi, which works on many
terminals. In the following example, the user mistyped vt100 and set the terminal
type to vg100:

E558: Terminal entry not found in terminfo
'vg100' not known. Available builtin terminals are:
 builtin_ansi
 builtin_xterm
 builtin_iris-ansi
 builtin_dumb
defaulting to 'ansi'

Emergency exit To reset the terminal type, press ESCAPE and then give the following command to exit
from vim and display the shell prompt:

:q!

When you enter the colon (:), vim moves the cursor to the bottom line of the screen.
The characters q! tell vim to quit without saving your work. (You will not ordinarily
exit from vim this way because you typically want to save your work.) You must

Figure 5-16 Starting vim

vim is not installed by default: use vim.tiny

tip The full version of the vim editor is not installed by default. Instead, a small version of vim, named
vim.tiny is installed. You can either replace each vim command in this section with vim.tiny, or
you can install the full vim editor by giving the command sudo aptitude install vim and then use
the vim command as shown in this section.

The vi command runs vim
tip On Ubuntu Linux systems the command vi runs vim in vi-compatible mode (page 193).

 From the Library of WoweBook.Com

ptg

188 Chapter 5 The Linux Utilities

press RETURN after you give this command. Once you get the shell prompt back, refer
to “Specifying a Terminal” on page 1106, and then start vim again.

If you start this editor without a filename, vim assumes that you are a novice and
tells you how to get started (Figure 5-17).

The practice file is new so it does not contain any text. The vim editor displays a
message similar to the one shown in Figure 5-16 on the status (bottom) line of the
terminal to indicate that you are creating and editing a new file. When you edit an
existing file, vim displays the first few lines of the file and gives status information
about the file on the status line.

Command and Input Modes

Two of vim’s modes of operation are Command mode (also called Normal mode)
and Input mode (Figure 5-18). While vim is in Command mode, you can give vim
commands. For example, you can delete text or exit from vim. You can also com-
mand vim to enter Input mode. In Input mode, vim accepts anything you enter as
text and displays it on the screen. Press ESCAPE to return vim to Command mode. By
default the vim editor keeps you informed about which mode it is in: It displays
INSERT at the lower-left corner of the screen while it is in Insert mode.

The following command causes vim to display line numbers next to the text you are
editing:

:set number RETURN

Last Line mode The colon (:) in the preceding command puts vim into another mode, Last Line mode.
While in this mode, vim keeps the cursor on the bottom line of the screen. When you
finish entering the command by pressing RETURN, vim restores the cursor to its place in
the text. Give the command :set nonumber RETURN to turn off line numbers.

Figure 5-17 Starting vim without a filename

 From the Library of WoweBook.Com

ptg

Tutorial: Using vim to Create and Edit a File 189

vim is case
sensitive

When you give vim a command, remember that the editor is case sensitive. In
other words, vim interprets the same letter as two different commands, depending
on whether you enter an uppercase or lowercase character. Beware of the CAPS LOCK

(SHIFTLOCK) key. If you set this key to enter uppercase text while you are in Input
mode and then exit to Command mode, vim interprets your commands as upper-
case letters. It can be confusing when this happens because vim does not appear to
be executing the commands you are entering.

Entering Text

i/a (Input mode) When you start vim, you must put it in Input mode before you can enter text. To put vim
in Input mode, press the i (insert before cursor) key or the a (append after cursor) key.

If you are not sure whether vim is in Input mode, press the ESCAPE key; vim returns to
Command mode if it was in Input mode or beeps, flashes, or does nothing if it is
already in Command mode. You can put vim back in Input mode by pressing the i
or a key again.

While vim is in Input mode, you can enter text by typing on the keyboard. If the text
does not appear on the screen as you type, vim is not in Input mode.

To continue with this tutorial, enter the sample paragraph shown in Figure 5-19
(next page), pressing the RETURN key at the end of each line. If you do not press RETURN

before the cursor reaches the right side of the screen or window, vim wraps the text
so that it appears to start a new line. Physical lines will not correspond to program-
matic (logical) lines in this situation, so editing will be more difficult. While you are
using vim, you can always correct any typing mistakes you make. If you notice a
mistake on the line you are entering, you can correct it before you continue
(page 190). You can correct other mistakes later. When you finish entering the para-
graph, press ESCAPE to return vim to Command mode.

Figure 5-18 Modes in vim

Insert,
Append,
Open,
Replace,
Change

RETURN

ESCAPE

Colon (:)

ttt
eee

LLLaaasssttt
LLLiiinnneee

mmmooodddeee

Command
mode

IIInnnpppuuu
mmmoooddd

 From the Library of WoweBook.Com

ptg

190 Chapter 5 The Linux Utilities

Getting Help

You must have the vim-runtime package installed to use vim’s help system; see the
tip on page 186.

To get help while you are using vim, give the command :help [feature] followed by
RETURN (you must be in Command mode when you give this command). The colon
moves the cursor to the last line of the screen. If you type :help, vim displays an
introduction to vim Help (Figure 5-20). Each dark band near the bottom of the
screen names the file that is displayed above it. (Each area of the screen that dis-
plays a file, such as the two areas shown in Figure 5-20, is a vim “window.”) The
help.txt file occupies most of the screen (the upper window) in Figure 5-20. The file
that is being edited (practice) occupies a few lines in the lower portion of the screen
(the lower window).

Read through the introduction to Help by scrolling the text as you read. Press j or
the DOWN ARROW key to move the cursor down one line at a time; press CONTROL-D or
CONTROL-U to scroll the cursor down or up half a window at a time. Give the command
:q to close the Help window.

You can display information about the insert commands by giving the command
:help insert while vim is in Command mode (Figure 5-21).

Correcting Text as You Insert It

The keys that back up and correct a shell command line serve the same functions
when vim is in Input mode. These keys include the erase, line kill, and word kill keys
(usually CONTROL-H, CONTROL-U, and CONTROL-W, respectively). Although vim may not
remove deleted text from the screen as you back up over it using one of these keys,
the editor does remove it when you type over the text or press RETURN.

Figure 5-19 Entering text with vim

 From the Library of WoweBook.Com

ptg

Tutorial: Using vim to Create and Edit a File 191

Moving the Cursor

You need to be able to move the cursor on the screen so that you can delete,
insert, and correct text. While vim is in Command mode, you can use the RETURN

key, the SPACE bar, and the ARROW keys to move the cursor. If you prefer to keep your
hand closer to the center of the keyboard, if your terminal does not have ARROW

keys, or if the emulator you are using does not support them, you can use the h,
j, k, and l (lowercase “l”) keys to move the cursor left, down, up, and right,
respectively.

Figure 5-20 The main vim Help screen

Figure 5-21 Help with insert commands

 From the Library of WoweBook.Com

ptg

192 Chapter 5 The Linux Utilities

Deleting Text

x (Delete character)
dw (Delete word)

dd (Delete line)

You can delete a single character by moving the cursor until it is over the character
you want to delete and then giving the command x. You can delete a word by posi-
tioning the cursor on the first letter of the word and then giving the command dw
(Delete word). You can delete a line of text by moving the cursor until it is anywhere
on the line and then giving the command dd.

Undoing Mistakes

u (Undo) If you delete a character, line, or word by mistake or give any command you want
to reverse, give the command u (Undo) immediately after the command you want to
undo. The vim editor will restore the text to the way it was before you gave the last
command. If you give the u command again, vim will undo the command you gave
before the one it just undid. You can use this technique to back up over many of
your actions. With the compatible parameter (page 193) set, however, vim can undo
only the most recent change.

:redo (Redo) If you undo a command you did not mean to undo, give a Redo command: CONTROL-R

or :redo (followed by a RETURN). The vim editor will redo the undone command. As
with the Undo command, you can give the Redo command many times in a row.

Entering Additional Text

i (Insert)
a (Append)

When you want to insert new text within existing text, move the cursor so it is on
the character that follows the new text you plan to enter. Then give the i (Insert)
command to put vim in Input mode, enter the new text, and press ESCAPE to return vim
to Command mode. Alternatively, you can position the cursor on the character that
precedes the new text and use the a (Append) command.

o/O (Open) To enter one or more lines, position the cursor on the line above where you want
the new text to go. Give the command o (Open). The vim editor opens a blank line
below the line the cursor was on, puts the cursor on the new, empty line, and goes
into Input mode. Enter the new text, ending each line with a RETURN. When you are
finished entering text, press ESCAPE to return vim to Command mode. The O com-
mand works in the same way o works, except it opens a blank line above the line
the cursor is on.

Correcting Text

To correct text, use dd, dw, or x to remove the incorrect text. Then use i, a, o, or O
to insert the correct text.

For example, to change the word pressing to hitting in Figure 5-19 on page 190,
you might use the ARROW keys to move the cursor until it is on top of the p in press-
ing. Then give the command dw to delete the word pressing. Put vim in Input mode
by giving an i command, enter the word hitting followed by a SPACE, and press ESCAPE.

The word is changed and vim is in Command mode, waiting for another command.
A shorthand for the two commands dw followed by the i command is cw (Change
word). The command cw puts vim into Input mode.

 From the Library of WoweBook.Com

ptg

Chapter Summary 193

Ending the Editing Session

While you are editing, vim keeps the edited text in an area named the Work buffer.
When you finish editing, you must write out the contents of the Work buffer to a
disk file so that the edited text is saved and available when you next want it.

Make sure vim is in Command mode, and use the ZZ command (you must use
uppercase Zs) to write your newly entered text to the disk and end the editing ses-
sion. After you give the ZZ command, vim returns control to the shell. You can exit
with :q! if you do not want to save your work.

The compatible Parameter

The compatible parameter makes vim more compatible with vi. By default this
parameter is not set. From the command line use the –C option to set the compati-
ble parameter and use the –N option to unset it. To get started with vim you can
ignore this parameter.

Setting the compatible parameter changes many aspects of how vim works. For
example, when the compatible parameter is set, the Undo command (page 192) can
undo only your most recent change; in contrast, with the compatible parameter
unset, you can call Undo repeatedly to undo many changes. To obtain more details
on the compatible parameter, give the command :help compatible RETURN. To display
a complete list of vim’s differences from the original vi, use :help vi-diff RETURN. See
page 190 for a discussion of the help command.

Chapter Summary

The utilities introduced in this chapter are a small but powerful subset of the many
utilities available on an Ubuntu Linux system. Because you will use them frequently
and because they are integral to the following chapters, it is important that you
become comfortable using them.

Page breaks for the printer

tip CONTROL-L tells the printer to skip to the top of the next page. You can enter this character anywhere
in a document by pressing CONTROL-L while you are in Input mode. If ^L does not appear, press
CONTROL-V before CONTROL-L.

Do not confuse ZZ with CONTROL-Z

caution When you exit from vim with ZZ, make sure that you type ZZ and not CONTROL-Z (typically the sus-
pend key). When you press CONTROL-Z, vim disappears from your screen, almost as though you
had exited from it. In fact, vim will continue running in the background with your work unsaved.
Refer to “Job Control” on page 307. If you try to start editing the same file with a new vim com-
mand, vim displays a message about a swap file.

 From the Library of WoweBook.Com

ptg

194 Chapter 5 The Linux Utilities

The utilities listed in Table 5-2 manipulate, display, compare, and print files.

To reduce the amount of disk space a file occupies, you can compress it with the bzip2
utility. Compression works especially well on files that contain patterns, as do most
text files, but reduces the size of almost all files. The inverse of bzip2—bunzip2—
restores a file to its original, decompressed form. Table 5-3 lists utilities that compress
and decompress files. The bzip2 utility is the most efficient of these.

An archive is a file, frequently compressed, that contains a group of files. The tar
utility (Table 5-4) packs and unpacks archives. The filename extensions .tar.bz2,

Table 5-2 File utilities

Utility Function

cp Copies one or more files (page 163)

diff Displays the differences between two files (page 168)

file Displays information about the contents of a file (page 170)

grep Searches file(s) for a string (page 166)

head Displays the lines at the beginning of a file (page 166)

lpq Displays a list of jobs in the print queue (page 165)

lpr Places file(s) in the print queue (page 165)

lprm Removes a job from the print queue (page 165)

mv Renames a file or moves file(s) to another directory (page 164)

sort Puts a file in order by lines (page 168)

tail Displays the lines at the end of a file (page 167)

uniq Displays the contents of a file, skipping adjacent duplicate lines (page 168)

Table 5-3 (De)compression utilities

Utility Function

bunzip2 Returns a file compressed with bzip2 to its original size and format
(page 175)

bzcat Displays a file compressed with bzip2 (page 175)

bzip2 Compresses a file (page 174)

compress Compresses a file (not as well as bzip2 or gzip; page 176)

gunzip Returns a file compressed with gzip or compress to its original size and for-
mat (page 175)

gzip Compresses a file (not as well as bzip2; page 175)

zcat Displays a file compressed with gzip (page 175)

 From the Library of WoweBook.Com

ptg

Chapter Summary 195

.tar.gz, and .tgz identify compressed tar archive files and are often seen on software
packages obtained over the Internet.

The utilities listed in Table 5-5 determine the location of a utility on the local sys-
tem. For example, they can display the pathname of a utility or a list of C++ compil-
ers available on the local system.

Table 5-6 lists utilities that display information about other users. You can easily
learn a user’s full name, the user’s login status, the login shell of the user, and other
items of information maintained by the system.

The utilities shown in Table 5-7 can help you stay in touch with other users on the
local network.

Table 5-4 Archive utility

Utility Function

tar Creates or extracts files from an archive file (page 176)

Table 5-5 Location utilities

Utility Function

mlocate Searches for files on the local system (page 180)

whereis Displays the full pathnames of a utility, source code, or man page
(page 178)

which Displays the full pathname of a command you can run (page 178)

Table 5-6 User and system information utilities

Utility Function

finger Displays detailed information about users, including their full names
(page 181)

hostname Displays the name of the local system (page 163)

w Displays detailed information about users who are logged in on the local
system (page 183)

who Displays information about users who are logged in on the local system
(page 180)

Table 5-7 User communication utilities

Utility Function

mesg Permits or denies messages sent by write (page 185)

write Sends a message to another user who is logged in (page 184)

 From the Library of WoweBook.Com

ptg

196 Chapter 5 The Linux Utilities

Table 5-8 lists miscellaneous utilities.

Exercises

1. Which commands can you use to determine who is logged in on a specific
terminal?

2. How can you keep other users from using write to communicate with you?
Why would you want to?

3. What happens when you give the following commands if the file named
done already exists?

$ cp to_do done
$ mv to_do done

4. How can you find out which utilities are available on your system for edit-
ing files? Which utilities are available for editing on your system?

5. How can you find the phone number for Ace Electronics in a file named
phone that contains a list of names and phone numbers? Which command
can you use to display the entire file in alphabetical order? How can you
display the file without any adjacent duplicate lines? How can you display
the file without any duplicate lines?

6. What happens when you use diff to compare two binary files that are not
identical? (You can use gzip to create the binary files.) Explain why the diff
output for binary files is different from the diff output for ASCII files.

7. Create a .plan file in your home directory. Does finger display the contents
of your .plan file?

8. What is the result of giving the which utility the name of a command that
resides in a directory that is not in your search path?

9. Are any of the utilities discussed in this chapter located in more than one
directory on the local system? If so, which ones?

10. Experiment by calling the file utility with the names of files in /usr/bin.
How many different types of files are there?

Table 5-8 Miscellaneous utilities

Utility Function

date Displays the current date and time (page 172)

echo Copies its arguments (page 1135) to the screen (page 171)

vim Edits text (page 186)

 From the Library of WoweBook.Com

ptg

Advanced Exercises 197

11. Which command can you use to look at the first few lines of a file named
status.report? Which command can you use to look at the end of the file?

Advanced Exercises

12. Re-create the colors.1 and colors.2 files used in Figure 5-8 on page 169.
Test your files by running diff –u on them. Do you get the same results as
in the figure?

13. Try giving these two commands:

$ echo cat
$ cat echo

Explain the differences between the output of each command.

14. Repeat exercise 5 using the file phone.gz, a compressed version of the list
of names and phone numbers. Consider more than one approach to
answer each question, and explain how you made your choices.

15. Find existing files or create files that

a. gzip compresses by more than 80 percent.

b. gzip compresses by less than 10 percent.

c. Get larger when compressed with gzip.

d. Use ls –l to determine the sizes of the files in question. Can you charac-
terize the files in a, b, and c?

16. Older email programs were not able to handle binary files. Suppose that
you are emailing a file that has been compressed with gzip, which produces
a binary file, and the recipient is using an old email program. Refer to the
man page on uuencode, which converts a binary file to ASCII. Learn about
the utility and how to use it.

a. Convert a compressed file to ASCII using uuencode. Is the encoded file
larger or smaller than the compressed file? Explain. (If uuencode is not
on the local system, you can install it using aptitude [page 519]; it is part
of the sharutils package.)

b. Would it ever make sense to use uuencode on a file before compressing
it? Explain.

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

111999999

6Chapter6A filesystem is a set of data structures (page 1144) that usually
resides on part of a disk and that holds directories of files. Filesys-
tems store user and system data that are the basis of users’ work
on the system and the system’s existence. This chapter discusses
the organization and terminology of the Linux filesystem, defines
ordinary and directory files, and explains the rules for naming
them. It also shows how to create and delete directories, move
through the filesystem, and use absolute and relative pathnames
to access files in various directories. It includes a discussion of
important files and directories as well as file access permissions
and Access Control Lists (ACLs), which allow you to share
selected files with other users. It concludes with a discussion of
hard and symbolic links, which can make a single file appear in
more than one directory.

In addition to reading this chapter, you may want to refer to the
df info page and to the fsck, mkfs, and tune2fs man pages for
more information on filesystems.

In This Chapter

The Hierarchical Filesystem 200

Directory Files and Ordinary
Files . 200

The Working Directory. 204

Your Home Directory 204

Pathnames 205

Relative Pathnames 206

Working with Directories 207

Access Permissions 215

ACLs: Access Control Lists 221

Hard Links 228

Symbolic Links 230

6

The Linux Filesystem

 From the Library of WoweBook.Com

ptg

200 Chapter 6 The Linux Filesystem

The Hierarchical Filesystem

Family tree A hierarchical structure (page 1151) frequently takes the shape of a pyramid. One
example of this type of structure is found by tracing a family’s lineage: A couple has
a child, who may in turn have several children, each of whom may have more chil-
dren. This hierarchical structure is called a family tree (Figure 6-1).

Directory tree Like the family tree it resembles, the Linux filesystem is called a tree. It consists of a
set of connected files. This structure allows you to organize files so you can easily
find any particular one. On a standard Linux system, each user starts with one
directory, to which the user can add subdirectories to any desired level. By creating
multiple levels of subdirectories, a user can expand the structure as needed.

Subdirectories Typically each subdirectory is dedicated to a single subject, such as a person, project,
or event. The subject dictates whether a subdirectory should be subdivided further.
For example, Figure 6-2 shows a secretary’s subdirectory named correspond. This
directory contains three subdirectories: business, memos, and personal. The business
directory contains files that store each letter the secretary types. If you expect many
letters to go to one client, as is the case with milk_co, you can dedicate a subdirec-
tory to that client.

One major strength of the Linux filesystem is its ability to adapt to users’ needs.
You can take advantage of this strength by strategically organizing your files so they
are most convenient and useful for you.

Directory Files and Ordinary Files

Like a family tree, the tree representing the filesystem is usually pictured upside
down, with its root at the top. Figures 6-2 and 6-3 show that the tree “grows”

Figure 6-1 A family tree

Grandparent

UncleMomAunt

SelfBrotherSister

Daughter 2Daughter 1

Grandchild 2Grandchild 1

 From the Library of WoweBook.Com

ptg

Directory Files and Ordinary Files 201

downward from the root, with paths connecting the root to each of the other files. At
the end of each path is either an ordinary file or a directory file. Special files,
which can also appear at the ends of paths, are described on page 501. Ordinary
files, or simply files, appear at the ends of paths that cannot support other paths.
Directory files, also referred to as directories or folders, are the points that other
paths can branch off from. (Figures 6-2 and 6-3 show some empty directories.)
When you refer to the tree, up is toward the root and down is away from the root.
Directories directly connected by a path are called parents (closer to the root) and
children (farther from the root). A pathname is a series of names that trace a path
along branches from one file to another. See page 205 for more information about
pathnames.

Filenames

Every file has a filename. The maximum length of a filename varies with the type of
filesystem; Linux supports several types of filesystems. Although most of today’s
filesystems allow files with names up to 255 characters long, some filesystems

Figure 6-2 A secretary’s directories

correspond

personal

milk_co

businessmemos

cheese_co

letter_2letter_1

Figure 6-3 Directories and ordinary files

DirectoryDirectory

Ordinary FileOrdinary File

Ordinary File Ordinary File

Ordinary File

Directory

Directory

Directory

Directory

 From the Library of WoweBook.Com

ptg

202 Chapter 6 The Linux Filesystem

restrict filenames to fewer characters. While you can use almost any character in a
filename, you will avoid confusion if you choose characters from the following list:

• Uppercase letters (A–Z)

• Lowercase letters (a–z)

• Numbers (0–9)

• Underscore (_)

• Period (.)

• Comma (,)

Like the children of one parent, no two files in the same directory can have the same
name. (Parents give their children different names because it makes good sense, but
Linux requires it.) Files in different directories, like the children of different parents,
can have the same name.

The filenames you choose should mean something. Too often a directory is filled
with important files with such unhelpful names as hold1, wombat, and junk, not to
mention foo and foobar. Such names are poor choices because they do not help you
recall what you stored in a file. The following filenames conform to the suggested
syntax and convey information about the contents of the file:

• correspond

• january

• davis

• reports

• 2001

• acct_payable

Filename length When you share your files with users on other systems, you may need to make long
filenames differ within the first few characters. Systems running DOS or older ver-
sions of Windows have an 8-character filename body length limit and a 3-character
filename extension length limit. Some UNIX systems have a 14-character limit and
older Macintosh systems have a 31-character limit. If you keep the filenames short,
they are easy to type; later you can add extensions to them without exceeding the
shorter limits imposed by some filesystems. The disadvantage of short filenames is
that they are typically less descriptive than long filenames. See stat on page 459 for a
way to determine the maximum length of a filename on the local system.

Long filenames enable you to assign descriptive names to files. To help you select
among files without typing entire filenames, shells support filename completion. For
more information about this feature, see the “Filename completion” tip on page 163.

Case sensitivity You can use uppercase and/or lowercase letters within filenames. Linux is case sen-
sitive, so files named JANUARY, January, and january represent three distinct files.

 From the Library of WoweBook.Com

ptg

Directory Files and Ordinary Files 203

Filename Extensions

A filename extension is the part of the filename following an embedded period. In the
filenames listed in Table 6-1, filename extensions help describe the contents of the file.
Some programs, such as the C programming language compiler, default to specific
filename extensions; in most cases, however, filename extensions are optional. Use
extensions freely to make filenames easy to understand. If you like, you can use sev-
eral periods within the same filename—for example, notes.4.10.01 or files.tar.gz.

Do not use SPACEs within filenames

caution Although you can use SPACEs within filenames, it is a poor idea. Because a SPACE is a special char-
acter, you must quote it on a command line. Quoting a character on a command line can be difficult
for a novice user and cumbersome for an experienced user. Use periods or underscores instead of
SPACEs: joe.05.04.26, new_stuff.

If you are working with a filename that includes a SPACE, such as a file from another operating sys-
tem, you must quote the SPACE on the command line by preceding it with a backslash or by placing
quotation marks on either side of the filename. The two following commands send the file named
my file to the printer.

$ lpr my\ file
$ lpr "my file"

Table 6-1 Filename extensions

Filename with extension Meaning of extension

compute.c A C programming language source file

compute.o The object code file for compute.c

compute The executable file for compute.c

memo.0410.txt A text file

memo.pdf A PDF file; view with xpdf or kpdf under a GUI

memo.ps A PostScript file; view with gs or kpdf under a GUI

memo.Z A file compressed with compress (page 176); use
uncompress or gunzip (page 175) to decompress

memo.tgz or memo.tar.gz A tar (page 176) archive of files compressed with gzip (page 175)

memo.gz A file compressed with gzip (page 175); view with zcat or
decompress with gunzip (both on page 175)

memo.bz2 A file compressed with bzip2 (page 174); view with bzcat or
decompress with bunzip2 (both on page 175)

memo.html A file meant to be viewed using a Web browser, such as Firefox

photo.gif, photo.jpg,
photo.jpeg, photo.bmp,
photo.tif, or photo.tiff

A file containing graphical information, such as a picture

 From the Library of WoweBook.Com

ptg

204 Chapter 6 The Linux Filesystem

Hidden Filenames

A filename that begins with a period is called a hidden filename (or a hidden file or
sometimes an invisible file) because ls does not normally display it. The command ls
–a displays all filenames, even hidden ones. Names of startup files (following) usu-
ally begin with a period so that they are hidden and do not clutter a directory listing.
The .plan file (page 182) is also hidden. Two special hidden entries—a single and
double period (. and ..)—appear in every directory (page 210).

The Working Directory

pwd While you are logged in on a character-based interface to a Linux system, you are
always associated with a directory. The directory you are associated with is called
the working directory or current directory. Sometimes this association is referred to
in a physical sense: “You are in (or working in) the zach directory.” The pwd (print
working directory) builtin displays the pathname of the working directory.

Your Home Directory

When you first log in on a Linux system or start a terminal emulator window, the
working directory is your home directory. To display the pathname of your home
directory, use pwd just after you log in (Figure 6-4).

When used without any arguments, the ls utility displays a list of the files in the
working directory. Because your home directory has been the only working directory
you have used so far, ls has always displayed a list of files in your home directory.
(All the files you have created up to this point were created in your home directory.)

Startup Files

Startup files, which appear in your home directory, give the shell and other pro-
grams information about you and your preferences. Frequently one of these files
tells the shell what kind of terminal you are using (page 1106) and executes the stty
(set terminal) utility to establish the erase (page 151) and line kill (page 151) keys.

Either you or the system administrator can put a shell startup file containing shell
commands in your home directory. The shell executes the commands in this file
each time you log in. Because the startup files have hidden filenames, you must
use the ls –a command to see whether one is in your home directory. A GUI has
many startup files. Usually you do not need to work with these files directly but
can control startup sequences using icons on the desktop. See page 293 for more
information about startup files.

login: max
Password:
Last login: Wed Oct 20 11:14:21 from bravo
$ pwd
/home/max

Figure 6-4 Logging in and displaying the pathname of your home directory

 From the Library of WoweBook.Com

ptg

Pathnames 205

Pathnames

Every file has a pathname, which is a trail from a directory through part of the
directory hierarchy to an ordinary file or a directory. Within a pathname, a slash (/)
following (to the right of) a filename indicates that the file is a directory file. The file
following (to the right of) the slash can be an ordinary file or a directory file. The
simplest pathname is a simple filename, which points to a file in the working direc-
tory. This section discusses absolute and relative pathnames and explains how to
use each.

Absolute Pathnames

/ (root) The root directory of the filesystem hierarchy does not have a name; it is referred to
as the root directory and is represented by a / (slash) standing alone or at the left
end of a pathname.

An absolute pathname starts with a slash (/), which represents the root directory.
The slash is followed by the name of a file located in the root directory. An
absolute pathname can continue, tracing a path through all intermediate direc-
tories, to the file identified by the pathname. String all the filenames in the path
together, following each directory with a slash (/). This string of filenames is
called an absolute pathname because it locates a file absolutely by tracing a path
from the root directory to the file. Typically the absolute pathname of a direc-
tory does not include the trailing slash, although that format may be used to
emphasize that the pathname specifies a directory (e.g., /home/zach/). The part
of a pathname following the final slash is called a simple filename, filename, or
basename. Figure 6-5 shows the absolute pathnames of directories and ordinary
files in part of a filesystem hierarchy.

Figure 6-5 Absolute pathnames

/

etctmphome

hlszachmax

notesbin

report log

/home /etc

/home/hls

/home/hls/notes

/home/hls/bin/log

/home/zach

 From the Library of WoweBook.Com

ptg

206 Chapter 6 The Linux Filesystem

Using an absolute pathname, you can list or otherwise work with any file on the
local system, assuming you have permission to do so, regardless of the working
directory at the time you give the command. For example, Sam can give the follow-
ing command while working in his home directory to list the files in the /etc/apt
directory:

$ pwd
/home/sam
$ ls /etc/apt
apt.conf.d secring.gpg sources.list.d trusted.gpg trusted.gpg.d
preferences.d sources.list trustdb.gpg trusted.gpg~

~ (Tilde) in Pathnames

In another form of absolute pathname, the shell expands the characters ~/ (a tilde
followed by a slash) at the start of a pathname into the pathname of your home
directory. Using this shortcut, you can display your .bashrc startup file (page 294)
with the following command, no matter which directory is the working directory:

$ less ~/.bashrc

A tilde quickly references paths that start with your or someone else’s home direc-
tory. The shell expands a tilde followed by a username at the beginning of a path-
name into the pathname of that user’s home directory. For example, assuming he
has permission to do so, Max can examine Sam’s .bashrc file with the following
command:

$ less ~sam/.bashrc

Refer to “Tilde Expansion” on page 359 for more information.

Relative Pathnames

A relative pathname traces a path from the working directory to a file. The path-
name is relative to the working directory. Any pathname that does not begin with the
root directory (represented by /) or a tilde (~) is a relative pathname. Like absolute
pathnames, relative pathnames can trace a path through many directories. The sim-
plest relative pathname is a simple filename, which identifies a file in the working
directory. The examples in the next sections use absolute and relative pathnames.

Significance of the Working Directory

To access any file in the working directory, you need only a simple filename. To
access a file in another directory, you must use a pathname. Typing a long pathname
is tedious and increases the chance of making a mistake. This possibility is less likely
under a GUI, where you click filenames or icons. You can choose a working direc-
tory for any particular task to reduce the need for long pathnames. Your choice of a
working directory does not allow you to do anything you could not do
otherwise—it just makes some operations easier.

 From the Library of WoweBook.Com

ptg

Working with Directories 207

Refer to Figure 6-6 as you read this paragraph. Files that are children of the work-
ing directory can be referenced by simple filenames. Grandchildren of the working
directory can be referenced by short relative pathnames: two filenames separated by
a slash. When you manipulate files in a large directory structure, using short relative
pathnames can save you time and aggravation. If you choose a working directory
that contains the files used most often for a particular task, you need use fewer
long, cumbersome pathnames.

Working with Directories

This section discusses how to create directories (mkdir), switch between directories
(cd), remove directories (rmdir), use pathnames to make your work easier, and
move and copy files and directories between directories. It concludes with a sec-
tion that lists and describes briefly important standard directories and files in the
Ubuntu filesystem.

When using a relative pathname, know which directory is the working directory

caution The location of the file that you are accessing with a relative pathname is dependent on (is relative
to) the working directory. Always make sure you know which directory is the working directory
before you use a relative pathname. Use pwd to verify the directory. If you are creating a file using
vim and you are not where you think you are in the file hierarchy, the new file will end up in an
unexpected location.

It does not matter which directory is the working directory when you use an absolute pathname.
Thus, the following command always edits a file named goals in your home directory:

$ vim.tiny ~/goals

Figure 6-6 Relative pathnames

/

etctmphome

hlszachmax

notesbin

report log

..

working directory = .

notes

bin/log

../zach

 From the Library of WoweBook.Com

ptg

208 Chapter 6 The Linux Filesystem

mkdir: Creates a Directory

The mkdir utility creates a directory. The argument (page 1135) to mkdir becomes the
pathname of the new directory. The following examples develop the directory struc-
ture shown in Figure 6-7. In the figure, the directories that are added appear in a
lighter shade than the others and are connected by dashes.

In Figure 6-8, pwd shows that Max is working in his home directory (/home/max)
and ls shows the names of the files in his home directory: demo, names, and temp.
Using mkdir, Max creates a directory named literature as a child of his home direc-
tory. He uses a relative pathname (a simple filename) because he wants the literature
directory to be a child of the working directory. Max could have used an absolute
pathname to create the same directory: mkdir /home/max/literature.

The second ls in Figure 6-8 verifies the presence of the new directory. The –F option
to ls displays a slash after the name of each directory and an asterisk after each exe-
cutable file (shell script, utility, or application). When you call it with an argument

Figure 6-7 The file structure developed in the examples

/

home

max

literature

promo

demonames temp

$ pwd
/home/max
$ ls
demo names temp
$ mkdir literature
$ ls
demo literature names temp
$ ls -F
demo literature/ names temp
$ ls literature
$

Figure 6-8 The mkdir utility

 From the Library of WoweBook.Com

ptg

Working with Directories 209

that is the name of a directory, ls lists the contents of that directory. The final ls does
not display anything because there are no files in the literature directory.

The following commands show two ways to create the promo directory as a child of
the newly created literature directory. The first way checks that /home/max is the
working directory and uses a relative pathname:

$ pwd
/home/max
$ mkdir literature/promo

The second way uses an absolute pathname:

$ mkdir /home/max/literature/promo

Use the –p (parents) option to mkdir to create both the literature and promo directo-
ries with one command:

$ pwd
/home/max
$ ls
demo names temp
$ mkdir -p literature/promo

or

$ mkdir -p /home/max/literature/promo

cd: Changes to Another Working Directory

The cd (change directory) utility makes another directory the working directory but
does not change the contents of the working directory. Figure 6-9 shows two ways
to make the /home/max/literature directory the working directory, as verified by
pwd. First Max uses cd with an absolute pathname to make literature his working
directory—it does not matter which is the working directory when you give a com-
mand with an absolute pathname.

A pwd command confirms the change made by Max. When used without an argu-
ment, cd makes your home directory the working directory, as it was when you
logged in. The second cd command in Figure 6-9 does not have an argument so it

$ cd /home/max/literature
$ pwd
/home/max/literature
$ cd
$ pwd
/home/max
$ cd literature
$ pwd
/home/max/literature

Figure 6-9 cd changes the working directory

 From the Library of WoweBook.Com

ptg

210 Chapter 6 The Linux Filesystem

makes Max’s home directory the working directory. Finally, knowing that he is
working in his home directory, Max uses a simple filename to make the literature
directory his working directory (cd literature) and confirms the change using pwd.

The . and . . Directory Entries

The mkdir utility automatically puts two entries in each directory it creates: a single
period (.) and a double period (..). The . is synonymous with the pathname of the
working directory and can be used in its place; the .. is synonymous with the path-
name of the parent of the working directory. These entries are hidden because their
filenames begin with a period.

With the literature directory as the working directory, the following example uses ..
three times: first to list the contents of the parent directory (/home/max), second to
copy the memoA file to the parent directory, and third to list the contents of the
parent directory again.

$ pwd
/home/max/literature
$ ls ..
demo literature names temp
$ cp memoA ..
$ ls ..
demo literature memoA names temp

After using cd to make promo (a subdirectory of literature) his working directory,
Max can use a relative pathname to call vim to edit a file in his home directory.

$ cd promo
$ vim.tiny ../../names

You can use an absolute or relative pathname or a simple filename virtually any-
where a utility or program requires a filename or pathname. This usage holds true
for ls, vim, mkdir, rm, and most other Linux utilities.

rmdir: Deletes a Directory

The rmdir (remove directory) utility deletes a directory. You cannot delete the work-
ing directory or a directory that contains files other than the . and .. entries. If you

The working directory versus your home directory
tip The working directory is not the same as your home directory. Your home directory remains the

same for the duration of your session and usually from session to session. Immediately after you
log in, you are always working in the same directory: your home directory.

Unlike your home directory, the working directory can change as often as you like. You have no
set working directory, which explains why some people refer to it as the current directory. When
you log in and until you change directories using cd, your home directory is the working directory.
If you were to change directories to Sam’s home directory, then Sam’s home directory would be
the working directory.

 From the Library of WoweBook.Com

ptg

Working with Directories 211

need to delete a directory that has files in it, first use rm to delete the files and then
delete the directory. You do not have to (nor can you) delete the . and .. entries;
rmdir removes them automatically. The following command deletes the promo
directory:

$ rmdir /home/max/literature/promo

The rm utility has a –r option (rm –r filename) that recursively deletes files, includ-
ing directories, within a directory and also deletes the directory itself.

Using Pathnames

touch Use a text editor to create a file named letter if you want to experiment with the
examples that follow. Alternatively you can use touch to create an empty file:

$ cd
$ pwd
/home/max
$ touch letter

With /home/max as the working directory, the following example uses cp with a
relative pathname to copy the file letter to the /home/max/literature/promo direc-
tory. (You will need to create promo again if you deleted it earlier.) The copy of the
file has the simple filename letter.0610:

$ cp letter literature/promo/letter.0610

If Max does not change to another directory, he can use vim as shown to edit the
copy of the file he just made:

$ vim.tiny literature/promo/letter.0610

If Max does not want to use a long pathname to specify the file, he can use cd to
make promo the working directory before using vim:

$ cd literature/promo
$ pwd
/home/max/literature/promo
$ vim.tiny letter.0610

To make the parent of the working directory (named /home/max/literature) the
new working directory, Max can give the following command, which takes advan-
tage of the .. directory entry:

$ cd ..
$ pwd
/home/max/literature

Use rm –r carefully, if at all
caution Although rm –r is a handy command, you must use it carefully. Do not use it with an ambiguous

file reference such as *. It is frighteningly easy to wipe out your entire home directory with a single
short command.

 From the Library of WoweBook.Com

ptg

212 Chapter 6 The Linux Filesystem

mv, cp: Move or Copy Files

Chapter 5 discussed the use of mv to rename files. However, mv works even more
generally: You can use this utility to move files from one directory to another
(change the pathname of a file) as well as to change a simple filename. When used
to move one or more files to a new directory, the mv command has this syntax:

mv existing-file-list directory

If the working directory is /home/max, Max can use the following command to move
the files names and temp from the working directory to the literature directory:

$ mv names temp literature

This command changes the absolute pathnames of the names and temp files from
/home/max/names and /home/max/temp to /home/max/literature/names and
/home/max/literature/temp, respectively (Figure 6-10). Like most Linux com-
mands, mv accepts either absolute or relative pathnames.

As you work with Linux and create more files, you will need to create new directo-
ries using mkdir to keep the files organized. The mv utility is a useful tool for moving
files from one directory to another as you extend your directory hierarchy.

The cp utility works in the same way as mv does, except that it makes copies of the
existing-file-list in the specified directory.

mv: Moves a Directory

Just as it moves ordinary files from one directory to another, so mv can move direc-
tories. The syntax is similar except that you specify one or more directories, not
ordinary files, to move:

mv existing-directory-list new-directory

Figure 6-10 Using mv to move names and temp

home

sammaxzach

literature

names temp

names temp

/

 From the Library of WoweBook.Com

ptg

Working with Directories 213

If new-directory does not exist, the existing-directory-list must contain just one
directory name, which mv changes to new-directory (mv renames the directory).
Although you can rename directories using mv, you cannot copy their contents with
cp unless you use the –r (recursive) option. Refer to the tar and cpio man pages for
other ways to copy and move directories.

Important Standard Directories and Files

Originally files on a Linux system were not located in standard places within the
directory hierarchy. The scattered files made it difficult to document and maintain a
Linux system and just about impossible for someone to release a software package
that would compile and run on all Linux systems. The first standard for the Linux
filesystem, the FSSTND (Linux Filesystem Standard), was released early in 1994. In
early 1995 work was started on a broader standard covering many UNIX-like sys-
tems: FHS (Linux Filesystem Hierarchy Standard; proton.pathname.com/fhs). More
recently FHS has been incorporated in LSB (Linux Standard Base; www.linuxfoun-
dation.org/collaborate/workgroups/lsb), a workgroup of FSG (Free Standards
Group). Finally, FSG combined with Open Source Development Labs (OSDL) to
form the Linux Foundation (www.linuxfoundation.org). Figure 6-11 shows the
locations of some important directories and files as specified by FHS. The signifi-
cance of many of these directories will become clear as you continue reading.

The following list describes the directories shown in Figure 6-11, some of the
directories specified by FHS, and some other directories. Ubuntu Linux, however,
does not use all the directories specified by FHS. Be aware that you cannot
always determine the function of a directory by its name. For example, although
/opt stores add-on software, /etc/opt stores configuration files for the software in
/opt. See also “Important Files and Directories” on page 488.

/ Root The root directory, present in all Linux filesystem structures, is the ancestor
of all files in the filesystem.

/bin Essential command binaries Holds the files needed to bring the system up and run it
when it first comes up in recovery mode (page 445).

/boot Static files of the boot loader Contains all the files needed to boot the system.

/dev Device files Contains all files that represent peripheral devices, such as disk drives,
terminals, and printers. Previously this directory was filled with all possible devices.
The udev utility (page 502) provides a dynamic device directory that enables /dev to
contain only devices that are present on the system.

Figure 6-11 A typical FHS-based Linux filesystem structure

mail spool bin sbin max zach hls

sbin var dev usr etc tmp home root

/

bin

 From the Library of WoweBook.Com

www.linuxfoundation.org/collaborate/workgroups/lsb
www.linuxfoundation.org/collaborate/workgroups/lsb
www.linuxfoundation.org

ptg

214 Chapter 6 The Linux Filesystem

/etc Machine–local system configuration files Holds administrative, configuration, and
other system files. One of the most important is /etc/passwd, which contains a list
of all users who have permission to use the system.

/etc/opt Configuration files for add-on software packages kept in /opt

/etc/X11 Machine–local configuration files for the X Window System

/home User home directories Each user’s home directory is typically one of many sub-
directories of the /home directory. As an example, assuming that users’ directories
are under /home, the absolute pathname of Zach’s home directory is /home/zach.
On some systems the users’ directories may not be found under /home but instead
might be spread among other directories such as /inhouse and /clients.

/lib Shared libraries

/lib/modules Loadable kernel modules

/mnt Mount point for temporarily mounting filesystems

/opt Add-on (optional) software packages

/proc Kernel and process information virtual filesystem

/root Home directory for the root account

/sbin Essential system binaries Utilities used for system administration are stored in /sbin
and /usr/sbin. The /sbin directory includes utilities needed during the booting pro-
cess, and /usr/sbin holds utilities used after the system is up and running. In older
versions of Linux, many system administration utilities were scattered through sev-
eral directories that often included other system files (/etc, /usr/bin, /usr/adm,
/usr/include).

/sys Device pseudofilesystem See udev on page 502 for more information.

/tmp Temporary files

/usr Second major hierarchy Traditionally includes subdirectories that contain informa-
tion used by the system. Files in /usr subdirectories do not change often and may be
shared by several systems.

/usr/bin Most user commands Contains the standard Linux utility programs—that is, binaries
that are not needed in recovery mode (page 445).

/usr/games Games and educational programs

/usr/include Header files included by C programs

/usr/lib Libraries

/usr/local Local hierarchy Holds locally important files and directories that are added to the
system. Subdirectories can include bin, games, include, lib, sbin, share, and src.

/usr/sbin Nonvital system administration binaries See /sbin.

/usr/share Architecture-independent data Subdirectories can include dict, doc, games, info,
locale, man, misc, terminfo, and zoneinfo.

 From the Library of WoweBook.Com

ptg

Access Permissions 215

/usr/share/doc Documentation

/usr/share/info GNU info system’s primary directory

/usr/share/man Online manuals

/usr/src Source code

/var Variable data Files with contents that vary as the system runs are kept in sub-
directories under /var. The most common examples are temporary files, system log
files, spooled files, and user mailbox files. Subdirectories can include cache, lib, lock,
log, mail, opt, run, spool, tmp, and yp. Older versions of Linux scattered such files
through several subdirectories of /usr (/usr/adm, /usr/mail, /usr/spool, /usr/tmp).

/var/log Log files Contains lastlog (a record of the last login by each user), messages (sys-
tem messages from syslogd), and wtmp (a record of all logins/logouts), among
other log files.

/var/spool Spooled application data Contains anacron, at, cron, lpd, mail, mqueue, samba,
and other directories. The file /var/spool/mail is typically a link to /var/mail.

Access Permissions

Ubuntu Linux supports two methods of controlling who can access a file and how
they can access it: traditional Linux access permissions and Access Control Lists
(ACLs). This section describes traditional Linux access permissions. See page 221
for a discussion of ACLs, which provide finer-grained control of access permissions
than do traditional access permissions.

Three types of users can access a file: the owner of the file (owner), a member of a
group that the file is associated with (group; see page 492 for more information on
groups), and everyone else (other). A user can attempt to access an ordinary file in
three ways: by trying to read from, write to, or execute it.

ls –l: Displays Permissions

When you call ls with the –l option and the name of one or more ordinary files, ls
displays a line of information about the file. The following example displays infor-
mation for two files. The file letter.0610 contains the text of a letter, and

Figure 6-12 The columns displayed by the ls –l command

-rwxrwxr-x+..3.max.pubs..2048.2010-08-12.13:15.memo

Ty
pe

 o
f f

ile
Fi

le
 a

cc
es

s

Li
nk

s
O

w
ne

r

Si
ze

of
 m

od
ifi

ca
tio

n

D
at

e
an

d
tim

e

Fi
le

na
m

e

G
ro

up

AC
L

fla
g

pe
rm

is
si

on
s

 From the Library of WoweBook.Com

ptg

216 Chapter 6 The Linux Filesystem

check_spell contains a shell script, a program written in a high-level shell program-
ming language:

$ ls -l letter.0610 check_spell
-rwxr-xr-x 1 max pubs 852 2010-07-31 13:47 check_spell
-rw-r--r-- 1 max pubs 3355 2010-06-22 12:44 letter.0610

From left to right, the lines that an ls –l command displays contain the following
information (refer to Figure 6-12, preceding page):

• The type of file (first character)

• The file’s access permissions (the next nine characters)

• The ACL flag (present if the file has an ACL, page 221)

• The number of links to the file (page 226)

• The name of the owner of the file (usually the person who created the file)

• The name of the group the file is associated with

• The size of the file in characters (bytes)

• The date and time the file was created or last modified

• The name of the file

The type of file (first column) for letter.0610 is a hyphen (–) because it is an ordi-
nary file (directory files have a d in this column).

The next three characters specify the access permissions for the owner of the file: r
indicates read permission, w indicates write permission, and x indicates execute per-
mission. A – in a column indicates that the owner does not have the permission that
could have appeared in that position.

In a similar manner the next three characters represent permissions for the group,
and the final three characters represent permissions for other (everyone else). In the
preceding example, the owner of letter.0610 can read from and write to the file,
whereas the group and others can only read from the file and no one is allowed to
execute it. Although execute permission can be allowed for any file, it does not
make sense to assign execute permission to a file that contains a document, such as
a letter. The check_spell file is an executable shell script, so execute permission is
appropriate for it. (The owner, group, and others have execute permission.)

chmod: Changes Access Permissions

The Linux file access permission scheme lets you give other users access to the files
you want to share yet keep your private files confidential. You can allow other users
to read from and write to a file (handy if you are one of several people working on
a joint project). You can allow others only to read from a file (perhaps a project
specification you are proposing). Or you can allow others only to write to a file
(similar to an inbox or mailbox, where you want others to be able to send you mail
but do not want them to read your mail). Similarly you can protect entire directo-
ries from being scanned (covered shortly).

 From the Library of WoweBook.Com

ptg

Access Permissions 217

The owner of a file controls which users have permission to access the file and how
those users can access it. When you own a file, you can use the chmod (change
mode) utility to change access permissions for that file. You can specify symbolic
(relative) or numeric (absolute) arguments to chmod.

Symbolic Arguments to chmod
The following example, which uses symbolic arguments to chmod, adds (+) read and
write permissions (rw) for all (a) users:

$ ls -l letter.0610
-rw------- 1 max pubs 3355 2010-06-22 12:44 letter.0610
$ chmod a+rw letter.0610
$ ls -l letter.0610
-rw-rw-rw- 1 max pubs 3355 2010-06-22 12:44 letter.0610

Using symbolic arguments with chmod modifies existing permissions; the change a
given argument makes depends on (is relative to) the existing permissions. In the
next example, chmod removes (–) read (r) and execute (x) permissions for other (o)
users. The owner and group permissions are not affected.

$ ls -l check_spell
-rwxr-xr-x 1 max pubs 852 2010-07-31 13:47 check_spell
$ chmod o-rx check_spell
$ ls -l check_spell
-rwxr-x--- 1 max pubs 852 2010-07-31 13:47 check_spell

In addition to a (all) and o (other), you can use g (group) and u (user, although user
refers to the owner of the file who may or may not be the user of the file at any given
time) in the argument to chmod. For example, chmod a+x adds execute permission
for all users (other, group, and owner) and chmod go–rwx removes all permissions
for all but the owner of the file.

A user with root privileges can access any file on the system

security There is an exception to the access permissions described in this section. Anyone who can gain
root privileges has full access to all files, regardless of the file’s owner or access permissions.

You must have read permission to execute a shell script
tip Because a shell needs to read a shell script (a text file containing shell commands) before it can

execute the commands within that script, you must have read permission for the file containing
the script to execute it. You also need execute permission to execute a shell script directly from
the command line. In contrast, binary (program) files do not need to be read; they are executed
directly. You need only execute permission to run a binary program.

chmod: o for other, u for owner

tip When using chmod, many people assume that the o stands for owner; it does not. The o stands
for other, whereas u stands for owner (user). The acronym UGO (user-group-other) may help you
remember how permissions are named.

 From the Library of WoweBook.Com

ptg

218 Chapter 6 The Linux Filesystem

Numeric Arguments to chmod
You can also use numeric arguments to specify permissions with chmod. In place
of the letters and symbols specifying permissions used in the previous examples,
numeric arguments comprise three octal digits. (A fourth, leading digit controls
setuid and setgid permissions and is discussed next.) The first digit specifies per-
missions for the owner, the second for the group, and the third for other users. A
1 gives the specified user(s) execute permission, a 2 gives write permission, and a
4 gives read permission. Construct the digit representing the permissions for the
owner, group, or others by ORing (adding) the appropriate values as shown in the
following examples. Using numeric arguments sets file permissions absolutely; it
does not modify existing permissions as symbolic arguments do.

In the following example, chmod changes permissions so only the owner of the file
can read from and write to the file, regardless of how permissions were previously
set. The 6 in the first position gives the owner read (4) and write (2) permissions.
The 0s remove all permissions for the group and other users.

$ chmod 600 letter.0610
$ ls -l letter.0610
-rw------- 1 max pubs 3355 2010-06-22 12:44 letter.0610

Next, 7 (4 + 2 + 1) gives the owner read, write, and execute permissions. The 5 (4 + 1)
gives the group and other users read and execute permissions:

$ chmod 755 check_spell
$ ls -l check_spell
-rwxr-xr-x 1 max pubs 852 2010-07-31 13:47 check_spell

Refer to Table 6-2 for more examples of numeric permissions.

Refer to page 300 for more information on using chmod to make a file executable
and to the chmod man page for information on absolute arguments and chmod in
general. Refer to page 492 for more information on groups.

Setuid and Setgid Permissions

When you execute a file that has setuid (set user ID) permission, the process exe-
cuting the file takes on the privileges of the file’s owner. For example, if you run a

Table 6-2 Examples of numeric permission specifications

Mode Meaning

777 Owner, group, and others can read, write, and execute file

755 Owner can read, write, and execute file; group and others can read and execute file

711 Owner can read, write, and execute file; group and others can execute file

644 Owner can read and write file; group and others can read file

640 Owner can read and write file, group can read file, and others cannot access file

 From the Library of WoweBook.Com

ptg

Access Permissions 219

setuid program that removes all files in a directory, you can remove files in any of
the file owner’s directories, even if you do not normally have permission to do so.
In a similar manner, setgid (set group ID) permission gives the process executing
the file the privileges of the group the file is associated with.

The following example shows a user working with root privileges and using symbolic
arguments to chmod to give one program setuid privileges and another program setgid
privileges. The ls –l output (page 215) shows setuid permission by displaying an s in
the owner’s executable position and setgid permission by displaying an s in the
group’s executable position:

$ ls -l myprog*
-rwxr-xr-x 1 root pubs 19704 2010-07-31 14:30 myprog1
-rwxr-xr-x 1 root pubs 19704 2010-07-31 14:30 myprog2

$ sudo chmod u+s myprog1
$ sudo chmod g+s myprog2

$ ls -l myprog*
-rwsr-xr-x 1 root pubs 19704 2010-07-31 14:30 myprog1
-rwxr-sr-x 1 root pubs 19704 2010-07-31 14:30 myprog2

The next example uses numeric arguments to chmod to make the same changes.
When you use four digits to specify permissions, setting the first digit to 1 sets the
sticky bit (page 1174), setting it to 2 specifies setgid permissions, and setting it to 4
specifies setuid permissions:

$ ls -l myprog*
-rwxr-xr-x 1 root pubs 19704 2010-07-31 14:30 myprog1
-rwxr-xr-x 1 root pubs 19704 2010-07-31 14:30 myprog2

$ sudo chmod 4755 myprog1
$ sudo chmod 2755 myprog2

$ ls -l myprog*
-rwsr-xr-x 1 root pubs 19704 2010-07-31 14:30 myprog1
-rwxr-sr-x 1 root pubs 19704 2010-07-31 14:30 myprog2

Minimize use of setuid and setgid programs owned by root
security Executable files that are setuid and owned by root have root privileges when they run, even if they

are not run by root. This type of program is very powerful because it can do anything that root can
do (and that the program is designed to do). Similarly executable files that are setgid and belong
to the group root have extensive privileges.

Because of the power they hold and their potential for destruction, it is wise to avoid indiscrimi-
nately creating and using setuid programs owned by root and setgid programs belonging to the
group root. Because of their inherent dangers, many sites minimize the use of these programs on
their systems. One necessary setuid program is passwd. See page 421 for a tip on setuid files
owned by root and page 454 for a command that lists setuid files on the local system.

Do not write setuid shell scripts
security Never give shell scripts setuid permission. Several techniques for subverting them are well known.

 From the Library of WoweBook.Com

ptg

220 Chapter 6 The Linux Filesystem

Directory Access Permissions

Access permissions have slightly different meanings when they are used with direc-
tories. Although the three types of users can read from or write to a directory, the
directory cannot be executed. Execute permission is redefined for a directory: It
means that you can cd into the directory and/or examine files that you have permis-
sion to read from in the directory. It has nothing to do with executing a file.

When you have only execute permission for a directory, you can use ls to list a file
in the directory if you know its name. You cannot use ls without an argument to list
the entire contents of the directory. In the following exchange, Zach first verifies
that he is logged in as himself. He then checks the permissions on Max’s info direc-
tory. You can view the access permissions associated with a directory by running ls
with the –d (directory) and –l (long) options:

$ who am i
zach pts/7 Aug 21 10:02
$ ls -ld /home/max/info
drwx-----x 2 max pubs 512 2010-08-21 09:31 /home/max/info
$ ls -l /home/max/info
ls: /home/max/info: Permission denied

The d at the left end of the line that ls displays indicates that /home/max/info is a
directory. Max has read, write, and execute permissions; members of the pubs
group have no access permissions; and other users have execute permission only,
indicated by the x at the right end of the permissions. Because Zach does not have
read permission for the directory, the ls –l command returns an error.

When Zach specifies the names of the files he wants information about, he is not
reading new directory information but rather searching for specific information,
which he is allowed to do with execute access to the directory. He has read permis-
sion for notes so he has no problem using cat to display the file. He cannot display
financial because he does not have read permission for it:

$ ls -l /home/max/info/financial /home/max/info/notes
-rw------- 1 max pubs 34 2010-08-21 09:31 /home/max/info/financial
-rw-r--r-- 1 max pubs 30 2010-08-21 09:32 /home/max/info/notes
$ cat /home/max/info/notes
This is the file named notes.
$ cat /home/max/info/financial
cat: /home/max/info/financial: Permission denied

Next Max gives others read access to his info directory:

$ chmod o+r /home/max/info

When Zach checks his access permissions on info, he finds that he has both read
and execute access to the directory. Now ls –l works just fine without arguments,
but he still cannot read financial. (This restriction is an issue of file permissions, not
directory permissions.) Finally, Zach tries to create a file named newfile using touch.

 From the Library of WoweBook.Com

ptg

ACLs: Access Control Lists 221

If Max were to give him write permission to the info directory, Zach would be able
to create new files in it:

$ ls -ld /home/max/info
drwx---r-x 2 max pubs 512 2010-08-21 09:31 /home/max/info
$ ls -l /home/max/info
total 8
-rw------- 1 max pubs 34 2010-08-21 09:31 financial
-rw-r--r-- 1 max pubs 30 2010-08-21 09:32 notes
$ cat /home/max/info/financial
cat: financial: Permission denied
$ touch /home/max/info/newfile
touch: cannot touch '/home/max/info/newfile': Permission denied

ACLs: Access Control Lists

Access Control Lists (ACLs) provide finer-grained control over which users can
access specific directories and files than do traditional Linux permissions
(page 215). Using ACLs you can specify the ways in which each of several users can
access a directory or file. Because ACLs can reduce performance, do not enable
them on filesystems that hold system files, where the traditional Linux permissions
are sufficient. Also be careful when moving, copying, or archiving files: Not all util-
ities preserve ACLs. In addition, you cannot copy ACLs to filesystems that do not
support ACLs.

An ACL comprises a set of rules. A rule specifies how a specific user or group can
access the file that the ACL is associated with. There are two kinds of rules: access
rules and default rules. (The documentation refers to access ACLs and default
ACLs, even though there is only one type of ACL: There is one type of list [ACL]
and there are two types of rules that an ACL can contain.)

An access rule specifies access information for a single file or directory. A default
ACL pertains to a directory only; it specifies default access information (an ACL)
for any file in the directory that is not given an explicit ACL.

Most utilities do not preserve ACLs
caution When used with the –p (preserve) or –a (archive) option, cp preserves ACLs when it copies files.

The mv utility also preserves ACLs. When you use cp with the –p or –a option and it is not able
to copy ACLs, and in the case where mv is unable to preserve ACLs, the utility performs the oper-
ation and issues an error message:

$ mv report /tmp
mv: preserving permissions for '/tmp/report': Operation not supported

Other utilities, such as tar, cpio, and dump, do not support ACLs. You can use cp with the –a
option to copy directory hierarchies, including ACLs.

You can never copy ACLs to a filesystem that does not support ACLs or to a filesystem that does
not have ACL support turned on.

 From the Library of WoweBook.Com

ptg

222 Chapter 6 The Linux Filesystem

Enabling ACLs

Before you can use ACLs you must install the acl software package:

$ sudo aptitude install acl

Ubuntu Linux officially supports ACLs on ext2, ext3, and ext4 filesystems only,
although informal support for ACLs is available on other filesystems. To use ACLs
on an ext2/ext3/ext4 filesystem, you must mount the device with the acl option
(no_acl is the default). For example, if you want to mount the device represented by
/home so that you can use ACLs on files in /home, you can add acl to its options list
in /etc/fstab:

$ grep home /etc/fstab
LABEL=/home /home ext4 defaults,acl 1 2

remount option After changing fstab, you need to remount /home before you can use ACLs. If no
one else is using the system, you can unmount it and mount it again (working with
root privileges) as long as the working directory is not in the /home hierarchy.
Alternatively you can use the remount option to mount to remount /home while the
device is in use:

$ sudo mount -v -o remount /home
/dev/sda3 on /home type ext4 (rw,acl)

See page 510 for information on fstab and page 506 for information on mount.

Working with Access Rules

The setfacl utility modifies a file’s ACL and getfacl displays a file’s ACL. When you
use getfacl to obtain information about a file that does not have an ACL, it displays
the same information as an ls –l command, albeit in a different format:

$ ls -l report
-rw-r--r-- 1 max max 9537 2010-01-12 23:17 report

$ getfacl report
file: report
owner: max
group: max
user::rw-
group::r--
other::r--

The first three lines of the getfacl output comprise the header; they specify the name
of the file, the owner of the file, and the group the file is associated with. For more
information refer to “ls –l: Displays Permissions” on page 215. The ––omit-header
(or just ––omit) option causes getfacl not to display the header:

$ getfacl --omit-header report
user::rw-
group::r--
other::r--

 From the Library of WoweBook.Com

ptg

ACLs: Access Control Lists 223

In the line that starts with user, the two colons (::) with no name between them indi-
cate that the line specifies the permissions for the owner of the file. Similarly, the
two colons in the group line indicate that the line specifies permissions for the group
the file is associated with. The two colons following other are there for consistency:
No name can be associated with other.

The setfacl ––modify (or –m) option adds or modifies one or more rules in a file’s
ACL using the following format:

setfacl ––modify ugo:name:permissions file-list

where ugo can be either u, g, or o to indicate that the command sets file permissions
for a user, a group, or all other users, respectively; name is the name of the user or
group that permissions are being set for; permissions is the permissions in either
symbolic or absolute format; and file-list is the list of files the permissions are to be
applied to. You must omit name when you specify permissions for other users (o).
Symbolic permissions use letters to represent file permissions (rwx, r–x, and so on),
whereas absolute permissions use an octal number. While chmod uses three sets of
permissions or three octal numbers (one each for the owner, group, and other
users), setfacl uses a single set of permissions or a single octal number to represent
the permissions being granted to the user or group represented by ugo and name.
See the discussion of chmod on page 216 for more information about symbolic and
absolute representations of file permissions.

For example, both of the following commands add a rule to the ACL for the report
file that gives Sam read and write permission to that file:

$ setfacl --modify u:sam:rw- report

or

$ setfacl --modify u:sam:6 report

$ getfacl report
file: report
owner: max
group: max
user::rw-
user:sam:rw-
group::r--
mask::rw-
other::r--

The line containing user:sam:rw– shows that the user named sam has read and
write access (rw–) to the file. See page 215 for an explanation of how to read access
permissions. See the following optional section for a description of the line that
starts with mask.

When a file has an ACL, ls –l displays a plus sign (+) following the permissions,
even if the ACL is empty:

$ ls -l report
-rw-rw-r--+ 1 max max 9537 2010-01-12 23:17 report

 From the Library of WoweBook.Com

ptg

224 Chapter 6 The Linux Filesystem

optional Effective Rights Mask

The line that starts with mask specifies the effective rights mask. This mask limits the
effective permissions granted to ACL groups and users. It does not affect the owner of
the file or the group the file is associated with. In other words, it does not affect tradi-
tional Linux permissions. However, because setfacl always sets the effective rights
mask to the least restrictive ACL permissions for the file, the mask has no effect unless
you set it explicitly after you set up an ACL for the file. You can set the mask by spec-
ifying mask in place of ugo and by not specifying a name in a setfacl command.

The following example sets the effective rights mask to read for the report file:

$ setfacl -m mask::r-- report

The mask line in the following getfacl output shows the effective rights mask set to
read (r––). The line that displays Sam’s file access permissions shows them still set
to read and write. However, the comment at the right end of the line shows that his
effective permission is read.

$ getfacl report
file: report
owner: max
group: max
user::rw-
user:sam:rw- #effective:r--
group::r--
mask::r--
other::r--

As the next example shows, setfacl can modify ACL rules and can set more than one
ACL rule at a time:

$ setfacl -m u:sam:r--,u:zach:rw- report

$ getfacl --omit-header report
user::rw-
user:sam:r--
user:zach:rw-
group::r--
mask::rw-
other::r--

The –x option removes ACL rules for a user or a group. It has no effect on permis-
sions for the owner of the file or the group that the file is associated with. The next
example shows setfacl removing the rule that gives Sam permission to access the file:

$ setfacl -x u:sam report

$ getfacl --omit-header report
user::rw-
user:zach:rw-
group::r--
mask::rw-
other::r--

 From the Library of WoweBook.Com

ptg

ACLs: Access Control Lists 225

You must not specify permissions when you use the –x option. Instead, specify only
the ugo and name. The –b option, followed by a filename only, removes all ACL
rules and the ACL itself from the file or directory you specify.

Both setfacl and getfacl have many options. Use the ––help option to display brief
lists of options or refer to the man pages for details.

Setting Default Rules for a Directory

The following example shows that the dir directory initially has no ACL. The setfacl
command uses the –d (default) option to add two default rules to the ACL for dir.
These rules apply to all files in the dir directory that do not have explicit ACLs. The
rules give members of the pubs group read and execute permissions and give mem-
bers of the admin group read, write, and execute permissions.

$ ls -ld dir
drwx------ 2 max max 4096 2010-02-12 23:15 dir
$ getfacl dir
file: dir
owner: max
group: max
user::rwx
group::---
other::---

$ setfacl -d -m g:pubs:r-x,g:admin:rwx dir

The following ls command shows that the dir directory now has an ACL, as
indicated by the + to the right of the permissions. Each of the default rules that
getfacl displays starts with default:. The first two default rules and the last
default rule specify the permissions for the owner of the file, the group that the
file is associated with, and all other users. These three rules specify the tradi-
tional Linux permissions and take precedence over other ACL rules. The third
and fourth rules specify the permissions for the pubs and admin groups. Next is
the default effective rights mask.

$ ls -ld dir
drwx------+ 2 max max 4096 2010-02-12 23:15 dir
$ getfacl dir
file: dir
owner: max
group: max
user::rwx
group::---
other::---
default:user::rwx
default:group::---
default:group:pubs:r-x
default:group:admin:rwx
default:mask::rwx
default:other::---

 From the Library of WoweBook.Com

ptg

226 Chapter 6 The Linux Filesystem

Remember that the default rules pertain to files held in the directory that are not
assigned ACLs explicitly. You can also specify access rules for the directory itself.

When you create a file within a directory that has default rules in its ACL, the effec-
tive rights mask for that file is created based on the file’s permissions. In some cases
the mask may override default ACL rules.

In the next example, touch creates a file named new in the dir directory. The ls com-
mand shows that this file has an ACL. Based on the value of umask (page 459),
both the owner and the group that the file is associated with have read and write
permissions for the file. The effective rights mask is set to read and write so that
the effective permission for pubs is read and the effective permissions for admin are
read and write. Neither group has execute permission.

$ cd dir
$ touch new
$ ls -l new
-rw-rw----+ 1 max max 0 2010-02-13 00:39 new
$ getfacl --omit new
user::rw-
group::---
group:pubs:r-x #effective:r--
group:admin:rwx #effective:rw-
mask::rw-
other::---

If you change the file’s traditional permissions to read, write, and execute for the
owner and the group, the effective rights mask changes to read, write, and execute
and the groups specified by the default rules gain execute access to the file.

$ chmod 770 new
$ ls -l new
-rwxrwx---+ 1 max max 0 2010-02-13 00:39 new
$ getfacl --omit new
user::rwx
group::---
group:pubs:r-x
group:admin:rwx
mask::rwx
other::---

Links

A link is a pointer to a file. Each time you create a file using vim, touch, cp, or by
another other means, you are putting a pointer in a directory. This pointer associ-
ates a filename with a place on the disk. When you specify a filename in a com-
mand, you are indirectly pointing to the place on the disk that holds the
information you want.

 From the Library of WoweBook.Com

ptg

Links 227

Sharing files can be useful when two or more people are working on the same
project and need to share some information. You can make it easy for other users to
access one of your files by creating additional links to the file.

To share a file with another user, first give the user permission to read from and
write to the file (page 216). You may also have to change the access permissions
of the parent directory of the file to give the user read, write, or execute permis-
sion (page 220). Once the permissions are appropriately set, the user can create a
link to the file so that each of you can access the file from your separate directory
hierarchies.

A link can also be useful to a single user with a large directory hierarchy. You can
create links to cross-classify files in your directory hierarchy, using different classifi-
cations for different tasks. For example, if you have the file layout depicted in
Figure 6-2 on page 201, a file named to_do might appear in each subdirectory of
the correspond directory—that is, in personal, memos, and business. If you find it
difficult to keep track of everything you need to do, you can create a separate direc-
tory named to_do in the correspond directory. You can then link each subdirectory’s
to-do list into that directory. For example, you could link the file named to_do in
the memos directory to a file named memos in the to_do directory. This set of links
is shown in Figure 6-13.

Although it may sound complicated, this technique keeps all your to-do lists conve-
niently in one place. The appropriate list is easily accessible in the task-related direc-
tory when you are busy composing letters, writing memos, or handling personal
business.

Figure 6-13 Using links to cross-classify files

correspond

to_do bbbuuusssiiinnneeessssssmemospersonalto_doto_do

to_dobusinessmemospersonal

Links

About the discussion of hard links

tip Two kinds of links exist: hard links and symbolic (soft) links. Hard links are older and becoming
outdated. The section on hard links is marked as optional; you can skip it, although it discusses
inodes and gives you insight into the structure of the filesystem.

 From the Library of WoweBook.Com

ptg

228 Chapter 6 The Linux Filesystem

optional

Hard Links

A hard link to a file appears as another file. If the file appears in the same directory
as the linked-to file, the links must have different filenames because two files in the
same directory cannot have the same name. You can create a hard link to a file only
from within the filesystem that holds the file.

ln: Creates a Hard Link

The ln (link) utility (without the –s or ––symbolic option) creates a hard link to an
existing file using the following syntax:

ln existing-file new-link

The next command shows Zach making the link shown in Figure 6-14 by creating a
new link named /home/max/letter to an existing file named draft in Zach’s home
directory:

$ pwd
/home/zach
$ ln draft /home/max/letter

The new link appears in the /home/max directory with the filename letter. In prac-
tice, Max may need to change directory permissions so Zach will be able to create
the link. Even though /home/max/letter appears in Max’s directory, Zach is the
owner of the file because he created it.

The ln utility creates an additional pointer to an existing file but it does not make
another copy of the file. Because there is only one file, the file status information—such
as access permissions, owner, and the time the file was last modified—is the same for
all links; only the filenames differ. When Zach modifies /home/zach/draft, for exam-
ple, Max sees the changes in /home/max/letter.

Figure 6-14 Two links to the same file: /home/max/letter and /home/zach/draft

home

/

max zach

memo planning

/home/max/letter and /home/zach/draft

 From the Library of WoweBook.Com

ptg

Links 229

cp Versus ln
The following commands verify that ln does not make an additional copy of a file.
Create a file, use ln to make an additional link to the file, change the contents of the
file through one link, and verify the change through the other link:

$ cat file_a
This is file A.
$ ln file_a file_b
$ cat file_b
This is file A.
$ vim.tiny file_b
...
$ cat file_b
This is file B after the change.
$ cat file_a
This is file B after the change.

If you try the same experiment using cp instead of ln and change a copy of the file,
the difference between the two utilities will become clearer. Once you change a copy
of a file, the two files are different:

$ cat file_c
This is file C.
$ cp file_c file_d
$ cat file_d
This is file C.
$ vim.tiny file_d
...
$ cat file_d
This is file D after the change.
$ cat file_c
This is file C.

ls and link counts You can use ls with the –l option, followed by the names of the files you want to
compare, to confirm that the status information is the same for two links to the
same file and is different for files that are not linked. In the following example, the
2 in the links field (just to the left of max) shows there are two links to file_a and
file_b (from the previous example):

$ ls -l file_a file_b file_c file_d
-rw-r--r-- 2 max pubs 33 2010-05-24 10:52 file_a
-rw-r--r-- 2 max pubs 33 2010-05-24 10:52 file_b
-rw-r--r-- 1 max pubs 16 2010-05-24 10:55 file_c
-rw-r--r-- 1 max pubs 33 2010-05-24 10:57 file_d

Although it is easy to guess which files are linked to one another in this example, ls
does not explicitly tell you.

ls and inodes Use ls with the –i option to determine without a doubt which files are linked. The –i
option lists the inode (page 1153) number for each file. An inode is the control
structure for a file. If the two filenames have the same inode number, they share the
same control structure and are links to the same file. Conversely, when two file-
names have different inode numbers, they are different files. The following example

 From the Library of WoweBook.Com

ptg

230 Chapter 6 The Linux Filesystem

shows that file_a and file_b have the same inode number and that file_c and file_d
have different inode numbers:

$ ls -i file_a file_b file_c file_d
3534 file_a 3534 file_b 5800 file_c 7328 file_d

All links to a file are of equal value: The operating system cannot distinguish the
order in which multiple links were created. When a file has two links, you can
remove either one and still access the file through the remaining link. You can remove
the link used to create the file, for example, and, as long as one link remains, still
access the file through that link.

Symbolic Links

In addition to hard links, Linux supports symbolic links, also called soft links or
symlinks. A hard link is a pointer to a file (the directory entry points to the inode),
whereas a symbolic link is an indirect pointer to a file (the directory entry contains
the pathname of the pointed-to file—a pointer to the hard link to the file).

Advantages of
symbolic links

Symbolic links were developed because of the limitations inherent in hard links. You can-
not create a hard link to a directory, but you can create a symbolic link to a directory.

In many cases the Linux file hierarchy encompasses several filesystems. Because
each filesystem keeps separate control information (that is, separate inode tables or
filesystem structures) for the files it holds, it is not possible to create hard links
between files in different filesystems. A symbolic link can point to any file, regard-
less of where it is located in the file structure, but a hard link to a file must be in the
same filesystem as the other hard link(s) to the file. When you create links only
among files in your home directory, you will not notice this limitation.

A major advantage of a symbolic link is that it can point to a nonexistent file. This
ability is useful if you need a link to a file that is periodically removed and re-
created. A hard link keeps pointing to a “removed” file, which the link keeps alive
even after a new file is created. In contrast, a symbolic link always points to the
newly created file and does not interfere when you delete the old file. For example,
a symbolic link could point to a file that gets checked in and out under a source
code control system, a .o file that is re-created by the C compiler each time you run
make, or a log file that is repeatedly archived.

Although they are more general than hard links, symbolic links have some disad-
vantages. Whereas all hard links to a file have equal status, symbolic links do not
have the same status as hard links. When a file has multiple hard links, it is analo-
gous to a person having multiple full legal names, as many married women do. In
contrast, symbolic links are analogous to nicknames. Anyone can have one or more
nicknames, but these nicknames have a lesser status than legal names. The follow-
ing sections describe some of the peculiarities of symbolic links.

ln: Creates Symbolic Links

The ln utility with the ––symbolic (or –s) option creates a symbolic link. The following
example creates a symbolic link /tmp/s3 to the file sum in Max’s home directory. When

 From the Library of WoweBook.Com

ptg

Links 231

you use an ls –l command to look at the symbolic link, ls displays the name of the link
and the name of the file it points to. The first character of the listing is l (for link).

$ ln --symbolic /home/max/sum /tmp/s3
$ ls -l /home/max/sum /tmp/s3
-rw-rw-r-- 1 max max 38 2010-06-12 09:51 /home/max/sum
lrwxrwxrwx 1 max max 14 2010-06-12 09:52 /tmp/s3 -> /home/max/sum
$ cat /tmp/s3
This is sum.

The sizes and times of the last modifications of the two files are different. Unlike a
hard link, a symbolic link to a file does not have the same status information as the
file itself.

You can also use ln to create a symbolic link to a directory. When you use the
––symbolic option, ln works as expected whether the file you are creating a link to
is an ordinary file or a directory.

optional cd and Symbolic Links

When you use a symbolic link as an argument to cd to change directories, the
results can be confusing, particularly if you did not realize that you were using a
symbolic link.

If you use cd to change to a directory that is represented by a symbolic link, the pwd
shell builtin (page 261) lists the name of the symbolic link. The pwd utility
(/bin/pwd) lists the name of the linked-to directory, not the link, regardless of how
you got there.

$ ln -s /home/max/grades /tmp/grades.old
$ pwd
/home/max
$ cd /tmp/grades.old
$ pwd
/tmp/grades.old
$ /bin/pwd
/home/max/grades

Use absolute pathnames with symbolic links

tip Symbolic links are literal and are not aware of directories. A link that points to a relative pathname,
which includes simple filenames, assumes the relative pathname is relative to the directory that
the link was created in (not the directory the link was created from). In the following example, the
link points to the file named sum in the /tmp directory. Because no such file exists, cat gives an
error message:

$ pwd
/home/max
$ ln --symbolic sum /tmp/s4
$ ls -l sum /tmp/s4
lrwxrwxrwx 1 max max 3 2010-06-12 10:13 /tmp/s4 -> sum
-rw-rw-r-- 1 max max 38 2010-06-12 09:51 sum
$ cat /tmp/s4
cat: /tmp/s4: No such file or directory

 From the Library of WoweBook.Com

ptg

232 Chapter 6 The Linux Filesystem

When you change directories back to the parent, you end up in the directory hold-
ing the symbolic link:

$ cd ..
$ pwd
/tmp
$ /bin/pwd
/tmp

rm: Removes a Link

When you create a file, there is one hard link to it. You can then delete the file or,
using Linux terminology, remove the link with the rm utility. When you remove the
last hard link to a file, you can no longer access the information stored there and the
operating system releases the space the file occupied on the disk for use by other
files. This space is released even if symbolic links to the file remain. When there is
more than one hard link to a file, you can remove a hard link and still access the file
from any remaining link. Unlike DOS and Windows, Linux does not provide an
easy way to undelete a file once you have removed it. A skilled hacker, however, can
sometimes piece the file together with time and effort.

When you remove all hard links to a file, you will not be able to access the file
through a symbolic link. In the following example, cat reports that the file total
does not exist because it is a symbolic link to a file that has been removed:

$ ls -l sum
-rw-r--r-- 1 max pubs 981 2010-05-24 11:05 sum
$ ln -s sum total
$ rm sum
$ cat total
cat: total: No such file or directory
$ ls -l total
lrwxrwxrwx 1 max pubs 6 2010-05-24 11:09 total -> sum

When you remove a file, be sure to remove all symbolic links to it. Remove a sym-
bolic link in the same way you remove other files:

$ rm total

Chapter Summary

Linux has a hierarchical, or treelike, file structure that makes it possible to organize
files so you can find them quickly and easily. The file structure contains directory files
and ordinary files. Directories contain other files, including other directories; ordinary
files generally contain text, programs, or images. The ancestor of all files is the root
directory and is represented by / standing alone or at the left end of a pathname.

 From the Library of WoweBook.Com

ptg

Chapter Summary 233

Most Linux filesystems support 255-character filenames. Nonetheless, it is a good
idea to keep filenames simple and intuitive. Filename extensions can help make file-
names more meaningful.

When you are logged in, you are always associated with a working directory. Your
home directory is the working directory from the time you log in until you use cd to
change directories.

An absolute pathname starts with the root directory and contains all the filenames
that trace a path to a given file. The pathname starts with a slash, representing the
root directory, and contains additional slashes following all the directories in the
path, except for the last directory in the case of a path that points to a directory file.

A relative pathname is similar to an absolute pathname but traces the path starting
from the working directory. A simple filename is the last element of a pathname and
is a form of a relative pathname; it represents a file in the working directory.

A Linux filesystem contains many important directories, including /usr/bin, which
stores most of the Linux utility commands, and /dev, which stores device files, many of
which represent physical pieces of hardware. An important standard file is
/etc/passwd; it contains information about users, such as each user’s ID and full name.

Among the attributes associated with each file are access permissions. They deter-
mine who can access the file and how the file may be accessed. Three groups of
users can potentially access the file: the owner, the members of a group, and all
other users. An ordinary file can be accessed in three ways: read, write, and execute.
The ls utility with the –l option displays these permissions. For directories, execute
access is redefined to mean that the directory can be searched.

The owner of a file or a user working with root privileges can use the chmod utility
to change the access permissions of a file. This utility specifies read, write, and exe-
cute permissions for the file’s owner, the group, and all other users on the system.

Access Control Lists (ACLs) provide finer-grained control over which users can
access specific directories and files than do traditional Linux permissions. Using
ACLs you can specify the ways in which each of several users can access a directory
or file. Few utilities preserve ACLs when working with files.

An ordinary file stores user data, such as textual information, programs, or images.
A directory is a standard-format disk file that stores information, including names,
about ordinary files and other directory files. An inode is a data structure, stored on
disk, that defines a file’s existence and is identified by an inode number. A directory
relates each of the filenames it stores to an inode.

A link is a pointer to a file. You can have several links to a file so you can share the
file with other users or have the file appear in more than one directory. Because only
one copy of a file with multiple links exists, changing the file through any one link
causes the changes to appear in all the links. Hard links cannot link directories or
span filesystems, whereas symbolic links can.

 From the Library of WoweBook.Com

ptg

234 Chapter 6 The Linux Filesystem

Table 6-3 summarizes the utilities introduced in this chapter.

Exercises

1. Is each of the following an absolute pathname, a relative pathname, or a
simple filename?

a. milk_co

b. correspond/business/milk_co

c. /home/max

d. /home/max/literature/promo

e. ..

f. letter.0610

2. List the commands you can use to perform these operations:

a. Make your home directory the working directory

b. Identify the working directory

3. If the working directory is /home/max with a subdirectory named litera-
ture, give three sets of commands that you can use to create a subdirectory
named classics under literature. Also give several sets of commands you
can use to remove the classics directory and its contents.

4. The df utility displays all mounted filesystems along with information
about each. Use the df utility with the –h (human-readable) option to
answer the following questions.

a. How many filesystems are mounted on your Linux system?

b. Which filesystem stores your home directory?

c. Assuming that your answer to exercise 4a is two or more, attempt to
create a hard link to a file on another filesystem. What error message do

Table 6-3 Utilities introduced in Chapter 6

Utility Function

cd Associates you with another working directory (page 209)

chmod Changes access permissions on a file (page 216)

getfacl Displays a file’s ACL (page 222)

ln Makes a link to an existing file (page 228)

mkdir Creates a directory (page 208)

pwd Displays the pathname of the working directory (page 204)

rmdir Deletes a directory (page 210)

setfacl Modifies a file’s ACL (page 222)

 From the Library of WoweBook.Com

ptg

Exercises 235

you get? What happens when you attempt to create a symbolic link to
the file instead?

5. Suppose you have a file that is linked to a file owned by another user. How
can you ensure that changes to the file are no longer shared?

6. You should have read permission for the /etc/passwd file. To answer the
following questions, use cat or less to display /etc/passwd. Look at the
fields of information in /etc/passwd for the users on your system.

a. Which character is used to separate fields in /etc/passwd?

b. How many fields are used to describe each user?

c. How many users are on the local system?

d. How many different login shells are in use on your system? (Hint: Look
at the last field.)

e. The second field of /etc/passwd stores user passwords in encoded form.
If the password field contains an x, your system uses shadow passwords
and stores the encoded passwords elsewhere. Does your system use
shadow passwords?

7. If /home/zach/draft and /home/max/letter are links to the same file and
the following sequence of events occurs, what will be the date in the open-
ing of the letter?

a. Max gives the command vim.tiny letter.

b. Zach gives the command vim.tiny draft.

c. Zach changes the date in the opening of the letter to January 31, 2010,
writes the file, and exits from vim.

d. Max changes the date to February 1, 2010, writes the file, and exits
from vim.

8. Suppose a user belongs to a group that has all permissions on a file named
jobs_list, but the user, as the owner of the file, has no permissions.
Describe which operations, if any, the user/owner can perform on
jobs_list. Which command can the user/owner give that will grant the
user/owner all permissions on the file?

9. Does the root directory have any subdirectories you cannot search as an
ordinary user? Does the root directory have any subdirectories you cannot
read as a regular user? Explain.

10. Assume you are given the directory structure shown in Figure 6-2 on
page 201 and the following directory permissions:

d--x--x--- 3 zach pubs 512 2010-03-10 15:16 business
drwxr-xr-x 2 zach pubs 512 2010-03-10 15:16 business/milk_co

For each category of permissions—owner, group, and other—what hap-
pens when you run each of the following commands? Assume the working

 From the Library of WoweBook.Com

ptg

236 Chapter 6 The Linux Filesystem

directory is the parent of correspond and that the file cheese_co is readable
by everyone.

a. cd correspond/business/milk_co

b. ls –l correspond/business

c. cat correspond/business/cheese_co

Advanced Exercises

11. What is an inode? What happens to the inode when you move a file within
a filesystem?

12. What does the .. entry in a directory point to? What does this entry point
to in the root (/) directory?

13. How can you create a file named –i? Which techniques do not work, and
why do they not work? How can you remove the file named –i?

14. Suppose the working directory contains a single file named andor. What
error message do you get when you run the following command line?

$ mv andor and\/or

Under what circumstances is it possible to run the command without pro-
ducing an error?

15. The ls –i command displays a filename preceded by the inode number of
the file (page 229). Write a command to output inode/filename pairs for
the files in the working directory, sorted by inode number. (Hint: Use a
pipe.)

16. Do you think the system administrator has access to a program that can
decode user passwords? Why or why not? (See exercise 6.)

17. Is it possible to distinguish a file from a hard link to a file? That is, given a
filename, can you tell whether it was created using an ln command?
Explain.

18. Explain the error messages displayed in the following sequence of commands:

$ ls -l

total 1

drwxrwxr-x 2 max pubs 1024 2010-03-02 17:57 dirtmp

$ ls dirtmp

$ rmdir dirtmp

rmdir: dirtmp: Directory not empty

$ rm dirtmp/*
rm: No match.

 From the Library of WoweBook.Com

ptg

222333777

7Chapter7This chapter takes a close look at the shell and explains how to
use some of its features. For example, it discusses command-
line syntax. It also describes how the shell processes a com-
mand line and initiates execution of a program. In addition the
chapter explains how to redirect input to and output from a
command, construct pipes and filters on the command line, and
run a command in the background. The final section covers
filename expansion and explains how you can use this feature
in your everyday work.

The exact wording of the shell output differs from shell to shell:
What your shell displays may differ slightly from what appears
in this book. Refer to Chapter 9 for more information on bash
and to Chapter 27 for information on writing and executing
bash shell scripts.

In This Chapter

The Command Line 238

Standard Input and Standard
Output . 243

Pipes . 251

Running a Command in the
Background 254

kill: Aborting a Background Job . . 255

Filename Generation/Pathname
Expansion 256

Builtins . 261

7

The Shell

 From the Library of WoweBook.Com

ptg

238 Chapter 7 The Shell

The Command Line

The shell executes a program when you give it a command in response to its
prompt. For example, when you give the ls command, the shell executes the utility
program named ls. You can cause the shell to execute other types of programs—
such as shell scripts, application programs, and programs you have written—in the
same way. The line that contains the command, including any arguments, is called
the command line. This book uses the term command to refer to both the characters
you type on the command line and the program that action invokes.

Syntax

Command-line syntax dictates the ordering and separation of the elements on a
command line. When you press the RETURN key after entering a command, the shell
scans the command line for proper syntax. The syntax for a basic command line is

command [arg1] [arg2] ... [argn] RETURN

One or more SPACEs must separate elements on the command line. The command is
the name of the command, arg1 through argn are arguments, and RETURN is the key-
stroke that terminates all command lines. The brackets in the command-line syntax
indicate that the arguments they enclose are optional. Not all commands require
arguments: Some commands do not allow arguments; other commands allow a
variable number of arguments; and still others require a specific number of argu-
ments. Options, a special kind of argument, are usually preceded by one or two
hyphens (also called a dash or minus sign: –).

Command Name

Usage message Some useful Linux command lines consist of only the name of the command without
any arguments. For example, ls by itself lists the contents of the working directory.
Commands that require arguments typically give a short error message, called a
usage message, when you use them without arguments, with incorrect arguments, or
with the wrong number of arguments.

Arguments

On the command line each sequence of nonblank characters is called a token or
word. An argument is a token, such as a filename, string of text, number, or other
object that a command acts on. For example, the argument to a vim or emacs com-
mand is the name of the file you want to edit.

The following command line shows cp copying the file named temp to tempcopy:

$ cp temp tempcopy

Arguments are numbered starting with the command itself, which is argument zero. In
this example, cp is argument zero, temp is argument one, and tempcopy is argument
two. The cp utility requires at least two arguments on the command line. Argument
one is the name of an existing file. Argument two is the name of the file that cp is creat-
ing or overwriting. Here the arguments are not optional; both arguments must be

 From the Library of WoweBook.Com

ptg

The Command Line 239

present for the command to work. When you do not supply the right number or kind
of arguments, cp displays a usage message. Try typing cp and then pressing RETURN.

Options

An option is an argument that modifies the effects of a command. You can fre-
quently specify more than one option, modifying the command in several different
ways. Options are specific to and interpreted by the program that the command line
calls, not by the shell.

By convention options are separate arguments that follow the name of the command
and usually precede other arguments, such as filenames. Most utilities require you to
prefix options with a single hyphen. However, this requirement is specific to the util-
ity and not the shell. GNU program options are frequently preceded by two hyphens
in a row. For example, ––help generates a (sometimes extensive) usage message.

Figure 7-1 first shows the output of an ls command without any options. By default
ls lists the contents of the working directory in alphabetical order, vertically sorted
in columns. Next the –r (reverse order; because this is a GNU utility, you can also
use ––reverse) option causes the ls utility to display the list of files in reverse alpha-
betical order, still sorted in columns. The –x option causes ls to display the list of
files in horizontally sorted rows.

Combining options When you need to use several options, you can usually group multiple single-letter
options into one argument that starts with a single hyphen; do not put SPACEs between
the options. You cannot combine options that are preceded by two hyphens in this
way. Specific rules for combining options depend on the program you are running.
Figure 7-1 shows both the –r and –x options with the ls utility. Together these options
generate a list of filenames in horizontally sorted columns, in reverse alphabetical
order. Most utilities allow you to list options in any order; thus ls –xr produces the
same results as ls –rx. The command ls –x –r also generates the same list.

Option arguments Some utilities have options that themselves require arguments. For example, the gcc
utility has a –o option that must be followed by the name you want to give the exe-
cutable file that gcc generates. Typically an argument to an option is separated from
its option letter by a SPACE:

$ gcc -o prog prog.c

$ ls
hold mark names oldstuff temp zach
house max office personal test
$ ls -r
zach temp oldstuff names mark hold
test personal office max house
$ ls -x
hold house mark max names office
oldstuff personal temp test zach
$ ls -rx
zach test temp personal oldstuff office
names max mark house hold

Figure 7-1 Using options

 From the Library of WoweBook.Com

ptg

240 Chapter 7 The Shell

Arguments that start
with a hyphen

Another convention allows utilities to work with arguments, such as filenames, that
start with a hyphen. If a file’s name is –l, the following command is ambiguous:

$ ls -l

This command could mean a long listing of all files in the working directory or a
listing of the file named –l. It is interpreted as the former. Avoid creating files whose
names begin with hyphens. If you do create them, many utilities follow the conven-
tion that a –– argument (two consecutive hyphens) indicates the end of the options
(and the beginning of the arguments). To disambiguate the command, you can type

$ ls -- -l

You can use an alternative format in which the period refers to the working directory
and the slash indicates that the name refers to a file in the working directory:

$ ls ./-l

Assuming that you are working in the /home/max directory, the preceding command
is functionally equivalent to

$ ls /home/max/-l

The following command displays a long listing of this file:

$ ls -l -- -l

These are conventions, not hard-and-fast rules, and a number of utilities do not fol-
low them (e.g., find). Following such conventions is a good idea; it becomes much
easier for users to work with your program. When you write shell programs that
require options, follow the Linux option conventions.

Processing the Command Line

As you enter a command line, the Linux tty device driver (part of the Linux kernel)
examines each character to see whether it must take immediate action. When you
press CONTROL-H (to erase a character) or CONTROL-U (to kill a line), the device driver
immediately adjusts the command line as required; the shell never sees the charac-
ter(s) you erased or the line you killed. Often a similar adjustment occurs when you
press CONTROL-W (to erase a word). When the character you entered does not require
immediate action, the device driver stores the character in a buffer and waits for
additional characters. When you press RETURN, the device driver passes the command
line to the shell for processing.

Parsing the
command line

When the shell processes a command line, it looks at the line as a whole and parses
(breaks) it into its component parts (Figure 7-2). Next the shell looks for the name of
the command. Usually the name of the command is the first item on the command

Displaying readable file sizes: the –h option

tip Most utilities that report on file sizes specify the size of a file in bytes. Bytes work well when you are
dealing with smaller files, but the numbers can be difficult to read when you are working with file sizes
that are measured in megabytes or gigabytes. Use the –h (or ––human-readable) option to display
file sizes in kilo-, mega-, and gigabytes. Experiment with the df –h (disk free) and ls –lh commands.

 From the Library of WoweBook.Com

ptg

The Command Line 241

line after the prompt (argument zero). The shell takes the first characters on the com-
mand line up to the first blank (TAB or SPACE) and then looks for a command with that
name. The command name (the first token) can be specified on the command line

The ––help option

tip Many utilities display a (sometimes extensive) help message when you call them with an argu-
ment of ––help. All utilities developed by the GNU Project (page 4) accept this option. An example
follows.

$ bzip2 --help
bzip2, a block-sorting file compressor. Version 1.0.5, 10-Dec-2007.

 usage: bunzip2 [flags and input files in any order]

 -h --help print this message
 -d --decompress force decompression
 -z --compress force compression
 -k --keep keep (don't delete) input files
 -f --force overwrite existing output files
 ...
 If invoked as 'bzip2', default action is to compress.
 as 'bunzip2', default action is to decompress.
 as 'bzcat', default action is to decompress to stdout.
...

Figure 7-2 Processing the command line

NEWLINE

Get first word

command name
and save as

Execute program

Get more

command line
of the

Display

Issue prompt

no

noyes not found
Does

program
exist?

 From the Library of WoweBook.Com

ptg

242 Chapter 7 The Shell

either as a simple filename or as a pathname. For example, you can call the ls com-
mand in either of the following ways:

$ ls

$ /bin/ls

optional The shell does not require that the name of the program appear first on the com-
mand line. Thus you can structure a command line as follows:

$ >bb <aa cat

This command runs cat with standard input coming from the file named aa and
standard output going to the file named bb. When the shell recognizes the redirect
symbols (page 245), it recognizes and processes them and their arguments before
finding the name of the program that the command line is calling. This is a properly
structured—albeit rarely encountered and possibly confusing—command line.

Absolute versus
relative pathnames

When you give an absolute pathname on the command line or a relative pathname
that is not a simple filename (i.e., any pathname that includes at least one slash), the
shell looks in the specified directory (/bin in the case of the /bin/ls command) for a
file that has the name ls and that you have permission to execute. When you give a
simple filename, the shell searches through a list of directories for a filename that
matches the specified name and for which you have execute permission. The shell
does not look through all directories but only the ones specified by the variable
named PATH. Refer to page 319 for more information on PATH. Also refer to the
discussion of the which and whereis utilities on page 178.

When it cannot find the executable file, the Bourne Again Shell (bash) displays a
message such as the following:

$ abc
bash: abc: command not found

One reason the shell may not be able to find the executable file is that it is not in a
directory in your PATH. Under bash the following command temporarily adds the
working directory (.) to PATH:

$ PATH=$PATH:.

For security reasons, you may not want to add the working directory to PATH per-
manently; see the tip on the next page and the one on page 320.

When the shell finds the program but cannot execute it (i.e., because you do not
have execute permission for the file that contains the program), it displays a mes-
sage similar to

$ def
bash: ./def: Permission denied

See “ls –l: Displays Permissions” on page 215 for information on displaying access
permissions for a file and “chmod: Changes Access Permissions” on page 216 for
instructions on how to change file access permissions.

 From the Library of WoweBook.Com

ptg

Standard Input and Standard Output 243

Executing the Command Line

Process If it finds an executable file with the same name as the command, the shell starts a
new process. A process is the execution of a command by Linux (page 328). The
shell makes each command-line argument, including options and the name of the
command, available to the called program. While the command is executing, the
shell waits for the process to finish. At this point the shell is in an inactive state
called sleep. When the program finishes execution, it passes its exit status
(page 996) to the shell. The shell then returns to an active state (wakes up), issues a
prompt, and waits for another command.

The shell does not
process arguments

Because the shell does not process command-line arguments but merely passes them
to the called program, the shell has no way of knowing whether a particular option or
other argument is valid for a given program. Any error or usage messages about
options or arguments come from the program itself. Some utilities ignore bad options.

Editing the Command Line

You can repeat and edit previous commands and edit the current command line. See
pages 152 and 332 for more information.

Standard Input and Standard Output

Standard output is a place that a program can send information, such as text. The
program never “knows” where the information it sends to standard output is going
(Figure 7-3). The information can go to a printer, an ordinary file, or the screen.
The following sections show that by default the shell directs standard output from a
command to the screen1 and describe how you can cause the shell to redirect this
output to another file.

Figure 7-3 The command does not know where standard input comes from or
where standard output and standard error go

CommandStandard
input

Standard
output

Standard
error

Try giving a command as ./command
tip You can always execute an executable file in the working directory by prepending ./ to the name

of the file. For example, if myprog is an executable file in the working directory, you can execute
it with the following command, regardless of how PATH is set:

$./myprog

1. This book uses the term screen to refer to a screen, terminal emulator window, or workstation—in other
words, to the device that the shell displays its prompt and messages on.

 From the Library of WoweBook.Com

ptg

244 Chapter 7 The Shell

Standard input is a place that a program gets information from. As with standard
output the program never “knows” where the information comes from. The follow-
ing sections explain how to redirect standard input to a command so that it comes
from an ordinary file instead of from the keyboard (the default).

In addition to standard input and standard output, a running program normally has
a place to send error messages: standard error. Refer to page 297 for more informa-
tion on working with standard error.

The Screen as a File

Chapter 6 introduced ordinary files, directory files, and hard and soft links. Linux
has an additional type of file: a device file. A device file resides in the Linux file
structure, usually in the /dev directory, and represents a peripheral device, such as a
screen, printer, or disk drive.

The device name that the who utility displays after your username is the filename of
your screen. For example, when who displays the device name pts/4, the pathname
of your screen is /dev/pts/4. When you work with multiple windows, each window
has its own device name. You can also use the tty utility to display the name of the
device that you give the command from. Although you would not normally have
occasion to do so, you can read from and write to this file as though it were a text
file. Writing to it displays what you write on the screen; reading from it reads what
you enter on the keyboard.

The Keyboard and Screen as Standard Input and

Standard Output

When you first log in, the shell directs standard output of your commands to the device
file that represents the screen (Figure 7-4). Directing output in this manner causes it to
appear on the screen. The shell also directs standard input to come from the same file,
so that your commands receive as input anything you type on the keyboard.

Figure 7-4 By default, standard input comes from the keyboard and
standard output goes to the screen

Command

Standard
input

Standard
output

S
h

el
l

S
h

ell

 From the Library of WoweBook.Com

ptg

Standard Input and Standard Output 245

cat The cat utility provides a good example of the way the keyboard and screen func-
tion as standard input and standard output, respectively. When you use cat, it copies
a file to standard output. Because the shell directs standard output to the screen, cat
displays the file on the screen.

Up to this point cat has taken its input from the filename (argument) you specify on
the command line. When you do not give cat an argument (that is, when you give
the command cat followed immediately by RETURN), cat takes its input from standard
input. Thus, when called without an argument, cat copies standard input to stan-
dard output, one line at a time.

To see how cat works, type cat and press RETURN in response to the shell prompt.
Nothing happens. Enter a line of text and press RETURN. The same line appears just
under the one you entered. The cat utility is working. Because the shell associates
cat’s standard input with the keyboard and cat’s standard output with the screen,
when you type a line of text cat copies the text from standard input (the keyboard)
to standard output (the screen). Figure 7-5 shows this exchange.

CONTROL-D
signals EOF

The cat utility keeps copying text until you enter CONTROL-D on a line by itself.
Pressing CONTROL-D sends an EOF (end of file) signal to cat to indicate that it has
reached the end of standard input and there is no more text for it to copy. The
cat utility then finishes execution and returns control to the shell, which displays
a prompt.

Redirection

The term redirection encompasses the various ways you can cause the shell to alter
where standard input of a command comes from and where standard output goes
to. By default the shell associates standard input and standard output of a com-
mand with the keyboard and the screen. You can cause the shell to redirect standard
input or standard output of any command by associating the input or output with a
command or file other than the device file representing the keyboard or the screen.
This section demonstrates how to redirect input from and output to ordinary text
files and utilities.

$ cat
This is a line of text.
This is a line of text.
Cat keeps copying lines of text
Cat keeps copying lines of text
until you press CONTROL-D at the beginning
until you press CONTROL-D at the beginning
of a line.
of a line.
CONTROL-D
$

Figure 7-5 The cat utility copies standard input to standard output

 From the Library of WoweBook.Com

ptg

246 Chapter 7 The Shell

Redirecting Standard Output

The redirect output symbol (>) instructs the shell to redirect the output of a com-
mand to the specified file instead of to the screen (Figure 7-6). The format of a
command line that redirects output is

command [arguments] > filename

where command is any executable program (such as an application program or a
utility), arguments are optional arguments, and filename is the name of the ordinary
file the shell redirects the output to.

Figure 7-7 uses cat to demonstrate output redirection. This figure contrasts with
Figure 7-5, where standard input and standard output are associated with the key-
board and screen. The input in Figure 7-7 comes from the keyboard. The redirect
output symbol on the command line causes the shell to associate cat’s standard out-
put with the sample.txt file specified on the command line.

After giving the command and typing the text shown in Figure 7-7, the sample.txt
file contains the text you entered. You can use cat with an argument of sample.txt
to display this file. The next section shows another way to use cat to display the file.

Figure 7-7 shows that redirecting standard output from cat is a handy way to create
a file without using an editor. The drawback is that once you enter a line and press
RETURN, you cannot edit the text. While you are entering a line, the erase and kill keys
work to delete text. This procedure is useful for creating short, simple files.

Figure 7-8 shows how to use cat and the redirect output symbol to catenate (join one
after the other—the derivation of the name of the cat utility) several files into one

Figure 7-6 Redirecting standard output

Command

Standard
input

S
h

ell Standard
outputS

he
ll

File

Redirecting output can destroy a file I

caution Use caution when you redirect output to a file. If the file exists, the shell will overwrite it and destroy
its contents. For more information see the tip “Redirecting output can destroy a file II” on page 249.

 From the Library of WoweBook.Com

ptg

Standard Input and Standard Output 247

larger file. The first three commands display the contents of three files: stationery,
tape, and pens. The next command shows cat with three filenames as arguments.
When you call it with more than one filename, cat copies the files, one at a time, to
standard output. This command redirects standard output to the file supply_orders.
The final cat command shows that supply_orders contains the contents of all three of
the original files.

Redirecting Standard Input

Just as you can redirect standard output, so you can redirect standard input. The
redirect input symbol (<) instructs the shell to redirect a command’s input to come
from the specified file instead of from the keyboard (Figure 7-9, next page). The
format of a command line that redirects input is

command [arguments] < filename

where command is any executable program (such as an application program or a
utility), arguments are optional arguments, and filename is the name of the ordinary
file the shell redirects the input from.

$ cat > sample.txt
This text is being entered at the keyboard and
cat is copying it to a file.
Press CONTROL-D to indicate the
end of file.
CONTROL-D
$

Figure 7-7 cat with its output redirected

$ cat stationery
2,000 sheets letterhead ordered: 10/7/10
$ cat tape
1 box masking tape ordered: 10/14/10
5 boxes filament tape ordered: 10/28/10
$ cat pens
12 doz. black pens ordered: 10/4/10

$ cat stationery tape pens > supply_orders

$ cat supply_orders
2,000 sheets letterhead ordered: 10/7/10
1 box masking tape ordered: 10/14/10
5 boxes filament tape ordered: 10/28/10
12 doz. black pens ordered: 10/4/10
$

Figure 7-8 Using cat to catenate files

 From the Library of WoweBook.Com

ptg

248 Chapter 7 The Shell

Figure 7-10 shows cat with its input redirected from the supply_orders file created
in Figure 7-8 and standard output going to the screen. This setup causes cat to dis-
play the sample file on the screen. The system automatically supplies an EOF signal
at the end of an ordinary file.

Utilities that take
input from a file or

standard input

Giving a cat command with input redirected from a file yields the same result as giv-
ing a cat command with the filename as an argument. The cat utility is a member of a
class of Linux utilities that function in this manner. Other members of this class of
utilities include lpr, sort, grep, and Perl. These utilities first examine the command line
that you call them with. If you include a filename on the command line, the utility
takes its input from the file you specify. If you do not specify a filename, the utility
takes its input from standard input. It is the utility or program—not the shell or
operating system—that functions in this manner.

noclobber: Avoids Overwriting Files

The shell provides the noclobber feature that prevents overwriting a file using redirec-
tion. Enable this feature by setting noclobber using the command set –o noclobber.
The same command with +o unsets noclobber. With noclobber set, if you redirect
output to an existing file, the shell displays an error message and does not execute the
command. The following example creates a file using touch, sets noclobber, attempts
to redirect the output from echo to the newly created file, unsets noclobber, and per-
forms the same redirection:

$ touch tmp
$ set -o noclobber
$ echo "hi there" > tmp
bash: tmp: cannot overwrite existing file
$ set +o noclobber
$ echo "hi there" > tmp

You can override noclobber by putting a pipe symbol after the redirect symbol (>|).
In the following example, the user creates a file by redirecting the output of date.

Figure 7-9 Redirecting standard input

Command

Standard
outputS

h
el

l

Standard
input

File

S
hell

 From the Library of WoweBook.Com

ptg

Standard Input and Standard Output 249

Next the user sets the noclobber variable and redirects output to the same file again.
The shell displays an error message. Then the user places a pipe symbol after the
redirect symbol and the shell allows the user to overwrite the file.

$ date > tmp2
$ set -o noclobber
$ date > tmp2
bash: a: cannot overwrite existing file
$ date >| tmp2

Appending Standard Output to a File

The append output symbol (>>) causes the shell to add new information to the end
of a file, leaving existing information intact. This symbol provides a convenient way
of catenating two files into one. The following commands demonstrate the action of

$ cat < supply_orders
2,000 sheets letterhead ordered: 10/7/10
1 box masking tape ordered: 10/14/10
5 boxes filament tape ordered: 10/28/10
12 doz. black pens ordered: 10/4/10

Figure 7-10 cat with its input redirected

Redirecting output can destroy a file II
caution Depending on which shell you are using and how the environment is set up, a command such as

the following may yield undesired results:
$ cat orange pear > orange
cat: orange: input file is output file

Although cat displays an error message, the shell destroys the contents of the existing orange
file. The new orange file will have the same contents as pear because the first action the shell
takes when it sees the redirection symbol (>) is to remove the contents of the original orange file.
If you want to catenate two files into one, use cat to put the two files into a temporary file and then
use mv to rename this third file:

$ cat orange pear > temp
$ mv temp orange

What happens in the next example can be even worse. The user giving the command wants to
search through files a, b, and c for the word apple and redirect the output from grep (page 166)
to the file a.output. Unfortunately the user enters the filename as a output, omitting the period and
inserting a SPACE in its place:

$ grep apple a b c > a output
grep: output: No such file or directory

The shell obediently removes the contents of a and then calls grep. The error message may take
a moment to appear, giving you a sense that the command is running correctly. Even after you see
the error message, it may take a while to realize that you have destroyed the contents of a.

 From the Library of WoweBook.Com

ptg

250 Chapter 7 The Shell

the append output symbol. The second command accomplishes the catenation
described in the preceding caution box:

$ cat orange
this is orange
$ cat pear >> orange
$ cat orange
this is orange
this is pear

The first command displays the contents of the orange file. The second command
appends the contents of the pear file to the orange file. The final cat displays the result.

The next example shows how to create a file that contains the date and time (the
output from date), followed by a list of who is logged in (the output from who). The
first line in Figure 7-11 redirects the output from date to the file named whoson.
Then cat displays the file. Next the example appends the output from who to the
whoson file. Finally cat displays the file containing the output of both utilities.

/dev/null: Making Data Disappear

The /dev/null device is a data sink, commonly referred to as a bit bucket. You can
redirect output that you do not want to keep or see to /dev/null and the output will
disappear without a trace:

$ date > whoson
$ cat whoson
Sat Mar 27 14:31:18 PST 2010
$ who >> whoson
$ cat whoson
Sat Mar 27 14:31:18 PST 2010
sam console 2010-03-27 05:00(:0)
max pts/4 2010-03-27 12:23(:0.0)
max pts/5 2010-03-27 12:33(:0.0)
zach pts/7 2010-03-26 08:45 (bravo.example.com)

Figure 7-11 Redirecting and appending output

Do not trust noclobber
caution Appending output is simpler than the two-step procedure described in the preceding caution box

but you must be careful to include both greater than signs. If you accidentally use only one and
the noclobber feature is not set, the shell will overwrite the orange file. Even if you have the
noclobber feature turned on, it is a good idea to keep backup copies of the files you are manipu-
lating in case you make a mistake.

Although it protects you from overwriting a file using redirection, noclobber does not stop you
from overwriting a file using cp or mv. These utilities include the –i (interactive) option that helps
protect you from this type of mistake by verifying your intentions when you try to overwrite a file.
For more information see the tip “cp can destroy a file” on page 164.

 From the Library of WoweBook.Com

ptg

Standard Input and Standard Output 251

$ echo "hi there" > /dev/null
$

When you read from /dev/null, you get a null string. Give the following cat command
to truncate a file named messages to zero length while preserving the ownership and
permissions of the file:

$ ls -l messages
-rw-r--r-- 1 max pubs 25315 2010-10-24 10:55 messages
$ cat /dev/null > messages
$ ls -l messages
-rw-r--r-- 1 max pubs 0 2010-10-24 11:02 messages

Pipes

The shell uses a pipe to connect standard output of one command to standard input
of another command. A pipe (sometimes referred to as a pipeline) has the same
effect as redirecting standard output of one command to a file and then using that
file as standard input to another command. A pipe does away with separate com-
mands and the intermediate file. The symbol for a pipe is a vertical bar (|). The syn-
tax of a command line using a pipe is

command_a [arguments] | command_b [arguments]

The preceding command line uses a pipe on a single command line to generate the
same result as the following three command lines:

command_a [arguments] > temp
command_b [arguments] < temp
rm temp

In the preceding sequence of commands, the first line redirects standard output
from command_a to an intermediate file named temp. The second line redirects
standard input for command_b to come from temp. The final line deletes temp. The
command using a pipe is not only easier to type but is generally more efficient
because it does not create a temporary file.

tr You can use a pipe with any of the Linux utilities that accept input either from a file
specified on the command line or from standard input. You can also use pipes with
commands that accept input only from standard input. For example, the tr (trans-
late) utility takes its input from standard input only. In its simplest usage tr has the
following format:

tr string1 string2

The tr utility accepts input from standard input and looks for characters that match
one of the characters in string1. Upon finding a match, it translates the matched
character in string1 to the corresponding character in string2. (The first character in
string1 translates into the first character in string2, and so forth.) The tr utility
sends its output to standard output. In both of the following examples, tr displays

 From the Library of WoweBook.Com

ptg

252 Chapter 7 The Shell

the contents of the abstract file with the letters a, b, and c translated into A, B, and
C, respectively:

$ cat abstract | tr abc ABC
$ tr abc ABC < abstract

The tr utility does not change the contents of the original file; it cannot change the
original file because it does not “know” the source of its input.

lpr The lpr (line printer) utility also accepts input from either a file or standard input.
When you type the name of a file following lpr on the command line, it places that
file in the print queue. When you do not specify a filename on the command line, lpr
takes input from standard input. This feature enables you to use a pipe to redirect
input to lpr. The first set of commands in Figure 7-12 shows how you can use ls and
lpr with an intermediate file (temp) to send a list of the files in the working directory
to the printer. If the temp file exists, the first command overwrites its contents. The
second set of commands uses a pipe to send the same list (with the exception of
temp) to the printer.

The commands in Figure 7-13 redirect the output from the who utility to temp and
then display this file in sorted order. The sort utility (page 168) takes its input from
the file specified on the command line or, when a file is not specified, from standard
input; it sends its output to standard output. The sort command line in Figure 7-13
takes its input from standard input, which is redirected (<) to come from temp. The
output that sort sends to the screen lists the users in sorted (alphabetical) order.

Because sort can take its input from standard input or from a filename on the com-
mand line, omitting the < symbol from Figure 7-13 yields the same result.

Figure 7-14 achieves the same result without creating the temp file. Using a pipe,
the shell redirects the output from who to the input of sort. The sort utility takes
input from standard input because no filename follows it on the command line.

When many people are using the system and you want information about only one
of them, you can send the output from who to grep (page 166) using a pipe. The grep
utility displays the line containing the string you specify—sam in the following
example:

$ who | grep 'sam'
sam console 2010-03-24 05:00

$ ls > temp
$ lpr temp
$ rm temp

or

$ ls | lpr

Figure 7-12 A pipe

 From the Library of WoweBook.Com

ptg

Standard Input and Standard Output 253

Another way of handling output that is too long to fit on the screen, such as a list of
files in a crowded directory, is to use a pipe to send the output through less or more
(both on page 162).

$ ls | less

The less utility displays text one screen at a time. To view another screen, press the
SPACE bar. To view one more line, press RETURN. Press h for help and q to quit.

Some utilities change the format of their output when you redirect it. Compare the
output of ls by itself and when you send it through a pipe to less.

Filters

A filter is a command that processes an input stream of data to produce an output
stream of data. A command line that includes a filter uses a pipe to connect stan-
dard output of one command to the filter’s standard input. Another pipe connects
the filter’s standard output to standard input of another command. Not all utilities
can be used as filters.

In the following example, sort is a filter, taking standard input from standard output
of who and using a pipe to redirect standard output to standard input of lpr. This
command line sends the sorted output of who to the printer:

$ who | sort | lpr

The preceding example demonstrates the power of the shell combined with the ver-
satility of Linux utilities. The three utilities who, sort, and lpr were not specifically
designed to work with each other, but they all use standard input and standard out-
put in the conventional way. By using the shell to handle input and output, you can
piece standard utilities together on the command line to achieve the results you want.

$ who > temp
$ sort < temp
max pts/4 2010-03-24 12:23
max pts/5 2010-03-24 12:33
zach pts/7 2010-03-23 08:45
sam console 2010-03-24 05:00
$ rm temp

Figure 7-13 Using a temporary file to store intermediate results

$ who | sort
max pts/4 2010-03-24 12:23
max pts/5 2010-03-24 12:33
zach pts/7 2010-03-23 08:45
sam console 2010-03-24 05:00

Figure 7-14 A pipe doing the work of a temporary file

 From the Library of WoweBook.Com

ptg

254 Chapter 7 The Shell

tee: Sends Output in Two Directions

The tee utility copies its standard input both to a file and to standard output. This
utility is aptly named: It takes a single stream of input and sends the output in two
directions. In Figure 7-15 the output of who is sent via a pipe to standard input of
tee. The tee utility saves a copy of standard input in a file named who.out and also
sends a copy to standard output. Standard output of tee goes via a pipe to standard
input of grep, which displays only those lines containing the string sam. Use the –a
(append) option to cause tee to append to a file instead of overwriting it.

Running a Command in the Background

Foreground All commands up to this point have been run in the foreground. When you run a
command in the foreground, the shell waits for it to finish before displaying another
prompt and allowing you to continue. When you run a command in the background,
you do not have to wait for the command to finish before running another command.

Jobs A job is a series of one or more commands that can be connected by pipes. You can
have only one foreground job in a window or on a screen, but you can have many
background jobs. By running more than one job at a time, you are using one of
Linux’s important features: multitasking. Running a command in the background
can be useful when the command will run for a long time and does not need super-
vision. It leaves the screen free so you can use it for other work. Of course, when
you are using a GUI, you can open another window to run another job.

Job number,
PID number

To run a command in the background, type an ampersand (&) just before the RETURN

that ends the command line. The shell assigns a small number to the job and dis-
plays this job number between brackets. Following the job number, the shell dis-
plays the process identification (PID) number—a larger number assigned by the
operating system. Each of these numbers identifies the command running in the
background. The shell then displays another prompt and you can enter another
command. When the background job finishes, the shell displays a message giving
both the job number and the command line used to run the command.

The next example runs in the background; it sends the output of ls through a pipe
to lpr, which sends it to the printer.

$ ls -l | lpr &
[1] 22092
$

$ who | tee who.out | grep sam
sam console 2010-03-24 05:00
$ cat who.out
sam console 2010-03-24 05:00
max pts/4 2010-03-24 12:23
max pts/5 2010-03-24 12:33
zach pts/7 2010-03-23 08:45

Figure 7-15 Using tee

 From the Library of WoweBook.Com

ptg

Running a Command in the Background 255

The [1] following the command line indicates that the shell has assigned job number
1 to this job. The 22092 is the PID number of the first command in the job. When
this background job completes execution, you see the message

[1]+ Done ls -l | lpr

(In place of ls –l, the shell may display something similar to ls ––color=always –l.
This difference is due to the fact that ls is aliased [page 346] to ls ––color=always.)

Moving a Job from the Foreground to the Background

CONTROL-Z You can suspend a foreground job (stop it from running) by pressing the suspend
key, usually CONTROL-Z. The shell then stops the process and disconnects standard
input from the keyboard. You can put a suspended job in the background and
restart it by using the bg command followed by the job number. You do not need to
specify the job number when there is only one stopped job.

Only the foreground job can take input from the keyboard. To connect the key-
board to a program running in the background, you must bring it to the fore-
ground. To do so, type fg without any arguments when only one job is in the
background. When more than one job is in the background, type fg, or a percent
sign (%), followed by the number of the job you want to bring into the foreground.
The shell displays the command you used to start the job (promptme in the follow-
ing example), and you can enter any input the program requires to continue:

bash $ fg 1
promptme

Redirect the output of a job you run in the background to keep it from interfer-
ing with whatever you are working on in the foreground (on the screen). Refer
to “Separating and Grouping Commands” on page 303 for more detail about
background tasks.

kill: Aborting a Background Job

The interrupt key (usually CONTROL-C) cannot abort a background process; you must
use kill (page 455) for this purpose. Follow kill on the command line with either the
PID number of the process you want to abort or a percent sign (%) followed by the
job number.

Determining the
PID of a process

using ps

If you forget a PID number, you can use the ps (process status) utility (page 328) to
display it. The following example runs a tail –f outfile command (the –f [follow]
option causes tail to watch outfile and display new lines as they are written to the
file) as a background job, uses ps to display the PID number of the process, and
aborts the job with kill:

$ tail -f outfile &
[1] 18228
$ ps | grep tail
18228 pts/4 00:00:00 tail
$ kill 18228
[1]+ Terminated tail -f outfile
$

 From the Library of WoweBook.Com

ptg

256 Chapter 7 The Shell

Determining the
number of a job

using jobs

If you forget a job number, you can use the jobs command to display a list of job
numbers. The next example is similar to the previous one except it uses the job
number instead of the PID number to identify the job to be killed. Sometimes the
message saying the job is terminated does not appear until you press RETURN after the
RETURN that executes the kill command.

$ tail -f outfile &
[1] 18236
$ bigjob &
[2] 18237
$ jobs
[1]- Running tail -f outfile &
[2]+ Running bigjob &
$ kill %1
$ RETURN
[1]- Terminated tail -f outfile
$

Filename Generation/Pathname Expansion

Wildcards, globbing When you give the shell abbreviated filenames that contain special characters, also
called metacharacters, the shell can generate filenames that match the names of
existing files. These special characters are also referred to as wildcards because they
act much as the jokers do in a deck of cards. When one of these characters appears
in an argument on the command line, the shell expands that argument in sorted
order into a list of filenames and passes the list to the program called by the com-
mand line. Filenames that contain these special characters are called ambiguous file
references because they do not refer to any one specific file. The process that the
shell performs on these filenames is called pathname expansion or globbing.

Ambiguous file references refer to a group of files with similar names quickly, sav-
ing the effort of typing the names individually. They can also help find a file whose
name you do not remember in its entirety. If no filename matches the ambiguous file
reference, the shell generally passes the unexpanded reference—special characters and
all—to the command.

The ? Special Character

The question mark (?) is a special character that causes the shell to generate file-
names. It matches any single character in the name of an existing file. The following
command uses this special character in an argument to the lpr utility:

$ lpr memo?

The shell expands the memo? argument and generates a list of files in the working
directory that have names composed of memo followed by any single character. The
shell then passes this list to lpr. The lpr utility never “knows” the shell generated the
filenames it was called with. If no filename matches the ambiguous file reference,

 From the Library of WoweBook.Com

ptg

Filename Generation/Pathname Expansion 257

the shell passes the string itself (memo?) to lpr or, if it is set up to do so, passes a null
string (see nullglob on page 355).

The following example uses ls first to display the names of all files in the working
directory and then to display the filenames that memo? matches:

$ ls
mem memo12 memo9 memomax newmemo5
memo memo5 memoa memos
$ ls memo?
memo5 memo9 memoa memos

The memo? ambiguous file reference does not match mem, memo, memo12,
memomax, or newmemo5. You can also use a question mark in the middle of an
ambiguous file reference:

$ ls
7may4report may4report mayqreport may_report
may14report may4report.79 mayreport may.report
$ ls may?report
may.report may4report may_report mayqreport

You can use echo and ls to practice generating filenames. The echo utility displays
the arguments that the shell passes to it:

$ echo may?report
may.report may4report may_report mayqreport

The shell first expands the ambiguous file reference into a list of all files in the
working directory that match the string may?report. It then passes this list to echo,
just as though you had entered the list of filenames as arguments to echo. The echo
utility displays the list of filenames.

A question mark does not match a leading period (one that indicates a hidden file-
name; see page 204). When you want to match filenames that begin with a period,
you must explicitly include the period in the ambiguous file reference.

The * Special Character

The asterisk (*) performs a function similar to that of the question mark but
matches any number of characters, including zero characters, in a filename. The fol-
lowing example first shows all files in the working directory and then shows three
commands that display all the filenames that begin with the string memo, end with
the string mo, and contain the string alx:

$ ls
amemo memo memoalx.0620 memosally user.memo
mem memo.0612 memoalx.keep sallymemo
memalx memoa memorandum typescript
$ echo memo*
memo memo.0612 memoa memoalx.0620 memoalx.keep memorandum memosally
$ echo *mo
amemo memo sallymemo user.memo
$ echo *alx*
memalx memoalx.0620 memoalx.keep

 From the Library of WoweBook.Com

ptg

258 Chapter 7 The Shell

The ambiguous file reference memo* does not match amemo, mem, sallymemo, or
user.memo. Like the question mark, an asterisk does not match a leading period in a
filename.

The –a option causes ls to display hidden filenames. The command echo * does not
display . (the working directory), .. (the parent of the working directory), .aaa, or
.profile. In contrast, the command echo .* displays only those four names:

$ ls
aaa memo.sally sally.0612 thurs
memo.0612 report saturday
$ ls -a
. .aaa aaa memo.sally sally.0612 thurs
.. .profile memo.0612 report saturday
$ echo *
aaa memo.0612 memo.sally report sally.0612 saturday thurs
$ echo .*
. .. .aaa .profile

In the following example, .p* does not match memo.0612, private, reminder, or
report. The ls .* command causes ls to list .private and .profile in addition to the
contents of the . directory (the working directory) and the .. directory (the parent of
the working directory). When called with the same argument, echo displays the
names of files (including directories) in the working directory that begin with a dot
(.), but not the contents of directories.

$ ls -a
. .private memo.0612 reminder
.. .profile private report
$ echo .p*
.private .profile
$ ls .*
.private .profile

.:
memo.0612 private reminder report

..:

.

.
$ echo .*
. .. .private .profile

You can plan to take advantage of ambiguous file references when you establish
conventions for naming files. For example, when you end all text filenames with
.txt, you can reference that group of files with *.txt. The next command uses this
convention to send all text files in the working directory to the printer. The amper-
sand causes lpr to run in the background.

$ lpr *.txt &

 From the Library of WoweBook.Com

ptg

Filename Generation/Pathname Expansion 259

The [] Special Characters

A pair of brackets surrounding a list of characters causes the shell to match file-
names containing the individual characters. Whereas memo? matches memo fol-
lowed by any character, memo[17a] is more restrictive: It matches only memo1,
memo7, and memoa. The brackets define a character class that includes all the
characters within the brackets. (GNU calls this a character list; a GNU character
class is something different.) The shell expands an argument that includes a charac-
ter-class definition, by substituting each member of the character class, one at a
time, in place of the brackets and their contents. The shell then passes the list of
matching filenames to the program it is calling.

Each character-class definition can replace only a single character within a filename.
The brackets and their contents are like a question mark that substitutes only the
members of the character class.

The first of the following commands lists the names of all files in the working direc-
tory that begin with a, e, i, o, or u. The second command displays the contents of
the files named page2.txt, page4.txt, page6.txt, and page8.txt.

$ echo [aeiou]*
...
$ less page[2468].txt
...

A hyphen within brackets defines a range of characters within a character-class def-
inition. For example, [6–9] represents [6789], [a–z] represents all lowercase letters
in English, and [a–zA–Z] represents all letters, both uppercase and lowercase, in
English.

The following command lines show three ways to print the files named part0,
part1, part2, part3, and part5. Each of these command lines causes the shell to call
lpr with five filenames:

$ lpr part0 part1 part2 part3 part5

$ lpr part[01235]

$ lpr part[0-35]

The first command line explicitly specifies the five filenames. The second and third
command lines use ambiguous file references, incorporating character-class defini-
tions. The shell expands the argument on the second command line to include all
files that have names beginning with part and ending with any of the characters in
the character class. The character class is explicitly defined as 0, 1, 2, 3, and 5. The
third command line also uses a character-class definition but defines the character
class to be all characters in the range 0–3 plus 5.

 From the Library of WoweBook.Com

ptg

260 Chapter 7 The Shell

The following command line prints 39 files, part0 through part38:

$ lpr part[0-9] part[12][0-9] part3[0-8]

The first of the following commands lists the files in the working directory whose
names start with a through m. The second lists files whose names end with x, y, or z.

$ echo [a-m]*
...
$ echo *[x-z]
...

optional When an exclamation point (!) or a caret (^) immediately follows the opening
bracket ([) that defines a character class, the string enclosed by the brackets matches
any character not between the brackets. Thus [^tsq]* matches any filename that
does not begin with t, s, or q.

The following examples show that *[^ab] matches filenames that do not end with the
letters a or b and that [^b-d]* matches filenames that do not begin with b, c, or d.

$ ls
aa ab ac ad ba bb bc bd cc dd
$ ls *[^ab]
ac ad bc bd cc dd
$ ls [^b-d]*
aa ab ac ad

You can cause a character class to match a hyphen (–) or a closing bracket (]) by
placing it immediately before the final closing bracket.

The next example demonstrates that the ls utility cannot interpret ambiguous file
references. First ls is called with an argument of ?old. The shell expands ?old into a
matching filename, hold, and passes that name to ls. The second command is the
same as the first, except the ? is quoted (refer to “Special Characters” on page 160).
The shell does not recognize this question mark as a special character and passes it
to ls. The ls utility generates an error message saying that it cannot find a file named
?old (because there is no file named ?old).

$ ls ?old
hold
$ ls \?old
ls: ?old: No such file or directory

Like most utilities and programs, ls cannot interpret ambiguous file references; that
work is left to the shell.

The shell expands ambiguous file references

tip The shell does the expansion when it processes an ambiguous file reference, not the program that
the shell runs. In the examples in this section, the utilities (ls, cat, echo, lpr) never see the ambig-
uous file references. The shell expands the ambiguous file references and passes a list of ordinary
filenames to the utility. In the previous examples, echo shows this to be true because it simply
displays its arguments; it never displays the ambiguous file reference.

 From the Library of WoweBook.Com

ptg

Chapter Summary 261

Builtins

A builtin is a utility (also called a command) that is built into a shell. Each of the
shells has its own set of builtins. When it runs a builtin, the shell does not fork a
new process. Consequently builtins run more quickly and can affect the environ-
ment of the current shell. Because builtins are used in the same way as utilities, you
will not typically be aware of whether a utility is built into the shell or is a stand-
alone utility.

The echo utility, for example, is a shell builtin. The shell always executes a shell
builtin before trying to find a command or utility with the same name. See
page 1002 for an in-depth discussion of builtin commands and page 1015 for a list
of bash builtins.

Listing bash
builtins

To display a list of bash builtins, give the command info bash builtin. To display a
page with more information on each builtin, move the cursor to one of the lines
listing a builtin command and press RETURN. Alternatively, after typing info bash,
give the command /builtin to search the bash documentation for the string builtin.
The cursor will rest on the word Builtin in a menu; press RETURN to display the
builtins menu.

Because bash was written by GNU, the info page has better information than does
the man page. If you want to read about builtins in the man page, give the command
man bash and search for the section on builtins with the command /^SHELL BUIL-
TIN COMMANDS (search for a line that begins with SHELL . . .).

Chapter Summary

The shell is the Linux command interpreter. It scans the command line for proper
syntax, picking out the command name and any arguments. The first argument is
argument one, the second is argument two, and so on. The name of the command
itself is argument zero. Many programs use options to modify the effects of a com-
mand. Most Linux utilities identify an option by its leading one or two hyphens.

When you give it a command, the shell tries to find an executable program with the
same name as the command. When it does, the shell executes the program. When it
does not, the shell tells you that it cannot find or execute the program. If the com-
mand is a simple filename, the shell searches the directories given in the variable
PATH in an attempt to locate the command.

When it executes a command, the shell assigns one file to the command’s standard
input and another file to its standard output. By default the shell causes a com-
mand’s standard input to come from the keyboard and its standard output to go to
the screen. You can instruct the shell to redirect a command’s standard input from
or standard output to any file or device. You can also connect standard output of
one command to standard input of another command using a pipe. A filter is a

 From the Library of WoweBook.Com

ptg

262 Chapter 7 The Shell

command that reads its standard input from standard output of one command and
writes its standard output to standard input of another command.

When a command runs in the foreground, the shell waits for it to finish before it
displays a prompt and allows you to continue. When you put an ampersand (&) at
the end of a command line, the shell executes the command in the background and
displays another prompt immediately. Run slow commands in the background
when you want to enter other commands at the shell prompt. The jobs builtin dis-
plays a list of suspended jobs and jobs running in the background; it includes the
job number of each.

The shell interprets special characters on a command line to generate filenames. A
question mark represents any single character, and an asterisk represents zero or
more characters. A single character may also be represented by a character class: a
list of characters within brackets. A reference that uses special characters (wildcards)
to abbreviate a list of one or more filenames is called an ambiguous file reference.

A builtin is a utility that is built into a shell. Each shell has its own set of builtins.
When it runs a builtin, the shell does not fork a new process. Consequently builtins
run more quickly and can affect the environment of the current shell.

Utilities and Builtins Introduced in This Chapter

Table 7-1 lists the utilities introduced in this chapter.

Exercises

1. What does the shell ordinarily do while a command is executing? What
should you do if you do not want to wait for a command to finish before
running another command?

2. Using sort as a filter, rewrite the following sequence of commands:

Table 7-1 New utilities

Utility Function

tr Maps one string of characters to another (page 251)

tee Sends standard input to both a file and standard output (page 254)

bg Moves a process to the background (page 255)

fg Moves a process to the foreground (page 255)

jobs Displays a list of suspended jobs and jobs running in the background
(page 256)

 From the Library of WoweBook.Com

ptg

Exercises 263

$ sort list > temp
$ lpr temp
$ rm temp

3. What is a PID number? Why are these numbers useful when you run
processes in the background? Which utility displays the PID numbers of
the commands you are running?

4. Assume that the following files are in the working directory:

$ ls
intro notesb ref2 section1 section3 section4b
notesa ref1 ref3 section2 section4a sentrev

Give commands for each of the following, using wildcards to express
filenames with as few characters as possible.

a. List all files that begin with section.

b. List the section1, section2, and section3 files only.

c. List the intro file only.

d. List the section1, section3, ref1, and ref3 files.

5. Refer to the man pages to determine which command will

a. Output the number of lines in the standard input that contain the word
a or A .

b. Output only the names of the files in the working directory that contain
the pattern $(.

c. List the files in the working directory in reverse alphabetical order.

d. Send a list of files in the working directory to the printer, sorted by size.

6. Give a command to

a. Redirect standard output from a sort command to a file named
phone_list. Assume the input file is named numbers.

b. Translate all occurrences of the characters [and { to the character (, and
all occurrences of the characters] and } to the character) in the file
permdemos.c. (Hint: Refer to the tr man page.)

c. Create a file named book that contains the contents of two other files:
part1 and part2.

7. The lpr and sort utilities accept input either from a file named on the
command line or from standard input.

a. Name two other utilities that function in a similar manner.

b. Name a utility that accepts its input only from standard input.

8. Give an example of a command that uses grep

 From the Library of WoweBook.Com

ptg

264 Chapter 7 The Shell

a. With both input and output redirected.

b. With only input redirected.

c. With only output redirected.

d. Within a pipe.

In which of the preceding cases is grep used as a filter?

9. Explain the following error message. Which filenames would a subsequent
ls display?

$ ls
abc abd abe abf abg abh
$ rm abc ab*
rm: cannot remove 'abc': No such file or directory

Advanced Exercises

10. When you use the redirect output symbol (>) with a command, the shell
creates the output file immediately, before the command is executed.
Demonstrate that this is true.

11. In experimenting with shell variables, Max accidentally deletes his PATH
variable. He decides he does not need the PATH variable. Discuss some of
the problems he may soon encounter and explain the reasons for these
problems. How could he easily return PATH to its original value?

12. Assume your permissions allow you to write to a file but not to delete it.

a. Give a command to empty the file without invoking an editor.

b. Explain how you might have permission to modify a file that you cannot
delete.

13. If you accidentally create a filename that contains a nonprinting character,
such as a CONTROL character, how can you remove the file?

14. Why does the noclobber variable not protect you from overwriting an
existing file with cp or mv?

15. Why do command names and filenames usually not have embedded SPACEs?
How would you create a filename containing a SPACE? How would you
remove it? (This is a thought exercise, not recommended practice. If you
want to experiment, create and work in a directory that contains only
your experimental file.)

16. Create a file named answer and give the following command:

$ > answers.0102 < answer cat

Explain what the command does and why. What is a more conventional
way of expressing this command?

 From the Library of WoweBook.Com

ptg

265

I

PART III

Digging into Ubuntu Linux

CHAPTER 8

Linux GUIs: X and GNOME 267

CHAPTER 9

The Bourne Again Shell 291

CHAPTER 10

Networking and the Internet 371

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

222666777

8Chapter, This chapter covers the Linux graphical user interface (GUI). It
continues where Chapter 4 left off, going into more detail
about the X Window System, the basis for the Linux GUI. It
presents a brief history of GNOME and KDE and discusses
some of the problems and benefits of having two major Linux
desktop environments. The section on the Nautilus File
Browser covers the View and Side panes, the control bars, the
menubar, and the Spatial view. The final section explores some
GNOME utilities, including Terminal, the GNOME terminal
emulator.

In This Chapter

X Window System 268

Starting X from a Character-
Based Display 270

Remote Computing and Local
Displays 270

Desktop Environments/
Managers 275

The Nautilus File Browser
Window 276

The Nautilus Spatial View 282

GNOME Utilities 284

Run Application Window 286

GNOME Terminal Emulator/
Shell . 287

8

Linux GUIs: X and

GNOME

 From the Library of WoweBook.Com

ptg

268 Chapter 8 Linux GUIs: X and GNOME

X Window System

History of X The X Window System (www.x.org) was created in 1984 at the Massachusetts
Institute of Technology (MIT) by researchers working on a distributed computing
project and a campuswide distributed environment, called Project Athena. This sys-
tem was not the first windowing software to run on a UNIX system, but it was the
first to become widely available and accepted. In 1985, MIT released X (version 9)
to the public, for use without a license. Three years later, a group of vendors formed
the X Consortium to support the continued development of X, under the leadership
of MIT. By 1998, the X Consortium had become part of the Open Group. In 2001,
the Open Group released X version 11, release 6.6 (X11R6.6).

The X Window System was inspired by the ideas and features found in earlier pro-
prietary window systems but is written to be portable and flexible. X is designed to
run on a workstation, typically attached to a LAN. The designers built X with the
network in mind. If you can communicate with a remote computer over a network,
running an X application on that computer and sending the results to a local display
is straightforward.

Although the X protocol has remained stable for a long time, additions to it in the
form of extensions are quite common. One of the most interesting—albeit one that
has not yet made its way into production—is the Media Application Server, which
aims to provide the same level of network transparency for sound and video that X
does for simple windowing applications.

XFree86 and X.org Many distributions of Linux used the XFree86 X server, which inherited its license
from the original MIT X server, through release 4.3. In early 2004, just before the
release of XFree86 4.4, the XFree86 license was changed to one that is more restric-
tive and not compatible with the GPL (page 6). In the wake of this change, a num-
ber of distributions abandoned XFree86 and replaced it with an X.org X server that
is based on a pre-release version of XFree86 4.4, which predates the change in the
XFree86 license. Ubuntu uses the X.org X server, named X; it is functionally equiva-
lent to the one distributed by XFree86 because most of the code is the same. Thus
modules designed to work with one server work with the other.

The X stack The Linux GUI is built in layers (Figure 8-1). The bottom layer is the kernel, which
provides the basic interfaces to the hardware. On top of the kernel is the X server,
which is responsible for managing windows and drawing basic graphical primitives
such as lines and bitmaps. Rather than directly generating X commands, most pro-
grams use Xlib, the next layer, which is a standard library for interfacing with an X
server. Xlib is complicated and does not provide high-level abstractions, such as
buttons and text boxes. Rather than using Xlib directly, most programs rely on a
toolkit that provides high-level abstractions. Using a library not only makes pro-
gramming easier, but also brings consistency to applications.

In recent years, the popularity of X has grown outside the UNIX community and
extended beyond the workstation class of computers it was originally conceived for.
Today X is available for Macintosh computers as well as for PCs running Windows.

 From the Library of WoweBook.Com

www.x.org

ptg

X Window System 269

Client/server
environment

Computer networks are central to the design of X. It is possible to run an applica-
tion on one computer and display the results on a screen attached to a different
computer; the ease with which this can be done distinguishes X from other win-
dow systems available today. Thanks to this capability, a scientist can run and
manipulate a program on a powerful supercomputer in another building or
another country and view the results on a personal workstation or laptop com-
puter. For more information refer to “Remote Computing and Local Displays” on
page 270.

When you start an X Window System session, you set up a client/server environ-
ment. One process, called the X server, displays a desktop and windows under X.
Each application program and utility that makes a request of the X server is a client
of that server. Examples of X clients include xterm, Compiz, gnome-calculator, and
such general applications as word processing and spreadsheet programs. A typical
request from a client is to display an image or open a window.

Events The server also monitors keyboard and mouse actions (events) and passes them to
the appropriate clients. For example, when you click the border of a window, the
server sends this event to the window manager (client). Characters you type into a
terminal emulation window are sent to that terminal emulator (client). The client
takes appropriate action when it receives an event—for example, making a window
active or displaying the typed character on the server.

Figure 8-1 The X stack

Graphical applications

GTK Tk Motif OtherQt toolkits

Xlib

X server

Linux kernel

The roles of X client and server may be counterintuitive

tip The terms client and server, when referring to X, have the opposite meanings of how you might
think of them intuitively: The server runs the mouse, keyboard, and display; the application pro-
gram is the client.

This disparity becomes even more apparent when you run an application program on a remote
system. You might think of the system running the program as the server and the system provid-
ing the display as the client, but in fact it is the other way around. With X, the system providing
the display is the server, and the system running the program is the client.

 From the Library of WoweBook.Com

ptg

270 Chapter 8 Linux GUIs: X and GNOME

Separating the physical control of the display (the server) from the processes needing
access to the display (the client) makes it possible to run the server on one computer
and the client on another computer. Most of the time, this book discusses running
the X server and client applications on a single system. “Remote Computing and
Local Displays” describes using X in a distributed environment.

optional You can run xev (X event) by giving the command xev from a terminal emulator
window and then watch the information flow from the client to the server and back
again. This utility opens the Event Tester window, which has a box in it, and asks
the X server to send it events each time anything happens, such as moving the
mouse pointer, clicking a mouse button, moving the mouse pointer into the box,
typing, or resizing the window. The xev utility displays information about each
event in the window you opened it from. You can use xev as an educational tool:
Start it and see how much information is processed each time you move the mouse.
Close the Event Tester window to exit from xev.

Using X

This section provides basic information about starting and configuring X from the
command line. For more information see the Xserver man page and the man pages
listed at the bottom of the Xserver man page.

Starting X from a Character-Based Display

Once you have logged in on a virtual console (page 149), you can start an X Win-
dow System server by using startx. See “rc-sysinit task and inittab” on page 439 for
information on creating a /etc/inittab file that causes Linux to boot into recovery
(single-user) mode, where it displays a textual interface. When you run startx, the X
server displays an X screen, using the first available virtual console. The following
command causes startx to run in the background so you can switch back to this vir-
tual console and give other commands:

$ startx &

Remote Computing and Local Displays

Typically the X server and the X client run on the same machine. To identify a
remote X server (display) an X application (client) is to use, you can either set a
global shell variable or use a command-line option. Before you can connect to a
remote X server, you must turn off two security features: You must turn off the X
–nolisten tcp option on the server and you must run xhost on the server to give the
client permission to connect to the X server. Unless you have a reason to leave
these features off, turn them back on when you finish with the examples in this sec-
tion—leaving them off weakens system security. These tasks must be performed on
the X server because the features protect the server. You do not have to prepare the

 From the Library of WoweBook.Com

ptg

X Window System 271

client. The examples in this section assume the server is named tiny and the client is
named dog.

The X –nolisten tcp Option

As Ubuntu is installed, the X server starts with the –nolisten tcp option, which protects
the X server by preventing TCP connections to the X server. To connect to a remote X
server, you must turn this option off on the server. To turn it off, while working with
root privileges create a file named /etc/gdm/custom.conf with the following lines:

max@tiny:~$ cat /etc/gdm/custom.conf
[security]
DisallowTCP=false

Reboot the system to restart the X server and gdm (gdm-binary) to effect this change.
See library.gnome.org/admin/gdm/2.28/configuration.html.en#daemonconfig for
more information.

xhost Grants Access to a Display

As installed, xhost protects each user’s X server. A user who wants to grant access to his
X server needs to run xhost. Assume Max is logged in on the system named tiny and
wants to allow a user on dog to use his display (X server). Max runs this command:

max@tiny:~$ xhost +dog
dog being added to access control list
max@tiny:~$ xhost
access control enabled, only authorized clients can connect
INET:dog

Without any arguments, xhost describes its state. In the preceding example, INET
indicates an IPv4 connection. If Max wants to allow all systems to access his dis-
play, he can give the following command:

$ xhost +
access control disabled, clients can connect from any host

If you frequently work with other users via a network, you may find it convenient
to add an xhost line to your .bash_profile file (page 293)—but see the tip on the next
page regarding security and xhost. Be selective in granting access to your X display
with xhost; if another system has access to your display, you may find your work
frequently interrupted.

Security and the Xorg –nolisten tcp option
security In a production environment, if you need to place an X server and the clients on different sys-

tems, it is best to forward (tunnel) X over ssh. This setup provides a secure, encrypted connec-
tion. The method described in this section is useful on local, secure networks and for
understanding how X works. See “Forwarding X11” on page 681 for information on setting up
ssh so it forwards X.

 From the Library of WoweBook.Com

ptg

272 Chapter 8 Linux GUIs: X and GNOME

The DISPLAY Variable

The most common method of identifying a display is to use the DISPLAY shell envi-
ronment variable to hold the X server ID string. This locally unique identification
string is automatically set up when the X server starts. The DISPLAY variable holds
the screen number of a display:

$ echo $DISPLAY
:0.0

The format of the complete (globally unique) ID string for a display is

[hostname]:display-number[.screen-number]

where hostname is the name of the system running the X server, display-number is
the number of the logical (physical) display (0 unless multiple monitors or graphical
terminals are attached to the system, or if you are running X over ssh), and screen-
number is the logical number of the (virtual) terminal (0 unless you are running mul-
tiple instances of X). When you are working with a single physical screen, you can
shorten the identification string. For example, you can use tiny:0.0 or tiny:0 to iden-
tify the only physical display on the system named tiny. When the X server and the X
clients are running on the same system, you can shorten this identification string
even further to :0.0 or :0. An ssh connection shows DISPLAY as localhost:10.0. You
may have to use ssh –X to see this value. See “X11 forwarding” on page 664 for
information on setting up ssh so that it forwards X.

If DISPLAY is empty or not set, the screen you are working from is not running X.
An application (the X client) uses the value of the DISPLAY variable to determine
which display, keyboard, and mouse (collectively, the X server) to use. One way to
run an X application, such as gnome-calculator, on the local system but have it use
the X display on a remote system is to change the value of the DISPLAY variable on
the client system so it identifies the remote X server.

sam@dog:~$ export DISPLAY=tiny:0.0
sam@dog:~$ gnome-calculator &

The preceding example shows Sam running gnome-calculator with the default X server
running on the system named tiny. After setting the DISPLAY variable to the ID of the
tiny server, all X programs (clients) Sam starts use tiny as their server (i.e., output
appears on tiny’s display and input comes from tiny’s keyboard and mouse). Try run-
ning xterm in place of gnome-calculator and see which keyboard it accepts input from.
If this example generates an error, refer to the two preceding sections, which explain
how to set up the server to allow a remote system to connect to it.

Security and xhost

security Giving a remote system access to your display using xhost means any user on the remote system can
watch everything you type in a terminal emulation window, including passwords. For this reason, some
software packages, such as the Tcl/Tk development system (www.tcl.tk), restrict their own capabilities
when xhost permits remote access to the X server. If you are concerned about security or want to take
full advantage of systems such as Tcl/Tk, you should use a safer means of granting remote access to
your X session. See the xauth man page for information about a more secure replacement for xhost.

 From the Library of WoweBook.Com

www.tcl.tk

ptg

X Window System 273

The –display Option

For a single command, you can usually specify the X server on the command line:

sam@dog:~$ gnome-calculator -display tiny:0.0

Many X programs accept the –display option. Those that do not accept this option
send their output to the display specified by the DISPLAY variable.

Running Multiple X Servers

You can run multiple X servers on a single system. The most common reason for running
a second X server is to use a second display that allocates a different number of bits to
each screen pixel (uses a different color depth [page 1141]). The possible values are 8,
16, 24, and 32 bits per pixel. Most X servers available for Linux default to 24 or 32 bits
per pixel, permitting the use of millions of colors simultaneously. Starting an X server
with 8 bits per pixel permits the use of any combination of 256 colors at the same time.
The maximum number of bits per pixel allowed depends on the computer graphics hard-
ware and X server. With fewer bits per pixel, the system has to transfer less data, possibly
making it more responsive. In addition, many games work with only 256 colors.

When you start multiple X servers, each must have a different ID string. The follow-
ing command starts a second X server:

$ startx –– :1

The –– option marks the end of the startx options and arguments. The startx script
uses the arguments to the left of this option and passes arguments to the right of this
option to the X server. When you give the preceding command in a graphical envi-
ronment, such as from a terminal emulator, you must work with root privileges;
you will initiate a privileged X session. The following command starts a second X
server running at 16 bits per pixel:

$ startx -- :1 -depth 16 &

“Using Virtual Consoles” on page 149 describes how to switch to a virtual console
to start a second server where you do not have to work with root privileges.

Guest Session When you click the Session Indicator (Figure 4-2, page 101), select Guest Session
and Ubuntu starts a second X server to accommodate the guest user. When the guest
user logs off, the original X server displays the first user’s desktop. You can switch
between the X servers (and users) by selecting the virtual console (page 149) that
displays the X server you want to work with.

X over ssh See “Tunneling/Port Forwarding” on page 681 for information about running X
over an ssh connection.

Stopping the X Server

How you terminate a window manager depends on which window manager is running
and how it is configured. If X stops responding, switch to a virtual terminal, log in from

When you change the value of DISPLAY
tip When you change the value of the DISPLAY variable, all X programs send their output to the new

display named by DISPLAY.

 From the Library of WoweBook.Com

ptg

274 Chapter 8 Linux GUIs: X and GNOME

another terminal or a remote system, or use ssh to access the system. Then kill
(page 455) the process running X. You can also press CONTROL-ALT-BACKSPACE to quit the X
server. This method may not shut down the X session cleanly; use it only as a last resort.

Remapping Mouse Buttons

Throughout this book, each description of a mouse click refers to the button by its
position (left, middle, or right, with left implied when no button is specified)
because the position of a mouse button is more intuitive than an arbitrary name or
number. X numbers buttons starting at the left and continuing with the mouse
wheel. The buttons on a three-button mouse are numbered 1 (left), 2 (middle), and
3 (right). A mouse wheel, if present, is numbered 4 (rolling it up) and 5 (rolling it
down). Clicking the wheel is equivalent to clicking the middle mouse button. The
buttons on a two-button mouse are 1 (left) and 2 (right).

If you are right-handed, you can conveniently press the left mouse button with your
index finger; X programs take advantage of this fact by relying on button 1 for the
most common operations. If you are left-handed, your index finger rests most con-
veniently on button 2 or 3 (the right button on a two- or three-button mouse).

“Mouse Preferences” on page 105 describes how to use a GUI to change a mouse
between right-handed and left-handed. You can also change how X interprets the
mouse buttons using xmodmap. If you are left-handed and using a three-button
mouse with a wheel, the following command causes X to interpret the right button
as button 1 and the left button as button 3:

$ xmodmap -e 'pointer = 3 2 1 4 5'

Omit the 4 and 5 if the mouse does not have a wheel. The following command
works for a two-button mouse without a wheel:

$ xmodmap -e 'pointer = 2 1'

If xmodmap displays a message complaining about the number of buttons, use the
xmodmap –pp option to display the number of buttons X has defined for the mouse:

$ xmodmap -pp
There are 9 pointer buttons defined.

 Physical Button
 Button Code
 1 1
 2 2
 3 3
 4 4
 5 5
 6 6
 7 7
 8 8
 9 9

Then expand the previous command, adding numbers to complete the list. If the
–pp option shows nine buttons, give the following command:

 From the Library of WoweBook.Com

ptg

X Window System 275

$ xmodmap -e 'pointer = 3 2 1 4 5 6 7 8 9'

Changing the order of the first three buttons is critical to making the mouse suitable
for a left-handed user. When you remap the mouse buttons, remember to reinterpret
the descriptions in this book accordingly. When this book asks you to click the left
button or does not specify which button to click, use the right button, and vice versa.

Desktop Environments/Managers

Conceptually X is very simple. As a consequence, it does not provide some of the
more common features found in GUIs, such as the ability to drag windows. The
UNIX/Linux philosophy is one of modularity: X relies on a window manager, such
as Metacity or Compiz, to draw window borders and handle moving and resizing
operations.

Unlike a window manager, which has a clearly defined task, a desktop environment
(manager) does many things. In general, a desktop environment, such as GNOME
or KDE, provides a means of launching applications and utilities, such as a file man-
ager, that work with a window manager.

GNOME and KDE

The KDE project began in 1996, with the aim of creating a consistent, user-friendly
desktop environment for free UNIX-like operating systems. KDE is based on the Qt
toolkit made by Trolltech. When KDE development began, the Qt license was not
compatible with the GPL (page 6). For this reason the Free Software Foundation
decided to support a different project, the GNU Network Object Model Environ-
ment (GNOME). More recently Qt has been released under the terms of the GPL,
eliminating part of the rationale for GNOME’s existence.

GNOME GNOME is the default desktop environment for Ubuntu Linux. It provides a sim-
ple, coherent user interface that is suitable for corporate use. GNOME uses GTK
for drawing widgets. GTK, developed for the GNU Image Manipulation Program
(gimp), is written in C, although bindings for C++ and other languages are available.

GNOME does not take much advantage of its component architecture. Instead, it
continues to support the traditional UNIX philosophy of relying on many small
programs, each of which is good at doing a specific task.

KDE KDE is written in C++ on top of the Qt framework. KDE tries to use existing tech-
nology, if it can be reused, but creates its own if nothing else is available or if a
superior solution is needed. For example, KDE implemented an HTML rendering
engine long before the Mozilla project was born. Similarly, work on KOffice began
a long time before StarOffice became the open-source OpenOffice.org. In contrast,
the GNOME office applications are stand-alone programs that originated outside
the GNOME project. KDE’s portability is demonstrated by the use of most of its
core components, including Konqueror and KOffice, under Mac OS X.

Interoperability Since the release of version 2, the GNOME project has focused on simplifying the
user interface, removing options where they are deemed unnecessary, and aiming

 From the Library of WoweBook.Com

ptg

276 Chapter 8 Linux GUIs: X and GNOME

for a set of default settings that the end user will not wish to change. KDE has
moved in the opposite direction, emphasizing configurability.

The freedesktop.org group (freedesktop.org), whose members are drawn from the
GNOME and KDE projects, is improving interoperability and aims to produce
standards that will allow the two environments to work together. One standard
released by freedesktop.org allows applications to use the notification area of either
the GNOME or KDE panel without being aware of which desktop environment
they are running in.

GNUStep

The GNUStep project (www.gnustep.org), which began before both the KDE and
GNOME projects, is creating an open-source implementation of the OPENSTEP
API and desktop environment. The result is a very clean and fast user interface.

The default look of WindowMaker, the GNUStep window manager, is somewhat
dated, but it supports themes so you can customize its appearance. The user inter-
face is widely regarded as one of the most intuitive found on a UNIX platform.
Because GNUStep has less overhead than GNOME and KDE, it runs better on
older hardware. If you are running Linux on hardware that struggles with GNOME
and KDE or if you would prefer a user interface that does not attempt to mimic
Windows, try GNUStep. WindowMaker is provided in the wmaker package.

The Nautilus File Browser Window

“Using Nautilus to Work with Files” on page 107 presented an introduction to
using Nautilus. This section discusses the Nautilus File Browser window in
more depth.

Figure 8-2 A Nautilus File Browser window displaying icons

Menubar

Main toolbar

Location bar

Side pane button

Side pane

View pane

Status bar

Handle

 From the Library of WoweBook.Com

www.gnustep.org

ptg

The Nautilus File Browser Window 277

Figure 8-2 shows a File Browser window with a Side pane (sometimes called a side-
bar), View pane, menubar, toolbar, location bar, and status bar. To display your
home folder in a File Browser window, select Main menu: Places Home Folder.

The View Pane

The View pane displays icons or a list of filenames. Select the view you prefer from
the drop-down list at the right end of the location bar. Figure 8-2 shows an Icon
view and Figure 8-3 shows a List view. A Compact view is also available. Objects in
the View pane behave exactly as objects on the desktop do. See the sections starting
on page 101 for information on working with objects.

You can cut/copy and paste objects within a single View pane, between View panes,
or between a View pane and the desktop. The Object context menu (right-click) has
cut, copy, and paste selections. Alternatively, you can use the clipboard (page 124)
to cut/copy and paste objects.

The Side Pane

The Side pane augments the information Nautilus displays in the View pane. Press F9 or
click the X at the top of the Side pane to close it. You can display the Side pane by

Figure 8-3 A Nautilus File Browser window displaying a
List view and a textual location bar

Location bar

Nautilus can open a terminal emulator

tip When you install the nautilus-open-terminal package (see page 519 for instructions) and log out
and log back in, Nautilus presents an Open in Terminal selection in context menus where appro-
priate. For example, with this package installed, when you right-click a folder (directory) object
and select Open in Terminal, Nautilus opens a terminal emulator with that directory as the work-
ing directory (page 204).

 From the Library of WoweBook.Com

ptg

278 Chapter 8 Linux GUIs: X and GNOME

pressing F9 or by selecting File Browser menubar: View Side Pane. To change the
horizontal size of the Side pane, drag the handle (Figure 8-2, page 276) on its right side.

The Side pane can display six types of information. The button at its top controls
which type it displays. This button is initially labeled Places; click it to display the
Side pane drop-down list, which has the selections described next.

Places Places lists folders. Double-click one of these folders to display that folder in the
View pane. You can open a directory in a new File Browser window by right-
clicking the directory in Places and selecting Open in New Window. Right-click and
select Open in New Tab to open the directory in a new tab.

Places contains two parts: The list above the divider is static and holds your home
directory, your desktop, the filesystem, the network, a CD-ROM drive (when it
contains a disk), unmounted filesystems (if present), and the trash. The list below
the divider holds bookmarks. Add a bookmark by displaying the directory you
want to bookmark in the View pane and pressing CONTROL-D or by selecting File
Browser menubar: Bookmarks Add Bookmark. Remove a bookmark by selecting
File Browser menubar: Bookmarks Edit Bookmarks or by right-clicking the
bookmark and selecting Remove. You can also use Edit Bookmarks to reorder
bookmarks.

Information Information presents information about the folder displayed by or highlighted in
the View pane.

Tree Tree presents an expandable tree view of your home folder and each mounted
filesystem. Each directory in the tree has a plus (+) or minus (–) sign to its left.
Click a plus sign to expand a directory; click a minus sign to close a directory.
Click a directory in the tree to display that directory in the View pane. Double-
click a directory to expand it in the Side pane and display it in the View pane.

History History displays a chronological list of the folders that have been displayed in the
View pane, with the most recently displayed folder at the top. Double-click a folder
in this list to display it in the View pane.

Notes Notes provides a place to keep notes about the folder displayed in the View pane.

Emblems Similar to the Emblems tab in the Object Properties window (page 129), Emblems
allows you to drag emblems from the Side pane and drop them on objects in the
View pane. Drag and drop the Erase emblem to erase emblems associated with an
object. You cannot erase emblems that Ubuntu places on objects, such as locked
and link emblems.

Control Bars

This section discusses the four control bars that initially appear in a File Browser
window: the status bar, menubar, Main toolbar, and location bar (Figure 8-2,
page 276). From File Browser menubar: View, you can choose which of these bars
to display—except for the menubar, which Nautilus always displays.

 From the Library of WoweBook.Com

ptg

The Nautilus File Browser Window 279

Menubar The menubar appears at the top of the File Browser window and displays a menu
when you click one of its selections. Which menu selections Nautilus displays
depend on what the View pane is displaying and which objects are selected. The
next section describes the menubar in detail.

Main toolbar The Main toolbar appears below the menubar and holds navigation tool icons:
Back, Forward, Up, Stop, Reload, Home, Computer, Magnification, View, and
Search. If the Main toolbar is too short to hold all icons, Nautilus displays a button
with a triangle pointing down at the right end of the toolbar. Click this button to
display a drop-down list of the remaining icons.

To change the magnification of the display in the View pane, click the plus or minus
sign in a magnifying glass on either side of the magnification percentage. Right-click
the magnification percentage itself to return to the default magnification. Left-click
the magnification percentage to display a drop-down list of magnifications. Click
the button to the right of the right-hand magnifying glass to choose whether to view
files as icons, as a list, or in compact format. Click the magnifying glass at the right
end of the toolbar to change the Location bar into a search text box.

Location bar Below the Main toolbar is the location bar, which displays the name of the directory
that appears in the View pane. It can display this name in two formats: iconic (using
buttons) and textual (using a text box). Press CONTROL-L to switch to textual format.
When you display a different directory in the View pane, Nautilus changes the
Location bar back to iconic format.

In iconic format, each button represents a directory in a pathname (page 205). The
View pane displays the directory of the depressed (darker) button. Click one of
these buttons to display that directory. If the leftmost button holds a triangle that
points to the left, Nautilus is not displaying buttons for all the directories in the
absolute (full) pathname; click the button with a triangle in it to display more direc-
tory buttons.

In textual format, the text box displays the absolute pathname of the displayed
directory. To have Nautilus display another directory, enter the pathname of the
directory and press RETURN.

Status bar If no items are selected, the status bar, at the bottom of the window, indicates how
many items are displayed in the View pane. If the directory you are viewing is on
the local system, it also tells you how much free space is available on the device that
holds the directory displayed by the View pane. If an item is selected, the status bar
displays the name of the item and its size.

Menubar

The Nautilus File Browser menubar controls which information the File Browser dis-
plays and how it displays that information. Many of the menu selections duplicate
controls found elsewhere in the File Browser window. This section highlights some of

 From the Library of WoweBook.Com

ptg

280 Chapter 8 Linux GUIs: X and GNOME

the selections on the menubar; click Help on the menubar and select Contents or Get
Help Online for more information. The menubar holds the menus described next.

File The several Open selections and the Property selection of File work with the high-
lighted object(s) in the View pane. If no objects are highlighted, these selections are
grayed out or absent. Selecting Connect to Server (also available from Main menu:
Places) displays the Connect to Server window (Figure 8-4). This window presents a
Service type drop-down list that allows you to select FTP, SSH, Windows, or other
types of servers. Enter the URL of the server in the text box labeled Server. For an
FTP connection, do not enter the ftp:// part of the URL. Fill in the optional infor-
mation as appropriate. Click Connect. If the server requires authentication, Nauti-
lus displays a window in which you can enter a username and password. Nautilus
opens a window displaying a directory on the server and an object, named for the
URL you specified, on the desktop. After you close the window, you can open the
object to connect to and display a directory on the server.

Edit Many of the Edit selections work with highlighted object(s) in the View pane; if no
objects are highlighted, these selections are grayed out or absent. This section discusses
three selections from Edit: Compress, Backgrounds and Emblems, and Preferences.

The Edit Compress selection creates a single archive file comprising the selected
objects. This selection opens a Compress window (Figure 8-5) that allows you to
specify the name and location of the archive. The drop-down list to the right of the
text box labeled Filename allows you to specify a filename extension that deter-
mines the type of archive this tool creates. For example, .tar.gz creates a tar
(page 176) file compressed by gzip (page 175) and .tar.bz2 creates a tar file com-
pressed by bzip2 (page 174). Click the plus sign to the left of Other Objects to spec-
ify a password for and/or to encrypt the archive (available only with certain types of
archives). You can also split the archive into several files (volumes).

Figure 8-4 The Connect to Server window

 From the Library of WoweBook.Com

ptg

The Nautilus File Browser Window 281

The Edit Backgrounds and Emblems selection has three buttons on the left: Pat-
terns, Colors, and Emblems. Click Patterns to display many pattern objects on the
right side of the window. Drag and drop one of these objects on the View pane of a
File Browser window to change the background of all File Browser View panes.
Drag and drop the Reset object to reset the background to its default color and pat-
tern (usually white). The Colors button works the same way as the Patterns button.
The Emblems button works the same way as the Emblems tab in the Side pane
(page 278).

The Edit Preferences selection displays the File Management Preferences window
(Figure 8-6). This window has six tabs that control the appearance and behavior of
File Browser windows.

Figure 8-5 The Compress window

Figure 8-6 The File Management Preferences window, Views tab

 From the Library of WoweBook.Com

ptg

282 Chapter 8 Linux GUIs: X and GNOME

The Views tab sets several defaults, including which view the File Browser displays
(Icon, List, or Compact view), the arrangement of the objects, the default zoom
level, and default settings for the Compact view.

Delete versus
Move to Trash

The Behavior tab controls how many clicks it takes to open an object and what Nau-
tilus does when it opens an executable text object (script). For more confident users,
this tab has an option that includes a Delete selection in addition to the Move to
Trash selection on several menus. The Delete selection immediately removes the
selected object instead of moving it to the Trash folder. This tab also holds the check
box labeled Open each folder in its own window that is described in the next section.

The Display tab specifies which information Nautilus includes in object (icon) cap-
tions. The three drop-down lists specify the order in which Nautilus displays infor-
mation as you increase the zoom level of the View pane. This tab also specifies the
date format Nautilus uses.

The List Columns tab specifies which columns Nautilus displays, and in what order
it displays them, in the View pane when you select List View.

The Preview tab controls when Nautilus displays or plays previews of files (Always,
Local Files Only, Never).

The Media tab specifies which action Nautilus takes when you insert media such as
a CD/DVD, or connect devices such as a USB flash drive, to the system.

View Click the Main Toolbar, Side Pane, Location Bar, and Statusbar selections in the View
submenu to display or remove these elements from the window. The Show Hidden
Files selection displays in the View pane those files with hidden filenames (page 204).

Go The Go selections display various folders in the View pane.

Bookmarks Bookmarks appear at the bottom of this menu and in the Side pane under Places.
The Bookmarks selections are explained under “Places” on page 278.

Help The Help selections display local and online information about Nautilus.

optional

The Nautilus Spatial View

Nautilus gives you two ways to work with files: the traditional File Browser view
described in the previous section and the innovative Spatial view shown in
Figure 8-7. By default, Ubuntu displays the Browser view.

The Nautilus Spatial (as in “having the nature of space”) view has many powerful
features but may take some getting used to. It always provides one window per
folder. By default, when you open a folder, Nautilus displays a new window.

Turn on the Spatial view by selecting File Browser menubar: Edit Preferences.
Then click the Behavior tab in the File Management Preferences window and put a
tick in the check box labeled Open each folder in its own window, click Close, and
close the File Browser window. Next time you open a File Browser window, it will
display a Spatial view.

 From the Library of WoweBook.Com

ptg

The Nautilus Spatial View 283

To open a Spatial view of your home directory, Select Main menu: Home Folder and
experiment as you read this section. If you double-click the Desktop icon in the Spa-
tial view, Nautilus opens a new window that displays the Desktop folder.

A Spatial view can display icons, a list of filenames, or a compact view. To select
your preferred format, click View on the menubar and choose Icons, List, or Com-
pact. To create files to experiment with, right-click in the window (not on an icon)
to display the Nautilus context menu and select Create Folder or Create Document.

Window memory Move the window by dragging the titlebar. The Spatial view has window memory—
that is, the next time you open that folder, Nautilus opens it at the same size and in
the same location. Even the scrollbar will be in the same position.

Parent-folders
button

The key to closing the current window and returning to the window of the parent
directory is the Parent-folders button (Figure 8-7). Click this button to display the
Parent-folders pop-up menu. Select the directory you want to open from this menu.
Nautilus then displays in a Spatial view the directory you specified.

From a Spatial view, you can open a folder in a traditional view by right-clicking the
folder and selecting Browse Folder.

Figure 8-7 The Nautilus Spatial view

Parent-folders
button and
pop-up menu

You can turn off the Nautilus Spatial view

tip To turn off the Nautilus Spatial view, open a File Browser window. From the menubar, open the File
Management Preferences window by selecting Edit Preferences. Click the Behavior tab in this
window and remove the tick from the check box labeled Open each folder its own window.

Use SHIFT to close the current window as you open another window
tip If you hold the SHIFT key down when you double-click to open a new window, Nautilus closes the

current window as it opens the new one. This behavior may be more familiar and can help keep
the desktop from becoming cluttered. If you do not want to use the keyboard, you can achieve the
same result by double-clicking the middle mouse button.

 From the Library of WoweBook.Com

ptg

284 Chapter 8 Linux GUIs: X and GNOME

GNOME Utilities

GNOME comes with numerous utilities that can make your work with the desktop
easier and more productive. This section covers several tools that are integral to the
use of GNOME.

Font Preferences

The Fonts tab of the Appearance Preferences window (Figure 8-8) enables you to
change the font GNOME uses for applications, documents, the desktop, window
titles, and terminal emulators (fixed width). To display this window, select Main
menu: System Preferences Appearance or enter gnome-appearance-properties on
a command line. Click the Fonts tab. Click one of the five font bars in the upper
part of the window to display the Pick a Font window (discussed next).

Examine the four sample boxes in the lower part of the window and select the one
in which the letters look the best. Subpixel smoothing is usually best for LCD mon-
itors. Click Details to refine the font rendering further, again picking the box in each
section in which the letters look the best.

Pick a Font Window

The Pick a Font window (Figure 8-9) appears when you need to choose a font; see
the previous section. From this window you can select a font family, a style, and a
size. A preview of your choice appears in the Preview frame in the lower part of the
window. Click OK when you are satisfied with your choice.

Figure 8-8 The Appearance Preferences window, Fonts tab

 From the Library of WoweBook.Com

ptg

GNOME Utilities 285

Pick a Color Window

The Pick a Color window (Figure 8-10) appears when you need to specify a color,
such as when you specify a solid color for the desktop background (page 114) or a
panel. To specify a color for a panel, right-click the panel to display its context menu,
select Properties, click the Background tab, click the radio button labeled Solid color,
and click within the box labeled Color. GNOME displays the Pick a Color window.

When the Pick a Color window opens, the bar below the color circle displays the
current color. Click the desired color on the color ring, and click/drag the lightness
of that color in the triangle. As you change the color, the right end of the bar below
the color circle previews the color you are selecting, while the left end continues to
display the current color. You can also use the eyedropper to pick up a color from
the workspace: Click the eyedropper, and then click the resulting eyedropper mouse
pointer on the color you want to select. The color you choose appears in the bar.
Click OK when you are satisfied with the color you have specified.

Figure 8-9 The Pick a Font window

Figure 8-10 The Pick a Color window

 From the Library of WoweBook.Com

ptg

286 Chapter 8 Linux GUIs: X and GNOME

Run Application Window

The Run Application window (Figure 4-4, page 103) enables you to run a program
as though you had initiated it from a command line. To display the Run Application
window, press ALT-F2. Enter a command in the text box. As soon as GNOME can
uniquely identify the command you are entering, it completes the command and
may display an object that identifies the application. Keep typing if the displayed
command is not the one you want to run. Otherwise, press RETURN to run the com-
mand or TAB to accept the command in the text box. You can then continue entering
information in the window. Click Run with file to specify a file to use as an argu-
ment to the command in the text box. Put a tick in the check box labeled Run in ter-
minal to run a textual application, such as vim.tiny, in a terminal emulator window.

Searching for Files

The Search for Files window (Figure 8-11) can help you find files whose locations
or names you do not know or have forgotten. To open this window, select Main
menu: Places Search for Files or enter gnome-search-tool on a command line from
a terminal emulator or Run Application window (ALT-F2). To search by filename or
partial filename, enter the (partial) filename in the combo box labeled Name con-
tains and then select the folder you want to search in from the drop-down list
labeled Look in folder. When GNOME searches in a folder, it searches subfolders to
any level (it searches the directory hierarchy). To search all directories in all
mounted filesystems, select File System from the drop-down list labeled Look in
folder. Select Other to search a folder not included in the drop-down list; GNOME
opens the Browse/Save window (page 110). Once you have entered the search crite-
ria, click Find. GNOME displays the list of files matching the criteria in the list box
labeled Search results. Double-click a file in this list box to open it.

To refine the search, you can enter more search criteria. Click the plus sign to the
left of Select more options to expand the window and display more search criteria.

Figure 8-11 The Search for Files window

 From the Library of WoweBook.Com

ptg

GNOME Utilities 287

GNOME initially displays one search criterion and a line for adding another crite-
rion as shown in Figure 8-12. With this part of the window expanded, GNOME
incorporates all visible search criteria when you click Find.

The first line below Select more options holds a text box labeled Contains the text.
If nothing is entered in this text box, the search matches all files. You can leave this
text box as is or remove the line by clicking Remove at the right end of the line. To
search for a file that contains a specific string of characters (text), enter the string in
this text box.

To add search criteria, make a selection from the list box labeled Available options
and click Add to the right of the drop-down list. To remove criteria, click Remove
at the right end of the line that holds the criterion you want to remove.

To select files that were modified fewer than a specified number of days ago, select
Date modified less than from the drop-down list labeled Available options and click
Add. The Search for Files window adds a line with a spin box labeled Date modified
less than. With this spin box showing 0 (zero), as it does initially, no file matches the
search criteria. Change this number as desired and click Find to begin the search.

GNOME Terminal Emulator/Shell

The GNOME terminal emulator displays a window that mimics a character-
based terminal (page 125). To display a terminal emulator window, select Main
menu: Applications Accessories Terminal or enter gnome-terminal on a com-
mand line or from a Run Application window (ALT-F2). When the GNOME termi-
nal emulator is already displayed, select Terminal menubar: File Open Terminal
or right-click within the Terminal window and select Open Terminal to display a
new terminal emulator window.

To open an additional terminal session within the same Terminal window, right-
click the window and select Open Tab from the context menu or select Terminal

Figure 8-12 The Search for Files window with Select more options expanded

 From the Library of WoweBook.Com

ptg

288 Chapter 8 Linux GUIs: X and GNOME

menubar: File Open Tab. A row of tabs appears below the menubar as gnome-
terminal opens another terminal session on top of the existing one. Add as many ter-
minal sessions as you like; click the tabs to switch between sessions.

A session you add from the context menu uses the same profile as the session you
open it from. When you use the menubar to open a session, GNOME gives you a
choice of profiles, if more than one is available. You can add and modify profiles,
including the Default profile, by selecting Terminal menubar: Edit Profiles. High-
light the profile you want to modify or click New to design a new profile.

Chapter Summary

The X Window System GUI is portable and flexible and makes it easy to write
applications that work on many different types of systems without having to know
low-level details for the individual systems. This GUI can operate in a networked
environment, allowing a user to run a program on a remote system and send the
results to a local display. The client/server concept is integral to the operation of the
X Window System, in which the X server is responsible for fulfilling requests made
of X Window System applications or clients. Hundreds of clients are available that
can run under X. Programmers can also write their own clients, using tools such as
the GTK+ and GTK+2 GNOME libraries to write GNOME programs and the Qt
and KDE libraries to write KDE programs.

The window managers, and virtually all X applications, are designed to help users
tailor their work environments in simple or complex ways. You can designate appli-
cations that start automatically, set such attributes as colors and fonts, and even
alter the way keyboard strokes and mouse clicks are interpreted.

Built on top of the X Window System, the GNOME desktop manager can be used
as is or customized to better suit your needs. It is a graphical user interface to sys-
tem services (commands), the filesystem, applications, and more. Although not part
of GNOME, the Metacity and Compiz window managers work closely with
GNOME and are the default window managers for GNOME under Ubuntu. A win-
dow manager controls all aspects of the windows, including placement, decoration,
grouping, minimizing and maximizing, sizing, and moving.

The Nautilus File Browser window is a critical part of GNOME; the desktop is a
modified File Browser window. The File Browser View pane displays icons or a list
of filenames you can work with. The Side pane, which can display six types of
information, augments the information Nautilus displays in the View pane.

GNOME terminal emulator shortcuts
tip While using the GNOME terminal emulator, CONTROL-SHIFT-N opens a new window and

CONTROL-SHIFT-T opens a new tab. New windows and tabs open to the working directory. In addition,
you can use CONTROL-PAGE UP and CONTROL-PAGE DOWN to switch between tabs.

 From the Library of WoweBook.Com

ptg

Advanced Exercises 289

GNOME also provides many graphical utilities you can use to customize and work
with the desktop. It supports MIME types; thus, when you double-click an object,
GNOME generally knows which tool to use to display the data represented by the
object. In sum, GNOME is a powerful desktop manager that can make your job
both easier and more fun.

Exercises

1. a. What is Nautilus?

b. List four things you can do with Nautilus.

c. How do you use Nautilus to search for a file?

2. What is a terminal emulator? What does it allow you to do from a GUI
that you would not be able to do without one?

3. How would you search the entire filesystem for a file named today.odt?

4. a. List two ways you can open a file using Nautilus.

b. How does Nautilus “know” which program to use to open different
types of files?

c. What are the three common Nautilus control bars? Which kinds of
tools do you find on each?

d. Discuss the use of the Nautilus location bar in textual mode.

Advanced Exercises

5. Assume you are using a mouse with nine pointer buttons defined. How
would you reverse the effects of using the mouse wheel?

6. a. How would you use Nautilus to connect to the FTP server at
ftp.ubuntu.com?

b. Open the following folders: ubuntu, dists, and lucid. How would you
copy the file named Contents-i386.gz to the desktop? What type of file
is Contents-i386.gz?

c. How would you open the Contents-i386.gz file on the desktop? How
would you open the Contents-i386.gz file on the FTP server? Which file
opens more quickly? Why? Which file can you modify?

7. Discuss the client/server environment set up by the X Window System.
How does the X server work? List three X clients. Where is the client and
where is the server when you log in on a local system? What is an advan-
tage of this setup?

 From the Library of WoweBook.Com

ptg

290 Chapter 8 Linux GUIs: X and GNOME

8. Run xwininfo from a terminal emulator window and answer these questions:

a. What does xwininfo do?

b. What does xwininfo give as the name of the window you clicked? Does
that agree with the name in the window’s titlebar?

c. What is the size of the window? In which units does xwininfo display this
size? What is the depth of a window?

d. How can you get xwininfo to display the same information without hav-
ing to click the window?

9. Find and install xeyes (not tuxeyes). Write an xeyes command to display a
window that is 600 pixels wide and 400 pixels tall, is located 200 pixels
from the right edge of the screen and 300 pixels from the top of the screen,
and contains orange eyes outlined in blue with red pupils. (Hint: Refer to
the xeyes man page.)

 From the Library of WoweBook.Com

ptg

222999111

9Chapter9This chapter picks up where Chapter 7 left off. Chapter 27
expands on this chapter, exploring control flow commands and
more advanced aspects of programming the Bourne Again Shell
(bash). The bash home page is at www.gnu.org/software/bash.
The bash info page is a complete Bourne Again Shell reference.

The Bourne Again Shell is a command interpreter and high-level
programming language. As a command interpreter, it processes
commands you enter on the command line in response to a
prompt. When you use the shell as a programming language, it
processes commands stored in files called shell scripts. Like other
languages, shells have variables and control flow commands (for
example, for loops and if statements).

When you use a shell as a command interpreter, you can cus-
tomize the environment you work in. You can make your
prompt display the name of the working directory, create a
function or an alias for cp that keeps it from overwriting certain
kinds of files, take advantage of keyword variables to change
aspects of how the shell works, and so on. You can also write
shell scripts that do your bidding—anything from a one-line

In This Chapter

Startup Files 293

Redirecting Standard Error 297

Writing a Simple Shell Script 300

Job Control. 307

Manipulating the Directory
Stack . 310

Parameters and Variables 312

Processes 328

History . 330

Reexecuting and Editing
Commands. 332

Functions . 349

Controlling bash: Features and
Options 352

Processing the Command Line. . . 356

9

The Bourne Again

Shell

 From the Library of WoweBook.Com

www.gnu.org/software/bash

ptg

292 Chapter 9 The Bourne Again Shell

script that stores a long, complex command to a longer script that runs a set of
reports, prints them, and mails you a reminder when the job is done. More complex
shell scripts are themselves programs; they do not just run other programs.
Chapter 27 has some examples of these types of scripts.

Most system shell scripts are written to run under bash (or dash; see below). If you
will ever work in recovery mode—when you boot the system or perform system
maintenance, administration, or repair work, for example—it is a good idea to
become familiar with this shell.

This chapter expands on the interactive features of the shell described in Chapter 7,
explains how to create and run simple shell scripts, discusses job control, introduces
the basic aspects of shell programming, talks about history and aliases, and
describes command-line expansion. Chapter 27 presents some more challenging
shell programming problems.

Background

The Bourne Again Shell is based on the Bourne Shell (the early UNIX shell; this
book refers to it as the original Bourne Shell to avoid confusion), which was written
by Steve Bourne of AT&T’s Bell Laboratories. Over the years the original Bourne
Shell has been expanded but it remains the basic shell provided with many commer-
cial versions of UNIX.

sh Shell Because of its long and successful history, the original Bourne Shell has been used
to write many of the shell scripts that help manage UNIX systems. Some of these
scripts appear in Linux as Bourne Again Shell scripts. Although the Bourne Again
Shell includes many extensions and features not found in the original Bourne
Shell, bash maintains compatibility with the original Bourne Shell so you can run
Bourne Shell scripts under bash. On UNIX systems the original Bourne Shell is
named sh.

dash Shell The bash executable file is about 800 kilobytes, has many features, and is well
suited as a user login shell. The dash (Debian Almquist) shell is about 100 kilo-
bytes, offers Bourne Shell compatibility for shell scripts (noninteractive use), and,
because of its size, can load and execute shell scripts much more quickly than
bash. Most system scripts are set up to run sh, which under Ubuntu is a symbolic
link to dash. This setup allows the system to boot and run system shell scripts
quickly.

On many Linux systems sh is a symbolic link to bash, ensuring scripts that require
the presence of the Bourne Shell still run. When called as sh, bash does its best to
emulate the original Bourne Shell.

 From the Library of WoweBook.Com

ptg

Shell Basics 293

Korn Shell System V UNIX introduced the Korn Shell (ksh), written by David Korn. This shell
extended many features of the original Bourne Shell and added many new features.
Some features of the Bourne Again Shell, such as command aliases and command-
line editing, are based on similar features from the Korn Shell.

POSIX The POSIX (Portable Operating System Interface) family of related standards is
being developed by PASC (IEEE’s Portable Application Standards Committee,
www.pasc.org). A comprehensive FAQ on POSIX, including many links, appears at
www.opengroup.org/austin/papers/posix_faq.html.

POSIX standard 1003.2 describes shell functionality. The Bourne Again Shell pro-
vides the features that match the requirements of this standard. Efforts are under
way to make the Bourne Again Shell fully comply with the POSIX standard. In the
meantime, if you invoke bash with the ––posix option, the behavior of the Bourne
Again Shell will closely match the POSIX requirements.

Shell Basics

This section covers writing and using startup files, redirecting standard error, writing
and executing simple shell scripts, separating and grouping commands, implementing
job control, and manipulating the directory stack.

Startup Files

When a shell starts, it runs startup files to initialize itself. Which files the shell runs
depends on whether it is a login shell, an interactive shell that is not a login shell
(such as you get by giving the command bash), or a noninteractive shell (one used to

chsh: changes your login shell

tip The person who sets up your account determines which shell you use when you first log in on the
system or when you open a terminal emulator window in a GUI environment. Under Ubuntu, bash
is the default shell. You can run any shell you like once you are logged in. Enter the name of the
shell you want to use (bash, tcsh, or another shell) and press RETURN; the next prompt will be
that of the new shell. Give an exit command to return to the previous shell. Because shells you
call in this manner are nested (one runs on top of the other), you will be able to log out only from
your original shell. When you have nested several shells, keep giving exit commands until you
reach your original shell. You will then be able to log out.

Use the chsh utility to change your login shell permanently. First give the command chsh. In
response to the prompts, enter your password and the absolute pathname of the shell you want
to use (/bin/bash, /bin/tcsh, or the pathname of another shell). When you change your login shell
in this manner using a terminal emulator (page 125) under a GUI, subsequent terminal emulator
windows will not reflect the change until you log out of the system and log back in. See page 457
for an example of how to use chsh.

 From the Library of WoweBook.Com

www.pasc.org
www.opengroup.org/austin/papers/posix_faq.html

ptg

294 Chapter 9 The Bourne Again Shell

execute a shell script). You must have read access to a startup file to execute the
commands in it. Ubuntu Linux puts appropriate commands in some of these files.
This section covers bash startup files.

Login Shells

The files covered in this section are executed by login shells and shells that you start
with the bash ––login option. Login shells are, by their nature, interactive.

/etc/profile The shell first executes the commands in /etc/profile. A user working with root
privileges can set up this file to establish systemwide default characteristics for users
running bash.

.bash_profile
.bash_login

.profile

Next the shell looks for ~/.bash_profile, ~/.bash_login, and ~/.profile (~/ is short-
hand for your home directory), in that order, executing the commands in the first of
these files it finds. You can put commands in one of these files to override the
defaults set in /etc/profile. A shell running on a virtual terminal does not execute
commands in these files.

.bash_logout When you log out, bash executes commands in the ~/.bash_logout file. This file
often holds commands that clean up after a session, such as those that remove
temporary files.

Interactive Nonlogin Shells

The commands in the preceding startup files are not executed by interactive, non-
login shells. However, these shells inherit values from the login shell variables that
are set by these startup files.

/etc/bashrc Although not called by bash directly, many ~/.bashrc files call /etc/bashrc. This
setup allows a user working with root privileges to establish systemwide default
characteristics for nonlogin bash shells.

.bashrc An interactive nonlogin shell executes commands in the ~/.bashrc file. Typically a
startup file for a login shell, such as .bash_profile, runs this file, so both login and
nonlogin shells run the commands in .bashrc.

Noninteractive Shells

The commands in the previously described startup files are not executed by nonin-
teractive shells, such as those that runs shell scripts. However, these shells inherit
login shell variables that are set by these startup files.

BASH_ENV Noninteractive shells look for the environment variable BASH_ENV (or ENV if the
shell is called as sh) and execute commands in the file named by this variable.

Setting Up Startup Files

Although many startup files and types of shells exist, usually all you need are the
.bash_profile and .bashrc files in your home directory. Commands similar to the

 From the Library of WoweBook.Com

ptg

Shell Basics 295

following in .bash_profile run commands from .bashrc for login shells (when
.bashrc exists). With this setup, the commands in .bashrc are executed by login and
nonlogin shells.

if [-f ~/.bashrc]; then . ~/.bashrc; fi

The [–f ~/.bashrc] tests whether the file named .bashrc in your home directory
exists. See pages 955 and 957 for more information on test and its synonym []. See
page 296 for information on the . (dot) builtin.

Sample .bash_profile and .bashrc files follow. Some commands used in these files
are not covered until later in this chapter. In any startup file, you must export vari-
ables and functions that you want to be available to child processes. For more infor-
mation refer to “Locality of Variables” on page 992.

$ cat ~/.bash_profile
if [-f ~/.bashrc]; then
 . ~/.bashrc # Read local startup file if it exists
fi
PATH=$PATH:. # Add the working directory to PATH
export PS1='[\h \W \!]\$ ' # Set prompt

The first command in the preceding .bash_profile file executes the commands in the
user’s .bashrc file if it exists. The next command adds to the PATH variable
(page 319). Typically PATH is set and exported in /etc/profile so it does not need to
be exported in a user’s startup file. The final command sets and exports PS1
(page 321), which controls the user’s prompt.

A sample .bashrc file is shown on the next page. The first command executes the
commands in the /etc/bashrc file if it exists. Next the file sets and exports the LANG
(page 326) and VIMINIT (for vim initialization) variables and defines several aliases.
The final command defines a function (page 349) that swaps the names of two files.

Use .bash_profile to set PATH
tip Because commands in .bashrc may be executed many times, and because subshells inherit

exported variables, it is a good idea to put commands that add to existing variables in the
.bash_profile file. For example, the following command adds the bin subdirectory of the home
directory to PATH (page 319) and should go in .bash_profile:

PATH=$PATH:$HOME/bin

When you put this command in .bash_profile and not in .bashrc, the string is added to the PATH
variable only once, when you log in.

Modifying a variable in .bash_profile causes changes you make in an interactive session to prop-
agate to subshells. In contrast, modifying a variable in .bashrc overrides changes inherited from
a parent shell.

 From the Library of WoweBook.Com

ptg

296 Chapter 9 The Bourne Again Shell

$ cat ~/.bashrc
if [-f /etc/bashrc]; then

source /etc/bashrc # read global startup file if it exists
fi

set -o noclobber # prevent overwriting files
unset MAILCHECK # turn off "you have new mail" notice
export LANG=C # set LANG variable
export VIMINIT='set ai aw' # set vim options
alias df='df -h' # set up aliases
alias rm='rm -i' # always do interactive rm's
alias lt='ls -ltrh | tail'
alias h='history | tail'
alias ch='chmod 755 '

function switch() # a function to exchange the names
{ # of two files

local tmp=$$switch
mv "$1" $tmp
mv "$2" "$1"
mv $tmp "$2"

}

. (Dot) or source: Runs a Startup File in the

Current Shell

After you edit a startup file such as .bashrc, you do not have to log out and log in
again to put the changes into effect. Instead, you can run the startup file using the .
(dot) or source builtin (they are the same command). As with all other commands,
the . must be followed by a SPACE on the command line. Using . or source is similar to
running a shell script, except these commands run the script as part of the current
process. Consequently, when you use . or source to run a script, changes you make
to variables from within the script affect the shell you run the script from. If you ran
a startup file as a regular shell script and did not use the . or source builtin, the vari-
ables created in the startup file would remain in effect only in the subshell running
the script—not in the shell you ran the script from. You can use the . or source com-
mand to run any shell script—not just a startup file—but undesirable side effects
(such as changes in the values of shell variables you rely on) may occur. For more
information refer to “Locality of Variables” on page 992.

In the following example, .bashrc sets several variables and sets PS1, the prompt, to
the name of the host. The . builtin puts the new values into effect.

$ cat ~/.bashrc
export TERM=vt100 # set the terminal type
export PS1="$(hostname -f): " # set the prompt string
export CDPATH=:$HOME # add HOME to CDPATH string
stty kill '^u' # set kill line to control-u

$. ~/.bashrc
bravo.example.com:

 From the Library of WoweBook.Com

ptg

Shell Basics 297

Commands That Are Symbols

The Bourne Again Shell uses the symbols (,), [,], and $ in a variety of ways. To
minimize confusion, Table 9-1 lists the most common use of each of these symbols,
even though some of them are not introduced until later in this book.

Redirecting Standard Error

Chapter 7 covered the concept of standard output and explained how to redirect
standard output of a command. In addition to standard output, commands can
send output to standard error. A command can send error messages to standard
error to keep them from getting mixed up with the information it sends to standard
output.

Just as it does with standard output, by default the shell directs standard error to
the screen. Unless you redirect one or the other, you may not know the difference
between the output a command sends to standard output and the output it sends
to standard error. This section describes the syntax used by the Bourne Again
Shell to redirect standard error and to distinguish between standard output and
standard error.

File descriptors A file descriptor is the place a program sends its output to and gets its input from.
When you execute a program, Linux opens three file descriptors for the program: 0
(standard input), 1 (standard output), and 2 (standard error). The redirect output
symbol (> [page 246]) is shorthand for 1>, which tells the shell to redirect standard
output. Similarly < (page 247) is short for 0<, which redirects standard input. The
symbols 2> redirect standard error. For more information refer to “File Descrip-
tors” on page 987.

The following examples demonstrate how to redirect standard output and standard
error to different files and to the same file. When you run the cat utility with the
name of a file that does not exist and the name of a file that does exist, cat sends an
error message to standard error and copies the file that does exist to standard out-
put. Unless you redirect them, both messages appear on the screen.

Table 9-1 Builtin commands that are symbols

Symbol Command

() Subshell (page 306)

$() Command substitution (page 362)

(()) Arithmetic evaluation; a synonym for let (use when the enclosed value con-
tains an equal sign; page 1016)

$(()) Arithmetic expansion (not for use with an enclosed equal sign; page 360)

[] The test command (pages 955 and 957)

[[]] Conditional expression; similar to [] but adds string comparisons (page 1017)

 From the Library of WoweBook.Com

ptg

298 Chapter 9 The Bourne Again Shell

$ cat y
This is y.
$ cat x
cat: x: No such file or directory

$ cat x y
cat: x: No such file or directory
This is y.

When you redirect standard output of a command, output sent to standard error is
not affected and still appears on the screen.

$ cat x y > hold
cat: x: No such file or directory
$ cat hold
This is y.

Similarly, when you send standard output through a pipe, standard error is not
affected. The following example sends standard output of cat through a pipe to tr,
which in this example converts lowercase characters to uppercase. (See the tr info
page for more information.) The text that cat sends to standard error is not trans-
lated because it goes directly to the screen rather than through the pipe.

$ cat x y | tr "[a-z]" "[A-Z]"
cat: x: No such file or directory
THIS IS Y.

The following example redirects standard output and standard error to different
files. The token following 2> tells the shell where to redirect standard error (file
descriptor 2). The token following 1> tells the shell where to redirect standard out-
put (file descriptor 1). You can use > in place of 1>.

$ cat x y 1> hold1 2> hold2
$ cat hold1
This is y.
$ cat hold2
cat: x: No such file or directory

Combining
standard output and

standard error

In the next example, the &> token redirects standard output and standard error to
a single file:

$ cat x y &> hold
$ cat hold
cat: x: No such file or directory
This is y.

Duplicating a file
descriptor

In the next example, first 1> redirects standard output to hold and then 2>&1 declares
file descriptor 2 to be a duplicate of file descriptor 1. As a result, both standard output
and standard error are redirected to hold.

$ cat x y 1> hold 2>&1
$ cat hold
cat: x: No such file or directory
This is y.

In this case, 1> hold precedes 2>&1. If they had been listed in the opposite order, stan-
dard error would have been made a duplicate of standard output before standard

 From the Library of WoweBook.Com

ptg

Shell Basics 299

output was redirected to hold. Only standard output would have been redirected to
hold in that scenario.

The next example declares file descriptor 2 to be a duplicate of file descriptor 1 and
sends the output for file descriptor 1 through a pipe to the tr command.

$ cat x y 2>&1 | tr "[a-z]" "[A-Z]"
CAT: X: NO SUCH FILE OR DIRECTORY
THIS IS Y.

Sending errors to
standard error

You can use 1>&2 to redirect standard output of a command to standard error.
Shell scripts use this technique to send the output of echo to standard error. In the
following script, standard output of the first echo is redirected to standard error:

$ cat message_demo
echo This is an error message. 1>&2
echo This is not an error message.

If you redirect standard output of message_demo, error messages such as the one pro-
duced by the first echo appear on the screen because you have not redirected standard
error. Because standard output of a shell script is frequently redirected to another file,
you can use this technique to display on the screen any error messages generated by
the script. The lnks script (page 962) uses this technique. You can also use the exec
builtin to create additional file descriptors and to redirect standard input, standard
output, and standard error of a shell script from within the script (page 1007).

The Bourne Again Shell supports the redirection operators shown in Table 9-2.

Table 9-2 Redirection operators

Operator Meaning

< filename Redirects standard input from filename.

> filename Redirects standard output to filename unless filename exists and noclobber
(page 248) is set. If noclobber is not set, this redirection creates filename if it
does not exist and overwrites it if it does exist.

>| filename Redirects standard output to filename, even if the file exists and noclobber
(page 248) is set.

>> filename Redirects and appends standard output to filename unless filename exists and
noclobber (page 248) is set. If noclobber is not set, this redirection creates
filename if it does not exist.

&> filename Redirects standard output and standard error to filename.

<&m Duplicates standard input from file descriptor m (page 988).

[n] >&m Duplicates standard output or file descriptor n if specified from file descriptor
m (page 988).

[n]<&– Closes standard input or file descriptor n if specified (page 988).

[n] >&– Closes standard output or file descriptor n if specified.

 From the Library of WoweBook.Com

ptg

300 Chapter 9 The Bourne Again Shell

Writing a Simple Shell Script

A shell script is a file that holds commands that the shell can execute. The commands
in a shell script can be any commands you can enter in response to a shell prompt.
For example, a command in a shell script might run a Linux utility, a compiled pro-
gram, or another shell script. Like the commands you give on the command line, a
command in a shell script can use ambiguous file references and can have its input or
output redirected from or to a file or sent through a pipe. You can also use pipes and
redirection with the input and output of the script itself.

In addition to the commands you would ordinarily use on the command line, control
flow commands (also called control structures) find most of their use in shell scripts.
This group of commands enables you to alter the order of execution of commands in
a script in the same way you would alter the order of execution of statements using a
structured programming language. Refer to “Control Structures” on page 954 for
specifics.

The shell interprets and executes the commands in a shell script, one after another.
Thus a shell script enables you to simply and quickly initiate a complex series of
tasks or a repetitive procedure.

chmod: Makes a File Executable

To execute a shell script by giving its name as a command, you must have permission
to read and execute the file that contains the script (refer to “Access Permissions” on
page 215). Read permission enables you to read the file that holds the script. Execute
permission tells the shell and the system that the owner, group, and/or public has
permission to execute the file; it implies that the content of the file is executable.

When you create a shell script using an editor, the file does not typically have its
execute permission set. The following example shows a file named whoson that
contains a shell script:

$ cat whoson
date
echo "Users Currently Logged In"
who

$./whoson
bash: ./whoson: Permission denied

You cannot execute whoson by giving its name as a command because you do not
have execute permission for the file. The shell does not recognize whoson as an exe-
cutable file and issues the error message Permission denied when you try to execute it.
(See the tip on the next page if you get a command not found error message.) When
you give the filename as an argument to bash (bash whoson), bash takes the argu-
ment to be a shell script and executes it. In this case bash is executable and whoson is
an argument that bash executes so you do not need to have execute permission to
whoson. You must have read permission.

 From the Library of WoweBook.Com

ptg

Shell Basics 301

The chmod utility changes the access privileges associated with a file. Figure 9-1
shows ls with the –l option displaying the access privileges of whoson before and
after chmod gives execute permission to the file’s owner.

The first ls displays a hyphen (–) as the fourth character, indicating that the owner
does not have permission to execute the file. Next chmod gives the owner execute per-
mission: u+x causes chmod to add (+) execute permission (x) for the owner (u). (The u
stands for user, although it means the owner of the file.) The second argument is the
name of the file. The second ls shows an x in the fourth position, indicating that the
owner has execute permission.

If other users will execute the file, you must also change group and/or public access
permissions for the file. Any user must have execute access to use the file’s name as a
command. If the file is a shell script, the user trying to execute the file must have read
access to the file as well. You do not need read access to execute a binary executable
(compiled program).

Figure 9-1 Using chmod to make a shell script executable

$ ls -l whoson
-rw-rw-r-- 1 max group 40 May 24 11:30 whoson

$ chmod u+x whoson
$ ls -l whoson
-rwxrw-r-- 1 max group 40 May 24 11:30 whoson

$./whoson
Mon May 25 11:40:49 PDT 2010
Users Currently Logged In
zach pts/7 2010-05-23 18:17
hls pts/1 2010-05-24 09:59
sam pts/12 2010-05-24 06:29 (bravo.example.com)
max pts/4 2010-05-24 09:08

Command not found?

tip If you give the name of a shell script as a command without including the leading ./, the shell typ-
ically displays the following error message:

$ whoson
bash: whoson: command not found

This message indicates the shell is not set up to search for executable files in the working directory.
Give this command instead:

$./whoson

The ./ tells the shell explicitly to look for an executable file in the working directory. To change the
environment so the shell searches the working directory automatically, see the section about PATH
on page 319.

 From the Library of WoweBook.Com

ptg

302 Chapter 9 The Bourne Again Shell

The final command in Figure 9-1 shows the shell executing the file when its name is
given as a command. For more information refer to “Access Permissions” on page 215
as well as the discussions of ls (page 215) and chmod (page 216).

#! Specifies a Shell

You can put a special sequence of characters on the first line of a shell script to tell
the operating system which shell (or other program) should execute the file. Because
the operating system checks the initial characters of a program before attempting to
execute it using exec, these characters save the system from making an unsuccessful
attempt. If #! are the first two characters of a script, the system interprets the char-
acters that follow as the absolute pathname of the utility that should execute the
script. This can be the pathname of any program, not just a shell. The following
example specifies that bash should run the script:

$ cat bash_script
#!/bin/bash
echo "This is a Bourne Again Shell script."

The #! characters are useful if you have a script that you want to run with a shell
other than the shell you are running the script from. The next example shows a
script that should be executed by tcsh (part of the tcsh package):

$ cat tcsh_script
#!/bin/tcsh
echo "This is a tcsh script."
set person = zach
echo "person is $person"

Because of the #! line, the operating system ensures that tcsh executes the script no
matter which shell you run it from.

You can use ps –f within a shell script to display the name of the shell that is execut-
ing the script. The three lines that ps displays in the following example show the
process running the parent bash shell, the process running the tcsh script, and the
process running the ps command:

$ cat tcsh_script2
#!/bin/tcsh
ps -f

$./tcsh_script2
UID PID PPID C STIME TTY TIME CMD
max 3031 3030 0 Nov16 pts/4 00:00:00 -bash
max 9358 3031 0 21:13 pts/4 00:00:00 /bin/tcsh ./tcsh_script2
max 9375 9358 0 21:13 pts/4 00:00:00 ps -f

If you do not follow #! with the name of an executable program, the shell reports that
it cannot find the command that you asked it to run. You can optionally follow #!
with SPACEs. If you omit the #! line and try to run, for example, a tcsh script from bash,
the script will run under bash and may generate error messages or not run properly.

 From the Library of WoweBook.Com

ptg

Shell Basics 303

Begins a Comment

Comments make shell scripts and all code easier to read and maintain by you and
others. If a hashmark (#) in the first character position of the first line of a script is
not immediately followed by an exclamation point (!) or if a hashmark occurs in
any other location in a script, the shell interprets it as the beginning of a comment.
The shell then ignores everything between the hashmark and the end of the line (the
next NEWLINE character).

Executing a Shell Script

fork and exec
system calls

A command on the command line causes the shell to fork a new process, creating a
duplicate of the shell process (a subshell). The new process attempts to exec (exe-
cute) the command. Like fork, the exec routine is executed by the operating system
(a system call). If the command is a binary executable program, such as a compiled
C program, exec succeeds and the system overlays the newly created subshell with
the executable program. If the command is a shell script, exec fails. When exec fails,
the command is assumed to be a shell script, and the subshell runs the commands in
the script. Unlike a login shell, which expects input from the command line, the sub-
shell takes its input from a file—namely, the shell script.

As discussed earlier, you can run commands in a shell script file that you do not
have execute permission for by using a bash command to exec a shell that runs the
script directly. In the following example, bash creates a new shell that takes its input
from the file named whoson:

$ bash whoson

Because the bash command expects to read a file containing commands, you do not
need execute permission for whoson. (You do need read permission.) Even though
bash reads and executes the commands in whoson, standard input, standard output,
and standard error remain directed from/to the terminal.

Although you can use bash to execute a shell script, this technique causes the script
to run more slowly than giving yourself execute permission and directly invoking the
script. Users typically prefer to make the file executable and run the script by typing
its name on the command line. It is also easier to type the name, and this practice is
consistent with the way other kinds of programs are invoked (so you do not need to
know whether you are running a shell script or an executable file). However, if bash
is not your interactive shell or if you want to see how the script runs with different
shells, you may want to run a script as an argument to bash or tcsh.

Separating and Grouping Commands

Whether you give the shell commands interactively or write a shell script, you must
separate commands from one another. This section reviews the ways to separate
commands that were covered in Chapter 7 and introduces a few new ones.

 From the Library of WoweBook.Com

ptg

304 Chapter 9 The Bourne Again Shell

; and NEWLINE Separate Commands

The NEWLINE character is a unique command separator because it initiates execution
of the command preceding it. You have seen this behavior throughout this book
each time you press the RETURN key at the end of a command line.

The semicolon (;) is a command separator that does not initiate execution of a com-
mand and does not change any aspect of how the command functions. You can exe-
cute a series of commands sequentially by entering them on a single command line
and separating each from the next with a semicolon (;). You initiate execution of the
sequence of commands by pressing RETURN:

$ x ; y ; z

If x, y, and z are commands, the preceding command line yields the same results as
the next three commands. The difference is that in the next example the shell issues
a prompt after each of the commands (x, y, and z) finishes executing, whereas the
preceding command line causes the shell to issue a prompt only after z is complete:

$ x
$ y
$ z

Whitespace Although the whitespace around the semicolons in the earlier example makes the
command line easier to read, it is not necessary. None of the command separators
needs to be surrounded by SPACEs or TABs.

\ Continues a Command

When you enter a long command line and the cursor reaches the right side of the
screen, you can use a backslash (\) character to continue the command on the next
line. The backslash quotes, or escapes, the NEWLINE character that follows it so the
shell does not treat the NEWLINE as a command terminator. Enclosing a backslash
within single quotation marks or preceding it with another backslash turns off the
power of a backslash to quote special characters such as NEWLINE. Enclosing a back-
slash within double quotation marks has no effect on the power of the backslash.

Although you can break a line in the middle of a word (token), it is typically simpler
to break a line immediately before or after whitespace.

optional You can enter a RETURN in the middle of a quoted string on a command line without
using a backslash. The NEWLINE (RETURN) you enter will then be part of the string:

$ echo "Please enter the three values
> required to complete the transaction."
Please enter the three values
required to complete the transaction.

In the three examples in this section, the shell does not interpret RETURN as a command
terminator because it occurs within a quoted string. The greater than (>) sign is a sec-
ondary prompt (PS2; page 322) indicating the shell is waiting for you to continue the

 From the Library of WoweBook.Com

ptg

Shell Basics 305

unfinished command. In the next example, the first RETURN is quoted (escaped) so the
shell treats it as a separator and does not interpret it literally.

$ echo "Please enter the three values \
> required to complete the transaction."
Please enter the three values required to complete the transaction.

Single quotation marks cause the shell to interpret a backslash literally:

$ echo 'Please enter the three values \
> required to complete the transaction.'
Please enter the three values \
required to complete the transaction.

| and & Separate Commands and Do Something Else

The pipe symbol (|) and the background task symbol (&) are also command sepa-
rators. They do not start execution of a command but do change some aspect of
how the command functions. The pipe symbol alters the source of standard input
or the destination of standard output. The background task symbol causes the
shell to execute the task in the background and display a prompt immediately; you
can continue working on other tasks.

Each of the following command lines initiates a single job comprising three tasks:

$ x | y | z
$ ls -l | grep tmp | less

In the first job, the shell redirects standard output of task x to standard input of
task y and redirects y’s standard output to z’s standard input. Because it runs the
entire job in the foreground, the shell does not display a prompt until task z runs to
completion: Task z does not finish until task y finishes, and task y does not finish
until task x finishes. In the second job, task x is an ls –l command, task y is grep
tmp, and task z is the pager less. The shell displays a long (wide) listing of the files
in the working directory that contain the string tmp, piped through less.

The next command line executes tasks d and e in the background and task f in the
foreground:

$ d & e & f
[1] 14271
[2] 14272

The shell displays the job number between brackets and the PID number for each
process running in the background. It displays a prompt as soon as f finishes, which
may be before d or e finishes.

Before displaying a prompt for a new command, the shell checks whether any
background jobs have completed. For each completed job, the shell displays its
job number, the word Done, and the command line that invoked the job; the shell
then displays a prompt. When the job numbers are listed, the number of the last
job started is followed by a + character and the job number of the previous job is

 From the Library of WoweBook.Com

ptg

306 Chapter 9 The Bourne Again Shell

followed by a – character. Other jobs are followed by a SPACE character. After run-
ning the last command, the shell displays the following lines before issuing a
prompt:

[1]- Done d
[2]+ Done e

The next command line executes all three tasks as background jobs. The shell displays
a shell prompt immediately:

$ d & e & f &
[1] 14290
[2] 14291
[3] 14292

You can use pipes to send the output from one task to the next task and an amper-
sand (&) to run the entire job as a background task. Again the shell displays the
prompt immediately. The shell regards the commands joined by a pipe as a single
job. That is, it treats all pipes as single jobs, no matter how many tasks are con-
nected with the pipe (|) symbol or how complex they are. The Bourne Again Shell
reports only one process in the background (although there are three):

$ d | e | f &
[1] 14295

optional () Groups Commands

You can use parentheses to group commands. The shell creates a copy of itself,
called a subshell, for each group. It treats each group of commands as a job and
creates a new process to execute each command (refer to “Process Structure” on
page 328 for more information on creating subshells). Each subshell (job) has its
own environment, meaning that it has its own set of variables whose values can
differ from those found in other subshells.

The following command line executes commands a and b sequentially in the back-
ground while executing c in the background. The shell displays a prompt immediately.

$ (a ; b) & c &
[1] 15520
[2] 15521

The preceding example differs from the earlier example d & e & f & in that tasks a
and b are initiated sequentially, not concurrently.

Similarly the following command line executes a and b sequentially in the back-
ground and, at the same time, executes c and d sequentially in the background. The
subshell running a and b and the subshell running c and d run concurrently. The
shell displays a prompt immediately.

$ (a ; b) & (c ; d) &
[1] 15528
[2] 15529

 From the Library of WoweBook.Com

ptg

Shell Basics 307

The next script copies one directory to another. The second pair of parentheses creates
a subshell to run the commands following the pipe. Because of these parentheses, the
output of the first tar command is available for the second tar command despite the
intervening cd command. Without the parentheses, the output of the first tar command
would be sent to cd and lost because cd does not process input from standard input.
The shell variables $1 and $2 represent the first and second command-line arguments
(page 997), respectively. The first pair of parentheses, which creates a subshell to run
the first two commands, allows users to call cpdir with relative pathnames. Without
them, the first cd command would change the working directory of the script (and con-
sequently the working directory of the second cd command). With them, only the
working directory of the subshell is changed.

$ cat cpdir
(cd $1 ; tar -cf - .) | (cd $2 ; tar -xvf -)
$./cpdir /home/max/sources /home/max/memo/biblio

The cpdir command line copies the files and directories in the /home/max/sources
directory to the directory named /home/max/memo/biblio. This shell script is
almost the same as using cp with the –r option. Refer to the cp and tar man pages for
more information.

Job Control

A job is a command pipeline. You run a simple job whenever you give the shell a
command. For example, if you type date on the command line and press RETURN, you
have run a job. You can also create several jobs with multiple commands on a single
command line:

$ find . -print | sort | lpr & grep -l max /tmp/* > maxfiles &
[1] 18839
[2] 18876

The portion of the command line up to the first & is one job consisting of three pro-
cesses connected by pipes: find, sort (page 168), and lpr (page 165). The second job is a
single process running grep. The trailing & characters put each job in the background,
so bash does not wait for them to complete before displaying a prompt.

Using job control you can move commands from the foreground to the background
(and vice versa), stop commands temporarily, and list all commands that are run-
ning in the background or stopped.

jobs: Lists Jobs

The jobs builtin lists all background jobs. Following, the sleep command runs in the
background and creates a background job that jobs reports on:

$ sleep 60 &
[1] 7809
$ jobs
[1] + Running sleep 60 &

 From the Library of WoweBook.Com

ptg

308 Chapter 9 The Bourne Again Shell

fg: Brings a Job to the Foreground

The shell assigns a job number to each command you run in the background. For
each job run in the background, the shell lists the job number and PID number
immediately, just before it issues a prompt:

$ xclock &
[1] 1246
$ date &
[2] 1247
$ Tue Dec 7 11:44:40 PST 2010
[2]+ Done date
$ find /usr -name ace -print > findout &
[2] 1269
$ jobs
[1]- Running xclock &
[2]+ Running find /usr -name ace -print > findout &

Job numbers, which are discarded when a job is finished, can be reused. When you
start or put a job in the background, the shell assigns a job number that is one more
than the highest job number in use.

In the preceding example, the jobs command lists the first job, xclock, as job 1. The
date command does not appear in the jobs list because it finished before jobs was
run. Because the date command was completed before find was run, the find com-
mand became job 2.

To move a background job to the foreground, use the fg builtin followed by the job
number. Alternatively, you can give a percent sign (%) followed by the job number
as a command. Either of the following commands moves job 2 to the foreground.
When you move a job to the foregound, the shell displays the command it is now
executing in the foreground.

$ fg 2
find /usr -name ace -print > findout

or

$ %2
find /usr -name ace -print > findout

You can also refer to a job by following the percent sign with a string that uniquely
identifies the beginning of the command line used to start the job. Instead of the
preceding command, you could have used either fg %find or fg %f because both
uniquely identify job 2. If you follow the percent sign with a question mark and a
string, the string can match any part of the command line. In the preceding exam-
ple, fg %?ace also brings job 2 to the foreground.

Often the job you wish to bring to the foreground is the only job running in the
background or is the job that jobs lists with a plus (+). In these cases fg without an
argument brings the job to the foreground.

 From the Library of WoweBook.Com

ptg

Shell Basics 309

Suspending a Job

Pressing the suspend key (usually CONTROL-Z) immediately suspends (temporarily
stops) the job in the foreground and displays a message that includes the word
Stopped.

CONTROL-Z
[2]+ Stopped find /usr -name ace -print > findout

For more information refer to “Moving a Job from the Foreground to the Back-
ground” on page 255.

bg: Sends a Job to the Background

To move the foreground job to the background, you must first suspend the job (above).
You can then use the bg builtin to resume execution of the job in the background.

$ bg
[2]+ find /usr -name ace -print > findout &

If a background job attempts to read from the terminal, the shell stops the program
and displays a message saying the job has been stopped. You must then move the
job to the foreground so it can read from the terminal.

$ (sleep 5; cat > mytext) &
[1] 1343
$ date
Tue Dec 7 11:58:20 PST 2010
[1]+ Stopped (sleep 5; cat >mytext)
$ fg
(sleep 5; cat >mytext)
Remember to let the cat out!
CONTROL-D
$

In the preceding example, the shell displays the job number and PID number of the
background job as soon as it starts, followed by a prompt. Demonstrating that you
can give a command at this point, the user gives the command date and its output
appears on the screen. The shell waits until just before it issues a prompt (after date
has finished) to notify you that job 1 is stopped. When you give an fg command, the
shell puts the job in the foreground and you can enter the data the command is
waiting for. In this case the input needs to be terminated with CONTROL-D, which sends
an EOF (end of file) signal to the shell. The shell then displays another prompt.

The shell keeps you informed about changes in the status of a job, notifying you when
a background job starts, completes, or stops, perhaps because it is waiting for input
from the terminal. The shell also lets you know when a foreground job is suspended.
Because notices about a job being run in the background can disrupt your work, the
shell delays displaying these notices until just before it displays a prompt. You can set
notify (page 355) to cause the shell to display these notices without delay.

 From the Library of WoweBook.Com

ptg

310 Chapter 9 The Bourne Again Shell

If you try to exit from a shell while jobs are stopped, the shell issues a warning and
does not allow you to exit. If you then use jobs to review the list of jobs or you imme-
diately try to exit from the shell again, the shell allows you to exit. If huponexit
(page 355) is not set (the default), stopped and background jobs keep running in the
background. If it is set, the shell terminates the jobs.

Manipulating the Directory Stack

The Bourne Again Shell allows you to store a list of directories you are working
with, enabling you to move easily among them. This list is referred to as a stack. It
is analogous to a stack of dinner plates: You typically add plates to and remove
plates from the top of the stack, so this type of stack is named a last in, first out
(LIFO) stack.

dirs: Displays the Stack

The dirs builtin displays the contents of the directory stack. If you call dirs when the
directory stack is empty, it displays the name of the working directory:

$ dirs
~/literature

Figure 9-2 The directory structure in the examples

home

sam

demo

promo

literaturenames

Figure 9-3 Creating a directory stack

names

demo

literature

2 pushd

1 pushd

1

2

 From the Library of WoweBook.Com

ptg

Shell Basics 311

The dirs builtin uses a tilde (~) to represent the name of a user’s home directory. The
examples in the next several sections assume that you are referring to the directory
structure shown in Figure 9-2.

pushd: Pushes a Directory on the Stack

When you supply the pushd (push directory) builtin with one argument, it pushes the
directory specified by the argument on the stack, changes directories to the specified
directory, and displays the stack. The following example is illustrated in Figure 9-3:

$ pushd ../demo
~/demo ~/literature
$ pwd
/home/sam/demo
$ pushd ../names
~/names ~/demo ~/literature
$ pwd
/home/sam/names

When you use pushd without an argument, it swaps the top two directories on the
stack, makes the new top directory (which was the second directory) the new work-
ing directory, and displays the stack (Figure 9-4):

$ pushd
~/demo ~/names ~/literature
$ pwd
/home/sam/demo

Using pushd in this way, you can easily move back and forth between two directo-
ries. You can also use cd – to change to the previous directory, whether or not you
have explicitly created a directory stack. To access another directory in the stack,
call pushd with a numeric argument preceded by a plus sign. The directories in the
stack are numbered starting with the top directory, which is number 0. The follow-
ing pushd command continues with the previous example, changing the working
directory to literature and moving literature to the top of the stack:

$ pushd +2
~/literature ~/demo ~/names
$ pwd
/home/sam/literature

Figure 9-4 Using pushd to change working directories

names demo names

demonamesdemo

literature literature literature

pppuuussshhhddd pppuuussshhhddd

 From the Library of WoweBook.Com

ptg

312 Chapter 9 The Bourne Again Shell

popd: Pops a Directory Off the Stack

To remove a directory from the stack, use the popd (pop directory) builtin. As the fol-
lowing example and Figure 9-5 show, without an argument, popd removes the top
directory from the stack and changes the working directory to the new top directory:

$ dirs
~/literature ~/demo ~/names
$ popd
~/demo ~/names
$ pwd
/home/sam/demo

To remove a directory other than the top one from the stack, use popd with a
numeric argument preceded by a plus sign. The following example removes direc-
tory number 1, demo. Removing a directory other than directory number 0 does
not change the working directory.

$ dirs
~/literature ~/demo ~/names
$ popd +1
~/literature ~/names

Parameters and Variables

Variables Within a shell, a shell parameter is associated with a value that is accessible to the
user. There are several kinds of shell parameters. Parameters whose names consist of
letters, digits, and underscores are often referred to as shell variables, or simply
variables. A variable name must start with a letter or underscore, not with a num-
ber. Thus A76, MY_CAT, and ___X___ are valid variable names, whereas
69TH_STREET (starts with a digit) and MY-NAME (contains a hyphen) are not.

User-created
variables

Shell variables that you name and assign values to are user-created variables. You
can change the values of user-created variables at any time, or you can make them
readonly so that their values cannot be changed. You can also make user-created
variables global. A global variable (also called an environment variable) is available

Figure 9-5 Using popd to remove a directory from the stack

literature

demo

names

popd

 From the Library of WoweBook.Com

ptg

Parameters and Variables 313

to all shells and other programs you fork from the original shell. One naming con-
vention is to use only uppercase letters for global variables and to use mixed-case or
lowercase letters for other variables. Refer to “Locality of Variables” on page 992
for more information on global variables.

To assign a value to a variable in the Bourne Again Shell, use the following syntax:

VARIABLE=value

There can be no whitespace on either side of the equal sign (=). An example assign-
ment follows:

$ myvar=abc

The Bourne Again Shell permits you to put variable assignments on a command
line. This type of assignment creates a variable that is local to the command
shell—that is, the variable is accessible only from the program the command runs.
The my_script shell script displays the value of TEMPDIR. The following command
runs my_script with TEMPDIR set to /home/sam/temp. The echo builtin shows
that the interactive shell has no value for TEMPDIR after running my_script. If
TEMPDIR had been set in the interactive shell, running my_script in this manner
would have had no effect on its value.

$ cat my_script
echo $TEMPDIR
$ TEMPDIR=/home/sam/temp ./my_script
/home/sam/temp
$ echo $TEMPDIR

$

Keyword variables Keyword shell variables (or simply keyword variables) have special meaning to the
shell and usually have short, mnemonic names. When you start a shell (by logging
in, for example), the shell inherits several keyword variables from the environment.
Among these variables are HOME, which identifies your home directory, and
PATH, which determines which directories the shell searches and in what order to
locate commands that you give the shell. The shell creates and initializes (with
default values) other keyword variables when you start it. Still other variables do
not exist until you set them.

You can change the values of most keyword shell variables. It is usually not neces-
sary to change the values of keyword variables initialized in the /etc/profile or
/etc/csh.cshrc systemwide startup files. If you need to change the value of a bash
keyword variable, do so in one of your startup files (page 293). Just as you can
make user-created variables global, so you can make keyword variables global—a
task usually done automatically in startup files. You can also make a keyword vari-
able readonly.

Positional and
special parameters

The names of positional and special parameters do not resemble variable names.
Most of these parameters have one-character names (for example, 1, ?, and #) and

 From the Library of WoweBook.Com

ptg

314 Chapter 9 The Bourne Again Shell

are referenced (as are all variables) by preceding the name with a dollar sign ($1, $?,
and $#). The values of these parameters reflect different aspects of your ongoing
interaction with the shell.

Whenever you give a command, each argument on the command line becomes the
value of a positional parameter (page 996). Positional parameters enable you to
access command-line arguments, a capability that you will often require when you
write shell scripts. The set builtin (page 998) enables you to assign values to posi-
tional parameters.

Other frequently needed shell script values, such as the name of the last command
executed, the number of command-line arguments, and the status of the most
recently executed command, are available as special parameters (page 994). You
cannot assign values to special parameters.

User-Created Variables

The first line in the following example declares the variable named person and
initializes it with the value max:

$ person=max
$ echo person
person
$ echo $person
max

Parameter
substitution

Because the echo builtin copies its arguments to standard output, you can use it to
display the values of variables. The second line of the preceding example shows that
person does not represent max. Instead, the string person is echoed as person. The
shell substitutes the value of a variable only when you precede the name of the vari-
able with a dollar sign ($). Thus the command echo $person displays the value of
the variable person; it does not display $person because the shell does not pass
$person to echo as an argument. Because of the leading $, the shell recognizes that
$person is the name of a variable, substitutes the value of the variable, and passes
that value to echo. The echo builtin displays the value of the variable—not its
name—never “knowing” that you called it with a variable.

Quoting the $ You can prevent the shell from substituting the value of a variable by quoting the
leading $. Double quotation marks do not prevent the substitution; single quotation
marks or a backslash (\) do.

$ echo $person
max
$ echo "$person"
max
$ echo '$person'
$person
$ echo \$person
$person

 From the Library of WoweBook.Com

ptg

Parameters and Variables 315

SPACEs Because they do not prevent variable substitution but do turn off the special mean-
ings of most other characters, double quotation marks are useful when you assign
values to variables and when you use those values. To assign a value that contains
SPACEs or TABs to a variable, use double quotation marks around the value. Although
double quotation marks are not required in all cases, using them is a good habit.

$ person="max and zach"
$ echo $person
max and zach
$ person=max and zach
bash: and: command not found

When you reference a variable whose value contains TABs or multiple adjacent SPACEs,
you need to use quotation marks to preserve the spacing. If you do not quote the
variable, the shell collapses each string of blank characters into a single SPACE before
passing the variable to the utility:

$ person="max and zach"
$ echo $person
max and zach
$ echo "$person"
max and zach

Pathname
expansion in
assignments

When you execute a command with a variable as an argument, the shell replaces the
name of the variable with the value of the variable and passes that value to the pro-
gram being executed. If the value of the variable contains a special character, such
as * or ?, the shell may expand that variable.

The first line in the following sequence of commands assigns the string max* to the
variable memo. The Bourne Again Shell does not expand the string because bash
does not perform pathname expansion (page 256) when it assigns a value to a vari-
able. All shells process a command line in a specific order. Within this order bash
expands variables before it interprets commands. In the following echo command
line, the double quotation marks quote the asterisk (*) in the expanded value of
$memo and prevent bash from performing pathname expansion on the expanded
memo variable before passing its value to the echo command:

$ memo=max*
$ echo "$memo"
max*

All shells interpret special characters as special when you reference a variable that
contains an unquoted special character. In the following example, the shell expands
the value of the memo variable because it is not quoted:

$ ls
max.report
max.summary
$ echo $memo
max.report max.summary

 From the Library of WoweBook.Com

ptg

316 Chapter 9 The Bourne Again Shell

Here the shell expands the $memo variable to max*, expands max* to max.report
and max.summary, and passes these two values to echo.

optional
Braces The $VARIABLE syntax is a special case of the more general syntax ${VARIABLE},

in which the variable name is enclosed by ${}. The braces insulate the variable name
from adjacent characters. Braces are necessary when catenating a variable value
with a string:

$ PREF=counter
$ WAY=$PREFclockwise
$ FAKE=$PREFfeit
$ echo $WAY $FAKE

$

The preceding example does not work as planned. Only a blank line is output
because, although the symbols PREFclockwise and PREFfeit are valid variable
names, they are not set. By default bash evaluates an unset variable as an empty
(null) string and displays this value. To achieve the intent of these statements, refer
to the PREF variable using braces:

$ PREF=counter
$ WAY=${PREF}clockwise
$ FAKE=${PREF}feit
$ echo $WAY $FAKE
counterclockwise counterfeit

The Bourne Again Shell refers to the arguments on its command line by position,
using the special variables $1, $2, $3, and so forth up to $9. If you wish to refer to
arguments past the ninth argument, you must use braces: ${10}. The name of the
command is held in $0 (page 997).

unset: Removes a Variable

Unless you remove a variable, it exists as long as the shell in which it was created
exists. To remove the value of a variable but not the variable itself, assign a null
value to the variable:

$ person=
$ echo $person

$

You can remove a variable using the unset builtin. The following command removes
the variable person:

$ unset person

 From the Library of WoweBook.Com

ptg

Parameters and Variables 317

Variable Attributes

This section discusses attributes and explains how to assign them to variables.

readonly: Makes the Value of a Variable Permanent

You can use the readonly builtin to ensure that the value of a variable cannot be
changed. The next example declares the variable person to be readonly. You must
assign a value to a variable before you declare it to be readonly; you cannot change
its value after the declaration. When you attempt to unset or change the value of a
readonly variable, the shell displays an error message:

$ person=zach
$ echo $person
zach
$ readonly person
$ person=helen
bash: person: readonly variable

If you use the readonly builtin without an argument, it displays a list of all readonly
shell variables. This list includes keyword variables that are automatically set as read-
only as well as keyword or user-created variables that you have declared as readonly.
See page 318 for an example (readonly and declare –r produce the same output).

declare and typeset: Assign Attributes to Variables

The declare and typeset builtins (two names for the same command) set attributes
and values for shell variables. Table 9-3 lists five of these attributes.

The following commands declare several variables and set some attributes. The first
line declares person1 and assigns it a value of max. This command has the same
effect with or without the word declare.

$ declare person1=max
$ declare -r person2=zach
$ declare -rx person3=helen
$ declare -x person4

Table 9-3 Variable attributes (typeset or declare)

Attribute Meaning

–a Declares a variable as an array (page 990)

–f Declares a variable to be a function name (page 349)

–i Declares a variable to be of type integer (page 318)

–r Makes a variable readonly; also readonly (page 317)

–x Exports a variable (makes it global); also export (page 992)

 From the Library of WoweBook.Com

ptg

318 Chapter 9 The Bourne Again Shell

The readonly and export builtins are synonyms for the commands declare –r and
declare –x, respectively. You can declare a variable without assigning a value to it,
as the preceding declaration of the variable person4 illustrates. This declaration
makes person4 available to all subshells (i.e., makes it global). Until an assignment
is made to the variable, it has a null value.

You can list the options to declare separately in any order. The following is equivalent
to the preceding declaration of person3:

$ declare -x -r person3=helen

Use the + character in place of – when you want to remove an attribute from a vari-
able. You cannot remove the readonly attribute. After the following command is
given, the variable person3 is no longer exported but it is still readonly.

$ declare +x person3

You can use typeset instead of declare.

Listing variable
attributes

Without any arguments or options, declare lists all shell variables. The same list is
output when you run set (page 998) without any arguments.

If you use a declare builtin with options but no variable names as arguments, the
command lists all shell variables that have the indicated attributes set. For example,
the command declare –r displays a list of all readonly shell variables. This list is the
same as that produced by the readonly command without any arguments. After the
declarations in the preceding example have been given, the results are as follows:

$ declare -r
declare -ar BASH_VERSINFO='([0]="3" [1]="2" [2]="39" [3]="1" ...)'
declare -ir EUID="500"
declare -ir PPID="936"
declare -r SHELLOPTS="braceexpand:emacs:hashall:histexpand:history:..."
declare -ir UID="500"
declare -r person2="zach"
declare -rx person3="helen"

The first five entries are keyword variables that are automatically declared as read-
only. Some of these variables are stored as integers (–i). The –a option indicates that
BASH_VERSINFO is an array variable; the value of each element of the array is
listed to the right of an equal sign.

Integer By default the values of variables are stored as strings. When you perform arith-
metic on a string variable, the shell converts the variable into a number, manipulates
it, and then converts it back to a string. A variable with the integer attribute is
stored as an integer. Assign the integer attribute as follows:

$ declare -i COUNT

Keyword Variables

Keyword variables either are inherited or are declared and initialized by the shell
when it starts. You can assign values to these variables from the command line or

 From the Library of WoweBook.Com

ptg

Parameters and Variables 319

from a startup file. Typically you want these variables to apply to all subshells you
start as well as to your login shell. For those variables not automatically exported
by the shell, you must use export (page 992) to make them available to child shells.

HOME: Your Home Directory

By default your home directory is the working directory when you log in. Your
home directory is established when your account is set up; its name is stored in the
/etc/passwd file.

$ grep sam /etc/passwd
sam:x:501:501:Sam S. x301:/home/sam:/bin/bash

When you log in, the shell inherits the pathname of your home directory and assigns
it to the variable HOME. When you give a cd command without an argument, cd
makes the directory whose name is stored in HOME the working directory:

$ pwd
/home/max/laptop
$ echo $HOME
/home/max
$ cd
$ pwd
/home/max

This example shows the value of the HOME variable and the effect of the cd
builtin. After you execute cd without an argument, the pathname of the working
directory is the same as the value of HOME: your home directory.

Tilde (~) The shell uses the value of HOME to expand pathnames that use the shorthand
tilde (~) notation (page 206) to denote a user’s home directory. The following exam-
ple uses echo to display the value of this shortcut and then uses ls to list the files in
Max’s laptop directory, which is a subdirectory of his home directory:

$ echo ~
/home/max
$ ls ~/laptop
tester count lineup

PATH: Where the Shell Looks for Programs

When you give the shell an absolute or relative pathname rather than a simple file-
name as a command, it looks in the specified directory for an executable file with
the specified filename. If the file with the pathname you specified does not exist, the
shell reports command not found. If the file exists as specified but you do not have
execute permission for it, or in the case of a shell script you do not have read and
execute permission for it, the shell reports Permission denied.

If you give a simple filename as a command, the shell searches through certain
directories (your search path) for the program you want to execute. It looks in sev-
eral directories for a file that has the same name as the command and that you have
execute permission for (a compiled program) or read and execute permission for (a
shell script). The PATH shell variable controls this search.

 From the Library of WoweBook.Com

ptg

320 Chapter 9 The Bourne Again Shell

The default value of PATH is determined when bash is compiled. It is not set in a
startup file, although it may be modified there. Normally the default specifies that
the shell search several system directories used to hold common commands. These
system directories include /bin and /usr/bin and other directories appropriate to the
local system. When you give a command, if the shell does not find the execut-
able—and, in the case of a shell script, readable—file named by the command in
any of the directories listed in PATH, the shell generates one of the aforementioned
error messages.

Working directory The PATH variable specifies the directories in the order the shell should search
them. Each directory must be separated from the next by a colon. The following
command sets PATH so that a search for an executable file starts with the
/usr/local/bin directory. If it does not find the file in this directory, the shell looks
next in /bin, and then in /usr/bin. If the search fails in those directories, the shell
looks in the ~/bin directory, a subdirectory of the user’s home directory. Finally the
shell looks in the working directory. Exporting PATH makes its value accessible to
subshells:

$ export PATH=/usr/local/bin:/bin:/usr/bin:~/bin:

A null value in the string indicates the working directory. In the preceding example,
a null value (nothing between the colon and the end of the line) appears as the last
element of the string. The working directory is represented by a leading colon (not
recommended; see the following security tip), a trailing colon (as in the example), or
two colons next to each other anywhere in the string. You can also represent the
working directory explicitly with a period (.).

Because Linux stores many executable files in directories named bin (binary), users
typically put their own executable files in their own ~/bin directories. If you put your
own bin directory at the end of your PATH, as in the preceding example, the shell
looks there for any commands that it cannot find in directories listed earlier in PATH.

If you want to add directories to PATH, you can reference the old value of the
PATH variable in setting PATH to a new value (but see the preceding security tip).
The following command adds /usr/local/bin to the beginning of the current PATH
and the bin directory in the user’s home directory (~/bin) to the end:

PATH and security

security Do not put the working directory first in PATH when security is a concern. If you are working as
root, you should never put the working directory first in PATH. It is common for root’s PATH to
omit the working directory entirely. You can always execute a file in the working directory by
prepending ./ to the name: ./myprog .

Putting the working directory first in PATH can create a security hole. Most people type ls as the
first command when entering a directory. If the owner of a directory places an executable file
named ls in the directory, and the working directory appears first in a user’s PATH, the user giving
an ls command from the directory executes the ls program in the working directory instead of the
system ls utility, possibly with undesirable results.

 From the Library of WoweBook.Com

ptg

Parameters and Variables 321

$ PATH=/usr/local/bin:$PATH:~/bin

MAIL: Where Your Mail Is Kept

The MAIL variable contains the pathname of the file that holds your mail (your
mailbox, usually /var/mail/name, where name is your username). If MAIL is set
and MAILPATH (next) is not set, the shell informs you when mail arrives in the file
specified by MAIL. In a graphical environment you can unset MAIL so the shell
does not display mail reminders in a terminal emulator window (assuming you are
using a graphical mail program).

The MAILPATH variable contains a list of filenames separated by colons. If this
variable is set, the shell informs you when any one of the files is modified (for
example, when mail arrives). You can follow any of the filenames in the list with a
question mark (?), followed by a message. The message replaces the you have mail
message when you receive mail while you are logged in.

The MAILCHECK variable specifies how often, in seconds, the shell checks for new
mail. The default is 60 seconds. If you set this variable to zero, the shell checks
before each prompt.

PS1: User Prompt (Primary)

The default Bourne Again Shell prompt is a dollar sign ($). When you run bash with
root privileges, bash typically displays a hashmark (#) prompt. The PS1 variable
holds the prompt string that the shell uses to let you know that it is waiting for a
command. When you change the value of PS1, you change the appearance of your
prompt.

You can customize the prompt displayed by PS1. For example, the assignment

$ PS1="[\u@\h \W \!]$ "

displays the following prompt:

[user@host directory event]$

where user is the username, host is the hostname up to the first period, directory is
the basename of the working directory, and event is the event number (page 331) of
the current command.

If you are working on more than one system, it can be helpful to incorporate the
system name into your prompt. For example, you might change the prompt to the
name of the system you are using, followed by a colon and a SPACE (a SPACE at the end
of the prompt makes the commands you enter after the prompt easier to read). This
command uses command substitution (page 362) in the string assigned to PS1:

$ PS1="$(hostname): "
bravo.example.com: echo test
test
bravo.example.com:

 From the Library of WoweBook.Com

ptg

322 Chapter 9 The Bourne Again Shell

The first example that follows changes the prompt to the name of the local host, a
SPACE, and a dollar sign (or, if the user is running with root privileges, a hashmark).
The second example changes the prompt to the time followed by the name of the
user. The third example changes the prompt to the one used in this book (a hash-
mark for root and a dollar sign otherwise):

$ PS1='\h \$ '
bravo $

$ PS1='\@ \u $ '
09:44 PM max $

$ PS1='\$ '
$

Table 9-4 describes some of the symbols you can use in PS1. For a complete list of spe-
cial characters you can use in the prompt strings, open the bash man page and search
for the second occurrence of PROMPTING (give the command /PROMPTING and
then press n).

PS2: User Prompt (Secondary)

The PS2 variable holds the secondary prompt. On the first line of the next example,
an unclosed quoted string follows echo. The shell assumes the command is not fin-
ished and, on the second line, gives the default secondary prompt (>). This prompt
indicates the shell is waiting for the user to continue the command line. The shell
waits until it receives the quotation mark that closes the string. Only then does it
execute the command:

Table 9-4 PS1 symbols

Symbol Display in prompt

\$ # if the user is running with root privileges; otherwise, $

\w Pathname of the working directory

\W Basename of the working directory

\! Current event (history) number (page 335)

\d Date in Weekday Month Date format

\h Machine hostname, without the domain

\H Full machine hostname, including the domain

\u Username of the current user

\@ Current time of day in 12-hour, AM/PM format

\T Current time of day in 12-hour HH:MM:SS format

\A Current time of day in 24-hour HH:MM format

\t Current time of day in 24-hour HH:MM:SS format

 From the Library of WoweBook.Com

ptg

Parameters and Variables 323

$ echo "demonstration of prompt string
> 2"
demonstration of prompt string
2
$ PS2="secondary prompt: "
$ echo "this demonstrates
secondary prompt: prompt string 2"
this demonstrates
prompt string 2

The second command changes the secondary prompt to secondary prompt: fol-
lowed by a SPACE. A multiline echo demonstrates the new prompt.

PS3: Menu Prompt

The PS3 variable holds the menu prompt for the select control structure (page 984).

PS4: Debugging Prompt

The PS4 variable holds the bash debugging symbol (page 966).

IFS: Separates Input Fields (Word Splitting)

The IFS (Internal Field Separator) shell variable specifies the characters you can use
to separate arguments on a command line. It has the default value of SPACE TAB NEWLINE.
Regardless of the value of IFS, you can always use one or more SPACE or TAB charac-
ters to separate arguments on the command line, provided these characters are not
quoted or escaped. When you assign IFS character values, these characters can also
separate fields—but only if they undergo expansion. This type of interpretation of
the command line is called word splitting.

The following example demonstrates how setting IFS can affect the interpretation
of a command line:

$ a=w:x:y:z

$ cat $a
cat: w:x:y:z: No such file or directory
$ IFS=":"

$ cat $a
cat: w: No such file or directory
cat: x: No such file or directory
cat: y: No such file or directory
cat: z: No such file or directory

Be careful when changing IFS
caution Changing IFS has a variety of side effects, so work cautiously. You may find it useful to save the

value of IFS before changing it. Then you can easily restore the original value if you get unexpected
results. Alternatively, you can fork a new shell with a bash command before experimenting with
IFS; if you get into trouble, you can exit back to the old shell, where IFS is working properly.

 From the Library of WoweBook.Com

ptg

324 Chapter 9 The Bourne Again Shell

The first time cat is called, the shell expands the variable a, interpreting the string
w:x:y:z as a single word to be used as the argument to cat. The cat utility cannot
find a file named w:x:y:z and reports an error for that filename. After IFS is set to a
colon (:), the shell expands the variable a into four words, each of which is an argu-
ment to cat. Now cat reports errors for four files: w, x, y, and z. Word splitting
based on the colon (:) takes place only after the variable a is expanded.

The shell splits all expanded words on a command line according to the separating
characters found in IFS. When there is no expansion, there is no splitting. Consider
the following commands:

$ IFS="p"
$ export VAR

Although IFS is set to p, the p on the export command line is not expanded, so the
word export is not split.

The following example uses variable expansion in an attempt to produce an export
command:

$ IFS="p"
$ aa=export
$ echo $aa
ex ort

This time expansion occurs, so the character p in the token export is interpreted as
a separator (as the echo command shows). Now when you try to use the value of
the aa variable to export the VAR variable, the shell parses the $aa VAR command
line as ex ort VAR. The effect is that the command line starts the ex editor with two
filenames: ort and VAR.

$ $aa VAR
2 files to edit
"ort" [New File]
Entering Ex mode. Type "visual" to go to Normal mode.
:q
E173: 1 more file to edit
:q
$

If you unset IFS, only SPACEs and TABs work as field separators.

CDPATH: Broadens the Scope of cd
The CDPATH variable allows you to use a simple filename as an argument to the cd
builtin to change the working directory to a directory other than a child of the
working directory. If you have several directories you typically work out of, this

Multiple separator characters
tip Although the shell treats sequences of multiple SPACE or TAB characters as a single separator, it

treats each occurrence of another field-separator character as a separator.

 From the Library of WoweBook.Com

ptg

Parameters and Variables 325

variable can speed things up and save you the tedium of using cd with longer path-
names to switch among them.

When CDPATH is not set and you specify a simple filename as an argument to cd, cd
searches the working directory for a subdirectory with the same name as the argu-
ment. If the subdirectory does not exist, cd displays an error message. When
CDPATH is set, cd searches for an appropriately named subdirectory in the directo-
ries in the CDPATH list. If it finds one, that directory becomes the working directory.
With CDPATH set, you can use cd and a simple filename to change the working
directory to a child of any of the directories listed in CDPATH.

The CDPATH variable takes on the value of a colon-separated list of directory
pathnames (similar to the PATH variable). It is usually set in the ~/.bash_profile
startup file with a command line such as the following:

export CDPATH=$HOME:$HOME/literature

This command causes cd to search your home directory, the literature directory, and
then the working directory when you give a cd command. If you do not include the
working directory in CDPATH, cd searches the working directory if the search of
all the other directories in CDPATH fails. If you want cd to search the working
directory first, include a null string, represented by two colons (::), as the first entry
in CDPATH:

export CDPATH=::$HOME:$HOME/literature

If the argument to the cd builtin is an absolute pathname—one starting with a slash
(/)—the shell does not consult CDPATH.

Keyword Variables: A Summary

Table 9-5 presents a list of bash keyword variables.

Table 9-5 bash keyword variables

Variable Value

BASH_ENV The pathname of the startup file for noninteractive shells (page 294)

CDPATH The cd search path (page 324)

COLUMNS The width of the display used by select (page 983)

FCEDIT The name of the editor that fc uses by default (page 334)

HISTFILE The pathname of the file that holds the history list (default: ~/.bash_history;
page 330)

HISTFILESIZE The maximum number of entries saved in HISTFILE (default: 500; page 330)

HISTSIZE The maximum number of entries saved in the history list (default: 500;
page 330)

 From the Library of WoweBook.Com

ptg

326 Chapter 9 The Bourne Again Shell

Special Characters

Table 9-6 lists most of the characters that are special to the bash shell.

Variable Value

HOME The pathname of the user’s home directory (page 319); used as the default
argument for cd and in tilde expansion (page 206)

IFS Internal Field Separator (page 323); used for word splitting (page 363)

INPUTRC The pathname of the Readline startup file (default: ~/.inputrc; page 343)

LANG The locale category when that category is not specifically set with an LC_*
variable

LC_* A group of variables that specify locale categories including LC_COLLATE,
LC_CTYPE, LC_MESSAGES, and LC_NUMERIC; use the locale builtin to dis-
play a complete list with values

LINES The height of the display used by select (page 983)

MAIL The pathname of the file that holds a user’s mail (page 321)

MAILCHECK How often, in seconds, bash checks for mail (page 321)

MAILPATH A colon-separated list of file pathnames that bash checks for mail in
(page 321)

PATH A colon-separated list of directory pathnames that bash looks for commands
in (page 319)

PROMPT_COMMAND A command that bash executes just before it displays the primary prompt

PS1 Prompt String 1; the primary prompt (page 321)

PS2 Prompt String 2; the secondary prompt (default: '> '; page 322)

PS3 The prompt issued by select (page 983)

PS4 The bash debugging symbol (page 966)

REPLY Holds the line that read accepts (page 1004); also used by select (page 983)

Table 9-5 bash keyword variables (continued)

Table 9-6 Shell special characters

Character Use

NEWLINE Initiates execution of a command (page 304)

; Separates commands (page 304)

 From the Library of WoweBook.Com

ptg

Special Characters 327

Character Use

() Groups commands (page 306) for execution by a subshell or identifies a func-
tion (page 349)

(()) Expands an arithmetic expression (page 360)

& Executes a command in the background (pages 254 and 305)

| Sends standard output of the preceding command to standard input of the fol-
lowing command (pipe; page 305)

> Redirects standard output (page 246)

>> Appends standard output (page 249)

< Redirects standard input (page 247)

<< Here document (page 985)

* Any string of zero or more characters in an ambiguous file reference
(page 257)

? Any single character in an ambiguous file reference (page 256)

\ Quotes the following character (page 160)

' Quotes a string, preventing all substitution (page 160)

" Quotes a string, allowing only variable and command substitution (pages 160
and 314)

‘...‘ Performs command substitution (page 362)

[] Character class in an ambiguous file reference (page 259)

$ References a variable (page 312)

. (dot builtin) Executes a command (page 296)

Begins a comment (page 303)

{ } Surrounds the contents of a function (page 349)

: (null builtin) Returns true (page 1011)

&&
(Boolean AND)

Executes command on right only if command on left succeeds (returns a zero
exit status; page 1022)

| | (Boolean OR) Executes command on right only if command on left fails (returns a nonzero
exit status; page 1022)

! (Boolean NOT) Reverses exit status of a command

$() Performs command substitution (preferred form; page 362)

[] Evaluates an arithmetic expression (page 360)

Table 9-6 Shell special characters (continued)

 From the Library of WoweBook.Com

ptg

328 Chapter 9 The Bourne Again Shell

Processes

A process is the execution of a command by the Linux kernel. The shell that starts
when you log in is a command, or a process, like any other. When you give the
name of a Linux utility on the command line, you initiate a process. When you run
a shell script, another shell process is started and additional processes are created
for each command in the script. Depending on how you invoke the shell script, the
script is run either by the current shell or, more typically, by a subshell (child) of the
current shell. A process is not started when you run a shell builtin, such as cd.

Process Structure

fork system call Like the file structure, the process structure is hierarchical, with parents, children,
and even a root. A parent process forks a child process, which in turn can fork other
processes. (The term fork indicates that, as with a fork in the road, one process
turns into two. Initially the two forks are identical except that one is identified as
the parent and one as the child. You can also use the term spawn; the words are
interchangeable.) The operating system routine, or system call, that creates a new
process is named fork().

When Linux begins execution when a system is started, it starts init, a single process
called a spontaneous process, with PID number 1. This process holds the same posi-
tion in the process structure as the root directory does in the file structure: It is the
ancestor of all processes the system and users work with. When a command-line
system is in multiuser mode, init runs getty or mingetty processes, which display
login: prompts on terminals. When a user responds to the prompt and presses
RETURN, getty hands control over to a utility named login, which checks the username
and password combination. After the user logs in, the login process becomes the
user’s shell process.

Process Identification

PID numbers Linux assigns a unique PID (process identification) number at the inception of each
process. As long as a process exists, it keeps the same PID number. During one ses-
sion the same process is always executing the login shell. When you fork a new pro-
cess—for example, when you use an editor—the PID number of the new (child)
process is different from that of its parent process. When you return to the login
shell, it is still being executed by the same process and has the same PID number as
when you logged in.

The following example shows that the process running the shell forked (is the par-
ent of) the process running ps. When you call it with the –f option, ps displays a
full listing of information about each process. The line of the ps display with bash
in the CMD column refers to the process running the shell. The column headed by
PID identifies the PID number. The column headed PPID identifies the PID number
of the parent of the process. From the PID and PPID columns you can see that the
process running the shell (PID 21341) is the parent of the process running sleep

 From the Library of WoweBook.Com

ptg

Processes 329

(PID 22789). The parent PID number of sleep is the same as the PID number of the
shell (21341).

$ sleep 10 &
[1] 22789
$ ps -f
UID PID PPID C STIME TTY TIME CMD
max 21341 21340 0 10:42 pts/16 00:00:00 bash
max 22789 21341 0 17:30 pts/16 00:00:00 sleep 10
max 22790 21341 0 17:30 pts/16 00:00:00 ps -f

Refer to the ps man page for more information on ps and the columns it displays
with the –f option. A second pair of sleep and ps –f commands shows that the shell
is still being run by the same process but that it forked another process to run sleep:

$ sleep 10 &
[1] 22791
$ ps -f
UID PID PPID C STIME TTY TIME CMD
max 21341 21340 0 10:42 pts/16 00:00:00 bash
max 22791 21341 0 17:31 pts/16 00:00:00 sleep 10
max 22792 21341 0 17:31 pts/16 00:00:00 ps -f

You can also use pstree (or ps ––forest, with or without the –e option) to see the
parent–child relationship of processes. The next example shows the –p option to
pstree, which causes it to display PID numbers:

$ pstree -p
init(1)-+-acpid(1395)
 |-atd(1758)
 |-crond(1702)
 ...
 |-kdeinit(2223)-+-firefox(8914)---run-mozilla.sh(8920)---firefox-bin(8925)
 | |-gaim(2306)
 | |-gqview(14062)
 | |-kdeinit(2228)
 | |-kdeinit(2294)
 | |-kdeinit(2314)-+-bash(2329)---ssh(2561)
 | | |-bash(2339)
 | | '-bash(15821)---bash(16778)
 | |-kdeinit(16448)
 | |-kdeinit(20888)
 | |-oclock(2317)
 | '-pam-panel-icon(2305)---pam_timestamp_c(2307)
 ...
 |-login(1823)---bash(20986)-+-pstree(21028)
 | '-sleep(21026)
 ...

The preceding output is abbreviated. The line that starts with –kdeinit shows a
graphical user running many processes, including firefox, gaim, and oclock. The
line that starts with –login shows a textual user running sleep in the background
and running pstree in the foreground. Refer to “$$: PID Number” on page 995 for
a description of how to instruct the shell to report on PID numbers.

 From the Library of WoweBook.Com

ptg

330 Chapter 9 The Bourne Again Shell

Executing a Command

fork and sleep When you give the shell a command, it usually forks [spawns using the fork() sys-
tem call] a child process to execute the command. While the child process is execut-
ing the command, the parent process sleeps [implemented as the sleep() system call].
While a process is sleeping, it does not use any computer time; it remains inactive,
waiting to wake up. When the child process finishes executing the command, it tells
its parent of its success or failure via its exit status and then dies. The parent process
(which is running the shell) wakes up and prompts for another command.

Background process When you run a process in the background by ending a command with an ampersand
(&), the shell forks a child process without going to sleep and without waiting for the
child process to run to completion. The parent process, which is executing the shell,
reports the job number and PID number of the child process and prompts for another
command. The child process runs in the background, independent of its parent.

Builtins Although the shell forks a process to run most of the commands you give it, some
commands are built into the shell. The shell does not need to fork a process to run
builtins. For more information refer to “Builtins” on page 261.

Variables Within a given process, such as your login shell or a subshell, you can declare, ini-
tialize, read, and change variables. By default, however, a variable is local to a pro-
cess. When a process forks a child process, the parent does not pass the value of a
variable to the child. You can make the value of a variable available to child pro-
cesses (global) by using the export builtin (page 992).

History

The history mechanism, a feature adapted from the C Shell, maintains a list of
recently issued command lines, also called events, that provides a quick way to
reexecute any of the events in the list. This mechanism also enables you to execute
variations of previous commands and to reuse arguments from them. You can use
the history list to replicate complicated commands and arguments that you used
earlier in this login session or in a previous one and enter a series of commands that
differ from one another in minor ways. The history list also serves as a record of
what you have done. It can prove helpful when you have made a mistake and are
not sure what you did or when you want to keep a record of a procedure that
involved a series of commands.

The history builtin displays the history list. If it does not, read the next section,
which describes the variables you need to set.

Variables That Control History

The value of the HISTSIZE variable determines the number of events preserved in
the history list during a session. A value in the range of 100 to 1,000 is normal.

When you exit from the shell, the most recently executed commands are saved in the
file whose name is stored in the HISTFILE variable (the default is ~/.bash_history).

 From the Library of WoweBook.Com

ptg

History 331

The next time you start the shell, this file initializes the history list. The value of the
HISTFILESIZE variable determines the number of lines of history saved in HISTFILE.
See Table 9-7.

Event number The Bourne Again Shell assigns a sequential event number to each command line.
You can display this event number as part of the bash prompt by including \! in PS1
(page 321). Examples in this section show numbered prompts when they help to
illustrate the behavior of a command.

Give the following command manually, or place it in ~/.bash_profile to affect future
sessions, to establish a history list of the 100 most recent events:

$ HISTSIZE=100

The following command causes bash to save the 100 most recent events across login
sessions:

$ HISTFILESIZE=100

After you set HISTFILESIZE, you can log out and log in again, and the 100 most
recent events from the previous login session will appear in your history list.

Give the command history to display the events in the history list. This list is
ordered so that the oldest events appear at the top. The following history list
includes a command to modify the bash prompt so it displays the history event
number. The last event in the history list is the history command that displayed
the list.

32 $ history | tail
 23 PS1="\! bash$ "
 24 ls -l
 25 cat temp
 26 rm temp
 27 vim.tiny memo
 28 lpr memo
 29 vim.tiny memo
 30 lpr memo
 31 rm memo
 32 history | tail

history can help track down mistakes
tip When you have made a mistake on a command line (not an error within a script or program) and

are not sure what you did wrong, look at the history list to review your recent commands. Some-
times this list can help you figure out what went wrong and how to fix things.

Table 9-7 History variables

Variable Default Function

HISTSIZE 500 events Maximum number of events saved during a session

HISTFILE ~/.bash_history Location of the history file

HISTFILESIZE 500 events Maximum number of events saved between sessions

 From the Library of WoweBook.Com

ptg

332 Chapter 9 The Bourne Again Shell

As you run commands and your history list becomes longer, it may run off the top
of the screen when you use the history builtin. Pipe the output of history through less
to browse through it, or give the command history 10 or history | tail to look at the
ten most recent commands.

Reexecuting and Editing Commands

You can reexecute any event in the history list. This feature can save you time,
effort, and aggravation. Not having to reenter long command lines allows you to
reexecute events more easily, quickly, and accurately than you could if you had to
retype the command line in its entirety. You can recall, modify, and reexecute previ-
ously executed events in three ways: You can use the fc builtin (covered next), the
exclamation point commands (page 335), or the Readline Library, which uses a
one-line vi- or emacs-like editor to edit and execute events (page 340).

fc: Displays, Edits, and Reexecutes Commands

The fc (fix command) builtin enables you to display the history list and to edit and
reexecute previous commands. It provides many of the same capabilities as the
command-line editors.

Viewing the History List

When you call fc with the –l option, it displays commands from the history list.
Without any arguments, fc –l lists the 16 most recent commands in a numbered list,
with the oldest appearing first:

$ fc -l
1024 cd
1025 view calendar
1026 vim.tiny letter.adams01
1027 aspell -c letter.adams01
1028 vim.tiny letter.adams01
1029 lpr letter.adams01
1030 cd ../memos

A handy history alias
tip Creating the following aliases makes working with history easier. The first allows you to give the

command h to display the ten most recent events. The second alias causes the command hg string
to display all events in the history list that contain string. Put these aliases in your ~/.bashrc file
to make them available each time you log in. See page 346 for more information.

$ alias 'h=history | tail'
$ alias 'hg=history | grep'

Which method to use?

tip If you are more familiar with vi or emacs and less familiar with the C or TC Shell, use fc or the
Readline Library. If you are more familiar with the C or TC Shell, use the exclamation point com-
mands. If it is a toss-up, try the Readline Library; it will benefit you in other areas of Linux more
than learning the exclamation point commands will.

 From the Library of WoweBook.Com

ptg

History 333

1031 ls
1032 rm *0405
1033 fc -l
1034 cd
1035 whereis aspell
1036 man aspell
1037 cd /usr/share/doc/*aspell*
1038 pwd
1039 ls
1040 ls man-html

The fc builtin can take zero, one, or two arguments with the –l option. The arguments
specify the part of the history list to be displayed:

fc –l [first [last]]

The fc builtin lists commands beginning with the most recent event that matches
first. The argument can be an event number, the first few characters of the com-
mand line, or a negative number, which is taken to be the nth previous command.
Without last, fc displays events through the most recent. If you include last, fc dis-
plays commands from the most recent event that matches first through the most
recent event that matches last.

The next command displays the history list from event 1030 through event 1035:

$ fc -l 1030 1035
1030 cd ../memos
1031 ls
1032 rm *0405
1033 fc -l
1034 cd
1035 whereis aspell

The following command lists the most recent event that begins with view through
the most recent command line that begins with whereis:

$ fc -l view whereis
1025 view calendar
1026 vim.tiny letter.adams01
1027 aspell -c letter.adams01
1028 vim.tiny letter.adams01
1029 lpr letter.adams01
1030 cd ../memos
1031 ls
1032 rm *0405
1033 fc -l
1034 cd
1035 whereis aspell

To list a single command from the history list, use the same identifier for the first
and second arguments. The following command lists event 1027:

$ fc -l 1027 1027
1027 aspell -c letter.adams01

 From the Library of WoweBook.Com

ptg

334 Chapter 9 The Bourne Again Shell

Editing and Reexecuting Previous Commands

You can use fc to edit and reexecute previous commands.

fc [–e editor] [first [last]]

When you call fc with the –e option followed by the name of an editor, fc calls the
editor with event(s) in the Work buffer, assuming the editor you specify is installed.
By default, fc invokes the nano editor. Without first and last, it defaults to the most
recent command. The next example invokes the vim editor to edit the most recent
command:

$ fc -e vi

The fc builtin uses the stand-alone vim editor. If you set the FCEDIT variable, you
do not need to use the –e option to specify an editor on the command line. Because
the value of FCEDIT has been changed to /usr/bin/emacs and fc has no arguments,
the following command edits the most recent command using the emacs editor (part
of the emacs package; not installed by default):

$ export FCEDIT=/usr/bin/emacs
$ fc

If you call it with a single argument, fc invokes the editor on the specified command.
The following example starts the editor with event 1029 in the Work buffer. When
you exit from the editor, the shell executes the command:

$ fc 1029

As described earlier, you can identify commands with numbers or by specifying the
first few characters of the command name. The following example calls the editor
to work on events from the most recent event that begins with the letters vim
through event 1030:

$ fc vim 1030

Reexecuting Commands Without Calling the Editor

You can reexecute previous commands without using an editor. If you call fc with
the –s option, it skips the editing phase and reexecutes the command. The following
example reexecutes event 1029:

$ fc -s 1029
lpr letter.adams01

The next example reexecutes the previous command:

$ fc -s

Clean up the fc buffer

caution When you execute an fc command, the shell executes whatever you leave in the editor buffer, pos-
sibly with unwanted results. If you decide you do not want to execute a command, delete every-
thing from the buffer before you exit from the editor.

 From the Library of WoweBook.Com

ptg

History 335

When you reexecute a command, you can tell fc to substitute one string for another.
The next example substitutes the string john for the string adams in event 1029 and
executes the modified event:

$ fc -s adams=john 1029
lpr letter.john01

Using an Exclamation Point (!) to Reference Events

The C Shell history mechanism uses an exclamation point to reference events. This
technique, which is available under bash, is frequently more cumbersome to use
than fc but nevertheless has some useful features. For example, the !! command
reexecutes the previous event, and the shell replaces the !$ token with the last word
on the previous command line.

You can reference an event by using its absolute event number, its relative event
number, or the text it contains. All references to events, called event designators,
begin with an exclamation point (!). One or more characters follow the exclama-
tion point to specify an event.

You can put history events anywhere on a command line. To escape an exclamation point
so that the shell interprets it literally instead of as the start of a history event, precede the
exclamation point with a backslash (\) or enclose it within single quotation marks.

Event Designators

An event designator specifies a command in the history list. See Table 9-8 on the
next page for a list of event designators.

!! reexecutes the
previous event

You can reexecute the previous event by giving a !! command. In the following
example, event 45 reexecutes event 44:

44 $ ls -l text
-rw-rw-r-- 1 max group 45 2010-04-30 14:53 text
45 $!!
ls -l text
-rw-rw-r-- 1 max group 45 2010-04-30 14:53 text

The !! command works whether or not your prompt displays an event number. As
this example shows, when you use the history mechanism to reexecute an event, the
shell displays the command it is reexecuting.

!n event number A number following an exclamation point refers to an event. If that event is in the
history list, the shell executes it. Otherwise, the shell displays an error message. A
negative number following an exclamation point references an event relative to the
current event. For example, the command !–3 refers to the third preceding event.
After you issue a command, the relative event number of a given event changes
(event –3 becomes event –4). Both of the following commands reexecute event 44:

51 $!44
ls -l text
-rw-rw-r-- 1 max group 45 2010-04-30 14:53 text
52 $!-8
ls -l text
-rw-rw-r-- 1 max group 45 2010-04-30 14:53 text

 From the Library of WoweBook.Com

ptg

336 Chapter 9 The Bourne Again Shell

!string event text When a string of text follows an exclamation point, the shell searches for and exe-
cutes the most recent event that began with that string. If you enclose the string
within question marks, the shell executes the most recent event that contained that
string. The final question mark is optional if a RETURN would immediately follow it.

68 $ history 10
 59 ls -l text*
 60 tail text5
 61 cat text1 text5 > letter
 62 vim.tiny letter
 63 cat letter
 64 cat memo
 65 lpr memo
 66 pine zach
 67 ls -l
 68 history
69 $!l
ls -l
...
70 $!lpr
lpr memo
71 $!?letter?
cat letter
...

optional Word Designators

A word designator specifies a word (token) or series of words from an event.
(Table 9-9 on page 338 lists word designators.) The words are numbered starting
with 0 (the first word on the line—usually the command), continuing with 1 (the
first word following the command), and ending with n (the last word on the line).

Table 9-8 Event designators

Designator Meaning

! Starts a history event unless followed immediately by SPACE, NEWLINE, =, or (.

!! The previous command.

!n Command number n in the history list.

!–n The n th preceding command.

!string The most recent command line that started with string.

!?string[?] The most recent command that contained string. The last ? is optional.

!# The current command (as you have it typed so far).

!{event } The event is an event designator. The braces isolate event from the surround-
ing text. For example, !{–3}3 is the third most recently executed command fol-
lowed by a 3.

 From the Library of WoweBook.Com

ptg

History 337

To specify a particular word from a previous event, follow the event designator
(such as !14) with a colon and the number of the word in the previous event. For
example, !14:3 specifies the third word following the command from event 14. You
can specify the first word following the command (word number 1) using a caret (^)
and the last word using a dollar sign ($). You can specify a range of words by sepa-
rating two word designators with a hyphen.

72 $ echo apple grape orange pear
apple grape orange pear
73 $ echo !72:2
echo grape
grape
74 $ echo !72:^
echo apple
apple
75 $!72:0 !72:$
echo pear
pear
76 $ echo !72:2-4
echo grape orange pear
grape orange pear
77 $!72:0-$
echo apple grape orange pear
apple grape orange pear

As the next example shows, !$ refers to the last word of the previous event. You can
use this shorthand to edit, for example, a file you just displayed with cat:

$ cat report.718
...
$ vim.tiny !$
vim.tiny report.718
...

If an event contains a single command, the word numbers correspond to the argu-
ment numbers. If an event contains more than one command, this correspondence
does not hold true for commands after the first. In the following example, event 78
contains two commands separated by a semicolon so the shell executes them
sequentially; the semicolon is word number 5.

78 $!72 ; echo helen zach barbara
echo apple grape orange pear ; echo helen zach barbara
apple grape orange pear
helen zach barbara
79 $ echo !78:7
echo helen
helen
80 $ echo !78:4-7
echo pear ; echo helen
pear
helen

 From the Library of WoweBook.Com

ptg

338 Chapter 9 The Bourne Again Shell

Modifiers

On occasion you may want to change an aspect of an event you are reexecuting. Per-
haps you entered a complex command line with a typo or incorrect pathname or you
want to specify a different argument. You can modify an event or a word of an event
by putting one or more modifiers after the word designator, or after the event desig-
nator if there is no word designator. Each modifier must be preceded by a colon (:).

Substitute modifier The following example shows the substitute modifier correcting a typo in the previ-
ous event:

$ car /home/zach/memo.0507 /home/max/letter.0507
bash: car: command not found
$!!:s/car/cat
cat /home/zach/memo.0507 /home/max/letter.0507
...

The substitute modifier has the following syntax:

[g]s/old/new /

where old is the original string (not a regular expression) and new is the string that
replaces old. The substitute modifier substitutes the first occurrence of old with
new. Placing a g before the s (as in gs/old/new/) causes a global substitution, replac-
ing all occurrences of old. Although / is the delimiter in the examples, you can use
any character that is not in either old or new. The final delimiter is optional if a
RETURN would immediately follow it. As with the vim Substitute command, the history
mechanism replaces an ampersand (&) in new with old. The shell replaces a null
old string (s//new/) with the previous old string or string within a command that
you searched for with ?string?.

Quick substitution An abbreviated form of the substitute modifier is quick substitution. Use it to
reexecute the most recent event while changing some of the event text. The quick
substitution character is the caret (^). For example, the command

Table 9-9 Word designators

Designator Meaning

n The nth word. Word 0 is normally the command name.

^ The first word (after the command name).

$ The last word.

m–n All words from word number m through word number n; m defaults to 0 if you
omit it (0–n).

n* All words from word number n through the last word.

* All words except the command name. The same as 1*.

% The word matched by the most recent ?string ? search.

 From the Library of WoweBook.Com

ptg

History 339

$ ^old^new^

produces the same results as

$!!:s/old/new/

Thus substituting cat for car in the previous event could have been entered as

$ ^car^cat
cat /home/zach/memo.0507 /home/max/letter.0507
...

You can omit the final caret if it would be followed immediately by a RETURN. As with
other command-line substitutions, the shell displays the command line as it appears
after the substitution.

Other modifiers Modifiers (other than the substitute modifier) perform simple edits on the part of
the event that has been selected by the event designator and the optional word des-
ignators. You can use multiple modifiers, each preceded by a colon (:).

The following series of commands uses ls to list the name of a file, repeats the com-
mand without executing it (p modifier), and repeats the last command, removing
the last part of the pathname (h modifier) again without executing it:

$ ls /etc/default/locale
/etc/default/locale
$!!:p
ls /etc/default/locale
$!!:h:p
ls /etc/default
$

Table 9-10 lists event modifiers other than the substitute modifier.

Table 9-10 Event modifiers

Modifier Function

e (extension) Removes all but the filename extension

h (head) Removes the last part of a pathname

p (print-not) Displays the command, but does not execute it

q (quote) Quotes the substitution to prevent further substitutions on it

r (root) Removes the filename extension

t (tail) Removes all elements of a pathname except the last

x Like q but quotes each word in the substitution individually

 From the Library of WoweBook.Com

ptg

340 Chapter 9 The Bourne Again Shell

The Readline Library

Command-line editing under the Bourne Again Shell is implemented through the
Readline Library, which is available to any application written in C. Any applica-
tion that uses the Readline Library supports line editing that is consistent with that
provided by bash. Programs that use the Readline Library, including bash, read
~/.inputrc (page 343) for key binding information and configuration settings. The
––noediting command-line option turns off command-line editing in bash.

vi mode You can choose one of two editing modes when using the Readline Library in bash:
emacs or vi(m). Both modes provide many of the commands available in the stand-
alone versions of the emacs and vim editors. You can also use the ARROW keys to
move around. Up and down movements move you backward and forward through
the history list. In addition, Readline provides several types of interactive word
completion (page 342). The default mode is emacs; you can switch to vi mode with
the following command:

$ set -o vi

emacs mode The next command switches back to emacs mode:

$ set -o emacs

vi Editing Mode

Before you start, make sure the shell is in vi mode.

When you enter bash commands while in vi editing mode, you are in Input mode
(page 188). As you enter a command, if you discover an error before you press
RETURN, you can press ESCAPE to switch to vim Command mode. This setup is different
from the stand-alone vim editor’s initial mode. While in Command mode you can
use many vim commands to edit the command line. It is as though you were using
vim to edit a copy of the history file with a screen that has room for only one com-
mand. When you use the k command or the UP ARROW to move up a line, you access
the previous command. If you then use the j command or the DOWN ARROW to move
down a line, you return to the original command. To use the k and j keys to move
between commands, you must be in Command mode; you can use the ARROW keys in
both Command and Input modes.

In addition to cursor-positioning commands, you can use the search-backward (?)
command followed by a search string to look back through your history list for the
most recent command containing that string. If you have moved back in your history
list, use a forward slash (/) to search forward toward your most recent command.
Unlike the search strings in the stand-alone vim editor, these search strings cannot

The stand-alone editor starts in Command mode

tip The stand-alone vim editor starts in Command mode, whereas the command-line vim editor
starts in Input mode. If commands display characters and do not work properly, you are in Input
mode. Press ESCAPE and enter the command again.

 From the Library of WoweBook.Com

ptg

History 341

contain regular expressions. You can, however, start the search string with a caret (^)
to force the shell to locate commands that start with the search string. As in vim,
pressing n after a successful search looks for the next occurrence of the same string.

You can also use event numbers to access events in the history list. While you are in
Command mode (press ESCAPE), enter the event number followed by a G to go to the
command with that event number.

When you use /, ?, or G to move to a command line, you are in Command mode,
not Input mode: You can edit the command or press RETURN to execute it.

Once the command you want to edit is displayed, you can modify the command line
using vim Command mode editing commands such as x (delete character), r (replace
character), ~ (change case), and . (repeat last change). To change to Input mode, use
an Insert (i, I), Append (a, A), Replace (R), or Change (c, C) command. You do not
have to return to Command mode to execute a command; simply press RETURN, even
if the cursor is in the middle of the command line.

emacs Editing Mode

Unlike the vim editor, emacs is modeless. You need not switch between Command
mode and Input mode because most emacs commands are control characters,
allowing emacs to distinguish between input and commands. Like vim, the emacs
command-line editor provides commands for moving the cursor on the command
line and through the command history list and for modifying part or all of a com-
mand. However, in a few cases, the emacs command-line editor commands differ
from those in the stand-alone emacs editor.

In emacs you perform cursor movement by using both CONTROL and ESCAPE commands.
To move the cursor one character backward on the command line, press CONTROL-B.
Press CONTROL-F to move one character forward. As in vim, you may precede these
movements with counts. To use a count you must first press ESCAPE; otherwise, the
numbers you type will appear on the command line.

Like vim, emacs provides word and line movement commands. To move backward
or forward one word on the command line, press ESCAPE b or ESCAPE f. To move several
words using a count, press ESCAPE followed by the number and the appropriate
escape sequence. To move to the beginning of the line, press CONTROL-A; to the end of
the line, press CONTROL-E; and to the next instance of the character c, press CONTROL-X

CONTROL-F followed by c.

You can add text to the command line by moving the cursor to the position you
want to enter text and typing the desired text. To delete text, move the cursor just to
the right of the characters that you want to delete and press the erase key
(page 151) once for each character you want to delete.

CONTROL-D can terminate your screen session

tip If you want to delete the character directly under the cursor, press CONTROL-D. If you enter CONTROL-
D at the beginning of the line, it may terminate your shell session.

 From the Library of WoweBook.Com

ptg

342 Chapter 9 The Bourne Again Shell

If you want to delete the entire command line, type the line kill character (page 151).
You can type this character while the cursor is anywhere in the command line. If you
want to delete from the cursor to the end of the line, press CONTROL-K.

Readline Completion Commands

You can use the TAB key to complete words you are entering on the command line.
This facility, called completion, works in both vi and emacs editing modes. Several
types of completion are possible, and which one you use depends on which part of a
command line you are typing when you press TAB.

Command Completion

If you are typing the name of a command (usually the first word on the command
line), pressing TAB initiates command completion, in which bash looks for a com-
mand whose name starts with the part of the word you have typed. If no command
starts with the characters you entered, bash beeps. If there is one such command,
bash completes the command name. If there is more than one choice, bash does
nothing in vi mode and beeps in emacs mode. Pressing TAB a second time causes bash
to display a list of commands whose names start with the prefix you typed and
allows you to continue typing the command name.

In the following example, the user types bz and presses TAB. The shell beeps (the user
is in emacs mode) to indicate that several commands start with the letters bz. The
user enters another TAB to cause the shell to display a list of commands that start
with bz followed by the command line as the user had entered it so far:

$ bz →TAB (beep) →TAB
bzcat bzdiff bzip2 bzless
bzcmp bzgrep bzip2recover bzmore
$ bz■

Next the user types c and presses TAB twice. The shell displays the two commands that
start with bzc. The user types a followed by TAB. At this point the shell completes the
command because only one command starts with bzca.

$ bzc →TAB (beep) →TAB
bzcat bzcmp
$ bzca →TAB → t ■

Pathname Completion

Pathname completion, which also uses TABs, allows you to type a portion of a path-
name and have bash supply the rest. If the portion of the pathname you have typed
is sufficient to determine a unique pathname, bash displays that pathname. If more
than one pathname would match it, bash completes the pathname up to the point
where there are choices so that you can type more.

When you are entering a pathname, including a simple filename, and press TAB, the
shell beeps (if the shell is in emacs mode—in vi mode there is no beep). It then
extends the command line as far as it can.

 From the Library of WoweBook.Com

ptg

History 343

$ cat films/dar →TAB (beep) cat films/dark_■

In the films directory every file that starts with dar has k_ as the next characters, so
bash cannot extend the line further without making a choice among files. The shell
leaves the cursor just past the _ character. At this point you can continue typing the
pathname or press TAB twice. In the latter case bash beeps, displays your choices,
redisplays the command line, and again leaves the cursor just after the _ character.

$ cat films/dark_ →TAB (beep) →TAB
dark_passage dark_victory
$ cat films/dark_■

When you add enough information to distinguish between the two possible files and
press TAB, bash displays the unique pathname. If you enter p followed by TAB after the
_ character, the shell completes the command line:

$ cat films/dark_p →TAB →assage

Because there is no further ambiguity, the shell appends a SPACE so you can finish typ-
ing the command line or just press RETURN to execute the command. If the complete
pathname is that of a directory, bash appends a slash (/) in place of a SPACE.

Variable Completion

When you are typing a variable name, pressing TAB results in variable completion,
wherein bash attempts to complete the name of the variable. In case of an ambigu-
ity, pressing TAB twice displays a list of choices:

$ echo $HO →TAB →TAB
$HOME $HOSTNAME $HOSTTYPE
$ echo $HOM →TAB →E

.inputrc: Configuring the Readline Library

The Bourne Again Shell and other programs that use the Readline Library read the
file specified by the INPUTRC environment variable to obtain initialization infor-
mation. If INPUTRC is not set, these programs read the ~/.inputrc file. They ignore
lines of .inputrc that are blank or that start with a hashmark (#).

Variables

You can set variables in .inputrc to control the behavior of the Readline Library
using the following syntax:

set variable value

Table 9-11 (on the next page) lists some variables and values you can use. See
Readline Variables in the bash man or info page for a complete list.

Pressing RETURN executes the command

caution Pressing RETURN causes the shell to execute the command regardless of where the cursor is on
the command line.

 From the Library of WoweBook.Com

ptg

344 Chapter 9 The Bourne Again Shell

Key Bindings

You can specify bindings that map keystroke sequences to Readline commands, allow-
ing you to change or extend the default bindings. Like the emacs editor, the Readline
Library includes many commands that are not bound to a keystroke sequence. To use
an unbound command, you must map it using one of the following forms:

keyname: command_name
"keystroke_sequence": command_name

In the first form, you spell out the name for a single key. For example, CONTROL-U would
be written as control-u. This form is useful for binding commands to single keys.

In the second form, you specify a string that describes a sequence of keys that will be
bound to the command. You can use the emacs-style backslash escape sequences to
represent the special keys CONTROL (\C), META (\M), and ESCAPE (\e). Specify a backslash
by escaping it with another backslash: \\. Similarly, a double or single quotation
mark can be escaped with a backslash: \" or \'.

The kill-whole-line command, available in emacs mode only, deletes the current
line. Put the following command in .inputrc to bind the kill-whole-line command
(which is unbound by default) to the keystroke sequence CONTROL-R:

control-r: kill-whole-line

bind Give the command bind –P to display a list of all Readline commands. If a com-
mand is bound to a key sequence, that sequence is shown. Commands you can use
in vi mode start with vi. For example, vi-next-word and vi-prev-word move the cur-
sor to the beginning of the next and previous words, respectively. Commands that
do not begin with vi are generally available in emacs mode.

Use bind –q to determine which key sequence is bound to a command:

Table 9-11 Readline variables

Variable Effect

editing-mode Set to vi to start Readline in vi mode. Set to emacs to start
Readline in emacs mode (the default). Similar to the set –o vi
and set –o emacs shell commands (page 340).

horizontal-scroll-mode Set to on to cause long lines to extend off the right edge of the
display area. Moving the cursor to the right when it is at the
right edge of the display area shifts the line to the left so you can
see more of the line. You can shift the line back by moving the
cursor back past the left edge. The default value is off, which
causes long lines to wrap onto multiple lines of the display.

mark-directories Set to off to cause Readline not to place a slash (/) at the end of
directory names it completes. The default value is on.

mark-modified-lines Set to on to cause Readline to precede modified history lines
with an asterisk. The default value is off.

 From the Library of WoweBook.Com

ptg

History 345

$ bind -q kill-whole-line
kill-whole-line can be invoked via "\C-r".

You can also bind text by enclosing it within double quotation marks (emacs
mode only):

"QQ": "The Linux Operating System"

This command causes bash to insert the string The Linux Operating System when
you type QQ.

Conditional Constructs

You can conditionally select parts of the .inputrc file using the $if directive. The
syntax of the conditional construct is

$if test[=value]
commands

[$else
commands]

$endif

where test is mode, term, or bash. If test equals value (or if test is true when value is
not specified), this structure executes the first set of commands. If test does not
equal value (or if test is false when value is not specified), this construct executes
the second set of commands if they are present or exits from the structure if they are
not present.

The power of the $if directive lies in the three types of tests it can perform.

1. You can test to see which mode is currently set.

$if mode=vi

The preceding test is true if the current Readline mode is vi and false other-
wise. You can test for vi or emacs.

2. You can test the type of terminal.

$if term=xterm

The preceding test is true if the TERM variable is set to xterm. You can
test for any value of TERM.

3. You can test the application name.

$if bash

The preceding test is true when you are running bash and not another pro-
gram that uses the Readline Library. You can test for any application name.

These tests can customize the Readline Library based on the current mode, the type of
terminal, and the application you are using. They give you a great deal of power and
flexibility when you are using the Readline Library with bash and other programs.

 From the Library of WoweBook.Com

ptg

346 Chapter 9 The Bourne Again Shell

The following commands in .inputrc cause CONTROL-Y to move the cursor to the begin-
ning of the next word regardless of whether bash is in vi or emacs mode:

$ cat ~/.inputrc
set editing-mode vi
$if mode=vi
 "\C-y": vi-next-word
 $else
 "\C-y": forward-word
$endif

Because bash reads the preceding conditional construct when it is started, you must
set the editing mode in .inputrc. Changing modes interactively using set will not
change the binding of CONTROL-Y.

For more information on the Readline Library, open the bash man page and give the
command /^READLINE, which searches for the word READLINE at the beginning
of a line.

Aliases

An alias is a (usually short) name that the shell translates into another (usually
longer) name or (complex) command. Aliases allow you to define new commands
by substituting a string for the first token of a simple command. They are typi-
cally placed in the ~/.bashrc startup files so that they are available to interactive
subshells.

The syntax of the alias builtin is

alias [name[=value]]

No SPACEs are permitted around the equal sign. If value contains SPACEs or TABs, you
must enclose value within quotation marks. An alias does not accept an argument
from the command line in value. Use a function (page 349) when you need to use
an argument.

An alias does not replace itself, which avoids the possibility of infinite recursion in
handling an alias such as the following:

$ alias ls='ls -F'

You can nest aliases. Aliases are disabled for noninteractive shells (that is, shell
scripts). To see a list of the current aliases, give the command alias. To view the alias
for a particular name, give the command alias followed by the name of the alias.
You can use the unalias builtin to remove an alias.

If Readline commands do not work, log out and log in again

tip The Bourne Again Shell reads ~/.inputrc when you log in. After you make changes to this file, you
must log out and log in again before the changes will take effect.

 From the Library of WoweBook.Com

ptg

Aliases 347

When you give an alias builtin command without any arguments, the shell displays
a list of all defined aliases:

$ alias
alias ll='ls -l'
alias l='ls -ltr'
alias ls='ls -F'
alias zap='rm -i'

Ubuntu Linux defines some aliases. Give an alias command to see which aliases
are in effect. You can delete the aliases you do not want from the appropriate
startup file.

Single Versus Double Quotation Marks in Aliases

The choice of single or double quotation marks is significant in the alias syntax
when the alias includes variables. If you enclose value within double quotation
marks, any variables that appear in value are expanded when the alias is created. If
you enclose value within single quotation marks, variables are not expanded until
the alias is used. The following example illustrates the difference.

The PWD keyword variable holds the pathname of the working directory. Max cre-
ates two aliases while he is working in his home directory. Because he uses double
quotation marks when he creates the dirA alias, the shell substitutes the value of the
working directory when he creates this alias. The alias dirA command displays the
dirA alias and shows that the substitution has already taken place:

$ echo $PWD
/home/max
$ alias dirA="echo Working directory is $PWD"
$ alias dirA
alias dirA='echo Working directory is /home/max'

When Max creates the dirB alias, he uses single quotation marks, which prevent the
shell from expanding the $PWD variable. The alias dirB command shows that the
dirB alias still holds the unexpanded $PWD variable:

$ alias dirB='echo Working directory is $PWD'
$ alias dirB
alias dirB='echo Working directory is $PWD'

After creating the dirA and dirB aliases, Max uses cd to make cars his working
directory and gives each of the aliases as commands. The alias he created using dou-
ble quotation marks displays the name of the directory he created the alias in as the
working directory (which is wrong). In contrast, the dirB alias displays the proper
name of the working directory:

$ cd cars
$ dirA
Working directory is /home/max
$ dirB
Working directory is /home/max/cars

 From the Library of WoweBook.Com

ptg

348 Chapter 9 The Bourne Again Shell

Examples of Aliases

The following alias allows you to type r to repeat the previous command or r abc to
repeat the last command line that began with abc:

$ alias r='fc -s'

If you use the command ls –ltr frequently, you can create an alias that substitutes ls
–ltr when you give the command l:

$ alias l='ls -ltr'
$ l
total 41
-rw-r--r-- 1 max group 30015 2009-03-01 14:24 flute.ps
-rw-r----- 1 max group 3089 2010-02-11 16:24 XTerm.ad
-rw-r--r-- 1 max group 641 2010-04-01 08:12 fixtax.icn
-rw-r--r-- 1 max group 484 2010-04-09 08:14 maptax.icn
drwxrwxr-x 2 max group 1024 2010-08-09 17:41 Tiger
drwxrwxr-x 2 max group 1024 2010-09-10 11:32 testdir
-rwxr-xr-x 1 max group 485 2010-09-21 08:03 floor
drwxrwxr-x 2 max group 1024 2010-09-27 20:19 Test_Emacs

Another common use of aliases is to protect yourself from mistakes. The following exam-
ple substitutes the interactive version of the rm utility when you give the command zap:

$ alias zap='rm -i'
$ zap f*
rm: remove 'fixtax.icn'? n
rm: remove 'flute.ps'? n
rm: remove 'floor'? n

The –i option causes rm to ask you to verify each file that would be deleted, thereby
helping you avoid deleting the wrong file. You can also alias rm with the rm –i com-
mand: alias rm='rm –i'.

The aliases in the next example cause the shell to substitute ls –l each time you give
an ll command and ls –F each time you use ls:

$ alias ls='ls -F'
$ alias ll='ls -l'
$ ll
total 41
drwxrwxr-x 2 max group 1024 2010-09-27 20:19 Test_Emacs/
drwxrwxr-x 2 max group 1024 2010-08-09 17:41 Tiger/
-rw-r----- 1 max group 3089 2010-02-11 16:24 XTerm.ad
-rw-r--r-- 1 max group 641 2010-04-01 08:12 fixtax.icn
-rw-r--r-- 1 max group 30015 2009-03-01 14:24 flute.ps
-rwxr-xr-x 1 max group 485 2010-09-21 08:03 floor*
-rw-r--r-- 1 max group 484 2010-04-09 08:14 maptax.icn
drwxrwxr-x 2 max group 1024 2010-09-10 11:32 testdir/

How to prevent the shell from invoking an alias

tip The shell checks only simple, unquoted commands to see if they are aliases. Commands given as
relative or absolute pathnames and quoted commands are not checked. When you want to give a
command that has an alias but do not want to use the alias, precede the command with a back-
slash, specify the command’s absolute pathname, or give the command as ./command.

 From the Library of WoweBook.Com

ptg

Functions 349

The –F option causes ls to print a slash (/) at the end of directory names and an
asterisk (*) at the end of the names of executable files. In this example, the string
that replaces the alias ll (ls –l) itself contains an alias (ls). When it replaces an alias
with its value, the shell looks at the first word of the replacement string to see
whether it is an alias. In the preceding example, the replacement string contains the
alias ls, so a second substitution occurs to produce the final command ls –F –l. (To
avoid a recursive plunge, the ls in the replacement text, although an alias, is not
expanded a second time.)

When given a list of aliases without the =value or value field, the alias builtin
responds by displaying the value of each defined alias. The alias builtin reports an
error if an alias has not been defined:

$ alias ll l ls zap wx
alias ll='ls -l'
alias l='ls -ltr'
alias ls='ls -F'
alias zap='rm -i'
bash: alias: wx: not found

You can avoid alias substitution by preceding the aliased command with a backslash (\):

$ \ls
Test_Emacs XTerm.ad flute.ps maptax.icn
Tiger fixtax.icn floor testdir

Because the replacement of an alias name with the alias value does not change the rest of
the command line, any arguments are still received by the command that gets executed:

$ ll f*
-rw-r--r-- 1 max group 641 2010-04-01 08:12 fixtax.icn
-rw-r--r-- 1 max group 30015 2009-03-01 14:24 flute.ps
-rwxr-xr-x 1 max group 485 2010-09-21 08:03 floor*

You can remove an alias with the unalias builtin. When the zap alias is removed, it is no
longer displayed with the alias builtin and its subsequent use results in an error message:

$ unalias zap
$ alias
alias ll='ls -l'
alias l='ls -ltr'
alias ls='ls -F'
$ zap maptax.icn
bash: zap: command not found

Functions

A shell function is similar to a shell script in that it stores a series of commands for
execution at a later time. However, because the shell stores a function in the com-
puter’s main memory (RAM) instead of in a file on the disk, the shell can access it
more quickly than the shell can access a script. The shell also preprocesses (parses) a
function so that it starts up more quickly than a script. Finally the shell executes a

 From the Library of WoweBook.Com

ptg

350 Chapter 9 The Bourne Again Shell

shell function in the same shell that called it. If you define too many functions, the
overhead of starting a subshell (as when you run a script) can become unacceptable.

You can declare a shell function in the ~/.bash_profile startup file, in the script that
uses it, or directly from the command line. You can remove functions with the unset
builtin. The shell does not retain functions after you log out.

The syntax that declares a shell function is

[function] function-name ()
{

commands
}

where the word function is optional, function-name is the name you use to call the
function, and commands comprise the list of commands the function executes when
you call it. The commands can be anything you would include in a shell script,
including calls to other functions.

The opening brace ({) can appear on the same line as the function name. Aliases and
variables are expanded when a function is read, not when it is executed. You can
use the break statement (page 976) within a function to terminate its execution.

Shell functions are useful as a shorthand as well as to define special commands. The
following function starts a process named process in the background, with the out-
put normally displayed by process being saved in .process.out:

start_process() {
process > .process.out 2>&1 &
}

The next example creates a simple function that displays the date, a header, and a
list of the people who are logged in on the system. This function runs the same com-
mands as the whoson script described on page 300. In this example the function is
being entered from the keyboard. The greater than (>) signs are secondary shell
prompts (PS2); do not enter them.

$ function whoson ()
> {
> date
> echo "Users Currently Logged On"
> who
> }

$ whoson
Mon Aug 9 15:44:58 PDT 2010
Users Currently Logged On
hls console 2010-08-08 08:59 (:0)
max pts/4 2010-08-08 09:33 (0.0)
zach pts/7 2010-08-08 09:23 (bravo.example.com)

Removing variables and functions
tip If you have a shell variable and a function with the same name, using unset removes the shell

variable. If you then use unset again with the same name, it removes the function.

 From the Library of WoweBook.Com

ptg

Functions 351

Functions in
startup files

If you want to have the whoson function always be available without having to
enter it each time you log in, put its definition in ~/.bash_profile. Then run
.bash_profile, using the . (dot) command to put the changes into effect immediately:

$ cat ~/.bash_profile
export TERM=vt100
stty kill '^u'
whoson ()
{

date
echo "Users Currently Logged On"
who

}
$. ~/.bash_profile

You can specify arguments when you call a function. Within the function these argu-
ments are available as positional parameters (page 996). The following example
shows the arg1 function entered from the keyboard:

$ arg1 () {
> echo "$1"
> }

$ arg1 first_arg
first_arg

See the function switch () on page 296 for another example of a function. “Func-
tions” on page 993 discusses the use of local and global variables within a function.

optional The following function allows you to export variables using tcsh syntax. The env
builtin lists all environment variables and their values and verifies that setenv
worked correctly:

$ cat .bash_profile
...
setenv - keep tcsh users happy
function setenv()
{

if [$# -eq 2]
then

eval $1=$2
export $1

else
echo "Usage: setenv NAME VALUE" 1>&2

fi
}
$. ~/.bash_profile
$ setenv TCL_LIBRARY /usr/local/lib/tcl
$ env | grep TCL_LIBRARY
TCL_LIBRARY=/usr/local/lib/tcl

eval The $# special parameter (page 997) takes on the value of the number of command-
line arguments. This function uses the eval builtin to force bash to scan the command
$1=$2 twice. Because $1=$2 begins with a dollar sign ($), the shell treats the entire

 From the Library of WoweBook.Com

ptg

352 Chapter 9 The Bourne Again Shell

string as a single token—a command. With variable substitution performed, the
command name becomes TCL_LIBRARY=/usr/local/lib/tcl, which results in an
error. Using eval, a second scanning splits the string into the three desired tokens, and
the correct assignment occurs.

Controlling bash: Features and Options

This section explains how to control bash features and options using command-line
options and the set and shopt builtins.

Command-Line Options

Two kinds of command-line options are available: short and long. Short options
consist of a hyphen followed by a letter; long options have two hyphens followed by
multiple characters. Long options must appear before short options on a command
line that calls bash. Table 9-12 lists some commonly used command-line options.

Shell Features

You can control the behavior of the Bourne Again Shell by turning features on and
off. Different features use different methods to turn features on and off. The set

Table 9-12 Command-line options

Option Explanation Syntax

Help Displays a usage message. ––help

No edit Prevents users from using the Readline Library
(page 340) to edit command lines in an interactive
shell.

––noediting

No profile Prevents reading these startup files (page 293):
/etc/profile, ~/.bash_profile, ~/.bash_login, and
~/.profile.

––noprofile

No rc Prevents reading the ~/.bashrc startup file
(page 294). This option is on by default if the shell is
called as sh.

––norc

POSIX Runs bash in POSIX mode. ––posix

Version Displays bash version information and exits. ––version

Login Causes bash to run as though it were a login shell. –l (lowercase “l”)

shopt Runs a shell with the opt shopt option (next page).
A –O (uppercase “O”) sets the option; +O unsets it.

[±]O [opt]

End of options On the command line, signals the end of options.
Subsequent tokens are treated as arguments even if
they begin with a hyphen (–).

––

 From the Library of WoweBook.Com

ptg

Controlling bash: Features and Options 353

builtin controls one group of features, while the shopt builtin controls another group.
You can also control many features from the command line you use to call bash.

set ±o: Turns Shell Features On and Off

The set builtin, when used with the –o or +o option, enables, disables, and lists cer-
tain bash features. For example, the following command turns on the noclobber
feature (page 248):

$ set -o noclobber

You can turn this feature off (the default) by giving the command

$ set +o noclobber

The command set –o without an option lists each of the features controlled by set, fol-
lowed by its state (on or off). The command set +o without an option lists the same fea-
tures in a form you can use as input to the shell. Table 9-13 (next page) lists bash features.

shopt: Turns Shell Features On and Off

The shopt (shell option) builtin enables, disables, and lists certain bash features that
control the behavior of the shell. For example, the following command causes bash
to include filenames that begin with a period (.) when it expands ambiguous file ref-
erences (the –s stands for set):

$ shopt -s dotglob

You can turn this feature off (the default) by giving the following command (the –u
stands for unset):

$ shopt -u dotglob

The shell displays how a feature is set if you give the name of the feature as the only
argument to shopt:

$ shopt dotglob
dotglob off

The command shopt without any options or arguments lists the features controlled
by shopt and their state. The command shopt –s without an argument lists the fea-
tures controlled by shopt that are set or on. The command shopt –u lists the features
that are unset or off. Table 9-13, next page) lists bash features.

Features, options, variables?

tip To avoid confusing terminology, this book refers to the various shell behaviors that you can control
as features. The bash info page refers to them as “options” and “values of variables controlling
optional shell behavior.”

Setting set ±o features using shopt
tip You can use shopt to set/unset features that are otherwise controlled by set ±o. Use the regular

shopt syntax with –s or –u and include the –o option. For example, the following command turns
on the noclobber feature:

$ shopt -o -s noclobber

 From the Library of WoweBook.Com

ptg

354 Chapter 9 The Bourne Again Shell

Table 9-13 bash features

Feature Description Syntax Alternate syntax

allexport Automatically exports all variables and
functions you create or modify after giving
this command.

set –o allexport set –a

braceexpand Causes bash to perform brace expansion
(the default; page 358).

set –o braceexpand set –B

cdspell Corrects minor spelling errors in directory
names used as arguments to cd.

shopt –s cdspell

cmdhist Saves all lines of a multiline command in
the same history entry, adding semicolons
as needed.

shopt –s cmdhist

dotglob Causes shell special characters (wildcards;
page 256) in an ambiguous file reference
to match a leading period in a filename. By
default special characters do not match a
leading period. You must always specify
the filenames . and .. explicitly because no
pattern ever matches them.

shopt –s dotglob

emacs Specifies emacs editing mode for
command-line editing (the default;
page 341).

set –o emacs

errexit Causes bash to exit when a simple com-
mand (not a control structure) fails.

set –o errexit set –e

execfail Causes a shell script to continue running
when it cannot find the file that is given as
an argument to exec. By default a script
terminates when exec cannot find the file
that is given as its argument.

shopt –s execfail

expand_aliases Causes aliases (page 346) to be expanded
(by default it is on for interactive shells and
off for noninteractive shells).

shopt –s expand_alias

hashall Causes bash to remember where com-
mands it has found using PATH (page 319)
are located (default).

set –o hashall set –h

histappend Causes bash to append the history list to
the file named by HISTFILE (page 330)
when the shell exits. By default bash over-
writes this file.

shopt –s histappend

histexpand Turns on the history mechanism (which
uses exclamation points by default;
page 335). Turn this feature off to turn off
history expansion.

set –o histexpand set –H

 From the Library of WoweBook.Com

ptg

Controlling bash: Features and Options 355

Feature Description Syntax Alternate syntax

history Enables command history (on by default;
page 330).

set –o history

huponexit Specifies that bash send a SIGHUP signal
to all jobs when an interactive login shell
exits.

shopt –s huponexit

ignoreeof Specifies that bash must receive ten EOF
characters before it exits. Useful on noisy
dial-up lines.

set –o ignoreeof

monitor Enables job control (on by default,
page 307).

set –o monitor set –m

nocaseglob Causes ambiguous file references
(page 256) to match filenames without
regard to case (off by default).

shopt –s nocaseglob

noclobber Helps prevent overwriting files (off by
default; page 248).

set –o noclobber set –C

noglob Disables pathname expansion (off by
default; page 256).

set –o noglob set –f

notify With job control (page 307) enabled,
reports the termination status of back-
ground jobs immediately. The default
behavior is to display the status just before
the next prompt.

set –o notify set –b

nounset Displays an error and exits from a shell
script when you use an unset variable in an
interactive shell. The default is to display a
null value for an unset variable.

set –o nounset set –u

nullglob Causes bash to expand ambiguous file
references (page 256) that do not match a
filename to a null string. By default bash
passes these file references without
expanding them.

shopt –s nullglob

posix Runs bash in POSIX mode. set –o posix

verbose Displays command lines as bash reads
them.

set –o verbose set –v

vi Specifies vi editing mode for command-
line editing (page 340).

set –o vi

xpg_echo Causes the echo builtin to expand back-
slash escape sequences without the need
for the –e option (page 980).

shopt –s xpg_echo

xtrace Turns on shell debugging (page 966). set –o xtrace set –x

Table 9-13 bash features (continued)

 From the Library of WoweBook.Com

ptg

356 Chapter 9 The Bourne Again Shell

Processing the Command Line

Whether you are working interactively or running a shell script, bash needs to read
a command line before it can start processing it—bash always reads at least one line
before processing a command. Some bash builtins, such as if and case, as well as
functions and quoted strings, span multiple lines. When bash recognizes a command
that covers more than one line, it reads the entire command before processing it. In
interactive sessions, bash prompts you with the secondary prompt (PS2, > by
default; page 322) as you type each line of a multiline command until it recognizes
the end of the command:

$ echo 'hi
> end'
hi
end
$ function hello () {
> echo hello there
> }
$

After reading a command line, bash applies history expansion and alias substitution
to the line.

History Expansion

“Reexecuting and Editing Commands” on page 332 discusses the commands you
can give to modify and reexecute command lines from the history list. History
expansion is the process that bash uses to turn a history command into an execut-
able command line. For example, when you give the command !!, history expansion
changes that command line so it is the same as the previous one. History expansion
is turned on by default for interactive shells; set +o histexpand turns it off. History
expansion does not apply to noninteractive shells (shell scripts).

Alias Substitution

Aliases (page 346) substitute a string for the first word of a simple command. By
default aliases are turned on for interactive shells and off for noninteractive shells.
Give the command shopt –u expand_aliases to turn aliases off.

Parsing and Scanning the Command Line

After processing history commands and aliases, bash does not execute the command
immediately. One of the first things the shell does is to parse (isolate strings of charac-
ters in) the command line into tokens or words. The shell then scans each token for
special characters and patterns that instruct the shell to take certain actions. These
actions can involve substituting one word or words for another. When the shell parses
the following command line, it breaks it into three tokens (cp, ~/letter, and .):

$ cp ~/letter .

 From the Library of WoweBook.Com

ptg

Processing the Command Line 357

After separating tokens and before executing the command, the shell scans the
tokens and performs command-line expansion.

Command-Line Expansion

Both interactive and noninteractive shells transform the command line using command-
line expansion before passing the command line to the program being called. You can
use a shell without knowing much about command-line expansion, but you can use
what a shell has to offer to a better advantage with an understanding of this topic. This
section covers Bourne Again Shell command-line expansion.

The Bourne Again Shell scans each token for the various types of expansion and
substitution in the following order. Most of these processes expand a word into a
single word. Only brace expansion, word splitting, and pathname expansion can
change the number of words in a command (except for the expansion of the vari-
able "$@"—see page 1000).

1. Brace expansion (page 358)

2. Tilde expansion (page 359)

3. Parameter and variable expansion (page 360)

4. Arithmetic expansion (page 360)

5. Command substitution (page 362)

6. Word splitting (page 363)

7. Pathname expansion (page 363)

8. Process substitution (page 365)

Quote removal After bash finishes with the preceding list, it removes from the command line single
quotation marks, double quotation marks, and backslashes that are not a result of
an expansion. This process is called quote removal.

Order of Expansion

The order in which bash carries out these steps affects the interpretation of com-
mands. For example, if you set a variable to a value that looks like the instruction
for output redirection and then enter a command that uses the variable’s value to
perform redirection, you might expect bash to redirect the output.

$ SENDIT="> /tmp/saveit"
$ echo xxx $SENDIT
xxx > /tmp/saveit
$ cat /tmp/saveit
cat: /tmp/saveit: No such file or directory

In fact, the shell does not redirect the output—it recognizes input and output redi-
rection before it evaluates variables. When it executes the command line, the shell
checks for redirection and, finding none, evaluates the SENDIT variable. After

 From the Library of WoweBook.Com

ptg

358 Chapter 9 The Bourne Again Shell

replacing the variable with > /tmp/saveit, bash passes the arguments to echo, which
dutifully copies its arguments to standard output. No /tmp/saveit file is created.

The following sections provide more detailed descriptions of the steps involved in
command processing. Keep in mind that double and single quotation marks cause
the shell to behave differently when performing expansions. Double quotation
marks permit parameter and variable expansion but suppress other types of expan-
sion. Single quotation marks suppress all types of expansion.

Brace Expansion

Brace expansion, which originated in the C Shell, provides a convenient way to
specify filenames when pathname expansion does not apply. Although brace expan-
sion is almost always used to specify filenames, the mechanism can be used to gen-
erate arbitrary strings; the shell does not attempt to match the brace notation with
the names of existing files.

Brace expansion is turned on in interactive and noninteractive shells by default; you
can turn it off with set +o braceexpand. The shell also uses braces to isolate variable
names (page 316).

The following example illustrates how brace expansion works. The ls command does
not display any output because there are no files in the working directory. The echo
builtin displays the strings that the shell generates with brace expansion. In this case
the strings do not match filenames (because there are no files in the working directory).

$ ls
$ echo chap_{one,two,three}.txt
chap_one.txt chap_two.txt chap_three.txt

The shell expands the comma-separated strings inside the braces in the echo com-
mand into a SPACE-separated list of strings. Each string from the list is prepended
with the string chap_, called the preamble, and appended with the string .txt, called
the postscript. Both the preamble and the postscript are optional. The left-to-right
order of the strings within the braces is preserved in the expansion. For the shell to
treat the left and right braces specially and for brace expansion to occur, at least one
comma and no unquoted whitespace characters must be inside the braces. You can
nest brace expansions.

Brace expansion is useful when there is a long preamble or postscript. The follow-
ing example copies four files—main.c, f1.c, f2.c, and tmp.c—located in the
/usr/local/src/C directory to the working directory:

$ cp /usr/local/src/C/{main,f1,f2,tmp}.c .

You can also use brace expansion to create directories with related names:

$ ls -F
file1 file2 file3
$ mkdir vrs{A,B,C,D,E}
$ ls -F
file1 file2 file3 vrsA/ vrsB/ vrsC/ vrsD/ vrsE/

 From the Library of WoweBook.Com

ptg

Processing the Command Line 359

The –F option causes ls to display a slash (/) after a directory and an asterisk (*)
after an executable file.

If you tried to use an ambiguous file reference instead of braces to specify the direc-
tories, the result would be different (and not what you wanted):

$ rmdir vrs*
$ mkdir vrs[A-E]
$ ls -F
file1 file2 file3 vrs[A-E]/

An ambiguous file reference matches the names of existing files. In the preceding
example, because it found no filenames matching vrs[A–E], bash passed the ambig-
uous file reference to mkdir, which created a directory with that name. Brackets in
ambiguous file references are discussed on page 259.

Tilde Expansion

Chapter 6 introduced a shorthand notation to specify your home directory or the
home directory of another user. This section provides a more detailed explanation
of tilde expansion.

The tilde (~) is a special character when it appears at the start of a token on a com-
mand line. When it sees a tilde in this position, bash looks at the following string of
characters—up to the first slash (/) or to the end of the word if there is no slash—as
a possible username. If this possible username is null (that is, if the tilde appears as
a word by itself or if it is immediately followed by a slash), the shell substitutes the
value of the HOME variable for the tilde. The following example demonstrates this
expansion, where the last command copies the file named letter from Max’s home
directory to the working directory:

$ echo $HOME
/home/max
$ echo ~
/home/max
$ echo ~/letter
/home/max/letter
$ cp ~/letter .

If the string of characters following the tilde forms a valid username, the shell sub-
stitutes the path of the home directory associated with that username for the tilde
and name. If the string is not null and not a valid username, the shell does not make
any substitution:

$ echo ~zach
/home/zach
$ echo ~root
/root
$ echo ~xx
~xx

 From the Library of WoweBook.Com

ptg

360 Chapter 9 The Bourne Again Shell

Tildes are also used in directory stack manipulation (page 310). In addition, ~+ is a
synonym for PWD (the name of the working directory), and ~– is a synonym for
OLDPWD (the name of the previous working directory).

Parameter and Variable Expansion

On a command line, a dollar sign ($) that is not followed by an open parenthesis
introduces parameter or variable expansion. Parameters include both command-
line, or positional, parameters (page 996) and special parameters (page 994). Vari-
ables include both user-created variables (page 314) and keyword variables
(page 318). The bash man and info pages do not make this distinction.

Parameters and variables are not expanded if they are enclosed within single quotation
marks or if the leading dollar sign is escaped (i.e., preceded with a backslash). If they are
enclosed within double quotation marks, the shell expands parameters and variables.

Arithmetic Expansion

The shell performs arithmetic expansion by evaluating an arithmetic expression and
replacing it with the result. Under bash the syntax for arithmetic expansion is

$((expression))

The shell evaluates expression and replaces $((expression)) with the result of the
evaluation. This syntax is similar to the syntax used for command substitution
[$(...)] and performs a parallel function. You can use $((expression)) as an argument
to a command or in place of any numeric value on a command line.

The rules for forming expression are the same as those found in the C programming
language; all standard C arithmetic operators are available (see Table 27-8 on
page 1019). Arithmetic in bash is done using integers. Unless you use variables of
type integer (page 318) or actual integers, however, the shell must convert string-
valued variables to integers for the purpose of the arithmetic evaluation.

You do not need to precede variable names within expression with a dollar sign ($).
In the following example, after read (page 1003) assigns the user’s response to age,
an arithmetic expression determines how many years are left until age 60:

$ cat age_check
#!/bin/bash
echo -n "How old are you? "
read age
echo "Wow, in $((60-age)) years, you'll be 60!"

$./age_check
How old are you? 55
Wow, in 5 years, you'll be 60!

You do not need to enclose the expression within quotation marks because bash
does not perform filename expansion on it. This feature makes it easier for you to
use an asterisk (*) for multiplication, as the following example shows:

 From the Library of WoweBook.Com

ptg

Processing the Command Line 361

$ echo There are $((60*60*24*365)) seconds in a non-leap year.
There are 31536000 seconds in a non-leap year.

The next example uses wc, cut, arithmetic expansion, and command substitution
(page 362) to estimate the number of pages required to print the contents of the file
letter.txt. The output of the wc (word count) utility used with the –l option is the
number of lines in the file, in columns (character positions) 1 through 4, followed
by a SPACE and the name of the file (the first command following). The cut utility with
the –c1–4 option extracts the first four columns.

$ wc -l letter.txt
351 letter.txt
$ wc -l letter.txt | cut -c1-4
351

The dollar sign and single parenthesis instruct the shell to perform command substi-
tution; the dollar sign and double parentheses indicate arithmetic expansion:

$ echo $(($(wc -l letter.txt | cut -c1-4)/66 + 1))
6

The preceding example sends standard output from wc to standard input of cut via a
pipe. Because of command substitution, the output of both commands replaces the
commands between the $(and the matching) on the command line. Arithmetic
expansion then divides this number by 66, the number of lines on a page. A 1 is
added because the integer division results in any remainder being discarded.

Another way to get the same result without using cut is to redirect the input to wc
instead of having wc get its input from a file you name on the command line. When
you redirect its input, wc does not display the name of the file:

$ wc -l < letter.txt
 351

It is common practice to assign the result of arithmetic expansion to a variable:

$ numpages=$(($(wc -l < letter.txt)/66 + 1))

let builtin The let builtin evaluates arithmetic expressions just as the $(()) syntax does. The
following command is equivalent to the preceding one:

$ let "numpages=$(wc -l < letter.txt)/66 + 1"

Fewer dollar signs ($)

tip When you use variables within $((and)), the dollar signs that precede individual variable refer-
ences are optional:

$ x=23 y=37
$ echo $((2*$x + 3*$y))
157
$ echo $((2*x + 3*y))
157

 From the Library of WoweBook.Com

ptg

362 Chapter 9 The Bourne Again Shell

The double quotation marks keep the SPACEs (both those you can see and those that
result from the command substitution) from separating the expression into sepa-
rate arguments to let. The value of the last expression determines the exit status of
let. If the value of the last expression is 0, the exit status of let is 1; otherwise, its
exit status is 0.

You can supply let with multiple arguments on a single command line:

$ let a=5+3 b=7+2
$ echo $a $b
8 9

When you refer to variables when doing arithmetic expansion with let or $(()), the
shell does not require a variable name to begin with a dollar sign ($). Nevertheless,
it is a good practice to do so for consistency, as in most places you must precede a
variable name with a dollar sign.

Command Substitution

Command substitution replaces a command with the output of that command. The
preferred syntax for command substitution under bash follows:

$(command)

Under bash you can also use the following, older syntax:

‘command‘

The shell executes command within a subshell and replaces command, along with
the surrounding punctuation, with standard output of command.

In the following example, the shell executes pwd and substitutes the output of the
command for the command and surrounding punctuation. Then the shell passes the
output of the command, which is now an argument, to echo, which displays it.

$ echo $(pwd)
/home/max

The next script assigns the output of the pwd builtin to the variable where and dis-
plays a message containing the value of this variable:

$ cat where
where=$(pwd)
echo "You are using the $where directory."
$./where
You are using the /home/zach directory.

Although it illustrates how to assign the output of a command to a variable, this
example is not realistic. You can more directly display the output of pwd without
using a variable:

$ cat where2
echo "You are using the $(pwd) directory."
$./where2
You are using the /home/zach directory.

 From the Library of WoweBook.Com

ptg

Processing the Command Line 363

The following command uses find to locate files with the name README in the
directory tree rooted at the working directory. This list of files is standard output of
find and becomes the list of arguments to ls.

$ ls -l $(find . -name README -print)

The next command line shows the older ‘command‘ syntax:

$ ls -l ‘find . -name README -print‘

One advantage of the newer syntax is that it avoids the rather arcane rules for token
handling, quotation mark handling, and escaped back ticks within the old syntax.
Another advantage of the new syntax is that it can be nested, unlike the old syntax.
For example, you can produce a long listing of all README files whose size
exceeds the size of ./README with the following command:

$ ls -l $(find . -name README -size +$(echo $(cat ./README | wc -c)c) -print)

Try giving this command after giving a set –x command (page 966) to see how bash
expands it. If there is no README file, you just get the output of ls –l.

For additional scripts that use command substitution, see pages 962, 981, and 1011.

Word Splitting

The results of parameter and variable expansion, command substitution, and arith-
metic expansion are candidates for word splitting. Using each character of IFS
(page 323) as a possible delimiter, bash splits these candidates into words or tokens.
If IFS is unset, bash uses its default value (SPACE-TAB-NEWLINE). If IFS is null, bash does
not split words.

Pathname Expansion

Pathname expansion (page 256), also called filename generation or globbing, is the
process of interpreting ambiguous file references and substituting the appropriate list
of filenames. Unless noglob (page 355) is set, the shell performs this function when it
encounters an ambiguous file reference—a token containing any of the unquoted
characters *, ?, [, or]. If bash cannot locate any files that match the specified pat-
tern, the token with the ambiguous file reference is left alone. The shell does not
delete the token or replace it with a null string but rather passes it to the program as
is (except see nullglob on page 355).

In the first echo command in the following example, the shell expands the ambigu-
ous file reference tmp* and passes three tokens (tmp1, tmp2, and tmp3) to echo.
The echo builtin displays the three filenames it was passed by the shell. After rm

$((Versus $(
tip The symbols $((constitute a single token. They introduce an arithmetic expression, not a com-

mand substitution. Thus, if you want to use a parenthesized subshell (page 306) within $(), you
must insert a SPACE between the $(and the following (.

 From the Library of WoweBook.Com

ptg

364 Chapter 9 The Bourne Again Shell

removes the three tmp* files, the shell finds no filenames that match tmp* when it
tries to expand it. It then passes the unexpanded string to the echo builtin, which
displays the string it was passed.

$ ls
tmp1 tmp2 tmp3
$ echo tmp*
tmp1 tmp2 tmp3
$ rm tmp*
$ echo tmp*
tmp*

A period that either starts a pathname or follows a slash (/) in a pathname must be
matched explicitly unless you have set dotglob (page 354). The option nocaseglob
(page 355) causes ambiguous file references to match filenames without regard
to case.

Quotation marks Putting double quotation marks around an argument causes the shell to suppress
pathname and all other kinds of expansion except parameter and variable expan-
sion. Putting single quotation marks around an argument suppresses all types of
expansion. The second echo command in the following example shows the variable
$max between double quotation marks, which allow variable expansion. As a result
the shell expands the variable to its value: sonar. This expansion does not occur in
the third echo command, which uses single quotation marks. Because neither single
nor double quotation marks allow pathname expansion, the last two commands
display the unexpanded argument tmp* .

$ echo tmp* $max
tmp1 tmp2 tmp3 sonar
$ echo "tmp* $max"
tmp* sonar
$ echo 'tmp* $max'
tmp* $max

The shell distinguishes between the value of a variable and a reference to the vari-
able and does not expand ambiguous file references if they occur in the value of a
variable. As a consequence you can assign to a variable a value that includes special
characters, such as an asterisk (*).

Levels of expansion In the next example, the working directory has three files whose names begin with
letter. When you assign the value letter* to the variable var, the shell does not
expand the ambiguous file reference because it occurs in the value of a variable (in
the assignment statement for the variable). No quotation marks surround the string
letter*; context alone prevents the expansion. After the assignment the set builtin
(with the help of grep) shows the value of var to be letter*.

$ ls letter*
letter1 letter2 letter3
$ var=letter*
$ set | grep var
var='letter*'

 From the Library of WoweBook.Com

ptg

Chapter Summary 365

$ echo '$var'
$var
$ echo "$var"
letter*
$ echo $var
letter1 letter2 letter3

The three echo commands demonstrate three levels of expansion. When $var is
quoted with single quotation marks, the shell performs no expansion and passes the
character string $var to echo, which displays it. With double quotation marks, the
shell performs variable expansion only and substitutes the value of the var variable
for its name, preceded by a dollar sign. No pathname expansion is performed on
this command because double quotation marks suppress it. In the final command,
the shell, without the limitations of quotation marks, performs variable substitution
and then pathname expansion before passing the arguments to echo.

Process Substitution

A special feature of the Bourne Again Shell is the ability to replace filename argu-
ments with processes. An argument with the syntax <(command) causes command
to be executed and the output written to a named pipe (FIFO). The shell replaces
that argument with the name of the pipe. If that argument is then used as the name
of an input file during processing, the output of command is read. Similarly an argu-
ment with the syntax >(command) is replaced by the name of a pipe that command
reads as standard input.

The following example uses sort (page 168) with the –m (merge, which works cor-
rectly only if the input files are already sorted) option to combine two word lists
into a single list. Each word list is generated by a pipe that extracts words matching
a pattern from a file and sorts the words in that list.

$ sort -m -f <(grep "[^A-Z]..$" memo1 | sort) <(grep ".*aba.*" memo2 |sort)

Chapter Summary

The shell is both a command interpreter and a programming language. As a com-
mand interpreter, it executes commands you enter in response to its prompt. As a
programming language, the shell executes commands from files called shell scripts.
When you start a shell, it typically runs one or more startup files.

Running a
shell script

Assuming the file holding a shell script is in the working directory, there are three
basic ways to execute the shell script from the command line.

1. Type the simple filename of the file that holds the script.

2. Type a relative pathname, including the simple filename preceded by ./.

3. Type bash followed by the name of the file.

 From the Library of WoweBook.Com

ptg

366 Chapter 9 The Bourne Again Shell

Technique 1 requires that the working directory be in the PATH variable. Tech-
niques 1 and 2 require that you have execute and read permission for the file hold-
ing the script. Technique 3 requires that you have read permission for the file
holding the script.

Job control A job is one or more commands connected by pipes. You can bring a job running in
the background into the foreground using the fg builtin. You can put a foreground
job into the background using the bg builtin, provided that you first suspend the job
by pressing the suspend key (typically CONTROL-Z). Use the jobs builtin to see which
jobs are running or suspended.

Variables The shell allows you to define variables. You can declare and initialize a variable by
assigning a value to it; you can remove a variable declaration using unset. Variables
are local to a process unless they are exported using the export builtin to make them
available to child processes. Variables you declare are called user-created variables.
The shell defines keyword variables. Within a shell script you can work with the
command-line (positional) parameters the script was called with.

Process Each process has a unique identification (PID) number and is the execution of a sin-
gle Linux command. When you give it a command, the shell forks a new (child)
process to execute the command, unless the command is built into the shell. While
the child process is running, the shell is in a state called sleep. By ending a command
line with an ampersand (&), you can run a child process in the background and
bypass the sleep state so that the shell prompt returns immediately after you press
RETURN. Each command in a shell script forks a separate process, each of which may
in turn fork other processes. When a process terminates, it returns its exit status to
its parent process. An exit status of zero signifies success; nonzero signifies failure.

History The history mechanism, a feature adapted from the C Shell, maintains a list of
recently issued command lines, also called events, that provides a way to reexecute
previous commands quickly. There are several ways to work with the history list;
one of the easiest is to use a command-line editor.

Command-line
editors

When using an interactive Bourne Again Shell, you can edit a command line and
commands from the history file, using either of the Bourne Again Shell’s command-
line editors (vim or emacs). When you use the vim command-line editor, you start in
Input mode, unlike vim. You can switch between Command and Input modes. The
emacs editor is modeless and distinguishes commands from editor input by recog-
nizing control characters as commands.

Aliases An alias is a name that the shell translates into another name or (complex) com-
mand. Aliases allow you to define new commands by substituting a string for the
first token of a simple command.

Functions A shell function is a series of commands that, unlike a shell script, is parsed prior to
being stored in memory. As a consequence shell functions run faster than shell
scripts. Shell scripts are parsed at runtime and are stored on disk. A function can be
defined on the command line or within a shell script. If you want the function defi-
nition to remain in effect across login sessions, you can define it in a startup file.
Like functions in many programming languages, a shell function is called by giving
its name followed by any arguments.

 From the Library of WoweBook.Com

ptg

Exercises 367

Shell features There are several ways to customize the shell’s behavior. You can use options on the
command line when you call bash. You can use the bash set and shopt builtins to
turn features on and off.

Command-line
expansion

When it processes a command line, the Bourne Again Shell may replace some
words with expanded text. Most types of command-line expansion are invoked by
the appearance of a special character within a word (for example, a leading dollar
sign denotes a variable). Table 9-6 on page 326 lists these special characters. The
expansions take place in a specific order. Following the history and alias expan-
sions, the common expansions are parameter and variable expansion, command
substitution, and pathname expansion. Surrounding a word with double quotation
marks suppresses all types of expansion except parameter and variable expansion.
Single quotation marks suppress all types of expansion, as does quoting (escaping)
a special character by preceding it with a backslash.

Exercises

1. Explain the following unexpected result:

$ whereis date
date: /bin/date ...
$ echo $PATH
.:/usr/local/bin:/usr/bin:/bin
$ cat > date
echo "This is my own version of date."
$./date
Fri May 21 11:45:49 PDT 2010

2. What are two ways you can execute a shell script when you do not have
execute permission for the file containing the script? Can you execute a
shell script if you do not have read permission for the file containing the
script?

3. What is the purpose of the PATH variable?

a. Set the PATH variable so that it causes the shell to search the following
directories in order:

• /usr/local/bin

• /usr/bin

• /bin

• /usr/kerberos/bin

• The bin directory in your home directory

• The working directory

 From the Library of WoweBook.Com

ptg

368 Chapter 9 The Bourne Again Shell

b. If there is a file named doit in /usr/bin and another file with the same
name in your ~/bin directory, which one will be executed? (Assume that
you have execute permission for both files.)

c. If your PATH variable is not set to search the working directory, how
can you execute a program located there?

d. Which command can you use to add the directory /usr/games to the end
of the list of directories in PATH?

4. Assume you have made the following assignment:

$ person=zach

Give the output of each of the following commands:

a. echo $person

b. echo '$person'

c. echo "$person"

5. The following shell script adds entries to a file named journal-file in your
home directory. This script helps you keep track of phone conversations
and meetings.

$ cat journal
journal: add journal entries to the file
$HOME/journal-file

file=$HOME/journal-file
date >> $file
echo -n "Enter name of person or group: "
read name
echo "$name" >> $file
echo >> $file
cat >> $file
echo "--" >> $file
echo >> $file

a. What do you have to do to the script to be able to execute it?

b. Why does the script use the read builtin the first time it accepts input
from the terminal and the cat utility the second time?

6. Assume the /home/zach/grants/biblios and /home/zach/biblios directories
exist. Give Zach’s working directory after he executes each sequence of
commands given. Explain what happens in each case.

a.
$ pwd
/home/zach/grants
$ CDPATH=$(pwd)
$ cd
$ cd biblios

 From the Library of WoweBook.Com

ptg

Advanced Exercises 369

b.
$ pwd
/home/zach/grants
$ CDPATH=$(pwd)
$ cd $HOME/biblios

7. Name two ways you can identify the PID number of the login shell.

8. Give the following command:

$ sleep 30 | cat /etc/inittab

Is there any output from sleep? Where does cat get its input from? What
has to happen before the shell displays another prompt?

Advanced Exercises

9. Write a sequence of commands or a script that demonstrates variable
expansion occurs before pathname expansion.

10. Write a shell script that outputs the name of the shell executing it.

11. Explain the behavior of the following shell script:

$ cat quote_demo
twoliner="This is line 1.
This is line 2."
echo "$twoliner"
echo $twoliner

a. How many arguments does each echo command see in this script?
Explain.

b. Redefine the IFS shell variable so that the output of the second echo is
the same as the first.

12. Add the exit status of the previous command to your prompt so that it
behaves similarly to the following:

$ [0] ls xxx
ls: xxx: No such file or directory
$ [1]

13. The dirname utility treats its argument as a pathname and writes to stan-
dard output the path prefix—that is, everything up to but not including
the last component:

$ dirname a/b/c/d
a/b/c

If you give dirname a simple filename (no / characters) as an argument,
dirname writes a . to standard output:

 From the Library of WoweBook.Com

ptg

370 Chapter 9 The Bourne Again Shell

$ dirname simple
.

Implement dirname as a bash function. Make sure that it behaves sensibly
when given such arguments as /.

14. Implement the basename utility, which writes the last component of its
pathname argument to standard output, as a bash function. For example,
given the pathname a/b/c/d, basename writes d to standard output:

$ basename a/b/c/d
d

15. The Linux basename utility has an optional second argument. If you give
the command basename path suffix, basename removes the suffix and the
prefix from path:

$ basename src/shellfiles/prog.bash .bash
prog
$ basename src/shellfiles/prog.bash .c
prog.bash

Add this feature to the function you wrote for exercise 14.

 From the Library of WoweBook.Com

ptg

333777111

10Chapter10The communications facilities linking computers are continually
improving, allowing faster and more economical connections. The
earliest computers were unconnected stand-alone systems. To
transfer information from one system to another, you had to store
it in some form (usually magnetic tape, paper tape, or punch
cards—called IBM or Hollerith cards), carry it to a compatible sys-
tem, and read it back in. A notable advance occurred when com-
puters began to exchange data over serial lines, although the
transfer rate was slow (hundreds of bits per second). People
quickly invented new ways to take advantage of this computing
power, such as email, news retrieval, and bulletin board services.
With the speed of today’s networks, a piece of email can cross the
country or even travel halfway around the world in a few seconds.

Today it would be difficult to find a computer facility that does
not include a LAN to link its systems. Linux systems are typi-
cally attached to an Ethernet (page 1147) network. Wireless
networks are also prevalent. Large computer facilities usually
maintain several networks, often of different types, and almost
certainly have connections to larger networks (companywide or
campuswide and beyond).

In This Chapter

Types of Networks and How
They Work. 373

Network Protocols. 379

Network Utilities 390

ping: Tests a Network
Connection. 393

traceroute: Traces a Route over
the Internet 394

host and dig: Query Internet
Nameservers 396

Distributed Computing 397

Usenet . 407

WWW: World Wide Web 409

10

Networking and the

Internet

 From the Library of WoweBook.Com

ptg

372 Chapter 10 Networking and the Internet

Internet The Internet is a loosely administered network of networks (an internetwork) that
links computers on diverse LANs around the globe. An internet (small i) is a generic
network of networks that may share some parts in common with the public Inter-
net. It is the Internet that makes it possible to send an email message to a colleague
thousands of miles away and receive a reply within minutes. A related term, intra-
net, refers to the networking infrastructure within a company or other institution.
Intranets are usually private; access to them from external networks may be limited
and carefully controlled, typically using firewalls (page 379).

Network services Over the past decade many network services have emerged and become standard-
ized. On Linux and UNIX systems, special processes called daemons (page 1144)
support such services by exchanging specialized messages with other systems over
the network. Several software systems have been created to allow computers to
share filesystems with one another, making it appear as though remote files are
stored on local disks. Sharing remote filesystems allows users to share information
without knowing where the files physically reside, without making unnecessary
copies, and without learning a new set of utilities to manipulate them. Because the
files appear to be stored locally, you can use standard utilities (such as cat, vim, lpr,
mv, or their graphical counterparts) to work with them.

Developers have created new tools and extended existing ones to take advantage of
higher network speeds and to work within more crowded networks. The rlogin, rsh,
and telnet utilities, which were designed long ago, have largely been supplanted by
ssh (secure shell, page 663) in recent years. The ssh utility allows a user to log in on
or execute commands securely on a remote computer. Users rely on such utilities as
scp and ftp to transfer files from one system to another across the network. Commu-
nication utilities, including email utilities and chat programs (e.g., talk, Internet Relay
Chat [IRC], ICQ, and instant messenger [IM] programs, such as AOL’s AIM and
Pidgin) have become so prevalent that many people with very little computer exper-
tise use them on a daily basis to keep in touch with friends, family, and colleagues.

Intranet An intranet is a network that connects computing resources at a school, company,
or other organization but, unlike the Internet, typically restricts access to internal
users. An intranet is very similar to a LAN (local area network) but is based on
Internet technology. An intranet can provide database, email, and Web page access
to a limited group of people, regardless of their geographic location.

The ability of an intranet to connect dissimilar machines is one of its strengths.
Think of all the machines you can find on the Internet: Macintosh systems, PCs run-
ning different versions of Windows, machines running UNIX and Linux, and so on.
Each of these machines can communicate via IP (page 380), a common protocol. So
it is with an intranet: Dissimilar machines can all talk to one another.

Another key difference between the Internet and an intranet is that the Internet trans-
mits only one protocol suite: IP. In contrast, an intranet can be set up to use a number
of protocols, such as IP, IPX, AppleTalk, DECnet, XNS, or other protocols developed
by vendors over the years. Although these protocols cannot be transmitted directly
over the Internet, you can set up special gateway boxes at remote sites that tunnel or
encapsulate these protocols into IP packets and then use the Internet to pass them.

 From the Library of WoweBook.Com

ptg

Types of Networks and How They Work 373

You can use an extranet (also called a partner net) or a virtual private network
(VPN) to improve security. These terms describe ways to connect remote sites
securely to a local site, typically by using the public Internet as a carrier and
employing encryption as a means of protecting data in transit.

Following are some terms you may want to become familiar with before you read
the rest of this chapter:

ASP (page 1135) hub (page 1152) packet (page 1164)
bridge (page 1138) internet (page 1154) router (page 1170)
extranet (page 1147) Internet (page 1154) sneakernet (page 1172)
firewall (page 1148) intranet (page 1154) switch (page 1175)
gateway (page 1149) ISP (page 1155) VPN (page 1180)

Types of Networks and How They Work

Computers communicate over networks using unique addresses assigned by system
software. A computer message, called a packet, frame, or datagram, includes the
address of the destination computer and the sender’s return address. The three most
common types of networks are broadcast, point-to-point, and switched. Once pop-
ular, token-based networks (such as FDDI and token ring) are rarely seen anymore.

Speed is critical to the proper functioning of the Internet. Newer specifications
(cat 6 and cat 7) are being standardized for 1000BaseT (1 gigabit per second, called
gigabit Ethernet, or GIG-E) and faster networking. Some of the networks that form
the backbone of the Internet run at speeds of almost 40 gigabits per second
(OC768) to accommodate the ever-increasing demand for network services.
Table 10-1 lists some of the specifications in use today.

Table 10-1 Network specifications

Specification Speed

DS0 64 kilobits per second

ISDN Two DS0 lines plus signaling (16 kilobits per second) or 128 kilobits per
second

T-1 1.544 megabits per second (24 DS0 lines)

T-3 43.232 megabits per second (28 T-1s)

OC3 155 megabits per second (100 T-1s)

OC12 622 megabits per second (4 OC3s)

OC48 2.5 gigabits per seconds (4 OC12s)

OC192 9.6 gigabits per second (4 OC48s)

OC768 38.4 gigabits per second (4 OC192s)

 From the Library of WoweBook.Com

ptg

374 Chapter 10 Networking and the Internet

Broadcast Networks

On a broadcast network, such as Ethernet, any of the many systems attached to the
network cable can send a message at any time; each system examines the address in
each message and responds only to messages addressed to it. A problem occurs on
a broadcast network when multiple systems send data at the same time, resulting
in a collision of the messages on the cable. When messages collide, they can
become garbled. The sending system notices the garbled message and resends it
after waiting a short but random amount of time. Waiting a random amount of
time helps prevent those same systems from resending the data at the same
moment and experiencing yet another collision. The extra traffic that results from
collisions can strain the network; if the collision rate gets too high, retransmissions
may result in more collisions. Ultimately the network may become unusable.

Point-to-Point Networks

A point-to-point link does not seem like much of a network because only two end-
points are involved. However, most connections to WANs (wide area networks) go
through point-to-point links, using wire cable, radio, or satellite links. The advantage
of a point-to-point link is its simplicity: Because only two systems are involved, the
traffic on the link is limited and well understood. A disadvantage is that each system
can typically be equipped for only a small number of such links; it is impractical and
costly to establish point-to-point links that connect each computer to all the rest.

Point-to-point links often use serial lines and modems. The combination of a
modem with a point-to-point link allows an isolated system to connect inexpen-
sively to a larger network.

The most common types of point-to-point links are the ones used to connect to the
Internet. When you use DSL1 (digital subscriber line), you are using a point-to-point
link to connect to the Internet. Serial lines, such as T-1, T-3, ATM links, and ISDN,
are all point-to-point. Although it might seem like a point-to-point link, a cable
modem is based on broadcast technology and in that way is similar to Ethernet.

Switched Networks

A switch is a device that establishes a virtual path between source and destination
hosts in such a way that each path appears to be a point-to-point link, much like a
railroad roundhouse. The switch creates and tears down virtual paths as hosts seek to
communicate with each other. Each host thinks it has a direct point-to-point path to
the host it is talking to. Contrast this approach with a broadcast network, where each
host also sees traffic bound for other hosts. The advantage of a switched network
over a pure point-to-point network is that each host requires only one connection: the
connection to the switch. Using pure point-to-point connections, each host must have
a connection to every other host. Scalability is provided by further linking switches.

1. The term DSL incorporates the xDSL suite of technologies, which includes ADSL, XDSL, SDSL, and HDSL.

 From the Library of WoweBook.Com

ptg

Types of Networks and How They Work 375

LAN: Local Area Network

Local area networks (LANs) are confined to a relatively small area—a single com-
puter facility, building, or campus. Today most LANs run over copper or fiberoptic
(glass or plastic) cable, but other wireless technologies, such as infrared (similar to
most television remote control devices) and radio wave (wireless, or Wi-Fi), are
becoming more popular.

If its destination address is not on the local network, a packet must be passed on to
another network by a router (page 376). A router may be a general-purpose computer or
a special-purpose device attached to multiple networks to act as a gateway among them.

Ethernet

A Linux system connected to a LAN usually connects to a network using Ethernet.
A typical Ethernet connection can support data transfer rates from 10 megabits
per second to 1 gigabit per second, with further speed enhancements planned for
the future. As a result of computer load, competing network traffic, and net-
work overhead, file transfer rates on an Ethernet are always slower than the
maximum, theoretical transfer rate.

Cables An Ethernet network transfers data using copper or fiberoptic cable or wireless trans-
mitters and receivers. Originally, each computer was attached to a thick coaxial cable
(called thicknet) at tap points spaced at six-foot intervals along the cable. The thick
cable was awkward to deal with, so other solutions, including a thinner coaxial cable
called thinnet, or 10Base2,2 were developed. Today most Ethernet connections are
either wireless or made over unshielded twisted pair (referred to as UTP, Category 5
[cat 5], Category 5e [cat 5e], Category 6 [cat 6], 10BaseT, or 100BaseT) wire—similar
to the type of wire used for telephone lines and serial data communications.

Segment A network segment is a part of a network in which all systems communicate using
the same physical layer (layer 1) of the IP and OSI models (page 380).

Duplex In half-duplex mode, packets travel in one direction at a time over the cable. In full-
duplex mode, packets travel in both directions.

Hub A hub (sometimes called a concentrator) is a device that connects systems so they
are all part of one network segment and share the network bandwidth. Hubs work
at the physical layer of the IP and OSI models (layer 1, page 380).

Switch A switch connects network segments. A switch inspects each data packet and learns
which devices are connected to which of its ports. The switch sorts packets and sends
each packet only to the device it is intended for. Because a switch sends packets only
to their destination devices, it can conserve network bandwidth and perform better
than a hub. A switch may have buffers for holding and queuing packets. Switches
work at the data link layer of the IP and OSI models (layer 2, page 380).

2. Versions of Ethernet are classified as XBaseY, where X is the data rate in megabits per second, Base
means baseband (as opposed to radio frequency), and Y is the category of cabling.

 From the Library of WoweBook.Com

ptg

376 Chapter 10 Networking and the Internet

Some Ethernet switches have enough bandwidth to communicate simultaneously, in
full-duplex mode, with all connected devices. A nonswitched (hub-based) broadcast
network can run in only half-duplex mode. Full-duplex Ethernet further improves
things by eliminating collisions. Theoretically, each host on a switched network can
transmit and receive simultaneously at the speed of the network (e.g., 100 megabits
per second) for an effective bandwidth between hosts of twice the speed of the net-
work (e.g., 200 megabits per second), depending on the capacity of the switch.

Router A router connects networks. For example, a router can connect a LAN to a WAN
(such as the Internet). A router determines which path packets should take to travel to
a different network and forwards the packets. Routers work at the network layer of
the IP and OSI models (layer 3, page 380). The next page covers routers in more depth.

Wireless

Wireless networks are becoming increasingly common. They are found in offices,
homes, and public places, such as universities, coffee shops, and airports. Wireless
access points provide functionality similar to an Ethernet hub. They allow multiple
users to interact via a common radio frequency spectrum. A wireless, point-to-point
connection allows you to wander about your home or office with a laptop, using an
antenna to link to a LAN or to the Internet via an in-house base station. Linux
includes drivers for many of the common wireless boards. A wireless access point,
or base station, connects a wireless network to a wired network so that no special
protocol is required for a wireless connection. Refer to the Linux Wireless LAN
HOWTO at www.hpl.hp.com/personal/Jean_Tourrilhes/Linux.

WAN: Wide Area Network

A wide area network (WAN) covers a large geographic area. In contrast, the tech-
nologies (such as Ethernet) used for LANs were designed to work over limited dis-
tances and for a certain number of host connections. A WAN may span long
distances over dedicated data lines (leased from a telephone company) or radio or
satellite links. Such networks are often used to interconnect LANs. Major Internet
service providers rely on WANs to connect to their customers within a country and
around the globe.

MAN Some networks do not fit into either the LAN or the WAN designation. A metropol-
itan area network (MAN) is a network that is contained in a smaller geographic
area, such as a city. Like WANs, MANs are typically used to interconnect LANs.

Internetworking Through Gateways and Routers

Gateway A LAN connects to a WAN through a gateway, a generic term for a computer or a
special device with multiple network connections that passes data from one net-
work to another. A gateway converts the data traffic from the format used on the
LAN to that used on the WAN. Data that crosses the country from one Ethernet to
another over a WAN, for example, is repackaged from the Ethernet format to a
different format that can be processed by the communications equipment that

 From the Library of WoweBook.Com

www.hpl.hp.com/personal/Jean_Tourrilhes/Linux

ptg

Types of Networks and How They Work 377

makes up the WAN backbone. When it reaches the end of its journey over the
WAN, the data is converted by another gateway to a format appropriate for the
receiving network. For the most part, these details are of concern only to the net-
work administrators; the end user does not need to know anything about how the
data transfer takes place.

Router A router is the most popular form of gateway. Routers play an important role in
internetworking. Just as you might study a map to plan your route when you need to
drive to an unfamiliar place, so a computer needs to know how to deliver a message
to a system attached to a distant network by passing through intermediary systems
and networks along the way. Although you might envision using a giant network
road map to choose the route that your data should follow, a static map of computer
routes is usually a poor choice for a large network. Computers and networks along
the route you choose may be overloaded or down, without providing a detour for
your message.

Routers instead communicate dynamically, keeping each other informed about
which routes are open for use. To extend the analogy, this situation would be like
heading out on a car trip without consulting a map to find a route to your destina-
tion; instead you head for a nearby gas station and ask directions. Throughout the
journey you continue to stop at one gas station after another, getting directions at
each to find the next one. Although it would take a while to make the stops, the
owner of each gas station would advise you of bad traffic, closed roads, alternative
routes, and shortcuts.

The stops made by the data are much quicker than those you would make in your
car, but each message leaves each router on a path chosen based on the most current
information. Think of this system as a GPS (global positioning system) setup that
automatically gets updates at each intersection and tells you where to go next,
based on traffic and highway conditions.

Figure 10-1 (next page) shows an example of how LANs might be set up at three
sites interconnected by a WAN (the Internet). In this type of network diagram,
Ethernet LANs are drawn as straight lines, with devices attached at right angles;
WANs are represented as clouds, indicating that the details have been left out; and
wireless connections are drawn as zigzag lines with breaks, indicating that the con-
nection may be intermittent.

In Figure 10-1, a gateway or a router relays messages between each LAN and the
Internet. Three of the routers in the Internet are shown (for example, the one closest
to each site). Site A has a server, a workstation, a network computer, and a PC shar-
ing a single Ethernet LAN. Site B has an Ethernet LAN that serves a printer and
four Linux workstations. A firewall permits only certain traffic to pass between the
Internet router and the site’s local router. Site C has three LANs linked by a single
router, perhaps to reduce the traffic load that would result if the LANs were com-
bined or to keep workgroups or locations on separate networks. Site C also includes
a wireless access point that enables wireless communication with nearby computers.

 From the Library of WoweBook.Com

ptg

3
7

8
C

h
a

p
t
e
r

 1
0

N
e
t
w

o
r

k
i
n

g
 a

n
d

 t
h

e
 I

n
t
e
r

n
e
t

Figure 10-1A
 Slice of the Internet

NC

Network Linux

PC

Personal

W

computer

Ethernet

Firewall
Router

Router 3

Router 1

Router 2

W

W

W

Gateway

PC W
Printer

Ethernet

Ethernet

W

W

Internet

GATEWAY/

W

W W

Legend
PC WNC

Site B

Site A

Site C

Ethernet

Printer

Printer

Wireless access

NC

W

workstation

Router

Switch

Server

computer

point

Figure 10-1 A slice of the Internet

ptg

Types of Networks and How They Work 379

Firewall

A firewall in a car separates the engine compartment from the passenger compart-
ment, protecting the driver and passengers from engine fires, noise, and fumes. In
much the same way, computer firewalls separate computers from malicious and
unwanted users.

A firewall prevents certain types of traffic from entering or leaving a network. For
example, a firewall might prevent traffic from your IP address from leaving the
network and prevent anyone except users from selected domains from using FTP to
retrieve data from the network. The implementations of firewalls vary
widely—from Linux machines with two interfaces (page 1154) running custom
software to a router (preceding section) with simple access lists to esoteric, vendor-
supplied firewall appliances. Most larger installations have at least one kind of
firewall in place. A firewall is often accompanied by a proxy server/gateway
(page 405) that provides an intermediate point between you and the host you are
communicating with.

In addition to the firewalls found in multipurpose computers, firewalls are becom-
ing increasingly common in consumer appliances. For example, they are built into
cable modems, wireless gateways, routers, and stand-alone devices.

Typically a single Linux machine will include a minimal firewall. A small group of
Linux systems may have an inexpensive Linux machine with two network interfaces
and packet-filtering software functioning as a dedicated firewall. One of the inter-
faces connects to the Internet, modems, and other outside data sources. The other
connects, normally through a hub or switch, to the local network. Refer to
Chapter 25 for information on gufw, iptables, and setting up a firewall and to
Appendix C for a discussion of security.

Network Protocols

To exchange information over a network, computers must communicate using a
common language, or protocol (page 1166). The protocol determines the format
of message packets. The predominant network protocols used by Linux systems
are TCP and IP,3 collectively referred to as TCP/IP (Transmission Control Proto-
col and Internet Protocol). Network services that need highly reliable connections,
such as ssh and scp, tend to use TCP/IP. Another protocol used for some system
services is UDP (User Datagram Protocol). Network services that do not require
guaranteed delivery, such as RealAudio and RealVideo, operate satisfactorily with
the simpler UDP.4

3. All references to IP imply IPv4 (page 1155).

4. Voice and video protocols are delay sensitive, not integrity sensitive. The human ear and eye accept and
interpolate loss in an audio or video stream but cannot deal with variable delay. The guaranteed delivery
that TCP provides introduces a delay on a busy network when packets get retransmitted. This delay is not
acceptable for video and audio transmissions, whereas less than 100 percent integrity is acceptable.

 From the Library of WoweBook.Com

ptg

380 Chapter 10 Networking and the Internet

IP: Internet Protocol

Layering was introduced to facilitate protocol design: Layers distinguish functional
differences between adjacent protocols. A grouping of layers can be standardized
into a protocol model. IP has a model that distinguishes protocol layers. The IP
model differs from the ISO seven-layer protocol model (also called the OSI model)
that is often illustrated in networking textbooks. Specifically IP uses the following
simplified five-layer model:

1. The first layer of the IP protocol, called the physical layer, describes the
physical medium (copper, fiber, wireless) and the data encoding used to
transmit signals on that medium (pulses of light, electrical waves, or radio
waves, for instance).

2. The second layer, called the data link layer, covers media access by net-
work devices and describes how to put data into packets, transmit the
data, and check it for errors. Ethernet is found at this layer, as is 802.11
(page 1134) wireless.

3. The third layer, called the network layer, frequently uses IP and addresses
and routes packets.

4. The fourth layer, called the transport layer, is where TCP and UDP exist.
This layer provides a means for applications to communicate with each
other. Functions commonly performed by the transport layer include guar-
anteed delivery, delivery of packets in the order of their transmission, flow
control, error detection, and error correction. The transport layer is respon-
sible for dividing data streams into packets. In addition, this layer performs
port addressing, which allows it to distinguish among different services
using the same transport protocol. Port addressing keeps the data from
multiple applications using the same protocol (for example, TCP) separate.

5. Anything above the transport layer is the domain of the application and is
part of the fifth layer. Unlike the ISO model, the Internet model does not
distinguish among application, presentation, and session layers. All of the
upper-layer characteristics, such as character encoding, encryption, and
GUIs, are part of the application. Applications choose the transport charac-
teristics they require as well as the corresponding transport layer protocol
with which to send and receive data.

TCP: Transmission Control Protocol

TCP is most frequently run on top of IP in a combination referred to as TCP/IP.
This protocol provides error recovery and guaranteed delivery in packet transmis-
sion order; it also works with multiple ports so that it can handle more than one
application. TCP is a connection-oriented protocol (page 1142), also known as a
stream-based protocol. Once established, a TCP connection looks like a stream of
data, not individual IP packets. The connection is assumed to remain up and be
uniquely addressable. Every piece of information you write to the connection
always goes to the same destination and arrives in the order it was sent. Because

 From the Library of WoweBook.Com

ptg

Types of Networks and How They Work 381

TCP is connection oriented and establishes a virtual circuit between two systems,
this protocol is not suitable for one-to-many transmissions (see the discussion of
UDP, following). TCP has builtin mechanisms for dealing with congestion (or flow)
control over busy networks and throttles back (slows the speed of data flow) when
it has to retransmit dropped packets. TCP can also deal with acknowledgments,
wide area links, high-delay links, and other situations.

UDP: User Datagram Protocol

UDP runs at layer 4 of the IP stack, just as TCP does, but is much simpler. Like TCP,
UDP works with multiple ports and multiple applications. It has checksums for
error detection but does not automatically retransmit datagrams (page 1144) that
fail the checksum test. UDP is a datagram-oriented protocol: Each datagram must
carry its own address and port information. Each router along the way examines
each datagram to determine the destination, one hop at a time. You can broadcast
or multicast UDP datagrams to many destinations at the same time by using special
addresses.

PPP: Point-to-Point Protocol

PPP provides serial line point-to-point connections that support IP. This protocol
compresses data to make the most of the limited bandwidth available on serial con-
nections. PPP, which replaces SLIP5 (Serial Line IP), acts as a point-to-point layer
2/3 transport that many other types of protocols can ride on. It is used mostly for
IP-based services and connections, such as TCP or UDP.

Xremote and LBX

Two protocols that speed up data transfer over serial lines are Xremote and LBX.
Xremote compresses the X Window System protocol so that it is more efficient over
slower serial lines. LBX (low-bandwidth X) is based on the Xremote technology
and is part of X Window System release X11R6 and higher.

Host Address

Each computer interface has a unique identifier called a MAC address (page 1158).
A system attached to more than one network has multiple interfaces—one for each
network, each with its own MAC address.

Each packet of information that is broadcast over the network has a destination
address. All hosts on the network must process each broadcast packet to see
whether it is addressed to that host.6 If the packet is addressed to a given host, that
host continues to process it. If not, the host ignores the packet.

5. SLIP was one of the first serial line implementations of IP and has slightly less overhead than PPP. PPP
supports multiple protocols (such as AppleTalk and IPX), whereas SLIP supports only IP.

6. Contrast broadcast packets with unicast packets: Ethernet hardware on a computer filters out uni-
cast packets that are not addressed to that machine; the operating system on that machine never sees
these packets.

 From the Library of WoweBook.Com

ptg

382 Chapter 10 Networking and the Internet

The network address of a machine is an IP address, which, under IPv4, is repre-
sented as one number broken into four segments separated by periods (for example,
192.168.184.5). Domain names and IP addresses are assigned through a highly dis-
tributed system coordinated by ICANN (Internet Corporation for Assigned Names
and Numbers—www.icann.org) via many registrars (see www.internic.net). ICANN
is funded by the various domain name registries and registrars and by IP address
registries, which supply globally unique identifiers for hosts and services on the
Internet. Although you may not deal with any of these agencies directly, your Inter-
net service provider most assuredly does.

How a company uses IP addresses is determined by the system or network adminis-
trator. For example, the leftmost two sets of numbers in an IP address might repre-
sent a large network (campuswide or companywide); the third set, a subnetwork
(perhaps a department or a single floor in a building); and the rightmost number, an
individual computer. The operating system uses the address in a different, lower-level
form, converting it to its binary equivalent, a series of 1s and 0s. See the following
optional section for more information. Refer to “Private address space” on page 642
for information about addresses you can use on a LAN without registering them.

Static Versus Dynamic IP Addresses

A static IP address is one that always remains the same. A dynamic IP address is one
that can change each time you connect to the network. A dynamic address remains
the same during a single login session. Any server (mail, Web, and so on) must have a
static address so clients can find the machine that is acting as the server. End-user
systems usually work well with dynamic addresses. During a given login session,
they can function as a client (your Web browser, for example) because they maintain
a constant IP address. When you log out and log in again, it does not matter that you
have a different IP address because your computer, acting as a client, establishes a
new connection with a server. The advantage of dynamic addressing is that it allows
inactive addresses to be reused, reducing the total number of IP addresses needed.

optional IP Classes

To facilitate routing on the Internet, IP addresses are divided into classes. These
classes, which are labeled class A through class E, allow the Internet address space
to be broken into blocks of small, medium, and large networks that are designed to
be assigned based on the number of hosts within a network.

When you need to send a message to an address outside the local network, your sys-
tem looks up the address block/class in its routing table and sends the message to
the next router on the way to the final destination. Every router along the way does
a similar lookup and forwards the message accordingly. At the destination, local
routers direct the message to the specific address. Without classes and blocks, your
host would have to know every network and subnetwork address on the Internet
before it could send a message. This setup would be impractical because of the huge
number of addresses on the Internet.

 From the Library of WoweBook.Com

www.icann.org
www.internic.net

ptg

Types of Networks and How They Work 383

Each of the four numbers in the IP address is in the range 0–255 because each seg-
ment of the IP address is represented by 8 bits (an octet), with each bit being capa-
ble of taking on two values; the total number of values is therefore 28 = 256. When
you start counting at 0, the range 1–256 becomes 0–255.7 Each IP address is
divided into a net address (netid) portion, which is part of the class, and a host
address (hostid) portion. See Table 10-2.

The first set of addresses, defining class A networks, is reserved for extremely large
corporations, such as General Electric (3.0.0.0) and Hewlett-Packard (15.0.0.0), and
for ISPs. One start bit (0) in the first position designates a class A network, 7 bits
holds the network portion of the address (netid), and 24 bits holds the host portion
of the address (hostid; see Table 10-2). This setup means that GE can have 224, or
approximately 16 million, hosts on its network. Unused address space and subnets
(page 1174) lower this number quite a bit. The 127.0.0.0 subnet (page 387) is
reserved, as are several others (see private address space on page 1166).

Two start bits (10) in the first two positions designates a class B network, 14 bits
holds the network portion of the address (netid), and 16 bits holds the host portion
of the address, for a potential total of 65,534 hosts.8 A class C network uses 3 start

7. Internally, the IP address is represented as a set of four unsigned 8-bit fields or a 32-bit unsigned num-
ber, depending on how programs are using it. The most common format in C is to represent it as a union
of an unsigned 32-bit long integer, four unsigned chars, and two unsigned short integers.

Table 10-2 IP classes

Class Start bits Address range All bits (including start bits)

0–7 8–15 16–23 24–31

Class A 0 001.000.000.000–126.000.000.000 0-netid ========hostid=========

Class B 10 129.000.000.000–191.255.000.000 10-----netid------ =====hostid=====

Class C 110 192.000.000.000–223.255.255.000 110----------netid----------- =hostid=

Class D (multicast) 1110 224.000.000.000–239.255.255.000 1110

Class E (reserved) 11110 240.000.000.000–255.255.255.000 11110

8. A 16-bit (class B) address can address 216 = 65,536 hosts, yet the potential number of hosts is two fewer
than that because the first and last addresses on any network are reserved. In a similar manner, an 8-bit (class
C) address can address only 254 hosts (28 – 2 = 254). The 0 host address (for example, 194.16.100.0 for a
class C network or 131.204.0.0 for a class B network) is reserved as a designator for the network itself. Sev-
eral older operating systems use this as a broadcast address. The 255 host address (for example,
194.16.100.255 for a class C network or 131.204.255.255 for a class B network) is reserved as the IP broad-
cast address. An IP packet (datagram) that is sent to this address is broadcast to all hosts on the network.

The netid portion of a subnet does not have the same limitations. Often you are given the choice of re-
serving the first and last networks in a range as you would a hostid, but this is rarely done in practice.
More often the first and last networks in the netid range provide more usable address space. Refer to
“Subnets” on page 385.

 From the Library of WoweBook.Com

ptg

384 Chapter 10 Networking and the Internet

bits (100), 21 netid bits (2 million networks), and 8 hostid bits (254 hosts). Today a
new large customer will not receive a class A or B network but is likely to receive a
class C or several (usually contiguous) class C networks, if merited.

Several other classes of networks exist. Class D networks are reserved for multi-
cast (page 1161) networks. When you run netstat –nr on a Linux system, you can
see whether the machine is a member of a multicast network. A 224.0.0.0 in the
Destination column that netstat displays indicates a class D, multicast address
(Table 10-2). A multicast is like a broadcast, but only hosts that subscribe to the
multicast group receive the message. To use Web terminology, a broadcast is like a
“push.” A host pushes a broadcast on the network, and every host on the network
must check each packet to see whether it contains relevant data. A multicast is
like a “pull.” A host will see a multicast only if it registers itself as subscribed to a
multicast group or service and pulls the appropriate packets from the network.

Table 10-3 shows some of the computations for the IP address 131.204.027.027.
Each address is shown in decimal, hexadecimal, and binary form. Binary is the easi-
est to work with for bitwise (binary) computations. The first three lines show the IP
address. The next three lines show the subnet mask (page 1175) in three bases.
Next the IP address and the subnet mask are ANDed together bitwise to yield the
subnet number (page 1175), which is shown in three bases. The last three lines

Table 10-3 Computations for IP address 131.204.027.027

---------------Class B----------- netid hostid

IP address

131 .204 .027 .027 decimal

83 CC 1B 1B hexadecimal

1000 0011 1100 1100 0001 1011 0001 1011 binary

Subnet mask

255 .255 .255 .000 decimal

FF FF FF 00 hexadecimal

1111 1111 1111 1111 1111 1111 0000 0000 binary

IP address bitwise AND 1000 0011 1100 1100 0001 1011 0001 1011

binarySubnet mask 1111 1111 1111 1111 1111 1111 0000 0000

= Subnet number 1000 0011 1100 1100 0001 1011 0000 0000

Subnet number

131 .204 .027 .000 decimal

83 CC 1B 00 hexadecimal

1000 0011 1100 1100 0001 1011 0000 0000 binary

Broadcast address

(set host bits to 1)

131 .204 .27 .255 decimal

83 CC 1B FF hexadecimal

1000 0011 1100 1100 0001 1011 1111 1111 binary

 From the Library of WoweBook.Com

ptg

Types of Networks and How They Work 385

show the broadcast address (page 1138), which is computed by taking the subnet
number and turning the hostid bits to 1s. The subnet number identifies the local
network. The subnet number and the subnet mask determine what range the IP
address of the machine must be in. They are also used by routers to segment traffic;
see network segment (page 1162). A broadcast on this network goes to all hosts in
the range 131.204.27.1 through 131.204.27.254 but will be acted on only by hosts
that have a use for it.

Subnets

Each host on a network must process each broadcast packet to determine whether
the information in the packet is useful to that host. If the network includes numerous
hosts, each host must process many packets. To maintain efficiency most networks—
and particularly shared media networks such as Ethernet—need to be split into sub-
networks, or subnets.9 The more hosts on a network, the more dramatically network
performance is affected. Organizations use router and switch technology called
VLANs (virtual local area networks) to group similar hosts into broadcast domains
(subnets) based on function. For example, it is not uncommon to see a switch with
different ports being part of different subnets. See page 462 for information on how
to specify a subnet.

Subnet mask A subnet mask (or address mask) is a bit mask that identifies which parts of an IP
address correspond to the network address and the subnet portion of the address.
This mask has 1s in positions corresponding to the network and subnet numbers
and 0s in the host number positions. When you perform a bitwise AND on an IP
address and a subnet mask (Table 10-3), the resulting address contains everything
except the host address (hostid) portion.

There are several ways to represent a subnet mask: A network could have a subnet
mask of 255.255.255.0 (decimal), FFFFFF00 (hexadecimal), or /24 (the number of
bits used for the subnet mask). If it were a class B network (of which 16 bits are
already fixed), this yields 28 (24 total bits – 16 fixed bits = 8 bits, 28 = 256) net-
works10 with 28 – 2 (256 – 2 = 254) hosts11 on each network.

For example, when you divide the class C address 192.25.4.0 into eight subnets, you
get a subnet mask of 255.255.255.224, FFFFFFE0, or /27 (27 1s). The eight result-
ant networks are 192.25.4.0, 192.25.4.32, 192.25.4.64, 192.25.4.96, 192.25.4.128,
192.25.4.160, 192.25.4.192, and 192.25.4.224. You can use a Web-based subnet
mask calculator to calculate subnet masks (refer to “Network Calculators” on
page 1105). To use this calculator to determine the preceding subnet mask, start with
an IP host address of 192.25.4.0.

For more information refer to “Specifying a Subnet” on page 462.

9. Splitting a network is also an issue with other protocols, particularly AppleTalk.

10. The first and last networks are reserved in a manner similar to the first and last hosts, although the
standard is flexible. You can configure routers to reclaim the first and last networks in a subnet. Different
routers have different techniques for reclaiming these networks.

11. Subtract 2 because the first and last host addresses on every network are reserved.

 From the Library of WoweBook.Com

ptg

386 Chapter 10 Networking and the Internet

CIDR: Classless Inter-Domain Routing

CIDR (pronounced “cider”) allows groups of addresses that are smaller than a class
C block to be assigned to an organization or ISP and then further subdivided and
parceled out. In addition, it helps to alleviate the potential problem of routing tables
on major Internet backbone and peering devices becoming too large to manage.

The pool of available IPv4 addresses has been depleted to the point that no one gets
a class A address anymore. The trend is to reclaim these huge address blocks, if pos-
sible, and recycle them into groups of smaller addresses. Also, as more class C
addresses are assigned, routing tables on the Internet are filling up and causing
memory overflows. The solution is to aggregate12 groups of addresses into blocks
and allocate them to ISPs, which in turn subdivide these blocks and allocate them to
their customers. The address class designations (A, B, and C) described in the previ-
ous section are used less often today, although you may still encounter subnets.
When you request an address block, your ISP usually gives you as many addresses
as you need—and no more. The ISP aggregates several contiguous smaller blocks
and routes them to your location. This aggregation is CIDR. Without CIDR, the
Internet as we know it would not function.

For example, you might be allocated the 192.168.5.0/22 IP address block, which
could support 210 hosts (32 – 22 = 10). Your ISP would set its routers so that any
packets going to an address in that block would be sent to your network. Internally,
your own routers might further subdivide this block of 1,024 potential hosts into
subnets, perhaps into four networks. Four networks require an additional two bits
of addressing (22 = 4). You could therefore set up your router to support four net-
works with this allocation: 192.168.5.0/24, 192.168.6.0/24, 192.168.7.0/24, and
192.168.8.0/24. Each of these networks could then have 254 hosts. CIDR lets you
arbitrarily divide networks and subnetworks into increasingly smaller blocks along
the way. Each router has enough memory to keep track of the addresses it needs to
direct and aggregates the rest.

This scheme uses memory and address space efficiently. For example, you could take
192.168.8.0/24 and further divide it into 16 networks with 14 hosts each. The 16 net-
works require four more bits (24 = 16), so you would have 192.168.8.0/28,
192.168.8.16/28, 192.168.8.32/28, and so on, up through the last subnet of
192.168.8.240/16, which would have the hosts 192.168.8.241 through 192.168.8.254.

Hostnames

People generally find it easier to work with names than with numbers, so Linux
provides several ways to associate hostnames with IP addresses. The oldest method
is to consult a list of names and addresses that are stored in the /etc/hosts file:

12. Aggregate means to join. In CIDR, the aggregate of 208.178.99.124 and 208.178.99.125 is
208.178.99.124/23 (the aggregation of two class C blocks).

 From the Library of WoweBook.Com

ptg

Types of Networks and How They Work 387

$ cat /etc/hosts
127.0.0.1 localhost
130.128.52.1 gw–example.example.com gw–example
130.128.52.2 bravo.example.com bravo
130.128.52.3 hurrah.example.com hurrah
130.128.52.4 kudos.example.com kudos

localhost =
127.0.0.1

The address 127.0.0.1 is reserved for the special hostname localhost, which serves
as a hook for the system’s networking software to operate on the local machine
without going onto a physical network. The names of the other systems are shown
in two forms: in a fully qualified domain name (FQDN) format that is unique on
the Internet and as a nickname that is locally unique.

NIS As more hosts joined networks, storing these name-to-address mappings in a text
file proved to be inefficient and inconvenient. The hosts file grew increasingly larger
and became impossible to keep up-to-date. To solve this problem Linux supports
NIS (Network Information Service, page 401), which was developed for use on Sun
computers. NIS stores information in a database, making it easier to find a specific
address, but it is useful only for host information within a single administrative
domain. Hosts outside the domain cannot access the information.

DNS The solution to this dilemma is DNS (Domain Name Service, page 399). DNS effec-
tively addresses the efficiency and update issues by arranging the entire network
namespace (page 1161) as a hierarchy. Each domain in the DNS manages its own
namespace (addressing and name resolution), and each domain can easily query for
any host or IP address by following the tree up or down the namespace until it finds
the appropriate domain. By providing a hierarchical naming structure, DNS distrib-
utes name administration across the entire Internet.

IPv6

The explosive growth of the Internet has uncovered deficiencies in the design of the
current address plan—most notably the shortage of addresses. Over the next few
years, a revised protocol, named IPng (IP Next Generation), also known as IPv6 (IP
version 6),13 will be phased in. (It may take longer—the phase-in is going quite
slowly.) This new scheme is designed to overcome the major limitations of the cur-
rent approach and can be implemented gradually because it is compatible with the
existing address usage. IPv6 makes it possible to assign many more unique Internet
addresses (2128, or 340 undecillion [1036]). It also supports more advanced security
and performance control features:

• IPv6 enables autoconfiguration. With IPv4, autoconfiguration is available
using optional DHCP (page 470). With IPv6, autoconfiguration is manda-
tory, making it easy for hosts to configure their IP addresses automatically.

13. IPv5 referred to an experimental real-time stream protocol named ST—thus the jump from IPv4
to IPv6.

 From the Library of WoweBook.Com

ptg

388 Chapter 10 Networking and the Internet

• IPv6 reserves 24 bits in the header for advanced services, such as resource
reservation protocols, better backbone routing, and improved traffic
engineering.

• IPv6 makes multicast protocols mandatory and uses them extensively. In
IPv4, multicast, which improves scalability, is optional.

• IPv6 aggregates address blocks more efficiently because of the huge
address space. This aggregation makes obsolete NAT (page 1161), which
decreased scalability and introduced protocol issues.

• IPv6 provides a simplified packet header that allows hardware accelerators
to work better.

A sample IPv6 address is fe80::a00:20ff:feff:5be2/10. Each group of four hexadeci-
mal digits is equivalent to a number between 0 and 65,536 (164). A pair of adjacent
colons indicates a hex value of 0x0000; leading 0s need not be shown. With eight
sets of hexadecimal groupings, 65,5368 = 2128 addresses are possible. In an IPv6
address on a host with the default autoconfiguration, the first characters in the
address are always fe80. The last 64 bits hold an interface ID designation, which is
often the MAC address (page 1158) of the system’s Ethernet controller.

Communicate over a Network

Many commands that you can use to communicate with other users on a single
computer system have been extended to work over a network. Examples of
extended utilities include electronic mail programs, information-gathering utilities
(such as finger, page 181), and communications utilities (such as talk). These utilities
are examples of the UNIX philosophy: Instead of creating a new, special-purpose
tool, modify an existing one.

Many utilities understand a convention for the format of network addresses: user@host
(spoken as “user at host”). When you use an @ sign in an argument to one of these util-
ities, the utility interprets the text that follows as the name of a remote host. When you
omit the @ sign, a utility assumes that you are requesting information from or corre-
sponding with someone on the local system.

The prompts shown in the examples in this chapter include the hostname of the sys-
tem you are using. If you frequently use more than one system over a network, you
may find it difficult to keep track of which system you are interacting with at any
particular moment. If you set your prompt to include the hostname of the current
system, it will always be clear which system you are using. To identify the computer
you are using, run hostname or uname –n:

$ hostname
kudos

See page 321 for information on how you can change the prompt.

 From the Library of WoweBook.Com

ptg

Communicate over a Network 389

finger: Displays Information About Remote Users

The finger utility displays information about one or more users on a system. This
utility was designed for local use, but when networks became popular, it was obvi-
ous that finger should be enhanced to reach out and collect information remotely. In
the following examples, finger displays information about all users logged in on the
system named bravo:

[kudos]$ finger @bravo
[bravo.example.com]
Login Name Tty Idle Login Time Office Office Phone
sam Sam the Great *1 1:35 Oct 22 5:00
max Max Wild 4 Oct 22 12:23 (kudos)
max Max Wild 5 19 Oct 22 12:33 (:0)
zach Zach Brill 7 2:24 Oct 22 8:45 (:0)
hls Helen Simpson 11 2d Oct 20 12:23 (:0)

A user’s username in front of the @ sign causes finger to display information from
the remote system for the specified user only. If the remote system has multiple
matches for that name, finger displays the results for all of them:

[kudos]$ finger max@bravo
[bravo.example.com]
Login Name Tty Idle Login Time Office Office Phone
max Max Wild 4 Oct 22 12:23 (kudos)
max Max Wild 5 19 Oct 22 12:33 (:0)

The finger utility works by querying a standard network service, the in.fingerd dae-
mon, that runs on the system being queried. Although this service is available in the
fingerd package for Ubuntu Linux, some sites choose not to run it to minimize the
load on their systems, reduce security risks, or maintain privacy. When you use finger
to obtain information about someone at such a site, you will see an error message or
nothing at all. The remote in.fingerd daemon determines how much information to
share and in what format. As a result, the report displayed for any given system may
differ from that shown in the preceding examples.

The information for remote finger looks much the same as it does when finger runs
on the local system, with one difference: Before displaying the results, finger
reports the name of the remote system that answered the query (bravo, as shown
in brackets in the preceding example). The name of the host that answers may be
different from the system name you specified on the command line, depending on
how the finger daemon service is configured on the remote system. In some cases,
several hostnames may be listed if one finger daemon contacts another to retrieve
the information.

The in.fingerd daemon
security The finger daemon (in.fingerd) gives away system account information that can aid a malicious

user. Some sites disable finger or randomize user account IDs to make a malicious user’s job
more difficult. Do not install the fingerd package if you do not want to run the finger daemon.

 From the Library of WoweBook.Com

ptg

390 Chapter 10 Networking and the Internet

Sending Mail to a Remote User

Given a user’s username on a remote system and the name of the remote system or
its domain, you can use an email program to send a message over the network or
the Internet, using the @ form of an address:

zach@bravo

or

zach@example.com

Although many Linux utilities recognize the @ form of a network address, you may
find that you can reach more remote computers with email than with the other net-
working utilities described in this chapter. This disparity arises because the email
system can deliver a message to a host that does not run IP, even though it appears
to have an Internet address. The message may be routed over the network, for
example, until it reaches a remote system that has a point-to-point, dial-up connec-
tion to the destination system. Other utilities, such as talk, rely on IP and operate
only between networked hosts.

Mailing List Servers

A mailing list server (listserv14) allows you to create and manage an email list.
An electronic mailing list provides a means for people interested in a particular
topic to participate in an electronic discussion and for a person to disseminate
information periodically to a potentially large mailing list. One of the most
powerful features of most list servers is their ability to archive email postings to
the list, create an archive index, and allow users to retrieve postings from the
archive based on keywords or discussion threads. Typically you can subscribe
and unsubscribe from the list with or without human intervention. The owner
of the list can restrict who can subscribe, unsubscribe, and post messages to the
list. See page 734 for instructions on configuring the Mailman list server. Other
popular list servers include LISTSERV (www.lsoft.com), Lyris (www.lyris.com),
and Majordomo (www.greatcircle.com/majordomo). Ubuntu maintains quite a
few mailing lists and list archives for those mailing lists at lists.ubuntu.com. Use
Google to search on linux mailing list to find other lists.

Network Utilities

To realize the full benefits of a networked environment, it made sense to extend
certain tools, some of which have already been described. The advent of networks
also created a need for new utilities to control and monitor them, spurring the
development of new tools that took advantage of network speed and connectivity.
This section describes concepts and utilities for systems attached to a network.

14. Although the term listserv is sometimes used generically to include many different list server programs,
it is a specific product and a registered trademark of L-soft International, Inc.: LISTSERV (for more infor-
mation go to www.lsoft.com).

 From the Library of WoweBook.Com

www.lsoft.com
www.lyris.com
www.greatcircle.com/majordomo
www.lsoft.com

ptg

Network Utilities 391

Trusted Hosts

Some commands, such as rcp and rsh, work only if the remote system trusts your
local computer (that is, if the remote system knows your local computer and
believes that it is not pretending to be another system). The /etc/hosts.equiv file lists
trusted systems. For reasons of security, the root account does not rely on this file to
identify trusted privileged users from other systems.

Host-based trust is largely obsolete. Because there are many ways to circumvent
trusted host security, including subverting DNS systems and IP spoofing
(page 1154), authentication based on IP address is widely regarded as insecure and
obsolete. In a small homogeneous network of machines with local DNS control, it
can be “good enough.” Its greater ease of use in these situations may outweigh the
security concerns.

OpenSSH Tools

The OpenSSH project provides a set of tools that replace rcp, rsh, and others with
secure equivalents. These tools are installed by default in Ubuntu Linux and can be
used as drop-in replacements for their insecure counterparts. The OpenSSH tool
suite is covered in detail in Chapter 18.

telnet: Logs In on a Remote System

You can use the TELNET protocol to interact with a remote computer. The telnet
utility, a user interface to this protocol, is older than ssh and is not secure. Never-
theless, it may work where ssh (page 670) is not available (there is more non-UNIX
support for TELNET access than for ssh access). In addition, many legacy devices,
such as terminal servers and network devices, do not support ssh.

[bravo]$ telnet kudos
Trying 172.19.52.2...
Connected to kudos.example.com
Escape character is '^]'.

Welcome to SuSE Linux 7.3 (i386) - Kernel 2.4.10-4GB (2).
kudos login: wild
Password:
You have old mail in /var/mail/wild.
Last login: Mon Feb 27 14:46:55 from bravo.example.com
wild@kudos:~>
...
wild@kudos:~> logout
Connection closed by foreign host.
[bravo]$

Do not share your login account
security You can use a ~/.rhosts file to allow another user to log in as you from a remote system without

knowing your password. This setup is not recommended. Do not compromise the security of your
files or the entire system by sharing your login account. Use ssh and scp instead of rsh and rcp
whenever possible.

 From the Library of WoweBook.Com

Admin
Text Box
Download form www.eBookTM.com

ptg

392 Chapter 10 Networking and the Internet

telnet versus ssh When you connect to a remote UNIX or Linux system using telnet, you are pre-
sented with a regular, textual login: prompt. Unless you specify differently, the ssh
utility assumes that your username on the remote system matches that on the local
system. Because telnet is designed to work with non-UNIX and non-Linux systems,
it makes no such assumptions.

Another difference between these two utilities is that telnet allows you to configure
many special parameters, such as how RETURNs or interrupts are processed. When using
telnet between UNIX and/or Linux systems, you rarely need to change any parameters.

When you do not specify the name of a remote host on the command line, telnet
runs in an interactive mode. The following example is equivalent to the previous
telnet example:

[bravo]$ telnet
telnet> open kudos
Trying 172.19.52.2...
Connected to kudos.example.com
Escape character is '^]'.
...

Before connecting you to a remote system, telnet tells you what the escape character
is; in most cases, it is ^] (where ^ represents the CONTROL key). When you press CONTROL-],
you escape to telnet’s interactive mode. Continuing the preceding example:

[kudos]$ CONTROL-]
telnet> ?

(displays help information)

telnet> close
Connection closed.
[bravo]$

When you enter a question mark in response to the telnet> prompt, telnet lists its
commands. The close command ends the current telnet session, returning you to the
local system. To get out of telnet’s interactive mode and resume communication with
the remote system, press RETURN in response to a prompt.

You can use telnet to access special remote services at sites that have chosen to make
such services available. However, many of these services, such as the U.S. Library of
Congress Information System (LOCIS), have moved to the Web. As a consequence,
you can now obtain the same information using a Web browser.

Using telnet to Connect to Other Ports

By default telnet connects to port 23, which is used for remote logins. However, you
can use telnet to connect to other services by specifying a port number. In addition to
standard services, many of the special remote services available on the Internet use
unallocated port numbers. For example, you can access some multiplayer text games,

telnet is not secure

security Whenever you enter sensitive information, such as your password, while you are using telnet, it
is transmitted in cleartext and can be read by someone who is listening in on the session.

 From the Library of WoweBook.Com

ptg

Network Utilities 393

called MUDs (Multi-User Dungeons, or Dimensions), using telnet to connect to a
specified port, such as 4000 or 8888. Unlike the port numbers for standard protocols,
these port numbers can be picked arbitrarily by the administrator of the game.

While telnet is no longer commonly employed to log in on remote systems, it is still
used extensively as a debugging tool. This utility allows you to communicate
directly with a TCP server. Some standard protocols are simple enough that an
experienced user can debug problems by connecting to a remote service directly
using telnet. If you are having a problem with a network server, a good first step is
to try to connect to it using telnet.

In the following example, a system administrator who is debugging a problem with
email delivery uses telnet to connect to the SMTP port (port 25) on a the server at
example.com to see why it is bouncing mail from the spammer.com domain. The
first line of output indicates which IP address telnet is trying to connect to. After tel-
net displays the Connected to smtpsrv.example.com message, the user emulates an
SMTP dialog, following the standard SMTP protocol. The first line, which starts
with helo, begins the session and identifies the local system. After the SMTP server
responds, the user enters a line that identifies the mail sender as user@spammer.com.
The SMTP server’s response explains why the message is bouncing, so the user ends
the session with quit.

$ telnet smtpsrv 25
Trying 192.168.1.1...
Connected to smtpsrv.example.com.
Escape character is '^]'.
helo example.com
220 smtpsrv.example.com ESMTP Sendmail 8.13.1/8.13.1; Wed, 4 May 2005 00:13:43 -0500 (CDT)
250 smtpsrv.example.com Hello desktop.example.com [192.168.1.97], pleased to meet you
mail from:user@spammer.com
571 5.0.0 Domain banned for spamming
quit
221 2.0.0 smtpsrv.example.com closing connection

The telnet utility allows you to use any protocol you want, as long as you know it
well enough to type commands manually.

ftp: Transfers Files over a Network

The File Transfer Protocol (FTP) is a method of downloading files from and uploading
files to another system using TCP/IP over a network. FTP is not a secure protocol; use
it only for downloading public information from a public server. Most Web browsers
can download files from FTP servers. Chapter 19 covers FTP clients and servers.

ping: Tests a Network Connection

The ping15 utility (http://ftp.arl.mil/~mike/ping.html) sends an ECHO_REQUEST
packet to a remote computer. This packet causes the remote system to send back a

15. The name ping mimics the sound of a sonar burst used by submarines to identify and communicate with each
other. The word ping also expands to packet internet groper.

 From the Library of WoweBook.Com

http://ftp.arl.mil/~mike/ping.html

ptg

394 Chapter 10 Networking and the Internet

reply. This exchange is a quick way to verify that a remote system is available and
to check how well the network is operating, such as how fast it is or whether it is
dropping data packets. The ping utility uses the ICMP (Internet Control Message
Protocol) protocol. Without any options, ping tests the connection once per second
until you abort execution with CONTROL-C.

$ ping www.slashdot.org
PING www.slashdot.org (216.34.181.48) 56(84) bytes of data.
64 bytes from star.slashdot.org (216.34.181.48): icmp_seq=1 ttl=238 time=70.2 ms
64 bytes from star.slashdot.org (216.34.181.48): icmp_seq=2 ttl=238 time=72.6 ms
64 bytes from star.slashdot.org (216.34.181.48): icmp_seq=3 ttl=238 time=57.5 ms
64 bytes from star.slashdot.org (216.34.181.48): icmp_seq=4 ttl=238 time=71.2 ms
CONTROL-C
--- www.slashdot.org ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3024ms
rtt min/avg/max/mdev = 57.553/67.899/72.605/6.039 ms

This example shows that a connection to www.slashdot.org is redirected to
star.slashdot.org and that that system is up and available over the network.

By default ping sends packets containing 64 bytes (56 data bytes and 8 bytes of pro-
tocol header information). In the preceding example, four packets were sent to the
system star.slashdot.org before the user interrupted ping by pressing CONTROL-C. The
four-part number in parentheses on each line is the remote system’s IP address. A
packet sequence number (named icmp_seq) is also given. If a packet is dropped, a
gap occurs in the sequence numbers. The round-trip time is listed last; it represents
the time (in milliseconds) that elapsed from when the packet was sent from the local
system to the remote system until the reply from the remote system was received by
the local system. This time is affected by the distance between the two systems, net-
work traffic, and the load on both computers. Before it terminates, ping summarizes
the results, indicating how many packets were sent and received as well as the mini-
mum, average, maximum, and mean deviation round-trip times it measured. Use
ping6 to test IPv6 networks.

traceroute: Traces a Route over the Internet

The traceroute utility (traceroute package) traces the route that an IP packet follows,
including all intermediary points traversed (called network hops), to its destination (the
argument to traceroute—an Internet host). It displays a numbered list of hostnames, if
available, and IP addresses, together with the round-trip time it took for a packet to reach

When ping cannot connect

tip If it is unable to contact the remote system, ping continues trying until you interrupt it with
CONTROL-C. A system may not answer for any of several reasons: The remote computer may be
down, the network interface or some part of the network between the systems may be broken,
a software failure may have occurred, or the remote machine may be set up, for reasons of
security, not to return pings (try pinging www.microsoft.com or www.ibm.com).

 From the Library of WoweBook.Com

www.slashdot.org
www.microsoft.com
www.ibm.com

ptg

Network Utilities 395

each router along the way and an acknowledgment to get back. You can put this informa-
tion to good use when you are trying to identify the location of a network bottleneck.

The traceroute utility has no concept of the path from one host to the next; instead,
it simply sends out packets with increasing TTL (time to live) values. TTL is an IP
header field that indicates how many more hops the packet should be allowed to
make before being discarded or returned. In the case of a traceroute packet, the
packet is returned by the host that has the packet when the TTL value is zero. The
result is a list of hosts that the packet traveled through to get to its destination.

The traceroute utility can help you solve routing configuration problems and locate
routing path failures. When you cannot reach a host, use traceroute to discover what
path the packet follows, how far it gets, and what the delay is.

The next example shows the output of traceroute when it follows a route from a local
computer to www.linux.org. The first line indicates the IP address of the target, the
maximum number of hops that will be traced, and the size of the packets that will be
used. Each numbered line contains the name and IP address of the intermediate des-
tination, followed by the time it takes a packet to make a trip to that destination and
back again. The traceroute utility sends three packets to each destination; thus three
times appear on each line. Line 1 shows the statistics when a packet is sent to the
local gateway (less than 3 milliseconds). Lines 4–6 show the packet bouncing around
Mountain View (California) before it goes to San Jose. Between hops 13 and 14 the
packet travels across the United States (San Francisco to somewhere in the East). By
hop 18 the packet has found www.linux.org. The traceroute utility displays asterisks
when it does not receive a response. Each asterisk indicates that traceroute has waited
three seconds. Use traceroute6 to test IPv6 networks.

$ /usr/sbin/traceroute www.linux.org
traceroute to www.linux.org (198.182.196.56), 30 hops max, 38 byte packets
 1 gw.localco.com. (204.94.139.65) 2.904 ms 2.425 ms 2.783 ms
 2 covad-gw2.meer.net (209.157.140.1) 19.727 ms 23.287 ms 24.783 ms
 3 gw-mv1.meer.net (140.174.164.1) 18.795 ms 24.973 ms 19.207 ms
 4 d1-4-2.a02.mtvwca01.us.ra.verio.net (206.184.210.241) 59.091 ms d1-10-0-0-200.a03.

mtvwca01.us.ra.verio.net (206.86.28.5) 54.948 ms 39.485 ms
 5 fa-11-0-0.a01.mtvwca01.us.ra.verio.net (206.184.188.1) 40.182 ms 44.405 ms 49.362 ms
 6 p1-1-0-0.a09.mtvwca01.us.ra.verio.net (205.149.170.66) 78.688 ms 66.266 ms 28.003 ms
 7 p1-12-0-0.a01.snjsca01.us.ra.verio.net (209.157.181.166) 32.424 ms 94.337 ms 54.946 ms
 8 f4-1-0.sjc0.verio.net (129.250.31.81) 38.952 ms 63.111 ms 49.083 ms
 9 sjc0.nuq0.verio.net (129.250.3.98) 45.031 ms 43.496 ms 44.925 ms
10 mae-west1.US.CRL.NET (198.32.136.10) 48.525 ms 66.296 ms 38.996 ms
11 t3-ames.3.sfo.us.crl.net (165.113.0.249) 138.808 ms 78.579 ms 68.699 ms
12 E0-CRL-SFO-02-E0X0.US.CRL.NET (165.113.55.2) 43.023 ms 51.910 ms 42.967 ms
13 sfo2-vva1.ATM.us.crl.net (165.113.0.254) 135.551 ms 154.606 ms 178.632 ms
14 mae-east-02.ix.ai.net (192.41.177.202) 158.351 ms 201.811 ms 204.560 ms
15 oc12-3-0-0.mae-east.ix.ai.net (205.134.161.2) 202.851 ms 155.667 ms 219.116 ms
16 border-ai.invlogic.com (205.134.175.254) 214.622 ms * 190.423 ms
17 router.invlogic.com (198.182.196.1) 224.378 ms 235.427 ms 228.856 ms
18 www.linux.org (198.182.196.56) 207.964 ms 178.683 ms 179.483 ms

 From the Library of WoweBook.Com

www.linux.org
www.linux.org

ptg

396 Chapter 10 Networking and the Internet

host and dig: Query Internet Nameservers

The host utility looks up an IP address given a name, or vice versa. The following
example shows how to use host to look up the domain name of a machine, given an
IP address:

$ host 64.13.141.6
6.141.13.64.in-addr.arpa domain name pointer ns.meer.net.

You can also use host to determine the IP address of a domain name:

$ host ns.meer.net
ns.meer.net has address 64.13.141.6

The dig (domain information groper) utility queries DNS servers and individual
machines for information about a domain. A powerful utility, dig has many features
that you may never use. It is more complex than host.

Chapter 24 on DNS has many examples of the use of host and dig.

whois: Looks Up Information About an Internet Site

The whois utility (whois package) queries a whois server for information about an
Internet site. This utility returns site contact and InterNIC or other registry informa-
tion that can help you track down the person who is responsible for a site: Perhaps that
person is sending you or your company spam (page 1173). Many sites on the Internet
are easier to use and faster than whois. Use a browser and search engine to search on
whois or go to www.networksolutions.com/whois or www.db.ripe.net/whois to get
started.

When you do not specify a whois server, whois defaults to whois.internic.net. Use
the –h option to whois to specify a different whois server. See the whois info page for
more options and setup information.

To obtain information on a domain name, specify the complete domain name, as in
the following example:

$ whois sobell.com
 Domain Name: SOBELL.COM
 Registrar: GODADDY.COM, INC.
 Whois Server: whois.godaddy.com
 Referral URL: http://registrar.godaddy.com
 Name Server: NS1.HUNGERHOST.COM
...
Registrant:
 Sobell Associates Inc
 660 Market Street
 Fifth Floor
 San Francisco, California 94104
 United States

 From the Library of WoweBook.Com

www.networksolutions.com/whois
www.db.ripe.net/whois

ptg

Distributed Computing 397

 Registered through: GoDaddy.com, Inc. (http://www.godaddy.com)
 Domain Name: SOBELL.COM
 Created on: 07-Apr-95
 Expires on: 08-Apr-13
 Last Updated on: 01-Mar-10

 Administrative Contact:
 Sobell, Mark sobell@meer.net
 Sobell Associates Inc
 660 Market Street
 Fifth Floor
 SAN FRANCISCO, California 94104
 United States
 18888446337 Fax -- 18888446337

 Technical Contact:
 W., Tim hostmaster@meer.net
 meer.net
 po box 390804
 Mountain View, California 94039
 United States
 18888446337 Fax -- 18888446337

 Domain servers in listed order:
 NS1.HUNGERHOST.COM
 NS2.HUNGERHOST.COM

Several top-level registries serve various regions of the world. You are most likely to
use the following ones:

North American registry whois.arin.net
European registry www.ripe.net
Asia-Pacific registry www.apnic.net
U.S. military whois.nic.mil
U.S. government www.nic.gov

Distributed Computing

When many similar systems are found on the same network, it is often desirable to
share common files and utilities among them. For example, a system administrator
might choose to keep a copy of the system documentation on one computer’s disk
and to make those files available to remote systems. In this case, the system adminis-
trator configures the files so users who need to access the online documentation are
not aware that the files are stored on a remote system. This type of setup, which is an
example of distributed computing, not only conserves disk space but also allows you
to update one central copy of the documentation rather than tracking down and
updating copies scattered throughout the network on many different systems.

 From the Library of WoweBook.Com

www.ripe.net
www.apnic.net
www.nic.gov

ptg

398 Chapter 10 Networking and the Internet

Figure 10-2 illustrates a fileserver that stores the system manual pages and users’
home directories. With this arrangement, a user’s files are always available to that
user—no matter which system the user logs in on. Each system’s disk might contain
a directory to hold temporary files as well as a copy of the operating system.
Chapter 22 contains instructions for setting up NFS clients and servers in net-
worked configurations.

The Client/Server Model

Mainframe model The client/server model was not the first computational model. First came the main-
frame, which follows a one-machine-does-it-all model. That is, all the intelligence
resides in one system, including the data and the program that manipulates and
reports on the data. Users connect to a mainframe using terminals.

File-sharing model With the introduction of PCs, file-sharing networks became available. In this
scheme data is downloaded from a shared location to a user’s PC, where a program
then manipulates the data. The file-sharing model ran into problems as networks
expanded and more users needed access to the data.

Client/server model In the client/server model, a client uses a protocol, such as FTP, to request services,
and a server provides the services that the client requests. Rather than providing
data files as the file-sharing model does, the server in a client/server relationship is a
database that provides only those pieces of information that the client needs or
requests.

The client/server model dominates UNIX and Linux system networking and under-
lies most of the network services described in this book. FTP, NFS, DNS, email,
and HTTP (the Web browsing protocol) all rely on the client/server model. Some
servers, such as Web servers and browser clients, are designed to interact with spe-
cific utilities. Other servers, such as those supporting DNS, communicate with one
another, in addition to answering queries from a variety of clients. Clients and
servers can reside on the same or different systems running the same or different
operating systems. The systems can be proximate or thousands of miles apart. A
system that is a server to one system can turn around and act as a client to another.
A server can reside on a single system or, as is the case with DNS, be distributed
among thousands of geographically separated systems running many different
operating systems.

Figure 10-2 A fileserver

/usr/man
/home

Fileserver

Linux Linux

 From the Library of WoweBook.Com

ptg

Distributed Computing 399

Peer-to-peer model The peer-to-peer (PTP) model, in which either program can initiate a transaction,
stands in contrast to the client/server model. PTP protocols are common on small
networks. For example, Microsoft’s Network Neighborhood and Apple’s Apple-
Talk both rely on broadcast-based PTP protocols for browsing and automatic
configuration. The Zeroconf multicast DNS protocol is a PTP alternative DNS
for small networks. The highest-profile PTP networks are those used for file
sharing, such as Kazaa and GNUtella. Many of these networks are not pure PTP
topologies. Pure PTP networks do not scale well, so networks such as Napster
and Kazaa employ a hybrid approach.

DNS: Domain Name Service

DNS is a distributed service: Nameservers on thousands of machines around the
world cooperate to keep the database up-to-date. The database itself, which maps
hundreds of thousands of alphanumeric hostnames to numeric IP addresses, does
not exist in one place. That is, no system has a complete copy of the database.
Instead, each system that runs DNS knows which hosts are local to that site and
understands how to contact other nameservers to learn about other, nonlocal hosts.

Like the Linux filesystem, DNS is organized hierarchically. Each country has an ISO
(International Organization for Standardization) country code designation as its
domain name. (For example, AU represents Australia, IL is Israel, and JP is Japan;
see www.iana.org/domains/root/cctld for a complete list.) Although the United
States is represented in the same way (US) and uses the standard two-letter Postal
Service abbreviations to identify the next level of the domain, only governments and
a few organizations use these codes. Schools in the US domain are represented by a
third- (and sometimes second-) level domain: k12. For example, the domain name
for Myschool in New York state could be www.myschool.k12.ny.us.

Following is a list of the six original top-level domains. These domains are used
extensively within the United States and, to a lesser degree, by users in other
countries:

COM Commercial enterprises
EDU Educational institutions
GOV Nonmilitary government agencies
MIL Military government agencies
NET Networking organizations
ORG Other (often nonprofit) organizations

Recently, the following additional top-level domains have been approved for use:

AERO Air-transport industry
BIZ Business
COOP Cooperatives
INFO Unrestricted use
MUSEUM Museums
NAME Name registries

 From the Library of WoweBook.Com

www.iana.org/domains/root/cctld
www.myschool.k12.ny.us

ptg

400 Chapter 10 Networking and the Internet

Like Internet addresses, domain names were once assigned by the Network Infor-
mation Center (NIC); now they are assigned by several companies. A system’s full
name, referred to as its fully qualified domain name (FQDN), is unambiguous in the
way that a simple hostname cannot be. The system okeeffe.berkeley.edu at the Uni-
versity of California at Berkeley (Figure 10-3) is not the same as one named oke-
effe.moma.org, which might represent a host at the Museum of Modern Art. The
domain name not only tells you something about where the system is located but
also adds enough diversity to the namespace to avoid confusion when different sites
choose similar names for their systems.

Unlike the filesystem hierarchy, the top-level domain name appears last (reading
from left to right). Also, domain names are not case sensitive, so the names
okeeffe.berkeley.edu, okeeffe.Berkeley.edu, and okeeffe.Berkeley.EDU refer to the
same computer. Once a domain has been assigned, the local site is free to extend the
hierarchy to meet local needs.

With DNS, email addressed to user@example.com can be delivered to the com-
puter named example.com that handles the corporate mail and knows how to for-
ward messages to user mailboxes on individual machines. As the company grows,
its site administrator might decide to create organizational or geographical subdo-
mains. The name delta.ca.example.com might refer to a system that supports Cali-
fornia offices, for example, while alpha.co.example.com is dedicated to Colorado.
Functional subdomains might be another choice, with delta.sales.example.com
and alpha.dev.example.com representing the sales and development divisions,
respectively.

BIND On Linux systems, the most common interface to the DNS is BIND (Berkeley Inter-
net Name Domain). BIND follows the client/server model. On any given local net-
work, one or more systems may be running a nameserver, supporting all the local
hosts as clients. When it wants to send a message to another host, a system queries
the nearest nameserver to learn the remote host’s IP address. The client, called a
resolver, may be a process running on the same computer as the nameserver, or it
may pass the request over the network to reach a server. To reduce network traffic
and facilitate name lookups, the local nameserver maintains some knowledge of dis-
tant hosts. If the local server must contact a remote server to pick up an address,
when the answer comes back, the local server adds that address to its internal table

Figure 10-3 U.S. top-level domains

com edu org

bravo kudos okeeffe okeeffe

mil net

momaberkeley

gov

example

 From the Library of WoweBook.Com

ptg

Distributed Computing 401

and reuses it for a while. The nameserver deletes the nonlocal information before it
can become outdated. Refer to “TTL” on page 1178.

The system’s translation of symbolic hostnames into addresses is transparent to
most users; only the system administrator of a networked system needs to be con-
cerned with the details of name resolution. Systems that use DNS for name resolu-
tion are generally capable of communicating with the greatest number of
hosts—more than would be practical to maintain in a /etc/hosts file or private NIS
database. Chapter 24 covers setting up and running a DNS server.

Three common sources are referenced for hostname resolution: NIS, DNS, and sys-
tem files (such as /etc/hosts). Linux does not ask you to choose among these
sources; rather, the nsswitch.conf file (page 475) allows you to choose any of these
sources, in any combination, and in any order.

Ports

Ports are logical channels on a network interface and are numbered from 1 to
65,535. Each network connection is uniquely identified by the IP address and port
number of each endpoint.

In a system that has many network connections open simultaneously, the use of
ports keeps packets (page 1164) flowing to and from the appropriate programs. A
program that needs to receive data binds to a port and then uses that port for com-
munication.

Privileged ports Services are associated with specific ports, generally with numbers less than 1024.
These ports are called privileged (or reserved) ports. For security reasons, only a
process running with root privileges can bind to privileged ports. A service run on a
privileged port provides assurance that the service is being provided by someone
with authority over the system, with the exception that any user on Windows 98
and earlier Windows systems can bind to any port. Commonly used ports include
22 (SSH), 23 (TELNET), 80 (HTTP), 111 (Sun RPC), and 201–208 (AppleTalk).

NIS: Network Information Service

NIS (Network Information Service) simplifies the maintenance of frequently used
administrative files by keeping them in a central database and having clients contact
the database server to retrieve information from the database. Just as DNS
addresses the problem of keeping multiple copies of hosts files up-to-date, NIS deals
with the issue of keeping system-independent configuration files (such as
/etc/passwd) current. Refer to Chapter 21 for coverage of NIS.

NFS: Network Filesystem

The NFS (Network Filesystem) protocol allows a server to share selected local directory
hierarchies with client systems on a heterogeneous network. Files on the remote fileserver
appear as if they are present on the local system. NFS is covered in Chapter 22.

 From the Library of WoweBook.Com

ptg

402 Chapter 10 Networking and the Internet

optional

Network Services

Linux Internet services are provided by daemons that run continuously or by a dae-
mon that is started automatically by the inetd or xinetd daemon (page 464) when a
service request comes in. The /etc/services file lists network services (for example,
telnet, ftp, and ssh) and their associated numbers. Any service that uses TCP/IP or
UDP/IP has an entry in this file. IANA (Internet Assigned Numbers Authority)
maintains a database of all permanent, registered services. The /etc/services file usu-
ally lists a small, commonly used subset of services.

Most of the daemons (the executable files) are stored in /usr/sbin. By convention the
names of many daemons end with the letter d to distinguish them from utilities (one
common daemon whose name does not end in d is sendmail). The prefix in. or rpc.
is often used for daemon names. Give the command ls /usr/sbin/*d to see a list of
many of the daemon programs on the local system. Refer to “The Upstart Event-
Based init Daemon” on page 432 and to “SysVinit (rc) Scripts: Start and Stop System
Services” on page 440 for information about starting and stopping these daemons.

To see how a daemon works, consider what happens when you run ssh. The local
system contacts the ssh daemon (sshd) on the remote system to establish a connec-
tion. The two systems negotiate the connection according to a fixed protocol. Each
system identifies itself to the other, and then they take turns asking each other spe-
cific questions and waiting for valid replies. Each network service follows its own
protocol.

Common Daemons

In addition to the daemons that support the utilities described up to this point,
many other daemons support system-level services that you will not typically inter-
act with. Table 10-4 lists some of these daemons.

Table 10-4 Common daemons

Daemon Used for or by Function

acpid Advanced
configuration and
power interface

Flexible daemon for delivering ACPI events. Replaces apmd.

anacron anacrontab Used for periodic execution of tasks. This daemon looks in the
/etc/anacrontab file. When a task comes up for execution, anacron
executes it as the user who owns the file that describes the task.

apache2 HTTP The Web server daemon (Apache, page 899).

 From the Library of WoweBook.Com

ptg

Distributed Computing 403

Daemon Used for or by Function

apmd Advanced power
management

Reports and takes action on specified changes in system power,
including shutdowns. Useful with machines, such as laptops, that
run on batteries.

atd at Executes a command once at a specific time and date. See crond for
periodic execution of a command.

automount Automatic mounting Automatically mounts filesystems when they are accessed. Auto-
matic mounting is a way of demand-mounting remote directories
without having to hard-configure them into /etc/fstab. See page 792.

cron crontab Used for periodic execution of tasks. This daemon looks in the
/var/spool/cron/crontabs directory for files with filenames that cor-
respond to users’ usernames. It also looks at the /etc/crontab file
and at files in the /etc/cron.d directory. When a task comes up for
execution, cron executes it as the user who owns the file that
describes the task.

dhcpd DHCP Assigns Internet address, subnet mask, default gateway, DNS, and
other information to hosts. This protocol answers DHCP requests
and, optionally, BOOTP requests. Refer to “DHCP: Configures Net-
work Interfaces” on page 470.

exim4 Mail programs The exim4 daemon came from the University of Cambridge. The the
exim4 daemon listens on port 25 for incoming mail connections and
then calls a local delivery agent, such as /bin/mail. Mail user agents
(MUAs), such as KMail and Thunderbird, typically use exim4 to
deliver mail messages.

ftpd FTP Handles FTP requests. Refer to “ftp: Transfers Files over a Network”
on page 393. See also vsftpd (page 687).

gpm General-purpose
mouse or GNU paste
manager

Allows you to use a mouse to cut and paste text on console
applications.

in.fingerd finger Handles requests for user information from the finger utility.

inetd Listens for service requests on network connections and starts up
the appropriate daemon to respond to any particular request.
Because of inetd, a system does not need the daemons running con-
tinually to handle various network requests. For more information
refer to page 464. Deprecated in favor of xinetd.

lpd Line printer spooler
daemon

Launched by xinetd when printing requests come to the machine.
Not used with CUPS.

Table 10-4 Common daemons (continued)

 From the Library of WoweBook.Com

ptg

404 Chapter 10 Networking and the Internet

Daemon Used for or by Function

named DNS Supports DNS (page 821).

nfsd, statd, lockd,
mountd, rquotad

NFS These five daemons operate together to handle NFS (page 773)
operations. The nfsd daemon handles file and directory requests.
The statd and lockd daemons implement network file and record
locking. The mountd daemon converts filesystem name requests
from the mount utility into NFS handles and checks access permis-
sions. If disk quotas are enabled, rquotad handles those.

ntpd NTP Synchronizes time on network computers. Requires a /etc/ntp.conf
file. For more information go to www.ntp.org.

portmap RPC Maps incoming requests for RPC service numbers to TCP or UDP
port numbers on the local system. Refer to “RPC Network Services”
on page 406.

pppd PPP For a modem, this protocol controls the pseudointerface repre-
sented by the IP connection between the local computer and a
remote computer. Refer to “PPP: Point-to-Point Protocol” on
page 381.

rexecd rexec Allows a remote user with a valid username and password to run
programs on a system. Its use is generally deprecated for security
reasons; certain programs, such as PC-based X servers, may still
have it as an option.

routed Routing tables Manages the routing tables so your system knows where to send
messages that are destined for remote networks. If your system
does not have a /etc/defaultrouter file, routed is started automati-
cally to listen to incoming routing messages and to advertise out-
going routes to other systems on the local network. A newer
daemon, the gateway daemon (gated), offers enhanced config-
urability and support for more routing protocols and is proportion-
ally more complex.

rsyslogd System log Transcribes important system events and stores them in files and/or
forwards them to users or another host running the rsyslogd dae-
mon. This daemon is configured with /etc/rsyslog.conf. See
page 625.

sendmail Mail programs The sendmail daemon came from Berkeley UNIX and has been avail-
able for a long time. The de facto mail transfer program on the Inter-
net, the sendmail daemon always listens on port 25 for incoming
mail connections and then calls a local delivery agent, such as
/bin/mail. Mail user agents (MUAs), such as KMail and Thunderbird,
typically use sendmail to deliver mail messages.

Table 10-4 Common daemons (continued)

 From the Library of WoweBook.Com

www.ntp.org

ptg

Distributed Computing 405

Proxy Servers

A proxy is a network service that is authorized to act for a system while not being
part of that system. A proxy server or proxy gateway provides proxy services; it is a
transparent intermediary, relaying communications back and forth between an
application, such as a browser and a server, usually outside of a LAN and frequently
on the Internet. When more than one process uses the proxy gateway/server, the
proxy must keep track of which processes are connecting to which hosts/servers
so that it can route the return messages to the proper process. The most commonly
encountered proxies are email and Web proxies.

A proxy server/gateway insulates the local computer from all other computers or
from specified domains by using at least two IP addresses: one to communicate with
the local computer and one to communicate with a server. The proxy server/gateway
examines and changes the header information on all packets it handles so that it can
encode, route, and decode them properly. The difference between a proxy gateway
and a proxy server is that the proxy server usually includes cache (page 1139) to
store frequently used Web pages so that the next request for that page is available
locally and quickly; a proxy gateway typically does not use cache. The terms “proxy
server” and “proxy gateway” are frequently used interchangeably.

Daemon Used for or by Function

smbd, nmbd Samba Allow Windows PCs to share files and printers with UNIX and Linux
computers (page 797).

sshd ssh, scp Enables secure logins between remote systems (page 676).

talkd talk Allows you to have a conversation with another user on the same or
a remote machine. The talkd daemon handles the connections
between the machines. The talk utility on each system contacts the
talkd daemon on the other system for a bidirectional conversation.

telnetd TELNET One of the original Internet remote access protocols (page 391).

tftpd TFTP Used to boot a system or get information from a network. Examples
include network computers, routers, and some printers.

timed Time server On a LAN synchronizes time with other computers that are also run-
ning timed.

xinetd Internet superserver Listens for service requests on network connections and starts up
the appropriate daemon to respond to any particular request.
Because of xinetd, a system does not need the daemons running
continually to handle various network requests. For more informa-
tion refer to page 464.

Table 10-4 Common daemons (continued)

 From the Library of WoweBook.Com

ptg

406 Chapter 10 Networking and the Internet

Proxy servers/gateways are available for such common Internet services as HTTP,
HTTPS, FTP, SMTP, and SNMP. When an HTTP proxy sends queries from local
systems, it presents a single organizationwide IP address (the external IP address of
the proxy server/gateway) to all servers. It funnels all user requests to the appropri-
ate servers and keeps track of them. When the responses come back, the HTTP
proxy fans them out to the appropriate applications using each machine’s unique IP
address, thereby protecting local addresses from remote/specified servers.

Proxy servers/gateways are generally just one part of an overall firewall strategy to
prevent intruders from stealing information or damaging an internal network.
Other functions, which can be either combined with or kept separate from the
proxy server/gateway, include packet filtering, which blocks traffic based on origin
and type, and user activity reporting, which helps management learn how the Inter-
net is being used.

RPC Network Services

Much of the client/server interaction over a network is implemented using the RPC
(Remote Procedure Call) protocol, which is implemented as a set of library calls
that make network access transparent to the client and server. RPC specifies and
interprets messages but does not concern itself with transport protocols; it runs on
top of TCP/IP and UDP/IP. Services that use RPC include NFS and NIS. RPC was
developed by Sun as ONC RPC (Open Network Computing Remote Procedure
Calls) and differs from Microsoft RPC.

In the client/server model, a client contacts a server on a specific port (page 401) to
avoid any mixup between services, clients, and servers. To avoid maintaining a long
list of port numbers and to enable new clients/servers to start up without registering
a port number with a central registry, when a server that uses RPC starts, it specifies
the port it expects to be contacted on. RPC servers typically use port numbers that
have been defined by Sun. If a server does not use a predefined port number, it picks
an arbitrary number.

portmap The server then registers this port with the RPC portmapper (the portmap daemon)
on the local system. The server tells the daemon which port number it is listening on
and which RPC program numbers it serves. Through these exchanges, the portmap
daemon learns the location of every registered port on the host and the programs
that are available on each port. The portmap daemon, which always listens on port
111 for both TCP and UDP, must be running to make RPC calls.

Files The /etc/rpc file (page 496) maps RPC services to RPC numbers. The /etc/services
file (page 497) lists system services.

RPC client/server
communication

The sequence of events for communication between an RPC client and server occurs
as follows:

1. The client program on the client system makes an RPC call to obtain data
from a (remote) server system. (The client issues a “read record from a
file” request.)

 From the Library of WoweBook.Com

ptg

Usenet 407

2. If RPC has not yet established a connection with the server system for the
client program, it contacts portmap on port 111 of the server and asks
which port the desired RPC server is listening on (for example, rpc.nfsd).

3. The portmap daemon on the remote server looks in its tables and returns
a UDP or TCP port number to the local system, the client (typically 2049
for nfs).

4. The RPC libraries on the server system receive the call from the client and
pass the request to the appropriate server program. The origin of the
request is transparent to the server program. (The filesystem receives the
“read record from file” request.)

5. The server responds to the request. (The filesystem reads the record.)

6. The RPC libraries on the remote server return the result over the network
to the client program. (The read record is returned to the calling program.)

Under Ubuntu Linux most servers start and run their own daemons. When RPC
servers are started by the xinetd daemon (page 464), the portmap daemon must be
started before the xinetd daemon is invoked. The init scripts (page 440) make sure
portmap starts before xinetd. You can confirm this sequence by looking at the
numbers associated with /etc/rc.d/*/S*portmap and /etc/rc.d/*/S*/xinetd. If the
portmap daemon stops, you must restart all RPC servers on the local system.

Usenet

One of the earliest information services available on the Internet, Usenet is an elec-
tronic bulletin board that allows users with common interests to exchange informa-
tion. Usenet comprises an informal, loosely connected network of systems that
exchange email and news items (commonly referred to as netnews). It was formed
in 1979 when a few sites decided to share some software and information on topics
of common interest. They agreed to contact one another and to pass the informa-
tion along over dial-up telephone lines (at that time running at 1,200 baud at best),
using UNIX’s uucp utility (UNIX-to-UNIX copy program).

The popularity of Usenet led to major changes in uucp to handle the escalating vol-
ume of messages and sites. Today much of the news flows over network links using
a sophisticated protocol designed especially for this purpose: NNTP (Network
News Transfer Protocol). The news messages are stored in a standard format, and
the many public domain programs available let you read them. An old, simple inter-
face is named readnews. Other interfaces, such as rn, its X Window System cousin
xrn, tin, nn, and xvnews, have many features that help you browse through and reply
to the articles that are available or create articles of your own. In addition, Netscape
and Mozilla include an interface that you can use to read news (Netscape/Mozilla
News) as part of their Web browsers. One of the easiest ways to read netnews is to
go to groups.google.com. The program you select to read netnews is largely a mat-
ter of personal taste.

 From the Library of WoweBook.Com

ptg

408 Chapter 10 Networking and the Internet

As programs to read netnews articles have been ported to non-UNIX and non-Linux
systems, the community of netnews users has become highly diversified. In the UNIX
tradition, categories of netnews groups are structured hierarchically. The top level
includes such designations as comp (computer-related), misc (miscellaneous), rec
(recreation), sci (science), soc (social issues), and talk (ongoing discussions). Usually
at least one regional category is at the top level, such as ba (San Francisco Bay Area),
and includes information about local events. New categories are continually being
added to the more than 30,000 newsgroups. The names of newsgroups resemble
domain names but are read from left to right (like Linux filenames):
comp.os.unix.misc, comp.lang.c, misc.jobs.offered, rec.skiing, sci.med, soc.singles,
and talk.politics are but a few examples.

A great deal of useful information is available on Usenet, but you need patience and
perseverance to find what you are looking for. You can ask a question, and someone
from halfway around the world might answer it. Before posing such a simple ques-
tion and causing it to appear on thousands of systems around the world, however,
first ask yourself whether you can get help in a less invasive way. Try the following:

• Refer to the man pages and info.

• Look through the files in /usr/share/doc.

• Ask the system administrator or another user for help.

• All of the popular newsgroups have FAQs (lists of frequently asked ques-
tions). Consult these lists and see whether your question has been
answered. FAQs are periodically posted to the newsgroups; in addition, all
the FAQs are archived at sites around the Internet, including Google
groups (groups.google.com).

• Because someone has probably asked the same question earlier, search the
netnews archives for an answer. Try looking at groups.google.com, which
has a complete netnews archive.

• Use a search engine to find an answer. One good way to get help is to
search on an error message.

• Review support documents at help.ubuntu.com.

• Contact an Ubuntu Linux users’ group.

Post a query to the worldwide Usenet community as a last resort. If you are stuck
on a Linux question and cannot find any other help, try submitting it to one of these
newsgroups:

• comp.os.linux.misc

• alt.os.linux

• comp.os.linux.networking

• comp.os.linux.security

• comp.os.linux.setup

 From the Library of WoweBook.Com

ptg

WWW: World Wide Web 409

One way to find out about new tools and services is to read Usenet news. The
comp.os.linux hierarchy is of particular interest to Linux users; for example, news
about newly released software for Linux is posted to comp.os.linux.announce. Peo-
ple often announce the availability of free software there, along with instructions on
how to get a copy for your own use using anonymous FTP (page 694). Other tools
to help you find resources, both old and new, exist on the network; see Appendix B.

WWW: World Wide Web

The World Wide Web (WWW, W3, or the Web) provides a unified, interconnected
interface to the vast amount of information stored on computers around the world.
The idea that spawned the World Wide Web came from the mind of Tim Berners-
Lee (www.w3.org/People/Berners-Lee) of the European Particle Physics Laboratory
(CERN) in response to a need to improve communications throughout the high-
energy physics community. The first-generation solution consisted of a notebook
program named Enquire, short for Enquire Within Upon Everything (the name of a
book from Berners-Lee’s childhood), which he created in 1980 on a NeXT com-
puter and which supported links between named nodes. Not until 1989 was the
concept proposed as a global hypertext project to be known as the World Wide
Web. In 1990, Berners-Lee wrote a proposal for a hypertext project, which eventu-
ally produced HTML (Hypertext Markup Language), the common language of the
Web. The World Wide Web program became available on the Internet in the sum-
mer of 1991. By designing the tools to work with existing protocols, such as FTP
and gopher, the researchers who created the Web produced a system that is generally
useful for many types of information and across many types of hardware and oper-
ating systems.

The WWW is another example of the client/server paradigm. You use a WWW cli-
ent application, or browser, to retrieve and display information stored on a server
that may be located anywhere on your local network or the Internet. WWW clients
can interact with many types of servers. For example, you can use a WWW client to
contact a remote FTP server and display the list of files it offers for anonymous FTP.
Most commonly you use a WWW client to contact a WWW server, which offers
support for the special features of the World Wide Web that are described in the
remainder of this chapter.

The power of the Web derives from its use of hypertext, a way to navigate through
information by following cross-references (called links) from one piece of informa-
tion to another. To use the Web effectively, you need to run interactive network
applications. The first GUI for browsing the Web was a tool named Mosaic, which
was released in February 1993. Designed at the National Center for Supercomputer
Applications at the University of Illinois, its introduction sparked a dramatic
increase in the number of users of the World Wide Web. Marc Andreessen, who
participated in the Mosaic project at the University of Illinois, later cofounded
Netscape Communications with the founder of Silicon Graphics, Jim Clark. The

 From the Library of WoweBook.Com

www.w3.org/People/Berners-Lee

ptg

410 Chapter 10 Networking and the Internet

pair created Netscape Navigator, a Web client program that was designed to per-
form better and support more features than the Mosaic browser. Netscape Naviga-
tor has enjoyed immense success and has become a popular choice for exploring the
World Wide Web. Important for Linux users is the fact that from its inception
Netscape has provided versions of its tools that run on Linux. Also, Netscape cre-
ated Mozilla (mozilla.org) as an open-source browser project.

These browsers provide GUIs that allow you to listen to sounds, watch Web events
or live news reports, and display pictures as well as text, giving you access to hyper-
media. A picture on your screen may be a link to more detailed, nonverbal informa-
tion, such as a copy of the same picture at a higher resolution or a short animation.
If your system can produce audio output, you can listen to audio clips that have
been linked to a document.

URL: Uniform Resource Locator

Consider the URL http://www.w3.org/Consortium/siteindex. The first component
in the URL indicates the type of resource, in this case http (HTTP—Hypertext
Transfer Protocol). Other valid resource names, such as https (HTTPS—secure
HTTP) and ftp (FTP—File Transfer Protocol), represent information available on
the Web using other protocols. Next come a colon and double slash (://). Fre-
quently the http:// string is omitted from a URL in print, as you seldom need to
enter it to reach the URL. The next element is the full name of the host that acts as
the server for the information (www.w3.org/). The rest of the URL consists of a rel-
ative pathname to the file that contains the information (Consortium/siteindex). If
you enter a URL in the location bar of a Web browser, the Web server returns the
page, frequently an HTML (page 1152) file, pointed to by this URL.

By convention many sites identify their WWW servers by prefixing a host or
domain name with www. For example, you can reach the Web server at the New
Jersey Institute of Technology at www.njit.edu. When you use a browser to explore
the World Wide Web, you may never need to enter a URL. However, as more infor-
mation is published in hypertext form, you cannot help but find URLs every-
where—not just online in email messages and Usenet articles, but also in
newspapers, in advertisements, and on product labels.

Browsers

Mozilla (www.mozilla.org) is the open-source counterpart to Netscape. Mozilla,
which was first released in March 1998, was based on Netscape 4 code. Since
then, Mozilla has been under continuous development by employees of Netscape
(now a division of AOL) and other companies and by contributors from the com-
munity. Firefox is the Web browser component of Mozilla. KDE offers Kon-
queror, an all-purpose file manager and Web browser. Other browsers include
Epiphany (projects.gnome.org/epiphany) and Opera (www.opera.com). Although
each Web browser is unique, all of them allow you to move about the Internet,
viewing HTML documents, listening to sounds, and retrieving files. If you do not

 From the Library of WoweBook.Com

http://www.w3.org/Consortium/siteindex
www.w3.org/
www.njit.edu
www.mozilla.org
www.opera.com

ptg

Chapter Summary 411

use the X Window System, try a text browser, such as lynx or links. The lynx
browser works well with Braille terminals.

Search Engines

Search engine is a name that applies to a group of hardware and software tools that
help you search for World Wide Web sites that contain specific information. A
search engine relies on a database of information collected by a Web crawler, a pro-
gram that regularly looks through the millions of pages that make up the World
Wide Web. A search engine must also have a way of collating the information the
Web crawler collects so that you can access it quickly, easily, and in a manner that
makes it most useful to you. This part of the search engine, called an index, allows
you to search for a word, a group of words, or a concept; it returns the URLs of
Web pages that pertain to what you are searching for. Many different types of
search engines are available on the Internet, each with its own set of strengths and
weaknesses.

Chapter Summary

A Linux system attached to a network is probably communicating on an Ethernet,
which may in turn be linked to other local area networks (LANs) and wide area net-
works (WANs). Communication between LANs and WANs requires the use of gate-
ways and routers. Gateways translate the local data into a format suitable for the
WAN, and routers make decisions about the optimal routing of the data along the
way. The most widely used network, by far, is the Internet.

Basic networking tools allow Linux users to log in and run commands on remote
systems (ssh, telnet) and copy files quickly from one system to another (scp, ftp/sftp).
Many tools that were originally designed to support communication on a single-
host computer (for example, finger and talk) have since been extended to recognize
network addresses, thus allowing users on different systems to interact with one
another. Other features, such as the Network Filesystem (NFS), were created to
extend the basic UNIX model and to simplify information sharing.

Concern is growing about our ability to protect the security and privacy of
machines connected to networks and of data transmitted over networks. Toward
this end, many new tools and protocols have been created: ssh, scp, HTTPS, IPv6,
firewall hardware and software, VPN, and so on. Many of these tools take advan-
tage of newer, more impenetrable encryption techniques. In addition, some weaker
concepts (such as that of trusted hosts) and some tools (such as finger and rwho) are
being discarded in the name of security.

Computer networks offer two major advantages over other ways of connecting com-
puters: They enable systems to communicate at high speeds and they require few
physical interconnections (typically one per system, often on a shared cable). The
Internet Protocol (IP), the universal language of the Internet, has made it possible for

 From the Library of WoweBook.Com

ptg

412 Chapter 10 Networking and the Internet

dissimilar computer systems around the world to readily communicate with one
another. Technological advances continue to improve the performance of computer
systems and the networks that link them.

One way to gather information on the Internet is via Usenet. Many Linux users rou-
tinely peruse Usenet news (netnews) to learn about the latest resources available for
their systems. Usenet news is organized into newsgroups that cover a wide range of
topics, computer-related and otherwise. To read Usenet news, you need to have
access to a news server and the appropriate client software. Many modern email
programs, such as Mozilla and Netscape, can display netnews.

The rapid increase of network communication speeds in recent years has encour-
aged the development of many new applications and services. The World Wide Web
provides access to vast information stores on the Internet and makes extensive use
of hypertext links to promote efficient searching through related documents. It
adheres to the client/server model that is so pervasive in networking. Typically the
WWW client is local to a site or is made available through an Internet service pro-
vider. WWW servers are responsible for providing the information requested by
their many clients.

Mozilla/Firefox is a WWW client program that has enormous popular appeal. Fire-
fox and other browsers use a GUI to give you access to text, picture, and audio
information: Making extensive use of these hypermedia simplifies access to and
enhances the presentation of information.

Exercises

1. Describe the similarities and differences between these utilities:

a. scp and ftp

b. ssh and telnet

c. rsh and ssh

2. Assuming rwho is disabled on the systems on your LAN, describe two ways
to find out who is logged in on some of the other machines attached to
your network.

3. Explain the client/server model. Give three examples of services on Linux
systems that take advantage of this model.

4. A software implementation of chess was developed by GNU and is avail-
able for free. How can you use the Internet to find a copy and download
it?

5. What is the difference between the World Wide Web and the Internet?

6. If you have access to the World Wide Web, answer the following questions.

 From the Library of WoweBook.Com

ptg

Advanced Exercises 413

a. Which browser do you use?

b. What is the URL of the author of this book’s home page? How many
links does it have?

c. Does your browser allow you to create bookmarks? If so, how do you
create a bookmark? How can you delete one?

7. Give one advantage and two disadvantages of using a wireless network.

Advanced Exercises

8. Suppose the link between routers 1 and 2 is down in the Internet shown in
Figure 10-1 on page 378. What happens if someone at site C sends a mes-
sage to a user on a workstation attached to the Ethernet cable at site A?
What happens if the router at site A is down? What does this tell you
about designing network configurations?

9. If you have a class B network and want to divide it into subnets, each with
126 hosts, which subnet mask should you use? How many networks will
be available? What are the four addresses (broadcast and network num-
ber) for the network starting at 131.204.18?

10. Suppose you have 300 hosts and want to have no more than 50 hosts per
subnet. What size of address block should you request from your ISP?
How many class C–equivalent addresses would you need? How many sub-
nets would you have left over from your allocation?

11. a. On your system, find two daemons running that are not listed in this
chapter and explain what purpose they serve.

a.b. Review which services/daemons are automatically started on your sys-
tem, and consider which you might turn off. Are there any services/dae-
mons in the list in Table 10-4 on page 402 that you would consider
adding?

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

415

I

PART IV

System Administration

CHAPTER 11

System Administration: Core Concepts 417

CHAPTER 12

Files, Directories, and Filesystems 487

CHAPTER 13

Downloading and Installing Software 517

CHAPTER 14

Printing with CUPS 547

CHAPTER 15

Building a Linux Kernel 571

CHAPTER 16

Administration Tasks 593

CHAPTER 17

Configuring and Monitoring a LAN 637

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

444111777

11Chapter11The job of a system administrator is to keep one or more systems
in a useful and convenient state for users. On a Linux system, the
administrator and user may both be you, with you and the com-
puter being separated by only a few feet. Alternatively, the system
administrator may be halfway around the world, supporting a
network of systems, with you being one of thousands of users.
On the one hand, a system administrator can be one person who
works part-time taking care of a system and perhaps is also a
user of the system. On the other hand, several administrators can
work together full-time to keep many systems running.

In This Chapter

Running Commands with root
Privileges 419

sudo: Running a Command with
root Privileges 421

The Upstart Event-Based init
Daemon 432

SysVinit (rc) Scripts: Start and
Stop System Services 440

Recovery (Single-User) Mode 445

rpcinfo: Displays Information
About portmap 462

TCP Wrappers: Secure a
Server (hosts.allow and
hosts.deny) 465

Setting Up a chroot Jail 466

DHCP: Configures Network
Interfaces 470

11

System

Administration:

Core Concepts

 From the Library of WoweBook.Com

ptg

418 Chapter 11 System Administration: Core Concepts

A well-maintained system

• Runs quickly enough so users do not get frustrated waiting for the system
to respond or complete a task.

• Has enough storage to accommodate users’ reasonable needs.

• Provides a working environment appropriate to each user’s abilities and
requirements.

• Is secure from malicious and accidental acts altering its performance or
compromising the security of the data it holds and exchanges with other
systems.

• Is backed up regularly, with recently backed-up files being readily available
to users.

• Has recent copies of the software that users need to get their jobs done.

• Is easier to administer than a poorly maintained system.

In addition, a system administrator should be available to help users with all types
of system-related problems—from logging in to obtaining and installing software
updates to tracking down and fixing obscure network issues.

Part IV of this book breaks system administration into seven chapters:

• Chapter 11 covers the core concepts of system administration, including
working with root (Superuser) privileges, system operation, the Ubuntu
configuration tools and other useful utilities, general information about
setting up and securing a server (including a section on DHCP), and PAM.

• Chapter 12 covers files, directories, and filesystems from an administrator’s
point of view.

• Chapter 13 covers installing software on the system, including the use of
APT (aptitude), the Debian package (dpkg) management system, BitTorrent,
and wget.

• Chapter 14 discusses how to set up local and remote printers that use the
CUPS printing system.

• Chapter 15 explains how to rebuild the Linux kernel.

• Chapter 16 covers additional system administrator tasks and tools,
including setting up users and groups, backing up files, scheduling tasks,
printing system reports, and general problem solving.

• Chapter 17 goes into detail about how to set up a LAN, including setting
up and configuring network hardware and configuring software.

Because Linux is readily configurable and runs on a wide variety of platforms (Sun
SPARC, DEC/Compaq Alpha, Intel x86, AMD, PowerPC, and more), this chapter

 From the Library of WoweBook.Com

ptg

Running Commands with root Privileges 419

cannot discuss every system configuration or every action you might potentially
have to take as a system administrator. Instead, this chapter seeks to familiarize you
with the concepts you need to understand and the tools you will use to maintain an
Ubuntu system. Where it is not possible to go into depth about a subject, the chap-
ter provides references to other sources.

This chapter assumes you are familiar with the following terms:

block device (page 1137) filesystem (page 1148) root filesystem (page 1170)
daemon (page 1144) fork (page 1149) runlevel (page 1170)
device (page 1145) kernel (page 1156) signal (page 1172)
device filename (page 1145) login shell (page 1158) spawn (page 1173)
disk partition (page 1145) mount (page 1160) system console (page 1176)
environment (page 1147) process (page 1166) X server (page 1181)

Running Commands with root Privileges

Some commands can damage the filesystem or crash the operating system. Other
commands can invade users’ privacy or make the system less secure. To keep a
Linux system up and running as well as secure, Ubuntu is configured not to permit
ordinary users to execute some commands and access certain files. Linux provides
several ways for a trusted user to execute these commands and access these files.
The default username of the trusted user with these systemwide powers is root; a
user with these privileges is also sometimes referred to as Superuser. As this section
explains, Ubuntu enables specified ordinary users to run commands with root privi-
leges while logged in as themselves.

A user running with root privileges has the following powers—and more:

• Some commands, such as those that add new users, partition hard drives,
and change system configuration, can be executed only by a user with root
privileges. Such a user can configure tools, such as sudo, to give specific
users permission to perform tasks that are normally reserved for a user
running with root privileges.

• Read, write, and execute file access and directory access permissions do
not affect a user with root privileges. A user with root privileges can read
from, write to, and execute all files, as well as examine and work in all
directories.

• Some restrictions and safeguards that are built into some commands do not
apply to a user with root privileges. For example, a user with root privileges
can change any user’s password without knowing the old password.

 From the Library of WoweBook.Com

ptg

420 Chapter 11 System Administration: Core Concepts

When you are running with root privileges in a command-line environment, by con-
vention the shell displays a special prompt to remind you of your status. By default,
this prompt is (or ends with) a hashmark (#). You can gain or grant root privileges
in a number of ways:

• When you bring the system up in recovery mode (page 445), you are
logged in as the user named root.

• The sudo utility allows specified users to run selected commands with root
privileges while they are logged in as themselves. You can set up sudo to
allow certain users to perform specific tasks that require root privileges
without granting them systemwide root privileges. See page 421 for more
information on sudo.

• Some programs ask for your password when they start. If sudo is set up to
give you root privileges, when you provide your password, the program
runs with root privileges. When a program requests a password when it
starts, you stop running as a privileged user when you quit using the pro-
gram. This setup keeps you from remaining logged in with root privileges
when you do not need or intend to be.

• Any user can create a setuid (set user ID) file. Setuid programs run on
behalf of the owner of the file and have all the access privileges that the
owner has. While you are running as a user with root privileges, you can
change the permissions of a file owned by root to setuid. When an ordi-
nary user executes a file that is owned by root and has setuid permissions,
the program has effective root privileges. In other words, the program can
do anything a user with root privileges can do that the program normally
does. The user’s privileges do not change. Thus, when the program finishes
running, all user privileges are as they were before the program started.
Setuid programs owned by root are both extremely powerful and
extremely dangerous to system security, which is why a system contains

Console security

security Ubuntu Linux is not secure from a person who has physical access to the computer. Additional
security measures, such as setting boot loader and BIOS passwords, can help secure the com-
puter. However, if someone has physical access to the hardware, as system console users typi-
cally do, it is very difficult to secure a system from that user.

Least privilege

caution When you are working on any computer system, but especially when you are working as the sys-
tem administrator (with root privileges), perform any task while using the least privilege possible.
When you can perform a task logged in as an ordinary user, do so. When you must run a com-
mand with root privileges, do as much as you can as an ordinary user, use sudo so you have root
privileges, complete the part of the task that has to be done with root privileges, and revert to being
an ordinary user as soon as you can. Because you are more likely to make a mistake when you
are rushing, this concept becomes even more important when you have less time to apply it.

 From the Library of WoweBook.Com

ptg

Running Commands with root Privileges 421

very few of them. Examples of setuid programs that are owned by root
include passwd, at, and crontab. For more information refer to “Setuid and
Setgid Permissions” on page 218.

optional The following techniques for gaining root privileges depend on unlocking the root
account (setting up a root password) as explained on page 431.

• You can give an su (substitute user) command while you are logged in as
yourself. When you then provide the root password, you will have root
privileges. For more information refer to “su: Gives You Another User’s
Privileges” on page 431.

• Once the system is up and running in multiuser mode (page 448), you can
log in as root. When you then supply the root password, you will be run-
ning with root privileges.

Some techniques limit how someone can log in as root. For example, PAM (page 478)
controls the who, when, and how of logging in. The /etc/securetty file controls which
terminals (ttys) a user can log in on as root. The /etc/security/access.conf file adds
another dimension to login control (see the comments in the file for details).

sudo: Running a Command with root Privileges

Classically a user gained root privileges by logging in as root or by giving an su
(substitute user) command and providing the root password. When an ordinary
user executed a privileged command in a graphical environment, the system would
prompt for the root password. More recently the use of sudo (www.sudo.ws) has
taken over these classic techniques of gaining root privileges.

root-owned setuid programs are extremely dangerous

security Because root-owned setuid programs allow someone who does not know the root password and
cannot use sudo to gain root privileges, they are tempting targets for a malicious user. Also, pro-
gramming errors that make normal programs crash can become root exploits in setuid programs.
A system should have as few of these programs as possible. You can disable setuid programs at
the filesystem level by mounting a filesystem with the nosuid option (page 508). See page 454 for
a command that lists all setuid files on the local system.

Do not allow root access over the Internet
security Prohibiting root logins using login over a network is the default policy of Ubuntu and is imple-

mented by the PAM securetty module. The /etc/security/access.conf file must contain the names
of all users and terminals/workstations that you want a user to be able to log in as root. Initially
every line in access.conf is commented out.

You can, however, log in as root over a network using ssh (page 663). As shipped by Ubuntu, ssh
does not follow the instructions in securetty or access.conf. In addition, in /etc/ssh/sshd_config,
Ubuntu sets PermitRootLogin to yes to permit root to log in using ssh (page 680).

 From the Library of WoweBook.Com

www.sudo.ws

ptg

422 Chapter 11 System Administration: Core Concepts

Ubuntu strongly encourages the use of sudo. In fact, as shipped, Ubuntu locks the
root account (there is no password) so you cannot use the classic techniques. Using
sudo rather than the root account for system administration offers many advantages:

• When you run sudo, it requests your password—not the root password—
so you have to remember only one password.

• The sudo utility logs all commands it executes. This log can be useful for
retracing your steps if you make a mistake and for system auditing.

• The sudo utility logs the username of a user who issues an sudo command.
On systems with more than one administrator, this log tells you which
users have issued sudo commands. Without sudo, you would not know
which user issued a command while working with root privileges.

• The sudo utility allows implementation of a finer-grained security policy
than does the use of su and the root account. Using sudo, you can enable
specific users to execute specific commands—something you cannot do
with the classic root account setup.

• Using sudo makes it harder for a malicious user to gain access to a system.
When there is an unlocked root account, a malicious user knows the user-
name of the account she wants to crack before she starts. When the root
account is locked, the user has to determine the username and the password
to break into a system.

Some users question whether sudo is less secure than su. Because both rely on
passwords, they share the same strengths and weaknesses. If the password is com-
promised, the system is compromised. However, if the password of a user who is
allowed by sudo to do one task is compromised, the entire system may not be at
risk. Thus, if used properly, the finer granularity of sudo’s permissions structure
can make it a more secure tool than su. Also, when sudo is used to invoke a single
command, it is less likely that a user will be tempted to keep working with root
privileges than if the user opens a root shell with su.

Using sudo may not always be the best, most secure way to set up a system. On a
system used by a single user, there is not much difference between using sudo and

There is a root account, but no root password

tip As installed, Ubuntu locks the root account by not providing a root password. This setup prevents
anyone from logging in to the root account (except when you bring the system up in recovery
mode [page 445]). There is, however, a root account (a user with the username root—look at the
first line in /etc/passwd). This account/user owns files (give the command ls –l /bin) and runs
processes (give the command ps –ef and look at the left column of the output). The root account
is critical to the functioning of an Ubuntu system.

The sudo utility enables you to run a command as though it had been run by a user logged in as
root. This book uses the phrase “working with root privileges” to emphasize that, although you
are not logged in as root, when you use sudo you have the powers of the root user.

 From the Library of WoweBook.Com

ptg

Running Commands with root Privileges 423

carefully using su and a root password. In contrast, on a system with several users,
and especially on a network of systems with central administration, sudo can be set
up to be more secure than su. If you are a dyed-in-the-wool UNIX/Linux user who
cannot get comfortable with sudo, it is easy enough to give the root account a pass-
word and use su (page 431).

When you install Ubuntu, the first user you set up is included in the admin group.
As installed, sudo is configured to allow members of the admin group to run with
root privileges. Because there is no root password, initially the only way to perform
privileged administrative tasks from the command line is for the first user to run
them using sudo. Graphical programs call other programs, such as gksudo (see the
adjacent tip), which in turn call sudo for authentication.

Timestamp By default, sudo asks for your password (not the root password) the first time you
run it. At that time, sudo sets your timestamp. After you supply a password, sudo
will not prompt you again for a password for 15 minutes, based on your timestamp.

In the following example, Sam tries to set the system clock while working as the
user sam, a nonprivileged user. The date utility displays an error message followed
by the expanded version of the date Sam entered. When he uses sudo to run date
to set the system clock, sudo prompts him for his password, and the command
succeeds.

$ date 03111424
date: cannot set date: Operation not permitted
Thu Mar 11 14:24:00 PST 2010

$ sudo date 03111424
[sudo] password for sam:
Thu Mar 11 14:24:00 PST 2010

Next Sam uses sudo to unmount a filesystem. Because he gives this command within
15 minutes of the previous sudo command, he does not need to supply a password:

$ sudo umount /music
$

Now Sam uses the –l option to check which commands sudo will allow him to run.
Because he was the first user registered on the system (and is therefore a member of
the admin group), he is allowed to run any command as any user.

Run graphical programs using gksudo, not sudo

caution Use gksudo (or kdesudo from KDE) instead of sudo when you run a graphical program that
requires root privileges. (Try giving this command without an argument.) Although both utilities
run a program with root privileges, sudo uses your configuration files, whereas gksudo uses
root’s configuration files. Most of the time this difference is not important, but sometimes it is crit-
ical. Some programs will not run when you call them with sudo. Using gksudo can prevent
incorrect permissions from being applied to files related to the X Window System in your home
directory. In a few cases, misapplying these permissions can prevent you from logging back in.
In addition, you can use gksudo in a launcher (page 121) on the desktop or on a panel.

 From the Library of WoweBook.Com

ptg

424 Chapter 11 System Administration: Core Concepts

$ sudo -l
...
User sam may run the following commands on this host:
 (ALL) ALL

Spawning a root
shell

When you have several commands you need to run with root privileges, it may be
easier to spawn a root shell, give the commands without having to type sudo in
front of each one, and exit from the shell. This technique defeats some of the safe-
guards built into sudo, so use it carefully and remember to return to a nonroot shell
as soon as possible. (See the caution on least privilege on page 420.) Use the sudo –i
option to spawn a root shell:

$ pwd
/home/sam
$ sudo -i
id
uid=0(root) gid=0(root) groups=0(root)
pwd
/root
exit
$

In this example, sudo spawns a root shell, which displays a # prompt to remind you
that you are running with root privileges. The id utility displays the identity of the
user running the shell. The exit command (you can also use CONTROL-D) terminates the
root shell, returning the user to his normal status and his former shell and prompt.

sudo’s environment The pwd builtin in the preceding example shows one aspect of the modified environ-
ment created by the –i option (page 425). This option spawns a root login shell (a
shell with the same environment as a user logging in as root would have) and exe-
cutes root’s startup files (page 293). Before issuing the sudo –i command, the pwd
builtin shows /home/sam as Sam’s working directory; after the command, it shows
/root, root’s home directory, as the working directory. Use the –s option (page 426)
to spawn a root shell without modifying the environment. When you call sudo with-
out an option, it runs the command you specify in an unmodified environment. To
demonstrate this feature, the following example has sudo run pwd without an
option. The working directory of a command run in this manner does not change.

$ pwd
/home/sam
$ sudo pwd
/home/sam

Redirecting output The following command fails because, although the shell that sudo spawns executes
ls with root privileges, the nonprivileged shell that the user is running redirects the
output. The user’s shell does not have permission to write to /root.

$ sudo ls > /root/ls.sam
-bash: /root/ls.sam: Permission denied

There are several ways around this problem. The easiest is to pass the whole command
line to a shell running under sudo:

 From the Library of WoweBook.Com

ptg

Running Commands with root Privileges 425

$ sudo bash -c 'ls > /root/ls.sam'

The bash –c option spawns a shell that executes the string following the option and
then terminates. The sudo utility runs the spawned shell with root privileges. You
can quote the string to prevent the nonprivileged shell from interpreting special
characters. You can also spawn a root shell with sudo –i, execute the command, and
exit from the privileged shell. (See the preceding section.)

optional Another way to deal with the problem of redirecting output of a command run by
sudo is to use tee (page 254):

$ ls | sudo tee /root/ls.sam
...

This command writes the output of ls to the file but also displays it. If you do not want
to display the output, you can have the nonprivileged shell redirect the output to
/dev/null (page 489). The next example uses this technique to do away with the screen
output and uses the –a option to tee to append to the file instead of overwriting it:

$ ls | sudo tee -a /root/ls.sam > /dev/null

Options

You can use command-line options to control how sudo runs a command. Following
is the syntax of an sudo command line:

sudo [options] [command]

where options is one or more options and command is the command you want to
execute. Without the –u option, sudo runs command with root privileges. Some of
the more common options follow; see the sudo man page for a complete list.

–b (background) Runs command in the background.

–e (edit) With this option, command is a filename and not a command. This option
causes sudo to edit the file named command with root privileges using the editor
named by the SUDO_EDITOR, VISUAL, or EDITOR environment variable. (It
uses the nano editor by default.) Alternatively, you can use the sudoedit utility with-
out any options.

–i (initial login environment) Spawns the shell that is specified for root (or another
user specified by –u) in /etc/passwd, running root’s (or the other user’s) startup files,
with some exceptions (e.g., TERM is not changed). Does not take a command.

–k (kill) Resets the timestamp (page 423) of the user running the command, which
means the user must enter a password the next time she runs sudo.

–L (list defaults) Lists the parameters that you can set on a Defaults line (page 429) in
the sudoers file. Does not take a command.

–l (list commands) Lists the commands the user who is running sudo is allowed to
run on the local system. Does not take a command.

 From the Library of WoweBook.Com

ptg

426 Chapter 11 System Administration: Core Concepts

–s (shell) Spawns a new root (or another user specified by –u) shell as specified in the
/etc/passwd file. Similar to –i but does not change the environment. Does not take a
command.

–u user Runs command with the privileges of user. Without this option, sudo runs command
with root privileges.

sudoers: Configuring sudo
As installed, sudo is not as secure and robust as it can be if you configure it care-
fully. The sudo configuration file is /etc/sudoers. The best way to edit sudoers is to
use visudo by giving this command: sudo visudo. The visudo utility locks, edits, and
checks the grammar of the sudoers file. By default, visudo calls the nano editor. You
can set the SUDO_EDITOR, VISUAL, or EDITOR environment variable to cause
visudo to call vi with the following command:

$ export VISUAL=vi

Replace vi with the textual editor of your choice. Put this command in a startup file
(page 293) to set this variable each time you log in.

In the sudoers file, comments, which start with a hashmark (#), can appear any-
where on a line. In addition to comments, this file holds two types of entries: aliases
and user privilege specifications. Each of these entries occupies a line, which can be
continued by terminating it with a backslash (\).

User Privilege Specifications

The format of a line that specifies user privileges is as follows (the whitespace
around the equal sign is optional):

user_list host_list = [(runas_list)] command_list

• The user_list specifies the user(s) this specification line applies to. This list
can contain usernames, groups (prefixed with %), and user aliases (next
section).

• The host_list specifies the host(s) this specification line applies to. This list
can contain one or more hostnames, IP addresses, or host aliases (dis-
cussed in the next section). You can use the builtin alias ALL to cause the
line to apply to all systems that refer to this sudoers file.

Always use visudo to edit the sudoers file

caution A syntax error in the sudoers file can prevent you from using sudo to gain root privileges. If you
edit this file directly (without using visudo), you will not know that you introduced a syntax error
until you find you cannot use sudo. The visudo utility checks the syntax of sudoers before it
allows you to exit. If it finds an error, it gives you the choice of fixing the error, exiting without sav-
ing the changes to the file, or saving the changes and exiting. The last choice is usually a poor one,
so visudo marks the it with (DANGER!).

 From the Library of WoweBook.Com

ptg

Running Commands with root Privileges 427

• The runas_list specifies the user(s) the commands in the command_list can
be run as when sudo is called with the –u option (page 426). This list can
contain usernames, groups (prefixed with %), and runas aliases (discussed
in the next section). It must be enclosed within parentheses. Without
runas_list, sudo assumes root.

• The command_list specifies the utilities this specification line applies to.
This list can contain names of utilities, names of directories holding utili-
ties, and command aliases (discussed in the next section). All names must
be absolute pathnames; directory names must end with a slash (/).

If you follow a name with two adjacent double quotation marks (""), the user will
not be able to specify any command-line arguments, including options. Alterna-
tively, you can specify arguments, including wildcards, to limit the arguments a user
is allowed to use.

Examples The following user privilege specification allows Sam to use sudo to mount and
unmount filesystems (run mount and umount with root privileges) on all systems (as
specified by ALL) that refer to the sudoers file containing this specification:

sam ALL=(root) /bin/mount, /bin/umount

The (root) runas_list is optional. If you omit it, sudo allows the user to run the com-
mands in the command_list with root privileges. In the following example, Sam
takes advantage of these permissions. He cannot run umount directly; instead, he
must call sudo to run it.

$ whoami
sam
$ umount /music
umount: only root can unmount /dev/sdb7 from /music
$ sudo umount /music
[sudo] password for sam:
$

If you replace the line in sudoers described above with the following line, Sam is not
allowed to unmount /p03, although he can still unmount any other filesystem and
can mount any filesystem:

sam ALL=(root) /bin/mount, /bin/umount, !/bin/umount /p03

The result of the preceding line in sudoers is shown below. The sudo utility does not
prompt for a password because Sam has entered his password within the last 15
minutes.

$ sudo umount /p03
Sorry, user sam is not allowed to execute '/bin/umount /p03' as root on localhost.

The following line limits Sam to mounting and unmounting filesystems mounted on
/p01, /p02, /p03, and /p04:

sam ALL= /bin/mount /p0[1-4], /bin/umount /p0[1-4]

 From the Library of WoweBook.Com

ptg

428 Chapter 11 System Administration: Core Concepts

The following commands show the result:

$ sudo umount /music
Sorry, user sam is not allowed to execute '/bin/umount /music' as root on localhost.
$ sudo umount /p03
$

Default privileges
for admin group

As shipped, the sudoers file contains the following lines:

Members of the admin group may gain root privileges
%admin ALL=(ALL) ALL

This user privilege specification applies to all systems (as indicated by the ALL to
the left of the equal sign). As the comment indicates, this line allows members of
the admin group (specified by preceding the name of the group with a percent
sign: %admin) to run any command (the rightmost ALL) as any user (the ALL
within parentheses). When you call it without the –u option, the sudo utility runs
the command you specify with root privileges, which is what sudo is used for most
of the time.

If the following line appeared in sudoers, it would allow members of the wheel
group to run any command as any user with one exception: They would not be
allowed to run passwd to change the root password.

%wheel ALL=(ALL) ALL, !/usr/bin/passwd root

optional In the %admin ALL=(ALL) ALL line, if you replaced (ALL) with (root) or if you
omitted (ALL), you would still be able to run any command with root privileges.
You would not, however, be able to use the –u option to run a command as another
user. Typically, when you can have root privileges, this limitation is not an issue.
Working as a user other than yourself or root allows you to use the least privilege
possible to accomplish a task, which is a good idea.

For example, if you are in the admin group, the default entry in the sudoers file
allows you to give the following command to create and edit a file in Sam’s home
directory. Because you are working as Sam, he will own the file and be able to read
from and write to it.

$ sudo -u sam vi ~sam/reminder
$ ls -l ~sam/reminder
-rw-r--r-- 1 sam sam 15 2010-03-09 15:29 /home/sam/reminder

Aliases

An alias enables you to rename and/or group users, hosts, or commands. Following
is the format of an alias definition:

alias_type alias_name = alias_list

where alias_type is the type of alias (User_Alias, Runas_Alias, Host_Alias,
Cmnd_Alias), alias_name is the name of the alias (by convention in all uppercase

 From the Library of WoweBook.Com

ptg

Running Commands with root Privileges 429

letters), and alias_list is a comma-separated list of one or more elements that make
up the alias. Preceding an element of an alias with an exclamation point (!) negates it.

User_Alias The alias_list for a user alias is the same as the user_list for a user privilege specifi-
cation (discussed in the previous section). The following lines from a sudoers file
define three user aliases: OFFICE, ADMIN, and ADMIN2. The alias_list that
defines the first alias includes the usernames mark, sam, and sls; the second includes
two usernames and members of the admin group; and the third includes all mem-
bers of the admin group except Max.

User_Alias OFFICE = mark, sam, sls
User_Alias ADMIN = max, zach, %admin
User_Alias ADMIN2 = %admin, !max

Runas_Alias The alias_list for a runas alias is the same as the runas_list for a user privilege spec-
ification (discussed in the previous section). The following SM runas alias includes
the usernames sam and sls:

Runas_Alias SM = sam, sls

Host_Alias Host aliases are meaningful only when the sudoers file is referenced by sudo running
on more than one system. The alias_list for a host alias is the same as the host_list
for a user privilege specification (discussed in the previous section). The following
line defines the LCL alias to include the systems named dog and plum:

Host_Alias LCL = dog, plum

If you want to use fully qualified hostnames (hosta.example.com instead of just
hosta) in this list, you must set the fqdn flag (next section). However, doing so may
slow the performance of sudo.

Cmnd_Alias The alias_list for a command alias is the same as the command_list for a user priv-
ilege specification (discussed in the previous section). The following command alias
includes three files and, by including a directory (denoted by its trailing /), incorpo-
rates all the files in that directory:

Cmnd_Alias BASIC = /bin/cat, /usr/bin/vi, /bin/df, /usr/local/safe/

Defaults (Options)

You can change configuration options from their default values by using the
Defaults keyword. Most values in this list are flags that are implicitly Boolean (can
either be on or off) or strings. You turn on a flag by naming it on a Defaults line,
and you turn it off by preceding it with a !. The following line in the sudoers file
would turn off the lecture and fqdn flags and turn on tty_tickets:

Defaults !lecture,tty_tickets,!fqdn

This section lists some common flags; see the sudoers man page for a complete list.

env_reset Causes sudo to reset the environment variables to contain the LOGNAME, SHELL,
USER, USERNAME, and SUDO_* variables only. The default is on. See the
sudoers man page for more information.

 From the Library of WoweBook.Com

ptg

430 Chapter 11 System Administration: Core Concepts

fqdn (fully qualified domain name) Performs DNS lookups on FQDNs (page 1149) in the
sudoers file. When this flag is set, you can use FQDNs in the sudoers file, but doing
so may negatively affect sudo’s performance, especially if DNS is not working. When
this flag is set, you must use the local host’s official DNS name, not an alias. If host-
name returns an FQDN, you do not need to set this flag. The default is on.

insults Displays mild, humorous insults when a user enters a wrong password. The default
is off. See also passwd_tries.

lecture=freq Controls when sudo displays a reminder message before the password prompt. Pos-
sible values of freq are never (default), once, and always. Specifying !lecture is the
same as specifying a freq of never.

mail_always Sends email to the mailto user each time a user runs sudo. The default is off.

mail_badpass Sends email to the mailto user when a user enters an incorrect password while
running sudo. The default is off.

mail_no_host Sends email to the mailto user when a user whose username is in the sudoers file but
who does not have permission to run commands on the local host runs sudo. The
default is off.

mail_no_perms Sends email to the mailto user when a user whose username is in the sudoers file but
who does not have permission to run the requested command runs sudo. The
default is off.

mail_no_user Sends email to the mailto user when a user whose username is not in the sudoers file
runs sudo. The default is on.

mailsub=subj (mail subject) Changes the default email subject for warning and error messages
from the default *** SECURITY information for %h *** to subj. The sudo util-
ity expands %h within subj to the local system’s hostname. Place subj between
quotation marks if it contains shell special characters (page 160).

mailto=eadd Sends sudo warning and error messages to eadd (an email address; the default is
root). Place eadd between quotation marks if it contains shell special characters
(page 160).

passwd_tries=num
The num is the number of times the user can enter an incorrect password in
response to the sudo password prompt before sudo quits. The default is 3. See also
insults and lecture.

rootpw Causes sudo to accept only the root password in response to its prompt. Because
sudo issues the same prompt whether it is asking for your password or the root

Using the root password in place of your password

tip If you have set up a root password (page 431), you can cause graphical programs that require a
password to require the root password in place of the password of the user who is running the
program by turning on rootpw. The programs will continue to ask for your password, but will
accept only the root password. Making this change causes an Ubuntu system to use the root pass-
word in a manner similar to the way some other distributions use this password.

 From the Library of WoweBook.Com

ptg

Running Commands with root Privileges 431

password, turning this flag on may confuse users. Do not turn on this flag if you
have not unlocked the root account (page 431), as you will not be able to use sudo.
To fix this problem, bring the system up in recovery mode (page 445) and turn off
(remove) this flag. The default is off, causing sudo to prompt for the password of
the user running sudo. See the preceding tip.

shell_noargs Causes sudo, when called without any arguments, to spawn a root shell without
changing the environment. The default is off. This option is the same as the sudo –s
option.

timestamp_timeout=mins
The mins is the number of minutes that the sudo timestamp (page 423) is valid. The
default is 15; set mins to –1 to cause the timestamp to be valid forever.

tty_tickets Causes sudo to authenticate users on a per-tty basis, not a per-user basis. The
default is on.

umask=val The val is the umask (page 459) that sudo uses to run the command that the user
specifies. Set val to 0777 to preserve the user’s umask value. The default is 0022.

Unlocking the root Account (Assigning a Password to root)
Except for a few instances, there is no need to unlock the root account on an
Ubuntu system; in fact, Ubuntu suggests that you do not do so. The following com-
mand unlocks the root account by assigning a password to it:

$ sudo passwd root
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

Relocking the root
account

If you decide you want to lock the root account after unlocking it, give the com-
mand sudo passwd –l root. You can unlock it again with the preceding command.

su: Gives You Another User’s Privileges

To use su to gain root privileges, you must unlock the root account (as discussed in
the preceding section).

The su (substitute user) utility can spawn a shell or execute a program with the
identity and privileges of a specified user. Follow su on the command line with the
name of a user; if you are working with root privileges or if you know the user’s
password, you will then take on the identity of that user. When you give an su com-
mand without an argument, su defaults to spawning a shell with root privileges
(you have to know the root password).

When you give an su command to work as root, su spawns a new shell, which dis-
plays the # prompt. You can return to your normal status (and your former shell
and prompt) by terminating this shell: Press CONTROL-D or give an exit command. Giv-
ing an su command by itself changes your user and group IDs but makes minimal
changes to the environment. For example, PATH has the same value as it did before

 From the Library of WoweBook.Com

ptg

432 Chapter 11 System Administration: Core Concepts

you gave the su command. When you give the command su – (you can use –l or
––login in place of the hyphen), you get a root login shell: It is as though you
logged in as root. Not only do the shell’s user and group IDs match those of root,
but the environment is identical to that of root. The login shell executes the appro-
priate startup files (page 293) before displaying a prompt.

The id utility displays the changes in your user and group IDs and in the groups you
are associated with:

$ id
uid=1002(sam) gid=1002(sam) groups=117(admin),1002(sam)
$ su
Password:
id
uid=0(root) gid=0(root) groups=0(root)

You can use su with the –c option to run a command line with root privileges,
returning to the original shell when the command finishes executing. The following
example first shows that a user is not permitted to kill (page 455) a process. With the
use of su –c and the root password, however, the user is permitted to kill the process.
The quotation marks are necessary because su –c takes its command as a single
argument.

$ kill -15 4982
-bash: kill: (4982) - Operation not permitted
$ su -c "kill -15 4982"
Password:
$

The Upstart Event-Based init Daemon

Because the traditional System V init daemon (SysVinit) does not deal well with
modern hardware, including hotplug (page 502) devices, USB hard and flash drives,
and network-mounted filesystems, Ubuntu replaced it with the Upstart init daemon
(upstart.ubuntu.com and upstart.ubuntu.com/wiki).

Several other replacements for SysVinit are also available. One of the most promi-
nent is initng (initng.sourceforge.net/trac). In addition, Solaris uses SMF (Service
Management Facility) and MacOS uses launchd. Over time, Ubuntu will incorpo-
rate features of each of these systems into Upstart.

The runlevel-based SysVinit daemon uses runlevels (recovery/single-user, multi-
user, and more) and links from the /etc/rc?.d directories to the init scripts in

Superuser, PATH, and security

security The fewer directories you keep in PATH when you are working as root, the less likely you will be
to execute an untrusted program as root. Never include the working directory in PATH (as . or : :
anywhere in PATH, or : as the last element of PATH). For more information refer to “PATH: Where
the Shell Looks for Programs” on page 319.

 From the Library of WoweBook.Com

ptg

The Upstart Event-Based init Daemon 433

/etc/init.d to start and stop system services (page 440). The event-based Upstart
init daemon uses events to start and stop system services. With the Feisty release
(7.04), Ubuntu switched to the Upstart init daemon and began making the transi-
tion from the SysVinit setup to the Upstart setup. This section discusses Upstart
and the parts of SysVinit that remain: the /etc/rc?.d and /etc/init.d directories and
the concept of runlevels. See the tip about terminology on page 445.

The Upstart init daemon is event based and runs specified programs when some-
thing on the system changes. These programs, which are frequently scripts, start
and stop services. This setup is similar in concept to the links to init scripts that
SysVinit calls as a system enters runlevels, except Upstart is more flexible. Instead of
starting and stopping services only when the runlevel changes, Upstart can start and
stop services upon receiving information that something on the system has changed.
Such a change is called an event. For example, Upstart can take action when it
learns from udev (page 502) that a filesystem, printer, or other device has been
added or removed from the running system. It can also start and stop services when
the system boots, when the system is shut down, or when a job changes state.

Future of Upstart Changing from SysVinit to Upstart involves many parts of the Linux system. To
make the switch smoothly and to introduce as few errors as possible, the Upstart
team elected to make this transition over several releases.

Ubuntu has been moving away from the SysVinit setup and toward the cleaner,
more flexible Upstart setup. As more system services are put under the control of
Upstart, entries in the /etc/init directory (see the tip on page 440) will replace the
contents of the /etc/init.d and /etc/rc?.d directories. Runlevels will no longer be a
formal feature of Ubuntu, although they will be maintained for compatibility with
third-party software. Eventually Upstart will also replace crond.

Software Package

The Upstart system is contained in one package, which is installed by default:

• upstart—Provides the Upstart init daemon and initctl utility.

Definitions

Events An event is a change in state that can be communicated to init. Almost any change in
state—either internal or external to the system—can trigger an event. For example,
the boot loader triggers the startup event (startup man page) and the telinit command
(page 444) triggers the runlevel event (page 444). Removing and installing a hotplug
(page 502) or USB device (such as a printer) can trigger an event as well. You can
also trigger an event manually by giving the initctl emit command (page 436). For
more information refer to “Events” on page 437.

Jobs A job is a series of instructions that init reads. These instructions typically include
a program (binary file or shell script) and the name of an event. The Upstart init
daemon runs the program when the event is triggered. You can run and stop a job
manually by giving the initctl start and stop commands, respectively (page 436).

 From the Library of WoweBook.Com

ptg

434 Chapter 11 System Administration: Core Concepts

Jobs are divided into tasks and services. A job is a service by default; you must
explicitly specify a job as a task for it to run as a task.

Tasks A task is a job that performs its work and returns to a waiting state when it is done.
A task blocks the program/process that emitted the event that triggered it until the
program it specifies is finished running. The rc task described on page 438 is an
example of a task.

Services A service is a job that does not normally terminate by itself. For example, the logd
daemon and getty processes (page 439) are implemented as services. The init dae-
mon monitors each service, restarting the service if it fails and killing the service if it
is stopped either manually or by an event. A service blocks the program/process that
emitted the event that triggered it until the program it specifies has started running.

Job definition files The /etc/init directory holds job definition files (files defining the jobs that the
Upstart init daemon runs). Initially this directory is populated by the Upstart soft-
ware package. The installation of some services adds files to this directory to control
the service, replacing the files that were previously placed in the /etc/rc?.d and
/etc/init.d directories when the service was installed.

init is a state
machine

At its core, the Upstart init daemon is a state machine. It keeps track of the state of
jobs and, as events are triggered, tracks jobs as they change states. When init tracks a
job from one state to another, it may execute the job’s commands or terminate the job.

Runlevel emulation The System V init daemon used changes in runlevels (page 443) to determine when
to start and stop processes. Ubuntu systems, which rely on the Upstart init daemon,
have no concept of runlevels. To ease migration from a runlevel-based system to an
event-based system, and to provide compatibility with software intended for other
distributions, Ubuntu emulates runlevels using Upstart.

The rc task, which is defined by the /etc/init/rc.conf file, runs the /etc/init.d/rc
script. This script, in turn, runs the init scripts in /etc/init.d from the links in the
/etc/rc?.d directories, emulating the functionality of these links under SysVinit. The
rc task runs these scripts as the system enters a runlevel; it normally takes no action
when the system leaves a runlevel. See page 438 for a discussion of the rc task and
page 440 for information on init scripts. Upstart implements the runlevel (page 444)
and telinit (page 444) utilities to provide compatibility with SysVinit systems.

initctl The initctl (init control) utility communicates with the Upstart init daemon. An ordinary
user can query the Upstart init daemon by using the initctl list and status commands. A
system administrator working with root privileges can both query this daemon and
start and stop jobs. For example, the initctl list command lists jobs and their states:

$ initctl list
alsa-mixer-save stop/waiting
avahi-daemon start/running, process 509
mountall-net stop/waiting
rc stop/waiting
rsyslog start/running, process 463
tty4 start/running, process 695
udev start/running, process 252
...

 From the Library of WoweBook.Com

ptg

The Upstart Event-Based init Daemon 435

See the initctl man page and the examples in this section for more information. You
can give the command initctl help (no hyphens before help) to display a list of initctl
commands. Alternatively, you can give the following command to display more
information about the list command:

$ initctl list --help
Usage: initctl list [OPTION]...
List known jobs.

Options:
 --system use D-Bus system bus to connect to init daemon
 --dest=NAME destination well-known name on system bus
 -q, --quiet reduce output to errors only
 -v, --verbose increase output to include informational messages
 --help display this help and exit
 --version output version information and exit

The known jobs and their current status will be output.

Report bugs to <upstart-devel@lists.ubuntu.com>

Replace list with the initctl command for which you want to obtain more informa-
tion. The start, stop, reload, and status utilities are links to initctl that run the initctl
commands they are named for.

Jobs

Each file in the /etc/init directory defines a job and usually contains at least an event
and a command. When the event is triggered, init executes the command. This sec-
tion describes examples of both administrator-defined jobs and jobs installed with
the upstart package.

Administrator-Defined Jobs

mudat example The following administrator-defined job uses the exec keyword to execute a shell
command. You can also use this keyword to execute a shell script stored in a file or
a binary executable file.

In the first stanza (start on runlevel 2), start on is a keyword (you can use stop on in
its place), runlevel is an event (page 433), and 2 is an argument to runlevel.

$ cat /etc/init/mudat.conf
start on runlevel 2
task
exec echo "Entering multiuser mode on " $(date) > /tmp/mudat.out

This file defines a task: It runs the echo shell command when the system enters
multiuser mode (runlevel 2). This command writes a message that includes the time
and date to /tmp/mudat.out. The shell uses command substitution (page 362) to
execute the date utility. After this job runs to completion, the mudat task stops and
enters a wait state.

 From the Library of WoweBook.Com

ptg

436 Chapter 11 System Administration: Core Concepts

In the next example, the cat utility shows the contents of the /tmp/mudat.out file
and the initctl list command and the status utility report on this task:

$ cat /tmp/mudat.out
Entering multiuser mode on Wed Mar 10 11:58:14 PST 2010

$ initctl list | grep mudat
mudat stop/waiting
$ status mudat
mudat stop/waiting

If the exec command line contains shell special characters (page 160), init executes
/bin/sh (a link to dash [page 292]) and passes the command line to the shell. Other-
wise, exec executes the command line directly. To run multiple shell commands,
either use exec to run a shell script stored in a file or use script...end script (dis-
cussed next).

The Upstart init daemon can monitor only jobs (services) whose programs are exe-
cuted using exec; it cannot monitor jobs run using script...end script. Put another
way, services require the use of exec while tasks can use either method to run a pro-
gram. Future versions of the Upstart init daemon will be able to monitor these jobs.

myjob example You can also define an event and set up a job that is triggered by that event. The
myjob.conf job definition file defines a job that is triggered by the hithere event:

$ cat /etc/init/myjob.conf
start on hithere
script

echo "Hi there, here I am!" > /tmp/myjob.out
date >> /tmp/myjob.out

end script

The myjob file shows another way of executing commands: It includes two com-
mand lines between the script and end script keywords. These keywords always
cause init to execute /bin/sh. The commands write a message and the date to the
/tmp/myjob.out file. You can use the initctl emit command to trigger the job.

initctl emit $ sudo initctl emit hithere

$ cat /tmp/myjob.out
Hi there, here I am!
Wed Mar 10 11:59:23 PST 2010

$ status myjob
myjob stop/waiting

initctl start and stop In the preceding example, cat shows the output that myjob generates and initctl dis-
plays the status of the job. You can run the same job by giving the command initctl
start myjob (or just start myjob). The initctl start command is useful when you want
to run a job without triggering an event. For example, you can use the command
initctl start mudat to run the mudat job from the previous example without trigger-
ing the runlevel event.

 From the Library of WoweBook.Com

ptg

The Upstart Event-Based init Daemon 437

Events

The upstart package defines many events. The following command lists events and
brief descriptions of each. See the corresponding man page for more information on
each event.

$ apropos event 2| grep signalling
all-swaps (7) - event signalling that all swap partitions have been activated
control-alt-delete (7) - event signalling console press of Control-Alt-Delete
filesystem (7) - event signalling that filesystems have been mounted
keyboard-request (7) - event signalling console press of Alt-UpArrow
local-filesystems (7) - event signalling that local filesystems have been mounted
mounted (7) - event signalling that a filesystem has been mounted
mounting (7) - event signalling that a filesystem is mounting
power-status-changed (7) - event signalling change of power status
remote-filesystems (7) - event signalling that remote filesystems have been mounted
runlevel (7) - event signalling change of system runlevel
started (7) - event signalling that a job is running
starting (7) - event signalling that a job is starting
startup (7) - event signalling system startup
stopped (7) - event signalling that a job has stopped
stopping (7) - event signalling that a job is stopping
virtual-filesystems (7) - event signalling that virtual filesystems have been mounted

apropos The apropos utility (page 139), which is a link to whatis, sends its output to standard
error. The 2| operator is a pipe (page 251) that sends standard error (page 297) of
apropos to standard input of grep.

optional Specifying Events with Arguments

The telinit (page 444) and shutdown (page 450) utilities emit runlevel events that
include arguments. For example, shutdown emits runlevel 0, and telinit 2 emits
runlevel 2. You can match these events within a job definition using the following
syntax:

start|stop on event [arg [arg...]]

where event is an event such as runlevel and arg is one or more arguments. To stop
a job when the system enters runlevel 2 from runlevel 1, specify stop on
runlevel 2 1. You can also specify [235] to match 2, 3, and 5 or [!2] to match any
value except 2.

Event arguments Although Upstart ignores additional arguments in an event, additional arguments in
an event name within a job definition file must exist in the event. For example, run-
level (no argument) in a job definition file matches all runlevel events (regardless of
arguments), whereas runlevel S arg1 arg2 does not match any runlevel event
because the runlevel event takes two arguments (the runlevel the system is entering
and the previous runlevel).

 From the Library of WoweBook.Com

ptg

438 Chapter 11 System Administration: Core Concepts

Job Definition Files in /etc/init
As Ubuntu continues its transition from SysVinit to Upstart init, more jobs will be
defined in the /etc/init directory. This section describes some of the jobs that the
upstart package puts in this directory.

rc task and the
runlevel event

A runlevel event [runlevel(7) man page] signals a change in runlevel and is emitted by
telinit (page 444) and shutdown (page 450). This event sets the environment variable
RUNLEVEL to the value of the new runlevel and sets PREVLEVEL to the value of
the previous runlevel.

The /etc/init/rc.conf job definition file defines the rc task. This task monitors the
runlevel event. The keyword task near the end of the file specifies this job as a task
and not a service. Because it is a task, it blocks the call that emitted the runlevel
event until the rc task has finished running.

The exec stanza in rc.conf calls the /etc/init.d/rc script (not the rc task) with an
argument of RUNLEVEL. The rc script calls the links in the /etc/rcn.d directory,
where n is equal to RUNLEVEL (page 440). Thus the rc task, when called with
RUNLEVEL set to 2, runs the init scripts that the links in the /etc/rc2.d directory
point to.

The rc task runs the rc script when the system enters a runlevel from 0 through 6
(start on runlevel [0123456]). Normally this task terminates when it finishes exe-
cuting the rc script.

The stop stanza (stop on runlevel [!$RUNLEVEL]) takes care of the case wherein a
second runlevel event attempts to start while an rc task is running the rc script. In
this case, the value of RUNLEVEL is not equal to the value of RUNLEVEL that the
rc task was called with and the rc task stops.

$ cat /etc/init/rc.conf
rc - System V runlevel compatibility

This task runs the old System V-style rc script when changing between
runlevels.

description "System V runlevel compatibility"
author "Scott James Remnant <scott@netsplit.com>"

start on runlevel [0123456]
stop on runlevel [!$RUNLEVEL]

export RUNLEVEL
export PREVLEVEL

console output
env INIT_VERBOSE

task

exec /etc/init.d/rc $RUNLEVEL

 From the Library of WoweBook.Com

ptg

The Upstart Event-Based init Daemon 439

tty services Following is the job definition file for the service that starts and monitors the getty
process (page 448) on tty1:

$ cat /etc/init/tty1.conf
tty1 - getty

This service maintains a getty on tty1 from the point the system is
started until it is shut down again.

start on stopped rc RUNLEVEL=[2345]
stop on runlevel [!2345]

respawn
exec /sbin/getty -8 38400 tty1

The event in the start on stanza is named stopped (see the stopped man page). This
stanza starts the tty1 service when the rc task is stopped with RUNLEVEL equal to
2, 3, 4, or 5. Because the rc task is stopped as the system finishes entering each of
these runlevels, the tty1 service starts when the system enters any of these runlevels.

The event in the stop on stanza is named runlevel. This stanza stops the tty1 service
when a runlevel event is emitted with an argument other than 2, 3, 4, or 5—that is,
when the system enters recovery mode, is shut down, or is rebooted.

The respawn keyword tells init to restart the tty1 service if it terminates. The exec
stanza runs a getty process with no parity (–8) on tty1 at 38,400 baud. In the next
example, the initctl utility reports that the tty1 service has started and is running as
process 1061; ps reports on the process:

$ status tty1
tty1 start/running, process 1061
$ ps -ef | grep 1061
root 1061 1 0 12:26 tty1 00:00:00 /sbin/getty -8 38400 tty1

control-alt-delete
task

See page 451 for a discussion of the control-alt-delete task, which you can use to
bring the system down.

rc-sysinit task and
inittab

Under SysVinit, the initdefault entry in the /etc/inittab file tells init which runlevel
(page 443) to bring the system to when it comes up. Ubuntu does not include an
inittab file; instead, by default, the Upstart init daemon (using the rc-sysinit task)
boots the system to multiuser mode (runlevel 2). If you want the system to boot to a
different runlevel, modify the following line in the rc-sysinit.conf file:

$ cat /etc/init/rc-sysinit.conf
...
env DEFAULT_RUNLEVEL=2
...

Do not set the system to boot to runlevel 0 or 6

caution Never set the system to boot to runlevel 0 or 6, as it will not come up properly. To boot to
multiuser mode (runlevel 2), set DEFAULT_RUNLEVEL to 2. To boot to recovery mode, set
DEFAULT_RUNLEVEL to S.

 From the Library of WoweBook.Com

ptg

440 Chapter 11 System Administration: Core Concepts

Changing the value of DEFAULT_RUNLEVEL from 2 to S causes the system to
boot to recovery mode (runlevel S; see the caution on page 444). When the system
comes up in recovery mode, if the root account on the system is unlocked
(page 431), init requests the root password before displaying the root prompt.
Otherwise, it displays the root prompt without requesting a password.

SysVinit (rc) Scripts: Start and Stop System Services

rc scripts The init (initialization) scripts, also called rc (run command) scripts, are shell scripts
located in the /etc/init.d directory. They are run via symbolic links in the /etc/rcn.d
directories, where n is the runlevel the system is entering.

The /etc/rcn.d directories contain scripts whose names begin with K (K19cupsys,
K20dhcp, K74bluetooth, and so on) and scripts whose names begin with S
(S15bind9, S18nis, S20exim4, and so on). When entering a new runlevel, each K
(kill) script is executed with an argument of stop, and then each S (start) script is
executed with an argument of start. Each of the K files is run in numerical order.
The S files are run in similar fashion. This arrangement allows the person who sets
up these files to control which services are stopped and which are started, and in
what order, whenever the system enters a given runlevel. Using scripts with start
and stop arguments promotes flexibility because it allows one script to both start
and kill a process, depending on which argument it is called with.

To customize system initialization, you can add shell scripts to the /etc/init.d direc-
tory and place links to these files in the /etc/rcn.d directories (although in practice it
is best to use sysv-rc-conf [discussed next] to create the links).

The following example shows several links to the cups init script. These links are called
to run the cups init script to start or stop the cupsd daemons at various runlevels:

$ ls -l /etc/rc?.d/*cups*
lrwxrwxrwx 1 root root 14 2010-02-26 10:19 /etc/rc1.d/K80cups -> ../init.d/cups
lrwxrwxrwx 1 root root 14 2010-02-26 10:19 /etc/rc2.d/S50cups -> ../init.d/cups
lrwxrwxrwx 1 root root 14 2010-02-26 10:19 /etc/rc3.d/S50cups -> ../init.d/cups
lrwxrwxrwx 1 root root 14 2010-02-26 10:19 /etc/rc4.d/S50cups -> ../init.d/cups
lrwxrwxrwx 1 root root 14 2010-02-26 10:19 /etc/rc5.d/S50cups -> ../init.d/cups

Each link in /etc/rcn.d points to a file in /etc/init.d. For example, the file
/etc/rc2.d/S50cups is a link to the file named cups in /etc/init.d. (The numbers in
the filenames of the links in the /etc/rcn.d directories may change from one release
of Ubuntu to the next, but the scripts in /etc/init.d always have the same names.)

Most of the files in the /etc/rcn.d and /etc/init.d directories will go away

tip As explained on page 434, Ubuntu emulates runlevels using Upstart to aid migration and provide
compatibility with software for other distributions. This section explains how init scripts work with
(emulated) runlevels to control system services. Many of the scripts in the /etc/rcn.d and
/etc/init.d directories described in this section suggest you use the corresponding initctl com-
mands in place of the script because the links in these directories having been replaced by job con-
trol files in /etc/init (page 434).

 From the Library of WoweBook.Com

ptg

The Upstart Event-Based init Daemon 441

The names of files in the init.d directory are functional. Thus, when you want to
turn NFS services on or off, you use the nfs-kernel-server script. Similarly, when you
want to turn basic network services on or off, you run the networking script. The
cups script controls the printer daemon. Each script takes an argument of stop or
start, depending on what you want to do. Some scripts also take other arguments,
such as restart, reload, and status. Run a script without an argument to display a
usage message indicating which arguments it accepts.

Following are three examples of calls to init scripts. You may find it easier to use
service (discussed next) in place of the pathnames in these commands:

$ sudo /etc/init.d/nfs-kernel-server stop
$ sudo /etc/init.d/networking start
$ sudo /etc/init.d/networking restart

The first example stops all NFS server processes (processes related to serving file-
systems over the network). The second example starts all processes related to basic
network services. The third example stops and then restarts these same processes.

/etc/rc.local The /etc/rc.local file is executed after the other init scripts when the system boots.
Put commands that customize the system in rc.local. Although you can add any
commands you like to rc.local, it is best to run them in the background; that way, if
they hang, they will not stop the boot process.

service: Configures Services I

Ubuntu provides service, a handy utility that can report on or change the status of
any of the jobs in /etc/init (page 435) and any of the system services in
/etc/rc.d/init.d (page 440). Ubuntu introduced this utility for compatibility with the
Fedora/RHEL service utility. In place of the commands described at the end of the
previous section, you can give the following commands from any directory:

$ sudo service nfs nfs-kernel-server stop
$ sudo service networking start
$ sudo service networking restart

The command service ––status-all displays the status of all system services. The
next section explores yet another way to configure system services.

sysv-rc-conf: Configures Services II

The sysv-rc-conf utility (sysv-rc-conf package) makes it easier for a system adminis-
trator to maintain the /etc/rcn.d directory hierarchy. This utility can add, remove,
and list startup information for system services. You might also want to try the
graphical boot-up manager, bum (bum package), which this book does not cover.

You can run sysv-rc-conf in pseudographical or textual mode. In pseudographical
mode, it makes changes to configuration files as you enter the changes and can also
start and stop services. For more information on this mode, see the sysv-rc-conf man
page or run sysv-rc-conf without any arguments and give the command h. This section
discusses using sysv-rc-conf in textual mode in which it changes the configuration

 From the Library of WoweBook.Com

ptg

442 Chapter 11 System Administration: Core Concepts

only—it does not change the current state of any service. Give the following command
to see the list of services:

$ sudo sysv-rc-conf --list
acpi-support 1:off 2:on 3:on 4:on 5:on
acpid
alsa-mixer-s
anacron
apparmor S:on
apport
atd
avahi-daemon
binfmt-suppo 2:on 3:on 4:on 5:on
bluetooth 0:off 1:off 2:on 3:on 4:on 5:on 6:off
...

All services that run their own daemons are listed, one to a line, followed by their
configured state for each runlevel. If a runlevel is missing, it means that there is no
entry for that service in the corresponding file in the /etc/rcn.d directory. When all
runlevels are missing, it means the service is controlled by Upstart. You can check
how a specific daemon is configured by adding its name to the previous command:

$ sudo sysv-rc-conf --list cups

cups 1:off 2:on 3:on 4:on 5:on

In the next example, sysv-rc-conf (sysv-rc-conf package) configures the /etc/rcn.d
directories so that the cupsd daemon is off in runlevels 2, 3, 4, and 5 and then
confirms the change. To make these kinds of changes, you must work with root
privileges:

$ sudo sysv-rc-conf --level 2345 cups off
$ sudo sysv-rc-conf --list cups
cups 1:off 2:off 3:off 4:off 5:off

The name of the job/init script may differ from name of the daemon it runs

tip The following example shows that the ssh job controls the sshd daemon. You can find the name
of the job that controls a daemon by listing the contents of the /etc/init and /etc/init.d directories
and searching for a filename that is similar to the name or function of the daemon you want to
work with. For example, the /etc/init.d/cups script controls the printing daemon.

Frequently, the first few lines of a script or the comments and the exec and description stanzas of
a job identify the daemon it controls. The following job description file shows these lines:

$ cat /etc/init/ssh.conf
ssh - OpenBSD Secure Shell server

The OpenSSH server provides secure shell access to the system.

description "OpenSSH server"
...
exec /usr/sbin/sshd

 From the Library of WoweBook.Com

ptg

System Operation 443

For convenience, you can omit the ––level 2345 arguments. When you specify an
init script and on or off, sysv-rc-conf defaults to runlevels 2, 3, 4, and 5. The follow-
ing command is equivalent to the first of the preceding commands:

$ sudo sysv-rc-conf cups off

The ps utility confirms that even though sysv-rc-conf set things up so cups would be
off in all runlevels, it is still running. The sysv-rc-conf utility did not shut down cups.

$ ps -ef | grep cups
root 998 1 0 12:47 ? 00:00:00 /usr/sbin/cupsd -C /etc/cups/cupsd.conf
zach 5618 1334 0 18:28 pts/0 00:00:00 grep --color=auto cups

With the preceding changes, when you reboot the system, cups will not start. You
can stop it more easily using the cups init script:

$ sudo service cups stop
* Stopping Common Unix Printing System: cupsd [OK]

$ ps -ef | grep cups
zach 5637 1334 0 18:29 pts/0 00:00:00 grep --color=auto cups

System Operation

This section covers the basics of how the system functions and can help you make
intelligent decisions as a system administrator. It does not examine every possible
aspect of system administration in the depth necessary to enable you to set up or
modify all system functions. Instead, it provides a guide to bringing a system up and
keeping it running on a day-to-day basis.

Runlevels

With the introduction of Upstart, true runlevels disappeared from the system. As a
transitional tool, runlevels were replaced with a structure that runs under Upstart
and emulates runlevels (page 434). Table 11-1 lists these pseudorunlevels as they
exist under Upstart.

Table 11-1 Pseudorunlevels

Number Name/function

0 Brings the system down

1 Brings the system to recovery (S, single-user) mode

S Recovery (single-user) mode, textual login, few system services running

2 Multiuser mode, graphical login, all scheduled system services running

3, 4, 5 Multiuser mode, graphical login, all scheduled system services running (for
system customization, runlevels 2–5 are identical)

6 Reboots the system

 From the Library of WoweBook.Com

ptg

444 Chapter 11 System Administration: Core Concepts

Default runlevel By default, Ubuntu systems boot to multiuser mode (runlevel 2). See “rc-sysinit task
and inittab” on page 439 for instructions explaining how to change this default.

runlevel The runlevel utility [runlevel(8) man page; do not confuse it with the runlevel event
described on page 438] displays the previous and current runlevels. This utility is a
transitional tool; it provides compatibility with SysVinit. In the following example,
the N indicates that the system does not know what the previous runlevel was and
the 2 indicates that the system is in multiuser mode.

$ runlevel
N 2

telinit The telinit utility (man telinit) allows a user with root privileges to bring the system
down, reboot the system, or change between recovery (single-user) and multiuser
modes. The telinit utility is a transitional tool; it provides compatibility with SysVinit.
This utility emits a runlevel event (page 438) based on its argument. The format of a
telinit command is

telinit runlevel

where runlevel is one of the pseudorunlevels described in Table 11-1 (previous page).

Recovery mode and
the root password

When the system enters recovery (single-user) mode, if the root account is unlocked
(page 431), init requests the root password before displaying the root prompt.
Otherwise, it displays the root prompt without requesting a password. When the
system enters multiuser mode, it displays a graphical login screen.

Booting the System

Booting a system is the process of reading the Linux kernel (page 1156) into system
memory and starting it running. Refer to “GRUB: The Linux Boot Loader” on
page 583 for more information on the initial steps of bringing a system up.

Do not change runlevels directly into runlevel S
caution Using telinit to request that the system change to runlevel 1 brings the system first to runlevel 1,

where appropriate system processes (running system services) are killed, and then automatically
to runlevel S. Changing directly to runlevel S puts the system into runlevel S but does not kill any
processes first; it is usually a poor idea.

The Upstart init daemon consults the rc-sysinit.conf file (page 439) only when the system is boot-
ing. At that time there are no processes left running from a previous runlevel, so going directly to
runlevel S does not present a problem.

List the kernel boot messages

tip To save a list of kernel boot messages, run dmesg immediately after booting the system and
logging in:

$ dmesg > dmesg.boot

This command saves the kernel messages in a file named dmesg.boot. This list can be educational;
it can also be useful when you are having a problem with the boot process. For more information
see page 589.

 From the Library of WoweBook.Com

ptg

System Operation 445

init daemon As the last step of the boot procedure, Linux starts the Upstart init daemon
(page 432) as PID number 1. The init daemon is the first genuine process to run
after booting and is the parent of all system processes. (Which is why when you kill
process 1 while you are working with root privileges, the system dies.)

Once init is running, the startup event triggers the rc-sysinit task, which stops when
the system enters any runlevel. The rc-sysinit task executes telinit with the argument
specified by DEFAULT_RUNLEVEL in the rc-sysinit.conf file. See page 439 for
more information.

Reinstalling the
MBR

If the master boot record (MBR) is overwritten, the system will not boot into Linux
and you need to rewrite the MBR. See page 589 for details.

Recovery (Single-User) Mode

When the system is in recovery (single-user) mode, only the system console is
enabled. You can run programs from the console in recovery mode just as you
would from any terminal in multiuser mode with three differences: You cannot run
graphical programs (because you are working in textual mode), few of the system
daemons are running, and all filesystems are mounted as specified by /etc/fstab
(page 510), but they are mounted readonly. You can use the mount remount and rw
options to enable write access to a filesystem (page 222).

When you boot the system to recovery mode, the Upstart init daemon runs the job
named rcS (/etc/init/rcS.conf) as part of recovery mode initialization (see the cau-
tion on page 444). See the next sections for instructions on booting a system to
recovery mode. When you bring a running system down to recovery mode
(page 451), the Upstart init daemon runs jobs named rc (/etc/init/rc.conf) and rcS.

With the system in recovery mode, you can perform system maintenance that
requires filesystems to be unmounted or that requires just a quiet system—no one
except you using it, so that no user programs interfere with disk maintenance and
backup programs. The classical UNIX term for this state is quiescent. You can often
boot to recovery mode when the system will not boot normally, allowing you to
change or replace configuration files, check and repair partitions using fsck
(page 512), rewrite boot information (page 589), and more.

Booting the System to Recovery (Single-User) Mode

You can bring a system up to recovery mode by booting from the hard disk and
giving GRUB the appropriate instructions.

Displaying the
GRUB menu

The first step in bringing a system up in recovery mode from the hard disk is to dis-
play the GRUB menu (Figure 11-1, next page). Boot the system normally (turn on

Ubuntu uses the term recovery mode, not single-user mode
tip What was classically called single-user mode, Ubuntu refers to as recovery mode. However, some

vestiges of the old terminology remain. For example, you type single at the end of the GRUB linux
line to bring a system up in recovery mode. This book uses these terms interchangeably.

 From the Library of WoweBook.Com

ptg

446 Chapter 11 System Administration: Core Concepts

the power or reboot the system). The GRUB menu will be hidden or displayed.
Either way, if you hold down the SHIFT key as the system is booting, GRUB displays
its menu and stops booting the system. If the system is running GRUB legacy
(page 583), you must press the ESC key to display the menu.

Selecting recovery
mode

Unless you have modified the /etc/default/grub file (page 584), the GRUB menu
starts with a few pairs of lines similar to the following:

Ubuntu, with Linux 2.6.32-22-generic
Ubuntu, with Linux 2.6.32-22-generic (recovery mode)

Typically the first line is highlighted as shown in Figure 11-1. Press the DOWN ARROW

key to highlight the second line, which includes the words recovery mode. Press
RETURN to boot the system to recovery mode. The system displays the pseudographical
Recovery menu (Figure 11-2).

Figure 11-1 The GRUB menu

Recovery versus rescue modes
tip Recovery mode is the new name for what was formerly single-user mode. When you bring a sys-

tem up in recovery mode, Ubuntu boots from the hard disk and displays the pseudographical
Recovery menu. This section explains how to bring a system up to recovery mode.

When you bring a system up to rescue a broken system, you boot Ubuntu from a Server CD, an
Alternate CD, or a DVD as explained on page 83 and select Rescue a broken system from the
Ubuntu boot menu. Ubuntu displays the pseudographical Rescue Operations menu (Figure 3-24,
page 84).

 From the Library of WoweBook.Com

ptg

System Operation 447

Editing the
GRUB menu

If there is no line with recovery mode in the menu, follow these instructions:

1. Highlight the kernel you want to boot—GRUB highlights the default kernel
when GRUB displays its menu.

2. Press e to edit the GRUB boot command lines (from /boot/grub/grub.cfg)
for the kernel you selected. GRUB displays the lines in a simple emacs-like
editor with the cursor at the beginning of the line. In this editor, GRUB
wraps the line so it may occupy several physical lines. You can use the
ARROW keys to move the cursor.

3. Press the DOWN ARROW key to highlight the line that begins with linux.

4. Press the RIGHT ARROW key to position the cursor at the right end of the line,
enter SPACE single (following splash in the default setup), and press CONTROL-X

to boot the system using the modified kernel line. The system displays the
pseudographical Recovery menu (Figure 11-2).

Recovery menu The Recovery menu is controlled by the files in the /usr/share/recovery-mode
directory hierarchy and presents six selections:

• resume—Resumes booting the system, bypassing the Recovery menu. If
you were booting to recovery mode, this selection will bring the system up
in recovery mode.

• clean—Deletes all package files from the APT cache. Same as the aptitude
clean command (page 526).

• dpkg—Repairs broken packages and upgrades all packages on the system.
Equivalent to aptitude full-upgrade (page 526), dpkg ––configure –a, and
apt-get –f install.

• grub—Updates the GRUB boot loader by running update-grub (page 587).

• netroot—Runs dhclient (page 472) to start networking and starts a root
shell that displays a prompt.

• root—Starts a root shell (without networking) that displays a prompt.

Figure 11-2 The Recovery menu

 From the Library of WoweBook.Com

ptg

448 Chapter 11 System Administration: Core Concepts

root password If the root account on the system is unlocked (page 431), the system requests the
root password before displaying the root prompt. Otherwise, it displays the root
prompt without requesting a password.

Going to Multiuser Mode

Multiuser/graphical mode (runlevel 2) is the default state for an Ubuntu Linux sys-
tem. In this mode all appropriate filesystems are mounted, and users can log in from
all connected terminals, dial-up lines, and network connections. All support services
and daemons are enabled and running. With the system in multiuser mode, Ubuntu
displays a graphical login screen on the console.

If you booted to recovery mode to fix something, give a reboot command and allow
the system to come up in multiuser mode. If the system entered recovery mode auto-
matically to allow you to repair the filesystem, when you exit from the recovery
shell, init brings the system to the default mode—usually multiuser. Alternatively,
you can give the following command in response to the root prompt to bring the
system to multiuser mode:

telinit 2

The telinit utility (page 444) tells init which runlevel to change to.

When it goes from recovery (single-user) to multiuser mode, the system executes the
K (kill or stop) scripts and then the S (start) scripts in /etc/rc.d/rc2.d. For more
information refer to “SysVinit (rc) Scripts: Start and Stop System Services” on
page 440. Use sysv-rc-conf (page 441) to stop any of these scripts from running
when the system enters the new runlevel.

Logging In

Textual login: init,
getty, and login

With a textual login, the system uses init, getty, and login to allow a user to log in;
login uses PAM modules (page 478) to authenticate a user. Once the system is in
multiuser mode, init is responsible for spawning a getty process on each of the lines
a user can log in on.

When you enter your username, getty establishes the characteristics of the terminal.
It then overlays itself with a login process and passes to the login process whatever
you entered in response to the login: prompt. Using PAM, the login process consults
the /etc/passwd file to see whether any username there matches the username you
entered. Next, PAM examines the /etc/shadow file to see whether a password is
associated with the username. If it is, login prompts you for a password; if not, it
continues without requiring a password. When your username requires a password,
login verifies the password you enter by checking the /etc/shadow file again. If either
your username or your password is not correct, login displays Login incorrect,
pauses, and prompts you to log in again.

All passwords in the /etc/shadow file are hashed using MD5 (page 1159). It is not
feasible to recover a hashed password. When you log in, the login process hashes the

 From the Library of WoweBook.Com

ptg

System Operation 449

password you type at the prompt and compares it to the hashed password in
/etc/shadow. If the two passwords match, you are authenticated.

Graphical login With a graphical login, the init process spawns gdm (the GNOME display manager)
on the first free virtual terminal, providing features similar to those offered by getty
and login. The gdm utility starts an X server and presents a login window. The gdm
display manager then uses PAM to authenticate the user and runs the scripts in the
/etc/gdm/PreSession directory. These scripts inspect the user’s ~/.dmrc file, which
stores the user’s default session and language, and launch the user’s session. The
GNOME desktop environment stores the state of the last saved session and
attempts to restore it when the user logs in again.

With NIS, login compares the username and password with the information in the
appropriate naming service instead of (or in addition to) the passwd and shadow
files. If the system is configured to use both methods (/etc/passwd and NIS), it checks
the /etc/nsswitch.conf file (page 475) to see in which order it should consult them.

PAM (page 478)—the Pluggable Authentication Module facility—gives you greater
control over user logins than the /etc/passwd and /etc/shadow files do. Using PAM,
you can specify multiple levels of authentication, mutually exclusive authentication
methods, or parallel methods, each of which is by itself sufficient to grant access to
the system. For example, you can have different authentication methods for console
logins and for ssh logins. Similarly, you can require modem users to authenticate
themselves using two or more methods (such as a smartcard or badge reader and a
password). PAM modules also provide security technology vendors with a conve-
nient way to interface their hardware or software products with a system.

Initializing the
session

When both the username and the password are correct, login or the scripts in PreSession
consult the appropriate services to initialize the user and group IDs, establish the user’s
home directory, and determine which shell or desktop manager the user works with.

The login utility and PreSession scripts assign values to variables and look in the
/etc/group file (page 492) to identify the groups the user belongs to. When login has
finished its work, it overlays itself with the login shell, which inherits the variables set
by login. In a graphical environment, the PreSession scripts start the desktop manager.

During a textual login, the login shell assigns values to additional shell variables
and executes the commands in the system startup files /etc/profile and /etc/bashrc.
Some systems have other system startup files as well. Although the actions per-
formed by these scripts are system dependent, they typically display the contents of
the /etc/motd (message of the day) and /etc/issue files, let you know if you have
email, and set umask (page 459), the file-creation mask.

After executing the system startup commands, the shell executes the commands
from the personal startup files in the user’s home directory. These scripts are
described on page 293. Because the shell executes the personal startup files after the
system startup files, a sophisticated user can override any variables or conventions
that were established by the system. A new user, by contrast, can remain uninvolved
in these matters.

 From the Library of WoweBook.Com

ptg

450 Chapter 11 System Administration: Core Concepts

Logging Out

With a shell prompt displayed, you can either execute a program or exit from the
shell. If you exit from the shell, the process running the shell dies and the parent
process wakes up. When the shell is a child of another shell, the parent shell wakes
up and displays a prompt. Exiting from a login shell causes the operating system to
send init a signal that one of its children has died. Upon receiving this signal, init
takes action based on the appropriate job (page 433). In the case of a process con-
trolling a line for a terminal, init calls the appropriate tty service (page 439), which
then respawns getty so another user can log in.

Bringing the System Down

shutdown The shutdown and reboot utilities perform the tasks needed to bring the system down
safely. These utilities can restart the system, prepare the system to be turned off,
and, on most hardware, power down the system. The poweroff and halt utilities are
links to reboot.

You must tell shutdown when you want to bring the system down. This time can be
expressed as an absolute time of day, as in 19:15, which causes the shutdown to
occur at 7:15 PM. Alternatively, you can give this time as the number of minutes
from the present time, as in +15, which means 15 minutes from now. To bring the
system down immediately (recommended for emergency shutdowns only or when
you are the only user logged in), you can give the argument +0 or its synonym, now.
When the shutdown time exceeds 5 minutes, all nonroot logins are disabled for the
last 5 minutes before shutdown.

Calling shutdown with the –r option causes the system to reboot (same as reboot,
except reboot implies now). Calling shutdown with the –h option forces the system to
halt (same as halt, except halt implies now). A message appears once the system has
been safely halted: System halted. Because most ATX systems power off automati-
cally after shutdown, you are unlikely to see this message.

Because Linux is a multiuser system, shutdown warns all users before taking action.
This warning gives users a chance to prepare for the shutdown, perhaps by writing
out editor files or exiting from applications. You can replace the default shutdown
message with one of your own by following the time specification on the command
line with a message:

Do not turn the power off before bringing the system down
caution Do not turn the power off on a Linux system without first bringing it down as described in this sec-

tion. To speed up disk access, Linux keeps buffers in memory that it writes out to disk periodically
or when system use is momentarily low. When you turn off or reset the computer without writing
the contents of these buffers to the disk, you lose any information in the buffers. Running the
shutdown utility forces these buffers to be written. You can force the buffers to be written at any
time by issuing a sync command. However, sync does not unmount filesystems, nor does it
bring the system down. Also, turning off or resetting a system in this manner can destroy filesys-
tems on IDE and SATA hard disks.

 From the Library of WoweBook.Com

ptg

System Operation 451

$ sudo shutdown -h 09:30 Going down 9:30 to install disk, up by 10am.

CONTROL-ALT-DEL: Reboots the System

In a textual environment, pressing the key sequence CONTROL-ALT-DEL (also referred to
as the three-finger salute or the Vulcan death grip) on the console causes the ker-
nel to trigger a control-alt-delete task (page 439) that causes init to run the com-
mands in /etc/init/control-alt-delete. These commands safely reboot the system by
issuing a shutdown command. You can disable the CONTROL-ALT-DEL sequence by
removing the /etc/init/control-alt-delete file (or by moving it to another directory
for safekeeping).

In a graphical environment, the X Window System traps this key sequence but the
window manager does not pass it to the kernel. As a result, CONTROL-ALT-DEL does not
work in a graphical environment.

Going to Recovery (Single-User) Mode

The following steps describe a method of manually bringing the system down to
recovery mode. In some cases it may be easier to simply reboot the system and bring
it up in recovery mode; see page 445. Before starting, make sure you give other
users enough warning before switching to recovery mode; otherwise, they may lose
the data they are working on. Because going from multiuser to recovery mode can
affect other users, you must work with root privileges to perform all of these tasks
except the first.

1. Use wall (page 615) to warn everyone who is using the system to log out.

2. If you are sharing files via NFS, use exportfs –ua to disable network access
to the shared filesystems. (Use exportfs without an argument to see which
filesystems are being shared.)

3. Confirm that no critical processes are running in the background (e.g., an
unattended compile).

4. Give the command telinit 1 (page 444) to bring the system down to recov-
ery mode. The system displays messages about the services it is shutting
down, followed by a root shell prompt (#). In runlevel 1, the system kills
many system services and then brings the system to runlevel S. The runlevel
utility confirms the system was at runlevel 1 and is now at runlevel S. See
the caution about changing runlevels on page 444.

$ sudo telinit 1
...
runlevel
1 S

5. Use umount –a to unmount all mounted devices that are not in use. Use
mount without an argument to make sure that no devices other than root
(/) are mounted before continuing.

 From the Library of WoweBook.Com

ptg

452 Chapter 11 System Administration: Core Concepts

Turning the Power Off

Once the system is in recovery mode, give the command telinit 0 (page 444) or halt
to bring the system down. You can build a kernel with apm so it turns the machine
off at the appropriate time. If the system is not set up this way, turn the power off
when prompted to do so or when the system starts rebooting.

Crash

A crash occurs when the system stops suddenly or fails unexpectedly. A crash may
result from software or hardware problems or from a loss of power. As a running
system loses power, it may behave in erratic or unpredictable ways. In a fraction of
a second, some components are supplied with enough voltage; others are not. Buff-
ers are not flushed, corrupt data may be written to hard disks, and so on. IDE and
SATA drives do not behave as predictably as SCSI drives under these circumstances.
After a crash, you must bring the operating system up carefully to minimize possible
damage to the filesystems. On many occasions, little or no damage will have
occurred.

Repairing a Filesystem

Although the filesystems are checked automatically during the boot process if
needed, you will have to check them manually if a problem cannot be repaired auto-
matically. By default, when fsck cannot repair a filesystem automatically at boot
time, Linux enters recovery mode so that you can run fsck manually. If necessary,
you can explicitly boot the system to recovery mode (page 445).

With the system in recovery mode, use umount to unmount local filesystems you
want to check. Then run fsck (page 512) on these filesystems, repairing them as
needed. Make note of any ordinary files or directories that you repair (and can iden-
tify), and inform their owners that these files may not be complete or correct. Look
in the lost+found directory (page 488) in each filesystem for missing files. After suc-
cessfully running fsck, if the system entered recovery mode automatically, type exit
to exit from the recovery shell and resume booting the system; otherwise, give a
reboot command.

If files are not correct or are missing altogether, you may have to re-create them
from a backup copy of the filesystem. For more information refer to “Backing Up
Files” on page 599.

Back up a badly damaged filesystem before running fsck on it
caution When a filesystem is badly broken, fsck sometimes makes the situation worse while trying to

repair it. In these cases, it may be possible to recover more data by copying the readable data from
the broken filesystem before attempting to repair it. When a damaged filesystem holds important
data, use dd (see the dd man page) to make a full binary backup before attempting to repair it
using fsck.

 From the Library of WoweBook.Com

ptg

Avoiding a Trojan Horse 453

When the System Does Not Boot

When a system will not boot from the hard disk, boot the system to rescue mode
(page 83) or recovery mode (page 445). If the system comes up, run fsck (page 512)
on the root filesystem on the hard disk and try booting from the hard disk again. If
the system still does not boot, you may have to reinstall the master boot record
(page 589).

When all else fails, go through the install procedure, and preform an “upgrade” to
the current version of Linux. Ubuntu systems can perform a nondestructive upgrade
and can fix quite a bit of damage in the process. For more information refer to
page 74.

Avoiding a Trojan Horse

A Trojan horse is a program that does something destructive or disruptive to a sys-
tem while appearing to be benign. As an example, you could store the following
script in an executable file named mkfs:

while true
do
echo 'Good Morning Mr. Jones. How are you? Ha Ha Ha.' > /dev/console
done

If you are working with root privileges when you run this command, it will contin-
uously write a message to the console. If the programmer were malicious, it could
do something worse. The only thing missing in this plot is access permissions.

A malicious user could implement this Trojan horse by changing root’s PATH vari-
able to include a publicly writable directory at the start of the PATH string. (The
catch is that you need to be able to write to /etc/profile—where the PATH variable
is set for root—and only a user with root privileges can do that.) Then you would
need to put the bogus mkfs program file in that directory. Because the fraudulent
version appears in a directory mentioned earlier than the real one in PATH, the shell
would run it rather than the real version. Thus, the next time a user working with
root privileges tries to run mkfs, the fraudulent version would run.

Trojan horses that lie in wait for and take advantage of the misspellings that most
people make are among the most insidious types. For example, you might type sl
instead of ls. Because you do not regularly execute a utility named sl and you may
not remember typing the command sl, it is more difficult to track down this type of
Trojan horse than one that takes the name of a more familiar utility.

A good way to help prevent the execution of a Trojan horse is to make sure your
PATH variable does not contain a single colon (:) at the beginning or end of the PATH
string or a period (.) or double colon (::) anywhere in the PATH string. This precaution
ensures that you will not execute a file in the working directory by accident.

 From the Library of WoweBook.Com

ptg

454 Chapter 11 System Administration: Core Concepts

To check for a possible Trojan horse, examine the filesystem periodically for files
with setuid (page 420) permission. The following command lists these files:

Listing setuid files $ sudo find / -perm -4000 -exec ls -lh {} \; 2> /dev/null
...
-rwsr-xr-x 1 root root 125K 2010-03-26 11:24 /usr/bin/sudoedit
-rwsr-xr-x 1 root root 14K 2010-03-11 15:12 /usr/bin/arping
-rwsr-xr-x 1 root root 31K 2010-01-26 09:09 /usr/bin/chsh
-rwsr-sr-x 1 daemon daemon 42K 2010-03-04 18:35 /usr/bin/at
-rwsr-xr-x 1 root root 36K 2010-01-26 09:09 /usr/bin/chfn
-rwsr-xr-x 1 root root 37K 2010-01-26 09:09 /usr/bin/passwd
-rwsr-xr-x 1 root lpadmin 14K 2010-04-09 08:13 /usr/bin/lppasswd
...

This command uses find to locate all files that have their setuid bit set (mode 4000).
The hyphen preceding the mode causes find to report on any file that has this bit set,
regardless of how the other bits are set. The output sent to standard error is redi-
rected to /dev/null so it does not clutter the screen.

Run software only
from sources

you trust

Another way a Trojan horse can enter a system is via a tainted ~/.bashrc (page 488)
file. A bogus sudo command or alias in this file can capture a user’s password,
which may then be used to gain root privileges. Because a user has write permission
to this file, any program the user executes can easily modify it. The best way to pre-
vent this type of Trojan horse from entering a system is to run software only from
sources you trust.

You can set up a program, such as AIDE (Advanced Intrusion Detection Environ-
ment), that will take a snapshot of the system and periodically check files for
changes. For more information see sourceforge.net/projects/aide.

Getting Help

The Ubuntu Linux distribution comes with extensive documentation (page 136).
For example, the Support tab on the Ubuntu home page (www.ubuntu.com/sup-
port) and the Ubuntu wiki (wiki.ubuntu.com) point to many useful sources of sup-
port that can help answer many questions. You can also find help on the System
Administrators Guild site (www.sage.org). The Internet is another rich source of
information on managing a Linux system; refer to Appendix B (page 1099) and to
the author’s home page (www.sobell.com) for pointers to useful sites.

You need not act as an Ubuntu system administrator in isolation; a large community of
Linux/Ubuntu experts is willing to assist you in getting the most out of your system. Of
course, you will get better help if you have already tried to solve a problem yourself by
reading the available documentation. If you are unable to solve a problem by consult-
ing the documentation, a well-thought-out question posed to the appropriate news-
group, such as comp.os.linux.misc, or mailing list can often generate useful

 From the Library of WoweBook.Com

www.ubuntu.com/support
www.ubuntu.com/support
www.sage.org
www.sobell.com

ptg

Textual System Administration Utilities 455

information. Be sure to describe the problem accurately and identify the system care-
fully. Include information about the version of Ubuntu running on the system and any
software packages and hardware that you think relate to the problem. The newsgroup
comp.os.linux.answers contains postings of solutions to common problems and peri-
odic postings of the most up-to-date versions of FAQs and HOWTO documents. You
can also refer to Ubuntu mailing lists (lists.ubuntu.com), the Ubuntu forum (ubuntufo-
rums.org), system documentation (help.ubuntu.com), community documentation
(help.ubuntu.com/community), and IRC support (#ubuntu on irc.freenode.net). See
www.catb.org/~esr/faqs/smart-questions.html for a helpful paper by Eric S. Raymond
and Rick Moen titled “How to Ask Questions the Smart Way.”

Textual System Administration Utilities

Many tools can help you be an efficient and thorough system administrator. This
section describes a few textual (command-line) tools and utilities; others are
described throughout Part IV of this book.

kill: Sends a Signal to a Process

The kill builtin sends a signal to a process. This signal may or may not terminate
(kill) the process, depending on which signal it is and how the process is designed.
Refer to “trap: Catches a Signal” on page 1009 for a discussion of the various sig-
nals and their interaction with a process. Running kill is definitely not the first
method to try when a process needs to be aborted.

Usually a user can kill a process by working in another window or by logging in on
another terminal. Sometimes, however, you may have to use sudo to kill a process
for a user. To kill a process, you need to know its PID. The ps utility can provide
this information once you determine the name of the program the user is running
and/or the username of the user. The top utility (page 610) can also be helpful in
finding and killing a runaway process (use the top k command).

In the following example, Sam complains that gnome-calculator is stuck and that he
cannot do anything from the gnome-calculator window—not even close it. A more
experienced user could open another window and kill the process, but in this case

kill: Use the kill signal (–KILL or –9) as a method of last resort

caution When you do need to use kill, send the termination signal (kill –TERM or kill –15) first. Only if
that tactic does not work should you attempt to use the kill signal (kill –KILL or kill – 9).

Because of its inherent dangers, using a kill signal is a method of last resort, especially when you
are working with root privileges. One kill command issued while working with root privileges can
bring the system down without warning.

 From the Library of WoweBook.Com

www.catb.org/~esr/faqs/smart-questions.html

ptg

456 Chapter 11 System Administration: Core Concepts

you kill it for Sam. First you use ps with the –u option, followed by the name of the
user and the –f (full/wide) option to view all processes associated with that user:

$ ps -u sam -f
UID PID PPID C STIME TTY TIME CMD
sam 2294 2259 0 09:31 ? 00:00:00 /bin/sh /usr/bin/startkde
sam 2339 2294 0 09:31 ? 00:00:00 /usr/bin/ssh-agent /usr/bin/dbus-launch
sam 2342 1 0 09:31 ? 00:00:00 dbus-daemon --fork --print-pid 8 --prin
sam 2343 1 0 09:31 ? 00:00:00 /usr/bin/dbus-launch --exit-with-sessio
sam 2396 1 0 09:31 ? 00:00:00 kdeinit Running...
sam 2399 1 0 09:31 ? 00:00:00 dcopserver [kdeinit] --nosid
sam 2401 2396 0 09:31 ? 00:00:00 klauncher [kdeinit]
sam 2403 1 0 09:31 ? 00:00:00 kded [kdeinit]
sam 2405 1 0 09:31 ? 00:00:00 /usr/libexec/gam_server
sam 2413 2396 0 09:31 ? 00:00:00 /usr/bin/artsd -F 10 -S 4096 -s 60 -m a
sam 2415 1 0 09:31 ? 00:00:00 kaccess [kdeinit]
sam 2416 2294 0 09:31 ? 00:00:00 kwrapper ksmserver
sam 2418 1 0 09:31 ? 00:00:00 ksmserver [kdeinit]
sam 2421 2396 0 09:31 ? 00:00:00 kwin [kdeinit] -session 1070626e6a00011
sam 2424 1 0 09:31 ? 00:00:01 kdesktop [kdeinit]
sam 2426 1 0 09:31 ? 00:00:01 kicker [kdeinit]
sam 2429 2396 0 09:31 ? 00:00:00 kio_file [kdeinit] file /tmp/ksocket-ma
sam 2434 2396 0 09:31 ? 00:00:00 konsole [kdeinit] -session 1070626e6a00
sam 2435 2396 0 09:31 ? 00:00:00 /bin/sh /usr/lib/firefox-1.5/firefox -U
sam 2446 2435 0 09:31 ? 00:00:00 /bin/sh /usr/lib/firefox-1.5/run-mozill
sam 2451 2446 0 09:31 ? 00:00:01 /usr/lib/firefox-1.5/firefox-bin -UILoc
sam 2453 2434 0 09:31 pts/2 00:00:00 /bin/bash
sam 2474 1 0 09:31 ? 00:00:00 /usr/libexec/gconfd-2 10
sam 2482 1 0 09:32 ? 00:00:00 synergyc jam
sam 3568 3567 0 13:55 pts/3 00:00:00 -bash
sam 3726 1 0 14:07 ? 00:00:00 knotify [kdeinit]
sam 3728 1 0 14:07 ? 00:00:00 /usr/bin/artsd -F 10 -S 4096 -s 60 -m a
sam 3730 2424 0 14:07 ? 00:00:00 gnome-calculator
sam 3731 3568 0 14:07 pts/3 00:00:00 ps -u sam -f

This list is fairly short, and the process running gnome-calculator is easy to find.
Another way to search for this process is to use ps to produce a long list of all pro-
cesses and then use grep to find which one is running gnome-calculator:

$ ps -ef | grep gnome-calculator
sam 3730 2424 0 14:07 ? 00:00:00 gnome-calculator
sam 3766 3568 0 14:14 pts/3 00:00:00 grep gnome-calculator

If several people are running gnome-calculator, look in the left column to find the
correct username so you can kill the right process. You can combine the two com-
mands as ps –u sam –f | grep gnome-calculator.

Now that you know Sam’s process running gnome-calculator has a PID of 3730, you
can use kill to terminate it. The safest way to do so is to log in as Sam (perhaps you
could allow him to log in for you) and give any of the following commands (all of
which send a termination signal to process 3730):

$ kill 3730

or

 From the Library of WoweBook.Com

ptg

Textual System Administration Utilities 457

$ kill -15 3730

or

$ kill –TERM 3730

Only if this command fails should you send the kill signal:

$ kill –KILL 3730

The –KILL option instructs kill to send a SIGKILL signal, which the process cannot
ignore. Although you can give the same command while you are working with root
privileges, a typing mistake in this situation can have much more far-reaching conse-
quences than if you make the same mistake while you are working as a nonprivileged
user. A nonprivileged user can kill only her own processes, whereas a user with root
privileges can kill any process, including system processes.

As a compromise between speed and safety, you can combine the sudo and kill util-
ities by using the sudo –u option. The following command runs the part of the
command line after the –u sam with the identity of Sam (Sam’s privileges):

$ sudo -u sam kill -TERM 3730

killall Two useful utilities related to kill are killall and pidof. The killall utility is very similar
to kill but uses a command name instead of a PID number. Give the following com-
mand to kill all your processes that are running gnome-calculator or vi:

$ killall gnome-calculator vi

Running this command while working with root privileges kills all processes running
gnome-calculator or vi.

pidof The pidof utility displays the PID number of each process running the command you
specify:

$ pidof apache2
567 566 565 564 563 562 561 560 553

If it is difficult to find the right process, try using top. Refer to the man pages for
these utilities for more information, including lists of options.

Other Textual Utilities

This section describes a few textual (command-line) system administration tools
you may find useful. To learn more about most of these utilities, read the man pages.
For information about umask and uname, see the info pages.

chsh Changes the login shell for a user. When you call chsh without an argument, you
change your login shell. When an ordinary user changes his login shell with chsh,
he must specify an installed shell that is listed in the file /etc/shells, exactly as it is
listed there; chsh rejects other entries. When working with root privileges, you can
change any user’s shell to any value by calling chsh with the username as an argu-
ment. In the following example, a user working with root privileges changes Sam’s
shell to tcsh:

 From the Library of WoweBook.Com

ptg

458 Chapter 11 System Administration: Core Concepts

$ sudo chsh sam
Password:
Changing the login shell for sam
Enter the new value, or press ENTER for the default
 Login Shell [/bin/bash]: /bin/tcsh

See page 293 for more information.

clear Clears the screen. You can also use CONTROL-L from the bash shell to clear the screen.
The value of the environment variable TERM (page 1106) determines how to clear
the screen.

dmesg Displays recent system log messages (page 589).

e2label Displays or creates a volume label on an ext2, ext3, or ext4 filesystem. You must
run this utility with root privileges. An e2label command has the following format:

e2label device [newlabel]

where device is the name of the device (e.g., /dev/hda2, /dev/sdb1, /dev/fd0) you
want to work with. When you include the optional newlabel parameter, e2label
changes the label on device to newlabel. Without this parameter, e2label displays
the label. You can also create a volume label with the –L option of tune2fs
(page 512).

lshw Lists hardware. This utility provides complete information only when run with root
privileges. Use the –short option to display a brief listing. See page 640 for more
information.

mkfs Creates a new filesystem on a device, destroying all data on the device as it does so.
This utility is a front-end for many utilities, each of which builds a different type of
filesystem. By default, mkfs builds an ext2 filesystem and works on either a hard
disk partition or a floppy diskette. Although it can take many options and argu-
ments, you can use mkfs simply as

$ sudo mkfs device

where device is the name of the device (/dev/hda2, /dev/sdb1, /dev/fd0, and so on)
you want to make a filesystem on. Use the –t option to specify a type of filesystem.
As an example, the following command creates an ext4 filesystem on /dev/sda2:

$ sudo mkfs -t ext4 /dev/sda2

An example using mkfs to create a filesystem on a floppy diskette appears on page 509.

ping Sends packets to a remote system. This utility determines whether you can reach a
remote system through the network and tells you how long it takes to exchange
messages with the remote system. Refer to “ping: Tests a Network Connection” on
page 393.

reset (link
to tset)

Resets terminal characteristics. The value of the TERM environment variable
(page 1106) determines how the screen will be reset. The screen is cleared, the kill
and interrupt characters are set to their default values, and character echo is turned
on. When given from a graphical terminal emulator, this command also changes the
size of the window to its default. The reset utility is useful for restoring the screen to

 From the Library of WoweBook.Com

ptg

Textual System Administration Utilities 459

a sane state after it has been corrupted. In this sense, it is similar to an stty sane
command.

setserial Gets and sets serial port information. When run with root privileges, this utility can
configure a serial port. The following command sets the input address of /dev/ttys0
to 0x100, the interrupt (IRQ) to 5, and the baud rate to 115,000 baud:

$ sudo setserial /dev/ttys0 port 0x100 irq 5 spd_vhi

You can also check the configuration of a serial port with setserial:

$ sudo setserial /dev/ttys0
/dev/ttyS0, UART: 16550A, Port: 0x0100, IRQ: 5, Flags: spd_vhi

Normally the system calls setserial as it is booting if a serial port needs custom con-
figuration. This utility is part of the setserial package.

stat Displays information about a file or filesystem. Giving the –f (filesystem) option fol-
lowed by the mount point for a filesystem displays information about the filesystem,
including the maximum number of characters allowed in a filename (Namelen in the
following example). See the stat man page for more information.

$ stat -f /dev/sda
 File: "/dev/sda"
 ID: 0 Namelen: 255 Type: tmpfs
Block size: 4096 Fundamental block size: 4096
Blocks: Total: 127271 Free: 127207 Available: 127207
Inodes: Total: 127271 Free: 126600

umask A shell builtin that specifies the mask the system uses to set up access permissions
when you create a file. A umask command has the following format:

umask [mask]

where mask is a three-digit octal number or a symbolic value such as you would use
with chmod (page 216). The mask specifies the permissions that are not allowed.
When mask is an octal number, the digits correspond to the permissions for the
owner of the file, members of the group the file is associated with, and everyone
else. Because mask specifies the permissions that are not allowed, the system sub-
tracts each of the three digits from 7 when you create a file. The result is three octal
numbers that specify the access permissions for the file (the numbers you would use
with chmod). A mask that you specify using symbolic values specifies the permis-
sions that are allowed.

Most utilities and applications do not attempt to create files with execute permis-
sions, regardless of the value of mask; they assume you do not want an executable
file. As a result, when a utility or application (such as touch) creates a file, the sys-
tem subtracts each of the three digits in mask from 6. An exception is mkdir, which
assumes you want the execute (access in the case of a directory) bit set.

The following commands set the file-creation mask and display the mask and its
effect when you create a file and a directory. The mask of 022, when subtracted
from 666 or 777, gives permissions of 644 (rw–r––r––) for a file and 755
(rwxr–xr–x) for a directory.

 From the Library of WoweBook.Com

ptg

460 Chapter 11 System Administration: Core Concepts

$ umask 022
$ umask
0022
$ touch afile
$ mkdir adirectory
$ ls -ld afile adirectory
drwxr-xr-x 2 sam sam 4096 2010-05-02 23:57 adirectory
-rw-r--r-- 1 sam sam 0 2010-05-02 23:57 afile

The next example sets the same mask using symbolic values. The –S option displays
the mask symbolically:

$ umask u=rwx,g=rx,o=rx
$ umask
0022
$ umask -S
u=rwx,g=rx,o=rx

uname Displays information about the system. Without arguments, this utility displays the
name of the operating system (Linux). With the –a (all) option, it displays the oper-
ating system name, hostname, version number and release date of the operating
system, and type of hardware you are using:

$ uname –a
Linux lynx1 2.6.32-22-generic #33-Ubuntu SMP Wed Apr 28 13:27:30 UTC 2010 i686 GNU/Linux

Setting Up a Server

This section discusses issues you may need to address when setting up a server: how
to write configuration files; how to specify hosts and subnets; how to use portmap,
rpcinfo, and TCP wrappers (hosts.allow and hosts.deny); and how to set up a chroot
jail. Chapters 14 and 18–26 cover setting up specific servers; Chapter 17 discusses
setting up a LAN.

Standard Rules in Configuration Files

Most configuration files, which are typically named *.conf, rely on the following
conventions:

• Blank lines are ignored.

• A # anywhere on a line starts a comment that continues to the end of the
line. Comments are ignored.

• When a name contains a SPACE, you must quote the SPACE by preceding it
with a backslash (\) or by enclosing the entire name within single or dou-
ble quotation marks.

• To make long lines easier to read and edit, you can break them into several
shorter lines. To break a line, insert a backslash (\) immediately followed
by a NEWLINE (press RETURN in a text editor). When you insert the NEWLINE before

 From the Library of WoweBook.Com

ptg

Setting Up a Server 461

or after a SPACE, you can indent the following line to make it easier to read.
Do not break lines in this manner while editing on a Windows machine, as
the NEWLINEs may not be properly escaped (Windows uses a RETURN-LINEFEED

combination to end lines).

Configuration files that do not follow these conventions are noted in the text.

Specifying Clients

Table 11-2 shows some common ways to specify a host or a subnet. Most of the
time you can specify multiple hosts or subnets by separating their specifications
with SPACEs.

Table 11-2 Specifying a client

Client name pattern Matches

n.n.n.n One IP address.

name One hostname, either local or remote.

Name that starts with . Matches a hostname that ends with the specified string. For
example, .example.com matches the systems named
kudos.example.com and speedy.example.com, among
others.

IP address that ends with . Matches a host address that starts with the specified numbers.
For example, 192.168.0. matches
192.168.0.0–192.168.0.255. If you omit the trailing period,
this format does not work.

n.n.n.n/m.m.m.m or
n.n.n.n/mm

An IP address and subnet mask specifying a subnet.

Starts with / An absolute pathname of a file containing one or more names
or addresses as specified in this table.

Wildcard Matches

* and ? Matches one (?) or more (*) characters in a simple hostname
or IP address. These wildcards do not match periods in a
domain name.

ALL Always matches.

LOCAL Matches any hostname that does not contain a period.

Operator

EXCEPT Matches anything in the preceding list that is not in the follow-
ing list. For example, a b c d EXCEPT c matches a, b, and d.
Thus you could use 192.168. EXCEPT 192.168.0.1 to match all
IP addresses that start with 192.168. except 192.168.0.1.

 From the Library of WoweBook.Com

ptg

462 Chapter 11 System Administration: Core Concepts

Examples Each of the following examples specifies one or more systems:

10.10. Matches all systems with IP addresses that start with 10.10.
.ubuntu.com Matches all named hosts on the Ubuntu network
localhost Matches the local system
127.0.0.1 The loopback address; always resolves to localhost
192.168.*.1 Could match all routers on a network of /24 subnets (discussed

in the next section)

Specifying a Subnet

When you set up a server, you frequently need to specify which clients are allowed
to connect to it. Sometimes it is convenient to specify a range of IP addresses, called
a subnet. The discussion on page 385 explains what a subnet is and how to use a
subnet mask to specify a subnet. Usually you can specify a subnet as

n.n.n.n/m.m.m.m

or

n.n.n.n/maskbits

where n.n.n.n is the base IP address and the subnet is represented by m.m.m.m (the
subnet mask) or maskbits (the number of bits used for the subnet mask). For exam-
ple, 192.168.0.1/255.255.255.0 represents the same subnet as 192.168.0.1/24. In
binary, decimal 255.255.255.0 is represented by 24 ones followed by 8 zeros. The
/24 is shorthand for a subnet mask with 24 ones. Each line in Table 11-3 presents
two notations for the same subnet, followed by the range of IP addresses that the
subnet includes.

rpcinfo: Displays Information About portmap
The rpcinfo utility displays information about programs registered with portmap
and makes RPC calls to programs to see if they are alive. For more information on
portmap, refer to “RPC Network Services” on page 406. The rpcinfo utility takes
the following options and arguments:

rpcinfo –p [host]
rpcinfo [–n port] –u | –t host program [version]
rpcinfo –b | –d program version

Table 11-3 Different ways to represent a subnet

Bits Mask Range

10.0.0.0/8 10.0.0.0/255.0.0.0 10.0.0.0–10.255.255.255

172.16.0.0/12 172.16.0.0/255.240.0.0 172.16.0.0–172.31.255.255

192.168.0.0/16 192.168.0.0/255.255.0.0 192.168.0.0–192.168.255.255

 From the Library of WoweBook.Com

ptg

Setting Up a Server 463

–b (broadcast) Makes an RPC broadcast to version of program and lists those hosts
that respond.

–d (delete) Removes local RPC registration for version of program. Available to a user
running with root privileges only.

–n (port number) With –t or –u, uses the port numbered port instead of the port number
specified by portmap.

–p (probe) Lists all RPC programs registered, with portmap on host or on the local sys-
tem when you do not specify host.

–t (TCP) Makes a TCP RPC call to version (if specified) of program on host and
reports whether it receives a response.

–u (UDP) Makes a UDP RPC call to version (if specified) of program on host and
reports whether it receives a response.

For example, the following command displays the RPC programs registered with
the portmap daemon on the system named plum:

$ rpcinfo -p plum
 program vers proto port
 100000 2 tcp 111 portmapper
 100000 2 udp 111 portmapper
 100003 2 udp 2049 nfs
 100003 3 udp 2049 nfs
 100003 4 udp 2049 nfs
 100021 1 udp 32768 nlockmgr
...

Use the –u option to display a list of versions of a daemon, such as nfs, registered on
a remote system (plum):

$ rpcinfo -u plum nfs
program 100003 version 2 ready and waiting
program 100003 version 3 ready and waiting
program 100003 version 4 ready and waiting

Specify localhost to display a list of versions of a daemon registered on the local
system:

$ rpcinfo -u localhost ypbind
program 100007 version 1 ready and waiting
program 100007 version 2 ready and waiting

Locking down
portmap

Because the portmap daemon holds information about which servers are running on
the local system and which port each server is running on, only trusted systems
should have access to this information. One way to ensure only selected systems have
access to portmap is to lock it down in the /etc/hosts.allow and /etc/hosts.deny files
(page 465). Put the following line in hosts.deny to prevent all systems from using
portmap on the local (server) system:

portmap: ALL

 From the Library of WoweBook.Com

ptg

464 Chapter 11 System Administration: Core Concepts

You can test this setup from a remote system by giving the following command:

$ rpcinfo -p hostname
No remote programs registered.

Replace hostname with the name of the remote system that you changed the hosts.deny
file on. The change is immediate; you do not need to kill or restart a daemon.

Next add the following line to the hosts.allow file on the server system:

portmap: host-IP

where host-IP is the IP address of the trusted, remote system that you gave the pre-
ceding rpcinfo command from. Use only IP addresses with portmap in hosts.allow;
do not use system names that portmap could get stuck trying to resolve. If you give
the same command, rpcinfo should display a list of the servers that RPC knows
about, including portmap. See page 747 for more examples.

The inetd and xinetd Superservers

The inetd (Internet daemon) daemon and its replacement xinetd (extended Internet
daemon; xinetd.org) are called superservers or service dispatchers because they start
other daemons, such as smbd (Samba) and vsftpd (FTP), as necessary. These superserv-
ers listen for network connections. When one is made, they identify a server daemon
based on the port the connection comes in on, set the daemon’s standard input and
standard output file descriptors to the socket (page 503), and start the daemon.

Using these superservers offers two advantages over having several servers con-
stantly running daemons that monitor ports. First, the superservers avoid the need
for daemons to run when not in use. Second, they allow developers to write servers
that read from standard input and write to standard output; they handle all socket
communication.

The inetd superserver, which originally shipped with 4.3BSD, was not particularly
insecure. However, it typically opened a lot of ports and ran many servers, increas-
ing the possibility that exploitable software would be exposed to the Internet. Its
successor, xinetd, introduced access control and logging. This daemon allowed an
administrator to limit the hours a service was available and the origin and number
of incoming connections. When compiled with libwrap, xinetd can take advantage
of TCP wrappers (discussed in the next section).

At a time when CPU power was more limited than it is today and RAM was more
expensive, these superservers offered the advantage of efficient memory and CPU
usage. Systems have slowly moved away from using these superservers over the past
few years. Today a system can easily spare the few megabytes of memory and the
minimal CPU time it takes to keep a daemon running to monitor a port: It takes

Set the clocks

tip The portmap daemon relies on the client’s and the server’s clocks being synchronized. A simple
DoS attack (page 1146) can be initiated by setting the server’s clock to the wrong time.

 From the Library of WoweBook.Com

ptg

Setting Up a Server 465

fewer resources to keep a process in RAM (or swap space) than it does to restart it
periodically. Also, a developer can now handle socket communications more easily
using various toolkits.

Securing a Server

Two ways you can secure a server are by using TCP wrappers and by setting up a
chroot jail. This section describes both techniques.

TCP Wrappers: Secure a Server (hosts.allow and

hosts.deny)

Follow these guidelines when you open a local system to access from remote systems:

• Open the local system only to systems you want to allow to access it.

• Allow each remote system to access only the data you want it to access.

• Allow each remote system to access data only in the appropriate manner
(readonly, read/write, write only).

libwrap As part of the client/server model, TCP wrappers, which can be used for any dae-
mon that is linked against libwrap, rely on the /etc/hosts.allow and /etc/hosts.deny
files as the basis of a simple access control language (ACL). This access control lan-
guage defines rules that selectively allow clients to access server daemons on a local
system based on the client’s address and the daemon the client tries to access. The
output of ldd shows that one of the shared library dependencies of sshd is libwrap:

$ ldd /usr/sbin/sshd | grep libwrap
libwrap.so.0 => /lib/libwrap.so.0 (0xb7ec7000)

hosts.allow and
hosts.deny

Each line in the hosts.allow and hosts.deny files has the following format:

daemon_list : client_list [: command]

where daemon_list is a comma-separated list of one or more server daemons (such
as portmap, vsftpd, and sshd), client_list is a comma-separated list of one or more
clients (see Table 11-2 on page 461), and the optional command is the command
that is executed when a client from client_list tries to access a server daemon from
daemon_list.

When a client requests a connection to a server, the hosts.allow and hosts.deny files
on the server system are consulted in the following order until a match is found:

1. If the daemon/client pair matches a line in hosts.allow, access is granted.

2. If the daemon/client pair matches a line in hosts.deny, access is denied.

3. If there is no match in the hosts.allow or hosts.deny file, access is granted.

The first match determines whether the client is allowed to access the server. When
either hosts.allow or hosts.deny does not exist, it is as though that file was empty.

 From the Library of WoweBook.Com

ptg

466 Chapter 11 System Administration: Core Concepts

Although it is not recommended, you can allow access to all daemons for all clients
by removing both files.

Examples For a more secure system, put the following line in hosts.deny to block all access:

$ cat /etc/hosts.deny
...
ALL : ALL : echo '%c tried to connect to %d and was blocked' >> /var/log/tcpwrappers.log

This line prevents any client from connecting to any service, unless specifically per-
mitted to do so in hosts.allow. When this rule is matched, it adds a line to the file
named /var/log/tcpwrappers.log. The %c expands to client information and the
%d expands to the name of the daemon the client attempted to connect to.

With the preceding hosts.deny file in place, you can include lines in hosts.allow that
explicitly allow access to certain services and systems. For example, the following
hosts.allow file allows anyone to connect to the OpenSSH daemon (ssh, scp, sftp)
but allows telnet connections only from the same network as the local system and
users on the 192.168. subnet:

$ cat /etc/hosts.allow
sshd: ALL
in.telnet: LOCAL
in.telnet: 192.168.* 127.0.0.1
...

The first line allows connection from any system (ALL) to sshd. The second line
allows connection from any system in the same domain as the server (LOCAL). The
third line matches any system whose IP address starts with 192.168. as well as the
local system.

Setting Up a chroot Jail

On early UNIX systems, the root directory was a fixed point in the filesystem. On
modern UNIX variants, including Linux, you can define the root directory on a per-
process basis. The chroot utility allows you to run a process with a root directory
other than /.

The root directory appears at the top of the directory hierarchy and has no parent.
Thus a process cannot access files above the root directory because none exists. If,
for example, you run a program (process) and specify its root directory as
/tmp/jail, the program would have no concept of any files in /tmp or above: jail is
the program’s root directory and is labeled / (not jail).

By creating an artificial root directory, frequently called a (chroot) jail, you prevent
a program from accessing, executing, or modifying—possibly maliciously—files
outside the directory hierarchy starting at its root. You must set up a chroot jail
properly to increase security: If you do not set up the chroot jail correctly, you can
make it easier for a malicious user to gain access to a system than if there were no
chroot jail.

 From the Library of WoweBook.Com

ptg

Setting Up a Server 467

Using chroot
Creating a chroot jail is simple: Working with root privileges, give the command
/usr/sbin/chroot directory. The directory becomes the root directory and the pro-
cess attempts to run the default shell. The following command sets up a chroot jail in
the (existing) /tmp/jail directory:

$ sudo /usr/sbin/chroot /tmp/jail
/usr/sbin/chroot: cannot run command '/bin/bash': No such file or directory

This example sets up a chroot jail, but when the system attempts to run the bash shell,
the operation fails. Once the jail is set up, the directory that was named jail takes on
the name of the root directory, /. As a consequence, chroot cannot find the file identi-
fied by the pathname /bin/bash. In this situation the chroot jail works correctly but is
not useful.

Getting a chroot jail to work the way you want is more complicated. To have the
preceding example run bash in a chroot jail, create a bin directory in jail
(/tmp/jail/bin) and copy /bin/bash to this directory. Because the bash binary is
dynamically linked to shared libraries, you need to copy these libraries into jail as
well. The libraries go in lib.

The next example creates the necessary directories, copies bash, uses ldd to display
the shared library dependencies of bash, and copies the necessary libraries to lib.
The linux-gate.so.1 file is a dynamically shared object (DSO) provided by the kernel
to speed system calls; you do not need to copy it.

$ pwd
/tmp/jail
$ mkdir bin lib
$ cp /bin/bash bin
$ ldd bin/bash
 linux-gate.so.1 => (0x0032c000)
 libncurses.so.5 => /lib/libncurses.so.5 (0x00d4d000)
 libdl.so.2 => /lib/tls/i686/cmov/libdl.so.2 (0x0091d000)
 libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0x00110000)
 /lib/ld-linux.so.2 (0x0026a000)

$ cp /lib/{libncurses.so.5,ld-linux.so.2} lib
$ cp /lib/tls/i686/cmov/{libdl.so.2,libc.so.6} lib

Now start the chroot jail again. Although all the setup can be done by an ordinary
user, you must be working with root privileges to run chroot:

$ sudo /usr/sbin/chroot /tmp/jail
bash-4.1# pwd
/
bash-4.1# ls
bash: ls: command not found
bash-4.1# exit
exit
$

 From the Library of WoweBook.Com

ptg

468 Chapter 11 System Administration: Core Concepts

This time chroot finds and starts bash, which displays its default prompt (bash-4.1#).
The pwd command works because it is a shell builtin (page 261). However, bash can-
not find the ls utility because it is not in the chroot jail. You can copy /bin/ls and its
libraries into the jail if you want users in the jail to be able to use ls. An exit command
allows you to escape from the jail.

If you provide chroot with a second argument, it takes that argument as the name
of the program to run inside the jail. The following command is equivalent to the
preceding one:

$ sudo /usr/sbin/chroot /tmp/jail /bin/bash

To set up a useful chroot jail, first determine which utilities the users of the chroot jail
need. Then copy the appropriate binaries and their libraries into the jail. Alterna-
tively, you can build static copies of the binaries and put them in the jail without
installing separate libraries. (The statically linked binaries are considerably larger
than their dynamic counterparts. The size of the base system with bash and the core
utilities exceeds 50 megabytes.) You can find the source code for most common util-
ities in the bash and coreutils source packages.

The chroot utility fails unless you run it with root privileges—the preceding exam-
ples used sudo to gain these privileges. The result of running chroot with root privi-
leges is a root shell (a shell with root privileges) running inside a chroot jail. Because
a user with root privileges can break out of a chroot jail, it is imperative that you run
a program in the chroot jail with reduced privileges (i.e., privileges other than those
of root).

There are several ways to reduce the privileges of a user. For example, you can put
su or sudo in the jail and then start a shell or a daemon inside the jail, using one of
these programs to reduce the privileges of the user working in the jail. A command
such as the following starts a shell with reduced privileges inside the jail:

$ sudo /usr/sbin/chroot jailpath /usr/bin/sudo -u user /bin/bash &

where jailpath is the pathname of the jail directory, and user is the username
under whose privileges the shell runs. The problem with this scenario is that sudo
and su, as compiled for Ubuntu, call PAM. To run one of these utilities you need to
put all of PAM, including its libraries and configuration files, in the jail, along with
sudo (or su) and the /etc/passwd file. Alternatively, you can recompile su or sudo.
The source code calls PAM, however, so you would need to modify the source so it
does not call PAM. Either one of these techniques is time-consuming and introduces
complexities that can lead to an insecure jail.

The following C program1 runs a program with reduced privileges in a chroot jail.
Because this program obtains the UID and GID of the user you specify on the com-
mand line before calling chroot(), you do not need to put /etc/passwd in the jail.

1. Thanks to David Chisnall and the Étoilé Project (etoileos.com) for the uchroot.c program.

 From the Library of WoweBook.Com

ptg

Setting Up a Server 469

The program reduces the privileges of the specified program to those of the speci-
fied user. This program is presented as a simple solution to the preceding issues so
you can experiment with a chroot jail and better understand how it works.

$ cat uchroot.c

/* See svn.gna.org/viewcvs/etoile/trunk/Etoile/LiveCD/uchroot.c for terms of use. */

#include <stdio.h>
#include <stdlib.h>
#include <pwd.h>

int main(int argc, char * argv[])
{

if(argc < 4)
{

printf("Usage: %s {username} {directory} {program} [arguments]\n", argv[0]);
return 1;

}
/* Parse arguments */
struct passwd * pass = getpwnam(argv[1]);
if(pass == NULL)
{

printf("Unknown user %s\n", argv[1]);
return 2;

}
/* Set the required UID */
chdir(argv[2]);
if(chroot(argv[2])

||
setgid(pass->pw_gid)
||
setuid(pass->pw_uid))

{
printf("%s must be run as root. Current uid=%d, euid=%d\n",

argv[0],
(int)getuid(),
(int)geteuid()
);

return 3;
}
char buf[100];
return execv(argv[3], argv + 3);

}

The first of the following commands compiles uchroot.c, creating an executable file
named uchroot. Subsequent commands move uchroot to /usr/local/bin and give it
appropriate ownership.

$ cc -o uchroot uchroot.c
$ sudo mv uchroot /usr/local/bin
$ sudo chown root:root /usr/local/bin/uchroot
$ ls -l /usr/local/bin/uchroot
-rwxr-xr-x 1 root root 7922 2010-07-17 08:26 /usr/local/bin/uchroot

 From the Library of WoweBook.Com

ptg

470 Chapter 11 System Administration: Core Concepts

Using the setup from earlier in this section, give the following command to run a
shell with the privileges of the user sam inside a chroot jail:

$ sudo /usr/local/bin/uchroot sam /tmp/jail /bin/bash

Running a Service in a chroot Jail

Running a shell inside a jail has limited usefulness. In reality, you are more likely to
want to run a specific service inside the jail. To run a service inside a jail, make sure
all files needed by that service are inside the jail. Using uchroot, the format of a com-
mand to start a service in a chroot jail is

$ sudo /usr/local/bin/uchroot user jailpath daemonname

where jailpath is the pathname of the jail directory, user is the username that runs
the daemon, and daemonname is the pathname (inside the jail) of the daemon that
provides the service.

Some servers are already set up to take advantage of chroot jails. For example, you
can set up DNS so that named runs in a jail (page 847), and the vsftpd FTP server
can automatically start chroot jails for clients (page 703).

Security Considerations

Some services need to be run by a user or process with root privileges but release
their root privileges once started (Apache, Procmail, and vsftpd are examples). If
you are running such a service, you do not need to use uchroot or put su or sudo
inside the jail.

A process run with root privileges can potentially escape from a chroot jail. For
this reason, you should reduce privileges before starting a program running
inside the jail. Also, be careful about which setuid (page 218) binaries you allow
inside a jail—a security hole in one of them could compromise the security of the
jail. In addition, make sure the user cannot access executable files that he
uploads to the jail.

DHCP: Configures Network Interfaces

Instead of storing network configuration information in local files on each system,
DHCP (Dynamic Host Configuration Protocol) enables client systems to retrieve
the necessary network configuration information from a DHCP server each time
they connect to the network. A DHCP server assigns IP addresses from a pool of
addresses to clients as needed. Assigned addresses are typically temporary but need
not be.

This technique has several advantages over storing network configuration information
in local files:

Keeping multiple chroot jails

tip If you plan to deploy multiple chroot jails, it is a good idea to keep a clean copy of the bin and lib
directories somewhere other than one of the active jails.

 From the Library of WoweBook.Com

ptg

Setting Up a Server 471

• A new user can set up an Internet connection without having to deal with
IP addresses, netmasks, DNS addresses, and other technical details. An
experienced user can set up a connection more quickly.

• DHCP facilitates assignment and management of IP addresses and related
network information by centralizing the process on a server. A system
administrator can configure new systems, including laptops that connect
to the network from different locations, to use DHCP; DHCP then assigns
IP addresses only when each system connects to the network. The pool of
IP addresses is managed as a group on the DHCP server.

• DHCP facilitates the use of IP addresses by more than one system, reduc-
ing the total number of IP addresses needed. This conservation of
addresses is important because the Internet is quickly running out of IPv4
addresses. Although a particular IP address can be used by only one sys-
tem at a time, many end-user systems require addresses only occasionally,
when they connect to the Internet. By reusing IP addresses, DHCP has
lengthened the life of the IPv4 protocol. DHCP applies to IPv4 only, as
IPv6 (page 387) forces systems to configure their IP addresses automati-
cally (called autoconfiguration) when they connect to a network.

DHCP is particularly useful for an administrator who is responsible for maintain-
ing a large number of systems because individual systems no longer need to store
unique configuration information. With DHCP, the administrator can set up a
master system and deploy new systems with a copy of the master’s hard disk. In
educational establishments and other open-access facilities, the hard disk image
may be stored on a shared drive, with each workstation automatically restoring
itself to pristine condition at the end of each day.

More Information

Web www.dhcp.org
DHCP FAQ: www.dhcp-handbook.com/dhcp_faq.html

HOWTO DHCP Mini HOWTO

How DHCP Works

Using dhclient, the client contacts the server daemon, dhcpd, to obtain the IP
address, netmask, broadcast address, nameserver address, and other networking
parameters. In turn, the server provides a lease on the IP address to the client. The
client can request the specific terms of the lease, including its duration; the server
can limit these terms. While connected to the network, a client typically requests
extensions of its lease as necessary so its IP address remains the same. This lease
may expire once the client is disconnected from the network, with the server giving
the client a new IP address when it requests a new lease. You can also set up a
DHCP server to provide static IP addresses for specific clients (refer to “Static Ver-
sus Dynamic IP Addresses” on page 382). DHCP is broadcast based, so both client
and server must be on the same subnet (page 385).

 From the Library of WoweBook.Com

www.dhcp.org
www.dhcp-handbook.com/dhcp_faq.html

ptg

472 Chapter 11 System Administration: Core Concepts

When you install Ubuntu, the system runs a DHCP client, connects to a DHCP
server if it can find one, and configures its network interface. You can use firestarter
(page 866) to configure and run a DHCP server.

DHCP Client

A DHCP client requests network configuration parameters from the DHCP server
and uses those parameters to configure its network interface.

Prerequisites

Make sure the following package is installed:

• dhcp3-client

dhclient: The DHCP Client

When a DHCP client system connects to the network, dhclient requests a lease from
the DHCP server and configures the client’s network interface(s). Once a DHCP
client has requested and established a lease, it stores the lease information in a file
named dhclient.interface.leases, which resides in the /var/lib/dhcp3 directory. The
interface is the name of the interface that the client uses, such as eth0. The system
uses this information to reestablish a lease when either the server or the client
needs to reboot. You need to change the default DHCP client configuration file,
/etc/dhcp3/dhclient.conf, only for custom configurations.

The following /etc/dhcp3/dhclient.conf file specifies a single interface, eth0:

$ cat /etc/dhcp3/dhclient.conf
interface "eth0"
{
send dhcp-client-identifier 1:xx:xx:xx:xx:xx:xx;
send dhcp-lease-time 86400;
}

In the preceding file, the 1 in the dhcp-client-identifier specifies an Ethernet network
and xx:xx:xx:xx:xx:xx is the MAC address (page 1158) of the device controlling
that interface. See page 474 for instructions on how to determine the MAC address
of a device. The dhcp-lease-time is the duration, in seconds, of the lease on the IP
address. While the client is connected to the network, dhclient automatically renews
the lease each time half of the lease time is up. A lease time of 86,400 seconds (or one
day) is a reasonable choice for a workstation.

DHCP Server

A DHCP server maintains a list of IP addresses and other configuration parameters.
Clients request network configuration parameters from the server.

Prerequisites

Install the following package:

• dhcp3-server

 From the Library of WoweBook.Com

ptg

Setting Up a Server 473

dhcp3-server init
script

When you install the dhcpd3-server package, the dpkg postinst script attempts to
start the dhcpd3 daemon and fails because dhcpd3 is not configured—see
/var/log/syslog for details. After you configure dhcpd3, call the dhcp3-server init
script to restart the dhcpd3 daemon:

$ sudo service dhcp3-server restart

dhcpd: The DHCP Daemon

A simple DCHP server (dhcpd) allows you to add clients to a network without
maintaining a list of assigned IP addresses. A simple network, such as a home-based
LAN sharing an Internet connection, can use DHCP to assign a dynamic IP address
to almost all nodes. The exceptions are servers and routers, which must be at
known network locations if clients are to find them. If servers and routers are con-
figured without DHCP, you can specify a simple DHCP server configuration in
/etc/dhcp3/dhcpd.conf:

$ cat /etc/dhcp3/dhcpd.conf
default-lease-time 600;
max-lease-time 86400;

option subnet-mask 255.255.255.0;
option broadcast-address 192.168.1.255;
option routers 192.168.1.1;
option domain-name-servers 192.168.1.1;
option domain-name "example.com";

subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.2 192.168.1.200;
}

The /etc/default/dhcp3-server file specifies the interfaces that dhcpd serves requests
on. By default, dhcpd uses eth0. To use another interface or to use more than one
interface, set the INTERFACES variable in this file to a SPACE-separated list of the
interfaces you want to use; enclose the list within quotation marks.

The preceding configuration file specifies a LAN where both the router and the
DNS server are located on 192.168.1.1. The default-lease-time specifies the number
of seconds the dynamic IP lease will remain valid if the client does not specify a
duration. The max-lease-time is the maximum time allowed for a lease.

The information in the option lines is sent to each client when it connects. The
names following the word option specify what the following argument represents.
For example, the option broadcast-address line specifies the broadcast address of
the network. The routers and domain-name-servers options can be followed by
multiple values separated by commas.

The subnet section includes a range line that specifies the range of IP addresses the
DHCP server can assign. In the case of multiple subnets, you can define options,
such as subnet-mask, inside the subnet section. Options defined outside all subnet
sections are global and apply to all subnets.

 From the Library of WoweBook.Com

ptg

474 Chapter 11 System Administration: Core Concepts

The preceding configuration file assigns addresses in the range from 192.168.1.2 to
192.168.1.200. The DHCP server starts at the bottom of this range and attempts to
assign a new IP address to each new client. Once the DHCP server reaches the top
of the range, it starts reassigning IP addresses that have been used in the past but are
not currently in use. If you have fewer systems than IP addresses, the IP address of
each system should remain fairly constant. Two systems cannot use the same IP
address at the same time.

Once you have configured a DHCP server, restart it using the dhcpd init script
(page 473). When the server is running, clients configured to obtain an IP address
from the server using DHCP should be able to do so.

Static IP Addresses

As mentioned earlier, routers and servers typically require static IP addresses.
Although you can manually configure IP addresses for these systems, it may be
more convenient to have the DHCP server provide them with static IP addresses.

When a system that requires a specific static IP address connects to the network and
contacts the DHCP server, the server needs a way to identify the system so it can
assign the proper IP address to that system. The DHCP server uses the MAC
address (page 1158) of the system’s Ethernet card (NIC) as an identifier. When you
set up the server, you must know the MAC address of each system that requires a
static IP address.

Determining a MAC
address

The ifconfig utility displays the MAC addresses of the Ethernet cards in a system. In
the following example, the MAC addresses are the colon-separated series of hexa-
decimal number pairs following HWaddr:

$ ifconfig | grep -i hwaddr
eth0 Link encap:Ethernet HWaddr BA:DF:00:DF:C0:FF
eth1 Link encap:Ethernet HWaddr 00:02:B3:41:35:98

Run ifconfig on each system that requires a static IP address. Once you have deter-
mined the MAC addresses of these systems, you can add a host section to the
/etc/dhcp3/dhcpd.conf file for each one, instructing the DHCP server to assign a
specific address to that system. The following host section assigns the address
192.168.1.1 to the system with the MAC address of BA:DF:00:DF:C0:FF:

$ cat /etc/dhcp3/dhcpd.conf
...
host router {
 hardware ethernet BA:DF:00:DF:C0:FF;
 fixed-address 192.168.1.1;
 option host-name router;
}

The name following host is used internally by dhcpd. The name specified after
option host-name is passed to the client and can be a hostname or an FQDN. After
making changes to dhcpd.conf, restart dhcpd using the dhcpd init script (page 473).

 From the Library of WoweBook.Com

ptg

nsswitch.conf: Which Service to Look at First 475

nsswitch.conf: Which Service to Look at First

Once NIS and DNS were introduced, finding user and system information was no
longer a simple matter of searching a local file. Where once you looked in
/etc/passwd to get user information and in /etc/hosts to find system address infor-
mation, now you can use several methods to obtain this type of information. The
/etc/nsswitch.conf (name service switch configuration) file specifies which methods
to use and the order in which to use them when looking for a certain type of infor-
mation. You can also specify which action the system should take based on whether
a method succeeds or fails.

Syntax Each line in nsswitch.conf specifies how to search for a piece of information, such
as a user’s password. A line in nsswitch.conf has the following syntax:

info: method [[action]] [method [[action]]...]

where info is the type of information the line describes, method is the method used to
find the information, and action is the response to the return status of the preceding
method. The action is enclosed within square brackets.

How nsswitch.conf Works

When called upon to supply information that nsswitch.conf describes, the system
examines the line with the appropriate info field. It uses the methods specified on
this line, starting with the method on the left. By default, when it finds the desired
information, the system stops searching. Without an action specification, when a
method fails to return a result, the system tries the next action. It is possible for the
search to end without finding the requested information.

Information

The nsswitch.conf file commonly controls searches for usernames, passwords, host IP
addresses, and group information. The following list describes most of the types of
information (info in the syntax given earlier) that nsswitch.conf controls searches for:

automount Automount (/etc/auto.master and /etc/auto.misc; page 792)
bootparam Diskless and other booting options (See the bootparam man page.)
ethers MAC address (page 1158)
group Groups of users (/etc/group; page 492)
hosts System information (/etc/hosts; page 493)
networks Network information (/etc/networks)
passwd User information (/etc/passwd; page 494)
protocols Protocol information (/etc/protocols; page 495)
publickey Used for NFS running in secure mode
rpc RPC names and numbers (/etc/rpc; page 496)
services Services information (/etc/services; page 497)
shadow Shadow password information (/etc/shadow; page 497)

 From the Library of WoweBook.Com

ptg

476 Chapter 11 System Administration: Core Concepts

Methods

Following is a list of the types of information that nsswitch.conf controls searches
for (method in the syntax shown on the previous page). For each type of informa-
tion, you can specify one or more of the following methods:2

files Searches local files such as /etc/passwd and /etc/hosts
nis Searches the NIS database; yp is an alias for nis
dns Queries the DNS (hosts queries only)
compat ± syntax in passwd, group, and shadow files (page 477)

Search Order

The information provided by two or more methods may overlap: For example, both
files and nis may provide password information for the same user. With overlapping
information, you need to consider which method you want to be authoritative (take
precedence) and then place that method at the left of the list of methods.

The default nsswitch.conf file lists methods without actions, assuming no overlap
(which is normal). In this case, the order is not critical: When one method fails, the
system goes to the next one and all that is lost is a little time. Order becomes critical
when you use actions between methods or when overlapping entries differ.

The first of the following lines from nsswitch.conf causes the system to search for
password information in /etc/passwd and, if that fails, to use NIS to find the infor-
mation. If the user you are looking for is listed in both places, the information in the
local file is used and is considered authoritative. The second line uses NIS to find an
IP address given a hostname; if that fails, it searches /etc/hosts; if that fails, it checks
with DNS to find the information.

passwd files nis
hosts nis files dns

Action Items

Each method can optionally be followed by an action item that specifies what to do
if the method succeeds or fails. An action item has the following format:

[[!]STATUS=action]

where the opening and closing square brackets are part of the format and do not
indicate that the contents are optional; STATUS (uppercase by convention) is the
status being tested for; and action is the action to be taken if STATUS matches the
status returned by the preceding method. The leading exclamation point (!) is
optional and negates the status.

2. Other, less commonly used methods also exist. See the default /etc/nsswitch.conf file and the
nsswitch.conf man page for more information. Although NIS+ belongs in this list, it is not implemented as
a Linux server and is not discussed in this book.

 From the Library of WoweBook.Com

ptg

nsswitch.conf: Which Service to Look at First 477

STATUS STATUS may have any of the following values:

NOTFOUND—The method worked but the value being searched for was not
found. The default action is continue.

SUCCESS—The method worked and the value being searched for was found; no
error was returned. The default action is return.

TRYAGAIN—The method failed because it was temporarily unavailable. For
example, a file may be locked or a server overloaded. The default action is continue.

UNAVAIL—The method failed because it is permanently unavailable. For example,
the required file may not be accessible or the required server may be down. The
default action is continue.

action There are two possible values for action:

return—Returns to the calling routine with or without a value.

continue—Continues with the next method. Any returned value is overwritten by a
value found by a subsequent method.

Example The following line from nsswitch.conf causes the system first to use DNS to search
for the IP address of a given host. The action item following the DNS method tests
whether the status returned by the method is not (!) UNAVAIL.

hosts dns [!UNAVAIL=return] files

The system takes the action associated with the STATUS (return) if the DNS
method does not return UNAVAIL (!UNAVAIL)—that is, if DNS returns SUCCESS,
NOTFOUND, or TRYAGAIN. As a consequence, the following method (files) is
used only when the DNS server is unavailable. If the DNS server is not unavailable
(read the two negatives as “is available”), the search returns the domain name or
reports that the domain name was not found. The search uses the files method
(checks the local /etc/hosts file) only if the server is not available.

compat Method: ± in passwd, group, and shadow Files

You can put special codes in the /etc/passwd, /etc/group, and /etc/shadow files that
cause the system, when you specify the compat method in nsswitch.conf, to com-
bine and modify entries in the local files and the NIS maps. That is, a plus sign (+) at
the beginning of a line in one of these files adds NIS information; a minus sign (–)
removes information.

For example, to use these codes in the passwd file, specify passwd: compat in the
nsswitch.conf file. The system then goes through the passwd file in order, adding or
removing the appropriate NIS entries when it reaches each line that starts with a + or –.

Although you can put a plus sign at the end of the passwd file, specify passwd: compat
in nsswitch.conf to search the local passwd file, and then go through the NIS map,
it is more efficient to put passwd: file nis in nsswitch.conf and not modify the
passwd file.

 From the Library of WoweBook.Com

ptg

478 Chapter 11 System Administration: Core Concepts

PAM

PAM (Linux-PAM, or Linux Pluggable Authentication Modules) allows a system
administrator to determine how applications use authentication (page 1136) to ver-
ify the identity of a user. PAM provides shared libraries of modules (located in
/lib/security) that, when called by an application, authenticate a user. The configu-
ration files kept in the /etc/pam.d directory determine the method of authentication
and contain a list (i.e., stack) of calls to the modules. PAM may also use other files,
such as /etc/passwd, when necessary. The term “Pluggable” in PAM’s name refers
to the ease with which you can add and remove modules from an authentication
stack.

Instead of building the authentication code into each application, PAM provides
shared libraries that keep the authentication code separate from the application
code. The techniques of authenticating users stay the same from application to
application. In this way PAM enables a system administrator to change the authen-
tication mechanism for a given application without modifying the application.

PAM provides authentication for a variety of system-entry services (such as login,
ftp, su, and sudo). You can take advantage of its ability to stack authentication mod-
ules to integrate system-entry services with different authentication mechanisms,
such as RSA, DCE, Kerberos, and smartcards.

From login through using sudo to shutting the system down, whenever you are
asked for a password (or not asked for a password because the system trusts you
are who you say you are), PAM makes it possible for the system administrator to
configure the authentication process. It also makes the configuration process essen-
tially the same for all applications that use PAM for authentication.

The configuration files stored in /etc/pam.d describe the authentication procedure
for each application. These files usually have names that are the same as or similar
to the names of the applications that they authenticate for. For example, authentica-
tion for the login utility is configured in /etc/pam.d/login. The name of the file is the
name of the PAM service3 that the file configures. Occasionally one file may serve
two programs. PAM accepts only lowercase letters in the names of files in the
/etc/pam.d directory.

PAM warns you about errors it encounters, logging them to /var/log/messages or
/var/log/secure. Review these files if you are trying to figure out why a changed

3. There is no relationship between PAM services and the /etc/services file. The name of the PAM service
is an arbitrary string that each application gives to PAM; PAM then looks up the configuration file with
that name and uses it to control authentication. There is no central registry of PAM service names.

 From the Library of WoweBook.Com

ptg

PAM 479

PAM file is not working properly. To prevent a malicious user from seeing informa-
tion about PAM, PAM sends error messages to a file rather than to the screen.

More Information

Local /usr/share/doc/libpam*
pam man page
Give the command apropos pam to list PAM man pages.

Web Linux-PAM System Administrators’ Guide:
www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/Linux-PAM_SAG.html

HOWTO User Authentication HOWTO

Configuration Files, Module Types, and Control Flags

Following is an example of a PAM configuration file. Comment lines, which have
been omitted, begin with a hashmark (#).

Login module $ grep '^[^#]' /etc/pam.d/login
auth requisite pam_securetty.so
auth requisite pam_nologin.so
session required pam_env.so readenv=1
session required pam_env.so readenv=1 envfile=/etc/default/locale
@include common-auth
auth optional pam_group.so
session required pam_limits.so
session optional pam_lastlog.so
session optional pam_motd.so
session optional pam_mail.so standard
@include common-account
@include common-session
@include common-password

Each line tells PAM to do something as part of the authentication process. The first
word on each line is a module type indicator: account, auth, password, or session
(Table 11-4, next page). The second is a control flag (Table 11-5, next page) that
indicates the action PAM should take if authentication fails. The rest of the line con-
tains the name of a PAM module (located in /lib/security) and any arguments for
that module. The PAM library itself uses the /etc/pam.d files to determine which
modules to delegate work to. Lines that begin with @include include the named file.

Do not lock yourself out of the system
caution Editing PAM configuration files correctly requires paying careful attention. It is easy to lock your-

self out of the system with a single mistake. To avoid this problem, keep backup copies of the PAM
configuration files you edit, test every change thoroughly, and make sure you can still log in once
the change is installed. Keep a root shell open (use sudo –i) until you have finished testing. If a
change fails and you cannot log in, use the root shell to replace the newly edited files with the
backup copies.

 From the Library of WoweBook.Com

www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/Linux-PAM_SAG.html

ptg

480 Chapter 11 System Administration: Core Concepts

You can use one of the control flag keywords listed in Table 11-5 to set the control flags.

Table 11-4 Module type indicators

Module type Description Controls

account Account
management

Determining whether an already authenticated user is
allowed to use the service she is trying to use. (That is, has
the account expired? Is the user allowed to use this service
at this time of day?)

auth Authentication Proving that the user is authorized to use the service; uses
passwords or another mechanism.

password Password
modification

Updating authentication mechanisms such as user
passwords.

session Session
management

Setting things up when the service is started (as when a
user logs in) and breaking them down when the service is
terminated (as when a user logs out).

Table 11-5 Control flag keywords

Keyword Flag function

required Success is required for authentication to succeed. Control and a failure result
are returned after all modules in the stack have been executed. The technique
of delaying the report to the calling program until all modules have been exe-
cuted may keep attackers from knowing precisely what caused their authenti-
cation attempts to fail and tell them less about the system, making it more
difficult for them to break in.

requisite Success is required for authentication to succeed. Further module processing
is aborted, and control is returned immediately after a module fails. This tech-
nique may expose information about the system to an attacker. However, if it
prevents a user from giving a password over an insecure connection, it might
keep information out of the hands of an attacker.

sufficient Success indicates that this module type has succeeded, and no subsequent
required modules of this type are executed. Failure is not fatal to the stack of
this module type. This technique is generally used when one form of authen-
tication or another is good enough: If one fails, PAM tries the other. For exam-
ple, when you use rsh to connect to another computer, pam_rhosts_auth first
checks whether your connection can be trusted without a password. If the
connection can be trusted, the pam_rhosts_auth module reports success, and
PAM immediately reports success to the rsh daemon that called it. You will not
be asked for a password. If your connection is not considered trustworthy,
PAM starts the authentication again and asks for a password. If this second
authentication succeeds, PAM ignores the fact that the pam_rhosts_auth
module reported failure. If both modules fail, you will not be able to log in.

optional Result is generally ignored. An optional module is relevant only when it is the
sole module on the stack for a particular service.

 From the Library of WoweBook.Com

ptg

PAM 481

PAM uses each of the module types as requested by the application. That is, the appli-
cation asks PAM separately to authenticate, check account status, manage sessions,
and change the password. PAM uses one or more modules from the /lib/security
directory to accomplish each of these tasks.

The configuration files in /etc/pam.d list the set of modules to be used for each
application to perform each task. Each such set of the same module types is called a
stack. PAM calls the modules one at a time in order, going from the top of the stack
(the first module listed in the configuration file) to the bottom. Each module reports
success or failure back to PAM. When all stacks of modules (with some exceptions)
within a configuration file have been called, the PAM library reports success or fail-
ure back to the application.

Example

Part of a sample login service’s authentication stack follows:

$ cat /etc/pam.d/login
auth required pam_securetty.so
@include common-auth
auth requisite pam_nologin.so
...

The login utility first asks for a username and then asks PAM to run this stack to
authenticate the user. Refer to Table 11-4 and Table 11-5.

1. PAM first calls the pam_securetty (secure tty) module to make sure the
root user logs in only from an allowed terminal. (By default, root is not
allowed to run login over the network; this policy helps prevent security
breaches.) The pam_securetty module is required to succeed if the authen-
tication stack is to succeed. The pam_securetty module reports failure only
if someone is trying to log in as root from an unauthorized terminal.
Otherwise (if the username being authenticated is not root or if the user-
name is root and the login attempt is being made from a secure terminal),
the pam_securetty module reports success.

Success and failure within PAM are opaque concepts that apply only to
PAM. They do not equate to “true” and “false” as used elsewhere in the
operating system.

2. The included common-auth file holds modules that check whether the user
who is logging in is authorized to do so. As part of completing this task,
these modules verify the username and password.

3. The pam_nologin module makes sure that if the /etc/nologin.txt file exists,
only the root user is allowed to log in. (That is, the pam_nologin module
reports success only if /etc/nologin.txt does not exist or if the root user is
logging in.) Thus, when a shutdown has been scheduled to occur in the
near future, the system keeps users from logging in, only to have the sys-
tem shut down moments later.

The account module type works like the auth module type but is called after the
user has been authenticated; it acts as an additional security check or requirement

 From the Library of WoweBook.Com

ptg

482 Chapter 11 System Administration: Core Concepts

that must be met for a user to gain access to the system. For example, account mod-
ules might enforce a policy that a user can log in only during business hours or
check whether a password has expired.

The session module type sets up and tears down the session (perhaps mounting and
unmounting the user’s home directory). One session module commonly found on an
Ubuntu system is pam_mail, which announces you have new mail when a user logs
in to a textual environment.

The password module type is a bit unusual: All modules in the stack are called once
and told to get all information they need to store the password to persistent mem-
ory, such as a disk, but not actually to store it. If it determines that it cannot or
should not store the password, a module reports failure. If all password modules in
the stack report success, they are called a second time and told to store to persistent
memory the password they obtained on the first pass. The password module is
responsible for updating the authentication information (i.e., changing the user’s
password).

Any one module can act as more than one module type; many modules can act as all
four module types.

Modifying the PAM Configuration

Some UNIX systems require that a user be a member of the wheel group to use the
su command. Although Ubuntu Linux is not configured this way by default, PAM
allows you to change this behavior by editing the /etc/pam.d/su file:

$ cat /etc/pam.d/su
...
Uncomment this to force users to be a member of group root before they can use 'su'
auth required pam_wheel.so

Uncomment this if you want wheel members to be able to su without a password.
auth sufficient pam_wheel.so trust
...

The lines of this su module contain comments that include the lines necessary
to permit only users who are in the wheel group to use su (required) and to per-
mit members of the wheel group to run su without supplying a password (suffi-
cient). Uncomment one of these lines when you want the system to follow one
of these rules.

Be cautious when changing PAM files

caution Unless you understand how to configure PAM, do not change the files in /etc/pam.d. Mistakes in
the configuration of PAM can make the system unusable.

 From the Library of WoweBook.Com

ptg

Chapter Summary 483

Chapter Summary

A system administrator is someone who keeps the system in a useful and convenient
state for its users. Much of the work you do as the system administrator will require
you to work with root privileges. A user with these privileges (sometimes referred to
as Superuser) has extensive systemwide powers that normal users do not have. A
user with root privileges can read from and write to any file and can execute pro-
grams that ordinary users are not permitted to execute.

The system administrator controls system operation, which includes the following
tasks: configuring the system; booting up; running init scripts; setting up servers;
working in recovery (single-user) and multiuser modes; bringing the system down;
and handling system crashes. Ubuntu Linux provides both graphical and textual
configuration tools.

When you bring up the system in recovery mode, only the system console is func-
tional. While working in recovery mode, you can back up files and use fsck to check
the integrity of filesystems before you mount them. The telinit utility can bring the
system to its default multiuser state. With the system running in multiuser mode,
you can still perform many administration tasks, such as adding users and printers.

As installed, the root account on an Ubuntu system is locked: It has no password.
Ubuntu recommends you use sudo when you need to perform a task with root priv-
ileges. The sudo utility grants root privileges based on your password. A system that
does not have a root password and that relies on sudo to escalate permissions can be
more secure than one with a root password.

The Upstart init daemon, which replaces the traditional System V init daemon (Sys-
Vinit), is event based: It can start and stop services upon receiving information that
something on the system has changed (an event). Events include adding devices to
and removing them from the system as well as bringing the system up and shutting
it down.

You can use TCP wrappers to control who can use which system services by editing
the hosts.allow and hosts.deny files in the /etc directory. Setting up a chroot jail limits
the portion of the filesystem a user sees, so it can help control the damage a mali-
cious user can do.

Brackets ([]) in the control flags field

caution You can set the control flags in a more complex way than described in this section. When you see
brackets ([]) in the control flags position in a PAM configuration file, the newer, more complex method
is in use. Each comma-delimited argument is a value=action pair. When the result returned by the func-
tion matches value, action is evaluated. For more information refer to the PAM System Administrator’s
Guide (www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/Linux-PAM_SAG.html).

 From the Library of WoweBook.Com

www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/Linux-PAM_SAG.html

ptg

484 Chapter 11 System Administration: Core Concepts

You can set up a DHCP server so you do not have to configure each system on a
network manually. DHCP can provide both static and dynamic IP addresses.
Whether a system uses NIS, DNS, local files, or a combination (and in what order)
as a source of information is determined by /etc/nsswitch.conf. Linux-PAM enables
you to maintain fine-grained control over who can access the system, how they can
access it, and what they can do.

Exercises

1. How does recovery (single-user) mode differ from multiuser mode?

2. How would you communicate each of the following messages?

a. The system is coming down tomorrow at 6:00 in the evening for periodic
maintenance.

b. The system is coming down in 5 minutes.

c. Zach’s jobs are slowing the system down drastically, and he should
postpone them.

d. Zach’s wife just had a baby girl.

3. How would you run a program with Sam’s privileges if you did not know
his password but had permission to use sudo to run a command with root
privileges? How would you spawn a shell with the same environment that
Sam has when he first logs in?

4. How would you allow a user to execute a specific, privileged command
without giving the user the root password or permission to use sudo to run
any command with root privileges?

5. How do you kill process 1648? How do you kill all processes running
kmail? In which instances do you need to work with root privileges?

6. What does the /etc/init/rsyslog.conf file do? When does it stop? What does
the respawn keyword in this file mean?

7. Develop a strategy for coming up with a password that an intruder would
not be likely to guess but that you will be able to remember.

Advanced Exercises

8. Give the command

$ /bin/fuser -uv /

 From the Library of WoweBook.Com

ptg

Advanced Exercises 485

What does the output list? Why is it so long? Give the same command
while working with root privileges (or ask the system administrator to do
so and email you the results). How does this list differ from the first? Why
is it different?

9. When it puts files in a lost+found directory, fsck has lost the directory
information for the files and thus has lost the names of the files. Each file
is given a new name, which is the same as the inode number for the file:

$ ls –l lost+found
–rw–r––r–– 1 max pubs 110 2010-06-10 10:55 51262

How can you identify these files and restore them?

10. Take a look at /usr/bin/lesspipe. Explain its purpose and describe six ways
it works.

11. Why are setuid shell scripts inherently unsafe?

12. When a user logs in, you would like the system to first check the local
/etc/passwd file for a username and then check NIS. How do you implement
this strategy?

13. Some older kernels contain a vulnerability that allows a local user to gain
root privileges. Explain how this kind of vulnerability negates the value of
a chroot jail.

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

444888777

12Chapter12Filesystems hold directories of files. These structures store
user data and system data that are the basis of users’ work
on the system and the system’s existence. This chapter dis-
cusses important files and directories, various types of files
and ways to work with them, and the use and maintenance
of filesystems.

In This Chapter

Important Files and Directories . . 488

Device Special Files 501

Filesystems 505

mount: Mounts a Filesystem 506

fstab: Keeps Track of
Filesystems 510

fsck: Checks Filesystem
Integrity 512

12

Files, Directories,

and Filesystems

 From the Library of WoweBook.Com

ptg

488 Chapter 12 Files, Directories, and Filesystems

Important Files and Directories

This section details the files most commonly used to administer the system. For more
information, refer to “Important Standard Directories and Files” on page 213.

lost+found Holds pre-allocated disk blocks that fsck uses to store unlinked files (files that have
lost their directory [and therefore filename] information). Having these blocks
available ensures that fsck does not have to allocate data blocks during recovery, a
process that could further damage a corrupted filesystem. See page 512 for more
information on fsck.

Each ext2, ext3, and ext4 filesystem contains a lost+found directory in the file-
system’s root directory. If, for example, a filesystem is mounted at /home, there will
be a /home/lost+found directory. There is always a /lost+found directory. These
directories are normally created by mkfs when it writes an ext2/ext3/ext4 filesystem
to a partition. Although rarely necessary, you can create a lost+found directory
manually using mklost+found.

~/.bash_profile Contains an individual user’s login shell initialization script. By default, Ubuntu
does not create this file when it adds a user. The shell executes the commands in this
file in the same environment as the shell each time a user logs in. (For information
on executing a shell script in this manner, refer to the discussion of the . [dot] com-
mand on page 296.) The file must be located in a user’s home directory. It is not run
from terminal emulator windows because you do not log in in those windows.

You can use .bash_profile to specify a terminal type (for vi, terminal emulators, and
other programs), run stty to establish the terminal characteristics, set up aliases, and
perform other housekeeping functions when a user logs in.

A simple .bash_profile file specifying a vt100 terminal and CONTROL-H as the erase key
follows:

$ cat .bash_profile
export TERM=vt100
stty erase '^h'

For more information refer to “Startup Files” on page 293.

~/.bashrc Contains an individual user’s interactive, nonlogin shell initialization script. The
shell executes the commands in this file in the same environment as the (new) shell
each time a user creates a new interactive shell, including when a user opens a ter-
minal emulator window. (For information on executing a shell script in this manner,
refer to the discussion of the . [dot] command on page 296.) The .bashrc script dif-
fers from .bash_profile in that it is executed each time a new shell is spawned, not
just when a user logs in. For more information refer to “Startup Files” on page 293.

/dev Contains files representing pseudodevices and physical devices that may be attached to
the system. The following list explains the naming conventions for some physical devices:

• /dev/fd0—The first floppy disk. The second floppy disk is named
/dev/fd1.

 From the Library of WoweBook.Com

ptg

Important Files and Directories 489

• /dev/hda—The master disk on the primary IDE controller. The slave disk
on the primary IDE controller is named /dev/hdb. This disk may be a
CD-ROM drive.

• /dev/hdc—The master disk on the secondary IDE controller. The slave
disk on the secondary IDE controller is named /dev/hdd. This disk may be
a CD-ROM drive.

• /dev/sda—Traditionally the first SCSI disk; now the first non-IDE drive,
including SATA and USB drives. Other, similar drives are named /dev/sdb,
/dev/sdc, etc.

These names, such as /dev/sda, represent the order of the devices on the bus the
devices are connected to, not the device itself. For example, if you swap the data
cables on the disks referred to as /dev/sda and /dev/sdb, the drive’s designations
will change. Similarly, if you remove the device referred to as /dev/sda, the device
that was referred to as /dev/sdb will now be referred to as /dev/sda.

/dev/disk/by-path Holds symbolic links to local devices. The names of the devices in this directory
identify the devices. Each entry points to the device in /dev that it refers to.

$ ls -l /dev/disk/by-path
lrwxrwxrwx 1 root root 10 2010-04-09 09:42 pci-0000:00:10.0-scsi-0:0:0:0-part1 -> ../../sda1
lrwxrwxrwx 1 root root 10 2010-04-09 09:42 pci-0000:00:10.0-scsi-0:0:0:0-part2 -> ../../sda2
lrwxrwxrwx 1 root root 10 2010-04-09 09:42 pci-0000:00:10.0-scsi-0:0:0:0-part5 -> ../../sda5

/dev/disk/by-uuid
Holds symbolic links to local devices. The names of the devices in this directory
consist of the UUID (page 1179) numbers of the devices. Each entry points to the
device in /dev that it refers to. See page 510 for more information.

$ ls -l /dev/disk/by-uuid
lrwxrwxrwx 1 root root 10 2010-04-09 09:42 bcbfb6cc-fa3d-4acd-857a-9a92abcd3030 -> ../../sda5
lrwxrwxrwx 1 root root 10 2010-04-09 09:42 e1adfa6b-39e8-4658-82ac-6f75ecdb82c4 -> ../../sda1

/dev/null Also called a bit bucket. Output sent to this file disappears. The /dev/null file is a
device file. Input that you redirect to come from this file appears as null values, cre-
ating an empty file. You can create an empty file named nothing by giving one of
the following commands:

$ cat /dev/null > nothing
$ cp /dev/null nothing

or, without explicitly using /dev/null,

$ > nothing

The last command redirects the output of a null command to the file with the same
result as the previous commands. You can use any of these commands to truncate
an existing file to zero length without changing its permissions. You can also use
/dev/null to get rid of output that you do not want:

$ grep portable * 2> /dev/null

 From the Library of WoweBook.Com

ptg

490 Chapter 12 Files, Directories, and Filesystems

This command displays all lines in all files in the working directory that contain the
string portable. Any output to standard error (page 297), such as a permission or
directory error, is discarded, while output to standard output appears on the screen.

/dev/pts A hook into the Linux kernel. This pseudofilesystem is part of the pseudoterminal
support. Pseudoterminals are used by remote login programs, such as ssh and telnet,
as well as xterm and other graphical terminal emulators. The following sequence of
commands demonstrates that Sam is logged in on /dev/pts/2. After using who am i
to verify the pseudoterminal he is logged in on and using ls to show that this
pseudoterminal exists, Sam redirects the output of an echo command to /dev/pts/2,
whereupon the output appears on his screen:

$ who am i
sam pts/2 2010-05-31 17:37 (dog.bogus.com)
$ ls /dev/pts
0 1 2
$ echo Hi there > /dev/pts/2
Hi there

/dev/random
and

/dev/urandom

Interfaces to the kernel’s random number generator. You can use either file with dd
to create a file filled with pseudorandom bytes.

$ dd if=/dev/urandom of=randfile2 bs=1 count=100
100+0 records in
100+0 records out
100 bytes (100 B) copied, 0.000884387 seconds, 113 kB/s

The preceding command reads from /dev/urandom and writes to the file named
randfile. The block size is 1 and the count is 100; thus randfile is 100 bytes long.
For bytes that are more random, you can read from /dev/random. See the urandom
and random man pages for more information.

optional
Wiping a file You can use a similar technique to wipe data from a file before deleting it, making it

almost impossible to recover data from the deleted file. You might want to wipe a
file for security reasons.

In the following example, ls shows the size of the file named secret. Using a block
size of 1 and a count corresponding to the number of bytes in secret, dd wipes the
file. The conv=notrunc argument ensures that dd writes over the data in the file and
not another (erroneous) place on the disk.

$ ls -l secret
-rw-r--r-- 1 sam sam 5733 2010-05-31 17:43 secret
$ dd if=/dev/urandom of=secret bs=1 count=5733 conv=notrunc
5733+0 records in
5733+0 records out
5733 bytes (5.7 kB) copied, 0.0358146 seconds, 160 kB/s
$ rm secret

For added security, run sync to flush the disk buffers after running dd, and repeat
the two commands several times before deleting the file. See wipe.sourceforge.net
for more information about wiping files.

 From the Library of WoweBook.Com

ptg

Important Files and Directories 491

/dev/zero Input you take from this file contains an infinite string of zeros (numerical zeros,
not ASCII zeros). You can fill a file (such as a swap file, page 498) or overwrite a
file with zeros with a command such as the following:

$ dd if=/dev/zero of=zeros bs=1024 count=10
10+0 records in
10+0 records out
10240 bytes (10 kB) copied, 0.000160263 seconds, 63.9 MB/s

$ od -c zeros
0000000 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
*
0024000

The od utility shows the contents of the new file.

When you try to do with /dev/zero what you can do with /dev/null, you fill the
partition in which you are working:

$ cp /dev/zero bigzero
cp: writing 'bigzero': No space left on device
$ rm bigzero

/etc/aliases Used by the mail delivery system to hold aliases for users. Edit this file to suit local
needs. For more information refer to /etc/aliases on page 722.

/etc/alternatives Holds symbolic links so that you can call a utility by a name other than that of the file
that holds the utility. For example, when you give the command btdownloadcurses,
the shell calls btdownloadcurses.bittorrent using the following links:

$ ls -l /usr/bin/btdownloadcurses
lrwxrwxrwx ... /usr/bin/btdownloadcurses -> /etc/alternatives/btdownloadcurses
$ ls -l /etc/alternatives/btdownloadcurses
lrwxrwxrwx ... /etc/alternatives/btdownloadcurses -> /usr/bin/btdownloadcurses.bittorrent

The alternatives directory also allows a utility to appear in more than one directory:

$ ls -l /usr/X11R6/bin/btdownloadcurses /usr/bin/X11/btdownloadcurses
lrwxrwxrwx ... /usr/X11R6/bin/btdownloadcurses -> /etc/alternatives/btdownloadcurses
lrwxrwxrwx ... /usr/bin/X11/btdownloadcurses -> /etc/alternatives/btdownloadcurses

In addition, this directory allows you to call one utility by several names. Although
the alternatives directory does not allow developers to do anything they could not
do without it, it provides an orderly way to keep and update these links. Use whereis
(page 179) to find all links to a utility.

/etc/at.allow,
/etc/at.deny,

/etc/cron.allow,
and

/etc/cron.deny

By default, users can use the at and crontab utilities. The at.allow and cron.allow
files list the users who are allowed to use at and crontab, respectively. The at.deny
and cron.deny files specify users who are not permitted to use the corresponding
utilities. As Ubuntu Linux is configured, the at.deny file holds a list of some system
accounts and there is no at.allow file, allowing nonsystem accounts to use at; the
absence of cron.allow and cron.deny files allows anyone to use crontab. To prevent
anyone except a user running with root privileges from using at, remove the
at.allow and at.deny files. To prevent anyone except a user running with root privi-
leges from using crontab, create a cron.allow file with the single entry root. For more
information on crontab, refer to “Scheduling Tasks” on page 605.

 From the Library of WoweBook.Com

ptg

492 Chapter 12 Files, Directories, and Filesystems

/etc/bash.bashrc Contains the global interactive, nonlogin shell initialization script. The default
Ubuntu /etc/profile (page 495) file executes the commands in this file. A user can
override settings made in this file in her ~/.bashrc (page 488) file.

/etc/default Holds files that set default values for system services and utilities such as NFS and
useradd. Look at the files in this directory for more information.

/etc/dumpdates Contains information about the last execution of dump (part of the dump software
package). For each filesystem, it stores the time of the last dump at a given dump
level. The dump utility uses this information to determine which files to back up
when executing at a particular dump level. Refer to “Backing Up Files” on page 599
and the dump man page for more information.

Following is a sample /etc/dumpdates file from a system with four filesystems and a
backup schedule that uses three dump levels:

/dev/hda1 5 Thu Apr 22 03:53:55 2010
/dev/hda8 2 Sun Apr 18 08:25:24 2010
/dev/hda9 2 Sun Apr 18 08:57:32 2010
/dev/hda10 2 Sun Apr 18 08:58:06 2010
/dev/hda1 2 Sun Apr 18 09:02:27 2010
/dev/hda1 0 Sun Mar 21 22:08:35 2010
/dev/hda8 0 Sun Mar 21 22:33:40 2010
/dev/hda9 0 Sun Mar 21 22:35:22 2010
/dev/hda10 0 Sun Mar 21 22:43:45 2010

The first column contains the device name of the dumped filesystem. The second
column contains the dump level and the date of the dump.

/etc/event.d Holds files that define Upstart init jobs. See page 434 for more information.

/etc/fstab filesystem (mount) table—Contains a list of all mountable devices as specified by
the system administrator. Programs do not write to this file; they only read from it.
See page 510 for more information.

/etc/group Groups allow users to share files or programs without giving all system users access
to those files or programs. This scheme is useful when several users are working
with files that are not public. The /etc/group file associates one or more usernames
with each group (number). Refer to “ACLs: Access Control Lists” on page 221 for
a finer-grained way to control file access.

Each entry in the /etc/group file has four colon-separated fields that describe one group:

group-name:password:group-ID:login-name-list

The group-name is the name of the group. The password is an optional hashed
(page 1151) password. This field frequently contains an x, indicating that group
passwords are not used. The group-ID is a number, with 1–999 reserved for system
accounts. The login-name-list is a comma-separated list of users who belong to the
group. If an entry is too long to fit on one line, end the line with a backslash (\),
which quotes the following RETURN, and continue the entry on the next line. A sample
entry from a group file follows. The group is named pubs, has no password, and
has a group ID of 1103:

pubs:x:1103:max,sam,zach,mark

 From the Library of WoweBook.Com

ptg

Important Files and Directories 493

You can use the groups utility to display the groups to which a user belongs:

$ groups sam
sam : sam pubs

Each user has a primary group, which is the group that user is assigned in the
/etc/passwd file. By default, Ubuntu Linux has user private groups: Each user’s pri-
mary group has the same name as the user. In addition, a user can belong to other
groups, depending on which login-name-lists the user appears on in the /etc/group
file. In effect, you simultaneously belong both to your primary group and to any
groups you are assigned to in /etc/group. When you attempt to access a file you do
not own, Linux checks whether you are a member of the group that has access to
the file. If you are, you are subject to the group access permissions for the file. If you
are not a member of the group that has access to the file and you do not own the
file, you are subject to the public access permissions for the file.

When you create a new file, Linux assigns it to the group associated with the direc-
tory the file is being written into, assuming that you belong to that group. If you do
not belong to the group that has access to the directory, the file is assigned to your
primary group.

Refer to page 597 for information on using users-admin to work with groups.

/etc/hostname Stores the hostname of the system. Changing the contents of this file changes the
hostname of the system the next time it boots. Give the command hostname name
to change the hostname of the system to name immediately. Without changing
/etc/hostname, the hostname will revert the next time the system boots.

/etc/hosts Stores the names, IP addresses, and optionally aliases of other systems. At the very
least, this file must have the hostname and IP address that you have chosen for the
local system and a special entry for localhost. This entry supports the loopback ser-
vice, which allows the local system to talk to itself (for example, for RPC services).
The IP address of the loopback service is always 127.0.0.1, while 127.0.1.1 names
the local system. Following is a simple /etc/hosts file:

$ cat /etc/hosts
127.0.0.1 localhost
127.0.1.1 tiny
192.168.0.9 jam
192.168.0.10 plum
192.168.0.12 dog
...

If you are not using NIS or DNS to look up hostnames (called hostname resolution),
you must include in /etc/hosts all systems that the local system should be able to
contact by hostname. (A system can always contact another system by using the IP
address of the system.) The hosts entry in the /etc/nsswitch.conf file (page 475) con-
trols the order in which hostname resolution services are checked.

/etc/inittab initialization table—Some distributions use this file to control the behavior of the
init process. It is not present on Ubuntu systems. See “rc-sysinit task and inittab” on
page 439 for more information.

 From the Library of WoweBook.Com

ptg

494 Chapter 12 Files, Directories, and Filesystems

/etc/motd Contains the message of the day, which can be displayed each time someone logs in
using a textual login. This file typically contains site policy and legal information.
Keep this file short because users tend to see the message many times.

/etc/mtab When you call mount without any arguments, it consults this file and displays a list
of mounted devices. Each time you (or an init script) call mount or umount, these
utilities make the necessary changes to mtab. Although this is an ASCII text file, you
should not edit it. See also /etc/fstab.

/etc/nsswitch.conf
Specifies whether a system uses NIS, DNS, local files, or a combination as the source
of certain information, and in what order it consults these services (page 475).

/etc/pam.d Files in this directory specify the authentication methods used by PAM (page 478)
applications.

/etc/passwd Describes users to the system. Do not edit this file directly; instead, use one of the
utilities discussed in “Configuring User and Group Accounts” on page 594. Each
line in passwd has seven colon-separated fields that describe one user:

login-name:password:user-ID:group-ID:info:directory:program

The login-name is the user’s username—the name you enter in response to the
login: prompt or on a GUI login screen. The value of the password is the character
x. The /etc/shadow file (page 497) stores the real password, which is hashed
(page 1151). For security reasons, every account should have a password. By con-
vention, disabled accounts have an asterisk (*) in this field.

The user-ID is a number, with 0 indicating the root account and 1–999 being
reserved for system accounts. The group-ID identifies the user as a member of a
group. It is a number, with 0–999 being reserved for system accounts; see /etc/group
(page 492). You can change these values and set maximum values in /etc/login.defs.

The info is information that various programs, such as accounting and email pro-
grams, use to identify the user further. Normally it contains at least the first and last
names of the user. It is referred to as the GECOS (page 1150) field.

The directory is the absolute pathname of the user’s home directory. The program is
the program that runs once the user logs in to a textual session. If program is not
present, a value of /bin/bash is assumed. You can put /bin/tcsh here to log in using
the TC Shell or /bin/zsh to log in using the Z Shell, assuming the shell you specify is
installed. The chsh utility (page 457) changes this value.

Fixing mtab
tip The kernel maintains its own internal mount table. You can display this table with the command

cat /proc/mounts. Sometimes the list of files in /etc/mtab may not be synchronized with the par-
titions in this table. To bring the mtab file in line with the operating system’s mount table, you can
either reboot the system or replace /etc/mtab with a symbolic link to /proc/mounts (although
some information may be lost).

$ sudo rm /etc/mtab
$ sudo ln -s /proc/mounts /etc/mtab

 From the Library of WoweBook.Com

ptg

Important Files and Directories 495

The program is usually a shell, but it can be any program. The following line in the
passwd file creates a “user” whose only purpose is to execute the who utility:

who:x:1000:1000:execute who:/usr:/usr/bin/who

Logging in with who as a username causes the system to log you in, execute the who util-
ity, and log you out. The output of who flashes by quickly because the new login prompt
clears the screen immediately after who finishes running. This entry in the passwd file
does not provide a shell, so you cannot stay logged in after who finishes executing.

This technique is useful for providing special accounts that may do only one thing.
The ftp account, for example, enables anonymous FTP (page 687) access to an FTP
server. Because no one logs in on this account, the shell is set to /bin/false (which
returns a false exit status) or to /usr/sbin/nologin (which does not permit a nonpriv-
ileged user to log in). When you put a message in /etc/nologin, nologin displays that
message (except it has the same problem as the output of who: It is removed so
quickly that it is hard to see).

/etc/printcap The printer capability database for LPD/LPR (page 548). It is not used with CUPS
(Chapter 14), Ubuntu’s default printing system. This file describes system printers
and is derived from 4.3BSD UNIX.

/etc/profile Contains a systemwide interactive shell initialization script for environment and
startup programs. When you log in, the shell immediately executes the commands
in this file in the same environment as the shell. (For information on executing a
shell script in this manner, refer to the discussion of the . [dot] command on
page 296.) This file allows the system administrator to establish systemwide envi-
ronment parameters that individual users can override in their ~/.bash_profile
(page 488) files. For example, this file can set shell variables, execute utilities, set up
aliases, and take care of other housekeeping tasks.

The default Ubuntu /etc/profile file sets the shell prompt and executes the commands
in /etc/bash.bashrc (page 492).

Following is an example of a /etc/profile file that displays the message of the day (the
/etc/motd file), sets the file-creation mask (umask, page 459), and sets the interrupt
character to CONTROL-C:

cat /etc/profile
cat /etc/motd
umask 022
stty intr '^c'

/etc/protocols Provides protocol numbers, aliases, and brief definitions for DARPA Internet
TCP/IP protocols. Do not modify this file.

/etc/init Holds Upstart job definition files. See page 438 for more information.

Do not replace a login shell with a shell script

security Do not use shell scripts as replacements for shells in /etc/passwd. A user may be able to interrupt
a shell script, giving him full shell access when you did not intend to do so. When installing a
dummy shell, use a compiled program, not a shell script.

 From the Library of WoweBook.Com

ptg

496 Chapter 12 Files, Directories, and Filesystems

/etc/init.d Holds SysVinit initialization scripts. See page 440 for more information.

/etc/resolv.conf The resolver (page 824) configuration file, which is used to provide access to DNS.
By default, this file is rebuilt by resolvconf when you run the bind9 init script. See
“named options” on page 834, “resolvconf and resolv.conf” on page 835, and the
resolver and resolv.conf man pages for more information.

The following example shows the resolv.conf file for the example.com domain. A
resolv.conf file usually contains at least two lines—a search line (optional) and a
nameserver line:

cat /etc/resolv.conf
search example.com
nameserver 10.0.0.50
nameserver 10.0.0.51

The search keyword may be followed by a maximum of six domain names. The first
domain is interpreted as the host’s local domain. These names are appended one at
a time to all DNS queries, shortening the time needed to query local hosts. The
domains are searched in order in the process of resolving hostnames that are not
fully qualified. See FQDN on page 1149.

When you put search example.com in resolv.conf, any reference to a host within the
example.com domain or a subdomain (such as marketing.example.com) can use the
abbreviated form of the host. For example, instead of issuing the command ping
speedy.marketing.example.com, you can use ping speedy.marketing. The following
line in resolv.conf causes the marketing subdomain to be searched first, followed by
sales, and finally the entire example.com domain:

search marketing.example.com sales.example.com example.com

It is a good idea to put the most frequently used domain names first to try to outguess
possible conflicts. If both speedy.marketing.example.com and speedy.example.com
exist, for example, the order of the search determines which one is selected when you
invoke DNS. Do not overuse this feature: The longer the search path, the more net-
work DNS requests generated, and the slower the response. Three or four names are
typically sufficient.

The nameserver line(s) indicate which systems the local system should query to
resolve hostnames to IP addresses, and vice versa. These machines are consulted in
the order they appear, with a timeout between queries. The first timeout is a few
seconds; each subsequent timeout is twice as long as the previous one. The preced-
ing file causes this system to query 10.0.0.50, followed by 10.0.0.51 when the first
system does not answer within a few seconds. The resolv.conf file may be automati-
cally updated when a PPP- (Point-to-Point Protocol) or DHCP- (Dynamic Host
Configuration Protocol) controlled interface is activated. Refer to the resolv.conf
and resolver man pages for more information.

/etc/rpc Maps RPC services to RPC numbers. The three columns in this file show the name
of the server for the RPC program, the RPC program number, and any aliases.

 From the Library of WoweBook.Com

ptg

Important Files and Directories 497

/etc/services Lists system services. The three columns in this file show the informal name of the
service, the port number/protocol the service uses most frequently, and any aliases
for the service. This file does not specify which services are running on the local sys-
tem, nor does it map services to port numbers. The services file is used internally to
map port numbers to services for display purposes.

/etc/shadow Contains MD5 (page 1159) hashed user passwords. Each entry occupies one line
composed of nine fields, separated by colons:

login-name:password:last-mod:min:max:warn:inactive:expire:flag

The login-name is the user’s username—the name that the user enters in response to
the login: prompt or on a GUI login screen. The password is a hashed password
that passwd puts in this file. New accounts that are not set up with a password are
given a value of ! or * in this field to prevent the user from logging in until you
assign a password to that user (page 595).

The last-mod field indicates when the password was last modified. The min is the
minimum number of days that must elapse before the password can be changed; the
max is the maximum number of days before the password must be changed. The
warn field specifies how much advance warning (in days) will be given to the user
before the password expires. The account will be closed if the number of days
between login sessions exceeds the number of days specified in the inactive field.
The account will also be closed as of the date in the expire field. The last field in an
entry, flag, is reserved for future use. You can use usermod (page 598) to modify
these fields.

The shadow password file must be owned by root and must not be publicly readable
or writable. Setting ownership and permissions in this way makes it more difficult
for someone to break into the system by identifying accounts without passwords or
by using specialized programs that try to match hashed passwords.

A number of conventions exist for creating special shadow entries. An entry of
LK or NP in the password field indicates locked or no password, respectively. No
password is different from an empty password; no password implies that this is an
administrative account that no one ever logs in on directly. Occasionally programs
will run with the privileges of this account for system maintenance functions. These
accounts are set up under the principle of least privilege (page 420).

Entries in the shadow file must appear in the same order as in the passwd file. There
must be exactly one shadow entry for each passwd entry.

/etc/hosts.deny
and

/etc/hosts.allow

As part of the client/server model, TCP wrappers rely on these files as the basis of a
simple access control language. See page 465 for more information.

/proc Provides a window into the Linux kernel. Through the /proc pseudofilesystem you
can obtain information on any process running on the system, including its current

 From the Library of WoweBook.Com

ptg

498 Chapter 12 Files, Directories, and Filesystems

state, memory usage, CPU usage, terminal association, parent, and group. You can
extract information directly from the files in /proc. An example follows:

$ sleep 1000 &
[1] 3104
$ cd /proc/3104
$ ls -l
dr-xr-xr-x 2 sam sam 0 2010-04-09 14:00 attr
-r-------- 1 sam sam 0 2010-04-09 14:00 auxv
-r--r--r-- 1 sam sam 0 2010-04-09 14:00 cgroup
--w------- 1 sam sam 0 2010-04-09 14:00 clear_refs
-r--r--r-- 1 sam sam 0 2010-04-09 14:00 cmdline
-rw-r--r-- 1 sam sam 0 2010-04-09 14:00 coredump_filter
-r--r--r-- 1 sam sam 0 2010-04-09 14:00 cpuset
lrwxrwxrwx 1 sam sam 0 2010-04-09 14:00 cwd -> /home/sam
-r-------- 1 sam sam 0 2010-04-09 14:00 environ
lrwxrwxrwx 1 sam sam 0 2010-04-09 14:00 exe -> /bin/sleep
dr-x------ 2 sam sam 0 2010-04-09 14:00 fd
...

$ cat status
Name: sleep
State: S (sleeping)
Tgid: 3104
Pid: 3104
PPid: 1503
TracerPid: 0
Uid: 1000 1000 1000 1000
Gid: 1000 1000 1000 1000
FDSize: 256
Groups: 4 20 24 46 105 119 122 1000
VmPeak: 3232 kB
VmSize: 3232 kB
VmLck: 0 kB
...

In this example, bash creates a background process (PID 3104) for sleep. Next the user
changes directories to the directory in /proc that has the same name as the PID of the
background process (cd /proc/3104). This directory holds information about the pro-
cess it is named for—the sleep process in the example. The ls –l command shows that
some entries in this directory are links (cwd is a link to the directory the process was
started from, and exe is a link to the executable file that this process is running) and
some appear to be ordinary files. All appear to be empty. However, when you use cat
to display one of these pseudofiles (status in the example), cat displays output. Obvi-
ously it is not an ordinary file.

/sbin/shutdown A utility that brings the system down (see page 450).

swap Even though swap is not normally a file, swap space can be added and deleted from
the system dynamically. Swap space is used by the virtual memory subsystem of the
kernel. When it runs low on real memory (RAM), the kernel writes memory pages
from RAM to the swap space on the disk. Which pages are written and when they

 From the Library of WoweBook.Com

ptg

Important Files and Directories 499

are written are controlled by finely tuned algorithms in the Linux kernel. When
needed by running programs, the kernel brings these pages back into RAM—a tech-
nique called paging (page 1164). When a system is running very short on memory,
an entire process may be paged out to disk.

Running an application that requires a large amount of virtual memory may result
in the need for additional swap space. If you run out of swap space, you can use
mkswap to create a swap file and swapon to enable it. Normally you use a disk parti-
tion as swap space, but you can also use a file for this purpose. A disk partition pro-
vides much better performance than a file.

If you are creating a file as swap space, first use df to ensure that the partition you
are creating it in has adequate space for the file. In the following sequence of com-
mands, the administrator first uses dd and /dev/zero (page 491) to create an empty
file (do not use cp because you may create a file with holes, which may not work) in
the working directory. Next mkswap takes as an argument the name of the file cre-
ated in the first step to set up the swap space. For security reasons, change the file so
that it cannot be read from or written to by anyone except a user with root privi-
leges. Use swapon with the same argument to turn the swap file on; then use
swapon –s to confirm the swap space is available. The final two commands turn off
the swap file and remove it. Because many of the commands in this sequence must
be executed with root privileges, and because typing sudo in front of each command
would be tedious, the administrator spawns a shell with root privileges by giving
the command sudo –i before starting. The exit command at the end of the sequence
closes the privileged shell:

$ sudo -i
dd if=/dev/zero of=swapfile bs=1024 count=65536
65536+0 records in
65536+0 records out
67108864 bytes (67 MB) copied, 0.631809 seconds, 106 MB/s
mkswap swapfile
Setting up swapspace version 1, size = 67104 kB
no label, UUID=e2e4ec08-77a4-47b1-bca1-59dd9a59dbf7
chmod 600 swapfile
swapon swapfile
swapon -s
Filename Type Size Used
Priority
/dev/sda3 partition 1951888 33796 -1
/root/swapfile file 65528 0 -2
swapoff swapfile
rm swapfile
exit
$

/sys A pseudofilesystem that was added in the Linux 2.6 kernel to make it easy for pro-
grams running in kernelspace, such as device drivers, to exchange information with
programs running in userspace. Refer to udev on page 502.

 From the Library of WoweBook.Com

ptg

500 Chapter 12 Files, Directories, and Filesystems

/usr/share/file/magic
Most files begin with a unique identifier called a magic number. This file is a text
database listing all known magic numbers on the system. When you use the file util-
ity, it consults /usr/share/file/magic to determine the type of a file. Occasionally you
may acquire a new tool that creates a new type of file that is unrecognized by the file
utility. In this situation you can add entries to the /etc/magic file. Refer to the magic
and file man pages for more details. See also “magic number” on page 1158.

/var/log Holds system log files, many of which are generated by syslogd (page 625). You can use
a text display program such as less, tail, or cat, or the graphical program gnome-system-
log to view the files in this directory. To run gnome-system-log, select System: Adminis-
tration System Log or enter gnome-system-log (use gksudo if you are not a member
of the adm group) from a terminal emulator or in a Run Application window (ALT-F2).

/var/log/messages
Contains messages from daemons, the Linux kernel, and security programs. For
example, you will find filesystem full warning messages, error messages from sys-
tem daemons (NFS, exim4, printer daemons), SCSI and IDE disk error messages,
and more in messages. Check /var/log/messages periodically to keep informed
about important system events. Much of the information displayed on the system
console is also sent to messages. If the system experiences a problem and you cannot
access the console, check this file for messages about the problem. See page 625 for
information on syslogd, which generates many of these messages.

/var/log/auth.log Holds messages from security-related programs such as sudo and the sshd daemon.

File Types

Linux supports many types of files. This section discusses the following types of files:

• Ordinary files, directories, links, and inodes (next)

• Symbolic links (page 501)

• Device special files (page 501)

• FIFO special files (named pipes) (page 503)

• Sockets (page 503)

• Block and character devices (page 504)

• Raw devices (page 504)

Ordinary Files, Directories, Links, and Inodes

Ordinary and
directory files

An ordinary file stores user data, such as textual information, programs, or images,
such as a jpeg or tiff file. A directory is a standard-format disk file that stores infor-
mation, including names, about ordinary files and other directory files.

 From the Library of WoweBook.Com

ptg

File Types 501

Inodes An inode is a data structure (page 1144), stored on disk, that defines a file’s exist-
ence and is identified by an inode number. An inode contains critical information
about a file, such as the name of the owner, where it is physically located on the
disk, and how many hard links point to it. Except for directory inodes, inodes do
not contain filenames. An inode that describes a directory file relates each of the
filenames stored in the directory to the inode that describes that file. This setup
allows an inode to be associated with more than one filename and to be pointed to
from more than one directory.

When you move (mv) a file, including a directory file, within a filesystem, you
change the filename portion of the directory entry associated with the inode that
describes the file. You do not create a new inode. If you move a file to another file-
system, mv first creates a new inode on the destination filesystem and then deletes
the original inode. You can also use mv to move a directory recursively from one
filesystem to another. In this case mv copies the directory and all the files in it, and
deletes the original directory and its contents.

When you make an additional hard link (ln, page 228) to a file, you add a directory
entry that points to the inode that describes the file. You do not create a new inode.

When you remove (rm) a file, you delete the directory entry that describes the file.
When you remove the last hard link to a file, the operating system puts all blocks
the inode pointed to back in the free list (the list of blocks that are available for use
on the disk) and frees the inode to be used again.

The . and ..
directory entries

Every directory contains at least two entries (. and . .). The . entry is a link to the
directory itself. The .. entry is a link to the parent directory. In the case of the root
directory, there is no parent and the . . entry is a link to the root directory itself. It is
not possible to create hard links to directories.

Symbolic links Because each filesystem has a separate set of inodes, you can create hard links to a
file only from within the filesystem that holds that file. To get around this limita-
tion, Linux provides symbolic links, which are files that point to other files. Files
that are linked by a symbolic link do not share an inode. As a consequence, you can
create a symbolic link to a file from any filesystem. You can also create a symbolic
link to a directory, device, or other special file. For more information refer to “Sym-
bolic Links” on page 230.

Device Special Files

Device special files (also called device files and special files) represent Linux kernel
routines that provide access to an operating system feature. FIFO (first in, first out)
special files allow unrelated programs to exchange information. Sockets allow unre-
lated processes on the same or different systems to exchange information. One type
of socket, the UNIX domain socket, is a special file. Symbolic links are another type
of special file.

Device files Device files include both block and character special files and represent device drivers
that allow the system to communicate with peripheral devices, such as terminals,

 From the Library of WoweBook.Com

ptg

502 Chapter 12 Files, Directories, and Filesystems

printers, and hard disks. By convention, device files appear in the /dev directory and its
subdirectories. Each device file represents a device; hence, the system reads from and
writes to the file to read from and write to the device it represents. The following exam-
ple shows part of the output that an ls –l command produces for the /dev directory:

$ ls -l /dev
crw-rw----+ 1 root audio 14, 12 2010-04-09 09:42 adsp
crw------- 1 root video 10, 175 2010-04-09 09:42 agpgart
crw-rw----+ 1 root audio 14, 4 2010-04-09 09:42 audio
drwxr-xr-x 2 root root 640 2010-04-09 09:42 block
drwxr-xr-x 2 root root 80 2010-04-09 09:42 bsg
drwxr-xr-x 3 root root 60 2010-04-09 09:42 bus
lrwxrwxrwx 1 root root 3 2010-04-09 09:42 cdrom -> sr0
drwxr-xr-x 2 root root 2980 2010-04-09 09:42 char
crw------- 1 root root 5, 1 2010-04-09 09:33 console
lrwxrwxrwx 1 root root 11 2010-04-09 09:42 core -> /proc/kcore
...
brw-rw---- 1 root disk 8, 0 2010-04-09 09:42 sda
brw-rw---- 1 root disk 8, 1 2010-04-09 09:42 sda1
brw-rw---- 1 root disk 8, 2 2010-04-09 09:42 sda2
...

The first character of each line is always –, b, c, d, l, or p, representing the file
type—ordinary (plain), block, character, directory, symbolic link, or named pipe
(see the following section), respectively. The next nine characters identify the per-
missions for the file, followed by the number of hard links and the names of the
owner and the group. Where the number of bytes in a file would appear for an
ordinary or directory file, a device file shows major and minor device numbers
(page 503) separated by a comma. The rest of the line is the same as for any other
ls –l listing (page 215).

udev The udev utility manages device naming dynamically. It replaces the earlier devfs
and moves the device-naming functionality from the kernel to userspace. Because
devices are added to and removed from a system infrequently, the performance pen-
alty associated with this change is minimal. The benefit of the move is that a bug in
udev cannot compromise or crash the kernel.

The udev utility is part of the hotplug system (next). When a device is added to or
removed from the system, the kernel creates a device name in the /sys pseudofile-
system and notifies hotplug of the event, which is received by udev. The udev util-
ity then creates the device file, usually in the /dev directory, or removes the device
file from the system. The udev utility can also rename network interfaces. See
www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html for more information.

Hotplug The hotplug system allows you to plug a device into a running system and use it
immediately. Although hotplug was available in the Linux 2.4 kernel, the 2.6 kernel
integrates hotplug with the unified device driver model framework (the driver
model core) so that any bus can report an event when a device is added to or
removed from the system. User software can be notified of the event so it can take
appropriate action. See linux-hotplug.sourceforge.net for more information.

 From the Library of WoweBook.Com

www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html

ptg

File Types 503

FIFO Special File (Named Pipe)

A FIFO special file, also called a named pipe, represents a pipe: You read from and
write to the file to read from and write to the pipe. The term FIFO stands for first
in, first out—the way any pipe works. In other words, the first information you put
in one end is the first information that comes out the other end. When you use a
pipe on a command line to send the output of a program to the printer, the printer
outputs the information in the same order that the program produced it and sent it
to the pipe.

Unless you are writing sophisticated programs, you will not be working with FIFO
special files. However, programs that you use on Linux use named pipes for inter-
process communication. You can create a pipe using mkfifo:

$ mkfifo AA
$ ls -l AA
prw-r--r-- 1 sam sam 0 2010-04-09 14:10 AA

The p at the left end of the output of ls –l indicates the file is a pipe.

Both UNIX and Linux systems have included pipes for many generations. Without
named pipes, only processes that were children of the same ancestor could use pipes to
exchange information. Using named pipes, any two processes on a single system can
exchange information. When one program writes to a FIFO special file, another pro-
gram can read from the same file. The programs do not have to run at the same time or
be aware of each other’s activity. The operating system handles all buffering and infor-
mation storage. This type of communication is termed asynchronous (async) because
the programs on the opposite ends of the pipe do not have to be synchronized.

Sockets

Like FIFO special files, sockets allow asynchronous processes that are not children of
the same ancestor to exchange information. Sockets are the central mechanism of the
interprocess communication that forms the basis of the networking facility. When
you use networking utilities, pairs of cooperating sockets manage the communica-
tion between the processes on the local system and the remote system. Sockets form
the basis of such utilities as ssh and scp.

Major and Minor Device Numbers

A major device number points to a driver in the kernel that works with a class of
hardware devices: terminal, printer, tape drive, hard disk, and so on. In the listing of
the /dev directory on page 502, all the hard disk partitions have a major device
number of 3.

A minor device number identifies a particular piece of hardware within a class.
Although all hard disk partitions are grouped together by their major device number,
each has a different minor device number (sda1 is 1, sda2 is 2, and so on). This setup
allows one piece of software (the device driver) to service all similar hardware, yet
still be able to distinguish among different physical units.

 From the Library of WoweBook.Com

ptg

504 Chapter 12 Files, Directories, and Filesystems

Block and Character Devices

This section describes typical device drivers. Because device drivers can be changed to
suit a particular purpose, the descriptions in this section do not pertain to every system.

Block device A block device is an I/O (input/output) device that has the following characteristics:

• Able to perform random access reads

• Has a specific block size

• Handles only single blocks of data at a time

• Accepts only transactions that involve whole blocks of data

• Able to have a filesystem mounted on it

• Has the Linux kernel buffer its input and output

• Appears to the operating system as a series of blocks numbered from 0
through n – 1, where n is the number of blocks on the device

Block devices commonly found on a Linux system include hard disks, floppy disk-
ettes, and CDs.

Character device A character device is any device that is not a block device. Examples of character
devices include printers, terminals, tape drives, and modems.

The device driver for a character device determines how a program reads from and
writes to that device. For example, the device driver for a terminal allows a program
to read the information you type on the terminal in two ways. First, a program can
read single characters from a terminal in raw mode—that is, without the driver
doing any interpretation of the characters. (This mode has nothing to do with the
raw device described in the following section.) Alternatively, a program can read
one line at a time. When a program reads one line at a time, the driver handles the
erase and kill characters so the program never sees typing mistakes that have been
corrected. In this case, the program reads everything from the beginning of a line to
the RETURN that ends a line; the number of characters in a line can vary.

Raw Devices

Device driver programs for block devices usually have two entry points so they can
be used in two ways: as block devices or as character devices. The character device
form of a block device is called a raw device. A raw device is characterized by

• Direct I/O (no buffering through the Linux kernel).

• One-to-one correspondence between system calls and hardware requests.

• Device-dependent restrictions on I/O.

fsck An example of a utility that uses a raw device is fsck. It is more efficient for fsck to
operate on the disk as a raw device rather than being restricted by the fixed size of
blocks in the block device interface. Because it has full knowledge of the underlying

 From the Library of WoweBook.Com

ptg

Filesystems 505

filesystem structure, fsck can operate on the raw device using the largest possible
units. When a filesystem is mounted, processes normally access the disk through the
block device interface, which explains why it is important to allow fsck to modify
only unmounted filesystems. On a mounted filesystem, there is the danger that, while
fsck is rearranging the underlying structure through the raw device, another process
could change a disk block using the block device, resulting in a corrupted filesystem.

Filesystems

Table 12-1 lists some types of filesystems available under Linux.

Table 12-1 Filesystems

Filesystem Features

adfs Advanced Disc Filing System. Used on Acorn computers. The word Advanced
differentiated this filesystem from its predecessor DFS, which did not support
advanced features such as hierarchical filesystems.

affs Amiga Fast Filesystem (FFS).

autofs Automounting filesystem (page 792).

cifs Common Internet Filesystem (page 1141). Formerly the Samba Filesystem
(smbfs).

coda CODA distributed filesystem (developed at Carnegie Mellon).

devpts A pseudofilesystem for pseudoterminals (page 490).

ext2 A standard filesystem for Ubuntu systems, usually with the ext4 extension.

ext3 A journaling (page 1155) extension to the ext2 filesystem. It greatly improves
recovery time from crashes (it takes a lot less time to run fsck), promoting
increased availability. As with any filesystem, a journaling filesystem can lose
data during a system crash or hardware failure.

ext4 An extension to the ext3 filesystem. It is backward compatible with ext2/ext3
filesystems and provides improved performance over ext3 the filesystem.

GFS Global Filesystem. GFS is a journaling, clustering filesystem. It enables a cluster
of Linux servers to share a common storage pool.

hfs Hierarchical Filesystem. Used by older Macintosh systems. Newer Macintosh
systems use hfs+.

hpfs High-Performance Filesystem. The native filesystem for IBM’s OS/2.

jffs2 Journaling Flash Filesystem (jffs). A filesystem for flash memory.

iso9660 The standard filesystem for CDs.

minix Very similar to Linux. The filesystem of a small operating system that was writ-
ten for educational purposes by Andrew S. Tanenbaum (www.minix3.org).

 From the Library of WoweBook.Com

www.minix3.org

ptg

506 Chapter 12 Files, Directories, and Filesystems

mount: Mounts a Filesystem

The mount utility connects directory hierarchies—typically filesystems—to the Linux
directory hierarchy. These directory hierarchies can be on remote and local disks,
CDs, DVDs, and floppy diskettes. Linux can also mount virtual filesystems that have
been built inside ordinary files, filesystems built for other operating systems, and the

Filesystem Features

msdos Filesystem used by DOS and subsequent Microsoft operating systems. Do not
use msdos for mounting Windows filesystems; it does not read VFAT
attributes.

ncpfs Novell NetWare NCP Protocol Filesystem. Used to mount remote filesystems
under NetWare.

nfs Network Filesystem. Developed by Sun Microsystems, this protocol allows a
computer to access remote files over a network as if the files were local
(page 773).

ntfs NT Filesystem. The native filesystem of Windows NT. See www.linux-ntfs.org.

proc An interface to several Linux kernel data structures (page 1144) that behaves
like a filesystem (page 497).

qnx4 QNX 4 operating system filesystem.

reiserfs A journaling (page 1155) filesystem, based on balanced-tree algorithms. See
ext4 for more on journaling filesystems.

romfs A dumb, readonly filesystem used mainly for RAM disks (page 1168) during
installation.

smbfs Samba Filesystem (deprecated). See cifs.

software RAID RAID implemented in software. Refer to “RAID” on page 40.

sysv System V UNIX filesystem.

ufs Default filesystem under Sun’s Solaris operating system and other UNIXs.

umsdos A full-feature UNIX-like filesystem that runs on top of a DOS FAT filesystem.

vfat Developed by Microsoft, a standard that allows long filenames on FAT
partitions.

VxFS Veritas Extended Filesystem. The first commercial journaling (page 1155)
filesystem, popular under HP-UX and Solaris.

xfs SGI’s journaling filesystem (ported from Irix).

Table 12-1 Filesystems (continued)

 From the Library of WoweBook.Com

www.linux-ntfs.org

ptg

Filesystems 507

special /proc filesystem (page 497), which maps useful Linux kernel information to a
pseudodirectory. This section covers mounting local filesystems; refer to page 773
for information on using NFS to mount remote directory hierarchies. See /dev on
page 488 for information on device names.

Mount point The mount point for the filesystem/directory hierarchy that you are mounting is a
directory in the local filesystem. This directory must exist before you can mount a file-
system; its contents disappear as long as a filesystem is mounted on it and reappear
when you unmount the filesystem. See page 35 for a discussion of mount points.

Without any arguments, mount lists the currently mounted filesystems, showing the
physical device holding each filesystem, the mount point, the type of filesystem, and
any options set when each filesystem was mounted. The mount utility gets this infor-
mation from the /etc/mtab file (page 494).

$ mount
/dev/sda1 on / type ext4 (rw,errors=remount-ro)
proc on /proc type proc (rw,noexec,nosuid,nodev)
...
/dev/sda2 on /home type ext4 (rw)
/dev/sda5 on /pl5 type ext4 (rw)
/dev/sda6 on /pl6 type ext4 (rw)
/dev/sda1 on /p01 type ext4 (rw)
//jam/C on /jam/c type cifs (rw,mand)
dog:/p04 on /p04 type nfs (rw,addr=192.168.0.12)
/dev/hdb on /media/cdrom0 type iso9660 (ro,noexec,nosuid,nodev,user=sam)

The first entry in the preceding example shows the root filesystem, which is
mounted on /. The second entry shows the /proc pseudofilesystem (page 497). The
next four entries identify disk partitions holding standard Linux ext4 filesystems.
The directory /jam/c has a cifs (Windows) filesystem mounted on it using Samba.
You can use Linux utilities and applications to access the Windows files and direc-
tories on this partition as if they were Linux files and directories. The line starting
with dog shows a mounted, remote NFS filesystem. The last line shows the CD at
/dev/hdb mounted on /media/cdrom0.

If the list of filesystems in /etc/mtab is not correct, see the tip on page 494.

When you add a line for a filesystem to the /etc/fstab file (page 492), you can
mount that filesystem by giving the associated mount point or device name as the
argument to mount. For example, the CD listed earlier was mounted using the fol-
lowing command:

$ mount /media/cdrom0

Do not mount anything on root (/)
caution Always mount network directory hierarchies and removable devices at least one level below the root

level of the filesystem. The root filesystem is mounted on / ; you cannot mount two filesystems in
the same place. If you were to try to mount something on /, all files, directories, and filesystems
that were under the root directory would no longer be available, and the system would crash.

 From the Library of WoweBook.Com

ptg

508 Chapter 12 Files, Directories, and Filesystems

This command worked because /etc/fstab contains the additional information
needed to mount the file. An ordinary user was able to mount the file because of the
user option:

/dev/hdb /media/cdrom0 udf,iso9660 user,nosuid,noauto 0 0

You can also mount filesystems that do not appear in /etc/fstab. For example, when
you insert a floppy diskette that holds a DOS filesystem into the floppy diskette
drive, you can mount that filesystem using the following command:

$ sudo mount –t msdos /dev/fd0 /media/floppy0

The –t msdos option specifies a filesystem type of msdos. You can mount DOS file-
systems only if you have configured the Linux kernel (page 571) to accept DOS
filesystems. You do not need to mount a DOS filesystem to read from and write to
it, such as when you use mcopy (page 173). However, you do need to mount a DOS
filesystem to use Linux commands (other than Mtools commands) on files on the
filesystem (which may be on a diskette).

Mount Options

The mount utility takes many options, which you can specify either on the com-
mand line or in the /etc/fstab file (page 510). For a complete list of mount options
for local filesystems, see the mount man page; for remote directory hierarchies, see
the nfs man page.

The noauto option causes Linux not to mount the filesystem automatically. The
nosuid option forces mounted setuid executables to run with regular permissions
(no effective user ID change) on the local system (the system that mounted the
filesystem).

Unless you specify the user, users, or owner option, only a user running with root
privileges can mount and unmount a filesystem. The user option allows any user to
mount the filesystem, but the filesystem can be unmounted only by the user who
mounted it; the users option allows any user to mount and unmount the filesystem.
These options are frequently specified for CD, DVD, and floppy drives. The owner
option, which is used only under special circumstances, is similar to the user option
except that the user mounting the device must own the device.

Mounting a Linux Floppy Diskette

Mounting a Linux floppy diskette is similar to mounting a partition of a hard disk.
If it does not already exist, put an entry similar to the following in /etc/fstab for a
diskette in the first floppy drive:

Mount removable devices with the nosuid option
security Always mount removable devices with the nosuid option so that a malicious user cannot, for

example, put a setuid copy of bash on a disk and have a shell with root privileges. By default,
Ubuntu uses the nosuid option when mounting removable media.

 From the Library of WoweBook.Com

ptg

Filesystems 509

/dev/fd0 /media/floppy0 auto rw,user,nosuid,noauto 0 0

Specifying a filesystem type of auto causes the system to probe the filesystem to
determine its type and allows users to mount a variety of diskettes. Create the
/media/floppy0 directory if necessary. Insert a diskette and try to mount it. The dis-
kette must be formatted (use fdformat, which deletes all data on a diskette). In the
following example, the error message following the first command usually indicates
there is no filesystem on the diskette. In some cases, the mount command may hang.
If this problem occurs, pop the diskette out to display a prompt. Use mkfs
(page 458) to create a filesystem—but be careful, because mkfs destroys all data on
the diskette.

$ mount /dev/fd0
mount: I could not determine the filesystem type, and none was specified

$ mkfs /dev/fd0
mke2fs 1.41.11 (14-Mar-2010)
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
184 inodes, 1440 blocks
72 blocks (5.00%) reserved for the super user
First data block=1
Maximum filesystem blocks=1572864
1 block group
8192 blocks per group, 8192 fragments per group
184 inodes per group

Writing inode tables: done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 36 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

Now try the mount command again:

$ mount /dev/fd0
$ mount
...
/dev/fd0 on /media/floppy0 type ext2 (rw,noexec,nosuid,nodev,user=sam)

$ df -h /dev/fd0
Filesystem Size Used Avail Use% Mounted on
/dev/fd0 1.4M 19K 1.3M 2% /media/floppy0

The mount command without any arguments and df –h /dev/fd0 show that the
floppy diskette is mounted and ready for use.

umount: Unmounts a Filesystem

The umount utility unmounts a filesystem as long as it does not contain any files or
directories that are in use (open). For example, a logged-in user’s working directory

 From the Library of WoweBook.Com

ptg

510 Chapter 12 Files, Directories, and Filesystems

cannot be on the filesystem you want to unmount. The next command unmounts
the CD mounted earlier:

$ umount /media/cdrom0

Unmount a floppy or a remote (NFS) directory hierarchy the same way you would
unmount a partition of a hard drive.

The umount utility consults /etc/fstab to get the necessary information and then
unmounts the appropriate filesystem from its server. When a process has a file open
on the filesystem that you are trying to unmount, umount displays a message similar
to the following:

umount: /home: device is busy

Use the –a option to umount to unmount all mounted filesystems that are not in use.
You can never unmount the filesystem mounted at /. You can combine –a with the –t
option to unmount filesystems of a given type (ext4, nfs, or others). For example, the
following command unmounts all mounted nfs directory hierarchies that are not in use:

$ sudo umount -at nfs

fstab: Keeps Track of Filesystems

The system administrator maintains the /etc/fstab file, which lists local and remote
directory hierarchies, most of which the system mounts automatically when it
boots. The fstab file has six columns, where a hyphen is a placeholder for a column
that has no value:

1. Name—The name, label, or UUID number of a local block device
(page 504) or a pointer to a remote directory hierarchy. When you install
the system, Ubuntu uses UUID numbers for fixed devices. It prefaces each
line in fstab that specifies a UUID with a comment that specifies the device
name. Using UUID numbers in fstab during installation circumvents the
need for consistent device naming. Because udev (page 502) manages
device naming dynamically, the installer may not be aware, for example,
that the first disk is not named /dev/hda1 but rather /dev/sda1, but it
always knows the UUID number of a device. Using UUID numbers to
identify devices also keeps partitions and mount points correctly corre-
lated when you remove or swap devices. See /dev/disk/by-uuid (page 489)
for more information on UUID numbers. You can use the volume label of

When you cannot unmount a device because it is in use
tip When a process has a file open on a device you need to unmount, use fuser to determine which

process has the file open and to kill it. For example, when you want to unmount a floppy diskette,
give the command fuser –ki /media/floppy0 (substitute the mount point for the diskette on the
local system for /media/floppy0). After checking with you, this command kills the process(es)
using the diskette.

 From the Library of WoweBook.Com

ptg

Filesystems 511

a local filesystem by using the form LABEL=xx, where xx is the volume
label. Refer to e2label on page 458.

A remote directory hierarchy appears as hostname:pathname, where host-
name is the name of the remote system that houses the filesystem, and
pathname is the absolute pathname (on the remote system) of the direc-
tory that is to be mounted.

2. Mount point—The name of the directory file that the filesystem/directory
hierarchy is to be mounted on. If it does not already exist, create this
directory using mkdir. See pages 35 and 507.

3. Type—The type of filesystem/directory hierarchy that is to be mounted.
Local filesystems are generally of type ext2, ext4, or iso9660, and remote
directory hierarchies are of type nfs or cifs. Table 12-1 on page 505 lists
filesystem types.

4. Mount options—A comma-separated list of mount options, such as
whether the filesystem is mounted for reading and writing (rw, the default)
or readonly (ro). See pages 508 and 778, and refer to the mount and nfs
man pages for lists of options.

5. Dump—Used by dump (page 603) to determine when to back up the
filesystem.

6. Fsck—Specifies the order in which fsck checks filesystems. Root (/) should
have a 1 in this column. Filesystems that are mounted to a directory just
below the root directory should have a 2. Filesystems that are mounted
on another mounted filesystem (other than root) should have a 3. For
example, if local is a separate filesystem from /usr and is mounted on /usr
(as /usr/local), then local should have a 3. Filesystems and directory hier-
archies that do not need to be checked (for example, remotely mounted
directory hierarchies and CDs/DVDs) should have a 0.

The following example shows a typical fstab file:

$ cat /etc/fstab
/etc/fstab: static file system information.
...
<file system> <mount point> <type> <options> <dump> <pass>
proc /proc proc defaults 0 0
/ was on /dev/sda1 during installation
UUID=8f3c51c2-a42c-49b1-9f03-db2140cb7eb5 / ext4 defaults,errors=remount-ro 0 1
/home was on /dev/sda2 during installation
UUID=39fc600f-91d5-4c9f-8559-727050b27645 /home ext4 defaults 0 2
swap was on /dev/sda3 during installation
UUID=a68fb957-2ae7-4ae5-8656-23a1cf8fcd14 none swap sw 0 0
/dev/sda5 /pl5 ext4 defaults 0 2
/dev/sda6 /pl6 ext4 defaults 0 2
/dev/sdb /media/cdrom0 udf,iso9660 user,nosuid,noauto 0 0
/dev/fd0 /media/floppy0 auto rw,user,nosuid,noauto 0 0
dog:/p04 /p04 nfs defaults 0 0

 From the Library of WoweBook.Com

ptg

512 Chapter 12 Files, Directories, and Filesystems

In the preceding example, /pl5 and /pl6 do not use UUID numbers because these
devices were added to fstab by the administrator after the system was installed.

fsck: Checks Filesystem Integrity

The fsck (filesystem check) utility verifies the integrity of filesystems and, if possible,
repairs problems it finds. Because many filesystem repairs can destroy data, particu-
larly on nonjournaling filesystems (page 1155), such as ext2, by default fsck asks
you for confirmation before making each repair.

When fsck repairs a damaged filesystem, it may find unlinked files: files that have
lost their directory information. These files have no filenames. The fsck utility gives
these files their inode numbers as names and stores them in the lost+found directory
(page 488) in the filesystem that holds the file. You can use file (page 170) to deter-
mine the type of these files and less to view readable files. Because ls –l displays the
name of the owner of these files, you can return them to their owners.

The following command checks all unmounted filesystems that are marked to be
checked in /etc/fstab (page 510) except for the root filesystem:

$ sudo fsck -AR

The –A option causes fsck to check filesystems listed in fstab. When used with the
–A option, the –R option causes fsck not to check the root filesystem. You can check
a specific filesystem with a command similar to one of the following:

$ sudo fsck /home

or

$ sudo fsck /dev/sda2

tune2fs: Changes Filesystem Parameters

The tune2fs utility displays and modifies filesystem parameters on ext2, ext3, and
ext4 filesystems. This utility can also set up journaling on an ext2 filesystem, turning
it into an ext3 filesystem. With the introduction of increasingly more reliable hard-
ware and software, systems tend to be rebooted less frequently, so it is important to
check filesystems regularly. By default, fsck is run on each partition while the system
is brought up, before the partition is mounted. (The checks scheduled by tune2fs are
separate and scheduled differently from the checks that are done following a system
crash or hard disk error [see the previous section].)

Depending on the flags, fsck may do nothing more than display a message saying
the filesystem is clean. The larger the partition, the more time it takes to check it,
assuming a nonjournaling filesystem. These checks are often unnecessary. The
tune2fs utility helps you to find a happy medium between checking filesystems each

Do not run fsck on a mounted filesystem
caution Do not run fsck on a mounted filesystem. When you attempt to check a mounted filesystem, fsck

warns you and asks whether you want to continue. Reply no. You can run fsck with the –N option
on a mounted filesystem because it will not write to the filesystem; as a result, no harm can come
of running it. See page 504 for more information.

 From the Library of WoweBook.Com

ptg

Filesystems 513

time you reboot the system and never checking them. It does so by scheduling when
fsck checks a filesystem (these checks occur only when the system is booted).1 You
can use two scheduling patterns: time elapsed since the last check and number of
mounts since the last check. The following command causes fsck to check /dev/sda5
after it has been mounted eight times or after 15 days have elapsed since its last
check, whichever happens first:

$ sudo tune2fs -c 8 -i 15 /dev/sda5
tune2fs 1.41.11 (14-Mar-2010)
Setting maximal mount count to 8
Setting interval between checks to 1296000 seconds

The next tune2fs command is similar but works on a different partition and sets the
current mount count to 4. When you do not specify a current mount count, it is set
to zero:

$ sudo tune2fs -c 8 -i 15 -C 4 /dev/sda6
tune2fs 1.41.11 (14-Mar-2010)
Setting maximal mount count to 8
Setting current mount count to 4
Setting interval between checks to 1296000 seconds

The –l option lists a variety of information about the partition. You can combine
this option with others. A maximum mount count of –1 or 0 means fsck and the
kernel will ignore the mount count information.

$ sudo tune2fs -l /dev/sda6
tune2fs 1.41.11 (14-Mar-2010)
Filesystem volume name: <none>
Last mounted on: /home
Filesystem UUID: e1adfa6b-39e8-4658-82ac-6f75ecdb82c4
Filesystem magic number: 0xEF53
Filesystem revision #: 1 (dynamic)
Filesystem features: has_journal ext_attr resize_inode dir_index
filetype needs_recovery extent flex_bg sparse_super large_file huge_file
uninit_bg dir_nlink extra_isize
Filesystem flags: signed_directory_hash
Default mount options: (none)
Filesystem state: clean
Errors behavior: Continue
Filesystem OS type: Linux
Inode count: 1253376
Block count: 5012992
Reserved block count: 250649
Free blocks: 4278628
Free inodes: 1110959
First block: 0
Block size: 4096
Fragment size: 4096
...

1. For systems whose purpose in life is to run continuously, this kind of scheduling does not work. You
must develop a schedule that is not based on system reboots but rather on a clock. Each filesystem must
be unmounted periodically, checked with fsck (preceding section), and then remounted.

 From the Library of WoweBook.Com

ptg

514 Chapter 12 Files, Directories, and Filesystems

Set the filesystem parameters on the local system so they are appropriate to the way
you use it. When using the mount count to control when fsck checks filesystems, use
the –C option to stagger the checks to ensure all checks do not occur at the same
time. Always make sure new and upgraded filesystems have checks scheduled as
you desire.

ext2 to ext3 To change an ext2 filesystem to an ext3 filesystem, you must put a journal
(page 1155) on the filesystem, and the kernel must support ext3 filesystems. Use the
–j option to set up a journal on an unmounted filesystem:

$ sudo tune2fs -j /dev/sda5
tune2fs 1.41.11 (14-Mar-2010)
Creating journal inode: done
This filesystem will be automatically checked every 8 mounts or
15 days, whichever comes first. Use tune2fs -c or -i to override.

Before you can use fstab (page 492) to mount the changed filesystem, you must
modify its entry in the fstab file to reflect its new type. To do so, change the third
column to ext3.

ext3 to ext2 The following command changes an unmounted or readonly ext3 filesystem to an
ext2 filesystem:

$ sudo tune2fs -O ^has_journal /dev/sda5
tune2fs 1.41.11 (14-Mar-2010)

Speeding lookups The dir_index option, which is off by default, adds a balanced-tree binary hash
lookup method for directories. This feature improves scalability of directories with
large numbers of files, although it means that the hash needs to be updated each
time a directory changes. Turn on using tune2fs –O dir_index and reboot to create
the hash.

Refer to the tune2fs man page for more details.

RAID Filesystem

RAID (Redundant Arrays of Inexpensive/Independent Disks) spreads information
across several disks so as to combine several physical disks into one larger virtual
device. RAID improves performance and may create redundancy. For more infor-
mation see page 40.

Chapter Summary

Filesystems hold directories of files. These structures store user data and system
data that are the basis of users’ work on the system and the system’s existence.
Linux supports many types of files, including ordinary files, directories, links, and
special files. Special files provide access to operating system features. The kernel
uses major and minor device numbers to identify classes of devices and specific
devices within each class. Character and block devices represent I/O devices such as

 From the Library of WoweBook.Com

ptg

Advanced Exercises 515

hard disks and printers. Inodes, which are identified by inode numbers, are stored
on disk and define a file’s existence.

When the system comes up, the /etc/fstab file controls which filesystems are
mounted and how they are mounted (readonly, read-write, and so on). After a sys-
tem crash, filesystems are automatically verified and repaired if necessary by fsck.
You can use tune2fs to force the system to cause fsck to verify a filesystem periodi-
cally when the system boots.

Exercises

1. What is the function of the /etc/hosts file? Which services can you use in
place of, or to supplement, the hosts file?

2. What does the /etc/resolv.conf file do? What do the nameserver lines in
this file do?

3. What is an inode? What happens to the inode when you move a file within
a filesystem?

4. What does the .. entry in a directory point to? What does this entry point
to in the root (/) directory?

5. What is a device file? Where are device files located?

6. What is a FIFO? What does FIFO stand for? What is another name for a
FIFO? How does a FIFO work?

Advanced Exercises

7. Write a line for the /etc/fstab file that mounts the /dev/hdb1 ext4 file-
system on /extra with the following characteristics: The filesystem will not
be mounted automatically when the system boots, and anyone can mount
and unmount the filesystem.

8. Without using rm, how can you delete a file? (Hint: How do you rename a file?)

9. After burning an ISO image file named image.iso to a CD on /dev/hdc,
how can you can verify the copy from the command line?

10. Why should /var reside on a separate partition from /usr?

11. Create a FIFO. Using the shell, demonstrate that two users can use this
FIFO to communicate asynchronously.

12. How would you mount an ISO image so you could copy files from it with-
out burning it to a CD?

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

555111777

13Chapter13A software package is the collection of scripts, programs, files,
and directories required to install and run applications, utilities,
servers, and system software. A package also includes a list of
other packages that the package depends on (dependencies).
Using software packages makes it easier to transfer, install, and
uninstall software. A package contains either executable files or
source code files. Executable files are precompiled for a specific
processor architecture and operating system, whereas source
files need to be compiled but will run on a wide range of
machines and operating systems.

In This Chapter

JumpStart: Installing and
Removing Packages
Using aptitude 519

Finding the Package That
Holds a File You Need 521

APT: Keeps the System
Up-to-Date 522

The apt cron Script and APT
Configuration Files. 524

aptitude: Works with Packages
and the Local Package Index . . . 526

dpkg: The Debian Package
 Management System 532

BitTorrent. 539

Installing Non-dpkg Software. . . . 541

wget: Downloads Files
Noninteractively 543

13

Downloading and

Installing Software

 From the Library of WoweBook.Com

ptg

518 Chapter 13 Downloading and Installing Software

Software package
formats

Software packages come in different formats. Ubuntu uses dpkg (page 532), which
was the first Linux packaging system to incorporate dependency information; it gets
its name from the Linux distribution it was developed on (Debian). Other formats
include rpm (used on Red Hat, SuSE, and other systems), yum, the GNU Configure
and Build System (page 542), and compressed tar. Formats such as compressed tar,
which were popular before the introduction of dpkg, are used less often today
because they require more work on the part of the installer (you) and do not pro-
vide the dependency and compatibility checking that dpkg offers.

dpkg The Debian package management system is referred to as the dpkg management
system, or just dpkg. This system is a collection of more than 20 utilities that man-
age and report on dpkg packages, both those installed on the system and those
available from online repositories. Give the command dpkgTABTAB (press TAB twice) or
apropos dpkg to display a list of dpkg utilities.

deb files The dpkg utilities work with files whose names end in .deb and are referred to as
deb files (page 533) or (software) packages.

APT APT (Advanced Package Tool) is a collection of utilities that, together with dpkg,
work with software packages. APT downloads software packages, while dpkg
installs, removes, maintains, manages dependencies of, and reports on software
packages. Give the command aptTABTAB or apropos apt to display a list of APT utili-
ties (and a few other things).

Kernel source code See Chapter 15 for information on downloading, compiling, and installing kernel
source code.

Graphical interfaces Several pseudographical and graphical interfaces to dpkg and APT are available.
Among the most popular are Synaptic (page 133), aptitude, and dselect.

Repositories APT downloads package headers and packages from servers called repositories that can
reside on the Internet, a CD, or a local network. See page 522 for more information.

Bug tracking Ubuntu uses Launchpad, which belongs to a class of programs formally known as
defect tracking systems, to track bugs (launchpad.net for information about
Launchpad and launchpad.net/ubuntu to use it). You can use Launchpad to read
about existing bugs and to report new ones. Ubuntu uses Bazaar for source code
version control (bazaar.canonical.com and wiki.ubuntu.com/Bzr). Launchpad
allows you to track any project that uses Bazaar version control.

Keeping software
up-to-date

Of the many reasons to keep software up-to-date, one of the most important is
security. Although you may hear about software-based security breaches after the
fact, you rarely hear about the fixes that were available but never installed before
the breach occurred. Timely installation of software updates is critical to system
security. Linux open-source software is the ideal environment to find and fix bugs
and make repaired software available quickly. When you keep the system and appli-
cation software up-to-date, you keep abreast of bug fixes, new features, support for
new hardware, speed enhancements, and more.

As shipped, most versions of Ubuntu check for updates daily and advise you when
updates are available (page 112). Use the Software Sources window (page 131),
Updates tab to change these options.

 From the Library of WoweBook.Com

ptg

JumpStart: Installing and Removing Packages Using aptitude 519

JumpStart: Installing and Removing

Packages Using aptitude
This section explains how to install packages on and remove packages from a sys-
tem using aptitude, a versatile tool that is part of APT. The aptitude utility has two
interfaces: pseudographical and textual. This chapter covers the textual interface.
Give the command aptitude without arguments to display the pseudographical
interface. Information on this interface is available in the aptitude user’s manual
(algebraicthunk.net/~dburrows/projects/aptitude/doc/en).

If you do not know the name of the package you want to install, see page 521. If
you want aptitude to download packages that are not supported by Ubuntu, you
must add the repositories that hold those packages to the sources.list file; see
page 523.

Before using aptitude to install a package, give the command sudo aptitude update
to update the local list of packages (more about this process on page 528). By
default, the apt cron script (page 524) updates this list daily. Even so, it is a good
idea to give this command periodically until you are sure the script is updating
the list.

aptitude install The following example calls aptitude to install the tcsh shell, which is part of the tcsh
package:

$ sudo aptitude install tcsh
Reading package lists... Done
Building dependency tree
Reading state information... Done
Reading extended state information
Initializing package states... Done
The following NEW packages will be installed:
 tcsh
0 packages upgraded, 1 newly installed, 0 to remove and 0 not upgraded.
Need to get 359kB of archives. After unpacking 733kB will be used.
Writing extended state information... Done
Get:1 http://us.archive.ubuntu.com/ubuntu/ lucid/universe tcsh 6.17.00-3 [359kB]
Fetched 359kB in 4s (80.9kB/s)
Selecting previously deselected package tcsh.
(Reading database ... 123213 files and directories currently installed.)
Unpacking tcsh (from .../tcsh_6.17.00-3_i386.deb) ...
Processing triggers for man-db ...
Setting up tcsh (6.17.00-3) ...
update-alternatives: using /bin/tcsh to provide /bin/csh (csh) in auto mode.
...

The next command installs the apache2.2-common package. Because this package
depends on other packages, and because these packages are not installed, aptitude
lists the packages it will automatically install in addition to the one you asked it to
install. When aptitude is going to install more packages than you requested, it asks if
you want to continue. Reply y if you want to continue or n if you want to quit.

 From the Library of WoweBook.Com

ptg

520 Chapter 13 Downloading and Installing Software

$ sudo aptitude install apache2.2-common
...
The following NEW packages will be installed:
 apache2-utils{a} apache2.2-bin{a} apache2.2-common libapr1{a}
 libaprutil1{a} libaprutil1-dbd-sqlite3{a} libaprutil1-ldap{a}
0 packages upgraded, 7 newly installed, 0 to remove and 7 not upgraded.
Need to get 3,318kB of archives. After unpacking 9,994kB will be used.
Do you want to continue? [Y/n/?] y
...

When you install some packages, aptitude lists suggested packages. Suggested packages
may be useful but are not required with the package you are installing.

aptitude remove The aptitude remove command removes a package but leaves its configuration files in
place, allowing you to reinstall the package without having to reconfigure it. Use purge
(discussed next) in place of remove to remove a package and its configuration files.

$ sudo aptitude remove tcsh
...
The following packages will be REMOVED:
 tcsh
0 packages upgraded, 0 newly installed, 1 to remove and 0 not upgraded.
Need to get 0B of archives. After unpacking 733kB will be freed.
Writing extended state information... Done
(Reading database ... 123237 files and directories currently installed.)
Removing tcsh ...
...

Automatically
removes

dependencies

When aptitude removes a package, it also removes the dependent packages it auto-
matically installed when it installed the original package. The following example
removes apache2-common and its dependencies:

$ sudo aptitude remove apache2.2-common
...
The following packages will be REMOVED:
 apache2-utils{u} apache2.2-bin{u} apache2.2-common libapr1{u}
 libaprutil1{u} libaprutil1-dbd-sqlite3{u} libaprutil1-ldap{u}
0 packages upgraded, 0 newly installed, 7 to remove and 0 not upgraded.
Need to get 0B of archives. After unpacking 9,994kB will be freed.
Do you want to continue? [Y/n/?] y
...

aptitude purge The next example uses an alternative approach—the aptitude purge command—to
remove apache2-common, its dependencies, and all configuration files. The {p}
following apache2.2-common indicates that aptitude is removing (purging)
apache2.2-common’s configuration files, as does the last line of the example.

$ sudo aptitude purge apache2.2-common
...
The following packages will be REMOVED:
 apache2-utils{u} apache2.2-bin{u} apache2.2-common{p} libapr1{u}
 libaprutil1{u} libaprutil1-dbd-sqlite3{u} libaprutil1-ldap{u}
0 packages upgraded, 0 newly installed, 7 to remove and 0 not upgraded.
Need to get 0B of archives. After unpacking 9,994kB will be freed.

 From the Library of WoweBook.Com

ptg

Finding the Package That Holds a File You Need 521

Do you want to continue? [Y/n/?] y
Writing extended state information... Done
(Reading database ... 123778 files and directories currently installed.)
Removing apache2.2-common ...
Purging configuration files for apache2.2-common ...
...

Finding the Package That Holds a File You Need

You may know the name of a file or utility you need but not know the name of the
package that holds the file. There are several ways that you can locate a package
that holds a file. The Ubuntu Web page, packages.ubuntu.com, allows you to search
for packages based on several criteria. Partway down the page is a section titled
Search that gives you two ways to search for packages. You can use the second,
Search the contents of packages, to search for a package that holds a specific file.
Enter the name of the file in the text box labeled Keyword, click the radio button
labeled packages that contain files named like this, select the distribution and archi-
tecture you are working with, and click Search. The browser displays a list of pack-
ages that hold the file you are looking for. For example, suppose you are compiling
a program and get the following error message:

xv.h:174:22: error: X11/Xlib.h: No such file or directory

You are working on an Intel x86-compatible system running Lucid and need the file
Xlib.h located in the X11 directory. When you enter X11/Xlib.h in the text box
labeled Keyword (on packages.ubuntu.com), the browser displays the following list:

usr/include/X11/Xlib.h libx11-dev
usr/lib/TenDRA/lib/include/x5/lib.api/X11/Xlib.h tendra
...

Click the package name on the right to display more information about the package
holding the file listed on the left. The most likely candidate is the first entry, which
is supported by Ubuntu and is the most generic. You can install this package using
the following command:

$ sudo aptitude install libx11-dev

apt-file You can also use the apt-file utility to search for a package containing a specified file.
Before you can use this utility, you must install it and update the package list on the
local system. Updating the package list takes a few minutes. Because apt-file displays

Finding a package with a name that sounds like...
tip The aptitude search command looks for packages with names that match a pattern. For example,

the command aptitude search vnc displays a list packages that have vnc in their names. See
page 529 for more information.

 From the Library of WoweBook.Com

ptg

522 Chapter 13 Downloading and Installing Software

multiple, sequential, identical lines, you can pipe its output through uniq (page 168)
to make the job of finding the right package easier:

$ sudo aptitude install apt-file
...
$ sudo apt-file update
...
$ apt-file search X11/Xlib.h | uniq
ivtools-dev: usr/include/IV-X11/Xlib.h
libghc6-x11-dev: usr/lib/X11-1.2.1/ghc-6.6.1/Graphics/X11/Xlib.hi
libhugs-x11-bundled: usr/lib/hugs/packages/X11/Graphics/X11/Xlib.hs
libx11-dev: usr/include/X11/Xlib.h
tendra: usr/lib/TenDRA/lib/include/x5/lib.api/X11/Xlib.h

Again, the most generic package (the next-to-last one listed) is probably the one you
want. While apt-cache (page 530) searches installed packages only, the aptitude
search command (page 529) and apt-file search all packages from the repositories
listed in /etc/apt/sources.list, including packages that have not been downloaded.
See also dpkg ––search (page 538) and dpkg ––listfiles (page 538) for other ways of
searching for files.

APT: Keeps the System Up-to-Date

APT (Advanced Package Tool) is a collection of utilities that download, install,
remove, upgrade, and report on software packages. APT utilities download packages
and call dpkg (page 532) utilities to manipulate the packages once they are on the local
system. For more information refer to www.debian.org/doc/manuals/apt-howto.

Repositories

Repositories hold collections of software packages and related information, includ-
ing headers that describe each package and provide information on other packages
the package depends on. Ubuntu maintains repositories for each of its releases.

Software package
categories

Software packages from Ubuntu repositories are divided into several categories,
including the following:

• main—Ubuntu-supported open-source software

• universe—Community-maintained open-source software

• multiverse—Software restricted by copyright or legal issues

• restricted—Proprietary device drivers

• partner—Packages that are not part of Ubuntu; offered by other vendors

• backports—Packages from later releases of Ubuntu that are not available
for an earlier release

APT selects packages from repositories it searches based on the categories specified
in the sources.list file (next). You do not need to reconfigure APT to install supported
software. You may get the following error message when you try to install a package:

 From the Library of WoweBook.Com

www.debian.org/doc/manuals/apt-howto

ptg

APT: Keeps the System Up-to-Date 523

$ sudo aptitude install xxx
...
Couldn't find package "xxx". However, the following
packages contain "xxx" in their name:
 mixxx mixxx-data
No packages will be installed, upgraded, or removed.
...

This message means that the package you requested does not exist in the repositories
that APT is searching (as specified in sources.list). It may also mean that the package
does not exist; check the spelling. If you are not running the latest version of Ubuntu,
it may be available on a later version; try enabling the backports repository in
sources.list (discussed next).

sources.list: Specifies Repositories for APT to Search

The /etc/apt/sources.list file specifies the repositories APT searches when you ask it
to find or install a package. You must modify the sources.list file to enable APT to
download software from nondefault repositories. You can use software-properties-gtk
to display the Software Sources window to modify sources.list (as explained on
page 131) or you can use an editor to modify it (as explained in this section).

Each line in sources.list describes one repository and has the following format:

type URI repository category-list

where type is deb (page 533) for packages of executable files and deb-src for pack-
ages of source files; URI is the location of the repository, usually cdrom or an Internet
address that starts with http://; repository is the name of the repository that APT is to
search; and category-list is a SPACE-separated list of categories (see “Software package
categories” in the preceding section) that APT selects packages from. When a line
specifies a non-Ubuntu repository, the repository and category-list may have other
values. Comments begin with a hashmark (#) anywhere on a line and end at the end
of the line. The comment #Added by software-properties indicates that software-prop-
erties-gtk added the line to sources.list.

The following line from sources.list causes APT to search the Lucid archive located
at us.archive.ubuntu.com/ubuntu for deb packages that contain executable files. It
accepts packages that are categorized as main or restricted:

deb http://us.archive.ubuntu.com/ubuntu/ lucid main restricted

Replacing deb with deb-src causes APT to search in the same manner for packages
of source files. Use the apt-get source command to download source packages
(page 532).

deb-src http://us.archive.ubuntu.com/ubuntu/ lucid main restricted

Default repositories The default sources.list file includes repositories such as lucid (Lucid as originally
released), lucid-updates (major bug fixes after the release of Intrepid), lucid-security
(critical security-related updates), and lucid-backports (newer, less-tested software
that is not reviewed by the Ubuntu security team). Separating security updates from

 From the Library of WoweBook.Com

http://us.archive.ubuntu.com/ubuntu/
http://us.archive.ubuntu.com/ubuntu/

ptg

524 Chapter 13 Downloading and Installing Software

other updates enables you to set up a system to automatically install security
updates while allowing you to review other updates before installing them. As
installed, the sources.list file allows you to search for and retrieve packages from the
main, universe, multiverse, and restricted categories (page 522) of the lucid, lucid-
updates, and lucid-security repositories. Some repositories in sources.list are com-
mented out. Remove the leading hashmark (#) on the lines of the repositories you
want to enable. After you modify sources.list, give the command aptitude update
(page 528) to update the local package indexes.

The next line, which was added to sources.list, enables APT to search a third-party
repository (but see the following security tip):

deb http://download.skype.com/linux/repos/debian/ stable non-free

In this case, the repository is named stable and the category is non-free. Although
the code is compiled for Debian, it runs on Ubuntu, as is frequently the case.

The APT Local Package Indexes and the APT Cache

APT local package
indexes

The /var/lib/apt/lists directory holds the local package index and associated files.
For each repository listed in /etc/apt/sources.list (page 523), this directory holds a
file that lists information about the most recent version of each package in that
repository. APT uses these files to determine whether the packages on the system,
and those in its cache, are the most recent versions.

APT cache The /var/cache/apt/archives directory holds recently downloaded deb files
(page 533). By default, the apt cron script (next) limits the size of this directory and
the age of the files in it.

The apt cron Script and APT Configuration Files

Traditionally, APT configuration instructions are kept in a single file:
/etc/apt/apt.conf; Ubuntu breaks this file into smaller files that it keeps in the
/etc/apt/apt.conf.d directory. The apt cron script, kept in /etc/cron.daily so it is run
daily, reads the configuration files in apt.conf.d and maintains the APT local package
indexes and the APT cache based on the instructions in those files. APT tools, such as
aptitude, also read these files as they start. This section explains a few of the many
directives you can use to control APT tools. See the apt.conf man page and use zless to
view the /usr/share/doc/apt/examples/configure-index.gz file for more information.

The software-properties-gtk utility, which is part of the software package with the
same name, opens the Software Sources window (page 131), which allows you to

Use repositories you trust

security There are many repositories of software packages. Search the Internet for ubuntu repositories to
display a sampling of them. Be selective in which repositories you add to sources.list, however:
When you add a repository, you are trusting the person who runs the repository not to put mali-
cious software in packages you may download. In addition, packages that are not supported by
Ubuntu can conflict with other packages and/or cause upgrades to fail.

 From the Library of WoweBook.Com

http://download.skype.com/linux/repos/debian/

ptg

APT: Keeps the System Up-to-Date 525

set some APT configuration directives using a graphical interface (Updates tab,
Automatic updates).

The following files, which are part of the update-notifier-common package, control
how the apt cron script maintains the APT local package indexes and the APT cache:

$ cat /etc/apt/apt.conf.d/10periodic
APT::Periodic::Update-Package-Lists "1";
APT::Periodic::Download-Upgradeable-Packages "0";
APT::Periodic::AutocleanInterval "0";

$ cat /etc/apt/apt.conf.d/20archive
APT::Archives::MaxAge "30";
APT::Archives::MinAge "2";
APT::Archives::MaxSize "500";

Working with root privileges, you can edit these files and change the values within
the quotation marks to change what the apt cron script does. Each line must end
with a semicolon. The following list explains each of the directives in these files.

APT::Periodic::Update-Package-Lists "days";
Synchronizes local package indexes with their corresponding repositories
(page 528) every days days. Set days to 0 to disable this directive.

APT::Periodic::Download-Upgradeable-Packages "days";
Downloads (but does not install) the packages necessary to upgrade all packages on
the system (page 528) every days days. Set days to 0 to disable this directive.

APT::Periodic::AutocleanInterval "days";
Clears the APT cache (page 524) of packages that can no longer be downloaded
every days days. Set days to 0 to disable this directive.

APT::Periodic::Unattended-Upgrade "days";
Installs upgrades that relate to system security every days days and writes a log to
/var/log/unattended-upgrades. Make sure the unattended-upgrades package is
installed; for more information see /usr/share/doc/unattended-upgrades/README.
Set days to 0 to disable this directive.

APT::Archives::MaxAge "days";
Deletes files from the APT cache (page 524) older than days days. Set days to 0 to
disable this directive.

APT::Archives::MinAge "days";
Causes files younger than days days not to be deleted from the APT cache (page 524).
Set days to 0 to disable this directive.

APT::Archives::MaxSize "MB";
Establishes the maximum size of the APT cache (page 524). When the cache grows
larger than MB megabytes, the apt cron script deletes files until the cache is smaller
than this size. It deletes the largest files first. Set MB to 0 to disable this directive.

KDE and Adept If you are running KDE, the apt.conf.d directory holds two files that work with the
Adept package manager (which is not covered in this book): 15adept-periodic-update

 From the Library of WoweBook.Com

ptg

526 Chapter 13 Downloading and Installing Software

and 25adept-archive-limits. These files should be the same as their GNOME counter-
parts: 10periodic and 20archive. If the Adept files exist on the local system and you
modify their GNOME counterparts, copy 10periodic to 15adept-periodic-update
and 20archive to 25adept-archive-limits.

aptitude: Works with Packages and the Local Package Index

One of the most commonly used APT utilities is aptitude. The JumpStart on
page 519 explains how to use the aptitude install and remove commands to add and
remove packages from the local system. This section describes aptitude in more
detail and explains how to use other of its commands and options.

Logs The aptitude utility keeps very readable logs in /var/log/aptitude.

Virtual package When you install certain packages, aptitude queries you and, if you agree, installs
more than one package. You are either installing a package with dependencies or a
virtual package, also called a metapackage. A virtual package is not a software
package, but rather a metapackage that depends on other packages. Virtual pack-
ages facilitate the installation of software that requires multiple packages.

The format of an aptitude command is

aptitude options command [package-list]

where options is one or more options from the list of options that begins on
page 527, command is a command from the list of commands in the next section,
and package-list is a SPACE-separated list of the names of one or more packages you
want to work with. With the search command, package-list is a list of search pat-
terns (page 529). With other commands, an element of package-list that contains a
tilde (~) is treated as a search pattern. Except when aptitude is only displaying pack-
age information, you must work with root privileges. If you call aptitude without
arguments, it displays its pseudographical interface. This section lists more common
commands and options; see the aptitude man page for a complete list.

See page 521 if you need to determine the name of the package that holds a file you
want to install.

aptitude Commands

This section describes the more common aptitude commands. You must run all these
commands, except search and show, while working with root privileges.

autoclean Clears the APT cache (page 524) of packages that can no longer be downloaded.
Run this command periodically to keep the local cache from becoming cluttered
with useless files.

clean Deletes all packages from the APT cache (page 524).

download Downloads the deb file (page 533) for a package to /var/cache/apt/archives.

full-upgrade Performs the tasks safe-upgrade does and also works with newer packages that have
different dependencies than the ones they are replacing. This command installs new

 From the Library of WoweBook.Com

ptg

APT: Keeps the System Up-to-Date 527

packages if necessary. It does not upgrade from one release of Ubuntu to another;
see page 74 for information on upgrading Ubuntu to another release.

install Downloads, unpacks, and installs all packages in the package-list as well as all
packages those packages depend on. See page 519 for an example.

purge Removes all packages in the package-list, including their configuration files. See
page 520 for an example of the remove command.

reinstall Downloads, unpacks, and reinstalls an already installed package, upgrading to the
latest version if necessary.

remove Removes all packages in the package-list. This command does not remove configu-
ration files. See page 520 for an example.

safe-upgrade Installs the latest versions of most packages on the system. This command will not
install a package that is not already on the system, nor will it remove an installed
package. It will not install a newer version of a package that cannot be installed
without changing the install status of another package. To make sure the local APT
cache is up-to-date, run aptitude update before giving this command. See page 528
for an example. See also full-upgrade.

search Searches the repositories specified by sources.list for packages whose names are
matched by any element of package-list. For example, a search for apache2 will
yield apache2-dev, apache2-doc, apache2, apache2-mpm, and so on. See page 529
for an example.

show Displays detailed information about package-list. See page 529 for an example.

update Synchronizes the local APT package index files with those in the repositories. See
page 528 for an example.

aptitude Options

This section describes some of the options you can use with aptitude commands.
Each description advises you whether the option works with only certain com-
mands.

––show-deps –D Displays information about packages a command would automatically install
or remove.

––download-only –d Does not unpack or install a package after downloading it.

–f Attempts to fix broken dependencies.

––purge-unused Removes packages that are no longer needed because they were automatically
installed to satisfy a dependency of a package that has been removed.

––help –h Displays a summary of usage, commands, and options.

––simulate –s Displays what command would do, without taking any action.

––assume-yes –y Assumes a yes response to most prompts so aptitude runs noninteractively. The
aptitude utility still prompts for an extraordinary event, such as removing an
essential package or attempting to install an unauthenticated package.

 From the Library of WoweBook.Com

ptg

528 Chapter 13 Downloading and Installing Software

aptitude update: Synchronizes Local Package Indexes

with Repositories

The aptitude update command synchronizes local package indexes with their corre-
sponding repositories:

$ sudo aptitude update
Hit http://security.ubuntu.com lucid-security Release.gpg
Ign http://security.ubuntu.com/ubuntu/ lucid-security/main Translation-en_US
Get:1 http://us.archive.ubuntu.com lucid Release.gpg [189B]
Ign http://us.archive.ubuntu.com/ubuntu/ lucid/main Translation-en_US
Ign http://security.ubuntu.com/ubuntu/ lucid-security/restricted Translation-en_US
Ign http://security.ubuntu.com/ubuntu/ lucid-security/universe Translation-en_US
Ign http://security.ubuntu.com/ubuntu/ lucid-security/multiverse Translation-en_US
Hit http://security.ubuntu.com lucid-security Release
...
Hit http://us.archive.ubuntu.com lucid-updates/universe Sources
Hit http://us.archive.ubuntu.com lucid-updates/multiverse Packages
Hit http://us.archive.ubuntu.com lucid-updates/multiverse Sources
Fetched 11.1MB in 31s (353kB/s)
Reading package lists... Done

Current status: 30 updates [+30], 76 new [+33].

After running this command, APT can determine, without accessing repositories,
whether installed packages and those in its cache are the most recent versions
available.

By default, the apt cron script (page 524) synchronizes local package indexes nightly.
If this script is running and set to update the package index, you need not run the
update command. However, you must run this command after you add repositories
to /etc/apt/sources.list before APT can retrieve files from new repositories.

aptitude safe-upgrade and aptitude full-upgrade: Upgrade

the System

There are two aptitude commands that upgrade all packages on the system: safe-
upgrade, which upgrades all packages on the system that do not require new pack-
ages to be installed, and full-upgrade, which upgrades all packages on the system,
installing new packages as needed.

aptitude
safe-upgrade

The following example uses the aptitude safe-upgrade command to upgrade all
packages on the system that depend only on packages that are already installed.
This command will not install new packages (packages that are not already on the
system). Before running this command, run aptitude update (page 528) to make
sure the local package indexes are up-to-date.

$ sudo aptitude update
...
$ sudo aptitude safe-upgrade
...

 From the Library of WoweBook.Com

ptg

APT: Keeps the System Up-to-Date 529

The following packages will be upgraded:
 bash gnome-disk-utility media-player-info xscreensaver-data
4 packages upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
Need to get 1,266kB of archives. After unpacking 28.7kB will be used.
Do you want to continue? [Y/n/?] y
...

The aptitude utility lists the changes it will make and asks you whether you want
to continue. Enter y to upgrade the listed packages or n to quit. Packages that are
not upgraded because they depend on packages that are not installed are listed as
kept back.

aptitude
full-upgrade

Use the aptitude full-upgrade command to upgrade all packages, including packages
that are dependent on packages that are not installed. This command installs new
packages as needed to satisfy dependencies.

aptitude search: Searches the Repositories for Packages

The search command interprets the package-list on the command line as a list of
patterns; all other aptitude commands normally interpret it as a list of package
names. This command searches all packages from the repositories listed in
/etc/apt/sources.list, including packages that have not been downloaded, and dis-
plays one line about each package whose name matches one of the elements of
package-list:

$ aptitude search vim
p firefox-vimperator - Firefox extension to make it have vim look
v gvim -
p jvim-canna - Japanized VIM (Canna version)
p jvim-doc - Documentation for jvim (Japanized VIM)
p libtext-vimcolor-perl - syntax color text in HTML or XML using Vim
p vim - Vi IMproved - enhanced vi editor
p vim-addon-manager - manager of addons for the Vim editor
i vim-common - Vi IMproved - Common files
...

The letter in the first column of each entry indicates the status of the package on the
system: i for installed, c for removed except for configuration files, p for purged
(package and configuration files removed), and v for a virtual package (page 526).
A second letter in the first column indicates a stored action that will be performed
on the package. An A appearing as the third letter means the package was automat-
ically installed.

aptitude show: Displays Package Information

The aptitude show command displays information about packages in the reposito-
ries, including dependency information. See also the apt-cache show command,
which displays more information (page 531), and the dpkg status command
(page 537). On the next page is an example.

 From the Library of WoweBook.Com

ptg

530 Chapter 13 Downloading and Installing Software

$ aptitude show nfs-common
Package: nfs-common
State: not installed
Version: 1:1.2.0-4ubuntu4
Priority: optional
Section: net
Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Uncompressed Size: 602k
Depends: portmap (>= 6.0-10ubuntu1), adduser, ucf, lsb-base (>=
 1.3-9ubuntu3), netbase (>= 4.24), initscripts (>=
 2.86.ds1-38.1), libc6 (>= 2.4), libcomerr2 (>= 1.01),
 libevent-1.4-2 (>= 1.4.13-stable), libgssapi-krb5-2 (>=
 1.6.dfsg.2), libgssglue1, libk5crypto3 (>= 1.6.dfsg.2),
 libkrb5-3 (>= 1.6.dfsg.2), libnfsidmap2, librpcsecgss3,
 libwrap0 (>= 7.6-4~), upstart-job
Conflicts: nfs-client
Replaces: mount (< 2.13~), nfs-client, nfs-kernel-server (< 1:1.0.7-5)
Provides: nfs-client
Description: NFS support files common to client and server
 Use this package on any machine that uses NFS, either as client or
 server. Programs included: lockd, statd, showmount, nfsstat, gssd and
 idmapd.

 Upstream: SourceForge project "nfs", CVS module nfs-utils.
Homepage: http://nfs.sourceforge.net/

apt-cache: Displays Package Information

The apt-cache utility has many commands—some that manipulate the APT package
cache and others that display information about packages in the cache. This section con-
tains examples of some of the simpler commands that display information. Use apt-file
(page 521) to display information about packages that are not installed on the system.

Displaying package
dependencies

The apt-cache depends command displays the list of packages that a package depends
on. These are forward (normal) dependencies. Use the ––recurse option to display the
packages that the dependencies are dependent on (the dependencies’ dependencies).

$ apt-cache depends nfs-common
nfs-common
 Depends: portmap
 Depends: adduser
 Depends: ucf
 ...
 Conflicts: <nfs-client>
 Replaces: mount
 Replaces: <nfs-client>
 nfs-common
 Replaces: nfs-kernel-server

Use the rdepends apt-cache command to display the list of packages that are depen-
dent on a specified package. These are reverse dependencies. Use the ––recurse
option to display the packages that are dependent on the dependent packages.

 From the Library of WoweBook.Com

ptg

APT: Keeps the System Up-to-Date 531

$ apt-cache rdepends nfs-common
nfs-common
Reverse Depends:
 rgmanager
 nfs-kernel-server
 mount
 mount
 autofs5

Displaying package
records

The apt-cache show command displays package records from the files in the APT
local package indexes. See also the aptitude show command, which displays less
information (page 529), and the dpkg status command (page 537). Following is an
example:

$ apt-cache show nfs-common
Package: nfs-common
Priority: optional
Section: net
Installed-Size: 588
Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Original-Maintainer: Anibal Monsalve Salazar <anibal@debian.org>
Architecture: i386
Source: nfs-utils
Version: 1:1.2.0-4ubuntu2
Replaces: mount (<< 2.13~), nfs-client, nfs-kernel-server (<< 1:1.0.7-5)
Provides: nfs-client
Depends: portmap (>= 6.0-10ubuntu1), adduser, ucf, lsb-base (>= 1.3-9ubu
 ntu3), netbase (>= 4.24), initscripts (>= 2.86.ds1-38.1), libc6 (>= 2.4)
, libcomerr2 (>= 1.01), libevent-1.4-2 (>= 1.4.13-stable), libgssapi-krb
5-2 (>= 1.6.dfsg.2), libgssglue1, libk5crypto3 (>= 1.6.dfsg.2), libkrb5
-3 (>= 1.6.dfsg.2), libnfsidmap2, librpcsecgss3, libwrap0 (>= 7.6-4~), up
start-job
Conflicts: nfs-client
Filename: pool/main/n/nfs-utils/nfs-common_1.2.0-4ubuntu2_i386.deb
Size: 211256
MD5sum: d047339007b36e2b931cc473edb1c21d
SHA1: 4b2f71dcd330d3219a4153c9c597f5095213592b
SHA256: 653a684fcf75e5e676962ba2370fa0eb12a3f4b0ed5384cb024b1eb3824c93fa
Description: NFS support files common to client and server
 Use this package on any machine that uses NFS, either as client or
 server. Programs included: lockd, statd, showmount, nfsstat, gssd
 and idmapd.
 .
 Upstream: SourceForge project "nfs", CVS module nfs-utils.
Homepage: http://nfs.sourceforge.net/
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Origin: Ubuntu
Supported: 5y

The apt-cache showpkg command displays package version and location information
as well as dependency lists.

 From the Library of WoweBook.Com

ptg

532 Chapter 13 Downloading and Installing Software

apt-get source: Downloads Source Files

The apt-get source (dpkg-dev package) command downloads and unpacks in the
working directory source code files from repositories specified with deb-src lines in
sources.list (page 523). APT does not keep index and cache files for source files as it
does for binary files. With the ––download-only option, this command does not
unpack the source code. With the ––compile option, it unpacks and compiles the
source code. You do not have to run this command with root privileges; it requires
only write access to the working directory. Following is an example:

$ apt-get source adduser
...
dpkg-source: info: extracting adduser in adduser-3.112ubuntu1
dpkg-source: info: unpacking adduser_3.112ubuntu1.tar.gz

$ ls -ld adduser*
drwxr-xr-x 7 sam sam 4096 2010-01-27 00:54 adduser-3.112ubuntu1
-rw-r--r-- 1 sam sam 1141 2010-01-27 03:04 adduser_3.112ubuntu1.dsc
-rw-r--r-- 1 sam sam 299038 2010-01-27 03:04 adduser_3.112ubuntu1.tar.gz

dpkg: The Debian Package Management System

The Debian package (dpkg) management system database tracks which software
packages are installed on a system, where each is installed, which version is
installed, and which packages each depends on.

The dpkg management system comprises many utilities. These utilities install, unin-
stall, upgrade, query, and verify software packages. The original and primary utility
is dpkg (page 534). Although you can use dpkg for most tasks involving the dpkg
management system, other tools can make your job easier. Some of the most com-
monly used of these tools are described here:

• apt-cache—Displays information about and manipulates the APT cache
(page 530).

• apt-file—Similar to apt-cache except that it works with packages that have
not been installed and packages that have not been downloaded, in addi-
tion to those that are installed on the local system (page 521).

• aptitude—Retrieves software packages and calls dpkg to install and remove
them (pages 519 and 526).

• apt-get—A textual interface to APT; similar to aptitude.

• dpkg—The primary dpkg management system utility (page 534).

• dselect—A pseudographical front-end for dpkg.

• Synaptic—A graphical interface to APT (page 133).

 From the Library of WoweBook.Com

ptg

dpkg: The Debian Package Management System 533

deb Files

The dpkg management system works with .deb format files, frequently referred to
as deb files. Because dpkg cannot download deb files from repositories, aptitude
(page 526) typically performs this task. By default, aptitude stores downloaded deb
files in /var/cache/apt/archives. The dpkg management system stores available
package information in /var/lib/dpkg/available and package installation informa-
tion in /var/lib/dpkg/status.

You can manually locate, download, and install deb files. However, doing so can be
tedious, especially when you find that a package is dependent on several other pack-
ages and that some of those packages are dependent on yet other packages.

You can create deb files, as when you build a kernel. Page 579 has an example of
building a kernel deb file; pages 536 and 582 show dpkg installing deb files.

Binary files A binary deb file can contain the following components, which are packed and
unpacked using the ar (archive) utility. All packages contain an executable file; the
other components are optional.

• binary—Binary executable files

• control—Package information including lists of dependent, recommended,
and suggested packages

• conffiles—Package configuration files

• preinst—Preinstall script

• postinst—Postinstall script

• prerm—Preremove script

• postrm—Postremove script

To unpack a deb file, first download it to /var/cache/apt/archives using the command
aptitude download package. Copy the file to a directory with no other files in it and
use ar –xv to unpack the deb file. You can then use tar (page 176) to unpack the tar
files. The example shows how to extract the control files from the nfs-common deb file.

$ ls nfs-common*deb
nfs-common_1%3a1.2.0-4ubuntu2_i386.deb
$ sudo ar -xv nfs-common*deb
x - debian-binary
x - control.tar.gz
x - data.tar.gz
$ sudo tar -xvf control.tar.gz
./
./postinst
./preinst
./prerm
./postrm
./conffiles
./md5sums
./control

 From the Library of WoweBook.Com

ptg

534 Chapter 13 Downloading and Installing Software

Source files A source file package contains a description file, a source code file, and a diff file
that contains Ubuntu-specific changes to the source file. See page 532 for instruc-
tions on how to use apt-get to download and unpack a source file.

Installing a deb file When dpkg installs a binary package (page 536), it takes the following steps:

1. Extracts control files.

2. If another version of the same package is installed on the system, executes
the prerm script of the old package.

3. Runs the preinst script.

4. Backs up the old binary files and unpacks the new binary files, allowing
dpkg to revert to the existing setup if installation fails.

5. If another version of the same package is installed on the system, executes
the postrm script of the old package.

6. Backs up the old configuration files and unpacks the new configuration
files, allowing dpkg to revert to the existing setup if installation fails.

7. Runs the postinst script.

Removing a deb file When dpkg removes a binary package (page 536), it runs the prerm script, removes
the files, and runs the postrm script.

dpkg: The Foundation of the Debian Package

Management System

The dpkg (Debian package) utility installs (unpacks and configures), queries, and
removes deb packages. Before querying the software package database, give the
update-avail command (discussed next) to update the list of available packages.

Typically you will use one of the tools that acts as a front-end for dpkg and not work
with dpkg itself. In some cases you may find the following dpkg commands useful.
View the dpkg man page or use the ––help option for a complete list of commands.

dpkg ––update-avail: Updates the List of Available

Packages

The list of available packages is kept in the /var/lib/dpkg/available file. The
––update-avail dpkg command updates this list from files that the APT local pack-
age indexes (page 524).

$ sudo dpkg --update-avail /var/lib/dpkg/available
Replacing available packages info, using /var/lib/dpkg/available.
Information about 1868 package(s) was updated.

dpkg commands and options both start with hyphens
tip Although command-line arguments that start with one or two hyphens are generally called

options, the dpkg documentation divides these arguments into commands and options. For
example, ––purge is a command and ––simulate is an option.

 From the Library of WoweBook.Com

ptg

dpkg: The Debian Package Management System 535

dpkg ––list: Displays Information About a Package

The dpkg ––list (or –l) command displays a line of information about packages you
name as an argument. Package names can include wildcards as described in “File-
name Generation/Pathname Expansion” on page 256. You must quote wildcards on
the command line.

The following command lists all packages whose names begin with apache2. The
first two lines of the header are keys for the first two letters on each line that
describes a package. The first line of the header, labeled Desired, lists the possible
desired package selection states (Table 13-1). The second line, labeled Status, lists
possible package statuses (Table 13-1). The Name column lists the name of the
package, while the Version and Description columns describe the package.

$ sudo dpkg --list "apache2*"
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed
|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err: uppercase=bad)
||/ Name Version Description
+++-===================-==================-===
pn apache2 <none> (no description available)
rc apache2-common 2.2.14-4ubuntu4 next generation, scalable, extendable web...
ii apache2-doc 2.2.14-4ubuntu4 documentation for apache2
un apache2-modules <none> (no description available)
un apache2-mpm-perchil <none> (no description available)
un apache2-mpm-prefork <none> (no description available)
un apache2-mpm-threadp <none> (no description available)
pn apache2-mpm-worker <none> (no description available)
pn apache2-utils <none> (no description available)

In the preceding example, the apache2 package has a desired state of purged (p) and a
status of not installed (n), meaning the package is not installed and has no configura-
tion files on the system. The apache2-common package has a desired state of removed
(r) and currently has only its configuration files installed (c). For apache2-doc, the first
i indicates that the desired state of the package is installed and the second i indicates
that the current state of the package is installed (the package is installed on the system).
For apache2-modules, the desired state of the package is unknown (u) and it is not
installed (n). See page 536 for more examples of the ––list command.

Table 13-1 dpkg letter codes

Letter Means that the package is

Desired (selection state)

u (unknown) Unknown to dpkg

i (install) To be installed

r (remove) To be removed (uninstalled), except for configuration files

p (purge) To be removed, including configuration files

h (hold) Not handled by dpkg

 From the Library of WoweBook.Com

ptg

536 Chapter 13 Downloading and Installing Software

dpkg ––install: Installs a Package

The dpkg ––install (–i) command installs (unpacks and sets up; see page 534) a
package stored in a deb file. It does not search for and download a package from
the Internet. Use aptitude (page 526) for that purpose. The following example shows
dpkg installing the ftp package:

$ sudo dpkg --install /var/cache/apt/archives/ftp_0.17-19_i386.deb
Selecting previously deselected package ftp.
(Reading database ... 173635 files and directories currently installed.)
Unpacking ftp (from .../archives/ftp_0.17-19_i386.deb) ...
Setting up ftp (0.17-19) ...

dpkg ––remove and dpkg ––purge: Remove an

Installed Package

The dpkg ––remove (–r) command removes an installed package except for its config-
uration files. Leaving these files can be useful if you decide to reinstall the package.
Use ––purge (–P) to completely remove a package, including configuration files. The
following command displays the status of the ftpd package (it is installed).

$ dpkg --list ftpd
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed
|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err: uppercase=bad)
||/ Name Version Description
+++-=================-==================-==
ii ftpd 0.17-29 FTP server

The next command removes the ftpd package except for its configuration files:

$ sudo dpkg --remove ftpd
(Reading database ... 113335 files and directories currently installed.)
Removing ftpd ...
Processing triggers for man-db ...

Letter Means that the package is

Status (package state)

n (not installed) Not installed

i (installed) Installed

c (config-files) Not installed; only the configuration files exist on the system

u (unpacked) Unpacked, but not configured

f (failed-config) Unpacked, but not configured; configuration failed

h (half-installed) Partially installed; installation is not complete

Table 13-1 dpkg letter codes (continued)

 From the Library of WoweBook.Com

ptg

dpkg: The Debian Package Management System 537

Next the dpkg ––list command shows a status of rc for the ftpd package, indicating
that it has been removed (r) but the configuration files (c) remain.

$ dpkg --list ftpd
...
rc ftpd 0.17-29 FTP server

Finally dpkg purges the ftpd package and shows a state of un (unknown, not
installed).

$ sudo dpkg --purge ftpd
(Reading database ... 113325 files and directories currently installed.)
Removing ftpd ...
Purging configuration files for ftpd ...

$ dpkg --list ftpd
...
un ftpd <none> (no description available)

If there are packages dependent on the package you are removing, the command fails.
In the next example, dpkg attempts to remove the apache2.2-common package but
fails because the apache2-mpm-worker package depends on apache2.2-common:

$ sudo dpkg --remove apache2.2-common
dpkg: dependency problems prevent removal of apache2.2-common:
 apache2-mpm-worker depends on apache2.2-common (= 2.2.14-5ubuntu1).
 apache2 depends on apache2.2-common (= 2.2.14-5ubuntu1).
dpkg: error processing apache2.2-common (--remove):
 dependency problems - not removing
Errors were encountered while processing:
 apache2.2-common

You can remove the dependent packages and then remove apache2.2-common. It is
frequently easier to use aptitude to remove a package and its dependencies because
you can do so with a single aptitude remove command (page 520).

When dpkg removes a package, the prerm script stops any running daemons associ-
ated with the package. In the case of Apache, it stops the apache2 server.

$ sudo dpkg --remove apache2-mpm-worker apache2
(Reading database ... 130610 files and directories currently installed.)
Removing apache2 ...
Removing apache2-mpm-worker ...
* Stopping web server apache2
 ... waiting [OK]

dpkg ––status: Displays Information About a Package

The ––status (–s) dpkg command displays lengthy information about the installed
package you specify as an argument. This information includes package status,
installed size, architecture it is compiled for, conflicting packages, a description, and
the name of the package maintainer. See also the aptitude show command
(page 529) and the apt-cache show command (page 531).

 From the Library of WoweBook.Com

ptg

538 Chapter 13 Downloading and Installing Software

$ dpkg --status apache2-mpm-worker
Package: apache2-mpm-worker
Status: install ok installed
Priority: optional
Section: httpd
Installed-Size: 80
Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Architecture: i386
Source: apache2
Version: 2.2.14-5ubuntu1
Replaces: apache2-mpm-perchild (<< 2.2.0), apache2-mpm-threadpool (<< 2.0.53)
Provides: apache2, apache2-mpm, httpd, httpd-cgi
Depends: apache2.2-common (= 2.2.14-5ubuntu1), apache2.2-bin (= 2.2.14-5ubuntu1)
Conflicts: apache2-common, apache2-mpm
Description: Apache HTTP Server - high speed threaded model
 Each Apache Multi-Processing Module provides a different "flavor" of
 web server binary, compiled with a different processing model.
 .
 The worker MPM provides the default threaded implementation. It is
 recommended especially for high-traffic sites because it is faster
 and has a smaller memory footprint than the traditional prefork MPM.
Homepage: http://httpd.apache.org/
Original-Maintainer: Debian Apache Maintainers <debian-apache@lists.debian.org>
Original-Vcs-Browser: http://svn.debian.org/wsvn/pkg-apache/trunk/apache2
Original-Vcs-Svn: svn://svn.debian.org/pkg-apache/trunk/apache2

Use the dpkg ––info command to display information about a deb file that is on the
system (for example, in the APT cache) but is not installed. The following command
displays information about the ftpd deb file in the archives directory:

$ dpkg --info /var/cache/apt/archives/ftpd_0.17-29_i386.deb

dpkg ––search: Displays the Name of the Package That

Contains a Specified File

The ––search (or –S) option to dpkg displays the name of the package that includes
the file you specify as an argument:

$ dpkg --search /etc/ssh
openssh-client: /etc/ssh

dpkg ––listfiles: Lists Files Within a Package

The dpkg ––listfiles (or –L) command lists the files that are part of the package you
specify as an argument. The following example lists the files in the openssh-server
package:

$ dpkg --listfiles openssh-server
/.
/etc
/etc/init
/etc/init/ssh.conf
/etc/init.d
...

 From the Library of WoweBook.Com

ptg

BitTorrent 539

Use the dpkg ––contents command to list the files contained in a package that is on
the system but not installed. The following command lists the files in the dump deb
file in the archives directory:

$ dpkg --contents /var/cache/apt/archives/dump_0.4b42-1_i386.deb

BitTorrent

The easiest way to download a BitTorrent file is to click the torrent file object in a
Web browser or in the Nautilus File Browser. This section describes how BitTorrent
works and explains how to download a BitTorrent file from the command line.

The BitTorrent protocol implements a hybrid client/server and P2P (page 1163)
file transfer mechanism. BitTorrent efficiently distributes large amounts of static
data, such as the Ubuntu installation ISO images. It can replace protocols such as
anonymous FTP, where client authentication is not required. Each BitTorrent cli-
ent that downloads a file provides additional bandwidth for uploading the file,
thereby reducing the load on the initial source. In general, BitTorrent downloads
proceed faster than FTP downloads. Unlike protocols such as FTP, BitTorrent
groups multiple files into a single package: a BitTorrent file.

Tracker, peer, seed,
and swarm

BitTorrent, like other P2P systems, does not use a dedicated server. Instead, the func-
tions of a server are performed by the tracker, peers, and seeds. The tracker is a
server that allows clients to communicate with each other. Each client—called a peer
when it has downloaded part of the BitTorrent file and a seed once it has down-
loaded the entire BitTorrent file—acts as an additional source for the BitTorrent file.
Peers and seeds are collectively called a swarm. As with a P2P network, a member of
a swarm uploads to other clients the sections of the BitTorrent file it has already
downloaded. There is nothing special about a seed: It can be removed at any time
once the torrent is available for download from other seeds.

The torrent The first step in downloading a BitTorrent file is to locate or acquire the torrent, a
file with the filename extension of .torrent. A torrent contains pertinent information
(metadata) about the BitTorrent file to be downloaded, such as its size and the loca-
tion of the tracker. You can obtain a torrent by accessing its URI, or you can acquire
it via the Web, an email attachment, or other means. The BitTorrent client can then
connect to the tracker to learn the locations of other members of the swarm that it
can download the BitTorrent file from.

Manners Once you have downloaded a BitTorrent file (the local system has become a seed),
it is good manners to allow the local BitTorrent client to continue to run so peers
(clients that have not downloaded the entire BitTorrent file) can upload at least as
much information as you have downloaded.

 From the Library of WoweBook.Com

ptg

540 Chapter 13 Downloading and Installing Software

Prerequisites

If necessary, use aptitude (pages 519 and 526) to install the bittorrent package. With
this package installed, the command apropos bittorrent displays a list of BitTorrent
utilities. See /usr/share/doc/bittorrent for more information. You may want to try
BitTornado, an experimental BitTorrent client with additional features (bittornado
package; see bittornado.com)

Because the BitTorrent utilities are written in Python and run on any platform with
a Python interpreter, they are not dependent on system architecture. Python is
installed in /usr/bin/python and is available in the python package.

Using BitTorrent

The btdownloadcurses utility is a textual BitTorrent client that provides a pseudo-
graphical interface. Once you have a torrent, give a command such as the following,
substituting the name of the torrent you want to download for the Ubuntu torrent
in the example:

$ btdownloadcurses ubuntu-10.04-desktop-i386.iso.torrent

In the preceding command, the torrent specifies that the BitTorrent file be saved as
intrepid-desktop-i386.iso in the working directory. The name of the BitTorrent file
is not always the same as the name of the torrent. In the case of a multifile torrent,
the BitTorrent files may be stored in a directory, also named by the torrent.
Figure 13-1 shows btdownloadcurses running. Depending on the speed of the Inter-
net connection and the number of seeds, downloading a large BitTorrent file can
take from hours to days.

You can abort the download by pressing q or CONTROL-C. The download will automat-
ically resume from where it left off when you download the same torrent to the
same location again.

See the btdownloadcurses man page for a list of options. One of the most useful
options is ––max_upload_rate, which limits how much bandwidth the swarm can
use while downloading the torrent from you. The default is 0, meaning there is no
limit to the upload bandwidth. The following command prevents BitTorrent from
using more than 10 kilobytes per second of upstream bandwidth:

$ btdownloadcurses --max_upload_rate 10 ubuntu-10.04-desktop-i386.iso.torrent

BitTorrent usually allows higher download rates for members of the swarm that
upload more data, so it is to your advantage to increase this value if you have spare
bandwidth. You need to leave enough free upstream bandwidth for the acknowledg-
ment packets from your download to get through or else the download will be very
slow. By default, btdownloadcurses uploads to a maximum of seven other clients at

Make sure you have enough room to download the torrent

caution Some torrents are huge. Make sure the partition you are working in has enough room to hold the
BitTorrent file you are downloading.

 From the Library of WoweBook.Com

ptg

Installing Non-dpkg Software 541

once. You can change this number by using the ––max_uploads argument, followed
by the number of concurrent uploads you wish to permit. If you are downloading
over a modem, try setting ––max_upload_rate to 3 and ––max_uploads to 2.

The name of the file or directory that BitTorrent saves a file or files in is specified
by the torrent. You can specify a different file or directory name by using the ––
saveas option. The btshowmetainfo utility displays the name the BitTorrent file will
be saved as, the size of the file, the name of the torrent (metainfo file), and other
information:

$ btshowmetainfo ubuntu-10.04-desktop-i386.iso.torrent
btshowmetainfo 20021207 - decode BitTorrent metainfo files

metainfo file.: ubuntu-10.04-desktop-i386.iso.torrent
info hash.....: 3e16157f0879eb43e9e51f45d485feff90a77283
file name.....: ubuntu-10.04-desktop-i386.iso
file size.....: 733419520 (1398 * 524288 + 464896)
announce url..: http://torrent.ubuntu.com:6969/announce

Installing Non-dpkg Software

Most software that is not in dpkg format comes with detailed instructions on how
to configure, build (if necessary), and install it. Some binary distributions (those
containing prebuilt executables) require you to unpack the software from the root
directory.

The /opt and /usr/local Directories

Some newer application packages include scripts to install themselves automatically
into a directory hierarchy under /opt, with files in a /opt subdirectory that is named
after the package and executables in /opt/bin or /opt/package/bin.

Other software packages allow you to choose where you unpack them. Because
many different people develop software for Linux, there is no consistent method for
installing it. As you acquire software, install it on the local system in as consistent

Figure 13-1 btdownloadcurses working with the Ubuntu desktop torrent

 From the Library of WoweBook.Com

ptg

542 Chapter 13 Downloading and Installing Software

and predictable a manner as possible. The standard Linux file structure has a direc-
tory hierarchy under /usr/local for binaries (/usr/local/bin), manual pages
(/usr/local/man), and so forth. Because many GNU buildtools search the /usr/local
hierarchy by default and may find the wrong version of a utility if you install devel-
oper tools there, putting these tools in /opt is a good idea.

To prevent confusion later and to avoid overwriting or losing the software when
you install standard software upgrades, avoid installing nonstandard software in
standard system directories (such as /usr/bin). On a multiuser system, make sure
users know where to find the local software and advise them whenever you install,
change, or remove local tools.

GNU Configure and Build System

The GNU Configure and Build System makes it easy to build a program that is dis-
tributed as source code (see www.gnu.org/software/autoconf). This process requires
a shell, make, and gcc (the GNU C compiler). You do not need to work with root
privileges except to install the program.

The following example assumes you have downloaded the GNU which program (
(ftp.gnu.org/pub/gnu/which; page 178) to the working directory. First unpack and
decompress the file and cd to the new directory:

$ tar -xvzf which-2.20.tar.gz
which-2.20/
which-2.20/EXAMPLES
which-2.20/posixstat.h
...
which-2.20/configure.ac
which-2.20/COPYING

$ cd which-2.20

After reading the README and INSTALL files, run the configure script, which
gathers information about the local system and generates the Makefile file:

$./configure
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /bin/mkdir -p
checking for gawk... gawk
checking whether make sets $(MAKE)... yes
checking whether to enable maintainer-specific portions of Makefiles... no
...
config.status: creating Makefile
config.status: creating maintMakefile
config.status: creating tilde/Makefile
config.status: creating config.h
config.status: executing depfiles commands

Refer to the configure info page, specifically the ––prefix option, which causes the
install phase to place the software in a directory other than /usr/local. Next, run make:

 From the Library of WoweBook.Com

www.gnu.org/software/autoconf

ptg

wget: Downloads Files Noninteractively 543

$ make
make all-recursive
make[1]: Entering directory `/home/sam/which-2.20'
Making all in tilde
make[2]: Entering directory `/home/sam/which-2.20/tilde'
source='tilde.c' object='tilde.o' libtool=no \
 DEPDIR=.deps depmode=pch /bin/bash ../depcomp \
 gcc -DHAVE_CONFIG_H -I. -I.. -g -O2 -c tilde.c
source='shell.c' object='shell.o' libtool=no \
 DEPDIR=.deps depmode=pch /bin/bash ../depcomp \
 gcc -DHAVE_CONFIG_H -I. -I.. -g -O2 -c shell.c
rm -f libtilde.a
ar cru libtilde.a tilde.o shell.o
...
source='which.c' object='which.o' libtool=no \
 DEPDIR=.deps depmode=pch /bin/bash ./depcomp \
 gcc -DHAVE_CONFIG_H -I. -g -O2 -c which.c
gcc -g -O2 -o which getopt.o getopt1.o bash.o which.o ./tilde/libtilde.a
make[2]: Leaving directory `/home/sam/which-2.20'
make[1]: Leaving directory `/home/sam/which-2.20'

$ ls which
which

After make finishes, the which executable is in the working directory. If you want to
install it, give the following command:

$ sudo make install
make install-recursive
make[1]: Entering directory `/home/sam/which-2.20'
Making install in tilde
make[2]: Entering directory `/home/sam/which-2.20/tilde'
make[3]: Entering directory `/home/sam/which-2.20/tilde'
...

You can complete the entire task with the following command line:

$ sudo ./configure && make && make install

The Boolean AND operator (&&) allows the execution of a subsequent command
only if the previous step returned a successful exit status.

wget: Downloads Files Noninteractively

The wget utility is a noninteractive, command-line utility that retrieves files from the
Web using HTTP, HTTPS, or FTP. In the example on the next page, wget downloads
the Ubuntu home page, named index.html, to a file in the working directory with
the same name.

 From the Library of WoweBook.Com

ptg

544 Chapter 13 Downloading and Installing Software

$ wget http://www.ubuntu.com--2010-02-24 13:21:57-- http://www.ubuntu.com/
Resolving www.ubuntu.com... 91.189.90.41
Connecting to www.ubuntu.com|91.189.90.41|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 17903 (17K) [text/html]
Saving to: `index.html'

100%[===>] 17,903 74.2K/s in 0.2s

2010-02-24 13:21:58 (74.2 KB/s) - `index.html' saved [17903/17903]

$

With the ––recursive (–r) option, wget downloads the directory hierarchy under the
URI you specify. Be careful with this option because it can download a lot of data
(which may completely fill the partition you are working in). The ––background
(–b) option runs wget in the background and redirects its standard error to a file
named wget-log:

$ wget --recursive --background http://www.ubuntu.com
Continuing in background, pid 28839.
Output will be written to 'wget-log'.
$

The wget utility does not overwrite log files. When wget-log exists, wget writes sub-
sequent logs to wget-log.1, wget-log.2, and so on.

Running wget in the background is useful when you need to download a large file to
a remote system. You can start it running from an ssh (page 670) session and then
disconnect, allowing the download to complete without any interaction.

The wget ––continue (–c) option continues an interrupted download. For example,
if you decide to stop a download so you can run it in the background, you can con-
tinue it from where it left off with this option.

Chapter Summary

As a system administrator, you need to keep applications and system software
current. Of the many reasons to keep the software on a system up-to-date, one of
the most important is system security. The Debian package (dpkg) management
system makes the process of adding and removing deb format software packages
quite easy.

APT utilities, such as aptitude, download software packages and dependencies and
then work with dpkg to install, remove, or update packages. In addition, you can
use the apt-cache and dpkg utilities to query and verify dpkg packages. For packages
distributed as source code, the GNU Configure and Build System enables you to
build executable files.

 From the Library of WoweBook.Com

ptg

Advanced Exercises 545

BitTorrent is a handy tool for downloading large static data files such as the Ubuntu
installation ISO images. It can replace protocols such as anonymous FTP, where cli-
ent authentication is not required.

Exercises

1. Why would you use HTTP or FTP instead of BitTorrent for downloading
large files?

2. Which command would you give to perform a complete upgrade?

3. Why would you build a package from its source code when a (binary) deb
file is available?

4. Suggest two advantages that deb files have over source distributions.

Advanced Exercises

5. When you compile a package yourself, rather than from a deb file, which
directory hierarchy should you put it in?

6. Which steps should you take before performing an upgrade on a mission-
critical server?

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

555444777

14Chapter14A printing system handles the tasks involved in first getting a
print job from an application (or the command line) through
the appropriate filters (page 1148) and into a queue for a suit-
able printer and then getting it printed. While handling a job, a
printing system can keep track of billing information so the
proper accounts can be charged for printer use. When a printer
fails, the printing system can redirect jobs to other, similar
printers.

In This Chapter

JumpStart I: Configuring a Local
Printer. 549

system-config-printer:
Configuring a Printer 550

JumpStart II: Setting Up a Local
or Remote Printer Using the
CUPS Web Interface. 555

Traditional UNIX Printing 558

The CUPS Web Interface 560

CUPS on the Command Line. 561

Printing from Windows 566

Printing to Windows 568

14

Printing with CUPS

 From the Library of WoweBook.Com

ptg

548 Chapter 14 Printing with CUPS

Introduction

LPD and LPR Traditionally, UNIX had two printing systems: the BSD Line Printer Daemon (LPD)
and the System V Line Printer system (LPR). Linux adopted those systems at first,
and both UNIX and Linux have seen modifications to and replacements for these
systems. Today CUPS is the default printing system under Ubuntu.

CUPS CUPS (Common UNIX Printing System) is a cross-platform print server built
around IPP (Internet Printing Protocol), which is itself based on HTTP. CUPS
provides many printer drivers and can print different types of files, including
PostScript. Because it is built on IPP and written to be portable, CUPS runs under
many operating systems, including Linux and Windows. Other UNIX variants,
including Mac OS X, use CUPS; recent versions of Windows include the ability
to print to IPP printers. Thus CUPS is an ideal solution for printing in a heteroge-
neous environment. CUPS provides System V and BSD command-line interfaces
and, in addition to IPP, supports LPD/LPR, HTTP, SMB, and JetDirect (socket)
protocols, among others.

IPP The IPP project (www.pwg.org/ipp) began in 1996, when Novell and several other
companies designed a protocol for printing over the Internet. IPP enables users to

• Determine the capabilities of a printer.

• Submit jobs to a printer.

• Determine the status of a printer.

• Determine the status of a print job.

• Cancel a print job.

IPP is a client/server protocol in which the server side can be a print server or a
network-capable stand-alone printer.

Printers and queues On a modern computing system, when you “send a job to the printer,” you actually
add the job to the list of jobs waiting their turn to be printed on a printer. This list is
called a print queue or simply a queue. The phrase configuring (or setting up) a
printer is often used to mean configuring a (print) queue. This chapter uses these
phrases interchangeably.

Prerequisites

Installation Install the following packages (most are installed with the base Ubuntu system):

• cups-common

• cups-bsd (optional; BSD printing commands)

• cups-client (optional; System V printing commands)

• openprinting-ppds (PPD files)

• openprinting-ppds-extra (optional; more PPD files)

• system-config-printer-gnome (optional; graphical printer tool)

 From the Library of WoweBook.Com

www.pwg.org/ipp

ptg

JumpStart I: Configuring a Local Printer 549

To add, modify, and remove printers from the local system, you must be a member
of the lpadmin group. For more information see the tip on page 550. To use the
CUPS Web interface, you need an X server and a Web browser.

cups init script When you install the cupsys/cups package, the dpkg postinst script starts the cupsd dae-
mon. After you configure CUPS, call the cups init script to restart the cupsd daemon:

$ sudo service cups restart
* Restarting Common Unix Printing System: cupsd [OK]

More Information

Local CUPS Documentation: With the CUPS Web interface up (page 560), point a local
browser at localhost:631/help.

Web www.linux-foundation.org/en/OpenPrinting: Information on printers and printing
under Linux. Hosts a support database with details about many printers,
including notes and driver information; also offers forums, articles, and a
HOWTO document on printing.

CUPS home page: www.cups.org
IPP information: www.pwg.org/ipp

HOWTO The SMB HOWTO has a section titled “Sharing a Windows Printer with Linux
Machines.”

Notes

Firewall A CUPS server normally uses TCP port 631 for an IPP connection and port 80 for
an LPR/LPD connection. If the CUPS server system is running a firewall, you need
to open one or both of these ports. Using gufw (page 876), open one or both of these
ports by adding a rule that allows service for port 631 and/or port 80 from the cli-
ents you want to be able to access the server.

PDF printer You can set up a virtual PDF printer by installing the cups-pdf package, or you can
set up this printer manually.

JumpStart I: Configuring a Local Printer

In most cases, when you connect a printer to the local system and turn it on,
Ubuntu sets up the printer and briefly displays a Printer added message
(Figure 14-1). This process can take a couple of minutes. If you want to modify the
new printer’s configuration, click Configure on the message or use the Printing win-
dow (Figure 14-2, next page), described in the next section. Both techniques display
the Printer Properties window.

Figure 14-1 Printer added message

 From the Library of WoweBook.Com

www.linux-foundation.org/en/OpenPrinting
www.cups.org
www.pwg.org/ipp

ptg

550 Chapter 14 Printing with CUPS

system-config-printer: Configuring a Printer

The Printing window (Figure 14-2) enables you to add, remove, and configure local and
remote printers. To display this window, select Main menu: System Administration
Printing or give the command system-config-printer from a terminal emulator or Run
Application window (ALT-F2).

Default printer Highlight a printer in the Printing window and select Printer Set as Default from
the window menu to specify the highlighted printer as the default printer. If just one
printer appears in the Printing window, it is the default printer; you do not have to
set it up as such. The tick on the printer in Figure 14-2 indicates the default printer.

Using system-config-printer is very similar to using the CUPS Web interface, which is
discussed on page 555. However, system-config-printer is a native application, not a
Web interface.

Double-click a printer in the Printing window to display the Printer Properties win-
dow (Figure 14-3) for that printer.

Server Settings Click Server Settings from the Printing window menu to display the Server Set-
tings window. The top two check boxes specify whether system-config-printer dis-
plays printers that are shared by other systems and whether the local system
publishes printers it shares. You control whether a given printer is shared from the
Policies selection (discussed in the next section).

Configuration Selections

This section describes the six selections found in the frame at the left side of the
Printer Properties window. These selections allow you to configure the printer you
chose in the Printing window.

Figure 14-2 The Printing window

You must be a member of the lpadmin group

tip To modify a printer using the Printing window (system-config-printer), you must be a member
of the lpadmin group (the first user is a member of this group). See page 597 for instructions on
how to add a user to a group.

 From the Library of WoweBook.Com

ptg

system-config-printer: Configuring a Printer 551

Settings Figure 14-3 shows the Settings selection for a Brother printer. The text boxes
labeled Description and Location hold information for your use; the system does
not use this information. The text boxes labeled Device URI and Make and Model
specify the location and type of the printer.

Policies Under the word State are check boxes labeled Enabled, Accepting jobs, and Shared.
Table 14-1 describes the effects of putting ticks in the first two check boxes. Putting
a tick in the check box labeled Shared shares the printer with other systems if the
local system publishes shared printers (see “Server Settings,” previous page). The
Policies tab also controls whether the printer prints banners before and after jobs
and what CUPS does when it encounters an error.

Access Control The Access Control tab enables you to set the policy for printer access. By default,
anyone can use the printer. To restrict access, you can create a blacklist of users who
are not allowed to use it. Alternatively, you can prohibit anyone from using the
printer and then create a whitelist of users who are allowed to use it.

Printer Options The Printer Options selection controls image quality, paper size and source (tray),
and other generic printer options.

Job Options The Job Options selection controls the number of copies, orientation (portrait or
landscape), scaling, margins, and more. Options specified by an application sending
a job to the printer override options you set in this tab. Scroll down to see all
options.

Figure 14-3 The Printer Properties window

Table 14-1 Printer status

Enabled Disabled

Accepting jobs Accepts new jobs into the queue.

Prints jobs from the queue.

Accepts new jobs into the queue.

Does not print jobs from the queue
until the printer is enabled.

Rejecting jobs Rejects new jobs.

Prints jobs from the queue.

Rejects new jobs.

Does not print jobs from the queue
until the printer is enabled.

 From the Library of WoweBook.Com

ptg

552 Chapter 14 Printing with CUPS

Ink/Toner Levels The Ink/Toner Levels selection reports on ink/toner levels and displays status messages.

Setting Up a Remote Printer

As explained earlier, system-config-printer recognizes and sets up a printer when you
connect it to the local system and turn it on. This section describes the process of
setting up a printer on another system or on the local network. You can also use the
same technique for setting up a printer on the local system. For more information
on setting up a remote printer, refer to “JumpStart II: Setting Up a Local or Remote
Printer Using the CUPS Web Interface” on page 555. Because of the similarity
between system-config-printer and the CUPS Web interface, many of the explanations
in that section apply here as well.

To add a printer to the local system, click Add on the toolbar in the Printing win-
dow. The system-config-printer utility displays the New Printer window
(Figure 14-4).

To configure a printer, highlight the printer in the frame labeled Select Device.
Click the plus sign (+) to the left of Network Printers to display network printers.
The system-config-printer utility displays a description of the printer you highlight.

Specifying a URI If the printer is not listed, select Other (for a local printer) or one of the selections under
Network Printing (for a remote printer) from the Select Device list; system-config-printer
displays an appropriate text box on the right side of the window. The URI (page 1179)
is the location on the network of the printer; see page 562 for more information. To

Figure 14-4 The New Printer window

 From the Library of WoweBook.Com

ptg

system-config-printer: Configuring a Printer 553

specify an LPD/LPR printer, use the form lpd://hostname/printer-name; for an IPP
printer, use the form ipp://hostname/printers/printer-name; for an HP JetDirect-
compatible network printer, use socket://hostname. Replace hostname with the name
of the host the printer is attached to (the server) or, for a network printer, the name of
the printer. You can specify an IP address instead of hostname. Replace printer-name
with the name of the printer on the server. Give the command lpstat –p on the server
to display the names of all printers on that system. After selecting or specifying a
printer, click the button labeled Verify (if present) to make sure the printer is accessi-
ble and then click Forward. The system-config-printer utility searches for a driver for
the printer.

Next the utility may ask you which printer options you want to install. Specify the
options and click Forward.

If system-config-printer displays the Choose Driver screen of the New Printer win-
dow (Figure 14-5), you can specify a printer manufacturer (such as HP). Typi-
cally system-config-printer selects the manufacturer automatically. Alternatively,
you can specify a PPD file (page 561) or search for a driver to download. Click
Forward.

The next screen (Choose Driver; Figure 14-6, next page), which system-config-printer
may not display, allows you to specify the model of the printer and select which
driver you want to use (if more than one is available). Again, these selections are
usually highlighted automatically.

Figure 14-5 Selecting a printer manufacturer

 From the Library of WoweBook.Com

ptg

554 Chapter 14 Printing with CUPS

If the model of the printer you are configuring is not listed, check whether the
printer can emulate another printer (i.e., if it has an emulation mode). If it can,
check whether the manufacturer and model of the printer it can emulate are listed
and set it up that way. If all else fails, click Back and select Generic (at the top of
the list) as the manufacturer. Then click Forward and choose a type of generic
printer from the list box labeled Models. Choose the PostScript Printer from the
list if the printer is PostScript capable. Then select a PostScript driver from the list
box labeled Drivers. If the printer is not PostScript capable, select text-only
printer; you will not be able to print graphics, but you should be able to print text.
Click Forward.

The system-config-printer utility may display a screen showing installable (printer-
specific) options. Generally you do not need to make changes to this screen. Click
Forward.

On the next screen (Describe Printer; Figure 14-7), you must specify a name for the
printer; specifying the description and location is optional. The name of the printer
must start with a letter and cannot contain SPACEs. If you use only one printer, the
name you choose is not important. If you use two or more printers, the name
should help users distinguish between them. The printer name is the name of the
print queue on the local system. Click Apply.

At this point, the system-config-printer utility closes the New Printer window, asks if
you want to display a test page, and displays the new printer in the Printing win-
dow. If you have more than one print queue and want to set up the new print queue
to be the default, highlight the printer and select Printer Set As Default from the
window menu.

Figure 14-6 Selecting a printer model and driver

 From the Library of WoweBook.Com

ptg

JumpStart II: Setting Up a Local or Remote Printer Using the CUPS Web Interface 555

JumpStart II: Setting Up a Local or Remote Printer

Using the CUPS Web Interface

This JumpStart explains how to use the CUPS Web interface to set up a printer con-
nected to the local system or connected to the local network.

If the printer you are configuring is on an older Linux system or another UNIX-like
operating system that does not run CUPS, the system is probably running LPD/LPR.
Newer versions of Linux and UNIX variants that support CUPS (including Mac
OS X) support IPP. Most devices that connect printers directly to a network support
LPR/LPD; some support IPP.

Printers connected directly to a network are functionally equivalent to printers con-
nected to a system running a print server: They listen on the same ports as systems
running print servers and queue jobs.

lpadmin group At some point the CUPS Web interface will ask for a username and password. Supply
your username and password. (You must be a member of the lpadmin group
[page 597] to change the printer configuration using the CUPS Web interface.)

Figure 14-7 Specifying the name of the printer

Remote administration

security When you provide a username and password to the CUPS Web interface, they are transmitted in
cleartext over HTTP. The lack of encryption is a security issue when you are administrating printers
over an unsecure network.

 From the Library of WoweBook.Com

ptg

556 Chapter 14 Printing with CUPS

Display the CUPS Web interface by pointing a Web browser at localhost:631 on the
system on which you are configuring the printer (Figure 14-8).

Figure 14-8 The Welcome page

Figure 14-9 The first Add Printer page

 From the Library of WoweBook.Com

ptg

JumpStart II: Setting Up a Local or Remote Printer Using the CUPS Web Interface 557

Clicking the Administration tab near the top of the page displays the Administra-
tion page. On this page click Add Printer to display the first Add Printer page
(Figure 14-9). Click the printer you want to install and then click Continue to dis-
play the second Add Printer page (Figure 14-10). Enter the name of the printer in
the text box labeled Name; this name must start with a letter and not contain any
SPACEs. You must supply a name—any name you like. Optionally, you can fill in the
text boxes labeled Description and Location with text that will help users identify
the printer. Put a tick in the check box labeled Sharing if you want to share the
printer. Click Continue.

Specifying a device The next screen asks you to select the model of the printer you want to set up
(Figure 14-11, next page). Select the printer you want to use. Click Add Printer.

If the printer is PostScript capable but is not listed, select a PostScript printer such
as the Apple LaserWriter 12/640ps. If the printer is not PostScript capable and is
not listed, check whether the printer supports PCL; if it does, select another, similar
PCL printer. If all else fails, determine which listed printer is most similar to the
one you are configuring and specify that printer. You can also try configuring the
printer using system-config-printer (page 550), which offers a different choice of
models.

After you click Add Printer, the CUPS Web interface displays the Set Default
Options page. This page allows you to set printer options and configuration infor-
mation. Click the buttons at the top of the page, browse through the selections,
and make any changes you like. Frequently you need change nothing. Click Set
Default Options.

Figure 14-10 The second Add Printer page

 From the Library of WoweBook.Com

ptg

558 Chapter 14 Printing with CUPS

After displaying a brief message, the CUPS Web interface displays the Printer page
(Figure 14-12) showing the new printer. Click Maintenance Print Test Page to
confirm the new setup works. If you want to make this printer the default printer,
click the button labeled Administration and select Set As Server Default.

The buttons at the bottom of the Printer page enable you to cancel or move jobs in the
print queue. In addition to these tasks, you may be able to reprint jobs. Figure 14-12
shows the Printer page displaying information about a job the printer is printing.

Traditional UNIX Printing

Before the advent of GUIs and WYSIWYG (page 1181) word processors, UNIX users
would create documents using an editor such as vi and a typesetting markup language
such as TeX or nroff/troff, convert the resulting files to PostScript using an interpreter,
and send the PostScript files to the printer using lpr (BSD) or lp (System V). Ubuntu
implements both BSD and System V command-line printing utilities for compatibility.
However, these utilities are now wrappers around the equivalent functionality in
CUPS rather than core components of the printing system. The corresponding utilities
are functionally equivalent; use whichever you prefer (Table 14-2).

The cups-bsd package holds the BSD utilities; the cups-client package holds the System
V utilities. From the command line, you can print a text, PostScript, or PDF file using lp:

$ lp memo.txt
request id is MainPrinter-25 (1 file(s))

Figure 14-11 The third Add Printer page

 From the Library of WoweBook.Com

ptg

Traditional UNIX Printing 559

The preceding command adds memo.txt to the print queue of the default printer as
job 25. When this printer is available, it prints the file. You can specify a printer
using the –d option:

$ lp -d ColorPtr graph.ps
request id is ColorPtr-26 (1 file(s))

The lpr –P option is equivalent to the lp –d option.

Without arguments, lp and lpr send their standard input to the printer:

$ cat memo2.txt | lp
request id is MainPrinter-27 (1 file(s))

The lpq and lpstat commands display information about the print queue:

Figure 14-12 Printer page showing jobs information

Table 14-2 BSD and System V command-line print utilities

BSD/SysV Purpose

lpr/lp Sends job(s) to the printer

lpq/lpstat Displays the status of the print queue

lprm/cancel Removes job(s) from the print queue

 From the Library of WoweBook.Com

ptg

560 Chapter 14 Printing with CUPS

$ lpstat
MainPrinter-25 zach 13312 Sun Feb 21 18:28:38 2010
ColorPtr-26 zach 75776 Sun Feb 21 18:28:48 2010
MainPrinter-27 zach 8192 Sun Feb 21 18:28:57 2010

Use cancel or lprm to remove jobs from the print queue. By default, only the owner
of a print job or a user working with root privileges can remove a job.

$ cancel 27
$ lpstat
MainPrinter-25 zach 13312 Sun Feb 21 18:28:38 2010
ColorPtr-26 zach 75776 Sun Feb 221 18:28:48 2010

Give the command sudo cancel –a or sudo lprm – to remove all jobs from the print
queues.

Configuring Printers

You can use the Web interface or the command-line interface to CUPS to manage
printers and queues.

The CUPS Web Interface

To connect to the CUPS Web interface (page 555), point a Web browser running on
the local system at localhost:631. You must be a member of the lpadmin group
(page 597) to change the printer configuration using the CUPS Web interface.

Modifying a Printer

“JumpStart II: Setting Up a Local or Remote Printer Using the CUPS Web Interface”
(page 555) discusses how to set up a printer using the CUPS Web interface. This sec-
tion explains how to modify a printer that is already set up.

To modify a printer, click the Printers tab near the top of the page and then click the
name of the printer you want to modify. The CUPS Web interface displays two
drop-down lists near the top of the page: Administration and Maintenance
(Figure 14-12, page 559). These lists work with the selected printer. The Adminis-
tration drop-down list allows you to modify the printer; this selection takes you
through the same steps as when you set up a new printer. From this list you can also
delete and set default options for the printer as well as set the printer as the default
printer and specify which users are allowed to use the printer. From the Mainte-
nance drop-down list, you can print a test page and pause the printer. You can also
reject, move, and cancel all jobs.

Jobs

Click the Jobs tab near the top of the page to display the Jobs page, which lists jobs
in the print queues. From this page you can cancel print jobs and move them to
other queues. Click Show Completed Jobs to display a list of recently completed
jobs. In some cases, you can reprint completed jobs from this page. You can per-
form the same tasks from the Printer page.

 From the Library of WoweBook.Com

ptg

Configuring Printers 561

Classes

CUPS allows you to organize similar printers into a group called a class. To clients,
a class of printers appears as a single printer. For each class, you must specify a
name; optionally, you can specify a location and description. A printer can belong
to more than one class. CUPS prints jobs sent to a class on the first available printer
in the class. For example, you may be able to divide your print jobs into black-and-
white jobs and color jobs. If more than one printer can fulfill each of these roles,
you can allow users to select a printer manually, or you can define two printer
classes (black-and-white and color) and have users send their jobs to a certain class
of printers.

To define a class, first click the Administration tab near the top of the page and then
click Add Class. At a minimum, you must enter a name for the class. You may also
enter a description and location. The Members list displays the names of all CUPS
printers and classes. Highlight the printers you want to be members of the class you
are defining; hold SHIFT and click another printer to highlight more than one printer.
To define a class that includes printers that are not adjacent in the list, define the
class to have a single printer and then modify the class after you create it to add
other printers. To modify existing classes, click Manage Classes in the Administra-
tion tab.

CUPS on the Command Line

In addition to using the Web interface, you can control CUPS and manage print
queues from the command line. This section describes the utilities that enable you
to manage printers and print queues and establish printing quotas.

lpinfo: Displays Available Drivers

PPD files The lpinfo utility provides information about the printer drivers and interfaces
available to CUPS. The –m option displays the list of available PostScript Printer
Definition (PPD) files/drivers.

$ lpinfo -m | head
drv:///hp/hpcups.drv/apollo-2100.ppd Apollo 2100, hpcups 3.9.8
drv:///hp/hpcups.drv/apollo-2150.ppd Apollo 2150, hpcups 3.9.8
drv:///hp/hpcups.drv/apollo-2200.ppd Apollo 2200, hpcups 3.9.8
drv:///hp/hpcups.drv/apollo-2500.ppd Apollo 2500, hpcups 3.9.8
drv:///hp/hpcups.drv/apollo-2600.ppd Apollo 2600, hpcups 3.9.8
drv:///hp/hpcups.drv/apollo-2650.ppd Apollo 2650, hpcups 3.9.8
gutenprint.5.2://pcl-apollo-p2100/expert Apollo P-2100 - CUPS+Gutenprint v5.2.4
gutenprint.5.2://pcl-apollo-p2100/simple Apollo P-2100 - CUPS+Gutenprint v5.2.4 Simplified
gutenprint.5.2://pcl-apollo-p2150/expert Apollo P-2150 - CUPS+Gutenprint v5.2.4
gutenprint.5.2://pcl-apollo-p2150/simple Apollo P-2150 - CUPS+Gutenprint v5.2.4 Simplified

Plan for the future
tip If you expect to add printers to the network, you may want to configure classes containing the

existing printers when you set up the network. You can then add printers later without having to
change printer configurations on client systems.

 From the Library of WoweBook.Com

ptg

562 Chapter 14 Printing with CUPS

URIs CUPS uses URIs (page 552) to identify printer ports by type and location, just as a
Web browser identifies documents by protocol and location. A parallel port has a
URI with the format parallel:/dev/lp0; a remote LPD printer uses the format
lpd://192.168.0.101. When run with root privileges, lpinfo with the –v option pro-
vides a list of available connections:

lpinfo -v
network smb
network socket
network lpd
network ipp
network http
network https
direct scsi
direct parallel:/dev/lp0
serial serial:/dev/ttyS0?baud=115200
serial serial:/dev/ttyS1?baud=115200
direct hp
direct hpfax

The –v option to lpinfo does not display every possible network address for the
socket, HTTP, IPP, LPD, and SMB protocols because there are more than 4 billion
of these addresses in the IPv4 address space.

lpadmin: Configures Printers

You can use the lpadmin utility to add and remove printers from the system, modify
printer configurations, and manage printer classes. This utility has three major
options: –d (set the default printer), –x (remove a printer), and –p (add or modify a
printer). The first two options are simple; examples follow the next subsection.
Each of these three options takes an argument that is the name of a printer. The
name of the printer must start with a letter and cannot contain SPACEs.

Adding or Modifying a Printer

Add a printer or modify an existing printer by giving a command in the following
format:

$ lpadmin –p printer-name options

where printer-name is the name of the printer and options is a combination of
options from the following list:

–c class Adds the printer to the class class, creating the class if necessary.

–D info The info is a string that describes the printer for the benefit of users; it has no mean-
ing to the system. Enclose info within quotation marks if it contains SPACEs.

–E Enables the printer, instructing CUPS to accept jobs into its print queue.

 From the Library of WoweBook.Com

ptg

Configuring Printers 563

–L loc The loc is a string that indicates the physical location of the printer (e.g., office,
building, floor). It has no meaning to the system. Enclose loc within quotation
marks if it contains SPACEs.

–P file The file is the absolute pathname of the PPD file (page 561) that describes the
printer. Use lpinfo –m to display a list of installed PPD files. If you have a manufac-
turer-provided PPD file, copy it to /usr/share/ppd/custom.

–r class Removes the printer from the class class. This option removes the class if, after
removing the printer, the class would be empty.

–v URI The URI is the device to which the printer is attached. Use lpinfo –v to list possible
devices.

Example lpadmin Commands

At a minimum, you need to provide a device and a model when you add a printer to
the system. The following command adds an Epson Stylus Color printer to the sys-
tem and enables it for use. This printer is connected locally to the first parallel port
and is named ColorPtr.

$ lpadmin -p ColorPtr -E -v parallel:/dev/lp0 -P /usr/share/ppd/custom/stcolor.ppd.gz

The printer information generated by the preceding command is stored in the
/etc/cups/printers.conf file:

$ sudo cat /etc/cups/printers.conf
Printer configuration file for CUPS v1.4.3
DO NOT EDIT THIS FILE WHEN CUPSD IS RUNNING
<Printer ColorPtr>
Info ColorPtr
DeviceURI parallel:/dev/lp0
State Idle
StateTime 1180495957
Accepting Yes
Shared Yes
JobSheets none none
QuotaPeriod 0
PageLimit 0
KLimit 0
OpPolicy default
ErrorPolicy retry-job
</Printer>

The lpadmin command decompresses and copies the printer driver information from
the /usr/share/ppd/custom/ file to /etc/cups/ppd. The resulting file is given the
printer’s name: /etc/cups/ppd/ColorPtr.ppd.

You can modify a printer configuration with lpadmin using the same options that
you used to add it. When you specify the name of an existing printer, lpadmin modi-
fies the printer rather than creating a new one.

 From the Library of WoweBook.Com

ptg

564 Chapter 14 Printing with CUPS

The next command configures an HP LaserJet–compatible printer with a JetDirect
interface that is connected directly to the LAN at 192.168.1.103 and names this
printer HPLJ. Specifying socket in the protocol part of the URI instructs CUPS to
use the JetDirect protocol, a proprietary protocol developed by HP for printers con-
nected directly to a network.

$ lpadmin -p HPLJ -E -v socket://192.168.1.103 -P /usr/share/ppd/custom/laserjet.ppd.gz

The lpstat utility with the –d option displays the name of the default printer:

$ lpstat -d
system default destination: MainPrinter

CUPS automatically makes the first printer you define the default printer. The
following command makes HPLJ the default printer:

$ lpadmin -d HPLJ

The following command removes the configuration for the ColorPtr printer:

$ lpadmin -x ColorPtr

Printing Quotas

CUPS provides rudimentary printing quotas. You can define two forms of quotas:
page count and file size. File size quotas are almost meaningless because a small
PostScript file can take a long time to interpret and can require a lot more ink to
print than a large one. Page quotas are more useful, although their implementation
is flawed. To determine the number of pages in a document, CUPS examines the
PostScript input. If a job is submitted in the printer’s native language, such as PCL,
CUPS bypasses this accounting mechanism. Also, if mpage is used to create a Post-
Script file with multiple pages printed on each sheet, CUPS counts each page in the
original document, rather than each sheet of paper it prints on.

Use job-quota-period and either job-page-limit or job-k-limit to establish a quota
for each user on a given printer. The job-quota-period option specifies the number
of seconds that the quota remains valid. The following command establishes a
quota of 20 pages per day per user for the printer named HPLJ:

$ lpadmin -p HPLJ -o job-quota-period=86400 -o job-page-limit=20

The job-k-limit option works similarly but defines a file size limit in kilobytes. The
limit is the total number of kilobytes that each user can print during the quota
period. Once a user has exceeded her quota, she will not be allowed to print until
the next quota period.

Managing Print Queues

When a printer is operating normally, it accepts jobs into its print queue and prints
those jobs in the order they are received. You can give the command cupsreject fol-
lowed by the name of a printer to cause a printer to not accept jobs into its print queue;
give the command cupsaccept to reenable it. You can also use system-config-printer to

 From the Library of WoweBook.Com

ptg

Configuring Printers 565

control the print queue; refer to “Settings” on page 551. Two factors determine
how a printer handles a job: if the printer is accepting jobs and if it is enabled.
Table 14-1 on page 551 describes what happens with the various combinations of
the two factors.

The utilities that change these factors are cupsdisable, cupsenable, cupsreject, and
cupsaccept. Each utility takes the name of a printer as an argument. The following
commands first disable and then enable the printer named HPLJ:

$ cupsdisable HPLJ
$ cupsenable HPLJ

The next commands cause HPLJ to reject and then accept jobs:

$ cupsreject HPLJ
$ cupsaccept HPLJ

Sharing CUPS Printers

IPP facilitates remote printing. The Listen directive in the CUPS configuration file,
/etc/cups/cupsd.conf, specifies which IP address and port or which domain socket
path CUPS binds to and accepts requests on. The Listen directive has the following
format:

Listen IP:port | path

where IP is the IP address that CUPS accepts connections on, port is the port num-
ber that CUPS listens on for connections on IP, and path is the pathname of the
domain socket CUPS uses to communicate with printers. CUPS typically uses port
631. By default, it binds to localhost. Thus it accepts connections from the loop-
back service of the local system only. CUPS uses /var/run/cups/cups.sock, a local
domain socket, to communicate with local printers. It can also use a Port directive
to specify the port number it listens to for HTTP requests.

$ grep -i listen /etc/cups/cupsd.conf
Only listen for connections from the local machine.
Listen localhost:631
Listen /var/run/cups/cups.sock

To allow other systems to connect to the CUPS server on the local system, you must
instruct CUPS to bind to an IP address that the other systems can reach. The follow-
ing directive would be appropriate on a CUPS server running on 192.168.0.12:

Listen 192.168.0.12:631

This directive, when placed after the other Listen directives, would cause CUPS to
listen on IP address 192.168.0.12, port 631. When you change cupsd.conf, you
need to call the cups init script to restart the cupsd daemon (page 549).

Some directives in cupsd.conf use the @LOCAL macro, which is internal to CUPS
and specifies the local system. This macro accepts communication from any address
that resolves to the local system.

 From the Library of WoweBook.Com

ptg

566 Chapter 14 Printing with CUPS

Once you restart cupsd, remote systems can print on the local system’s printers
using the IP address and port number specified by the Listen directive. If the server
is running a firewall, you need to allow remote systems to connect through it; see
page 549.

Alternatively, you can use CUPS’s access control list to permit only selected
machines to connect to local printers. An access control list is defined inside a
<Location> container (see page 918 for the Apache equivalent). The following
example allows only the system at IP address 192.168.1.101 and the local system to
print to the specified printer:

<Location /printers>
Order Allow,Deny
Allow from localhost
Allow from 192.168.1.101
</Location>

The /printers indicates that this container refers to all local printers. Alternatively,
you can control access on a per-printer basis by specifying /printers/printer-name,
where printer-name is the printer name, or by specifying /printers/path.ppd, where
path.ppd is the full pathname of the PPD file (page 561) used by the printer.

The Order Deny,Allow directive allows access by default and denies access only to
clients specified in Deny from directives. The Order Allow,Deny directive denies
print requests by default and allows requests from specified addresses. You can use
domain names, including wildcards, and IP ranges with either wildcards or net-
masks in Allow from and Deny from directives. These directives work the same way
they do in Apache. For more information refer to “Order” on page 931.

With the Order Deny,Allow directive, Deny from specifies the only IP addresses
CUPS does not accept connections from. When you use the Order Allow,Deny direc-
tive, Allow from specifies the only IP addresses CUPS accepts connections from.

Printing from Windows

This section explains how to use printers on Linux CUPS servers from Windows
machines. CUPS is easier to manage and can be made more secure than using
Samba to print from Windows.

Printing Using CUPS

Modern versions of Windows (2000 and later) support IPP and, as a result, can
communicate directly with CUPS. To use this feature, you must have CUPS config-
ured on the Linux print server to allow remote IPP printing; you also need to create
a new printer on the Windows system that points to the IP address of the Linux
print server.

 From the Library of WoweBook.Com

ptg

Printing from Windows 567

First set up the /etc/cups/cupsd.conf file to allow network printing from a client, as
explained in “Sharing CUPS Printers” on page 565. Setting up CUPS to allow print-
ing from a Windows machine is exactly the same as setting it up to allow printing
from a Linux client system. If necessary, open the firewall as explained on page 549.

From Windows XP, go to Control Panel Printers and Faxes and click Add Printer.
Click Next in the introductory window and select A network printer or a printer
attached to another computer. Click Next. Select Connect to a printer on the Inter-
net or on a home or office network and enter the following information in the text
box labeled URL:

http://hostname:631/printers/printer-name

where hostname is the name or IP address of the Linux CUPS server system and
printer-name is the name of the printer on that system. For example, for the printer
named dog88 on the system named dog at IP address 192.168.0.12, you could enter
http://dog:631/printers/dog88 or http://192.168.0.12:631/printers/dog88. If you
use a hostname, it must be defined in the hosts file on the Windows machine. Win-
dows requests that you specify the manufacturer and model of printer or provide a
driver for the printer. If you supply a printer driver, use the Windows version of the
driver.

After Windows copies some files, the printer appears in the Printers and Faxes win-
dow. Right-click the printer and select Set as Default Printer to make it the default
printer. You can specify comments, a location, and other attributes of the printer by
right-clicking the printer and selecting Properties.

Printing Using Samba

This section assumes that Samba (page 797) is installed and working on the Linux
system that controls the printer you want to use from Windows. Samba must be set
up so that the Windows user who will be printing is mapped to a Linux user
(including mapping the Windows guest user to the Linux user nobody). Make sure
these users have Samba passwords. Refer to “Samba Users, User Maps, and Pass-
words” on page 799.

Windows supports printer sharing via SMB, which allows a printer to be shared
transparently between Windows systems using the same mechanism as file sharing.
Samba allows Windows users to use printers connected to Linux systems just as
they would use any other shared printers. Because all Linux printers traditionally
appear to be PostScript printers, the Linux print server appears to share a PostScript
printer. Windows does not include a generic PostScript printer driver. Instead, Win-
dows users must select a printer driver for a PostScript printer. The Apple Laser-
Writer 12/640ps driver is a good choice.

When you install Samba, the dpkg postinst script creates a directory named
/var/spool/samba that is owned by the root account and that anyone can read from
and write to. The sticky bit (page 1174) is set for this directory, allowing a Windows

 From the Library of WoweBook.Com

http://hostname:631/printers/printer-name
http://dog:631/printers/dog88
http://192.168.0.12:631/printers/dog88

ptg

568 Chapter 14 Printing with CUPS

user who starts a print job as a Linux user to be able to delete that job, but denying
users the ability to delete the print jobs of other users. Make sure this directory is in
place and has the proper ownership and permissions:

$ ls -ld /var/spool/samba
drwxrwxrwt 2 root root 4096 2010-10-10 12:29 /var/spool/samba

Put the following two lines in the [global] section of the /etc/samba/smb.conf file:

[global]
...
printing = cups
printcap name = cups

The printer’s share is listed in the [printers] section in smb.conf. In the following
example, the path is the path Samba uses as a spool directory and is not a normal
share path. The settings allow anyone, including guest, to use the printer. The
[printers] section in the default smb.conf file has the following entries, which are
appropriate for most setups:

[printers]
 comment = All Printers
 path = /var/spool/samba
 browseable = no
 guest ok = no
 writable = no
 printable = yes

Ideally each user who plans to print should have an account. Otherwise, when mul-
tiple users share the same account (for example, the nobody account), they can
delete one another’s print jobs.

Printing to Windows

CUPS views a printer on a Windows machine exactly the same way it views any
other printer. The only difference is the URI you need to specify when connecting it.
To configure a printer connected to a Windows machine, go to the Printer page in
the CUPS Web interface and select Add Printer, just as you would for a local printer.

When you are asked to select the device, choose Windows Printer via SAMBA.
Enter the URI of the printer in the following format:

smb://windows_system/printer_name

where windows_system can be an IP address or a hostname. Once you have added
the printer, you can use it as you would any other printer.

Chapter Summary

A printing system such as CUPS sets up printers. It also moves print jobs from an
application or the command line through the appropriate filters and into a queue
for a suitable printer and then prints those jobs.

 From the Library of WoweBook.Com

ptg

Advanced Exercises 569

CUPS is a cross-platform print server built around IPP (Internet Printing Protocol).
It handles setting up and sending jobs through print queues. The easiest way to con-
figure printers is via the Printing window (system-config-printer). You can also con-
figure CUPS using the Web interface, which you can access by pointing a Web
browser at localhost:631 on the system the printer is connected to. From the Web
interface, you can configure print queues and modify print jobs in the queues.

You can use the traditional UNIX commands from a command line to send jobs to
a printer (lpr/lp), display a print queue (lpq/lpstat), and remove jobs from a print
queue (lprm/cancel). In addition, CUPS provides the lpinfo and lpadmin utilities,
which allow you to configure printers from the command line.

CUPS and Samba enable you to print on a Linux printer from a Windows machine,
and vice versa.

Exercises

1. Which commands can you use from the command line to send a file to the
default printer?

2. Which command would you give to cancel all print jobs on the system?

3. Which commands list your outstanding print jobs?

4. What is the purpose of sharing a Linux printer using Samba?

5. Name three printing protocols that CUPS supports. Which is the CUPS
native protocol?

Advanced Exercises

6. Which command lists the installed printer drivers available to CUPS?

7. How would you send a text file to a printer connected to the first parallel
port without using a print queue? Why is doing so a bad idea?

8. Assume you have a USB printer with a manufacturer-supplied PostScript
printer definition file named newprinter.ppd. Which command would you
use to add this printer to the system on the first USB port with the name
USBPrinter?

9. How would you define a quota that allows each user to print up to 50
pages per week to the printer named LaserJet?

10. Define a set of access control rules for a <Location> container inside
/etc/cups/cupsd.conf that would allow anyone to print to all printers as
long as they were either on the local system or in the mydomain.com
domain.

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

555777111

15Chapter15Once you have installed Ubuntu Linux, you may want to recon-
figure and build a new Linux kernel. Ubuntu Linux comes with a
prebuilt kernel that simplifies the installation process. However,
this kernel may not be properly configured for all system features.
By configuring and building a new kernel, you can create one that
is customized for a system and its unique needs. A customized
kernel is typically smaller than a generic one.

Sometimes you do not need to build a new kernel. Instead, you
can dynamically change many things that used to require build-
ing a new kernel. Two ways to make these changes are by using
boot command-line parameters (page 82) or by modifying
/etc/sysctl.conf, which sysctl uses when the system boots
(page 572).

You can add the same parameters you use on the boot command
line to the GRUB_CMDLINE_LINUX_DEFAULT variable in
/etc/default/grub. For example, acpi=off prevents acpid (the
advanced configuration and power interface daemon) from
starting. See page 82 for more information.

In This Chapter

Downloading the Kernel Source
Code . 573

Configuring and Compiling the
Linux Kernel 575

Installing the Kernel, Modules,
and Associated Files 582

GRUB: The Linux Boot Loader . . . 583

dmesg: Displays Kernel
Messages 589

15

Building a Linux

Kernel

 From the Library of WoweBook.Com

ptg

572 Chapter 15 Building a Linux Kernel

sysctl The sysctl utility modifies kernel parameters while the system is running. This utility
takes advantage of the facilities of /proc/sys, which defines the parameters that
sysctl can modify.

The command sysctl –a displays a complete list of sysctl parameters. An example of
displaying and changing the domainname kernel parameter follows. The quotation
marks are not required in this example, but you must quote any characters that
would otherwise be interpreted by the shell.

$ /sbin/sysctl kernel.domainname
kernel.domainname = tcorp.com
$ sudo /sbin/sysctl -w kernel.domainname="example.com"
kernel.domainname = example.com
$ /sbin/sysctl kernel.domainname
kernel.domainname = example.com

Before you can start building a new kernel, you must download, install, and clean
the source code. You also need to build a configuration file that describes the new
kernel you want to build. This chapter describes the steps involved in completing
these tasks.

Prerequisites

Install the following packages:

• linux-source (the latest released Ubuntu kernel source code; not needed if
you use git to download the code) Attempting to install linux-source dis-
plays the name of the package holding the latest kernel, which you then
install; refer to the next section.

• build-essential (metapackage; includes the packages required to compile
the code).

• fakeroot, kernel-package (kernel-specific)

• git-core (to use git to download the kernel source code)

• ncurses-dev (to configure the kernel using make menuconfig)

• libglade2-dev (to configure the kernel using make gconfig)

• module-assistant, debhelper (to create modules)

Have the installation CD/DVD handy when you build a new kernel
caution When you build a new Linux kernel to install a new version or to change the configuration of the

existing version, make sure you have the installation CD/DVD handy. This disk allows you to
reboot the system, even when you have destroyed the system software completely. Having this
CD/DVD available can mean the difference between momentary panic and a full-scale nervous
breakdown.

 From the Library of WoweBook.Com

ptg

Downloading the Kernel Source Code 573

Downloading the Kernel Source Code

This section describes two ways to download kernel source code on the local sys-
tem: aptitude (or Synaptic, page 133) and git. If you want to download code that has
not been customized (patched) by Ubuntu, visit kernel.org or see the section on git.

aptitude: Downloading and Installing the Kernel

Source Code

The easiest way to download and install the updated kernel source code for the
most recently released version of the Ubuntu kernel is to use aptitude. The following
commands make sure that the package index is up-to-date and download the linux-
source package. The dpkg postinst script puts the compressed source code in
/usr/src/linux-source*:

$ sudo aptitude update
...
$ sudo aptitude install linux-source
...
The following NEW packages will be installed:
 linux-source linux-source-2.6.32{a}
...
$ ls -l /usr/src/linux-source*
-rw-r--r-- 1 root root 65726108 2010-04-09 18:23 /usr/src/linux-source-2.6.32.tar.bz2

Because /usr/src is associated with the src group, if you are a member of this group
(page 492), you can extract and build kernels in the /usr/src directory. Otherwise,
you can unpack the kernel in any directory you have write access to.

You can add a user to the src group using usermod. The following command adds
Max to the src group so he can work in /usr/src. Max must log out and log in again
to have the system recognize him as a member of the src group.

$ sudo usermod --append --groups src max

Compiling a kernel takes a lot of disk space

tip Make sure you have enough disk space before you compile a kernel. Once you compile a default
kernel, it occupies approximately 3.5 gigabytes. This disk space must be available on the file-
system in which you compile the kernel.

Do not work with root privileges
caution You do not need to—nor should you—work as a user with root privileges for any portion of con-

figuring or building the kernel except for installation (the last step). The kernel README file says,
“Don’t take the name of root in vain.” As long as you are a member of the src group, you can down-
load, configure, and compile the kernel in a directory under /usr/src without working with root
privileges.

 From the Library of WoweBook.Com

ptg

574 Chapter 15 Building a Linux Kernel

If you are not working in /usr/src, you must copy the linux-source* file to the
directory you are working in; otherwise, cd to /usr/src. Use tar to unpack the Linux
source file:

$ tar -xjf linux-source-2.6.32.tar.bz2

git: Obtaining the Latest Kernel Source Code

The git utility (GNU interactive tools, git-scm.com) can download the latest versions
of the source code for several different kernels and can keep that source code up-to-
date. If it is not already installed, give the following command to install git:

$ sudo aptitude install git-core

The following command uses git to download a copy of the development (not the
released) kernel into the ubuntu-2.6 subdirectory of the working directory. As a
member of the src group, you can work in the /usr/src directory. Otherwise, you
can work in any directory you have write access to. You can and should work as a
nonprivileged user.

$ git clone git://kernel.ubuntu.com/ubuntu/ubuntu-lucid.git ubuntu-2.6
Initialized empty Git repository in /home/sam/ubuntu-2.6/.git/
remote: Counting objects: 1624172, done.
remote: Compressing objects: 100% (292458/292458), done.
remote: Total 1624172 (delta 1346015), reused 1596040 (delta 1318584)
Receiving objects: 100% (1624172/1624172), 468.69 MiB | 392 KiB/s, done.
Resolving deltas: 100% (1346015/1346015), done.
Checking out files: 100% (31201/31201), done.

See kernel.ubuntu.com/git and git.kernel.org for a list of Ubuntu kernels you can
download. Substitute the URL of the kernel you want to download for the URL in
the preceding command and specify the name of an appropriate directory to hold
the files you download. For example, the following command downloads the latest
Jaunty kernel into the jaunty directory in the working directory:

$ git clone git://kernel.ubuntu.com/ubuntu/ubuntu-jaunty.git jaunty

Once you have downloaded the kernel, cd to the directory that holds the code and
give the following command to update the source code to match that available at
the URL you specified in the git-clone command:

$ git pull
Already up-to-date.

The files you just downloaded should be up-to-date, as shown in the example. Give
this command anytime you want to synchronize the code in the working directory
with the latest source code at the URL.

Install the git-core package, not the git package
tip Make sure to install the git-core package and not the git package. The git package is not useful

for downloading kernel source code.

 From the Library of WoweBook.Com

ptg

Configuring and Compiling the Linux Kernel 575

/usr/src/linux: The Working Directory

Traditionally the source for the kernel that the system is running is kept in
/usr/src/linux. The following command creates the appropriate symbolic link. This
example shows the name of the kernel directory as linux-source-2.6.32; the name
on the system you are working on will be slightly different.

ln -s /usr/src/linux-source-2.6.32 /usr/src/linux

After you give these commands, the kernel source is located in /usr/src/linux. The
rest of this chapter assumes that the kernel source is in this location.

Read the Documentation

The kernel package includes the latest documentation, some of which may not be avail-
able in other documents. You may wish to review the README file in the top level of
the kernel source directory and the relevant files in the Documentation subdirectory. In
addition, a lot of information is available in the /usr/share/doc/kernel-package direc-
tory. Read the Linux Kernel-HOWTO for a detailed, somewhat dated, generic guide
to installing and configuring the Linux kernel.

Configuring and Compiling the Linux Kernel

This section describes how to configure the kernel, how to compile it, and how to
download and compile kernel modules.

.config: Configures the Kernel

Before you can compile the code and create a Linux kernel, you must decide and
specify which features you want the kernel to support. You can configure the kernel
to support most features in one of two ways: by building the feature into the kernel
or by specifying the feature as a loadable kernel module (page 580), which is loaded
into the kernel only as needed. In deciding which method to use, you must weigh
the size of the kernel against the time it takes to load a module. Make the kernel as
small as possible while minimizing how often modules have to be loaded. Do not
make the SCSI driver modular unless you have a reason to do so.

The .config file in the directory you downloaded the source code in controls which
features the new kernel will support and how it will support them. “Customizing a

Now the working directory is /usr/src/linux
tip All commands in this section on building a kernel are given relative to the top-level directory that

holds the kernel source. Traditionally this directory is /usr/src/linux. Make sure that this directory
is your working directory before proceeding. If necessary, link the directory holding the kernel
source in /usr/src to /usr/src/linux as explained above.

 From the Library of WoweBook.Com

ptg

576 Chapter 15 Building a Linux Kernel

Kernel” (page 577) explains how to create a default version of this file if it does not
exist and how to edit the file if it does exist.

Replacing a Custom Kernel

If you have already configured a custom kernel, you may want to replace it with a
similarly configured, newer kernel. Each kernel potentially has new configuration
options, however—which explains why it is poor practice to use an old .config file
for compiling a new kernel. This section explains how to upgrade an existing .config
file so it includes options that are new to the new kernel and maintains the existing
configuration for the old options.

Work in the directory you downloaded or extracted the source code to. The system
keeps a copy of the configuration file for the kernel the local system is running in
/boot. The following command copies this file to .config in the working directory:

$ cp /boot/config-$(uname -r) .config

In this command, the shell executes uname –r and replaces $(uname –r) with the
output of the command, which is the name of the release of the kernel running on
the local system. For more information refer to “Command Substitution” on
page 362.

Next give the command make oldconfig to patch the .config file with options from
the new kernel that are not present in the old kernel. This command displays each
kernel option that is the same in the new and old kernels and automatically sets the
state of the option in the new kernel the same way it was set in the old kernel. It
stops when it finds an option that appears in the new kernel but not in the old ker-
nel. It then displays a prompt, which is similar to [N/y/?] (NEW), showing possible
responses and indicating this option is new. The prompt shows the default response
as an uppercase letter; you can type this letter (uppercase or lowercase) and press
RETURN, or just press RETURN to select this response. In the example, the Tickless System
option is new and the default response is Y for yes, include the option in the new
kernel. To select a nondefault response (n means no, do not include the option and
m means include the option as a module), you must type the letter and press RETURN.
Enter ? followed by RETURN to display more information about the option.

$ make oldconfig
scripts/kconfig/conf -o arch/i386/Kconfig
*
* Linux Kernel Configuration
*
*
* Code maturity level options
*
Prompt for development and/or incomplete code/drivers (EXPERIMENTAL) [Y/n/?] y
*
* General setup
*

 From the Library of WoweBook.Com

ptg

Configuring and Compiling the Linux Kernel 577

Local version - append to kernel release (LOCALVERSION) []
Automatically append version information to version string (LOCALVERSION_AUTO) [N/y/?] n
...
*
* Processor type and features
*
Tickless System (Dynamic Ticks) (NO_HZ) [Y/n/?] (NEW) ? ?
This option enables a tickless system: timer interrupts will
only trigger on an as-needed basis both when the system is
busy and when the system is idle.

Tickless System (Dynamic Ticks) (NO_HZ) [Y/n/?] (NEW) ? RETURN
High Resolution Timer Support (HIGH_RES_TIMERS) [Y/n/?] y
Symmetric multi-processing support (SMP) [Y/n/?] y
Subarchitecture Type
> 1. PC-compatible (X86_PC)
 2. AMD Elan (X86_ELAN)
...

configuration written to .config
#

Customizing a Kernel

You can use one of three standard commands to build the .config file that configures
a Linux kernel:

$ make config
$ make menuconfig
$ make gconfig

See “Prerequisites” on page 572 for a list of packages required to run all but the
first of these commands.

If a .config file does not exist in the working directory, each of these commands
except the first sets up a .config file that matches the kernel the local system is
running and then allows you to modify that configuration. The commands can set
up this .config file only if the configuration file for the locally running kernel is in
/boot/config-$(uname –r). See the preceding section if you want to build a new
kernel with a configuration similar to that of an existing kernel.

The make config command is the simplest of the three commands, uses a textual
interface, and does not require additional software. It is, however, the most unfor-
giving and hardest to use of the configuration interfaces. The make menuconfig
command uses a pseudographical interface and also displays a textual interface.
The make gconfig command uses GTK+ (www.gtk.org) and displays a graphical
interface.

Each command asks the same questions and produces the same result, given the same
responses. The first and second commands work in character-based environments; the
third command works in graphical environments. For many administrators working
with a GUI, the third method is the easiest to use.

 From the Library of WoweBook.Com

www.gtk.org

ptg

578 Chapter 15 Building a Linux Kernel

The make gconfig command displays the Linux Kernel Configuration window,
which you can view in three configurations: single, split, or full view. Choose a view
by clicking one of the three icons to the right of the floppy diskette on the toolbar.
Figure 15-1 shows the split view. In this view, the left frame shows the options and
the top-right view lists the features for each option. The bottom-right view describes
the highlighted option or feature. Figure 15-2 shows the full view.

In any view, you can click the boxes and circles next to the choices and subchoices.
An empty box/circle indicates the feature is disabled, a tick indicates it is to be
included in the kernel, and a dot means it is to be compiled as a module. With a
choice or subchoice highlighted, you can also press M for module, N for not
included, and Y for compiled into the kernel. Select Menubar: Options Show All
Options to display all options and features.

Figure 15-1 The Linux Kernel Configuration window, split view

Figure 15-2 The Linux Kernel Configuration window, full view

 From the Library of WoweBook.Com

ptg

Configuring and Compiling the Linux Kernel 579

Go through the options and mark the features as you would like them to be configured
in the new kernel. At any time during the configuration process, you can store the cur-
rently defined configuration to a file, load a configuration from a file, or exit with or
without saving your changes. The selections to do so are available in Menubar: File.
When you are done, select Menubar: File Save and close the window.

Cleaning the Source Tree

After generating a .config file, but before compiling or recompiling the kernel, purge
the source tree of all potentially stale *.o files using the following command:

$ make-kpkg clean
exec make kpkg_version=12.032 -f /usr/share/kernel-package/ruleset/minimal.mk clean
====== making target minimal_clean [new prereqs:]======
This is kernel package version 12.032.
test ! -f .config || cp -pf .config config.precious
test ! -e stamp-building || rm -f stamp-building
test ! -f Makefile || \
 make ARCH=i386 distclean
make[1]: Entering directory `/usr/src/linux-source-2.6.32'
 CLEAN scripts/basic
 CLEAN scripts/kconfig
 CLEAN include/config
 CLEAN .config include/linux/autoconf.h
make[1]: Leaving directory `/usr/src/linux-source-2.6.32'
test ! -f config.precious || mv -f config.precious .config
rm -f modules/modversions.h modules/ksyms.ver scripts/cramfs/cramfsckscripts/cramfs/mkcramfs

This command ensures that make correctly applies any numbering scheme you use
when you compile the kernel. Continue to work as a nonprivileged user.

Compiling a Kernel Image File and Loadable Modules

See “Prerequisites” on page 572 for a list of packages that must be installed to
compile the source code. Give the following command to compile the kernel and
modules; it generates a .deb file in the parent of the working directory.

$ make-kpkg --initrd --rootcmd fakeroot --append-to-version $(date +%s) kernel_image
exec make kpkg_version=12.032 -f /usr/share/kernel-package/ruleset/minimal.mk debian APP
END_TO_VERSION=1271202298 INITRD=YES ROOT_CMD=fakeroot
====== making target debian/stamp/conf/minimal_debian [new prereqs:]======
This is kernel package version 12.032.
test -d debian || mkdir debian
test ! -e stamp-building || rm -f stamp-building
...
chmod -R og=rX /usr/src/linux/debian/linux-image-2.6.32.11+drm33.21271202298
chown -R root:root /usr/src/linux/debian/linux-image-2.6.32.11+drm33.21271202298
dpkg --build /usr/src/linux/debian/linux-image-2.6.32.11+drm33.21271202298 ..
dpkg-deb: building package 'linux-image-2.6.32.11+drm33.21271202298' in '../linux-image-2.6.32.11+drm
33.21271202298_2.6.32.11+drm33.21271202298-10.00.Custom_i386.deb'.
make[2]: Leaving directory '/usr/src/linux-source-2.6.32'
make[1]: Leaving directory '/usr/src/linux-source-2.6.32'

$ ls ../*deb
../linux-image-2.6.32.11+drm33.21271202298_2.6.32.11+drm33.21271202298-10.00.Custom_i386.deb

 From the Library of WoweBook.Com

ptg

580 Chapter 15 Building a Linux Kernel

The ––append-to-version option allows you to specify a string that uniquely identi-
fies the kernel you are building. This string also helps prevent overwriting existing
kernels. You can specify any string you like following this option, using characters
from the set of lowercase letters, numbers, – (minus), + (plus), and . (period). The
value you specify is placed at the end of the kernel name and release number. You
can make note of patches applied to the kernel in this string to help developers track
bugs. The preceding example uses command substitution (page 362) to place the
number of seconds since the UNIX epoch in the name of the kernel, making easy to
tell which of several kernels is newest.

Using Loadable Kernel Modules

A loadable kernel module (page 1157) (sometimes called a module or loadable mod-
ule) is an object file—part of the kernel—that is linked into the kernel at runtime.
Modules can be inserted into and removed from a running kernel at almost any time
(except when a module is being used). This ability gives the kernel the flexibility to
be as small as possible at any given time. Modules are a good way to code some ker-
nel features, including drivers that are not used continually (such as a tape driver).
Module filenames end in .ko and are stored in subdirectories in /lib/modules. Under
Ubuntu, kernel modules are compiled along with the kernel as explained in the pre-
ceding section.

Finding Nonstandard Modules

Many drivers that are not in the main source tree or not free are supplied as

*-source packages. You can use aptitude to display a list of available *-source pack-
ages. The following example first updates APT’s cache, then displays a list of

*-source packages, and finally displays a list of packages that pertain to NVIDIA.
The dollar sign at the end of the search string (source$) ensures that the string
matches only the last part of a package name.

$ sudo aptitude update
$ aptitude search source$
p acerhk-source - Source for the acerhk driver
p acl2-books-source - A Computational Logic for Applicative Common Lisp: library sources
p acl2-infix-source - A Computational Logic for Applicative Common Lisp: infix source
p acl2-source - A Computational Logic for Applicative Common Lisp: source files
...
$ aptitude search source$ | grep -i nvidia
p nvidia-173-kernel-source - Transitional package for nvidia-glx-173-ke
p nvidia-180-kernel-source - Transitional package for nvidia-glx-185-ke
p nvidia-185-kernel-source - Transitional package for nvidia-glx-185-ke
p nvidia-96-kernel-source - Transitional package for nvidia-glx-96-ker

module-assistant: Downloading, Compiling, and

Installing Nonstandard Modules

Once you determine its name, you need to download and install the module source
package. You then need to compile, build, and install the Debian module package

 From the Library of WoweBook.Com

ptg

Configuring and Compiling the Linux Kernel 581

that corresponds to the source package. Check the prerequisites listed on page 572
before starting this process. The following command uses module-assistant to per-
form these steps with the nvidia-173-kernel-source package:

$ module-assistant --text-mode auto-install nvidia-173-kernel-source

The module-assistant utility calls sudo to run apt-get and dpkg. It will fail if you do
not have write permission to /usr/src (i.e., if you are not in the src group); sudo may
prompt you for your password. You must be a member of the admin group so
module-assistant can call sudo successfully. Without the ––text-mode option, module-
assistant presents a pseudographical interface that requires input.

If you run into problems, you may want to call module-assistant to perform each of
the steps in turn. You must run the module-assistant prepare command once before
running other module-assistant commands (except auto-install). The following com-
mands use m-a, a link to module-assistant, and –t in place of ––text-mode:

$ m-a -t prepare
$ m-a -t get nvidia-kernel
$ m-a -t build nvidia-kernel
$ m-a -t install nvidia-kernel

The format of a module-assistant command is as follows:

module-assistant command [pkg-list]

where command is a command from the following list and pkg-list is a list of one or
more SPACE-separated module source packages. You do not need to include the
–source part of the package name when working with module-assistant. The prepare
command does not accept a pkg-list; all other commands require it. See the module-
assistant man page for a list of options, more commands, and more information.

auto-install pkg-list
Combines the prepare, get, build, and install commands and processes pkg-list.
Abbreviate this command as a-i.

build pkg-list Builds pkg-list. Error messages go to /var/cache/modass.

get pkg-list Downloads and installs the source code for pkg-list.

install pkg-list Installs pkg-list. Without pkg-list, installs the last package you built for the kernel
running on the local system.

list pkg-list With arguments, lists details about pkg-list. Without arguments, lists all known
packages. Abbreviate this command as la (list available).

list-installed Lists details about installed packages. Abbreviate this command as li.

prepare Determines the name of the kernel-header package, installs it and the build-essential
package as needed, and creates the /usr/src/linux symbolic link. With the –l option,
this command uses the kernel version you specify. Without this option, it uses the
version of the kernel running on the local system. You must run this command
before you run any other module-assistant commands.

 From the Library of WoweBook.Com

ptg

582 Chapter 15 Building a Linux Kernel

Loading a Module

After you install a module with module-assistant, you must load it to make it available
to the running kernel. Table 15-1 lists some of the tools available to help you work with
modules. Refer to the corresponding man pages for options and more information.

Installing the Kernel, Modules, and

Associated Files

The next step is to copy the compiled kernel, modules, and associated files to the
appropriate directories—usually /boot and a subdirectory of /lib/modules. When
you have a partition mounted at /boot, the files are kept in the root of this partition
(/boot). Because you have created a deb package, installing these files is quite easy.
The following command installs the new kernel files in the proper directories:

$ cd ..
$ sudo dpkg -i linux-image-2.6.32.11+drm33.21271202298_2.6.32.11+drm33.21271202298-
10.00.Custom_i386.deb
Selecting previously deselected package linux-image-2.6.32.11+drm33.21271202298.
(Reading database ... 130902 files and directories currently installed.)
Unpacking linux-image-2.6.32.11+drm33.21271202298 (from linux-image
2.6.32.11+drm33.21271202298_2.6.32.11+drm33.21271202298-10.00.Custom_i386.deb) ...
Done.
Setting up linux-image-2.6.32.11+drm33.21271202298 (2.6.32.11+drm33.21271202298 10.00.Custom) ...
Running depmod.
Examining /etc/kernel/postinst.d.
run-parts: executing /etc/kernel/postinst.d/nvidia-common 2.6.32.11+drm33.21271202298
/boot/vmlinuz-2.6.32.11+drm33.21271202298
run-parts: executing /etc/kernel/postinst.d/pm-utils 2.6.32.11+drm33.21271202298
/boot/vmlinuz-2.6.32.11+drm33.21271202298
Running postinst hook script update-grub.
Generating grub.cfg ...
Found linux image: /boot/vmlinuz-2.6.32.11+drm33.21271202298
Found linux image: /boot/vmlinuz-2.6.32-19-generic
Found initrd image: /boot/initrd.img-2.6.32-19-generic
Found memtest86+ image: /boot/memtest86+.bin
done

Table 15-1 Tools for working with modules

Tool/utility Function

depmod Works with dependencies for modules.

insmod Loads modules in a running kernel.

lsmod Lists information about all loaded modules.

modinfo Lists information about a module.

modprobe Loads, unloads, and reports on modules. When it loads a module, it also loads
dependencies.

rmmod Unloads modules from a running kernel.

 From the Library of WoweBook.Com

ptg

GRUB: The Linux Boot Loader 583

Installing the kernel in this manner updates the grub.cfg GRUB configuration file to
include the new kernel. The GRUB boot loader is covered below.

Rebooting

Reboot the system by selecting Main menu: System Quit and then clicking
Restart. If you are working at the console, press CONTROL-ALT-DEL. You can also give a
reboot command from the console, a character-based terminal, or a terminal
emulator.

GRUB: The Linux Boot Loader

MBR A boot loader is a very small program that the bootstrap (page 1138) process uses
as it brings a computer from off or reset to a fully functional state. The boot loader
frequently resides on the starting sectors of a hard disk called the master boot
record (MBR).

BIOS The BIOS (page 1137), which is stored in an EEPROM (page 1147) on the system’s
motherboard, gains control of a system when you turn on or reset the computer.
After testing the hardware, the BIOS transfers control to the MBR, which usually
passes control to the partition boot record. This transfer of control starts the boot
loader, which is responsible for locating the operating system kernel (kept in the
/boot directory), loading that kernel into memory, and starting it running. The
/boot directory, which may be mounted on a separate partition, must be present for
the system to boot Linux. Refer to “Booting the System” on page 444 for more
information on what happens from this point forward.

LBA addressing
mode and the /boot

partition

All newer hard disks support LBA (logical block addressing) mode. LBA permits the
/boot directory to appear anywhere on the hard disk. For LBA to work, it must be
supported by the hard disk, the BIOS, and the operating system (GRUB in the case
of Linux). Although both GRUB 2 and GRUB legacy support LBA addressing
mode, some BIOSes do not. For this reason, it is a good idea place the /boot direc-
tory in its own partition located near the beginning of the hard disk. With this
setup, the root (/) filesystem can be anywhere on any hard drive that Linux can
access regardless of LBA support. Also, systems with LVM require a separate boot
partition. In some instances, without a separate /boot partition, the system may
boot at first, but then fail as you update the kernel and the kernel files move further
from the beginning of the disk.

GRUB 2 GRUB stands for Grand Unified Boot loader. With release 9.10 (Karmic Koala),
Ubuntu introduced GRUB 2, which this book refers to simply as GRUB. This book
refers to the first release as GRUB legacy. GRUB 2 is a complete rewrite of GRUB
legacy; few of the configuration files are the same.

 From the Library of WoweBook.Com

ptg

584 Chapter 15 Building a Linux Kernel

A product of the GNU project, the GRUB loader conforms to the multiboot specifi-
cation (page 1160), which allows it to load many free operating systems directly as
well as to chain load (page 1140) proprietary operating systems. The GRUB loader
can recognize various types of filesystems and kernel executable formats, allowing it
to load an arbitrary operating system. When you boot the system, GRUB can dis-
play a menu of choices that is generated by the /boot/grub/grub.cfg file (page 587).
At this point you can modify a menu selection, choose which operating system or
kernel to boot, or do nothing and allow GRUB to boot the default system.

When you install GRUB at the time you install Linux, the installation program con-
figures GRUB automatically. See the grub info page and www.gnu.org/software/grub
for more information on GRUB.

Configuring GRUB

As mentioned earlier, GRUB 2 uses a different set of files than GRUB legacy. You
control most of the frequently changed aspects of GRUB by editing the
/etc/default/grub file (discussed next) and running update-grub (page 587), which
generates the /boot/grub/grub.cfg file (page 587). You can edit files in the
/etc/grub.d directory (page 586) to perform advanced configuration of the GRUB
menu. The grub.cfg file is comparable to the GRUB legacy /boot/grub/menu.lst file,
but it is a poor idea to edit the grub.cfg file because it is generated by update-grub
and is overwritten each time that utility is run.

/etc/default/grub: The Primary GRUB Configuration File

Changing the values of variables in the /etc/default/grub file allows you to modify
many aspects of how the system boots and how GRUB displays its menu
(Figure 11-1, page 446). In most cases, you can force GRUB to display its menu by
holding down the SHIFT key as the system boots (page 445).

The effects of some of the variables you can set in the /etc/default/grub file depend on
whether GRUB finds one or more than one bootable operating systems on the
machine. Some variables do not need to be set. Toward this end, GRUB does not eval-
uate a line that begins with a hashmark (#; these lines are comments). Remove or add
a hashmark to cause GRUB to evaluate or not evaluate an assignment, respectively.

The beginning of the /etc/default/grub file is shown here. The first few variables are
set; the last few are commented out.

$ cat /etc/default/grub
If you change this file, run 'update-grub' afterwards to update
/boot/grub/grub.cfg.

Upgrading from releases before Karmic Koala (9.10) will not upgrade GRUB

tip Upgrading (page 32) Ubuntu from Karmic Koala (9.10) or a previous release of Ubuntu will not
upgrade GRUB legacy to GRUB 2. Visit wiki.ubuntu.com/Grub2#Installing for instructions on
upgrading from GRUB legacy to GRUB 2.

 From the Library of WoweBook.Com

www.gnu.org/software/grub

ptg

GRUB: The Linux Boot Loader 585

GRUB_DEFAULT=0
GRUB_HIDDEN_TIMEOUT=0
GRUB_HIDDEN_TIMEOUT_QUIET=true
GRUB_TIMEOUT="10"
GRUB_DISTRIBUTOR=‘lsb_release -i -s 2> /dev/null || echo Debian‘
GRUB_CMDLINE_LINUX_DEFAULT="quiet splash"
GRUB_CMDLINE_LINUX=""

Uncomment to disable graphical terminal (grub-pc only)
#GRUB_TERMINAL=console
...

You can assign values to the following variables:

GRUB_DEFAULT=num | saved
The num specifies the ordinal number of the default menu entry. Menu entries are
numbered starting with 0, so setting this variable to 0 specifies the first menu entry.
The default menu entry is the one GRUB boots if you do not select a different entry
as GRUB boots the system. Setting GRUB_DEFAULT to saved causes GRUB to
boot the most recently booted menu entry.

GRUB_HIDDEN_TIMEOUT=num
The num specifies the number of seconds GRUB waits with a blank screen (the
menu is hidden—thus it is called a hidden timeout) or displays the image you spec-
ify in /etc/grub.d/05_debian_theme (page 587) before booting the system. Setting
num to 0 causes GRUB to pause just long enough so that if the user is holding down
the SHIFT key as the system boots, GRUB displays its menu. GRUB ignores this vari-
able on systems with more than one bootable system.

GRUB_HIDDEN_TIMEOUT_QUIET=true | false
Specifies whether GRUB displays a countdown timer during a hidden timeout (see
GRUB_HIDDEN_TIMEOUT). Set to false to display the timer or true not to dis-
play the timer.

GRUB_TIMEOUT=num
The num specifies the number of seconds GRUB waits before booting the system.
Set num to –1 to cause GRUB to wait until the user selects a menu item. Setting
num to 0 causes the SHIFT key to lose its effect: The user will not be able to display
the GRUB menu before the system boots.

GRUB_DISTRIBUTOR=string
The string specifies the name of the distribution as displayed by GRUB. The string
as supplied with Ubuntu is executable and is replaced with its output because it is
enclosed within back ticks (command substitution; page 362):

‘lsb_release -i -s 2> /dev/null || echo Debian‘

With the –i and –s options, lsb_release sends the string Ubuntu to standard output.
Standard error is discarded (2> /dev/null) and, if lsb_release fails, the string Debian
is sent to standard output.

 From the Library of WoweBook.Com

ptg

586 Chapter 15 Building a Linux Kernel

GRUB_CMDLINE_LINUX_DEFAULT=string
GRUB appends string to the linux boot line that GRUB passes to the kernel at boot
time when booting in normal mode (and not recovery mode; page 445). As supplied
with Ubuntu, the string is quiet splash, which causes Ubuntu to display the splash
screen and no messages as it boots. For more information refer to “Seeing What Is
Going On” on page 57. You can also add boot command-line parameters to string;
see page 82 for more information. Separate each word from the next with a SPACE

and, if string includes SPACEs, enclose string within double quotation marks.

GRUB_CMDLINE_LINUX=string
GRUB appends string to the linux boot line that GRUB passes to the kernel when
booting in both normal and recovery modes (page 445). See the discussion of
GRUB_CMDLINE_LINUX_DEFAULT for more information.

GRUB_TERMINAL=console
Commented out by default. Remove the leading hashmark to uncomment this vari-
able and disable the graphical terminal on PCs. Doing so speeds up work with the
screen in GRUB command-line mode.

GRUB_GFXMODE=WxH
Commented out by default. Remove the leading hashmark to uncomment this vari-
able and set the resolution of the display for the boot menu. The W is the width of
the display and the H is the height of the display, both in pixels. You must set this
variable to a value that is valid for the graphics card. For example, 640x480 sets the
resolution to 640 pixels by 480 pixels.

GRUB_DISABLE_LINUX_UUID=true | false
Commented out by default. Remove the leading hashmark to uncomment this vari-
able and specify whether GRUB passes the root=UUID=xxx parameter to the ker-
nel. By default, GRUB passes this parameter to the kernel (false). See page 510 for
more information on identifying partitions using UUID numbers.

GRUB_DISABLE_LINUX_RECOVERY=true | false
Commented out by default. Remove the leading hashmark to uncomment this vari-
able and specify whether update-grub generates recovery-mode menu entries. By
default, GRUB generates these entries (false).

GRUB_INIT_TUNE="beep frequency"
Commented out by default. Remove the leading hashmark to uncomment this
variable and specify that GRUB is to output a beep when it starts. A typical value
for beep frequency is 480 440 1. You must enclose beep frequency within double
quotation marks.

/etc/grub.d/*: GRUB Configuration Templates

The files in the /etc/grub.d directory determine many aspects of the GRUB menu.
The update-grub utility (discussed next) processes these files in shell expansion order
PAGE, which for the default set of files means numerical order. See the README
file in this directory for more information.

 From the Library of WoweBook.Com

ptg

GRUB: The Linux Boot Loader 587

You can add files to this directory and modify the existing files, but it is not usually
necessary to do so. Each of these files must be executable if you want update-grub to
process it. If you do not want update-grub to process one of the files, remove the
execute bits from the file. For example, if you do not want memtest86+ included on
the GRUB menu, give the following command:

$ sudo chmod 644 /etc/grub.d/20_memtest86+

By default, the /etc/grub.d directory holds the following files:

00_header Runs the initial GRUB setup and provides the header information that appears at
the beginning of the grub.cfg file.

05_debian_theme Sets the theme as well as the background and text colors.

10_linux Creates a menu entry for each kernel specified by a file named /boot/vmlinu[xz]–*
or /vmlinu[xz]–*. If GRUB_DISABLE_LINUX_RECOVERY is set to false or com-
mented out, this file also creates a recovery menu entry for each of these kernels.

20_memtest86+ Creates a menu entry for memtest86+ (page 79) if the /boot/memtest86+ file exists.

30_os-prober Creates menus for Linux and other operating systems on partitions other than / and
/boot.

40_custom Accepts custom menu entries.

update-grub: Updates the grub.cfg File

The update-grub utility is a shell script that runs grub-mkconfig with the output file
specified as /boot/grub/grub.cfg. The grub-mkconfig utility creates or updates its
output file based on the contents of the /etc/default/grub file (page 584) and the
files in the /etc/grub.d directory (page 586). A sample run of update-grub is shown
here:

$ sudo update-grub
Generating grub.cfg ...
Found linux image: /boot/vmlinuz-2.6.32-22-generic
Found initrd image: /boot/initrd.img-2.6.32-22-generic
Found linux image: /boot/vmlinuz-2.6.32-21-generic
Found initrd image: /boot/initrd.img-2.6.32-21-generic
Found memtest86+ image: /boot/memtest86+.bin
done

By default, update-grub searches for Linux and other operating system kernel files
and creates a menu entry (boot specification) in grub.cfg for each kernel it finds. If
the /boot/memtest86+.bin and /etc/grub.d/20_memtest86+ files exists and the lat-
ter file is executable, update-grub includes a menu entry for that utility. It also adds
an initrd (initial RAM disk) line to grub.cfg for each file in /boot whose name starts
with the string initrd– and whose version number matches one of the kernel files it
found. For example, if update-grub finds the kernel file named vmlinuz-2.6.32-19-
generic in /boot and then finds initrd.img-2.6.32-19-generic, it creates an initrd line
in grub.cfg for that RAM disk image file.

 From the Library of WoweBook.Com

ptg

588 Chapter 15 Building a Linux Kernel

Listing installed
kernel packages

Each time update-grub runs, it searches for kernel files. If a kernel file is no longer
present, it will no longer include a menu entry for that kernel. Similarly, if a new
kernel file is present, it will include a menu entry for that kernel. You can remove a
kernel’s menu entry by removing the kernel package, which removes the kernel files.

The command uname –r displays the name of the kernel the system is running. The
following commands display the name of the kernel the system is running and list
the installed kernel packages. See page 535 for more information about the dpkg
––list option.

$ uname -r
2.6.32-22-generic

$ dpkg --list "linux-image*generic"
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Inst/Cfg-files/Unpacked/Failed-cfg/Half-inst/trig-aWait/Trig-pend
|/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)
||/ Name Version Description
+++-============================-==================-==
ii linux-image-2.6.32-21-generi 2.6.32-21.32 Linux kernel image for version 2.6.32 on x86/x86_64
ii linux-image-2.6.32-22-generi 2.6.32-22.33 Linux kernel image for version 2.6.32 on x86/x86_64
ii linux-image-generic 2.6.32.22.23 Generic Linux kernel image

aptitude removes
a kernel

The easiest way to remove a kernel package is to use Main menu: System
Administration Computer Janitor. You can also use the aptitude remove com-
mand. Substitute the name of the kernel package you want to remove for the one
in the following example. As shown above, the dpkg command truncates the name
of the kernel package in the column labeled Name and displays three extra char-
acters in the column labeled Version. The following command removes the first
kernel package listed by the previous dpkg command:

$ sudo aptitude remove linux-image-2.6.32-19-generic
Reading package lists... Done
Building dependency tree
Reading state information... Done
Reading extended state information
Initializing package states... Done
The following packages will be REMOVED:
 linux-image-2.6.32-19-generic
...
Removing linux-image-2.6.32-19-generic ...
Examining /etc/kernel/prerm.d.
Running postrm hook script /usr/sbin/update-grub.
Generating grub.cfg ...
Found linux image: /boot/vmlinuz-2.6.32.11+drm33.21271202298
Found linux image: /boot/vmlinuz-2.6.32-21-generic
Found initrd image: /boot/initrd.img-2.6.32-21-generic
Found memtest86+ image: /boot/memtest86+.bin
done
...

The lines starting with Generating grub.cfg are displayed by update-grub, which is
run by the deb postrm script (page 533). It is good practice to keep at least one
known-good kernel in addition to the one the system is running. See page 520 for
more information on the aptitude remove command.

 From the Library of WoweBook.Com

ptg

dmesg: Displays Kernel Messages 589

grub-install: Installs the MBR and GRUB Files

The grub-install utility installs the MBR (page 583) and the files that GRUB needs to
boot the system. This utility takes a single argument—the name of the device that is
to hold the MBR. You can specify the device name as a GRUB device name (e.g.,
hd0) or a device filename (e.g., /dev/sda). The following example shows grub-install
installing files in the default location (/boot/grub) and the MBR on device /dev/sda:

$ sudo grub-install /dev/sda
Installation finished. No error reported.

Reinstalling the MBR

To reinstall the MBR, as is necessary when it gets overwritten by a Windows instal-
lation, boot the system from an Alternate CD, a Server CD, or an installation DVD,
and select Rescue a Broken System (page 83). Then select Reinstall the GRUB boot
loader from the Rescue Operations menu (page 84).

dmesg: Displays Kernel Messages

The dmesg utility displays the kernel-ring buffer, where the kernel stores messages.
When the system boots, the kernel fills this buffer with messages related to hard-
ware and module initialization. Messages in the kernel-ring buffer are often useful
for diagnosing system problems.

When you run dmesg, it displays a lot of information. It is frequently easier to pipe
the output of dmesg through less or grep to find what you are looking for. For
example, if you find that your hard disks are performing poorly, you can use dmesg
to check whether they are running in DMA mode:

$ dmesg | grep DMA
...
[23.259422] ata1: SATA max UDMA/133 cmd 0x9F0 ctl 0xBF2 bmdma 0xE000 irq 5
[23.259478] ata2: SATA max UDMA/133 cmd 0x970 ctl 0xB72 bmdma 0xE008 irq 5
...

The preceding lines tell you which mode each SATA device is operating in. If you
are having problems with the Ethernet connection, search the dmesg log for eth:

$ dmesg | grep eth
forcedeth.c: Reverse Engineered nForce ethernet driver. Version 0.61.
eth0: forcedeth.c: subsystem: 0147b:1c00 bound to 0000:00:04.0
eth0: no IPv6 routers present

If everything is working properly, dmesg displays the hardware configuration
information for each network interface.

Another common source of problems is the Direct Rendering Infrastructure (DRI),
which allows graphics drivers direct access to the kernel. The corresponding kernel

 From the Library of WoweBook.Com

ptg

590 Chapter 15 Building a Linux Kernel

component is the Direct Rendering Module (DRM—not to be confused with Digital
Rights Management).

$ dmesg | grep drm
[drm] AGP 0.99 Aperture @ 0xd8000000 64MB
[drm] Initialized radeon 1.7.0 20020828 on minor 0
[drm] Loading R200 Microcode

This output tells you that an ATi Radeon graphics card is configured correctly: Any
configuration problems must be in the /etc/X11/xorg.conf file. The NVIDIA binary
drivers do not use DRI. The dmesg log is a good place to start when diagnosing
faults. If you have configured a system service incorrectly, this log quickly fills up
with errors.

Chapter Summary

You can build a Linux kernel from the source code. Sometimes you do not need to
build a kernel; instead, you can change many aspects of the kernel by using boot
options in /boot/grub/menu.lst. You can dynamically change options by modifying
/etc/sysctl.conf.

Before you can build a Linux kernel, you must have the kernel source files on the
system. These files are frequently located in /usr/src/linux*. Once you have the
source files, you need to configure the kernel, clean the source tree, compile the ker-
nel and the loadable modules, and install the kernel and loadable modules.

The GRUB boot loader is a small program that controls the process of bringing the
system up. The update-grub utility updates the grub.cfg file so you can boot the new
kernel.

The dmesg utility displays the kernel-ring buffer, where the kernel stores messages.
You can use this utility to help diagnose boot-time problems.

Exercises

1. What is the purpose of the kernel?

2. How would you display a list of all loaded modules in the current kernel?

3. How would you use aptitude to download the source code for the most
recently released version of the Ubuntu kernel? Where and in what form
does the source code exist after you download it? How and where would
you unpack the source code so that you could work with it?

4. How would you display information from the kernel about the hard disk
on the first SATA channel?

 From the Library of WoweBook.Com

ptg

Advanced Exercises 591

5. The acpi=off kernel argument prevents acpid from starting. How would
you use this argument?

6. What is a boot loader?

Advanced Exercises

7. Why would you use the ––append-to-version option to the make-kpkg util-
ity when compiling a kernel?

8. You have just installed an Adaptec SCSI card. How can you find out
whether it has been recognized and which entry in /dev represents it?

9. How would you obtain a list of all network-related kernel parameters?

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

555999333

16Chapter16The system administrator has many responsibilities. This chap-
ter discusses tasks not covered in Chapter 11, including config-
uring user and group accounts, backing up files, scheduling
tasks, general problem solving, and using the system log dae-
mon, syslogd. The chapter concludes with a section on install-
ing and using MySQL.

In This Chapter

Configuring User and Group
Accounts 594

Backing Up Files 599

System Reports 608

Keeping Users Informed 614

Solving Problems 616

Speeding Up the System 617

Keeping the System Secure 619

logrotate: Manages Log Files 622

Disk Quota System 625

rsyslogd: Logs System
Messages 625

MySQL . 628

16

Administration Tasks

 From the Library of WoweBook.Com

ptg

594 Chapter 16 Administration Tasks

Configuring User and Group Accounts

More than a username is required for a user to be able to log in and use a system: A
user must have the necessary files, directories, permissions, and usually a password
to log in. At a minimum a user must have an entry in the /etc/passwd and
/etc/shadow files and a home directory. This section describes several ways you can
work with user accounts. Refer to Chapter 21 if you want to run NIS to manage the
passwd database.

users-admin: Manages User Accounts

The Users Settings window (Figure 16-1) enables you to add, delete, and modify
characteristics of system users and groups. To display this window, select Main
menu: System Administration Users and Groups or give the command
users-admin from a terminal emulator or Run Application window (ALT-F2).

Authentication

Because you can use users-admin to make changes to the system that affect other
users, this utility periodically asks you to authenticate yourself using your password.

Adding a User

To add a user to the system, click the button labeled Add (below the list of users);
users-admin displays the Create a New User window. This window requires you to
enter the full name and username of the new user. If you want to encrypt the user’s
home directory, put a tick in the checkbox labeled Encrypt home folder to protect
sensitive data. When you click OK, users-admin displays the Change User Password
window (Figure 16-2). In this window you can enter the new user’s password or
have the system generate a password for you. If you do not want the system to ask

Figure 16-1 The Users Settings window

 From the Library of WoweBook.Com

ptg

Configuring User and Group Accounts 595

for a password when the user logs in, put a tick in the checkbox labeled Don’t ask
for password on login. When you click OK, users-admin adds the user to the system.

Removing a User

To remove a user from the system, highlight the user you want to remove and click the
button labeled Delete (below the list of users); users-admin asks if you want to remove
the user’s home directory. Make a selection and users-admin removes the user account.

Modifying a User

To modify the properties of a user, highlight the user you want to work with in the
Users Settings window and click one of the text buttons labeled Change as explained
in this section. See also the next section, titled “Changing Advanced User Settings.”

Changing a
username

Click the uppermost text button labeled Change (at the right side of the window,
adjacent to the username) to open a window that allows you to change the long
name associated with the highlighted user.

Changing an
account type

Click the middle text button labeled Change (at the right side of the window, adja-
cent to Account type) to open a window that allows you to change the account type
associated with the highlighted user to administrator or desk-top user. Setting the
account type to administrator adds the user to the admin group, which in turn
allows the user to use sudo (page 421) to gain root privileges.

Changing a
password

Click the lower text button labeled Change (at the right side of the window, adja-
cent to Password) to open the Change User Password window, which is described in
the previous section.

Figure 16-2 The Change User Password window

 From the Library of WoweBook.Com

ptg

596 Chapter 16 Administration Tasks

Changing Advanced User Settings

When you click the button labeled Advanced Settings, users-admin displays the
Change Advanced User Settings window (Figure 16-3). This window has the fol-
lowing three tabs:

Contact Information
tab

The Contact Information tab allows you to input a location, work phone, and
home phone associated with the user.

User Privileges tab The User Privileges tab (Figure 16-3) enables you to add and remove privileges for a
user. Place a tick in the check box next to each of the privileges you want to grant a
user; remove the tick from those privileges you do not want to grant. The most
important of these privileges is Administer the system. Putting a tick in this box
adds the user to the admin group, which in turn allows the user to use sudo
(page 421) to gain root privileges. Click OK.

Advanced tab The Advanced tab allows you to modify the home directory, shell, group, and UID
of the user. The users-admin utility fills in these values for a new user. Typically you
do not need to modify these entries. This tab also allows you to disable an account
(except for the first account that was set up).

When you are finished entering information under each of the tabs for the user,
click OK. At this point users-admin adds the user to or modifies the user on the sys-
tem and closes the window, leaving the Users Settings window visible.

Figure 16-3 The Account Properties window, User Privileges tab

 From the Library of WoweBook.Com

ptg

Configuring User and Group Accounts 597

Working with
groups

Click Manage Groups in the Users Settings window to work with groups; users-
admin displays the Groups Settings window (Figure 16-4). To create a group,
click Add and specify the name and number (GID) of the group. Put a tick in the
check box next to each user who you want to be a member of the group and
click OK. To change the name or number of a group or to add or remove users
from a group, highlight the group in the Groups Settings window and click
Properties. Make the changes you want, and then click OK. To remove a group,
highlight the group and click Delete. See page 492 for more information on
groups.

When you are finished adding and modifying users and groups, click Close.

useradd: Adds a User Account

The useradd utility adds a new user account to the system. By default, useradd
assigns the next highest unused user ID to a new account and specifies bash as
the user’s login shell. The following example adds entries to the /etc/passwd and
/etc/shadow files, creates the user’s home directory (in /home), specifies the
user’s group ID, and puts the user’s full name in the comment field. The group
ID you specify must exist in /etc/group or the command will fail. Use groupadd to
add a group.

$ sudo useradd -g 1105 -c "Max R." max

The useradd utility puts a ! in the password field of the shadow file (page 497) to
prevent the user from logging in until you use passwd to assign a password to that
user. Based on the /etc/login.defs file, useradd creates a home directory for the new
user. When doing so, it copies the contents of /etc/skel, which contains bash and
other startup files, to that directory. For more information on adding user informa-
tion, see the useradd man page.

Under some distributions, adduser is a link to useradd. Under Ubuntu, it is a differ-
ent program. See the adduser man page for more information.

Figure 16-4 The Groups Settings window

 From the Library of WoweBook.Com

ptg

598 Chapter 16 Administration Tasks

userdel: Removes a User Account

The userdel utility deletes a user’s account. If appropriate, back up the files belong-
ing to the user before deleting them. The following command removes Max’s
account. The ––remove (–r) option causes the command to remove his home direc-
tory hierarchy:

$ sudo userdel --remove max

See the userdel man page for more information.

usermod: Modifies a User Account

To turn off a user’s account temporarily, you can use usermod to change the expira-
tion date for the account. Because it specifies that his account expired in the past
(December 31, 2009), the following command line prevents Max from logging in:

$ sudo usermod -e "12/31/09" max

See the usermod man page for more information.

groupadd: Adds a Group

Just as useradd adds a new user to the system, so groupadd adds a new group by
adding an entry to /etc/group (page 492). The following example creates a group
named pubs:

$ sudo groupadd -g 1024 pubs

Unless you use the –g option to assign a group ID, the system picks the next avail-
able sequential number greater than 1000. The –o option allows the group ID to be
nonunique, which allows you to assign multiple names to a group ID.

groupdel: Removes a Group

The analogue of userdel for groups is groupdel, which takes a group name as an
argument. You can also use groupmod to change the name or group ID of a group,
as in the following examples:

$ sudo groupmod -g 1025 pubs
$ sudo groupmod -n manuals pubs

The first example gives the previously created pubs group a new group ID number.
The second example renames the pubs group to manuals.

Changing group ID numbers

caution The groupmod utility does not change group numbers in /etc/passwd when you renumber a
group. Instead, you must edit /etc/passwd and change the entries manually. If you change the
number of a group, files that are associated with the group will no longer be associated with the
group. Rather, they may be associated with no group or with another group with the old group ID
number.

 From the Library of WoweBook.Com

ptg

Backing Up Files 599

Backing Up Files

One of the most oft-neglected tasks of system administration is making backup
copies of files on a regular basis. The backup copies are vital in three instances:
when the system malfunctions and files are lost, when a catastrophic disaster (fire,
earthquake, and so on) occurs, and when a user or the system administrator deletes
or corrupts a file by accident. Even when you set up RAID (page 40), you still need
to back up files. Although RAID can provide fault tolerance (helpful in the event of
disk failure), it does not help when a catastrophic disaster occurs or when a file is
corrupted or removed accidentally. It is a good idea to have a written backup policy
and to keep copies of backups offsite (in another building, at home, or at a different
facility or campus) in a fireproof vault or safe.

The time to start thinking about backups is when you partition the disk. Refer to “Par-
titioning a Disk” on page 36. Make sure the capacity of the backup device and your
partition sizes are comparable. Although you can back up a partition onto multiple
volumes, it is easier not to—and it is much easier to restore data from a single volume.

You must back up filesystems regularly. Backup files are usually kept on magnetic
tape, external hard disk, or another removable medium. Alternatively, you can keep
backup files on a remote system. How often and which files you back up depend on
the system and your needs. Use this criterion when determining a backup schedule:
If the system crashes, how much work are you willing to lose? Ideally you would
back up all files on the system every few minutes so you would never lose more than
a few minutes of work.

Of course, there is a tradeoff: How often are you willing to back up the files? The
backup procedure typically slows the system for users, takes a certain amount of
your time, and requires that you have and store the media holding the backup.
Avoid backing up an active filesystem; the results may be inconsistent, and restoring
from the backup may be impossible. This requirement is a function of the backup
program and the filesystem you are backing up.

Another question is when to run the backup. Unless you plan to kick users off and
bring the system down to recovery mode (not a user-friendly practice), you will
want to perform this task when the machine is at its quietest. Depending on the use
of the system, sometime in the middle of the night can work well. Then the backup
is least likely to affect users, and the files are not likely to change as they are being
read for backup.

A full backup makes copies of all files, regardless of when they were created or
accessed. An incremental backup makes copies of those files that have been created
or modified since the last (usually full) backup.

The more people using the system, the more often you should back up the filesys-
tems. One popular schedule is to perform an incremental backup one or two times a
day and a full backup one or two times a week.

 From the Library of WoweBook.Com

ptg

600 Chapter 16 Administration Tasks

Choosing a Backup Medium

If the local system is connected to a network, you can write backups to a drive on
another system. This technique is often used with networked computers to avoid
the cost of having a backup drive on each computer in the network and to simplify
management of backing up many computers in a network. Although tapes are still
used for backups, system administrators are using hard disks for this purpose more
frequently. Backing up to a hard disk on a remote system is cost-effective, reliable,
and practical. Because hard disks hold many gigabytes of data, using them simpli-
fies the task of backing up the system, making it more likely that you will take care
of this important task regularly. Other options for holding backups are writable
CDs and DVDs. These devices, although not as cost-effective or able to store as
much information as hard disk or tape systems, offer the benefit of convenience.

Backup Utilities

A number of utilities are available to help you back up a system, and most work
with any media. Most Linux backup utilities are based on one of the archive pro-
grams—tar or cpio—and augment these basic programs with bookkeeping support
for managing backups conveniently.

You can use any of the tar, cpio, or dump/restore utilities to construct full or partial
backups of a system. Each utility constructs a large file that contains, or archives,
other files. In addition to file contents, an archive includes header information for
each file it holds. This header information can be used when extracting files from
the archive to restore file permissions and modification dates. An archive file can
be saved to disk, written to tape, or shipped across the network while it is being
created.

In addition to helping you back up the system, these programs offer a convenient
way to bundle files for distribution to other sites. The tar program is often used for
this purpose, and some software packages available on the Internet are bundled as
tar archive files. A deb file (page 533) is an archive bundled using the ar archive
utility.

amanda The amanda (Advanced Maryland Automatic Network Disk Archiver) utility
(www.amanda.org), which is one of the more popular backup systems, uses dump or
tar and takes advantage of Samba to back up Windows systems. The amanda utility
backs up a LAN of heterogeneous hosts to a hard disk or tape. Relevant software
packages are amanda-common, amanda-client, and amanda-server.

tar: Archives Files

The tar (tape archive) utility writes files to and retrieves files from an archive; it can
compress this archive to conserve space. If you do not specify an archive device, tar
writes to standard output and reads from standard input. With the –f (––file)
option, tar uses the argument to –f as the name of the archive device. You can use
this option to refer to a device on another system on the network. Although tar has

 From the Library of WoweBook.Com

www.amanda.org

ptg

Backing Up Files 601

many options, you need only a few in most situations. The following command dis-
plays a complete list of options:

$ tar ––help | less

Most options for tar can be given either in a short form (a single letter) or as a
descriptive word. Descriptive-word options are preceded by two hyphens, as in
––help. Single-letter options can be combined into a single command-line argument
and need not be preceded by a hyphen (for consistency with other utilities, it is good
practice to use the hyphen anyway).

Although the following two commands look quite different, they specify the same
tar options in the same order. The first version combines single-letter options into a
single command-line argument; the second version uses descriptive words for the
same options:

$ sudo tar –ztvf /dev/st0
$ sudo tar ––gzip ––list ––verbose ––file /dev/st0

Both commands tell tar to generate a (v, verbose) table of contents (t, list) from the
tape on /dev/st0 (f, file), using gzip (z, gzip) to decompress the files. Unlike the orig-
inal UNIX tar utility, the GNU version strips the leading / from absolute pathnames.

The options in Table 16-1 tell the tar program what to do. You must include exactly
one of these options in a tar command.

The –c, –t, and –x options are used most frequently. You can use many other
options to change how tar operates. The –j option, for example, compresses or
decompresses the file by filtering it through bzip2 (page 174).

Table 16-1 tar options

Option Effect

––append (–r) Appends files to an archive

––catenate (–A) Adds one or more archives to the end of an existing archive

––create (–c) Creates a new archive

––delete Deletes files in an archive (not on tapes)

––dereference (–h) Follows symbolic links

––diff (–d) Compares files in an archive with disk files

––extract (–x) Extracts files from an archive

––help Displays a help list of tar options

––list (–t) Lists the files in an archive

––update (–u) Like the –r option, but the file is not appended if a newer version is
already in the archive

 From the Library of WoweBook.Com

ptg

602 Chapter 16 Administration Tasks

cpio: Archives Files

The cpio (copy in/out) program is similar to tar but can read and write archive files
in various formats, including the one used by tar. Normally cpio reads the names of
the files to add to the archive from standard input and produces the archive file as
standard output. When extracting files from an archive, it reads the archive as stan-
dard input.

As with tar, some options can be given in both a short, single-letter form and a more
descriptive word form. However, unlike with tar, the syntax of the two forms in cpio
differs when the option must be followed by additional information. In the short
form, you must include a SPACE between the option and the additional information;
with the word form, you must separate the two with an equal sign and no SPACEs.

Running cpio with the ––help option displays a complete list of options.

Performing a Simple Backup

When you prepare to make a major change to a system, such as replacing a disk
drive, upgrading to a new release, or updating the Linux kernel, it is a good idea to
archive some or all of the files so you can restore any that become damaged if some-
thing goes wrong. For this type of backup, tar or cpio works well. For example, if
you have a SCSI tape drive as device /dev/st0 (or it could be a hard disk at
/dev/hdb) that is capable of holding all the files on a single tape, you can use the fol-
lowing commands to construct a backup tape of the entire system:

$ cd /
$ sudo tar –cf /dev/st0 .

All the commands in this section start by using cd to change to the root directory so
you are sure to back up the entire system. The tar command then creates an archive
(c) on the device /dev/st0 (f). To compress the archive, replace the preceding tar
command with the following command, which uses j to call bzip2:

$ sudo tar –cjf /dev/st0 .

You can back up a system with a combination of find and cpio. The following com-
mands create an output file and set the I/O block size to 5120 bytes (the default is
512 bytes):

$ cd /
$ sudo find . –depth | cpio –oB > /dev/st0

The next command restores the files in the /home directory from the preceding
backup. The options extract files from an archive (–i) in verbose mode, keeping the
modification times and creating directories as needed.

$ cd /
$ sudo cpio –ivmd /home/* < /dev/st0

Although all the archive programs work well for simple backups, utilities such as
amanda (page 600) provide more sophisticated backup and restore systems. For

 From the Library of WoweBook.Com

ptg

Backing Up Files 603

example, to determine whether a file is in an archive, you must read the entire
archive. If the archive is split across several tapes, this process is particularly tire-
some. More sophisticated utilities, including amanda, assist you in several ways,
including keeping a table of contents of the files in a backup.

dump, restore: Back Up and Restore Filesystems

The dump utility (part of the dump package) first appeared in UNIX version 6. It
backs up either an entire ext2, ext3, or ext4 filesystem or only those files that have
changed since a recent dump. The restore utility can then restore an entire filesystem,
a directory hierarchy, or an individual file. You will get the best results if you per-
form a backup on a quiescent system so that the files are not changing as you make
the backup.

The next command backs up all files (including directories and special files) on the
root (/) partition to SCSI tape 0. Frequently there is a link to the active tape drive,
named /dev/tape, which you can use in place of the actual entry in the /dev directory.

$ sudo dump -0uf /dev/st0 /

The –0 option specifies that the entire filesystem is to be backed up (a full backup).
There are ten dump levels: 0–9. Zero is the highest (most complete) level and always
backs up the entire filesystem. Each additional level is incremental with respect to
the level above it. For example, 1 is incremental to 0 and backs up only those files
that have changed since the last level 0 dump; 2 is incremental to 1 and backs up
only those files that have changed since the last level 1 dump; and so on. You can
construct a flexible schedule using this scheme. You do not need to use sequential
numbers for backup levels, however. For example, you can perform a level 0 dump,
followed by level 2 and 5 dumps.

The –u option updates the /etc/dumpdates file (page 492) with filesystem, date, and
dump level information for use by the next incremental dump. The –f option and its
argument write the backup to the device named /dev/st0.

The next command makes a partial backup containing all files that have changed
since the last level 0 dump. The first argument (1) specifies a level 1 dump:

$ sudo dump -1uf /dev/st0 /

Exclude some directories from a backup
tip In practice, you will likely want to exclude some directories from the backup process. For example,

not backing up /tmp or /var/tmp can save room in the archive. Also, do not back up the files in
proc. Because the /proc pseudofilesystem is not a true disk filesystem but rather a way for the
Linux kernel to provide information about the operating system and system memory, you need not
back up /proc; you cannot restore it later. Similarly, you do not need to back up filesystems that
are mounted from disks on other systems on the network. Do not back up FIFOs; the results are
unpredictable. If you plan on using a simple backup method, similar to those just discussed, cre-
ate a file naming the directories to exclude from the backup, and use the appropriate option with
the archive program to read the file.

 From the Library of WoweBook.Com

ptg

604 Chapter 16 Administration Tasks

To restore an entire filesystem from a dump backup, first restore the most recent
complete (level 0) backup. Perform this operation carefully because restore can over-
write the existing filesystem. Change directories to the directory the filesystem is
mounted on (/xxx in the example) and give a restore command as shown following:

$ cd /xxx
$ sudo restore -if /dev/st0

The –i option invokes an interactive mode that allows you to choose which files and
directories to restore. As with dump, the –f option specifies the name of the device
that the backup medium is mounted on. When restore finishes, load the next lower-
level (higher-number) dump tape and issue the same restore command. If multiple
incremental dumps have been made at a particular level, always restore with the
most recent one. You do not need to invoke restore with special arguments to
restore an incremental dump; it will restore whatever appears on the tape.

You can also use restore to extract individual files from a tape by using the –x
option and specifying the filenames on the command line. Whenever you restore a
file, the restored file appears in the working directory. Before restoring files, make
sure you are working in the correct directory.

The following commands restore the etc/fstab file from the tape on /dev/st0. The
filename of the dumped file does not begin with / because all dumped pathnames
are relative to the filesystem that you dumped—in this case /. Because the restore
command is given from the / directory, the file will be restored to its original loca-
tion of /etc/fstab:

$ cd /
$ sudo restore -xf /dev/st0 etc/fstab

If you use the –x option without specifying a file or directory name to extract, restore
extracts the entire dumped filesystem. Use the –r option to restore an entire file-
system without using the interactive interface. The following command restores the
filesystem from the tape on /dev/st0 to the working directory without interaction:

$ sudo restore -rf /dev/st0

You can also use dump and restore to access a tape drive or hard disk on another
system. Specify the file/directory as host:file, where host is the hostname of the sys-
tem the tape or disk is on and file is the file or directory you want to dump/restore.

Occasionally, restore may prompt you with the following message:

You have not read any volumes yet.
Unless you know which volume your file(s) are on you should start
with the last volume and work towards the first.
Specify next volume #:

Enter 1 (one) in response to this prompt. If the filesystem spans more than one tape
or disk, this prompt allows you to switch tapes.

At the end of the dump, you will receive another prompt:

 From the Library of WoweBook.Com

ptg

Scheduling Tasks 605

set owner/mode for '.'? [yn]

Answer y to this prompt when you are restoring entire filesystems or files that have
been accidentally removed. Doing so will restore the appropriate permissions to the
files and directories being restored. Answer n if you are restoring a dump to a direc-
tory other than the one it was dumped from. The working directory permissions
and owner will then be set to those of the user doing the restore (typically root).

A variety of device names can access the /dev/st0 device. Each name accesses a dif-
ferent minor device number that controls some aspect of how the tape drive is used.
After you complete a dump using /dev/st0, the tape drive automatically rewinds the
tape. Use the nonrewinding SCSI tape device (/dev/nst0) to keep the tape from
rewinding on completion. This feature allows you to back up multiple filesystems to
the same volume.

Following is an example of backing up a system where the /home, /usr, and /var
directories reside on different filesystems:

$ sudo dump -0uf /dev/nst0 /home
$ sudo dump -0uf /dev/nst0 /usr
$ sudo dump -0uf /dev/st0 /var

The preceding example uses the nonrewinding device for the first two dumps. If you
use the rewinding device, the tape rewinds after each dump, and you are left with
only the last dump on the tape.

You can use mt (magnetic tape), which is part of the cpio package, to manipulate
files on a multivolume dump tape. The following mt command positions the tape
(fsf 2 instructs mt to skip forward past two files, leaving the tape at the start of the
third file). The restore command restores the /var filesystem from the previous
example:

$ sudo mt -f /dev/st0 fsf 2
$ sudo restore rf /dev/st0

Scheduling Tasks

It is a good practice to schedule certain routine tasks to run automatically. For
example, you may want to remove old core files once a week, summarize account-
ing data daily, and rotate system log files monthly.

cron and anacron: Schedule Routine Tasks

The cron daemon executes scheduled commands periodically. This daemon can exe-
cute commands at specific times on systems that are always running. The anacron
utility executes scheduled commands when it is called. It works well on laptops and
other systems that are not on all the time. The anacron init scrip, which calls ana-
cron, will not run commands when a system is running on batteries (i.e., not on AC).

 From the Library of WoweBook.Com

ptg

606 Chapter 16 Administration Tasks

Crontab Files

The cron daemon reads the commands it is to execute from crontab files. Users can
use the crontab utility to set up personal crontab files in /var/spool/cron/crontabs.
System crontab files are kept in the /etc/cron.d directory and in the /etc/crontab
file. (The term crontab has three meanings: It refers to a text file in a specific format
[a crontab file], it is the name of a utility [crontab], and it is the name of a file
[/etc/crontab].)

By default, Ubuntu is set up with no restrictions on who can have cron run com-
mands in their personal crontab files. See cron.allow and cron.deny on page 491 for
ways of restricting this access.

System crontab files Crontab files specify how often cron is to run a command. A line in a system
crontab file, such as /etc/crontab, has the following format:

minute hour day-of-month month day-of-week user command

The first five fields indicate when cron will execute the command. The minute is the
number of minutes after the start of the hour, the hour is the hour of the day based
on a 24-hour clock, the day-of-month is a number from 1 to 31, and the day-of-
week is a number from 0 to 7, with 0 and 7 indicating Sunday. An asterisk (*) sub-
stitutes for any value in a field. The user is the username or user ID of the user that
the command will run as. Following are some examples:

20 1 * * * root /usr/local/bin/checkit
25 9 17 * * root /usr/local/bin/monthly.check
40 23 * * 7 root /usr/local/bin/sunday.check

All three lines run as their commands with root privileges. The first line runs checkit
every day at 1:20 AM. The second line runs monthly.check at 9:25 AM on day 17 of
every month. The third line runs sunday.check at 11:40 PM every Sunday. Give the
command man 5 crontab to obtain more information on crontab files.

User crontab files A user crontab file has the same format as a system crontab file except that it does
not include the user field because it always runs as the user who created it. Users
can work with their own crontab files by giving the command crontab followed by
–l to list the file, –r to remove the file, or –e to edit the file. This command uses the
nano editor by default; if you prefer, export (page 992) and set the VISUAL or EDI-
TOR environment variable to the textual editor of your choice. See the crontab man
page for more information.

/etc/crontab Following is the default /etc/crontab file. Comments begin with a hashmark (#).
The file sets the SHELL and PATH (page 319) environment variables.

$ cat /etc/crontab
/etc/crontab: system-wide crontab
Unlike any other crontab you don't have to run the 'crontab'
command to install the new version when you edit this file
and files in /etc/cron.d. These files also have username fields,
that none of the other crontabs do.

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

 From the Library of WoweBook.Com

ptg

Scheduling Tasks 607

m h dom mon dow user command
17 * * * * root cd / && run-parts --report /etc/cron.hourly
25 6 * * * root test -x /usr/sbin/anacron || (cd / && run-parts --report /etc/cron.daily)
47 6 * * 7 root test -x /usr/sbin/anacron || (cd / && run-parts --report /etc/cron.weekly)
52 6 1 * * root test -x /usr/sbin/anacron || (cd / && run-parts --report /etc/cron.monthly)
#

run-parts The run-parts utility runs all the executable files in the directory named as its argu-
ment. The ––report option affects commands that produce output. It sends the
name of the command to standard output or standard error—whichever the com-
mand sends its first output to.

The cron daemon runs the line that begins with 17 at 17 minutes past every hour.
First the command cds to root (/). The AND Boolean operator (&&) then executes
run-parts, which executes all files in the /etc/cron.hourly directory.

The next three lines first test whether the /usr/sbin/anacron file is executable. If the
file is executable, the OR Boolean operator (| |) causes the shell to ignore the rest of
the line. Thus, if anacron is installed and executable, this file executes only the files
in the cron.hourly directory. If anacron is not installed or is not executable, each of
these three lines cds to root (/) and executes the files in the specified directory.

/etc/cron.d/anacron In addition to the /etc/crontab file, cron reads the files in /etc/cron.d for commands to
execute. The following file causes cron to run the anacron init script once a day at
7:30 AM. This init script runs anacron if the system is up and not running on batteries):

$ cat /etc/cron.d/anacron
/etc/cron.d/anacron: crontab entries for the anacron package

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

#30 7 * * * root test -x /etc/init.d/anacron && /usr/sbin/invoke-rc.d anacron start >/dev/null
30 7 * * * root start -q anacron || :

The line that ran the SysVinit script is commented out and replaced with a line that
runs the anacron job (defined in /etc/init.d/anacron), which is triggered by the
Upstart init daemon (page 432).

/etc/anacrontab When anacron is run, it reads the commands it is to execute from the /etc/ana-
crontab file. The anacron utility keeps track of the last time it ran each of its jobs so
when it is called, it can tell which jobs need to be run. This file is where the files in
the cron.daily, cron.weekly, and cron.monthly directories get executed on a system
running anacron.

$ cat /etc/anacrontab
/etc/anacrontab: configuration file for anacron

See anacron(8) and anacrontab(5) for details.

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

These replace cron's entries
1 5 cron.daily nice run-parts --report /etc/cron.daily
7 10 cron.weekly nice run-parts --report /etc/cron.weekly
@monthly 15 cron.monthly nice run-parts --report /etc/cron.monthly

 From the Library of WoweBook.Com

ptg

608 Chapter 16 Administration Tasks

An entry in the anacrontab file has the following format:

period delay identifier command

where the period is the frequency in days (how often) that anacron executes the
command, the delay is the number of minutes after anacron starts that it executes
the command, and the identifier is the name of the file in /var/spool/anacron that
anacron uses to keep track of when it last executed the command.

The cron.daily job in anacrontab runs the executable files in /etc/cron.daily every
day, five minutes after anacron starts. If the system is running at 7:30 AM,
/etc/cron.d/anacron calls the anacron init script, and this job runs at 7:35 AM.
When Ubuntu boots, the rc scripts call the anacron init script. If the system is not
running at 7:30 AM, the cron.daily job has not been run for at least a day, and the
system is not running on batteries, the job runs five minutes after the system boots.

at: Runs Occasional Tasks

Like the cron utility, at runs a job sometime in the future. Unlike cron, at runs a job
only once. For instance, you can schedule an at job that will reboot the system at
3:00 AM (when all users are probably logged off):

$ sudo at 3am
warning: commands will be executed using /bin/sh
at> reboot
at> CONTROL-D <EOT>
job 1 at 2010-02-01 03:00

It is also possible to run an at job from within an at job. For instance, an at job
might check for new patches every 18 days—something that would be more diffi-
cult with cron. See the at man page for more information.

By default, Ubuntu is set up with restrictions that prevent some system accounts
from running at. See at.allow and at.deny on page 491 for more information.

System Reports

Many utilities report on one thing or another. The who, finger, ls, ps, and other utili-
ties, for example, generate simple end-user reports. In some cases, these reports can
help with system administration. This section describes utilities that generate more
in-depth reports that can provide greater assistance with system administration

Running cron jobs at the right time

tip As installed, if the /usr/sbin/anacron file is present and executable, cron uses anacron to run
daily, weekly, and monthly cron jobs. The anacron utility always runs the jobs at 7:35 in the
morning, or as soon as possible after that. Refer to “run-parts” on page 607 and the section on
/etc/anacrontab. An easy way to get cron to run these jobs as scheduled in /etc/crontab is to
change permissions on the anacron file so it is not executable:

$ sudo chmod 644 /usr/sbin/anacron

If you want to reenable anacron, change its permissions back to 755.

 From the Library of WoweBook.Com

ptg

System Reports 609

tasks. Linux has many other report utilities, including (from the sysstat package) sar
(system activity report), iostat (input/output and CPU statistics), and mpstat (proces-
sor statistics); (from the net-tools package) netstat (network report); and (from the
nfs-common package) nfsstat (NFS statistics).

vmstat: Reports Virtual Memory Statistics

The vmstat utility (procps package) generates virtual memory information along
with (limited) disk and CPU activity data. The following example shows virtual
memory statistics at three-second intervals for seven iterations (from the arguments
3 7). The first line covers the time since the system was last booted; each subsequent
line covers the period since the previous line.

$ vmstat 3 7
procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
 0 2 0 684328 33924 219916 0 0 430 105 1052 134 2 4 86 8
 0 2 0 654632 34160 248840 0 0 4897 7683 1142 237 0 5 0 95
 0 3 0 623528 34224 279080 0 0 5056 8237 1094 178 0 4 0 95
 0 2 0 603176 34576 298936 0 0 3416 141 1161 255 0 4 0 96
 0 2 0 575912 34792 325616 0 0 4516 7267 1147 231 0 4 0 96
 1 2 0 549032 35164 351464 0 0 4429 77 1120 210 0 4 0 96
 0 2 0 523432 35448 376376 0 0 4173 6577 1135 234 0 4 0 95

The following list explains the column heads displayed by vmstat:

• procs Process information

◆ r Number of waiting, runnable processes

◆ b Number of blocked processes (in uninterruptable sleep)

• memory Memory information (in kilobytes)

◆ swpd Used virtual memory

◆ free Idle memory

◆ buff Memory used as buffers

◆ cache Memory used as cache

• swap System paging activity (in kilobytes per second)

◆ si Memory swapped in from disk

◆ so Memory swapped out to disk

• io System I/O activity (in blocks per second)

◆ bi Blocks received from a block device

◆ bo Blocks sent to a block device

• system (Values are per second)

◆ in Interrupts (including the clock)

◆ cs Context switches

 From the Library of WoweBook.Com

ptg

610 Chapter 16 Administration Tasks

• cpu Percentage of total CPU time spent in each of these states

◆ us User (nonkernel)

◆ sy System (kernel)

◆ id Idle

◆ wa Waiting for I/O

top: Lists Processes Using the Most Resources

The top utility is a useful supplement to ps. At its simplest, top displays system infor-
mation at the top and the most CPU-intensive processes below the system informa-
tion. The top utility updates itself periodically; type q to quit. Although you can use
command-line options, the interactive commands are often more helpful. Refer to
Table 16-2 and to the top man page for more information.

$ top
top - 17:58:53 up 3 days, 4:20, 1 user, load average: 2.16, 1.61, 0.83
Tasks: 167 total, 5 running, 162 sleeping, 0 stopped, 0 zombie
Cpu(s): 1.5%us, 0.5%sy, 1.3%ni, 96.0%id, 0.2%wa, 0.6%hi, 0.0%si, 0.0%st
Mem: 2076092k total, 1990652k used, 85440k free, 18416k buffers
Swap: 7815580k total, 34908k used, 7780672k free, 1330008k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
31323 zach 25 0 9020 6960 396 R 63 0.3 0:17.58 bzip2

Table 16-2 top: interactive commands

Command Function

A Sorts processes by age (newest first).

h or ? Displays a Help screen.

k (kill) Prompts for a PID number and type of signal and sends the process that
signal. Defaults to signal 15 (SIGTERM); specify 9 (SIGKILL) only when 15
does not work.

M Sorts processes by memory usage.

P (processor) Sorts processes by CPU usage (default).

q Quits top.

s Prompts for time between updates in seconds. Use 0 (zero) for continuous
updates; such updates can slow the system by consuming a lot of resources.

SPACE Updates the display immediately.

T Sorts tasks by time.

W Writes a startup file named ~/.toprc so that the next time you start top, it uses
the same parameters it is currently using.

 From the Library of WoweBook.Com

ptg

parted: Reports on and Partitions a Hard Disk 611

31327 zach 18 0 2092 596 492 R 57 0.0 0:00.92 cp
31311 root 15 0 0 0 0 S 16 0.0 0:00.38 pdflush
 6870 zach 27 12 331m 190m 37m R 2 9.4 198:42.98 firefox-bin
31303 root 15 0 0 0 0 S 2 0.0 0:00.42 pdflush
 1 root 15 0 2912 1808 488 S 0 0.1 0:01.55 init
...

parted: Reports on and Partitions a Hard Disk

The parted (partition editor) utility reports on and manipulates hard disk partitions.
The following example shows how to use parted from the command line. It uses the
print command to display information about the partitions on the /dev/sda drive:

$ sudo parted /dev/sda print
Disk geometry for /dev/sda: 0kB - 165GB
Disk label type: msdos
Number Start End Size Type File system Flags
1 32kB 1045MB 1045MB primary ext4 boot
2 1045MB 12GB 10GB primary ext4
3 12GB 22GB 10GB primary ext4
4 22GB 165GB 143GB extended
5 22GB 23GB 1045MB logical linux-swap(v1)
6 23GB 41GB 18GB logical ext4
7 41GB 82GB 41GB logical ext4

Figure 16-5 graphically depicts the partitions shown in this example. The first line
that parted displays specifies the device being reported on (/dev/sda) and its size
(165 gigabytes). The print command displays the following columns:

Figure 16-5 The primary and extended partitions from the example

/dev/sda /dev/sda4

Primary 2
/dev/sda2

Primary 3

Primary 4
(Extended)

/dev/sda3

Logical 5
/dev/sda5

Logical 6
/dev/sda6

Logical 7
/dev/sda7

Primary 1
/dev/sda1

.

.

.

 From the Library of WoweBook.Com

ptg

612 Chapter 16 Administration Tasks

• Number—The minor device number (page 503) of the device holding the
partition. This number is the same as the last number in the device name.
In the example, 5 corresponds to /dev/sda5.

• Start—The location on the disk where the partition starts. The parted util-
ity specifies a location on the disk as the distance (in bytes) from the start
of the disk. Thus partition 3 starts 12 gigabytes from the start of the disk.

• End—The location on the disk where the partition stops. Although parti-
tion 2 ends 12 gigabytes from the start of the disk and partition 3 starts at
the same location, parted takes care that the partitions do not overlap at
this single byte.

• Size—The size of the partition in kilobytes (kB), megabytes (MB), or
gigabytes (GB).

• Type—The partition type: primary, extended, or logical. See Figure 16-5
and page 34 for information on partitions.

• File system—The filesystem type: ext2, ext3, ext4, fat32, linux-swap, and
so on. See Table 12-1 on page 505 for a list of filesystem types.

• Flags—The flags that are turned on for the partition, including boot, raid,
and lvm. In the example, partition 1 is bootable.

In the preceding example, partition 4 defines an extended partition that includes
143 gigabytes of the 165-gigabyte disk (Figure 16-5). You cannot make changes to
an extended partition without affecting all logical partitions within it.

In addition to reporting on the layout and size of a hard disk, you can use parted
interactively to modify the disk layout. Be extremely careful when using parted in
this manner, and always back up the system before starting to work with this utility.
Changing the partition information (the partition table) on a disk can destroy the
information on the disk. Read the parted info page before you attempt to modify a
partition table.

To partition a disk, give the command parted followed by the name of the device
you want to work with. In the following example, after starting parted, the user
gives a help (or just h) command, which displays a list of parted commands:

$ sudo parted /dev/sda
GNU Parted 2.2
Using /dev/sda
Welcome to GNU Parted! Type 'help' to view a list of commands.

parted can destroy everything

caution Be as careful with parted as you would be with a utility that formats a hard disk. Changes you
make with parted can easily result in the loss of large amounts of data. If you are using parted
and have any question about what you are doing, quit with a q command before making any
changes. Once you give parted a command, it immediately makes the change you requested.

 From the Library of WoweBook.Com

ptg

parted: Reports on and Partitions a Hard Disk 613

(parted) help
 align-check TYPE N check partition N for TYPE(min|opt) alignment
 check NUMBER do a simple check on the file system
 cp [FROM-DEVICE] FROM-NUMBER TO-NUMBER copy file system to another partition
 help [COMMAND] print general help, or help on COMMAND
 mklabel,mktable LABEL-TYPE create a new disklabel (partition table)
 mkfs NUMBER FS-TYPE make a FS-TYPE file system on partition NUMBER
 mkpart PART-TYPE [FS-TYPE] START END make a partition
 mkpartfs PART-TYPE FS-TYPE START END make a partition with a file system
 move NUMBER START END move partition NUMBER
 name NUMBER NAME name partition NUMBER as NAME
 print [devices|free|list,all|NUMBER] display the partition table, available devices, free space,
all found partitions, or a particular partition
 quit exit program
 rescue START END rescue a lost partition near START and END
 resize NUMBER START END resize partition NUMBER and its file system
 rm NUMBER delete partition NUMBER
 select DEVICE choose the device to edit
 set NUMBER FLAG STATE change the FLAG on partition NUMBER
 toggle [NUMBER [FLAG]] toggle the state of FLAG on partition NUMBER
 unit UNIT set the default unit to UNIT
 version display the version number and copyright information of GNU
Parted
(parted)

In response to the (parted) prompt, you can give the command help followed by the
name of the command you want more information about. When you give a print
(or just p) command, parted displays current partition information, just as a print
command on the command line does.

The parted utility will not allow you to set up overlapping partitions (except for log-
ical partitions overlapping their containing extended partition). Similarly, it will not
allow you to create a partition that starts at the very beginning of the disk (cylinder
0). Both of these situations can cause loss of data.

Following are guidelines to remember when defining a partition table for a disk. For
more information refer to “Partitioning a Disk” on page 36.

• Do not delete or modify the partition that defines the extended partition
unless you are willing to lose all data on all the logical partitions within
the extended partition.

• If you put /boot on a separate partition, it is a good idea to put it at the
beginning of the drive (partition 1) so there is no issue of Linux having to
boot from a partition located too far into the drive. When you can afford
the disk space, it is desirable to put each major filesystem on a separate
partition. Many people choose to combine / (root), /var, and /usr into a
single partition, which generally results in less wasted space but can, on
rare occasions, cause problems.

• Although parted can create some types of filesystems, it is typically easiest
to use parted to create partitions and then use mkfs and mkswap to create
filesystems on the partitions.

 From the Library of WoweBook.Com

ptg

614 Chapter 16 Administration Tasks

The following sequence of commands defines a 300-megabyte, bootable, Linux par-
tition as partition 1 on a clean disk:

$ sudo /sbin/parted /dev/sdb
...
Using /dev/sdb
(parted) mkpart (create new partition)
Partition type? primary/extended? primary (select primary partition)
File system type? [ext2]? (default to an ext2 filesystem)
Start? 1 (start at the beginning of the disk)
End? 300m (specify a 300-megabyte partition)
(parted) help set (use help to check the syntax of the set command)
 set NUMBER FLAG STATE change a flag on partition NUMBER

 NUMBER is the partition number used by Linux. On msdos disk labels, the primary
 partitions number from 1 to 4, logical partitions from 5 onwards.
 FLAG is one of: boot, root, swap, hidden, raid, lvm, lba, hp-service, palo,
 prep, msftres
 STATE is one of: on, off
(parted) set 1 boot on (turn on the boot flag on partition 1)
(parted) print (verify that the partition is correct)
Disk geometry for /dev/sdb: 0kB - 250GB
Disk label type: msdos
Number Start End Size Type File system Flags
1 1kB 300MB 300MB primary ext2 boot
(parted) quit
Information: Don't forget to update /etc/fstab, if necessary.

When you specify a size within parted, you can use a suffix of k (kilobytes), m
(megabytes), or g (gigabytes). After creating a partition, give a print command to
see where the partition ends. Perform this task before defining the next contiguous
partition so you do not waste space. After setting up all the partitions, exit from
parted with a quit command.

Next make a filesystem (mkfs, page 458) on each partition that is to hold a file-
system (not swap). Make all partitions, except swap and /boot, of type ext4, unless
you have a reason to do otherwise. Make the /boot partition of type ext2. Use
mkswap (page 498) to set up a swap area on a partition. You can use e2label
(page 458) to label a partition.

Keeping Users Informed

One of your primary responsibilities as a system administrator is communicating
with system users. You need to make announcements, such as when the system will
be down for maintenance, when a class on some new software will be held, and
how users can access the new system printer. You can even start to fill the role of a
small local newspaper, letting users know about new employees, RIFs, births, the
company picnic, and so on.

 From the Library of WoweBook.Com

ptg

Creating Problems 615

Different communications have different priorities. For example, information about
the company picnic in two months is not as time sensitive as the fact that you are
bringing the system down in five minutes. To meet these differing needs, Linux pro-
vides different ways of communicating. The most common methods are described
and contrasted in the following list. All of these methods are generally available to
everyone, except for the message of the day, which is typically reserved for a user
with root privileges.

write Use the write utility (page 184) to communicate with a user who is logged in on the
local system. You might use it, for example, to ask a user to stop running a program
that is slowing the system; the user might reply that he will be done in three min-
utes. Users can also use write to ask the system administrator to mount a tape or
restore a file. Messages sent from write may not appear in a graphical environment.

wall The wall (write all) utility effectively communicates immediately with all users who
are logged in. This utility takes its input from standard input and works much like
write, except that users cannot use wall to write back to only you. Use wall when you
are about to bring the system down or are in another crisis situation. Users who are
not logged in will not get the message.

Run wall as a user with root privileges only in a crisis situation; it interrupts any-
thing anyone is doing. Messages sent from wall may not appear in a graphical
environment.

Email Email is useful for communicating less urgent information to one or more systems
and/or remote users. When you send mail, you have to be willing to wait for each
user to read it. Email is useful for reminding users that they are forgetting to log
out, their bills are past due, or they are using too much disk space.

Users can easily make permanent records of messages they receive via email, as
opposed to messages received via write, so they can keep track of important details.
For instance, it would be appropriate to use email to inform users about a new,
complex procedure, so each user could keep a copy of the information for reference.

Message of the day Users see the message of the day each time they log in in a textual environment, but
not when they open a terminal emulator window. You can edit the /etc/motd file to
change this message as necessary. The message of the day can alert users to upcom-
ing periodic maintenance, new system features, or a change in procedures.

Creating Problems

Even experienced system administrators make mistakes; new system administrators
just make more mistakes. Although you can improve your odds of avoiding prob-
lems by carefully reading and following the documentation provided with software,
many things can still go wrong. A comprehensive list, no matter how long, is not
possible because new and exciting ways to create problems are discovered every
day. This section describes a few of the more common techniques.

 From the Library of WoweBook.Com

ptg

616 Chapter 16 Administration Tasks

Failing to perform
regular backups

Few feelings are more painful to a system administrator than realizing that impor-
tant information is lost forever. If the local system supports multiple users, having a
recent backup may be your only protection from a public lynching. If it is a single-
user system, having a recent backup certainly keeps you happier when you lose a
hard disk or erase a file by mistake.

Not reading and
following

instructions

Software developers provide documentation for a reason. Even when you have
installed a software package before, carefully read the instructions again. They may
have changed, or you may simply remember them incorrectly. Software changes
more quickly than books are revised, so no book should be taken as offering fool-
proof advice. Instead, look for the latest documentation online. The /usr/share/doc
directory has information on many utilities, libraries, and software packages.

Failing to ask for
help when

instructions are not
clear

If something does not seem to make sense, try to find out what does make sense—
do not attempt to guess. See Appendix B for a list of places you may be able to find
assistance.

Deleting or
mistyping

information in a
critical file

One sure way to give yourself nightmares is to execute the command

$ sudo rm –rf /etc ← do not do this
Perhaps no other command renders a Linux system useless so quickly. The only
recourse is to reboot into recovery mode using an installation CD/DVD (page 445)
and restore the missing files from a recent backup. Although this example depicts
an extreme case, many files are critical to proper operation of a system. Deleting
one of these files or mistyping information in one of them is almost certain to cause
problems. If you directly edit /etc/passwd, for example, entering the wrong infor-
mation in a field can make it impossible for one or more users to log in. Do not use
rm –rf with an argument that includes wildcard characters; do pause after typing
the command, and read it before you press RETURN. Check everything you do care-
fully, and make a copy of a critical file before you edit it.

Solving Problems

As the system administrator, it is your responsibility to keep the system secure and
running smoothly. When a user is having a problem, it usually falls to the adminis-
trator to help the user get back on track. This section suggests ways to keep users
happy and the system functioning at peak performance.

Helping When a User Cannot Log In

When a user has trouble logging in on the system, the source may be a user error or
a problem with the system software or hardware. The following steps can help
determine where the problem is:

Be careful when using a wildcard character with rm
caution When you must use a wildcard character, such as *, in an argument to an rm command, first use

echo with the same argument to see exactly which files you will be deleting. This check is espe-
cially important when you are working with root privileges.

 From the Library of WoweBook.Com

ptg

Solving Problems 617

• Check the log files in /var/log. The /var/log/messages file accumulates sys-
tem errors, messages from daemon processes, and other important infor-
mation. It may indicate the cause or more symptoms of a problem. Also,
check the system console. Occasionally messages about system problems
that are not written to /var/log/messages (for instance, a full disk) are dis-
played on the system console.

• Determine whether only that one user or only that one user’s terminal/
workstation has a problem or whether the problem is more widespread.

• Check that the user’s CAPS LOCK key is not on.

• Make sure the user’s home directory exists and corresponds to that user’s
entry in the /etc/passwd file. Verify that the user owns her home directory
and startup files and that they are readable (and, in the case of the user’s
home directory, executable). Confirm that the entry for the user’s login
shell in the /etc/passwd file is accurate and the shell exists as specified.

• Change the user’s password if there is a chance that he has forgotten the
correct password.

• Check the user’s startup files (.profile, .login, .bashrc, and so on). The user
may have edited one of these files and introduced a syntax error that pre-
vents login.

• Check the terminal or monitor data cable from where it plugs into the ter-
minal to where it plugs into the computer (or as far as you can follow it).
Try turning the terminal or monitor off and then turning it back on.

• When the problem appears to be widespread, check whether you can log
in from the system console. Make sure the system is not in recovery
mode. If you cannot log in, the system may have crashed; reboot it and
perform any necessary recovery steps (the system usually does quite a bit
automatically).

• If the user is logging in over a network connection, run the appropriate init
script (page 440) to restart the service the user is trying to use (e.g., ssh).

• Use df to check for full filesystems. If the /tmp filesystem or the user’s
home directory is full, login sometimes fails in unexpected ways. In some
cases you may be able to log in to a textual environment but not a graphi-
cal one. When applications that start when the user logs in cannot create
temporary files or cannot update files in the user’s home directory, the
login process itself may terminate.

Speeding Up the System

When the system is running slowly for no apparent reason, perhaps a process did
not exit when a user logged out. Symptoms of this problem include poor response
time and a system load, as shown by w or uptime, that is greater than 1.0. Running
top (page 610) is an excellent way to find rogue processes quickly. Use ps –ef to list
all processes. One thing to look for in ps –ef output is a large number in the TIME

 From the Library of WoweBook.Com

ptg

618 Chapter 16 Administration Tasks

column. For example, if a Firefox process has a TIME field greater than 100.0, this
process has likely run amok. However, if the user is doing a lot of Java work and
has not logged out for a long time, this value may be normal. Look at the STIME
field to see when the process was started. If the process has been running for longer
than the user has been logged in, it is a good candidate to be killed.

When a user gets stuck and leaves her terminal unattended without notifying any-
one, it is convenient to kill (page 455) all processes owned by that user. If the user is
running a window system, such as GNOME or KDE on the console, kill the win-
dow manager process. Manager processes to look for include startkde, x-session-
manager, or another process name that ends in wm. Usually the window manager is
either the first or last thing to be run, and exiting from the window manager logs
the user out. If killing the window manager does not work, try killing the X server
process. This process is typically listed as /usr/bin/X or /usr/X11R6/bin/X. If that
fails, you can kill all processes owned by a user by giving the command kill –15 –1
or, equivalently, kill –TERM –1 while you are logged in as that user. Using –1 (one)
in place of the process ID tells kill to send the signal to all processes that are owned
by that user. For example, you could give the following command:

$ sudo -u zach kill -TERM -1

If this does not kill all processes (sometimes TERM does not kill a process), you can
use the KILL signal (–9). The following line will definitely kill all processes owned by
Zach and will not be friendly about it:

$ sudo -u zach kill -KILL -1

If you do not include –u zach, this command brings the system down.

lsof: Finds Open Files

The lsof (list open files) utility displays the names of open files. Its options display
only certain processes, only certain file descriptors of a process, or only certain net-
work connections (network connections use file descriptors just as normal files do
and lsof can show these as well). Once you have identified a suspect process using ps
–ef, give the following command:

$ sudo lsof -sp pid

Replace pid with the process ID of the suspect process; lsof displays a list of file
descriptors that process pid has open. The –s option displays the sizes of all open
files and the –p option allows you to specify the PID number of the process of inter-
est. This size information is helpful in determining whether the process has a very
large file open. If it does, contact the owner of the process or, if necessary, kill the
process. The –rn option redisplays the output of lsof every n seconds.

Keeping a Machine Log

A machine log that includes the information shown in Table 16-3 can help you find
and fix system problems. Note the time and date for each entry in the log. Avoid the

 From the Library of WoweBook.Com

ptg

Solving Problems 619

temptation to keep the log only on the computer—it will be most useful to you
when the system is down. Another good idea is to keep a record of all email dealing
with user problems. One strategy is to save this mail to a separate file or folder as
you read it. Another approach is to set up a mail alias that users can send mail to
when they have problems. This alias can then forward mail to you and also store a
copy in an archive file. Following is an example of an entry in the /etc/aliases file
(page 722) that sets up this type of alias:

trouble: admin,/var/mail/admin.archive

Email sent to the trouble alias will be forwarded to the admin user as well as stored
in the file /var/mail/admin.archive.

Keeping the System Secure

No system with dial-in lines or public access to terminals is absolutely secure. Nev-
ertheless, you can make a system as secure as possible by changing the passwords of
users who are members of the admin group (these users can use sudo to gain root
privileges) and the root password (if there is one) frequently and by choosing pass-
words that are difficult to guess. Do not tell anyone who does not absolutely need
to know any of these passwords. You can also encourage system users to choose dif-
ficult passwords and to change them periodically.

Passwords By default, passwords on Ubuntu Linux use MD5 (page 1159) hashing, which
makes them more difficult to break than passwords encrypted with DES
(page 1112). Of course, it makes little difference how well encrypted your password
is if you make it easy for someone to find out or guess what the password is.

A password that is difficult to guess is one that someone else would not be likely to
think you would have chosen. Do not use words from the dictionary (spelled forward
or backward); names of relatives, pets, or friends; or words from a foreign language.
A good strategy is to choose a couple of short words, include some punctuation (for

Table 16-3 Machine log

Entry Function

Hardware
modifications

Keep track of the system hardware configuration: which devices hold which
partitions, the model of the new NIC you added, and so on.

System software
modifications

Keep track of the options used when building Linux. Print such files as
/usr/src/linux/.config (Linux kernel configuration). The file hierarchy under
/etc/default contains valuable information about the network configuration,
among other things.

Hardware
malfunctions

Keep as accurate a list as possible of any problems with the system. Make note
of any error messages or numbers that the system displays on the system
console and identify what users were doing when the problem occurred.

User complaints Make a list of all reasonable complaints made by knowledgeable users (for
example, “Machine is abnormally slow”).

 From the Library of WoweBook.Com

ptg

620 Chapter 16 Administration Tasks

example, put a ^ between them), mix the case, and replace some of the letters in the
words with numbers. If it were not printed in this book, an example of a good pass-
word would be C&yGram5 (candygrams). Ideally you would use a random combina-
tion of ASCII characters, but that would be difficult to remember.

You can use one of several password-cracking programs to find users who have
chosen poor passwords. These programs work by repeatedly hashing words from
dictionaries, phrases, names, and other sources. If the hashed password matches the
output of the program, then the program has found the password of the user. One
program that cracks passwords is crack (part of the crack software package). It and
many other programs and security tips are available from CERT (www.cert.org),
which was originally called the Computer Emergency Response Team. Specifically,
look at www.cert.org/tech_tips.

Setuid files Make sure no one except a user with root privileges can write to files containing
programs that are owned by root and run in setuid mode (for example, passwd and
sudo). Also make sure users do not transfer programs that run in setuid mode and
are owned by root onto the system by means of mounting tapes or disks. These
programs can be used to circumvent system security. One technique that prevents
users from having setuid files is to use the –nosuid flag to mount, which you can set
in the flags section in the fstab file. Refer to “fstab: Keeps Track of Filesystems” on
page 510.

BIOS The BIOS in many machines gives you some degree of protection from an unautho-
rized person who tries to modify the BIOS or reboot the system. When you set up
the BIOS, look for a section named Security. You can probably add a BIOS pass-
word. If you depend on the BIOS password, lock the computer case—it is usually a
simple matter to reset the BIOS password by using a jumper on the motherboard.

Log Files and Mail for root
Users frequently email root and postmaster to communicate with the system admin-
istrator. If you do not forward root’s mail to yourself (/etc/aliases on page 722),
remember to check root’s mail periodically. You will not receive reminders about
mail that arrives for root when you use sudo to perform system administration
tasks. However, you can give the command sudo mail –u root to look at root’s mail.

Review the system log files regularly for evidence of problems. Some important files
are /var/log/messages, where the operating system and some applications record
errors; /var/log/mail.err (or /var/log/exim4/mainlog if you are running exim4),
which contains errors from the mail system; and /var/log/syslog, which contains
messages from the system, including messages from cron.

Monitoring Disk Usage

Sooner or later you will probably start to run out of disk space. Do not fill up a par-
tition; Linux can write to files significantly faster if at least 5 to 30 percent of the

 From the Library of WoweBook.Com

www.cert.org
www.cert.org/tech_tips

ptg

Solving Problems 621

space in a partition remains free. Using more than the maximum optimal disk space
in a partition can degrade system performance.

Fragmentation As a filesystem becomes full, it can become fragmented. This is similar to the DOS
concept of fragmentation but is not nearly as pronounced and is typically rare on
modern Linux filesystems; by design Linux filesystems are resistant to fragmenta-
tion. If you keep filesystems from running near full capacity, you may never need to
worry about fragmentation. If there is no space on a filesystem, you cannot write to
it at all.

To check for filesystem fragmentation, unmount the filesystem and run fsck
(page 512) (with the –f option on ext2, ext3, and ext4 filesystems) on it. The output
of fsck includes a percent fragmentation figure for the filesystem. You can defrag-
ment a filesystem by backing it up; using mkfs (page 458) to make a clean, empty
image; and then restoring the filesystem. Which utility you use to perform the
backup and restore—dump/restore, tar, cpio, or a third-party backup program—is
not important.

Reports Linux provides several programs that report on who is using how much disk space
on which filesystems. Refer to the du, quota, and df man pages and the –size option
in the find utility man page. In addition to these utilities, you can use the disk quota
system (page 625) to manage disk space.

Four strategies to increase the amount of free space on a filesystem are to compress
files, delete files, grow LVM-based filesystems, and condense directories. This sec-
tion contains some ideas on ways to maintain a filesystem so that it does not
become overloaded.

Files that
grow quickly

Some files, such as log files and temporary files, inevitably grow over time. Core
dump files, for example, take up substantial space and are rarely needed. Also,
users occasionally run programs that accidentally generate huge files. As the sys-
tem administrator, you must review these files periodically so they do not get out
of hand.

If a filesystem is running out of space quickly (that is, over a period of an hour
rather than weeks or months), first figure out why it is running out of space. Use a
ps –ef command to determine whether a user has created a runaway process that is
creating a huge file. When evaluating the output of ps, look for a process that has
consumed a large amount of CPU time. If such a process is running and creating a
large file, the file will continue to grow as you free up space. If you remove the huge
file, the space it occupied will not be freed until the process terminates, so you need
to kill the process. Try to contact the user running the process, and ask the user to
kill it. If you cannot contact the user, use sudo to kill the process yourself. Refer to
kill on page 455 for more information.

You can also truncate a large log file rather than removing it, although you can bet-
ter deal with this recurring situation with logrotate (discussed next). For example, if

 From the Library of WoweBook.Com

ptg

622 Chapter 16 Administration Tasks

the /var/log/messages file has become very large because a system daemon is mis-
configured, you can use /dev/null to truncate it:

$ sudo cp /dev/null /var/log/messages

or

$ sudo cat /dev/null > /var/log/messages

or, without spawning a new process,

$ sudo : > /var/log/messages

If you remove /var/log/messages, you have to restart the syslogd daemon. If you do
not restart syslogd, the space on the filesystem will not be released.

When no single process is consuming the disk space but capacity has instead been used
up gradually, locate unneeded files and delete them. You can archive these files by using
cpio, dump, or tar before you delete them. You can safely remove most files named core
that have not been accessed for several days. The following command line performs this
function without removing necessary files named core (such as /dev/core):

$ sudo find / -type f -name core | xargs file | grep 'B core file' | sed 's/:ELF.*//g' | xargs rm -f

The find command lists all ordinary files named core and sends its output to xargs,
which runs file on each of the files in the list. The file utility displays a string that
includes B core file for files created as the result of a core dump. These files need to
be removed. The grep command filters out from file any lines that do not contain
this string. Finally sed removes everything following the colon so that all that is left
on the line is the pathname of the core file; xargs then removes the file.

To free up more disk space, look through the /tmp and /var/tmp directories for old
temporary files and remove them. Keep track of disk usage in /var/mail, /var/spool,
and /var/log.

logrotate: Manages Log Files

Rather than deleting or truncating log files, you may want to keep these files for a
while in case you need to refer to them. The logrotate utility manages system log (and
other) files automatically by rotating (page 1170), compressing, mailing, and remov-
ing each file as you specify. The logrotate utility is controlled by the /etc/logrotate.conf
file, which sets default values and can optionally specify files to be rotated. Typically
logrotate.conf has an include statement that points to utility-specific specification files
in /etc/logrotate.d. Following is the default logrotate.conf file:

$ cat /etc/logrotate.conf
see "man logrotate" for details
rotate log files weekly
weekly

keep 4 weeks worth of backlogs
rotate 4

 From the Library of WoweBook.Com

ptg

Solving Problems 623

create new (empty) log files after rotating old ones
create

uncomment this if you want your log files compressed
#compress

packages drop log rotation information into this directory
include /etc/logrotate.d

no packages own wtmp, or btmp -- we'll rotate them here
/var/log/wtmp {
 missingok
 monthly
 create 0664 root utmp
 rotate 1
}

/var/log/btmp {
 missingok
 monthly
 create 0664 root utmp
 rotate 1
}

system-specific logs may be also be configured here.

The logrotate.conf file sets default values for common parameters. Whenever log-
rotate reads another value for one of these parameters, it resets the default value.
You have a choice of rotating files daily, weekly, or monthly. The number following
the rotate keyword specifies the number of rotated log files you want to keep. The
create keyword causes logrotate to create a new log file with the same name and
attributes as the newly rotated log file. The compress keyword (commented out in
the default file) causes log files to be compressed using gzip. The include keyword
specifies the standard /etc/logrotate.d directory for program-specific logrotate speci-
fication files. When you install a program using dpkg (page 532) or a dpkg-based
utility such as aptitude (page 526), the installation script puts the logrotate specifica-
tion file in this directory.

The last sets of instructions in logrotate.conf take care of the /var/log/wtmp and
/var/log/btmp log files (wtmp holds login records; you can view this file with the
command who /var/log/wtmp). The keyword missingok overrides the implicit
default value of nomissingok for this utility only (because the value is within brack-
ets). This keyword causes logrotate to continue without issuing an error message if
the log file is missing. The keyword monthly overrides the default value of weekly.
The create keyword is followed by the arguments establishing the permissions,
owner, and group for the new file. Finally rotate establishes that one rotated log file
should be kept.

The /etc/logrotate.d/cups file is an example of a utility-specific logrotate specifica-
tion file:

 From the Library of WoweBook.Com

ptg

624 Chapter 16 Administration Tasks

$ cat /etc/logrotate.d/cups
/var/log/cups/*log {
 daily
 missingok
 rotate 7
 sharedscripts
 postrotate
 if [-e /var/run/cups/cupsd.pid]; then
 invoke-rc.d --quiet cups force-reload > /dev/null
 sleep 10
 fi
 endscript
 compress
 notifempty
 create 640 root lpadmin
}

This file, which is installed by the cupsys package install script and incorporated in
/etc/logrotate.d because of the include statement in logrotate.conf, works with each
of the files in /var/log/cups that has a filename ending in log (*log). The shared-
scripts keyword causes logrotate to execute the command(s) in the prerotate and
postrotate sections one time only—not one time for each log that is rotated.
Although it does not appear in this example, the copytruncate keyword causes log-
rotate to truncate the original log file immediately after it copies it. This keyword is
useful for programs that cannot be instructed to close and reopen their log files
because they might continue writing to the original file even after it has been
moved. The logrotate utility executes the commands between prerotate and end-
script before the rotation begins. Similarly, commands between postrotate and end-
script are executed after the rotation is complete. The notifempty keyword causes
logrotate not to rotate the log file if it is empty, overriding the default action of rotat-
ing empty log files.

The logrotate utility works with a variety of keywords, many of which take argu-
ments and have side effects. Refer to the logrotate man page for details.

Removing Unused Space from Directories

A directory that contains too many filenames is inefficient. The point at which a
directory on an ext2, ext3, or ext4 filesystem becomes inefficient varies, depending
partly on the length of the filenames it contains. Best practice is to keep directories
relatively small. Having fewer than several hundred files (or directories) in a direc-
tory is generally a good idea, and having more than several thousand is generally a
bad idea. Additionally, Linux uses a caching mechanism for frequently accessed files
that speeds the process of locating an inode from a filename. This caching mecha-
nism works only on filenames of up to 30 characters in length, so avoid giving fre-
quently accessed files extremely long filenames.

When a directory becomes too large, you can usually break it into several smaller
directories by moving its contents to those new directories. Make sure you remove
the original directory once you have moved all of its contents.

 From the Library of WoweBook.Com

ptg

Solving Problems 625

Because Linux directories do not shrink automatically, removing a file from a direc-
tory does not shrink the directory, even though it frees up space on the disk. To
remove unused space and make a directory smaller, you must copy or move all the
files to a new directory and remove the original directory.

The following procedure removes unused directory space. First remove all unneeded
files from the large directory. Then create a new, empty directory. Next move or
copy all remaining files from the old large directory to the new empty directory.
Remember to copy hidden files. Finally delete the old directory and rename the new
directory.

$ sudo mkdir /home/max/new
$ sudo mv /home/max/large/* /home/max/large/.[A-z]* /home/max/new
$ sudo rmdir /home/max/large
$ sudo mv /home/max/new /home/max/large

optional

Disk Quota System

The disk quota system (supplied by the quota software package) limits the disk
space and number of files owned by individual users. You can choose to limit each
user’s disk space, the number of files each user can own, or both. Each resource that
is limited has two limits: a lower limit and an upper limit. The user can exceed the
lower limit, or quota, although a warning is given each time the user logs in when
he is above the quota. After a certain number of warnings (set by the system admin-
istrator), the system behaves as if the user had reached the upper limit. Once the
upper limit is reached or the user has received the specified number of warnings, the
user will not be allowed to create any more files or use any more disk space. The
user’s only recourse at that point is to remove some files.

Users can review their usage and limits with the quota utility. Using sudo, you can
use quota to obtain information about any user. You can turn on quotas only if the
filesystem is mounted with the usrquota and/or grpquota options (ext3 and ext4
filesystems).

First you must decide which filesystems to limit and how to allocate space among
users. Typically only filesystems that contain users’ home directories, such as
/home, are limited. Use the edquota utility to set the quotas, and then use quotaon to
start the quota system. Unmounting a filesystem automatically disables the quota
system for that filesystem.

rsyslogd: Logs System Messages

Traditionally UNIX programs sent log messages to standard error. If a more per-
manent log was required, the output was redirected to a file. Because of the limita-
tions of this approach, 4.3BSD introduced the system log daemon (rsyslogd) now
used by Linux. This daemon listens for log messages and stores them in the

 From the Library of WoweBook.Com

ptg

626 Chapter 16 Administration Tasks

/var/log hierarchy. In addition to providing logging facilities, rsyslogd allows a sin-
gle machine to serve as a log repository for a network and allows arbitrary pro-
grams to process specific log messages.

rsyslog.conf The /etc/rsyslog.conf file stores configuration information for rsyslogd while the
/etc/rsyslog.d/50-default.conf file stores default rules for rsyslogd. Each line in the
50-default.conf file contains one or more selectors and an action, separated by
whitespace. The selectors define the origin and type of the messages; the action
specifies how rsyslogd processes the message. Sample lines from rsyslog.conf follow
(a # indicates a comment):

First some standard logfiles. Log by facility.
kern.* -/var/log/kern.log
lpr.* -/var/log/lpr.log
mail.* -/var/log/mail.log

Some "catch-all" logfiles.
*.=debug;\
 auth,authpriv.none;\
 news.none;mail.none -/var/log/debug
.=info;.=notice;*.=warning;\
 auth,authpriv.none;\
 cron,daemon.none;\
 mail,news.none -/var/log/messages

Emergencies are sent to everybody logged in.
*.emerg *

Selectors A selector is split into two parts, a facility and a priority, which are separated by a
period. The facility indicates the origin of the message. For example, kern mes-
sages come from the kernel and mail messages come from the mail subsystem. Fol-
lowing is a list of facility names used by rsyslogd and the systems that generate
these messages:

Facilities auth Authorization and security systems including login
authpriv Same as auth, but should be logged to a secure location
cron cron
daemon System and network daemons without their own categories
kern Kernel
lpr Printing subsystem
mail Mail subsystem
news Network news subsystem
user Default facility; all user programs use this facility
uucp The UNIX-to-UNIX copy protocol subsystem
local0 to local7 Reserved for local use

The priority indicates the severity of the message. The following list of the priority
names and the conditions they represent appears in priority order:

 From the Library of WoweBook.Com

ptg

Solving Problems 627

Priorities debug Debugging information
info Information that does not require intervention
notice Conditions that may require intervention
warning Warnings
err Errors
crit Critical conditions such as hardware failures
alert Conditions that require immediate attention
emerg Emergency conditions

A selector consisting of a single facility and priority, such as kern.info, causes the
corresponding action to be applied to every message from that facility with that pri-
ority or higher (more urgent). Use .= to specify a single priority; for example,
kern.=info applies the action to kernel messages of info priority. An exclamation
point specifies that a priority is not matched. Thus kern.!info matches kernel mes-
sages with a priority lower than info and kern.!=info matches kernel messages with
a priority other than info.

A line with multiple selectors, separated by semicolons, applies the action if any of
the selectors is matched. Each of the selectors on a line with multiple selectors con-
strains the match, with subsequent selectors frequently tightening the constraints.
For example, the selectors mail.info;mail.!err match mail subsystem messages with
debug, info, notice, or warning priorities.

You can replace either part of the selector with an asterisk to match anything. The
keyword none in either part of the selector indicates no match is possible. The selec-
tor *.crit;kern.none matches all critical or higher-priority messages, except those
from the kernel.

Actions The action specifies how rsyslogd processes a message that matches the selector. The
simplest actions are ordinary files, which are specified by their absolute pathnames;
rsyslogd appends messages to these files. Specify /dev/console to send messages to
the system console. If you want a hardcopy record of messages, specify a device file
that represents a dedicated printer. Precede a filename with a hyphen (–) to keep
rsyslogd from writing each message to the file as it is generated (syncing). Doing so
may improve performance, but you may lose data if the system crashes after the
message is generated but before it gets written to a file.

You can write important messages to users’ terminals by specifying one or more
usernames separated by commas. Very important messages can be written to every
logged-in terminal by using an asterisk.

To forward messages to rsyslogd on a remote system, specify the name of the system
preceded by @. It is a good idea to forward critical messages from the kernel to
another system because these messages often precede a system crash and may not be
saved to the local disk. The following line from syslog.conf sends critical kernel
messages to plum:

kern.crit @plum

 From the Library of WoweBook.Com

ptg

628 Chapter 16 Administration Tasks

MySQL

MySQL (My Structured Query Language) is the world’s most popular open-source
database. It is the M in LAMP (Linux, Apache, MySQL, PHP/Perl/Python), an
open-source enterprise software stack. Many programming languages provide an
interface to MySQL (e.g., C, PHP, Perl).

Michael Widenius and David Axmark started development of MySQL in 1994.
Today the MySQL database is owned and supported by Oracle Corporation (which
acquired the former owner, Sun Microsystems, in 2010).

More Information

Home page: www.mysql.com
MySQL documentation: dev.mysql.com/doc
Introduction: dev.mysql.com/tech-resources/articles/mysql_intro.html
Backing up databases: www.webcheatsheet.com/SQL/mysql_backup_restore.php

Terminology

This section briefly describes some basic terms used when working with a relational
database. See also Figure 16-6 on page 632.

database A structured set of persistent data comprising one or more tables.

table A collection of rows in a relational database.

row An ordered set of columns in a table. Also record.

column A set of one type of values, one per row in a table. Also field.

Syntax and Conventions

A MySQL program comprises one or more statements, each terminated with a
semicolon (;). Although keywords in statements are not case sensitive, this book
shows keywords in uppercase letters for clarity. Database and table names are case
sensitive.

The following example shows a multiline MySQL statement that includes both the
primary interpreter prompt (mysql>) and the secondary interpreter prompt (–>).
This statement displays the values of three columns from the table named people in
rows that meet specified criteria.

mysql> SELECT person,password,executeperm
 -> FROM people
 -> WHERE password IS NULL AND executeperm=true;

This section explains how to set up and work with MySQL; it does not explain SQL

tip SQL (Structured Query Language) is the language used to work with SQL databases, including
MySQL. This chapter explains how to install and set up MySQL in a Fedora/RHEL environment.
Although it includes some SQL statements in this explanation, it makes no attempt to explain SQL.
See dev.mysql.com/doc for SQL documentation.

 From the Library of WoweBook.Com

www.mysql.com
www.webcheatsheet.com/SQL/mysql_backup_restore.php

ptg

MySQL 629

Prerequisites

Install the following packages:

• mysql-client

• mysql-server

When you install the mysql-server package, the dpkg postinst script displays a
pseudographical window that asks you to provide a password for the MySQL user
named root. This user is not the system root user. Provide a password.

mysqld init script Give the following initctl command (page 434) as needed to restart MySQL:

$ sudo restart mysql
mysql start/running, process 3433

Notes

Unlike Oracle, when you create a user, MySQL does not automatically create a
database. Under MySQL, users and databases are not as rigidly bound as they are
under Oracle.

MySQL has a separate set of users from Linux users. As installed, the name of the
MySQL administrator is root. Because the MySQL root user is not the same as the
Linux root user, it can have a different password.

JumpStart: Setting Up MySQL

MySQL is installed with an anonymous user and the password you supplied for the
MySQL user named root. For a more secure setup, remove the anonymous user. The
mysql_secure_installation utility asks a series of questions that allows you to remove
the anonymous user and perform other housekeeping tasks. In response to the
prompt for the current password for root, enter the password you assigned to the
MySQL user named root. MySQL generates an error when you ask it to remove the
test database because Ubuntu does not install this database when you install MySQL.

$ /usr/bin/mysql_secure_installation
...
You already have a root password set, so you can safely answer 'n'.
Change the root password? [Y/n] n
 ... skipping.
...
Remove anonymous users? [Y/n] y
...
Disallow root login remotely? [Y/n] y
...
Remove test database and access to it? [Y/n] y
 - Dropping test database...
ERROR 1008 (HY000) at line 1: Can't drop database 'test'; database
doesn't exist
 ... Failed! Not critical, keep moving...
...
Reload privilege tables now? [Y/n] y
...

 From the Library of WoweBook.Com

ptg

630 Chapter 16 Administration Tasks

Options

This section describes some of the options you can use on the mysql command line.
The options preceded by a single hyphen and those preceded by a double hyphen
are equivalent.

––disable-reconnect
Does not attempt to connect to the server again if the connection is dropped.
See ––reconnect.

––host=hostname –h hostname
Specifies the address of the MySQL server as hostname. Without this option
MySQL connects to the server on the local system (127.0.0.1).

––password[=passwd]
–p[passwd]

Specifies the MySQL password as passwd. For improved security, do not spec-
ify the password on the command line; MySQL will prompt for it. By default,
MySQL does not use a password. In the short form of this option, do not put a
SPACE between the –p and passwd.

––reconnect Attempts to connect to the server again if the connection is dropped (default).
Disable this behavior using ––disable-reconnect.

––user=usr –u usr
Specifies the MySQL user as usr. When you first install MySQL, there is one
user, root, and that user does not have a password.

––verbose –v Increases the amount of information MySQL displays. Use this option multiple
times to further increase verbosity.

The .my.cnf Configuration File

You can use the ~/.my.cnf file to set MySQL options. The following example shows
Max’s .my.cnf file. The [mysql] specifies the MySQL group. The next line sets Max’s
password to mpassword. With this setup, Max does not have to use –p on the com-
mand line; MySQL logs him in automatically.

$ cat /home/max/.my.cnf
[mysql]
password="mpassword"

Working with MySQL

Adding a user Before starting to work with the database, create a user so you do not have to work
as the MySQL root user. If the MySQL username you add is the same as your Linux
username, you will not have to specify a username on the MySQL command line. In
the following example, Max works as the MySQL root (–u root) user to create a
database named maxdb and add the MySQL user named max with a password of
mpassword. In response to the Enter password prompt, Max supplies the password
for the MySQL user named root. The GRANT statement gives Max the permissions
he needs to work with the maxdb database. You must work as the MySQL root user
to set up a MySQL user. The –p option causes MySQL to prompt for the password.

 From the Library of WoweBook.Com

ptg

MySQL 631

When using the MySQL interpreter, Query OK indicates that the preceding state-
ment was syntactically correct. You must enclose all character and date data within
single quotation marks.

$ mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 12
Server version: 5.1.40 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql> CREATE DATABASE maxdb;
Query OK, 1 row affected (0.00 sec)

mysql> GRANT ALL PRIVILEGES
 -> ON maxdb.* to 'max'
 -> IDENTIFIED BY 'mpasswd'
 -> WITH GRANT OPTION;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT user, password
 -> FROM mysql.user;
+------------------+---+
| user | password |
+------------------+---+
root	*96D4C5B9348F896B0B593EA4DC1B653156799FDD
max	*34432555DD6C778E7CB4A0EE4551425CE3AC0E16
debian-sys-maint	*E41C8008AE5D3C42D15447ABC5330BE62505ADF1
+------------------+---+
3 rows in set (0.00 sec)

mysql> quit
Bye
$

In the preceding example, after creating the database and setting up the new user,
Max queries the user table of the mysql database to display the user and password
columns. Two users now exist: root and max. Max gives the command quit to exit
from the MySQL interpreter.

Working as the MySQL user max, Max can now set up a simple database to keep
track of users. He does not need to use the –u option on the command line because
his Linux username and his MySQL username are the same.

Specifying the
default database

For subsequent commands, if you do not tell MySQL which database you are work-
ing with, you must prefix the names of tables with the name of the database. For
example, you would need to specify the people table in the maxdb database as
maxdb.people. When you specify the maxdb database with a USE statement, you
can refer to the same table as people. In the following example, Max specifies
maxdb as the database he is working with:

mysql> USE maxdb;
Database changed

 From the Library of WoweBook.Com

ptg

632 Chapter 16 Administration Tasks

Creating a table Next Max creates a table named people in the maxdb database. This table has six
columns of various types. After creating the table, Max uses a DESCRIBE statement
to display a description of the table.

mysql> CREATE TABLE people (person VARCHAR(20), password CHAR(41),
 -> created DATE, readperm BOOL, writeperm BOOL, executeperm BOOL);
Query OK, 0 rows affected (0.01 sec)

mysql> DESCRIBE people;
+-------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+-------+
person	varchar(20)	YES		NULL	
password	char(41)	YES		NULL	
created	date	YES		NULL	
readperm	tinyint(1)	YES		NULL	
writeperm	tinyint(1)	YES		NULL	
executeperm	tinyint(1)	YES		NULL	
+-------------+-------------+------+-----+---------+-------+
6 rows in set (0.00 sec)

MySQL changed the columns Max specified as BOOL (Boolean) to type tinyint(1),
an 8-bit integer, because MySQL does not have native (bit) Boolean support. With
tinyint(1), 0 evaluates as FALSE and 1–255 evaluate as TRUE. Figure 16-6 shows
part of the people table after data has been entered in it.

Modifying a table Max decides that the readperm, writeperm, and executeperm columns should default
to 0. He uses an ALTER TABLE statement to modify the table so he does not have to
delete it and start over. He then checks his work using a DESCRIBE statement.

mysql> ALTER TABLE people
 -> MODIFY readperm BOOL DEFAULT 0,
 -> MODIFY writeperm BOOL DEFAULT 0,
 -> MODIFY executeperm BOOL DEFAULT 0;
Query OK, 0 rows affected (0.01 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> DESCRIBE people;

————————Columns————————

person password created

 | topsy 31fdca655659... 2009-12-08

Rows bailey NULL 2009-12-08

 | percy NULL 2009-12-08

Figure 16-6 Part of the people table in the maxdb database

 From the Library of WoweBook.Com

ptg

MySQL 633

+-------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+-------+
person	varchar(20)	YES		NULL	
password	char(41)	YES		NULL	
created	date	YES		NULL	
readperm	tinyint(1)	YES		0	
writeperm	tinyint(1)	YES		0	
executeperm	tinyint(1)	YES		0	
+-------------+-------------+------+-----+---------+-------+
6 rows in set (0.00 sec)

Entering data You can enter information into a database using several techniques. The following
command adds three rows to maxdb from a Linux text file. In the file, each row is
on a separate line, a TAB separates each column from the next, and \N specifies a null
character. The file is not terminated with a NEWLINE.

$ cat /home/max/people_to_add
max \N 2008-02-17 1 1 1
zach \N 2009-03-24 1 1 0
sam \N 2009-01-28 1 0 0

mysql> LOAD DATA LOCAL INFILE '/home/max/people_to_add'
 -> INTO TABLE people;
Query OK, 3 rows affected (0.00 sec)
Records: 3 Deleted: 0 Skipped: 0 Warnings: 0

The next command adds a row using an INSERT statement:

mysql> INSERT INTO people
 -> VALUES ('topsy',NULL,CURDATE(),1,1,1);
Query OK, 1 row affected (0.01 sec)

Within an INSERT statement you can specify which columns you want to enter
data into:

mysql> INSERT INTO people (person,created,readperm)
 -> VALUES ('bailey',CURDATE(),1), ('percy',CURDATE(),0);
Query OK, 2 rows affected (0.01 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM people;
+--------+----------+------------+----------+-----------+-------------+
| person | password | created | readperm | writeperm | executeperm |
+--------+----------+------------+----------+-----------+-------------+
max	NULL	2008-02-17	1	1	1
zach	NULL	2009-03-24	1	1	0
sam	NULL	2009-01-28	1	0	0
topsy	NULL	2010-03-05	1	1	1
bailey	NULL	2010-03-05	1	0	0
percy	NULL	2010-03-05	0	0	0
+--------+----------+------------+----------+-----------+-------------+
6 rows in set (0.00 sec)

 From the Library of WoweBook.Com

ptg

634 Chapter 16 Administration Tasks

The CURDATE() function returns today’s date. Because the default values for read-
perm, writeperm, and executeperm are 0, you do not have to specify values for
those fields.

Deleting rows using
a WHERE clause

Next a DELETE FROM statement deletes rows that meet the specified criteria.
Here the criteria are specified using equalities in a WHERE clause:

mysql> DELETE FROM people
 -> WHERE person='bailey' OR person='percy';
Query OK, 2 rows affected (0.02 sec)

Selecting rows
using LIKE

You can also use a LIKE clause to specify criteria. The following SELECT statement
displays all rows that contain the letter m. The % operators are wildcards; they
match any characters.

mysql> SELECT * FROM people
 -> WHERE person LIKE '%m%';
+--------+----------+------------+----------+-----------+-------------+
| person | password | created | readperm | writeperm | executeperm |
+--------+----------+------------+----------+-----------+-------------+
| max | NULL | 2008-02-17 | 1 | 1 | 1 |
| sam | NULL | 2009-01-28 | 1 | 0 | 0 |
+--------+----------+------------+----------+-----------+-------------+
2 rows in set (0.00 sec)

Modifying data In the next example, the PASSWORD() function returns a hash (page 1151) from
the text given as its argument. The UPDATE statement assigns this hash to the pass-
word column in rows in which the person column holds a value of sam. This exam-
ple does not change the MySQL password information because that information is
kept in the database named mysql; this statement works with the maxdb database.

mysql> UPDATE people
 -> SET password=PASSWORD("sampass")
 -> WHERE person='sam';
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

More queries The next query searches for rows where the password is null (IS NULL) and (AND)
executeperm is true (=true).

mysql> SELECT person,password,executeperm
 -> FROM people
 -> WHERE password IS NULL AND executeperm=true;
+---------+----------+-------------+
| person | password | executeperm |
+---------+----------+-------------+
| max | NULL | 1 |
| topsy | NULL | 1 |
+---------+----------+-------------+
2 rows in set (0.00 sec)

Because PASSWORD() is a one-way hash function (page 1163), you cannot retrieve
the plaintext password from the password hash. However, you can check whether
any users have their username as their password:

 From the Library of WoweBook.Com

ptg

Chapter Summary 635

mysql> SELECT * FROM people
 -> WHERE password=PASSWORD(person);
+--------+--------------------------+------------+----------+-----------+-------------+
| person | password | created | readperm | writeperm | executeperm |
+--------+--------------------------+------------+----------+-----------+-------------+
| topsy | *8E5E773736B8F836F58A... | 2010-03-05 | 1 | 1 | 1 |
+--------+--------------------------+------------+----------+-----------+-------------+
1 row in set (0.00 sec)

Use an UPDATE statement to give Topsy a NULL password:

mysql> UPDATE people
 -> SET password=NULL
 -> WHERE person="topsy";
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT person,password
 -> FROM people
 -> WHERE password IS NULL;
+---------+----------+
| person | password |
+---------+----------+
max	NULL
zach	NULL
topsy	NULL
+---------+----------+
3 rows in set (0.00 sec)

Chapter Summary

The users-admin utility adds new users and groups to the system and modifies exist-
ing users’ accounts. You can also use the equivalent command-line tools (useradd,
usermod, userdel, groupadd, and groupmod) to work with user accounts.

Backing up files on the system is a critical but often-overlooked part of system
administration. Linux includes the tar, cpio, dump, and restore utilities to back up
and restore files. You can also use more sophisticated packages such as amanda and
various commercial products.

The system scheduling daemon, cron, periodically executes scheduled tasks. You
can schedule tasks using crontab and at.

System reports present information on the health of the system. Two useful tools
that generate these reports are vmstat, which details virtual memory, I/O, and CPU
usage, and top, which reports on how the system is performing from moment to
moment and can help you figure out what might be slowing it down.

Another aspect of system administration is solving problems. Linux includes several
tools that can help track down system problems. One of the most important of these
tools is syslogd, the system log daemon. Using /etc/syslogd.conf, you can control

 From the Library of WoweBook.Com

ptg

636 Chapter 16 Administration Tasks

which error messages appear on the console, which are sent as email, and which go
to one of several log files.

System administrators are frequently called upon to set up and administrate
MySQL databases. MySQL is the M in LAMP (Linux, Apache, MySQL,
PHP/Perl/Python), an open-source enterprise software stack. Many programming
languages provide an interface to MySQL (e.g., C, PHP, Perl).

Exercises

1. How would you list all the processes running vi?

2. How would you use kill to cause a server process to reread its configura-
tion files?

3. From the command line, how would you create a user named John Doe
who has the username jd and who belongs to group 65535?

4. How would you notify users that you are going to reboot the system in ten
minutes?

5. Give a command that creates a level 0 dump of the /usr filesystem on the
first tape device on the system. Which command would you use to take
advantage of a drive that supports compression? Which command would
place a level 3 dump of the /var filesystem immediately after the level 0
dump on the tape?

Advanced Exercises

6. If the system is less responsive than normal, what is a good first step in fig-
uring out where the problem is?

7. A process stores its PID number in a file named process.pid. Write a com-
mand line that terminates this process.

8. Working with root privileges, you are planning to delete some files but
want to make sure that the wildcard expression you use is correct. Suggest
two ways you could make sure you delete the correct files.

9. Create a crontab file that will regularly perform the following backups:

a. Perform a level 0 backup once per month.

b. Perform a level 2 dump one day per week.

c. Perform a level 5 dump every day on which neither a level 0 nor a level
2 dump is performed.

In the worst-case scenario, how many restore commands would you have
to give to recover a file that was dumped using this schedule?

 From the Library of WoweBook.Com

ptg

666333777

17Chapter17Networks allow computers to communicate and share
resources. A local area network (LAN) connects computers at
one site, such as an office, home, or library, and can allow the
connected computers to share an Internet connection, files, and
a printer. Of course, one of the most important reasons to set
up a LAN is to allow systems to communicate while users enjoy
multiplayer games.

This chapter covers the two aspects of configuring a LAN: set-
ting up the hardware and configuring the software. It is not
necessarily organized in the order you will perform the tasks
involved in setting up a particular LAN. Instead, read the chap-
ter through, figure out how you will set up your LAN, and then
read the parts of the chapter in the order appropriate to your
setup. The final section discusses how to monitor devices on a
network using Cacti.

In This Chapter

Setting Up the Hardware 638

Routers . 638

NIC: Network Interface Card 639

Configuring the Systems 641

Setting Up Servers 646

Introduction to Cacti 647

17

Configuring and

Monitoring a LAN

 From the Library of WoweBook.Com

ptg

638 Chapter 17 Configuring and Monitoring a LAN

Setting Up the Hardware

Each system, or node, on a LAN must have a network interface card (NIC). Each
system must connect to a central hub or switch. If the LAN is connected to another
network, such as the Internet, it must also have a router.

Connecting the Computers

Computers are connected to a network using cables (wired; page 375) or radio
waves (wireless or Wi-Fi, page 376). The cables can connect to a variety of devices,
some of which are described in this section. See “LAN: Local Area Network” on
page 375 for an explanation of cables and definitions of hub, switch, and router.

In the simple network shown in Figure 17-1, four computers are connected to a sin-
gle hub or switch. Assume computers 1 and 2 are communicating at the same time
as computers 3 and 4. With a hub (page 375), each conversation is limited to a
maximum of half the network bandwidth. With a switch (page 375), each conversa-
tion can theoretically use the full network bandwidth.

Hubs are usually less expensive than switches, although switches are getting
cheaper all the time and hubs are becoming less available. If you plan to use the net-
work for sharing an Internet connection and light file sharing, a hub is likely to be
fast enough. If systems on the network will exchange files regularly, a switch may be
a better choice.

Wireless access
point (WAP)

A wireless access point (WAP) connects a wireless network to a wired one. Typically
a WAP acts as a transparent bridge, forwarding packets between the two networks
as if they were one. If you connect multiple WAPs in different locations to the same
wired network, wireless clients can roam transparently between the WAPs.

Wireless networks do not require a hub or switch, although a WAP can optionally
fill the role of a hub. In a wireless network, the bandwidth is shared among all nodes
within range of one another; the maximum speed is limited by the slowest node.

Routers

A router (page 377) connects a LAN to another network, such as the Internet. A
router can perform several functions, the most common of which is allowing several
systems to share a single Internet connection and IP address (NAT, page 881). When
a router uses NAT, the packets from each system on the LAN appear to come from
a single IP address; the router passes return packets to the correct system. A router
can also act as a firewall.

You have several choices for routers:

• A simple hardware router is relatively cheap and does most of the things
required by a small network.

 From the Library of WoweBook.Com

ptg

Setting Up the Hardware 639

• You can set up an Ubuntu system as a router. The Linux kernel can use
gufw (page 876) or iptables (page 880) to implement a firewall to help pro-
tect a system.

• You can use a special-purpose distribution/operating system tailored for
use as a router. For example, SmoothWall (www.smoothwall.org), pfSense
(www.pfsense.com), and m0n0wall (m0n0.ch/wall) provide browser-based
configurations in the style of a hardware router.

NIC: Network Interface Card

Each system’s NIC may be a separate Ethernet card (wired or wireless) or the NIC
may be built into the motherboard.

Supported NICs Linux supports most wired and many wireless Ethernet NICs.

Unsupported
wireless NICs

If a wireless network card is not supported under Linux directly, you may be able to get
it to work with NdisWrapper (sourceforge.net/projects/ndiswrapper; ndiswrapper-
common, ndiswrapper-utils-1.9, and ndisgtk packages), which uses Win32 drivers.
NdisWrapper is a kernel module that provides a subset of the Windows network driver
API. See help.ubuntu.com/community/WifiDocs/Driver/Ndiswrapper for instructions
on installing a Windows driver.

Wireless bridge An alternative to a wireless NIC is a wireless bridge. A wireless bridge forwards
packets between wired and wireless interfaces, eliminating the need for wireless
drivers. This simple device has an Ethernet port that plugs into a NIC and an
802.11 (wireless) controller. While carrying a bridge around is usually not feasible
for mobile users, a wireless bridge is an easy way to migrate a desktop computer to
a wireless configuration.

Figure 17-1 A simple network

Computer 1

Computer 2Computer 4

Computer 3

Hub
or

switch

 From the Library of WoweBook.Com

www.smoothwall.org
www.pfsense.com

ptg

640 Chapter 17 Configuring and Monitoring a LAN

Ad hoc and
infrastructure

modes

Wireless networks operate in either ad hoc or infrastructure mode. In ad hoc mode,
individual nodes in the network communicate directly with one another. In infra-
structure mode, nodes communicate via a WAP (page 638). Infrastructure mode is
generally more reliable if the wireless LAN must communicate with a wired LAN.

If you do not want to use a WAP, it may be possible to set up a WLAN card so it
acts as a WAP. Consult the NIC/driver documentation for more information.

Tools

This section describes two of the tools you can use to examine system hardware.

lspci: Lists PCI Information

The lspci utility lists PCI device information:

$ lspci
00:00.0 Host bridge: nVidia Corporation nForce2 AGP (different version?) (rev c1)
00:00.1 RAM memory: nVidia Corporation nForce2 Memory Controller 1 (rev c1)
00:00.2 RAM memory: nVidia Corporation nForce2 Memory Controller 4 (rev c1)
00:00.3 RAM memory: nVidia Corporation nForce2 Memory Controller 3 (rev c1)
00:00.4 RAM memory: nVidia Corporation nForce2 Memory Controller 2 (rev c1)
00:00.5 RAM memory: nVidia Corporation nForce2 Memory Controller 5 (rev c1)
00:01.0 ISA bridge: nVidia Corporation nForce2 ISA Bridge (rev a4)
00:01.1 SMBus: nVidia Corporation nForce2 SMBus (MCP) (rev a2)
00:02.0 USB Controller: nVidia Corporation nForce2 USB Controller (rev a4)
...

With the –v option, lspci is more verbose. You can use the –vv or –vvv option to
display even more information.

$ lspci -v
00:00.0 Host bridge: nVidia Corporation nForce2 AGP (different version?) (rev c1)
 Subsystem: ABIT Computer Corp. Unknown device 1c00
 Flags: bus master, 66MHz, fast devsel, latency 0
 Memory at e0000000 (32-bit, prefetchable) [size=64M]
 Capabilities: <access denied>

00:00.1 RAM memory: nVidia Corporation nForce2 Memory Controller 1 (rev c1)
 Subsystem: nVidia Corporation Unknown device 0c17
 Flags: 66MHz, fast devsel

00:00.2 RAM memory: nVidia Corporation nForce2 Memory Controller 4 (rev c1)
 Subsystem: nVidia Corporation Unknown device 0c17
 Flags: 66MHz, fast devsel
...

lshw: Lists Hardware Information

The lshw utility lists information about the hardware configuration of the local sys-
tem. Run this utility with root privileges to display a more detailed report. The
–short option displays a brief report.

 From the Library of WoweBook.Com

ptg

Configuring the Systems 641

$ sudo lshw -short
H/W path Device Class Description
==
system VMware Virtual Platform
/0 bus 440BX Desktop Reference Platform
/0/0 memory 87KiB BIOS
/0/4 processor AMD Athlon 64 X2 Dual Core Processor 5600+
/0/4/1c memory 16KiB L1 cache
/0/4/0 memory 128KiB L1 cache
/0/4/1 memory 1MiB L2 cache
...
/0/100/f display SVGA II Adapter
/0/100/10 scsi2 storage 53c1030 PCI-X Fusion-MPT Dual Ultra320 SCSI
/0/100/10/0.0.0 /dev/sda disk 214GB SCSI Disk
/0/100/10/0.0.0/1 /dev/sda1 volume 197GiB EXT4 volume
/0/100/10/0.0.0/2 /dev/sda2 volume 2934MiB Extended partition
/0/100/10/0.0.0/2/5 /dev/sda5 volume 2934MiB Linux swap / Solaris partition
/0/100/11 bridge pf PCI bridge
...

You can also use lshal to display hardware information, where the report is based
on the HAL (hardware abstraction layer) device database. See www.freedesk-
top.org/wiki/Software/hal.

lsusb: Lists USB Devices

The lsusb utility displays information about USB buses and USB devices. Use the –v
(––verbose) option to display additional information.

$ lsusb
Bus 002 Device 005: ID 04f9:0033 Brother Industries, Ltd
Bus 002 Device 004: ID 051d:0002 American Power Conversion Uninterruptible Power Supply
Bus 002 Device 003: ID 045e:00dd Microsoft Corp.
Bus 002 Device 002: ID 046d:c018 Logitech, Inc.

Configuring the Systems

Once the hardware is in place, you need to configure each system so it knows about
the NIC that connects it to the network. Normally Ubuntu detects and configures
new hardware automatically when you install Ubuntu or the first time you boot the
system after you install a NIC. You can use nm-connection-editor (page 643) to aug-
ment the information Ubuntu collects.

System information In addition to information about the NIC, each system needs the following data:

• The system’s IP address

• The netmask (subnet mask) for the system’s address (page 462)

• The IP address of the gateway (page 638)

 From the Library of WoweBook.Com

www.freedesktop.org/wiki/Software/hal
www.freedesktop.org/wiki/Software/hal

ptg

642 Chapter 17 Configuring and Monitoring a LAN

• The IP addresses of the nameservers (DNS addresses—specify two or three)

• The system’s hostname (set when you install Ubuntu Linux)

If a DHCP server (page 470) distributes network configuration information to sys-
tems on the LAN, you do not need to specify the preceding information on each
system. Instead, you just specify that the system is using DHCP to obtain this
information (which Ubuntu does by default). You must specify this information
when you set up the DHCP server.

Private address
space

When you set up a LAN, the IP addresses of the systems on the LAN are gener-
ally not made public on the Internet. Special IP addresses, which are part of the
private address space defined by IANA (page 1153), are reserved for private use
and are appropriate to use on a LAN (Table 17-1). Unless you have been
assigned IP addresses for the systems on the LAN, choose addresses from the
private address space.

NetworkManager: Configures Network

Connections

By default, the NetworkManager daemon (projects.gnome.org/NetworkManager)
manages the network. When it detects a new wired or wireless connection, it starts
the appropriate interface. For a wireless connection, it prompts for and stores keys
and passphrases. It also detects new hardware—for example, when you plug a USB
wireless adapter into the system.

The NetworkManager Applet

The NetworkManager applet appears toward the right end of the Top panel. It
appears as two arrows when the system is using a wired connection and as a series
of radiating waves when the system is using a wireless connection (Figure 17-2).
Exactly what appears when you click the NetworkManager applet depends on the
system hardware and the items that you have previously set up. Right- and left-
clicking the NetworkManager applet display different menus.

Table 17-1 Private IP ranges (defined in RFC 1918)

Range of IP addresses From IP address To IP address

10.0.0.0/8 10.0.0.1 10.255.255.254

172.16.0.0/12 172.16.0.1 172.31.255.254

192.168.0.0/16 192.168.0.1 192.168.255.254

 From the Library of WoweBook.Com

ptg

NetworkManager: Configures Network Connections 643

The NetworkManager Applet Right-Click Menu

Right-click the NetworkManager applet to display a menu that allows you to turn
on/off networking and, if available, wireless (networking). See Figure 17-3. Click
either Enable Networking or Enable Wireless to place or remove a tick next to the
entry; a tick indicates the service is enabled. You can also select Connection Infor-
mation to display a window showing information about the active connection or
you can select Edit Connections (next).

The Network Connections Window (nm-connection-editor)
Selecting Edit Connections from the NetworkManager applet right-click menu runs
the nm-connection-editor utility, which opens the Network Connections window
(Figure 17-4, next page). Alternatively, you can give the command nm-connection-
editor from a terminal emulator or Run Application window (ALT-F2). From this win-
dow you can modify the configuration of wired and wireless NICs.

The Network Connections window has tabs that allow you to configure wired, wire-
less, and other types of network connections. After the system identifies and config-
ures new network hardware, you can use this window to modify the configuration.

Figure 17-2 The NetworkManager applet on the Top panel

Figure 17-3 The Network Manager applet right-click menu

NetworkManager applet (wired)

NetworkManager applet (wireless)

 From the Library of WoweBook.Com

ptg

644 Chapter 17 Configuring and Monitoring a LAN

To modify the configuration of a NIC, select the appropriate tab, highlight the
description of the connection you want to configure, and click Edit; nm-connection-
editor displays the Editing window (Figure 17-5). The IPv4 Settings tab allows you
to select DHCP or manual configuration of the connection. When you are finished
working in the Editing window, click Apply.

Wireless settings It is usually easier to configure a wireless connection using the NetworkManager
applet (next section) than it is to use the Editing window. To use the Editing window

Figure 17-4 The Network Connections window

Figure 17-5 The Editing window (wireless connection)

 From the Library of WoweBook.Com

ptg

NetworkManager: Configures Network Connections 645

to configure wireless settings, click the Wireless tab, click Add (or highlight the con-
nection and click Edit), and enter the appropriate information. When you are finished
entering information in the Editing window, click Apply.

The NetworkManager Applet Left-Click Menu

Left-clicking the NetworkManager applet displays a menu that lists the available
wireless networks. It also displays selections labeled More networks, Connect to
Hidden Wireless Network, and Create New Wireless Network (if the system has a
wireless connection), Wired Network, Disconnect, and VPN Connections. In
Figure 17-6, Auto Ethernet appears below Wired Network and Disconnect appears
below Wireless Networks, meaning that the system is using the Ethernet wired con-
nection and is not using a wireless connection.

Click the name of the wired network (e.g., Auto Ethernet) or the name of a wireless
network (under the word Available) to connect to a network. The NetworkManager
applet shows activity while it connects to the new network. It then displays either the
wireless or wired icon, as appropriate (Figure 17-2, page 643). To disable a network,
click Disconnect below the name of the connection you want to disable.

Figure 17-6 The NetworkManager applet left-click menu

 From the Library of WoweBook.Com

ptg

646 Chapter 17 Configuring and Monitoring a LAN

Setting Up Servers

Setting up local clients and servers can make a LAN both easier to use and more
useful. The following list briefly describes some of these tools and references the
pages that describe them in detail.

Firewall Although not a server, a firewall—which is typically installed on the router—is an
important part of a LAN. See gufw (page 876) and iptables (page 880) for more
information.

NIS NIS can provide a uniform login regardless of which system you log in on. The NIS
authentication server is covered on page 750 and the client on page 744. NIS is
often combined with home directories that are mounted using NFS.

NFS NFS allows you to share directory hierarchies. Sharing directories using NFS
requires that the server export the directory hierarchy (page 785) and that clients
mount the hierarchy (page 777).

Using NFS, you can store all home directories on one system and mount them from
other systems as needed. This configuration works well with NIS login authentica-
tion. With this setup, it can be convenient to create a world-writable directory—for
example, /home/shared—that users can use to exchange files. If you set the sticky
bit (page 1174) on this directory (chmod 1777 /home/shared), users can delete only
files they created. If you do not set the sticky bit, any user can delete any file.

OpenSSH OpenSSH tools include ssh (logs in on a remote system; page 670) and scp (copies
files to and from a remote system; page 672). You can also set up automatic logins
with OpenSSH: If you set up a shared home directory with NFS, each user’s ~/.ssh
directory (page 666) is the same on each system; a user who sets up a personal
authentication key (page 677) will be able to use OpenSSH tools between systems
without entering a password. See page 677 for information on how to set up an
OpenSSH server. You can just use the ssh and scp clients—you do not have to set
them up.

DNS cache Setting up a local cache can reduce the traffic between the LAN and the Internet
and can improve response times. For more information refer to “JumpStart: Setting
Up a DNS Cache” on page 834.

DHCP DHCP enables a client system to retrieve network configuration information from a
server each time it connects to a network. See page 470 for more information.

LDAP LDAP is a database server that can hold names and addresses, authentication
information, and other types of data. See page 758 for more information.

Samba Samba allows Linux systems to participate in a Windows network, sharing directo-
ries and printers, and accessing those directories and printers shared by Windows
systems. Samba includes a special share for accessing users’ home directories. For
more information refer to “The [homes] Share: Sharing Users’ Home Directories”
on page 814.

 From the Library of WoweBook.Com

ptg

Introduction to Cacti 647

You can also use Samba to set up a shared directory similar to the one described
under “NFS.” To share a Linux directory with Windows computers, the value of
Workgroup in /etc/samba/smb.conf must be the same as the Windows workgroup
(frequently MSHOME or WORKGROUP by default). Place the following code in
smb.conf (page 808):

[public]
 comment = Public file space
 path = /home/shared
 read only = no
 public = yes
 browseable = yes

Any Windows or Mac user can access this share, which can be used to exchange
files between users and between Linux, Mac, and Windows systems.

Introduction to Cacti

Cacti (cacti.net) is a network monitoring tool that graphs system and network
information over time (time-series data) and provides a comprehensive Web inter-
face for browsing and examining the ongoing performance of the devices on a
network.

For example, you can configure Cacti to monitor the network traffic passing
through the network ports on local servers and the switch and router ports on the
local network. Cacti graphs provide information on traffic levels on the various
parts of the network. When the network is slow, for example, you can refer to the
historical graphs and see if anything out of the ordinary has occurred. In addition to
network traffic levels, Cacti can collect data on CPU utilization, disk space usage,
page views on a Web server, and almost any other data points available on the local
network.

Cacti collects baseline (typical) data over time. You can use that information to gain
insight into the ongoing behavior of a system and network and help you resolve
problems. The information can even predict what may happen in the future (e.g.,
when a disk is likely to become full).

Once installed and configured, Cacti periodically polls devices on a network for
the data it needs and stores the data in RRD files for use with RRDtool (round-
robin database tool; oss.oetiker.ch/rrdtool). The Cacti Web interface allows you to
browse a list of devices and graphs, and see visual representations of the devices
over time.

Cacti is part of the next generation of monitoring tools. It builds on the lessons
learned from tools such as MRTG (oss.oetiker.ch/mrtg; page 948) and Cricket
(sourceforge.net/projects/cricket). Each of these tools has the following capabilities:

 From the Library of WoweBook.Com

ptg

648 Chapter 17 Configuring and Monitoring a LAN

• Periodically polls tracked devices for data. The tool most commonly used
to collect this data is SNMP (Simple Network Management Protocol;
www.net-snmp.org).

• Stores the data in an RRD file.

• Has a Web interface that allows you to examine graphs generated from the
stored data. These graphs typically display daily, weekly, monthly, and
yearly information.

Cacti’s configuration is performed through its Web interface, whereas MRTG and
Cricket are configured by editing text files.

RRD files and RRDtool are the key to much of Cacti’s functionality. The Cacti Web
site describes Cacti as “the complete RRDtool-based graphing solution.” RRD files
store time-series data efficiently and, through the use of aggregation functions,
make it easy to keep a lot of detail for recent time periods but progressively less
detail as the data in the files ages. RRDtool easily generates both simple and com-
plex graphs from RRD files.

Extending Cacti Many extensions and plugins are available for Cacti. Once you are familiar with
the basic use and operation of Cacti, visit cacti.net/additional_scripts.php for a par-
tial list of these additions. Also visit the documentation and the user forums to
obtain more information about Cacti and to learn how you can add functionality
and support for different devices and data sources.

Configuring SNMP

If you want to monitor data sources on the local system, install and run the SNMP
daemon on the local system as explained under “Setting Up a Remote Data Source”
on page 654.

Setting Up LAMP

Cacti is a LAMP (Linux, Apache, MySQL, PHP) application; you must install and
configure these applications before you can configure Cacti. This section explains
how to set up the software on the system running Cacti. See “Setting Up a Remote
Data Source” on page 654 for an explanation of how to set up a system that Cacti
will query and report on. By default, Cacti sets up the local system to run Cacti and
be a data source.

Notes

When you set up LAMP, you use the MySQL databases named mysql and cacti.
Ubuntu sets up the mysql database when you install MySQL. You set up and popu-
late the cacti database as explained under “Configuring MySQL” on page 650.

You need to set up the following database users. Each of these accounts should have
a password:

 From the Library of WoweBook.Com

www.net-snmp.org

ptg

Introduction to Cacti 649

• A user named root for the database named mysql. This user must be
named root. The MySQL installation script sets up this user and prompts
for a password.

• A user named cactiuser for the database named mysql. You can change
this username, but as installed, Cacti is set up to use cactiuser.

• A Cacti administrative user for the database named cacti. As set up when
you install Cacti, this user has the name admin and the password admin.
You can set up additional Cacti user accounts.

As of this writing, Ubuntu 10.04 has Cacti 0.8.7e-2 in its repositories. Do not be
misled by the pre-1.0 version number: Cacti is stable and in use on many systems.

Prerequisites

Install the following packages:

• cacti

• mysql-client (page 628)

• mysql-server (page 628)

• php5-cli

• apache2 (Apache; page 899)

• rrdtool

• snmp

When you install the cacti package, APT installs all packages necessary to run Cacti.
It also runs the MySQL installation script (page 629) and asks if you want to run
the Cacti installation script.

During installation, the MySQL installation script displays a pseudographical
window that includes the following prompt:

New password for the MySQL "root" user:

Respond to this prompt with the password for the mysql database user named root
and click OK. The script prompts you to reenter the password.

Next the PHP installation script displays a message (which you can ignore) about
the location of libphp-adodb.

The next pseudographical window asks which Web server you want Cacti to use.
Select Apache2. After installing some packages, the Cacti installation script asks if
you want to use dbconfig-common to configure the database for Cacti. Respond
with No. As of this writing the script did not work; the next sections explain how to
configure the Cacti database manually.

 From the Library of WoweBook.Com

ptg

650 Chapter 17 Configuring and Monitoring a LAN

Firewall The snmpd daemon, which runs on systems monitored by Cacti, uses UDP port
161. If the monitored system is running a firewall, you need to open this port
(page 876). If you want to work with Cacti from a browser on a system other than
the one running Cacti, you need to open TCP port 80 on the system running Cacti
(refer to “Firewall” on page 901). For more general information, see Chapter 25,
which details the iptables utility.

Configuring MySQL

For a more secure installation, run mysql_secure_installation as explained under
“JumpStart: Setting Up MySQL” on page 629.

Create the cacti
database

Issue the following commands to create a database named cacti, create a mysql
database user named cactiuser, grant that user the necessary privileges, and assign a
password to that user. Replace cactipassword in the following example with your
choice of a password. Although the FLUSH PRIVILEGES statement is not required,
it is good practice to include it.

$ sudo mysql -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 5
Server version: 5.1.41-3ubuntu12.1 (Ubuntu)
Type 'help;' or '\h' for help. Type '\c' to clear the current
input statement.

mysql> CREATE DATABASE cacti;
Query OK, 1 row affected (0.00 sec)

mysql> GRANT ALL ON cacti.*
 -> TO cactiuser@localhost
 -> IDENTIFIED BY 'cactipassword';
Query OK, 0 rows affected (0.00 sec)

mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.00 sec)

mysql> exit
Bye

Set up and populate
the cacti database

Give the following commands to set up and populate the database named cacti.
When MySQL prompts for a password, provide the password for the MySQL user
named root (not the MySQL user named cactiuser).

Two databases, two users: the cactiuser in the mysql database and
the admin user in the cacti database

caution Do not confuse the databases and users.

The mysql database has a user named cactiuser. This user sets up and administrates the cacti
database using MySQL. You assign a password to this user when you set up the cacti database.

The cacti database has a user named admin. Cacti sets up this user when you populate the cacti
database using the cacti.sql script. It automatically assigns the password admin to this user, but
then requires you to change the password when you first log in on Cacti.

 From the Library of WoweBook.Com

ptg

Introduction to Cacti 651

$ zcat /usr/share/doc/cacti/cacti.sql.gz > cacti.sql
$ sudo -s mysql -p cacti < cacti.sql
Enter password:
$ rm cacti.sql

Edit debian.php Working with root privileges, edit the /etc/cacti/debian.php file so that it looks like
the following example. Assign cactiuser to $database_username, assign the value of
cactipassword from the preceding step to $database_password (the password for
the mysql database user named cactiuser), and assign cacti to $database_default.
Do not change any other values.

$database_username='cactiuser';
$database_password='cactipassword';
$basepath='';
$database_default='cacti';
$database_hostname='';
$database_port='';
$dbtype='mysql';

Configuring Apache

After Apache is installed, modify the configuration files as explained on page 903; if
you do not make these modifications, Apache will display errors when it starts but
will work anyway. Use the apache2 init script to restart the httpd daemon
(page 902). Cacti supplies the content.

The /etc/cacti/apache.conf file controls the location and accessibility of Cacti on the
Apache server. You do not have to modify this file. By default, Cacti is available as
localhost/cacti or, from a remote system, as IP/cacti, where IP is the IP address of
the system running Cacti. The default cacti.conf file follows:

$ cat /etc/cacti/apache.conf
Alias /cacti /usr/share/cacti/site

<DirectoryMatch /usr/share/cacti/site>
 Options +FollowSymLinks
 AllowOverride None
 order allow,deny
 allow from all

 AddType application/x-httpd-php .php

 php_flag magic_quotes_gpc Off
 php_flag short_open_tag On
 php_flag register_globals Off
 php_flag register_argc_argv On
 php_flag track_vars On
 # this setting is necessary for some locales
 php_value mbstring.func_overload 0
 php_value include_path .

 DirectoryIndex index.php
</DirectoryMatch>

See “Alias” (page 923) and “Allow” (page 930) for more information.

 From the Library of WoweBook.Com

ptg

652 Chapter 17 Configuring and Monitoring a LAN

The Cacti Poller

The Cacti poller is run by the /etc/cron.d/cacti crontab file. The */5 entry in this
file causes crond to execute the script every five minutes. For more information
refer to “Crontab Files” on page 606.

$ cat /etc/cron.d/cacti
MAILTO=root
*/5 * * * * www-data php /usr/share/cacti/site/poller.php >/dev/null 2>/var/log/cacti/poller-error.log

Configuring Cacti

Point a Web browser on the machine running Cacti at localhost/cacti; Apache redi-
rects the browser to the Cacti installation page at localhost/cacti/install and displays
the Cacti Installation Page screen. Click Next.

Confirm the information on the Cacti Installation Guide screen (Figure 17-7) and
click Next.

The next screen displays several file pathnames and information about which ver-
sions of Net-SNMP and RRDTool are installed. Review this information and click
Finish.

Next Cacti displays the User Login screen. Log in with the username admin and the
password admin. Cacti then forces you to change the password for the cacti data-
base user named admin. After you change the password, Cacti displays the main
Console screen (Figure 17-8). The name of the screen appears just below the Console
tab at the upper-left corner of the screen.

Basic Cacti Administration

By default, Cacti collects data from localhost (the system it is installed on). Once a
few poller cycles have passed (approximately 15 minutes after you installed Cacti),
Cacti will display this information. You must install snmpd on the local system if
you want to monitor the local system (page 654).

Figure 17-7 The Cacti Installation Guide screen

 From the Library of WoweBook.Com

ptg

Introduction to Cacti 653

From the main Console screen, click View your new graphs or click the Graphs tab
at the top of the screen. Cacti displays the default graphs in tree mode for localhost
(Figure 17-9, next page).

Cacti creates graphs for the following data sources: memory usage, load average,
logged-in users, and number of processes. If you click one of the graphs, Cacti displays a
page with four graphs for the data source you clicked: daily, weekly, monthly, and
yearly. These graphs will mostly be blank until Cacti collects sufficient data to fill them.

To store the data it collects and to display graphs, Cacti uses RRDTool. Cacti
graphs show more detail over short time spans, and less detail (averaged, or other-
wise aggregated) over longer time spans.

To zoom in on a graph, click the magnifying glass icon on the right side of a graph;
Cacti displays a single graph and the mouse pointer changes to a cross hairs. Drag
the cross hairs horizontally over the part of the graph that represents the time period
you are interested in. In response, Cacti regenerates the graph for that time period.

Figure 17-8 The Cacti main Console screen

You must install snmpd on the local system to monitor the local system
tip You must install and configure snmpd on the local system, just as you would on a remote system,

if you want to monitor the local system. For more information refer to “Setting Up a Remote Data
Source” on page 654.

 From the Library of WoweBook.Com

ptg

654 Chapter 17 Configuring and Monitoring a LAN

You can control the graphs using the tabs along the upper-right edge of the screen.
The Settings tab allows you to set your preferences for displaying graphs; the Tree
View tab displays a hierarchy of graphs, allowing you to select the devices or graphs
you are interested in; the List View tab displays a list of all available graphs; and the
Preview tab displays small previews of all available graphs. In addition, the List
View and Preview tabs provide a filter at the top of the screen that allows you to
display a subset of graphs.

The Cacti Console Tab

Clicking the Console tab displays the main Console screen (Figure 17-8, previous
page), from which you can manage Cacti. The main Console screen has a menu on
the left side and shows the pathname of the screen it is displaying just below the
Console tab. At the upper-right corner of the screen is the name of the user (admin)
and a Logout button.

Setting Up a Remote Data Source

You can set up any device that runs SNMP as a data source that Cacti can monitor
and report on. This section explains how to set up a remote system on the local

Figure 17-9 Default graphs for localhost

 From the Library of WoweBook.Com

Admin
Text Box
Download form www.eBookTM.com

ptg

Introduction to Cacti 655

network as a data source and how to set up Cacti to monitor that source. Setting
up a local data source is similar to setting up a remote data source.

Prerequisites

Install the following package on the remote system that Cacti will monitor. You
must install and configure this package on the local system if you want to monitor
the local system; it is not installed with the cacti package.

• snmpd

snmpd.conf The /etc/snmp/snmpd.conf file controls the snmpd daemon. Save the installed
snmpd.conf file so you can refer to it later. Set up the following snmpd.conf file,
which sets the SNMP community to public and allows queries from localhost and
10.10.4.98 (the system running Cacti; replace this address with that of the local
Cacti server):

$ cat /etc/snmp/snmpd.conf
rocommunity public localhost
rocommunity public 10.10.4.98

/etc/default/snmpd Under Ubuntu and other Debian-based systems, the /etc/default/snmpd file controls
various aspects of the snmpd daemon. For example, it specifies which address(es)
snmpd listens for queries on. Fedora and Red Hat systems do not use this file. You
must edit the following line, which specifies the options snmpd is run with, if you
want snmpd to listen for queries from a remote system:

$ cat /etc/default/snmpd
...
SNMPDOPTS='-Lsd -Lf /dev/null -u snmp -g snmp -I -smux -p /var/run/snmpd.pid 127.0.0.1'
...

Change the 127.0.0.1 to the IP address of the local system, as this is the address
the system running Cacti will query the local system on. If you do not make
this change, the local system will not respond to snmpd queries from a remote
system.

snmpd init script Restart the snmpd daemon:

$ sudo service snmpd restart
* Restarting network management services:

You can use an argument of status to check whether the daemon is running
(snmptrapd is not required in order for snmpd to work):

$ sudo service snmpd status
* snmpd is running
* snmptrapd is not running

 From the Library of WoweBook.Com

ptg

656 Chapter 17 Configuring and Monitoring a LAN

Adding a Device

In the Web browser connected to Cacti, click the Console tab and select Configu-
ration Settings, and then click the General tab and select Version 1 from the
drop-down list labeled SNMP Version (not SNMP Utility Version). By default,
SNMP runs with community set to public; do not change this setting unless you
have reason to do so. Click Save.

Next select Management Devices and click the word Add (it is small) at the upper-
right corner of the screen. Alternatively, you can select Create New Graphs and
then click Create New Host. Cacti displays a screen that allows you to specify a
new device (Figure 17-10).

If you have set the SNMP Version as just explained (i.e., Version 1), the SNMP set-
tings will appear as shown in Figure 17-10. Fill in the text box labeled Description
with an appropriate description of the system to be monitored. Enter the IP address
or fully qualified domain name in the text box labeled Hostname. Select an appro-
priate item from the drop-down list labeled Host Template. The example uses
Generic SNMP-enabled Host. Alternatively, you can use Local Linux Machine.
Make sure Downed Device Detection is set to SNMP and SNMP Version is set to
Version 1. Click Create.

Figure 17-10 Adding a new device

 From the Library of WoweBook.Com

ptg

Introduction to Cacti 657

Cacti uses SNMP to collect information from the device. If all goes well, it will
report Save Successful and display the information about the new system near the
top of the screen (Figure 17-11).

Creating a graph Click Create Graphs for this Host. Cacti displays a list of queries and data sources
that it can graph (Figure 17-12, next page). Put a tick in the check box at the right
end of each line that holds a data source you want to create a graph for. Click
Create. Cacti displays a message at the top of the screen that tells you which
graphs it created.

Adding a node to
the graph tree

Select Management Graph Trees and click Add to add a node to the graph tree.
Enter a name for the new node (e.g., Servers) and click Create.

Now click Add (on the right) to add a Tree Item, select Host from the drop-down
list labeled Tree Item Type, select the host you just added (Cacti may add Host for
you), and click Create.

Wait Take a break for 10 or 15 minutes to allow Cacti to poll the new device a few times.

Displaying the graph Click the Graphs tab. The name for the new node appears in the device tree on the
left side of the screen. When you click the plus sign (+) that appears to the left of the

Figure 17-11 Information about the new system

 From the Library of WoweBook.Com

ptg

658 Chapter 17 Configuring and Monitoring a LAN

node name, Cacti expands the tree and displays the node you just added. Click the
node name to display the graphs for that device (Figure 17-13).

You can now browse through the graphs that are being generated, choose time
periods you are interested in, and learn more about the behavior of the devices and
networks.

More Information

Web Router operating systems: www.smoothwall.org, www.pfsense.com, m0n0.ch/wall
NdisWrapper: help.ubuntu.com/community/WifiDocs/Driver/Ndiswrapper,

sourceforge.net/projects/ndiswrapper
Cacti: cacti.net, cacti.net/additional_scripts.php
Cacti manual: cacti.net/downloads/docs/html
Cacti forums: forums.cacti.net
RRDTool: oss.oetiker.ch/rrdtool
SNMP: www.net-snmp.org

HOWTOs Linux Wireless Lan HOWTO: www.hpl.hp.com/personal/Jean_Tourrilhes/Linux
Wireless HOWTO
Linux Hardware Compatibility HOWTO

Figure 17-12 A list of queries and data sources for the new device

 From the Library of WoweBook.Com

www.smoothwall.org
www.pfsense.com
www.net-snmp.org
www.hpl.hp.com/personal/Jean_Tourrilhes/Linux

ptg

Chapter Summary 659

Chapter Summary

A local area network (LAN) connects computers at one site and can allow the con-
nected computers to share an Internet connection, files, and a printer. Each system,
or node, on a LAN must have a network interface card (NIC). NICs can be con-
nected to the network via cables (wired) or radio waves (wireless).

An Ethernet-based LAN has a connection between each computer and a central hub
or switch. Hubs are generally slower than switches, but either is usually satisfactory
for a small LAN. A wireless access point (WAP) connects a wireless network to a
wired one. If the LAN you are setting up is connected to another network, such as
the Internet, the LAN requires a router. A router can perform several functions, the
most common of which is allowing several systems to share a single Internet con-
nection and IP address; this function is called NAT.

Several tools are useful when you are setting up a LAN. In particular, the Network
Connections window (nm-connection-editor) and the nm-applet enable you to config-
ure NICs (wired or wireless).

You can configure the systems on the LAN to use NIS as a login server so you do
not have to set up accounts on each system. You can use NFS, which allows you to

Figure 17-13 Cacti graphs for new devices

 From the Library of WoweBook.Com

ptg

660 Chapter 17 Configuring and Monitoring a LAN

mount remote directory hierarchies, to set up a universal home directory. Samba is
an important part of many LANs: It allows Linux systems to participate in a Win-
dows network, sharing directories and printers, and accessing those directories and
printers shared by Windows systems.

Cacti is a network monitoring tool that graphs system and network information
over time and provides a comprehensive Web interface for browsing and examining
the ongoing performance of the devices on a network.

Exercises

1. What advantage does a switch have over a hub?

2. Which server would you set up to allow users to log in with the same
username and password on all computers on a LAN?

3. Name two servers that allow you to share directories between systems.

4. What is a WAP and what does it do?

5. What is a common function of a router? What is this function called?

6. What does a wireless bridge do?

7. Name two tools you can use to configure a wireless NIC (rather than hav-
ing it be configured automatically). What is the difference between the
two?

8. What is the private address space? When would you use a private address?

Advanced Exercises

9. If you set a system’s subnet mask to 255.255.255.0, how many computers
can you put on the network without using a router?

10. Which file stores information about which DNS servers the system uses?

 From the Library of WoweBook.Com

ptg

661

I

PART V

Using Clients and Setting

Up Servers

CHAPTER 18

OpenSSH: Secure Network Communication 663

CHAPTER 19

FTP: Transferring Files Across a Network 687

CHAPTER 20

exim4: Setting Up Mail Servers, Clients, and More 713

CHAPTER 21

NIS and LDAP 741

CHAPTER 22

NFS: Sharing Filesystems 773

CHAPTER 23

Samba: Linux and Windows File and Printer

Sharing 797

CHAPTER 24

DNS/BIND: Tracking Domain Names and Addresses 821

CHAPTER 25

firestarter, gufw, and iptables: Setting Up a Firewall 863

CHAPTER 26

Apache: Setting Up a Web Server 899

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

666666333

18Chapter18OpenSSH is a suite of secure network connectivity tools that
replaces telnet/telnetd, rcp, rsh/rshd, rlogin/rlogind, and ftp/ftpd.
Unlike the tools they replace, OpenSSH tools encrypt all traf-
fic, including passwords. In this way they thwart malicious
users who attempt to eavesdrop, hijack connections, and steal
passwords.

This chapter covers the following OpenSSH tools:

• scp—Copies files to and from another system

• sftp—Copies files to and from other systems (a secure
replacement for ftp)

• ssh—Runs a command on or logs in on another system

• sshd—The OpenSSH daemon (runs on the server)

• ssh-keygen—Creates, manages, and converts RSA or
DSA host/user authentication keys

In This Chapter

Introduction to OpenSSH 664

Running the ssh, scp, and sftp
OpenSSH Clients 667

JJumpStart: Using ssh and scp
to Connect to an OpenSSH
Server . 667

Setting Up an OpenSSH
Server (sshd) 676

JumpStart: Starting an OpenSSH
Server . 677

Troubleshooting 680

Tunneling/Port Forwarding. 681

18

OpenSSH: Secure

Network

Communication

 From the Library of WoweBook.Com

ptg

664 Chapter 18 OpenSSH: Secure Network Communication

Introduction to OpenSSH

Using public key encryption (page 1111), OpenSSH provides two levels of authenti-
cation: server and client/user. First the client verifies that it is connected to the correct
server. Then OpenSSH encrypts communication between the systems. Once a secure,
encrypted connection has been established, OpenSSH makes sure the user is autho-
rized to log in on or copy files to and from the server. After verifying the system and
user, OpenSSH allows different services to be passed through the connection. These
services include interactive shell sessions (ssh), remote command execution (ssh), file
copying (scp), FTP services (sftp), X11 client/server connections, and TCP/IP port
tunneling.

SSH1 versus SSH2 SSH protocol version 2 (SSH2) is a complete rewrite of SSH protocol version 1
(SSH1) that offers improved security, performance, and portability. The two protocols
are not compatible. Because SSH1 is being rapidly supplanted by SSH2 and because
SSH1 is vulnerable to a man-in-the-middle attack (footnote 3 on page 1114), this
chapter does not discuss SSH1. Because version 2 is floating-point intensive, version 1
does have a place on systems without FPUs (floating-point units or accelerators), such
as old 486SX systems. As installed, the OpenSSH tools supplied with Ubuntu Linux
support SSH2 only.

ssh The ssh utility allows you to log in on a remote system over a network. You might
choose to use a remote system to access a special-purpose application or to take
advantage of a device that is available only on that system, or you might use a
remote system because you know it is faster or less busy than the local system.
While traveling, many businesspeople use ssh on a laptop to log in on a system at
company headquarters. From a GUI you can use several systems simultaneously by
logging in on each one from a different terminal emulator window.

X11 forwarding Once you turn on trusted X11 forwarding, it is a simple matter to run an X11 pro-
gram over an ssh connection: Run ssh from a terminal emulator running on an X11
server and give an X11 command such as xclock; the graphical output appears on
the local display. For more information refer to “Forwarding X11” on page 681.

How OpenSSH Works

When OpenSSH starts, it first establishes an encrypted connection and then
authenticates the user. Once these two tasks are completed, OpenSSH allows the
two systems to send information back and forth.

keys OpenSSH uses two key pairs to negotiate an encrypted session: a host key pair and
a session key pair. The host key pair is a set of public/private keys that is established
when you install the openssh-server package (page 676). The session key pair is a
set of public/private keys that changes hourly.

The first time an OpenSSH client connects with an OpenSSH server, you are asked
to verify that it is connected to the correct server (see “First-time authentication”
on page 668). After verification, the client makes a copy of the server’s public host

 From the Library of WoweBook.Com

ptg

Introduction to OpenSSH 665

key. On subsequent connections, the client compares the key provided by the
server with the original key it stored. Although this test is not foolproof, the next
one is quite secure.

The client then generates a random key, which it encrypts with both the server’s
public host key and the session key. The client sends this encrypted key to the server.
The server, in turn, uses its private keys to decrypt the encrypted key. This process
creates a key that is known only to the client and the server and is used to encrypt
the rest of the session.

Files

OpenSSH clients and servers rely on many files. Global files are kept in /etc/ssh
and user files in ~/.ssh. In this section, the first word in the description of each file
indicates whether the client or the server uses the file.

/etc/ssh: Global Files

Global files listed in this section appear in the /etc/ssh directory. They affect all
users, but a user can override them with files in her ~/.ssh directory.

moduli client and server Contains key exchange information that OpenSSH uses to establish
a secure connection. Do not modify this file.

ssh_config client The global OpenSSH configuration file (page 674). Entries here can be
overridden by entries in a user’s ~/.ssh/config file.

sshd_config server The configuration file for sshd (page 679).

ssh_host_dsa_key,
ssh_host_dsa_key.pub

server SSH protocol version 2 DSA host keys. Both files should be owned by root.
The ssh_host_dsa_key.pub public file should be readable by anyone but writable
only by its owner (644 permissions). The ssh_host_dsa_key private file should not
be readable or writable by anyone except its owner (600 permissions).

ssh_host_rsa_key,
ssh_host_rsa_key.pub

server SSH protocol version 2 RSA host keys. Both files should be owned by root.
The ssh_host_rsa_key.pub public file should be readable by anyone but writable
only by its owner (644 permissions). The ssh_host_rsa_key private file should not
be readable or writable by anyone except its owner (600 permissions).

ssh_known_hosts client Contains public RSA (by default) keys of hosts that users on the local sys-
tem can connect to. This file contains information similar to that found in
~/.ssh/known_hosts, but is set up by the administrator and is available to all users.

rhost authentication is a security risk

caution Although OpenSSH can get authentication information from /etc/hosts.equiv, /etc/shosts.equiv,
~/.rhosts, and ~/.shosts, this chapter does not cover the use of these files because they are secu-
rity risks. The default settings in the /etc/ssh/sshd_config configuration file prevent their use.

 From the Library of WoweBook.Com

ptg

666 Chapter 18 OpenSSH: Secure Network Communication

This file should be owned by root and should be readable by anyone but writable
only by its owner (644 permissions).

sshrc server Contains initialization routines. When a user on a client connects to a
server, if ~/.ssh/rc is not present, OpenSSH runs this script on the server after
~/.ssh/environment and before the user’s shell starts.

~/.ssh: User Files

OpenSSH creates the ~/.ssh directory and the known_hosts file therein automatically
when a user connects to a remote system.

authorized_keys server Enables a user to log in on or copy files to and from another system without
supplying a user login password (page 677). However, the user may need to supply a
passphrase, depending on how the key was set up. No one except the owner should
be able to write to this file.

config client A user’s private OpenSSH configuration file (page 674). Entries here override
those in /etc/ssh/ssh_config.

environment server Contains assignment statements that define environment variables on a
server when a user logs in using ssh.

id_dsa,
id_dsa.pub

client User authentication DSA keys generated by ssh-keygen (page 677). Both
files should be owned by the user in whose home directory they appear. The
id_dsa.pub public file should be readable by anyone but writable only by its owner
(644 permissions). The id_dsa private file should not be readable or writable by
anyone except its owner (600 permissions).

id_rsa,
id_rsa.pub

client User authentication RSA keys generated by ssh-keygen (page 677). Both files
should be owned by the user in whose home directory they appear. The id_rsa.pub
public file should be readable by anyone but writable only by its owner (644 permis-
sions). The id_rsa private file should not be readable or writable by anyone except its
owner (600 permissions).

known_hosts client Contains public RSA keys (by default) of hosts the user has connected to.
OpenSSH automatically adds entries each time the user connects to a new server
(page 668). Refer to “HostKeyAlgorithms” (page 675) for information on using
DSA keys. If HashKnownHosts (page 675) is set to yes, the hostnames and addresses
in this file are hashed to improve security.

rc server Contains initialization routines. When a user on a client connects to a
server, OpenSSH runs this script on the server after environment and before the
user’s shell starts. If this file is not present, OpenSSH runs /etc/ssh/sshrc; if that file
does not exist, OpenSSH runs xauth.

More Information

Local man pages: ssh, scp, sftp, ssh-keygen, ssh_config, sshd, sshd_config

Web OpenSSH home page: www.openssh.com
Search on ssh to find various HOWTOs and other documents: tldp.org

 From the Library of WoweBook.Com

www.openssh.com

ptg

Running the ssh, scp, and sftp OpenSSH Clients 667

Books Implementing SSH: Strategies for Optimizing the Secure Shell by Dwivedi; John
Wiley & Sons (October 2003)
SSH, The Secure Shell: The Definitive Guide by Barrett, Silverman, & Byrnes;
O’Reilly Media (May 2005)

Running the ssh, scp, and sftp OpenSSH Clients

This section covers setting up and using the ssh, scp, and sftp clients.

Prerequisites

The openssh-client package is installed by default. You do not need to install any
packages to run an OpenSSH client. There is no init script for OpenSSH clients.

JumpStart: Using ssh and scp to Connect to an

OpenSSH Server

The ssh and scp clients do not require setup beyond installing the requisite package,
although you can create and edit files that facilitate their use. To run a secure shell
on or securely copy a file to and from a remote system, the following criteria must
be met: The remote system must be running the OpenSSH daemon (sshd), you must
have an account on the remote system, and the server must positively identify itself
to the client.

ssh The following example shows Zach using ssh to log in on the remote host named
plum and giving an exit command to return to the shell on the local system:

$ ssh zach@plum
zach@plum's password:
Linux plum 2.6.27-1-generic #1 SMP Sat Aug 23 23:20:09 UTC 2008 i686
...
Last login: Mon Jan 18 21:58:22 2010 from 192.168.0.12
zach@plum:~$ exit
logout
Connection to plum closed.

scp You can omit user@ (zach@ in the preceding example) from the command line if
you want to log in as yourself and you have the same username on both systems.
The first time you connect to a remote OpenSSH server, ssh or scp asks you to con-
firm that you are connected to the right system. Refer to “First-time authentication”
on page 668.

The following example uses scp to copy ty1 from the working directory on the local
system to Zach’s home directory on plum:

$ scp ty1 zach@plum:
zach@plum's password:
ty1 100% 162 0.2KB/s 00:00

 From the Library of WoweBook.Com

ptg

668 Chapter 18 OpenSSH: Secure Network Communication

Configuring OpenSSH Clients

This section describes how to set up OpenSSH on the client side.

Recommended Settings

X11 forwarding The configuration files provided by Ubuntu establish a mostly secure system and
may or may not meet your needs. One OpenSSH parameter you may want to
change is ForwardX11Trusted, which is set to yes by default. To increase security,
and in some cases reduce usability, set ForwardX11Trusted (page 675) to no in the
Ubuntu /etc/ssh/ssh_config configuration file. See page 681 for more information
about X11 forwarding.

Server Authentication/Known Hosts

known_hosts,
ssh_known_hosts

Two files list the hosts the local system has connected to and positively identified:
~/.ssh/known_hosts (user) and /etc/ssh/ssh_known_hosts (global). No one except
the owner (root in the case of the second file) should be able to write to either of
these files. No one except the owner should have any access to a ~/.ssh directory.

First-time
authentication

When you connect to an OpenSSH server for the first time, the OpenSSH client
prompts you to confirm that you are connected to the right system. This check can
help prevent a man-in-the-middle attack (footnote 3 on page 1114):

The authenticity of host 'plum (192.168.0.10)' can't be established.
RSA key fingerprint is d1:9d:1b:5b:97:5c:80:e9:4b:41:9a:b7:bc:1a:ea:a1.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'plum,192.168.0.10' (RSA) to the list of
known hosts.

Before you respond to the preceding query, make sure you are logging in on the correct
system and not on an imposter. If you are not sure, a telephone call to someone who logs
in on that system locally can help verify that you are on the intended system. When you
answer yes (you must spell it out), the client appends the server’s public host key (the sin-
gle line in the /etc/ssh/ssh_host_rsa_key.pub or /etc/ssh/ssh_host_dsa_key.pub file on
the server) to the user’s ~/.ssh/known_hosts file on the local system, creating the ~/.ssh
directory if necessary. So that it can keep track of which line in known_hosts applies to
which server, OpenSSH prepends the name of the server and the server’s IP address to
the line.

When you subsequently use OpenSSH to connect to that server, the client verifies
that it is connected to the correct server by comparing this key to the one sup-
plied by the server. You can display the local system’s RSA key fingerprint using
ssh-keygen:

$ ssh-keygen -lf /etc/ssh/ssh_host_rsa_key.pub
2048 d1:9d:1b:5b:97:5c:80:e9:4b:41:9a:b7:bc:1a:ea:a1 /etc/ssh/ssh_host_rsa_key.pub (RSA)

known_hosts file The known_hosts file uses one or two very long lines to identify each host it keeps
track of. Each line starts with the hostname and IP address of the system the line cor-
responds to, followed by the type of encryption being used and the server’s public

 From the Library of WoweBook.Com

ptg

Running the ssh, scp, and sftp OpenSSH Clients 669

host key. When HashKnownHosts (page 675) is set to yes (the default), OpenSSH
hashes the system name and address for security. Because it hashes the hostname and
IP address separately, OpenSSH puts two lines in known_hosts for each host. The
following lines (they are two logical lines, each of which wraps on to several physical
lines) from known_hosts are used to connect to a remote system using RSA
(page 1170) encryption:

$ cat ~/.ssh/known_hosts
|1|PrVUqXFVnnVLrkymq1ByCnmXaZc=|TVRAtwaqi15EJ9guFR5js3f1AR8= ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAQEA7egm4YaOOj5/JtGUlt3jqC5RfcJ8/RAUixKzDAqJ5fE
...
|1|Pnu8B9UUqe7sGIWCiCIUTl8qysc=|Ldm5/7LK6v84ds2129mzw29jqb8= ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAQEA7egm4YaOOj5/JtGUlt3jqC5RfcJ8/RAUixKzDAqJ5fE
...

You can use ssh-keygen with the –R option followed by the hostname to remove a
hashed entry. The –F option to ssh-keygen displays a line in a known_hosts file that
corresponds to a specified system, even if the entry is hashed:

$ ssh-keygen -F plum
Host plum found: line 1 type RSA
|1|PrVUqXFVnnVLrkymq1ByCnmXaZc=|TVRAtwaqi15EJ9guFR5js3f1AR8= ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAQEA7egm4YaOOj5/JtGUlt3jqC5RfcJ8/RAUixKzDAqJ5fE
...

OpenSSH automatically stores keys from servers it has connected to in user-private
files (~/.ssh/known_hosts). These files work only for the user whose directory they
appear in. Working with root privileges and using a text editor, you can copy non-
hashed lines from a user’s private list of known hosts to the public list in
/etc/ssh/ssh_known_hosts to make a server known globally on the local system.

The following example shows how Sam, who has administrative privileges, puts
the hashed entry from his known_hosts file into the global ssh_known_hosts file.
First, working as himself, Sam sends the output of ssh-keygen through tail to strip
off the Host plum found line and redirects the output to a file named
tmp_known_hosts. Next, working with root privileges, Sam appends the contents
of the file he just created to /etc/ssh/ssh_known_hosts. This command creates this
file if it does not exist. Finally, Sam removes the temporary file he created and
returns to working as himself.

sam@dog:~$ ssh-keygen -F plum | tail -1 > tmp_known_hosts
sam@dog:~$ sudo -i
root@dog:~# cat ~sam/tmp_known_hosts >> /etc/ssh/ssh_known_hosts
root@dog:~# exit
sam@dog:~$ rm ~sam/tmp_known_hosts

Because the output from cat is redirected, Sam creates a shell with root privileges
(sudo –i) to execute the command. See page 424 for a discussion of redirecting the
output of a command run under sudo.

 From the Library of WoweBook.Com

ptg

670 Chapter 18 OpenSSH: Secure Network Communication

If, after a remote system’s public key is stored in one of the known-hosts files, the
remote system supplies a different fingerprint when the systems connect, OpenSSH
displays the following message and does not complete the connection:

@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
f1:6f:ea:87:bb:1b:df:cd:e3:45:24:60:d3:25:b1:0a.
Please contact your system administrator.
Add correct host key in /home/sam/.ssh/known_hosts to get rid of this message.
Offending key in /home/sam/.ssh/known_hosts:1
RSA host key for plum has changed and you have requested strict checking.
Host key verification failed.

If you see this message, you may be the subject of a man-in-the-middle attack. More
likely, however, something on the remote system has changed, causing it to supply a
new fingerprint. Check with the remote system’s administrator. If all is well, remove
the offending key from the specified file (the third line from the bottom in the pre-
ceding example points to the line you need to remove) and try connecting again.
You can use ssh-keygen with the –R option followed by the name of a host to
remove a hashed entry. You will be subject to first-time authentication (page 668)
again as OpenSSH verifies that you are connecting to the correct system. Follow the
same steps as when you initially connected to the remote host.

ssh: Connects to or Executes Commands on a

Remote System

The format of an ssh command line is

ssh [options] [user@]host [command]

where host, the name of the OpenSSH server (the remote system) you want to con-
nect to, is the only required argument. The host can be a local system name, the
FQDN (page 1149) of a system on the Internet, or an IP address. Give the com-
mand ssh host to log in on the remote system host with the same username you are
using on the local system. Include user@ when you want to log in with a username
other than the one you are using on the local system. Depending on how the server
is set up, you may need to supply your password.

Opening a
remote shell

Without command, ssh logs you in on host. The remote system displays a shell
prompt and you can run commands on host. Give the command exit to close the
connection to host and return to the local system’s prompt.

In the following example, Sam, who is logged in on dog, uses ssh to log in on
plum, gives a who am i command that shows the IP address of the system he is

 From the Library of WoweBook.Com

ptg

Running the ssh, scp, and sftp OpenSSH Clients 671

logged in from, and uses exit to close the connection to plum and return to the
local system’s prompt:

sam@dog:~$ ssh plum
sam@plum's password:
Linux plum 2.6.27-1-generic #1 SMP Sat Aug 23 23:20:09 UTC 2008 i686
...
Last login: Mon Jan 18 22:00:13 2010 from 192.168.0.12
sam@plum:~$ who am i
sam pts/0 2010-01-23 14:19 (192.168.0.12)
sam@plum:~$ exit
logout
Connection to plum closed.
sam@dog:~$

Running commands
remotely

When you include command, ssh logs in on host, executes command, closes the
connection to host, and returns control to the local system. The remote system
never displays a shell prompt.

The following example runs ls in the memos directory on the remote system plum.
The example assumes that the user running the command (Sam) has a login on
plum and that the memos directory is in Sam’s home directory on plum:

sam@dog:~$ ssh plum ls memos
sam@plum's password:
memo.0921
memo.draft
sam@dog:~$

For the next example, assume the working directory on the local system (dog) holds
a file named memos.new. You cannot remember whether this file contains certain
changes or whether you made these changes to the file named memo.draft on plum.
You could copy memo.draft to the local system and run diff (page 168) on the two
files, but then you would have three similar copies of the file spread across two sys-
tems. If you are not careful about removing the old copies when you are done, you
may just become confused again in a few days. Instead of copying the file, you can
use ssh:

sam@dog:~$ ssh plum cat memos/memo.draft | diff memos.new –

When you run ssh, standard output of the command run on the remote system is
passed to the local shell as though the command had been run in place on the local
system. As with all shell commands, you must quote special characters you do not
want the local system to interpret. In the preceding example, the output of the cat
command on plum is sent through a pipe on dog to diff (running on dog), which
compares the local file memos.new to standard input (–). The following command
line has the same effect but causes diff to run on the remote system:

sam@dog:~$ cat memos.new | ssh plum diff – memos/memo.draft

Standard output from diff on the remote system is sent to the local shell, which
displays it on the screen (because it is not redirected).

 From the Library of WoweBook.Com

ptg

672 Chapter 18 OpenSSH: Secure Network Communication

Options

This section describes some of the options you can use with ssh.

–C (compression) Enables compression. (In the commercial version of ssh, –C disables
compression and +C enables compression.)

–f (not foreground) Sends ssh to the background after asking for a password and
before executing the command. Useful when you want to run the command in the
background but must supply a password. Implies –n.

–L Forwards a port on the local system to a remote system. For more information refer
to “Tunneling/Port Forwarding” on page 681.

–l user (login) Attempts to log in as user.

–n (null) Redirects standard input to ssh to come from /dev/null. Required when running
ssh in the background (–f option).

–o option (option) Specifies option in the format used in configuration files (page 674).

–p (port) Specifies the port on the remote host that the connection is made to. Using
the host declaration (page 675) in the configuration file, you can specify a different
port for each system you connect to.

–R Forwards a port on the remote system to the local client. For more information
refer to “Tunneling/Port Forwarding” on page 681.

–t (tty) Allocates a pseudo-tty (terminal) to the ssh process on the remote system.
Without this option, when you run a command on a remote system, ssh does not
allocate a tty (terminal) to the process. Instead, it attaches standard input and
standard output of the remote process to the ssh session—which is normally, but
not always, what you want. This option forces ssh to allocate a tty on the remote
system so programs that require a tty will work.

–v (verbose) Displays debugging messages about the connection and transfer. Useful if
things are not going as expected.

–X (X11) Turns on nontrusted X11 forwarding. This option is not necessary if you turn
on X11 nontrusted forwarding in the configuration file. For more information refer
to “Forwarding X11” on page 681.

–x (X11) Turns off X11 forwarding.

–Y (X11trusted) Turns on trusted X11 forwarding. This option is not necessary if you
turn on trusted X11 forwarding in the configuration file. For more information
refer to “Forwarding X11” on page 681.

scp: Copies Files to and from a Remote System

The scp (secure copy) utility copies an ordinary or directory file from one system to
another (including two remote systems) over a network. This utility uses ssh to trans-
fer files and employs the same authentication mechanism as ssh; thus it provides the

 From the Library of WoweBook.Com

ptg

Running the ssh, scp, and sftp OpenSSH Clients 673

same security as ssh. The scp utility asks for a password when one is required. The
format of an scp command is

scp [[user@]from-host:]source-file [[user@]to-host:][destination-file]

where from-host is the name of the system you are copying files from and to-host is
the system you are copying to. The from-host and to-host arguments can be local
system names, FQDNs (page 1149) of systems on the Internet, or IP addresses.
When you do not specify a host, scp assumes the local system. The user on either
system defaults to the user on the local system who is giving the command; you can
specify a different user with user@.

The source-file is the file you are copying, and the destination-file is the resulting
copy. Make sure you have read permission for the file you are copying and write
permission for the directory you are copying it into. You can specify plain or direc-
tory files as relative or absolute pathnames. (A relative pathname is relative to the
specified or implicit user’s home directory.) When the source-file is a directory, you
must use the –r option to copy its contents. When the destination-file is a directory,
each of the source files maintains its simple filename. When the destination-file is
missing, scp assumes the user’s home directory.

Suppose Sam has an alternate username, sls, on plum. In the following example, Sam
uses scp to copy memo.txt from the home directory of his sls account on plum to the
allmemos directory in the working directory on the local system. If allmemos was
not the name of a directory, memo.txt would be copied to a file named allmemos in
the working directory.

sam@dog:~$ scp sls@plum:memo.txt allmemos
sls@plum's password:
memo.txt 100% 4084KB 4.0MB/s 00:01

As the transfer progresses, the percentage and number of bytes transferred increase
and the time remaining decreases.

In the next example, Sam, while working from peach, copies the same file as in the
previous example to the directory named old in his home directory on speedy. For
this example to work, Sam must be able to use ssh to log in on speedy from plum
without using a password. For more information refer to “Authorized Keys: Auto-
matic Login” on page 677.

sam@peach:~$ scp sls@plum:memo.txt speedy:old
sam@plum's password:

Options

This section describes some of the options you can use with scp.

–C (compression) Enables compression.

–o option (option) Specifies option in the format used in configuration files (discussed shortly).

 From the Library of WoweBook.Com

ptg

674 Chapter 18 OpenSSH: Secure Network Communication

–P port (port) Connects to port port on the remote host. This option is given in uppercase
for scp and in lowercase for ssh.

–p (preserve) Preserves the modification and access times as well as the modes of the
original file.

–q (quiet) Does not display the progress information as scp copies a file.

–r (recursive) Recursively copies a directory hierarchy.

–v (verbose) Displays debugging messages about the connection and transfer. Useful if
things are not going as expected.

sftp: A Secure FTP Client

As part of OpenSSH, Ubuntu Linux provides sftp, a secure alternative to ftp
(page 687). Functionally the same as ftp, sftp maps ftp commands to OpenSSH
commands. You can replace ftp with sftp when you are logging in on a server that
is running the OpenSSH daemon, sshd. Once you are connected to a system with
sftp, give the command ? to display a list of commands. For secure communica-
tion, use sftp or scp to perform all file transfers requiring authentication. Refer to
the sftp man page for more information.

lftp Ubuntu also offers lftp, which is more sophisticated than sftp and supports sftp. The
lftp utility provides a shell-like command syntax that has many features, including
support for tab completion and the ability to run jobs in the background. Use
/etc/lftp.conf to configure lftp and see the lftp man page for more information.

~/.ssh/config and /etc/ssh/ssh_config Configuration Files

It is rarely necessary to modify OpenSSH client configuration files. For a given user
there may be two configuration files: ~/.ssh/config (user) and /etc/ssh/ssh_config
(global). These files are read in this order and, for a given parameter, the first one
found is the one that is used. A user can override a global parameter setting by set-
ting the same parameter in her user configuration file. Parameters given on the ssh
or scp command line take precedence over parameters set in either of these files.

A user’s ~/.ssh/config file must be owned by the user (the owner of the ~/ directory)
and must not be writable by anyone except the owner; if it is, the client will exit
with an error message. This file is typically set to mode 600 as there is no reason for
anyone except its owner to be able to read it.

Lines in the configuration files contain declarations. Each of these declarations
starts with a keyword that is not case sensitive, followed by whitespace, followed by
case-sensitive arguments. You can use the Host keyword to cause declarations to
apply to a specific system. A Host declaration applies to all the lines between it and
the next Host declaration.

CheckHostIP yes | no
Identifies a remote system using the IP address in addition to a hostname from the
known_hosts file when set to yes (default). Set it to no to use a hostname only. Set-
ting CheckHostIP to yes can improve system security.

 From the Library of WoweBook.Com

ptg

Running the ssh, scp, and sftp OpenSSH Clients 675

ForwardX11 yes | no
When set to yes, automatically forwards X11 connections over a secure channel in non-
trusted mode but does not set the DISPLAY shell variable. If ForwardX11Trusted is
also set to yes, the connections are made in trusted mode. Alternatively, you can use
–X on the command line to redirect X11 connections in nontrusted mode. The
default value for this parameter is no; set it to yes to enable X11 forwarding. For X11
forwarding to work, you must also set X11Forwarding to yes in the /etc/sshd_config
file on the server (page 680). For more information refer to “Forwarding X11” on
page 681.

ForwardX11Trusted yes | no
Works in conjunction with ForwardX11, which must be set to yes for this declara-
tion to have any effect. When this declaration is set to yes (as it is on Ubuntu Linux
systems) and ForwardX11 is set to yes, this declaration sets the DISPLAY shell vari-
able and gives remote X11 clients full access to the original (server) X11 display.
Alternatively, you can use –Y on the command line to redirect X11 connections in
trusted mode. The default value for this declaration is no but Ubuntu Linux sets it
to yes. For X11 forwarding to work, X11Forwarding must also be set to yes in the
/etc/sshd_config file on the server (page 680). For more information refer to “For-
warding X11” on page 681.

HashKnownHosts
Causes OpenSSH to hash hostnames and addresses in the ~/.ssh/known_hosts file
when set to yes. The hostnames and addresses are written in cleartext when it is set
to no. Ubuntu Linux sets this declaration to yes to improve system security. See
page 668 for more information on the known_hosts file.

Host hostnames Specifies that the following declarations, until the next Host declaration, apply only
to hosts that hostnames matches. The hostnames can include ? and * wildcards. A
single * specifies all hosts. Without this keyword, all declarations apply to all hosts.

HostbasedAuthentication yes | no
Tries rhosts authentication when set to yes. For a more secure system, set to no (default).

HostKeyAlgorithms algorithms
The algorithms is a comma-separated list of algorithms the client uses in order of
preference. Choose algorithms from ssh-rsa or ssh-dss. The default is ssh-rsa,ssh-dss.

Port num Causes OpenSSH to connect to the remote system on port num. The default is 22.

StrictHostKeyChecking yes | no | ask
Determines whether and how OpenSSH adds host keys to a user’s known_hosts file.
Set this option to ask to ask whether to add a host key when connecting to a new
system, set it to no to add a host key automatically, and set it to yes to require that
host keys be added manually. The yes and ask arguments cause OpenSSH to refuse
to connect to a system whose host key has changed. For a more secure system, set
this option to yes or ask. The default is ask.

TCPKeepAlive yes | no
Periodically checks whether a connection is alive when set to yes (default). Check-
ing causes the ssh or scp connection to be dropped when the server crashes or the

 From the Library of WoweBook.Com

ptg

676 Chapter 18 OpenSSH: Secure Network Communication

connection dies for another reason, even if it is only temporary. This option tests
the connection at the transport (TCP) layer (page 380). Setting this parameter to
no causes the client not to check whether the connection is alive.

This declaration uses the TCP keepalive option, which is not encrypted and is sus-
ceptible to IP spoofing (page 1154). Refer to “ClientAliveInterval” on page 679 for
a server-based nonspoofable alternative.

User name Specifies a username to use when logging in on a system. You can specify a system
with the Host declaration. This option means that you do not have to enter a user-
name on the command line when you are using a username that differs from your
username on the local system.

VisualHostKey yes | no
(Ubuntu 8.10 and later) Displays an ASCII art representation of the key of the
remote system in addition to displaying the hexadecimal representation of the key
when set to yes. See ssh-keygen on page 677 for an example. When set to no
(default), this declaration displays the hexadecimal key only.

Setting Up an OpenSSH Server (sshd)

This section describes how to set up an OpenSSH server.

Prerequisites

Installation Install the following package:

• openssh-server

When you install the openssh-server package, the dpkg postinst script creates the
host key files in /etc/ssh (OpenSSH uses these files to identify the server; page 665)
and starts the sshd daemon:

...
Unpacking openssh-server (from .../openssh-server_1%3a5.3p1-3ubuntu3_i386.deb) ...
Setting up openssh-server (1:5.3p1-3ubuntu3) ...
Creating SSH2 RSA key; this may take some time ...
Creating SSH2 DSA key; this may take some time ...
* Stopping OpenBSD Secure Shell server sshd [OK]

ssh start/running, process 1741

ssh init script After you configure the OpenSSH server, give the following initctl restart command
(page 434) to restart the sshd daemon:

$ sudo restart ssh
ssh start/running, process 1434

Note

Firewall An OpenSSH server normally uses TCP port 22. If the OpenSSH server system is
running a firewall, you need to open this port. To do so, use gufw (page 876) to set a
policy that allows the SSH service.

 From the Library of WoweBook.Com

ptg

Setting Up an OpenSSH Server (sshd) 677

JumpStart: Starting an OpenSSH Server

Installing the requisite package starts the OpenSSH server (sshd) daemon. Look in
/var/log/auth.log to make sure everything is working properly.

Recommended Settings

The configuration files provided by Ubuntu establish a mostly secure system and
may or may not meet your needs. The Ubuntu /etc/ssh/sshd_config file turns on
X11 forwarding (page 681). It is important to set PermitRootLogin (page 680) to
no, which prevents a known-name, privileged account from being exposed to the
outside world with only password protection. If the root account is locked, the set-
ting of this declaration is not an issue.

Authorized Keys: Automatic Login

You can configure OpenSSH so you do not have to enter a password each time you
connect to a server (remote system). To set up this feature, you need to generate a
personal authentication key on the client (local system), place the public part of the
key on the server, and keep the private part of the key on the client. When you con-
nect to the server, it issues a challenge based on the public part of the key. The pri-
vate part of the key must then respond properly to this challenge. If the client
provides the appropriate response, the server logs you in.

The first step in setting up an automatic login is to generate your personal authen-
tication keys. First check whether these authentication keys already exist on the
local system (client) by looking in ~/.ssh for either id_dsa and id_dsa.pub or id_rsa
and id_rsa.pub. If one of these pairs of files is present, skip the next step (do not cre-
ate a new key).

On the client, the ssh-keygen utility creates the public and private parts of an RSA
key. The key’s randomart image is a visual representation of the public key; it is
designed to be easy to recall. Display of the randomart image by a client is con-
trolled by the VisualHostKey declaration (page 676) in the ssh_config file.

ssh-keygen $ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/sam/.ssh/id_rsa):RETURN
Enter passphrase (empty for no passphrase):RETURN
Enter same passphrase again:RETURN
Your identification has been saved in /home/sam/.ssh/id_rsa.
Your public key has been saved in /home/sam/.ssh/id_rsa.pub.
The key fingerprint is:
f2:eb:c8:fe:ed:fd:32:98:e8:24:5a:76:1d:0e:fd:1d sam@peach
The key's randomart image is:
+--[RSA 2048]----+
| oE|
| o . . o|
| . o + ..|
| . + o o |
...

 From the Library of WoweBook.Com

ptg

678 Chapter 18 OpenSSH: Secure Network Communication

Replace rsa with dsa to generate DSA keys. In this example, the user pressed RETURN

in response to each query. You have the option of specifying a passphrase (10–30
characters is a good length) to encrypt the private part of the key. There is no way
to recover a lost passphrase. See the following security tip for more information
about the passphrase.

The ssh-keygen utility generates two keys: a private key or identification in ~/.ssh/id_rsa
and a public key in ~/.ssh/id_rsa.pub. No one except the owner should be able to
write to either of these files, and only the owner should be able to read from the pri-
vate key file.

authorized_keys To enable you to log in on or copy files to and from another system without supplying
a password, first create a ~/.ssh directory with permissions set to 700 on the server
(remote system). Next copy ~/.ssh/id_rsa.pub from the client (local system) to a file
named ~/.ssh/authorized_keys on the server (remote system). Set its permissions to
600 so that no one except the owner can read from or write to this file. Now when
you run ssh or scp to access the server, you do not have to supply a password. To
make the server even more secure, you can disable password authentication by setting
PasswordAuthentication to no in /etc/ssh/sshd_config (remove the # from the begin-
ning of the PasswordAuthentication line and change the yes to no; page 680).

Command-Line Options

Command-line options override declarations in the configuration files. Following
are descriptions of some of the more useful sshd options.

–d (debug) Sets debug mode so that sshd sends debugging messages to the system log
and the server stays in the foreground (implies –D). You can specify this option a
maximum of three times to increase the verbosity of the output. See also –e. (The
ssh client uses –v for debugging; see page 672.)

–e (error) Sends output to standard error, not to the system log. Useful with –d.

–f file Specifies file as the default configuration file instead of /etc/ssh/sshd_config.

When you encrypt your personal key
security The private part of the key is kept in a file that only you can read. If a malicious user compromises

your account, an account that can use sudo to gain root privileges, or the root account on the
local system, that user then has access to your account on the remote system because she can
read the private part of your personal key.

Encrypting the private part of your personal key protects the key and, therefore, restricts access to the
remote system should someone compromise your local account. However, if you encrypt your per-
sonal key, you must supply the passphrase you used to encrypt the key each time you use the key,
negating the benefit of not having to type a password when logging in on the remote system. Also,
most passphrases that you can remember can be cracked quite quickly by a powerful computer.

A better idea is to store the private keys on a removable medium, such as a USB flash drive, and
use your ~/.ssh directory as the mount point for the filesystem stored on this drive. You may want
to encrypt these keys with a passphrase in case you lose the flash drive.

 From the Library of WoweBook.Com

ptg

Setting Up an OpenSSH Server (sshd) 679

–t (test) Checks the configuration file syntax and the sanity of the key files.

–D (noDetach) Keeps sshd in the foreground. Useful for debugging; implied by –d.

/etc/ssh/sshd_config Configuration File

The /etc/ssh/sshd_config configuration file contains one-line declarations. Each of
these declarations starts with a keyword that is not case sensitive, followed by whitespace,
followed by case-sensitive arguments. You must reload the sshd server before these
changes will take effect.

AllowUsers userlist
The userlist is a SPACE-separated list of usernames that specifies which users are
allowed to log in using sshd. This list can include * and ? wildcards. You can spec-
ify a user as user or user@host. If you use the second format, make sure you specify
the host as returned by hostname. Without this declaration, any user who can log in
locally can log in using an OpenSSH client.

ClientAliveCountMax n
The n specifies the number of client-alive messages that can be sent without receiv-
ing a response before sshd disconnects from the client. See ClientAliveInterval. The
default is 3.

ClientAliveInterval n
Sends a message through the encrypted channel after n seconds of not receiving a
message from the client. See ClientAliveCountMax. The default is 0, meaning that
no messages are sent.

This declaration passes messages over the encrypted channel (application layer;
page 380) and is not susceptible to IP spoofing (page 1154). It differs from TCP-
KeepAlive, which uses the TCP keepalive option (transport layer; page 380) and is
susceptible to IP spoofing.

DenyUsers userlist
The userlist is a SPACE-separated list of usernames that specifies users who are not
allowed to log in using sshd. This list can include * and ? wildcards. You can spec-
ify a user as user or user@host. If you use the second format, make sure you specify
the host as returned by hostname.

HostbasedAuthentication yes | no
Tries rhosts and /etc/hosts.equiv authentication when set to yes. For a more secure
system, set this declaration to no (default).

IgnoreRhosts yes | no
Ignores .rhosts and .shosts files for authentication. Does not affect the use of
/etc/hosts.equiv and /etc/ssh/shosts.equiv files for authentication. For a more
secure system, set this declaration to yes (default).

LoginGraceTime n
Waits n seconds for a user to log in on the server before disconnecting. A value of 0
means there is no time limit. The default is 120 seconds.

 From the Library of WoweBook.Com

ptg

680 Chapter 18 OpenSSH: Secure Network Communication

LogLevel val Specifies how detailed the log messages are. Choose val from QUIET, FATAL,
ERROR, INFO (default), and VERBOSE.

PasswordAuthentication
Permits a user to use a password for authentication. For a more secure system, set
up automatic login (page 677) and set this declaration to no. The default is yes.

PermitEmptyPasswords
Permits a user to log in on an account that has an empty password. The default
is no.

PermitRootLogin Permits root to log in using an OpenSSH client. Given the number of brute-force
attacks on a typical system connected to the Internet, it is important to set this dec-
laration to no. (How you set this declaration is not an issue if the root account is
locked.) The default is yes.

Port num Specifies that the sshd server listen on port num. It may improve security to change
num to a nonstandard port. The default is port 22.

StrictModes yes | no
Checks modes and ownership of the user’s home directory and files. Login fails for
users other than the owner if the directories and/or files can be written to by anyone
other than the owner. For a more secure system, set this declaration to yes (default).

TCPKeepAlive yes | no
Periodically checks whether a connection is alive when set to yes (default). Checking
causes the ssh or scp connection to be dropped when the client crashes or the con-
nection dies for another reason, even if it is only temporary. This option tests the
connection at the transport (TCP) layer (page 380). Setting this parameter to no
causes the server not to check whether the connection is alive.

This declaration uses the TCP keepalive option, which is not encrypted and is sus-
ceptible to IP spoofing (page 1154). Refer to ClientAliveInterval (page 679) for a
nonspoofable alternative.

X11Forwarding yes | no
Allows X11 forwarding when set to yes. The default is no, but Ubuntu Linux sets
X11Forwarding to yes. For trusted X11 forwarding to work, the ForwardX11 and
the ForwardX11Trusted declarations must also be set to yes in either the
~/.ssh/config or /etc/ssh/ssh_config client configuration file (page 675). For more
information refer to “Forwarding X11” on page 681.

Troubleshooting

Log files There are several places to look for clues when you have a problem connecting with
ssh or scp. First look for sshd entries in /var/log/auth.log on the server. Following
are messages you may see when you are using an AllowUsers declaration but have
not included the user who is trying to log in (page 679). The messages that are
marked (pam_unix) originate with PAM (page 478).

 From the Library of WoweBook.Com

ptg

Tunneling/Port Forwarding 681

$ sudo grep sshd /var/log/auth.log
plum sshd[6927]: Invalid user sam from 192.168.0.12
plum sshd[6927]: Failed none for invalid user sam from 192.168.0.12 port 37134 ssh2
plum sshd[6927]: (pam_unix) check pass; user unknown
plum sshd[6927]: (pam_unix) authentication failure; logname= uid=0 euid=0 tty=ssh ruser=
rhost=192.168.0.12
plum sshd[6927]: Failed password for invalid user sam from 192.168.0.12 port 37134 ssh2

Debug the client If entries in these files do not help solve the problem, try connecting with the –v
option (either ssh or scp—the results should be the same). OpenSSH displays a lot
of debugging messages, one of which may help you figure out what the problem is.
You can use a maximum of three –v options to increase the number of messages
that OpenSSH displays.

$ ssh -v plum
OpenSSH_5.3p1 Debian-3ubuntu3, OpenSSL 0.9.8k 25 Mar 2009
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: Applying options for *
debug1: Connecting to plum [192.168.0.10] port 22.
debug1: Connection established.
debug1: identity file /home/sam/.ssh/identity type -1
debug1: identity file /home/sam/.ssh/id_rsa type 1
...
debug1: Host 'plum' is known and matches the RSA host key.
debug1: Found key in /home/sam/.ssh/known_hosts:1
debug1: ssh_rsa_verify: signature correct
...
debug1: Authentications that can continue: publickey,password
debug1: Next authentication method: publickey
debug1: Trying private key: /home/sam/.ssh/identity
debug1: Offering public key: /home/sam/.ssh/id_rsa
debug1: Authentications that can continue: publickey,password
debug1: Trying private key: /home/sam/.ssh/id_dsa
debug1: Next authentication method: password
sam@plum's password:

Debug the server You can debug from the server side by running sshd with the –de options. The
server will run in the foreground and its display may help you solve the problem.

Tunneling/Port Forwarding

The ssh utility can forward a port (port forwarding; page 1165) through the
encrypted connection it establishes. Because the data sent across the forwarded port
uses the encrypted ssh connection as its data link layer (page 380), the term tunnel-
ing (page 1178) is applied to this type of connection: “The connection is tunneled
through ssh.” You can secure protocols—including POP, X, IMAP, VNC, and
WWW—by tunneling them through ssh.

Forwarding X11 The ssh utility makes it easy to tunnel the X11 protocol. For X11 tunneling to
work, you must enable it on both the server and the client, and the client must

 From the Library of WoweBook.Com

ptg

682 Chapter 18 OpenSSH: Secure Network Communication

be running the X Window System. On the ssh server, enable X11 forwarding by
setting the X11Forwarding declaration (page 680) to yes (the default) in the
/etc/ssh/sshd_config file.

Trusted clients On a client, enable trusted X11 forwarding by setting the ForwardX11 (default is
no; see page 675) and ForwardX11Trusted (default is no, but set to yes as installed;
see page 675) declarations to yes in the /etc/ssh/ssh_config or ~/.ssh/ssh_config file.

When you enable trusted X11 forwarding on a client, the client connects as a
trusted client, which means that the client trusts the server and is given full access to
the X11 display. With full access to the X11 display, in some situations a client may
be able to modify other clients of the X11 display. Make a trusted connection only
when you trust the remote system. (You do not want someone tampering with your
client.) If this concept is confusing, see the tip “The roles of X client and server may
be counterintuitive” on page 269.

Nontrusted clients An ssh client can connect to an ssh server as a trusted client or as a nontrusted client.
A nontrusted client is given limited access to the X11 display and cannot modify
other clients of the X11 display.

Few clients work properly when they are run in nontrusted mode. If you are running
an X11 client in nontrusted mode and encounter problems, try running in trusted
mode (assuming you trust the remote system). Ubuntu Linux sets up ssh clients to
run in nontrusted mode by default.

Running ssh When you start an ssh client, you can use the –Y option (page 672) on the com-
mand line to start the client in trusted mode. Alternatively, you can set the
ForwardX11 and ForwardX11trusted declarations to yes in a user’s ~/.ssh/config
configuration file (page 675) or, working with root privileges, in the global
/etc/ssh/ssh_config file (page 675) on the client to enable trusted X11 tunneling.

To use nontrusted tunneling, you can use the –X option (page 672) or set the
ForwardX11 declaration to yes and set the ForwardX11trusted declaration to no in
one of the configuration files (page 675) on the server.

With trusted X11 forwarding turned on, ssh tunnels the X11 protocol, setting the
DISPLAY environment variable on the system it connects to and forwarding the
required port. Typically you will be running from a GUI, which usually means that
you are using ssh on a terminal emulator to connect to a remote system. When you
give an X11 command from an ssh prompt, OpenSSH creates a new secure channel
that carries the X11 data and the graphical output from the X11 program appears
on the screen. Typically you will need to start the client in trusted mode.

sam@dog:~$ ssh plum
sam@plum's password:
...
sam@plum:~$ echo $DISPLAY
localhost:10.0

By default, ssh uses X Window System display numbers 10 and higher (port numbers
6010 and higher) for forwarded X sessions. Once you connect to a remote system

 From the Library of WoweBook.Com

ptg

Tunneling/Port Forwarding 683

using ssh, you can give a command to run an X application. The application will then
run on the remote system with its display appearing on the local system, such that it
appears to run locally.

Port forwarding You can forward arbitrary ports using the –L and –R options. The –L option for-
wards a local port to a remote system, so a program that tries to connect to the
forwarded port on the local system transparently connects to the remote system.
The –R option does the reverse: It forwards remote ports to the local system. The
–N option, which prevents ssh from executing remote commands, is generally
used with –L and –R. When you specify –N, ssh works only as a private network
to forward ports. An ssh command line using the –L or –R option has the follow-
ing format:

$ ssh –N –L | –R local-port:remote-host:remote-port target

where local-port is the number of the local port that is being forwarded to or from
remote-host, remote-host is the name or IP address of the system that local-port
gets forwarded to or from, remote-port is the number of the port on remote-host
that is being forwarded from or to the local system, and target is the name or IP
address of the system ssh connects to.

As an example, assume that there is a POP mail client on the local system and that
the POP server is on a remote network, on a system named pophost. POP is not a
secure protocol; passwords are sent in cleartext each time the client connects to the
server. You can make it more secure by tunneling POP through ssh (POP-3 connects
on port 110; port 1550 is an arbitrary port on the local system):

$ ssh -N -L 1550:pophost:110 pophost

After giving the preceding command, you can point the POP client at local-
host:1550. The connection between the client and the server will then be encrypted.
(When you set up an account on the POP client, specify the location of the server as
localhost, port 1550; details vary with different mail clients.)

Firewalls In the preceding example, remote-host and target were the same system. However,
the system specified for port forwarding (remote-host) does not have to be the same
as the destination of the ssh connection (target). As an example, assume the POP
server is behind a firewall and you cannot connect to it via ssh. If you can connect
to the firewall via the Internet using ssh, you can encrypt the part of the connection
over the Internet:

$ ssh -N -L 1550:pophost:110 firewall

Here remote-host (the system receiving the port forwarding) is pophost, and target
(the system that ssh connects to) is firewall.

You can also use ssh when you are behind a firewall (that is running sshd) and want
to forward a port into your system without modifying the firewall settings:

$ ssh -R 1678:localhost:80 firewall

 From the Library of WoweBook.Com

ptg

684 Chapter 18 OpenSSH: Secure Network Communication

The preceding command forwards connections from the outside to port 1678 on
the firewall to the local Web server. Forwarding connections in this manner allows
you to use a Web browser to connect to port 1678 on the firewall when you connect
to the Web server on the local system. This setup would be useful if you ran a Web-
mail program (page 731) on the local system because it would allow you to check
your mail from anywhere using an Internet connection.

Compression Compression, which is enabled with the –C option, can speed up communication
over a low-bandwidth connection. This option is commonly used with port for-
warding. Compression can increase latency to an extent that may not be desirable
for an X session forwarded over a high-bandwidth connection.

Chapter Summary

OpenSSH is a suite of secure network connectivity tools that encrypts all traffic,
including passwords, thereby helping to thwart malicious users who might other-
wise eavesdrop, hijack connections, and steal passwords. The components discussed
in this chapter were sshd (the server daemon), ssh (runs a command on or logs in on
another system), scp (copies files to and from another system), sftp (securely
replaces ftp), and ssh-keygen (creates, manages, and converts authentication keys).

To ensure secure communications, when an OpenSSH client opens a connection, it
verifies that it is connected to the correct server. Then OpenSSH encrypts communi-
cation between the systems. Finally OpenSSH makes sure that the user is authorized
to log in on or copy files to and from the server. You can secure many protocols—
including POP, X, IMAP, VNC, and WWW—by tunneling them through ssh.

OpenSSH also enables secure X11 forwarding. With this feature, you can run
securely a graphical program on a remote system and have the display appear on
the local system.

Exercises

1. What is the difference between the scp and sftp utilities?

2. How can you use ssh to find out who is logged in on a remote system?

3. How would you use scp to copy your ~/.bashrc file from the system
named plum to the local system?

4. How would you use ssh to run xterm on plum and show the display on the
local system?

5. What problem can enabling compression present when you are using ssh
to run remote X applications on a local display?

 From the Library of WoweBook.Com

ptg

Advanced Exercises 685

6. When you try to connect to another system using an OpenSSH client and
you see a message warning you that the remote host identification has
changed, what has happened? What should you do?

Advanced Exercises

7. Which scp command would you use to copy your home directory from
plum to the local system?

8. Which single command could you give to log in as root on the remote
system named plum, if plum has the root account unlocked and remote
root logins disabled?

9. How could you use ssh to compare the contents of the ~/memos directories
on plum and the local system?

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

666888777

19Chapter19File Transfer Protocol is a method of downloading files from
and uploading files to another system using TCP/IP over a
network. File Transfer Protocol is the name of a client/server
protocol (FTP) and a client utility (ftp) that invokes the pro-
tocol. In addition to the original ftp utility, there are many
textual and graphical FTP client programs, including most
browsers, that run under many different operating systems.
There are also many FTP server programs.

In This Chapter

FTP Clients. 689

JumpStart I: Downloading Files
Using ftp. 690

Anonymous FTP 694

Automatic Login 694

Binary Versus ASCII Transfer
Mode . 694

Setting Up an FTP Server
(vsftpd). 699

JumpStart II: Starting a vsftpd
FTP Server. 700

Configuring a vsftpd Server 701

19

FTP: Transferring

Files Across a

Network

 From the Library of WoweBook.Com

ptg

688 Chapter 19 FTP: Transferring Files Across a Network

Introduction to FTP

This chapter starts with an introduction to FTP which discusses security, describes
types of FTP connections, and presents a list of FTP clients. The first JumpStart sec-
tion covers basic ftp commands and includes a tutorial on using the ftp client. Next
is a section that presents more details of ftp. The final section describes how to set
up a vsftpd FTP server.

History First implemented under 4.2BSD, FTP has played an essential role in the propaga-
tion of Linux; this protocol/program is frequently used to distribute free software.
The term FTP site refers to an FTP server that is connected to a network, usually the
Internet. FTP sites can be public, allowing anonymous users to log in and download
software and documentation. In contrast, private FTP sites require you to log in
with a username and password. Some sites allow you to upload programs.

ftp and vsftpd Although most FTP clients are similar, the servers differ quite a bit. This chapter
describes the ftp client with references to sftp, a secure FTP client. It also covers the
FTP server available under Ubuntu, which is named vsftpd (very secure FTP daemon).

ftp utility The ftp utility is a user interface to FTP, the standard protocol used to transfer files
between systems that communicate over a network.

Security

FTP is not a secure protocol: All usernames and passwords exchanged in setting up
an FTP connection are sent in cleartext, data exchanged over an FTP connection is
not encrypted, and the connection is subject to hijacking. Given these facts, FTP is
best used for downloading public files. In most cases, the OpenSSH clients, ssh
(page 670), scp (page 672), and sftp (page 674), offer secure alternatives to FTP.

The vsftpd server does not make usernames, passwords, data, and connections
more secure. However, it is secure in that a malicious user finds it more difficult to
compromise directly the system running it, even if vsftpd is poorly implemented.
One feature that makes vsftpd more secure than ftpd is the fact that it does not run
with root privileges. See also “Security” on page 699.

FTP Connections

FTP uses two connections: one for control (you establish this connection when you
log in on an FTP server) and one for data transfer (FTP sets up this connection when

Use FTP only to download public information
security FTP is not secure. The sftp utility provides better security for all FTP functions other than allowing

anonymous users to download information. Because sftp uses an encrypted connection, user
passwords and data cannot be sniffed when you use this utility. You can replace all instances of
ftp in this chapter with sftp because sftp uses the same commands as ftp. See page 674 for more
information on sftp.

 From the Library of WoweBook.Com

ptg

Introduction to FTP 689

you ask it to transfer a file). An FTP server listens for incoming connections on port
21 by default and handles user authentication and file exchange.

Passive versus
active connections

A client can ask an FTP server to establish either a PASV (passive—give the command
ftp –p or pftp) or a PORT (active—the default when you use ftp) connection for data
transfer. Some servers are limited to one type of connection. The difference between a
passive and an active FTP connection lies in whether the client or the server initiates
the data connection. In passive mode, the client initiates the connection to the server
(on port 20 by default); in active mode, the server initiates the connection (there is no
default port; see “Connection Parameters” on page 708 for the parameters that deter-
mine which ports a server uses). Neither approach is inherently more secure than the
other. Passive connections are more common because a client behind a NAT
(page 881) can connect to a passive server and it is simpler to program a scalable pas-
sive server.

FTP Clients

ftp Ubuntu supplies several FTP clients, including ftp (an older version of the BSD ftp
utility). This section discusses ftp because most other FTP clients, including sftp and
lftp, provide a superset of ftp commands.

sftp Part of the OpenSSH suite, sftp (openssh-client package) is a secure and functionally
equivalent alternative to ftp. The sftp utility is not a true FTP client—it does not
understand the FTP protocol. It maps ftp commands to OpenSSH commands. See
page 674 for more information.

lftp The lftp utility (lftp package) provides the same security as sftp but offers more features.
See the lftp man page for more information.

gFTP The gftp utility (gftp package) is a graphical client that works with FTP, SSH, and
HTTP servers. This client has many useful features, including the ability to resume
an interrupted file transfer. See www.gftp.org and freshmeat.net/projects/gftp for
more information.

NcFTP The ncftp utility (ncftp package) is a textual client that offers many more features
than ftp, including filename completion and command-line editing. For details see
www.ncftp.com and freshmeat.net/projects/ncftp.

More Information

Local Type help or ? at an ftp> prompt to display a list of commands. Follow the ? with a
SPACE and an ftp command to display information about that command.
Files: /usr/share/doc/vsftpd/*
man pages: ftp, sftp, lftp, netrc, vsftpd.conf

Web vsftpd home page: vsftpd.beasts.org

HOWTO FTP mini-HOWTO

 From the Library of WoweBook.Com

www.gftp.org
www.ncftp.com

ptg

690 Chapter 19 FTP: Transferring Files Across a Network

Running the ftp and sftp FTP Clients

This section describes how to use the ftp and sftp FTP clients. The commands covered
here work with both utilities.

Prerequisites

The ftp and sftp utilities are installed on most Ubuntu systems. You can check for
their presence by giving either of these utilities’ names as commands:

$ ftp
ftp> quit

$ sftp
usage: sftp [-1Cv] [-B buffer_size] [-b batchfile] [-F ssh_config]
 [-o ssh_option] [-P sftp_server_path] [-R num_requests]
 [-S program] [-s subsystem | sftp_server] host
 sftp [[user@]host[:file [file]]]
 sftp [[user@]host[:dir[/]]]
 sftp -b batchfile [user@]host

Install the ftp (contains ftp and pftp) or openssh-client (contains sftp) package if
needed.

JumpStart I: Downloading Files Using ftp

This JumpStart section is broken into two parts: a description of the basic commands
and a tutorial session that shows a user working with ftp. Before you start, make sure
ftp or sftp is installed on the local system as explained in the previous section.

Basic Commands

Give the command

$ ftp hostname

where hostname is the name of the FTP server you want to connect to. If you have an
account on the server, log in with your username and password. If it is a public system,
log in as the user anonymous (or ftp) and give your email address as your password.
Use the ls and cd ftp commands on the server as you would use the corresponding util-
ities from a shell. The command get file copies file from the server to the local system,
put file copies file from the local system to the server, status displays information
about the FTP connection, and help displays a list of commands.

The preceding commands, except for status, are also available in sftp, lftp, and ncftp.

Tutorial Session

Following are two ftp sessions wherein Sam transfers files from and to a vsftpd server
named dog. When Sam gives the command pftp dog, the local ftp client connects to

 From the Library of WoweBook.Com

ptg

Running the ftp and sftp FTP Clients 691

the server in passive (PASV) mode, which asks for a username and password.
Because he is logged in on his local system as sam, ftp suggests that Sam log in on dog
as sam. To log in as sam, he could just press RETURN. Because his username on dog is
sls, however, he types sls in response to the Name (dog:sam): prompt. After Sam
responds to the Password: prompt with his normal system password, the vsftpd
server greets him and informs him that it is Using binary mode to transfer files. With
ftp in binary mode, Sam can transfer ASCII and binary files (page 694).

Connect and log in sam@plum:~$ pftp dog
Connected to dog.bogus.com.
220 (vsFTPd 2.2.2)
Name (dog:sam): sls
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp>

After logging in, Sam uses the ftp ls command to see what is in his remote working
directory, which is his home directory on dog. Then he cds to the memos directory
and displays the files there.

ls and cd ftp> ls
227 Entering Passive Mode (192,168,0,12,130,201)
150 Here comes the directory listing.
drwxr-xr-x 2 1001 1001 4096 Jan 25 04:51 expenses
drwxr-xr-x 2 1001 1001 4096 Jan 25 04:53 memos
drwxr-xr-x 2 1001 1001 4096 Jan 25 04:51 tech
226 Directory send OK.

ftp> cd memos
250 Directory successfully changed.

ftp> ls
227 Entering Passive Mode (192,168,0,12,48,84)
150 Here comes the directory listing.
-rw-r--r-- 1 1001 1001 3430 Jan 25 04:52 memo.0514
-rw-r--r-- 1 1001 1001 6581 Jan 25 04:52 memo.0628
-rw-r--r-- 1 1001 1001 2801 Jan 25 04:52 memo.0905
-rw-r--r-- 1 1001 1001 7351 Jan 25 04:53 memo.0921
-rw-r--r-- 1 1001 1001 14703 Jan 25 04:53 memo.1102
226 Directory send OK.
ftp>

Next Sam uses the ftp get command to copy memo.1102 from the server to the local
system. His use of binary mode ensures that he will get a good copy of the file
regardless of whether it is binary or ASCII. The server confirms that the file was
copied successfully and reports on its size and the time required to copy it. Sam then
copies the local file memo.1114 to the remote system. This file is copied into his
remote working directory, memos.

 From the Library of WoweBook.Com

ptg

692 Chapter 19 FTP: Transferring Files Across a Network

get and put ftp> get memo.1102
local: memo.1102 remote: memo.1102
227 Entering Passive Mode (192,168,0,12,53,74)
150 Opening BINARY mode data connection for memo.1102 (14703 bytes).
226 File send OK.
14703 bytes received in 0.00 secs (11692.5 kB/s)

ftp> put memo.1114
local: memo.1114 remote: memo.1114
227 Entering Passive Mode (192,168,0,12,182,124)
150 Ok to send data.
226 File receive OK.
11903 bytes sent in 0.00 secs (23294.6 kB/s)
ftp>

Now Sam decides he wants to copy all the files in the memo directory on dog to a
new directory on his local system. He gives an ls command to make sure he will
copy the right files, but ftp has timed out. Instead of exiting from ftp and giving
another ftp command from the shell, he gives ftp an open dog command to reconnect
to the server. After logging in, he uses the ftp cd command to change directories to
memos on the server.

Timeout and open ftp> ls
No control connection for command: Success
Passive mode refused.

ftp> open dog
Connected to dog.bogus.com.
220 (vsFTPd 2.2.2)
Name (dog:sam): sls
...
ftp> cd memos
250 Directory successfully changed.
ftp>

Local cd (lcd) At this point, Sam realizes he has not created the new directory to hold the files he
wants to download. Giving an ftp mkdir command would create a new directory on
the server, but Sam wants a new directory on his local system. He uses an exclama-
tion point (!) followed by a mkdir memos.hold command to invoke a shell and run
mkdir on the local system, thereby creating a directory named memos.hold in his
working directory on the local system. (You can display the name of the working
directory on the local system with !pwd.) Next, because Sam wants to copy files
from the server to the memos.hold directory on his local system, he has to change
his working directory on the local system. Giving the command !cd memos.hold
will not accomplish what Sam wants to do because the exclamation point will
spawn a new shell on the local system and the cd command would be effective only
in the new shell, which is not the shell that ftp is running under. For this situation, ftp
provides the lcd (local cd) command, which changes the working directory for ftp
and reports on the new local working directory:

 From the Library of WoweBook.Com

ptg

Running the ftp and sftp FTP Clients 693

ftp> !mkdir memos.hold
ftp> lcd memos.hold
Local directory now /home/sam/memos.hold
ftp>

Sam uses the ftp mget (multiple get) command followed by the asterisk (*) wildcard
to copy all files from the remote memos directory to the memos.hold directory on
the local system. When ftp prompts him for the first file, Sam realizes that he forgot
to turn off the prompts, so he responds with n and presses CONTROL-C to stop copying
files in response to the second prompt. The server checks whether he wants to con-
tinue with his mget command.

Next Sam gives the ftp prompt command, which toggles the prompt action (turns it
off if it is on and turns it on if it is off). Now when he gives a mget * command, ftp
copies the files without prompting him. After getting the desired files, Sam gives a
quit command to close the connection with the server, exit from ftp, and return to
the local shell prompt.

mget and prompt ftp> mget *
mget memo.0514? n
mget memo.0628?CONTROL-C
Continue with mget? n
ftp>
ftp> prompt
Interactive mode off.
ftp> mget *
local: memo.0514 remote: memo.0514
227 Entering Passive Mode (192,168,0,12,216,239)
150 Opening BINARY mode data connection for memo.0514 (3430 bytes).
226 File send OK.
3430 bytes received in 0.00 secs (9409.0 kB/s)
local: memo.0628 remote: memo.0628
227 Entering Passive Mode (192,168,0,12,134,149)
150 Opening BINARY mode data connection for memo.0628 (6581 bytes).
226 File send OK.
...
150 Opening BINARY mode data connection for memo.1114 (11903 bytes).
226 File send OK.
11903 bytes received in 0.00 secs (11296.4 kB/s)
ftp> quit
221 Goodbye.
sam@plum:~$

Notes A Linux system running ftp can exchange files with any of the many operating sys-
tems that support FTP. Many sites offer archives of free information on an FTP
server, although for many it is just an alternative to an easier-to-access Web site (see,
for example, ftp://ftp.ibiblio.org/pub/Linux and http://www.ibiblio.org/pub/Linux).
Most browsers can connect to and download files from FTP servers.

The ftp utility makes no assumptions about filesystem nomenclature or structure
because you can use ftp to exchange files with non-UNIX/Linux systems (which may
use different filenaming conventions).

 From the Library of WoweBook.Com

http://www.ibiblio.org/pub/Linux

ptg

694 Chapter 19 FTP: Transferring Files Across a Network

This section explains how to use the ftp FTP client. Although it describes ftp, many
other command-line FTP clients are based on ftp and use the same commands.

Anonymous FTP

Many systems—most notably those from which you can download free software—
allow you to log in as anonymous. Most systems that support anonymous logins
accept the name ftp as an easier-to-spell and quicker-to-enter synonym for anony-
mous. An anonymous user is usually restricted to a portion of a filesystem set aside to
hold files that are to be shared with remote users. When you log in as an anonymous
user, the server prompts you to enter a password. Although any password may be
accepted, by convention you are expected to supply your email address.

Many systems that permit anonymous access store interesting files in the pub direc-
tory. Most browsers, such as Firefox, log in on an anonymous FTP site and transfer
a file when you click on the filename.

Automatic Login

You can store server-specific FTP username and password information so you do
not have to enter it each time you visit an FTP site. Each line of ~/.netrc identifies a
server. When you connect to an FTP server, ftp reads the ~/.netrc file to determine
whether you have an automatic login set up for that server. The format of a line in
~/.netrc is

machine server login username password passwd

where server is the name of the server, username is your username, and passwd is
your password on server. Replace machine with default on the last line of the file to
specify a username and password for systems not listed in ~/.netrc. The default line
is useful for logging in on anonymous servers. A sample ~/.netrc file follows:

$ cat ~/.netrc
machine dog login sam password mypassword
default login anonymous password sam@example.com

To protect the account information in .netrc, make it readable only by the user whose
home directory it appears in. Refer to the netrc man page for more information.

Binary Versus ASCII Transfer Mode

The vsftpd FTP server can—but does not always—provide two modes to transfer
files. Binary mode transfers always copy an exact, byte-for-byte image of a file and
never change line endings. Transfer all binary files using binary mode. Unless you
need to convert line endings, use binary mode to transfer ASCII files as well.

ASCII files, such as text or program source code, when created under Linux with a
text editor such as vi, use a single NEWLINE character (CONTROL-J, written as \n) to mark
the end of each line. Other operating systems mark the ends of lines differently.

 From the Library of WoweBook.Com

ptg

Running the ftp and sftp FTP Clients 695

Windows marks the end of each such line with a RETURN (CONTROL-M, written as \r) fol-
lowed by a NEWLINE (two characters). Macintosh uses a RETURN by itself. These descrip-
tions do not apply to files created by word processors such as Word or OpenOffice
because those programs generate binary files. The vsftpd server can map Linux line
endings to Windows line endings as you upload files and Windows line endings to
Linux line endings as you download files.

To use ASCII mode on an FTP server that allows it, give an ascii command
(page 697) after you log in and set cr to ON (the default; page 697). If the server
does not allow you to change line endings as you transfer a file, you can use the
todos (page 173) or fromdos (page 173) utility before or after you transfer a file in
binary mode.

Security When run against a very large file, the ftp size command, which displays the size of a
file, consumes a lot of server resources and can be used to initiate a DoS attack
(page 1146). To enhance security, by default vsftpd transfers every file in binary
mode, even when it appears to be using ASCII mode. On the server side, you can
enable real ASCII mode transfers by setting the ascii_upload_enable and
ascii_download_enable parameters (page 706) to YES. With the server set to allow
ASCII transfers, the client controls whether line endings are mapped by using the
ascii, binary, and cr commands (page 697).

ftp Specifics

This section covers the details of using ftp.

Format

An ftp command line has the following format:

ftp [options] [ftp-server]

where options is one or more options from the list in the next section and ftp-server
is the name or network address of the FTP server you want to exchange files with. If
you do not specify an ftp-server, you will need to use the ftp open command to con-
nect to a server once ftp is running.

Command-Line Options

–g (globbing) Turns off globbing. See glob (page 697).

–i (interactive) Turns off prompts during file transfers with mget (page 696) and mput
(page 696). See also prompt (page 697).

–n (no automatic login) Disables automatic logins (page 694).

–v (verbose) Tells you more about how ftp is working. Responses from the remote
computer are displayed, and ftp reports information on how quickly files are
transferred. See also verbose (page 698).

 From the Library of WoweBook.Com

ptg

696 Chapter 19 FTP: Transferring Files Across a Network

ftp Commands

The ftp utility is interactive: After you start ftp, it prompts you to enter commands
to set parameters or transfer files. You can abbreviate commands as long as the
abbreviations are unique. Enter a question mark (?) in response to the ftp> prompt
to display a list of commands. Follow the question mark by a SPACE and a command
to display a brief description of what the command does:

ftp> ? mget
mget get multiple files

Shell Command

![command] Without command, escapes to (spawns) a shell on the local system. Use CONTROL-D or
exit to return to ftp when you are finished using the local shell. Follow the exclama-
tion point with command to execute that command only; ftp will display an ftp>
prompt when execution of the command finishes. Because the shell that ftp spawns
with this command is a child of the shell that is running ftp, no changes you make in
this shell are preserved when you return to ftp. Specifically, when you want to copy
files to a local directory other than the directory that you started ftp from, you need
to use the ftp lcd command to change the local working directory: Issuing a cd com-
mand in the spawned shell will not make the change you desire. See “Local cd (lcd)”
on page 692 for an example.

Transfer Files

In the following descriptions, remote-file and local-file can be pathnames.

append local-file [remote-file]
Appends local-file to the file with the same name on the remote system or to remote-
file if specified.

get remote-file [local-file]
Copies remote-file to the local system under the name local-file. Without local-file,
ftp uses remote-file as the filename on the local system.

mget remote-file-list
(multiple get) Copies several files to the local system, with each file maintaining its
original filename. You can name the remote files literally or use wildcards (see
glob). Use prompt (page 697) to turn off the prompts during transfers.

mput local-file-list
(multiple put) Copies several files to the server, with each file maintaining its origi-
nal filename. You can name the local files literally or use wildcards (see glob). Use
prompt (page 697) to turn off the prompts during transfers.

newer remote-file [local-file]
If the modification time of remote-file is more recent than that of local-file or if
local-file does not exist, copies remote-file to the local system under the name local-
file. Without local-file, ftp uses remote-file as the filename on the local system. This
command is similar to get, but will not overwrite a newer file with an older one.

 From the Library of WoweBook.Com

ptg

Running the ftp and sftp FTP Clients 697

put local-file [remote-file]
Copies local-file to the remote system under the name remote-file. Without remote-
file, ftp uses local-file as the filename on the remote system.

reget remote-file [local-file]
If local-file exists and is smaller than remote-file, assumes that a previous get of
local-file was interrupted and continues from where the previous get left off. Without
local-file, ftp uses remote-file as the filename on the local system. This command can
save time when a get of a large file fails partway through the transfer.

Status

ascii Sets the file transfer type to ASCII. The cr command must be ON for ascii to work
(page 694).

binary Sets the file transfer type to binary (page 694).

bye Closes the connection to the server and terminates ftp. Same as quit.

case Toggles and displays the case mapping status. The default is OFF. When it is ON,
for get and mget commands, this command maps filenames that are all uppercase
on the server to all lowercase on the local system.

close Closes the connection to the server without exiting from ftp.

cr (carriage RETURN) Toggles and displays the (carriage) RETURN stripping status. Effective
only when the file transfer type is ascii. Set cr to ON (default) to remove RETURN char-
acters from RETURN/LINEFEED line termination sequences used by Windows, yielding the
standard Linux line termination of LINEFEED. Set cr to OFF to leave line endings
unmapped (page 694).

debug [n] Toggles/sets and displays the debugging status/level, where n is the debugging level.
OFF or 0 (zero) is the default. When n > 0, this command displays each command
ftp sends to the server.

glob Toggles and displays the filename expansion (page 256) status for mdelete
(page 698), mget (page 696), and mput (page 696) commands.

hash Toggles and displays the hashmark (#) display status. When it is ON, ftp displays one
hashmark for each 1024-byte data block it transfers.

open [hostname]
Specifies hostname as the name of the server to connect to. Without hostname,
prompts for the name of the server. This command is useful when a connection
times out or otherwise fails.

passive Toggles between active (PORT—the default) and passive (PASV) transfer modes
and displays the transfer mode. For more information refer to “Passive versus active
connections” on page 689.

prompt Toggles and displays the prompt status. When it is ON (default), mdelete (page 698),
mget (page 696), and mput (page 696) ask for verification before transferring each
file. Set prompt to OFF to turn off these prompts.

 From the Library of WoweBook.Com

ptg

698 Chapter 19 FTP: Transferring Files Across a Network

quit Closes the connection to the server and terminates ftp. Same as bye.

umask [nnn] Changes the umask (page 459) applied to files created on the server to nnn. Without
nnn, displays the umask.

user [username] [password]
Prompts for or accepts the username and password that enable you to log in on the
server. When you call it with the –n option, ftp prompts you for a username and pass-
word automatically. For more information refer to “Automatic Login” on page 694.

Directories

cd remote-directory
Changes the working directory on the server to remote-directory.

cdup Changes the working directory on the server to the parent of the working directory.

lcd [local_directory]
(local change directory) Changes the working directory on the local system to
local_directory. Without an argument, this command changes the working directory
on the local system to your home directory (just as the cd shell builtin does without
an argument). See “Local cd (lcd)” on page 692 for an example.

Files

chmod mode remote-file
Changes the access permissions of remote-file on the server to mode. See chmod on
page 216 for more information on how to specify the mode.

delete remote-file Removes remote-file from the server.

mdelete remote-file-list
(multiple delete) Deletes the files specified by remote-file-list from the server.

Display Information

dir [remote-directory] [file]
Displays a listing of remote-directory from the server. When you do not specify
remote-directory, displays the working directory. When you specify file, the listing
is saved on the local system in a file named file.

help [command] Displays information about command. Without command, displays a list of local
ftp commands.

ls [remote-directory] [file]
Similar to dir but produces a more concise listing from some servers. When you
specify file, the listing is saved on the local system in a file named file.

pwd Displays the pathname of the working directory on the server. Use !pwd to display
the pathname of the local working directory.

status Displays ftp connection and status information.

verbose Toggles and displays verbose mode, which displays responses from the server and
reports how quickly files are transferred. The effect of this command is the same as
specifying the –v option on the command line.

 From the Library of WoweBook.Com

ptg

Setting Up an FTP Server (vsftpd) 699

Setting Up an FTP Server (vsftpd)

This section explains how to set up an FTP server implemented by the vsftpd daemon
as supplied by Ubuntu.

Prerequisites

Install the following package:

• vsftpd

vsftpd init script When you install the vsftpd package, the dpkg postinst script starts the vsftpd dae-
mon. After you configure vsftpd, give the following initctl command (page 434) to
restart the vsftpd daemon:

$ sudo restart vsftpd
vsftpd start/running, process 1546

After changing the vsftpd configuration on an active server, use reload in place of
restart to reload the vsftpd configuration files without disturbing clients that are
connected to the server.

Notes

The vsftpd server can run in normal mode (the xinetd daemon, which is not
installed by default, calls vsftpd each time a client tries to make a connection) or it
can run in stand-alone mode (vsftpd runs as a daemon and handles connections
directly).

Stand-alone mode Although by default vsftpd runs in normal mode, Ubuntu sets it up to run in stand-
alone mode by setting the listen parameter (page 701) to YES in the vsftpd.conf file.
Under Ubuntu Linux, with vsftpd running in stand-alone mode, you start and stop
the server using the vsftpd init script.

Normal mode The xinetd superserver (page 464) must be installed and running and you must
install an xinetd control file to run vsftpd in normal mode. A sample control file is
located at /usr/share/doc/vsftpd/examples/INTERNET_SITE/vsftpd.xinetd. Copy
the sample file to the /etc/xinetd.d directory, rename it vsftpd, edit the file to change
the no_access and banner_fail parameters as appropriate, and restart xinetd. With
the listen parameter in vsftpd.conf set to NO, xinetd starts vsftpd as needed.

Security The safest policy is not to allow users to authenticate against FTP: Instead, use FTP
for anonymous access only. When you install vsftpd, it allows anonymous access
only; you must modify its configuration to allow users to log in by name on the
vsftpd server. If you do allow local users to authenticate and upload files to the
server, be sure to put local users in a chroot jail (page 703). Because FTP sends user-
names and passwords in cleartext, a malicious user can easily sniff (page 1173)
them. Armed with a username and password, the same user can impersonate a local
user, upload a Trojan horse (page 1177), and compromise the system.

 From the Library of WoweBook.Com

ptg

700 Chapter 19 FTP: Transferring Files Across a Network

Firewall An FTP server normally uses TCP port 21. If the FTP server system is running a fire-
wall, you need to open this port. To do so, use gufw (page 876) to set a policy that
allows FTP service.

JumpStart II: Starting a vsftpd FTP Server

By default, under Ubuntu Linux vsftpd allows anonymous users only to log in on
the server; it does not set up a guest account nor does it allow users to log in on the
vsftpd server. When someone logs in as an anonymous user, that person works in
the /srv/ftp directory. You do not have to configure anything.

Testing the Setup

Make sure vsftpd is working by logging in from the system running the server. You
can refer to the server as localhost or by using its hostname on the command line.
Log in as a user and provide that user’s password:

$ ftp localhost
Connected to localhost.localdomain.
220 (vsFTPd 2.2.2)
Name (localhost:sam):anonymous
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> quit
221 Goodbye.

If you are not able to connect to the server, first make sure the server is running:

$ ps -ef | grep vsftpd
root 5681 1 0 12:22 ? 00:00:00 /usr/sbin/vsftpd
sam 6629 6596 0 14:49 pts/2 00:00:00 grep vsftpd

If you want to allow users to log in as anonymous or ftp, you must set
anonymous_enable to YES in /etc/vsftpd.conf (page 702) and restart the vsftpd dae-
mon (page 699). Any password is acceptable with these login names.

If an anonymous user cannot log in, check that permissions on /srv/ftp, or the home
directory of ftp as specified in /etc/passwd, are set to 755 and that the directory is
not owned by ftp. If the ftp user can write to /var/ftp, connections will fail.

$ ls -ld /srv/ftp
drwxr-xr-x 2 root ftp 4096 2010-04-01 14:56 /srv/ftp

Once you are able to log in from the local system, log in from another system—
either one on the LAN or another system with access to the server. On the com-
mand line, use the hostname from within the LAN or the FQDN (page 1149) from
outside the LAN. The dialog should appear the same as in the previous example. If
you cannot log in from a system that is not on the LAN, use ping (page 393) to test
the connection and make sure the firewall is set up to allow FTP access. See “FTP
Connections” on page 688 for a discussion of active and passive modes and the
ports that each mode uses.

 From the Library of WoweBook.Com

ptg

Setting Up an FTP Server (vsftpd) 701

Configuring a vsftpd Server

The configuration file for vsftpd, /etc/vsftpd.conf, lists Boolean, numeric, and string
name-value pairs of configuration parameters, called directives. Each name-value
pair is joined by an equal sign with no SPACEs on either side. Ubuntu Linux provides
a well-commented vsftpd.conf file that changes many of the compiled-in defaults.
This section covers most of the options, noting their default values and their values
as specified in the vsftpd.conf file supplied with Ubuntu Linux.

Set Boolean options to YES or NO and numeric options to a nonnegative integer.
Octal numbers, which are useful for setting umask options, must have a leading 0
(zero). Numbers without a leading zero are treated as base 10 numbers. Following
are examples from vsftpd.conf of setting each type of option:

anonymous_enable=YES
local_umask=022
xferlog_file=/var/log/vsftpd.log

Descriptions of the directives are broken into the following groups:

• Stand-alone mode (page 701)

• Logging in (page 702)

• Working directory and the chroot jail (page 703)

• Downloading and uploading files (page 704)

• Messages (page 707)

• Display (page 707)

• Logs (page 708)

• Connection parameters (page 708)

Stand-Alone Mode

Refer to “Notes” on page 693 for a discussion of normal and stand-alone modes.
This section describes the parameters that affect stand-alone mode.

listen YES runs vsftpd in stand-alone mode; NO runs it in normal mode.

Default: NO
Ubuntu: YES

listen_address In stand-alone mode, specifies the IP address of the local interface that vsftpd listens
on for incoming connections. When this parameter is not set, vsftpd uses the default
network interface.

Default: none

listen_port In stand-alone mode, specifies the port that vsftpd listens on for incoming connections.

Default: 21

 From the Library of WoweBook.Com

ptg

702 Chapter 19 FTP: Transferring Files Across a Network

max_clients In stand-alone mode, specifies the maximum number of clients. Zero (0) indicates
unlimited clients.

Default: 0

max_per_ip In stand-alone mode, specifies the maximum number of clients from the same IP
address. Zero (0) indicates unlimited clients from the same IP address.

Default: 0

Logging In

Three classes of users can log in on a vsftpd server: anonymous, local, and guest. The
guest user is rarely used and is not covered in this chapter. Local users log in with
their system username and password. Anonymous users log in with anonymous or
ftp, using their email address as a password. You can control whether each of these
classes of users can log in on the server and what they can do once they log in. You
can also specify what a local user can do on a per-user basis; for more information
refer to user_config_dir on page 710.

Local Users

userlist_enable The /etc/vsftpd.user_list file (page 711), or another file specified by userlist_file,
contains a list of zero or more users. YES consults this list and takes action based
on userlist_deny, either granting or denying users in the list permission to log in on
the server. To prevent the transmission of cleartext passwords, access is denied
immediately after the user enters her username. NO does not consult the list. For a
more secure system, set this parameter to NO.

Default: NO

userlist_deny YES prevents users listed in /etc/vsftpd.user_list (page 711) from logging in on the
server. NO allows only users listed in /etc/vsftpd.user_list to log in on the server.
Use userlist_file to change the name of the file that this parameter consults. This
parameter is checked only when userlist_enable is set to YES.

Default: YES

userlist_file The name of the file consulted when userlist_enable is set to YES.

Default: /etc/vsftpd.user_list

local_enable YES permits local users (users listed in /etc/passwd) to log in on the server.

Default: NO

Anonymous Users

anonymous_enable
YES allows anonymous logins. NO disables anonymous logins.

Default: YES
Ubuntu: NO

 From the Library of WoweBook.Com

ptg

Setting Up an FTP Server (vsftpd) 703

no_anon_password
YES skips asking anonymous users for passwords.

Default: NO

deny_email_enable
YES checks whether the password (email address) that an anonymous user enters is
listed in /etc/vsftpd.banned_emails or another file specified by banned_email_file. If
it is, the user is not allowed to log in on the system. NO does not perform this
check. Using gufw (page 876) or iptables (page 863) to block specific hosts is gener-
ally more productive than using this parameter.

Default: NO

banned_email_file
The name of the file consulted when deny_email_enable is set to YES.

Default: /etc/vsftpd.banned_emails

The Working Directory and the chroot Jail

When a user logs in on a vsftpd server, standard filesystem access permissions control
which directories and files the user can access and how the user can access them.
Three basic parameters control a user who is logged in on a vsftpd server:

• The user ID (UID)

• The initial working directory

• The root directory

By default, the vsftpd server sets the user ID of a local user to that user’s username
and sets the user ID of an anonymous user to ftp. A local user starts in her home
directory and an anonymous user starts in /srv/ftp.

By default, anonymous users are placed in a chroot jail for security; local users are
not. For example, when an anonymous user logs in on a vsftpd server, his home
directory is /srv/ftp. All that user sees, however, is that his home directory is /.
The user sees the directory at /srv/ftp/upload as /upload. The user cannot see, or
work with, for example, the /home, /usr/local, or /tmp directory because the user
is in a chroot jail. For more information refer to “Setting Up a chroot Jail” on
page 466.

You can use the chroot_local_user option to put each local user in a chroot jail
whose root is the user’s home directory. You can use chroot_list_enable to put
selected local users in chroot jails.

chroot_list_enable
Upon login, YES checks whether a local user is listed in /etc/vsftpd.chroot_list
(page 711) or another file specified by chroot_list_file.

 From the Library of WoweBook.Com

ptg

704 Chapter 19 FTP: Transferring Files Across a Network

When a user is in the list and chroot_local_user is set to NO, the user is put in a
chroot jail in his home directory. Only users listed in /etc/vsftpd.chroot_list are put
in chroot jails.

When a user is in the list and chroot_local_user is set to YES, that user is not put in
a chroot jail. Users not listed in /etc/vsftpd.chroot_list are put in chroot jails.

Default: NO

chroot_local_user
See chroot_list_enable. Set to NO for a more open system, but remember to add
new users to the chroot_list_file as needed when you add users to the system. Set to
YES for a more secure system. New users are automatically restricted unless you
add them to chroot_list_file.

Default: NO

chroot_list_file The name of the file consulted when chroot_list_enable is set to YES.

Default: /etc/vsftpd.chroot_list

passwd_chroot_enable
YES enables you to change the location of the chroot jail that the chroot_list_enable
and chroot_local_user settings impose on a local user.

The location of the chroot jail can be moved up the directory structure by including
a /./ within the home directory string for that user in /etc/passwd. This change has
no effect on the standard system login, just as a cd . command has no effect on the
working directory.

For example, changing the home directory field in /etc/passwd (page 494) for Sam
from /home/sam to /home/./sam allows Sam to cd to /home after logging in using
vsftpd. Given the proper permissions, Sam can now view files and collaborate with
another user.

Default: NO

secure_chroot_dir The name of an empty directory that is not writable by the user ftp. The vsftpd
server uses this directory as a secure chroot jail when the user does not need access to
the filesystem.

Default: /var/run/vsftpd/empty

local_root After a local user logs in on the server, this directory becomes the user’s working
directory. No error results if the specified directory does not exist.

Default: none

Downloading and Uploading Files

By default, any user—whether local or anonymous—can download files from the
vsftpd server, assuming proper filesystem access and permissions. You must change
write_enable from NO (default) to YES to permit local users to upload files. By
default, local_umask is set to 077, giving uploaded files 600 permissions
(page 215). These permissions allow only the user who created a file to download

 From the Library of WoweBook.Com

ptg

Setting Up an FTP Server (vsftpd) 705

and overwrite it. Change local_umask to 022 to allow users to download other
users’ files.

Security Refer to “Security” on page 699 for information on the security hole that is created
when you allow local users to upload files.

The following actions set up vsftpd to allow anonymous users to upload files:

1. Set write_enable (page 705) to YES.

2. Create a directory under /srv/ftp that an anonymous user can write to but
not read from (mode 333). You do not want a malicious user to be able to
see, download, modify, and upload a file that another user originally
uploaded. The following commands create a /srv/ftp/uploads directory
that anyone can write to but no one can read from:

$ sudo mkdir /srv/ftp/uploads
$ sudo chmod 333 /srv/ftp/uploads

Because of the security risk, vsftpd prevents anonymous connections when
an anonymous user (ftp) can write to /srv/ftp.

3. Set anon_upload_enable (page 706) to YES.

4. See the other options in this section.

Download/Upload for Local Users

local_umask The umask (page 459) setting for local users.

Default: 077

file_open_mode Uploaded file permissions for local users. The umask (page 459) is applied to this
value. Change to 0777 to make uploaded files executable.

Default: 0666

write_enable YES permits users to create and delete files and directories (assuming appropriate
filesystem permissions). NO prevents users from making changes to the filesystem.

Default: NO

Anonymous Users

anon_mkdir_write_enable
YES permits an anonymous user to create new directories when write_enable=YES
and the anonymous user has permission to write to the parent directory.

Default: NO

anon_other_write_enable
YES grants an anonymous user write permission in addition to the permissions
granted by anon_mkdir_write_enable and anon_upload_enable. For example, YES
allows an anonymous user to delete and rename files, assuming she has permission to
write to the parent directory. For a more secure site, do not set this parameter to YES.

Default: NO

 From the Library of WoweBook.Com

ptg

706 Chapter 19 FTP: Transferring Files Across a Network

anon_root After an anonymous user logs in on the server, this directory becomes the user’s
working directory. No error results if the specified directory does not exist.

Default: none

anon_umask The umask (page 459) setting for anonymous users. The default setting gives only
anonymous users access to files uploaded by anonymous users; set this parameter to
022 to give everyone read access to these files.

Default: 077

anon_upload_enable
YES allows anonymous users to upload files when write_enable=YES and the
anonymous user has permission to write to the directory.

Default: NO

anon_world_readable_only
YES limits the files that a user can download to those that are readable by the
owner of the file, members of the group the file is associated with, and others. It
may not be desirable to allow one anonymous user to download a file that another
anonymous user uploaded. Setting this parameter to YES can avoid this scenario.

Default: YES

ascii_download_enable
YES allows a user to download files using ASCII mode. Setting this parameter to
YES can create a security risk (page 695).

Default: NO

ascii_upload_enable
YES allows a user to upload files using ASCII mode (page 694).

Default: NO

chown_uploads YES causes files uploaded by anonymous users to be owned by root (or another
user specified by chown_username). To improve security, change chown_username
to a name other than root if you set this parameter to YES.

Default: NO

chown_username See chown_uploads.

Default: root

ftp_username The username of anonymous users.

Default: ftp

nopriv_user The name of the user with minimal privileges, as used by vsftpd. Because other pro-
grams use nobody, to enhance security you can replace nobody with the name of a
dedicated user such as ftp.

Default: nobody

 From the Library of WoweBook.Com

ptg

Setting Up an FTP Server (vsftpd) 707

Messages

You can replace the standard greeting banner that vsftpd displays when a user logs in
on the system (banner_file and ftpd_banner). You can also display a message each
time a user enters a directory (dirmessage_enable and message_file). When you set
dirmessage_enable=YES, each time a user enters a directory using cd, vsftpd displays
the contents of the file in that directory named .message (or another file specified by
message_file).

dirmessage_enable
YES displays .message or another file specified by message_file as an ftp user enters
a new directory by giving a cd command.

Default: NO
Ubuntu: YES

message_file See dirmessage_enable.

Default: .message

banner_file The absolute pathname of the file that is displayed when a user connects to the
server. Overrides ftpd_banner.

Default: none

ftpd_banner Overrides the standard vsftpd greeting banner displayed when a user connects to
the server.

Default: none; uses standard vsftpd banner

Display

This section describes parameters that can improve security and performance by
controlling how vsftpd displays information.

hide_ids YES lists all users and groups in directory listings as ftp. NO lists the real owners.

Default: NO

setproctitle_enable
NO causes ps to display the process running vsftpd as vsftpd. YES causes ps to
display what vsftpd is currently doing (uploading and so on). Set this parameter to
NO for a more secure system.

Default: NO

text_userdb_names
NO improves performance by displaying numeric UIDs and GIDs in directory list-
ings. YES displays names.

Default: NO

use_localtime NO causes the ls, mls, and modtime FTP commands to display UTC (page 1179).
YES causes these commands to display the local time.

Default: NO

 From the Library of WoweBook.Com

ptg

708 Chapter 19 FTP: Transferring Files Across a Network

ls_recurse_enable YES permits users to give ls –R commands. Setting this parameter to YES may pose
a security risk because giving an ls –R command at the top of a large directory hier-
archy can consume a lot of system resources.

Default: NO

Logs

By default, logging is turned off. However, the vsftpd.conf file distributed with
Ubuntu Linux turns it on. This section describes parameters that control the details
and locations of logs.

log_ftp_protocol YES logs FTP requests and responses, provided that xferlog_std_format is set to NO.

Default: NO

xferlog_enable YES maintains a transfer log in /var/log/vsftpd.log (or another file specified by
xferlog_file). NO does not create a log.

Default: NO
Ubuntu: YES

xferlog_std_format
YES causes a transfer log (not covering connections) to be written in standard
xferlog format, as used by wu-ftpd, as long as xferlog_file is explicitly set. If
xferlog_std_format is set to YES and xferlog_file is not explicitly set, logging is
turned off. The default vsftpd log format is more readable than xferlog format, but it
cannot be processed by programs that generate statistical summaries of xferlog files.
Search for xferlog on the Internet to obtain more information on this command.

Default: NO

xferlog_file See xferlog_enable and xferlog_std_format.

Default: /var/log/vsftpd.log

Connection Parameters

You can allow clients to establish passive and/or active connections (page 689).
Setting timeouts and maximum transfer rates can improve server security and per-
formance. This section describes parameters that control the types of connections
that a client can establish, the length of time vsftpd will wait while establishing a
connection, and the speeds of connections for different types of users.

Passive (PASV) Connections

pasv_enable NO prevents the use of PASV connections.

Default: YES

pasv_promiscuous
NO causes PASV to perform a security check that ensures that the data and control
connections originate from a single IP address. YES disables this check; it is not
recommended for a secure system.

Default: NO

 From the Library of WoweBook.Com

ptg

Setting Up an FTP Server (vsftpd) 709

pasv_max_port The highest port number that vsftpd will allocate for a PASV data connection; useful
in setting up a firewall.

Default: 0 (use any port)

pasv_min_port The lowest port number that vsftpd will allocate for a PASV data connection; useful
in setting up a firewall.

Default: 0 (use any port)

pasv_address Specifies an IP address other than the one used by the client to contact the server.

Default: none; the address is the one used by the client

Active (PORT) Connections

port_enable NO prevents the use of PORT connections.

Default: YES

port_promiscuous
NO causes PORT to perform a security check that ensures that outgoing data con-
nections connect only to the client. YES disables this check; it is not recommended
for a secure system.

Default: NO

connect_from_port_20
YES specifies port 20 (ftp-data, a privileged port) on the server for PORT connec-
tions, as required by some clients. NO allows vsftpd to run with fewer privileges (on
a nonprivileged port).

Default: NO
Ubuntu: YES

ftp_data_port With connect_from_port_20 set to NO, specifies the port that vsftpd uses for PORT
connections.

Default: 20

Timeouts

accept_timeout The number of seconds the server waits for a client to establish a PASV data connection.

Default: 60

connect_timeout The number of seconds the server waits for a client to respond to a PORT data connection.

Default: 60

data_connection_timeout
The number of seconds the server waits for a stalled data transfer to resume before
disconnecting.

Default: 300

idle_session_timeout
The number of seconds the server waits between FTP commands before disconnecting.

Default: 300

 From the Library of WoweBook.Com

ptg

710 Chapter 19 FTP: Transferring Files Across a Network

local_max_rate For local users, the maximum data transfer rate in bytes per second. Zero (0) indi-
cates no limit.

Default: 0

anon_max_rate For anonymous users, the maximum data transfer rate in bytes per second. Zero (0)
indicates no limit.

Default: 0

one_process_model
YES establishes one process per connection, which improves performance but
degrades security. NO allows multiple processes per connection. NO is recommended
to maintain a more secure system.

Default: NO

Miscellaneous

This section describes parameters not discussed elsewhere.

pam_service_name
The name of the PAM service used by vsftpd.

Default: vsftpd

rsa_cert_file Specifies where the RSA certificate for SSL-encrypted connections is kept.

Default: /usr/share/ssl/certs/vsftpd.pem
Ubuntu: /etc/ssl/private/vsftpd.pem

rsa_private_key_file
Specifies where the RSA key for SSL-encrypted connections is kept.

Default: none

tcp_wrappers YES causes incoming connections to use tcp_wrappers (page 465) if vsftpd was
compiled with tcp_wrappers support. When tcp_wrappers sets the environment
variable VSFTPD_LOAD_CONF, vsftpd loads the configuration file specified by
this variable, allowing per-IP configuration.

Default: NO

user_config_dir Specifies a directory that contains files named for local users. Each of these files,
which mimic vsftpd.conf, contains parameters that override, on a per-user basis,
default parameters and parameters specified in vsftpd.conf. For example, assume that
user_config_dir is set to /etc/vsftpd/user_conf. Further suppose that the default con-
figuration file, /etc/vsftpd/vsftpd.conf, sets idlesession_timeout=300 and Sam’s indi-
vidual configuration file, /etc/vsftpd/user_conf/sam, sets idlesession_timeout=1200.
Then all users’ sessions except for Sam’s will time out after 300 seconds of inactivity.
Sam’s sessions will time out after 1,200 seconds.

Default: none

 From the Library of WoweBook.Com

ptg

Chapter Summary 711

Other Configuration Files

In addition to /etc/vsftpd.conf, the following files control the functioning of vsftpd.
The directory hierarchy that user_config_dir points to is not included in this list
because it has no default name.

/etc/ftpusers
Lists users, one per line, who are never allowed to log in on the FTP server, regardless
of how userlist_enable (page 702) is set and regardless of the users listed in the
user_list file. The default file lists root, bin, daemon, and others.

/etc/vsftpd.user_list
Lists either the only users who can log in on the server or the only users who are
not allowed to log in on the server. The userlist_enable (page 702) option must be
set to YES for vsftpd to examine the list of users in this file. Setting userlist_enable
to YES and userlist_deny (page 702) to YES (or not setting it) prevents listed users
from logging in on the server. Setting userlist_enable to YES and userlist_deny to
NO permits only the listed users to log in on the server.

/etc/vsftpd.chroot_list
Depending on the chroot_list_enable (page 703) and chroot_local_user (page 704)
settings, lists either users who are forced into a chroot jail in their home directories
or users who are not placed in a chroot jail.

/var/log/vsftpd.log
Log file. For more information refer to “Logs” on page 708.

Chapter Summary

File Transfer Protocol is a protocol for downloading files from and uploading files to
another system over a network. FTP is the name of both a client/server protocol
(FTP) and a client utility (ftp) that invokes this protocol. Because FTP is not a secure
protocol, it should be used only to download public information. You can run the
vsftpd FTP server in the restricted environment of a chroot jail to make it significantly
less likely that a malicious user can compromise the system.

Many servers and clients implement the FTP protocol. The ftp utility is the original client
implementation; sftp and lftp are secure implementations that use OpenSSH facilities to
encrypt the connection. Although they do not understand the FTP protocol, they map
ftp commands to OpenSSH commands. The vsftpd daemon is a secure FTP server; it
better protects the server from malicious users than do other FTP servers.

Public FTP servers allow you to log in as anonymous or ftp. By convention, you
supply your email address as a password when you log in as an anonymous user.
Public servers frequently have interesting files in the pub directory.

FTP provides two modes of transferring files: binary and ASCII. It is safe to use
binary mode to transfer all types of files, including ASCII files. If you transfer a
binary file using ASCII mode, the transfer will fail.

 From the Library of WoweBook.Com

ptg

712 Chapter 19 FTP: Transferring Files Across a Network

Exercises

1. What changes does FTP make to an ASCII file when you download it in
ASCII mode to a Windows machine from a Linux server? What changes
are made when you download the file to a Mac?

2. What happens if you transfer an executable program file in ASCII mode?

3. When would ftp be a better choice than sftp?

4. How would you prevent local users from logging in on a vsftpd server
using their system username and password?

5. What advantage does sftp have over ftp?

6. What is the difference between cd and lcd in ftp?

Advanced Exercises

7. Why might you have problems connecting to an FTP server in PORT
mode?

8. Why is it advantageous to run vsftpd in a chroot jail?

9. After downloading a file, you find that it does not match the MD5
checksum provided. Downloading the file again gives the same incorrect
checksum. What have you done wrong and how would you fix it?

10. How would you configure vsftpd to run through xinetd, and what would
be the main advantage of this approach?

 From the Library of WoweBook.Com

ptg

777111333

20Chapter20Sending and receiving email require three pieces of software. At
each end, there is a client, called an MUA (mail user agent),
which is a bridge between a user and the mail system. Common
MUAs are mutt, Evolution, KMail, Thunderbird, and Outlook.
When you send an email, the MUA hands it to an MTA (a mail
transfer agent, such as exim4 or sendmail), which transfers it to
the destination server. At the destination, an MDA (a mail
delivery agent, such as procmail) puts the mail in the recipient’s
mailbox file. On Linux systems, the MUA on the receiving sys-
tem either reads the mailbox file or retrieves mail from a remote
MUA or MTA, such as an ISP’s SMTP (Simple Mail Transfer
Protocol) server, using POP (Post Office Protocol) or IMAP
(Internet Message Access Protocol).

In This Chapter

Introduction to exim4 714

JumpStart I: Configuring exim4
to Use a Smarthost 716

JumpStart II: Configuring exim4
to Send and Receive Mail 718

Configuring an exim4 Mail
Server . 724

SpamAssassin. 727

Webmail . 731

Mailing Lists 733

Setting Up an IMAP or POP3
Mail Server 735

Authenticated Relaying 736

20

exim4: Setting Up

Mail Servers,

Clients, and More

 From the Library of WoweBook.Com

ptg

714 Chapter 20 exim4: Setting Up Mail Servers, Clients, and More

SMTP Most Linux MUAs expect a local MTA such as exim4 to deliver outgoing email. On
some systems, including those with a dial-up connection to the Internet, the MTA
sends email to an ISP’s mail server. Because most MTAs use SMTP to deliver email,
they are often referred to as SMTP servers. By default, when you install exim4 on an
Ubuntu system, exim4 uses its own builtin MDA to deliver email to the recipient’s
mailbox file.

Introduction to exim4
When the network that was to evolve into the Internet was first set up, it connected a
few computers, each serving a large number of users and running several services. Each
computer was capable of sending and receiving email and had a unique hostname,
which was used as a destination for email.

Today the Internet has a large number of transient clients. Because these clients do
not have fixed IP addresses or hostnames, they cannot receive email directly. Users
on these systems usually maintain an account on an email server run by their
employer or an ISP, and they collect email from this account using POP or IMAP.
Unless you own a domain where you want to receive email, you will not need to set
up exim4 to receive mail from nonlocal systems.

Smarthost You can set up exim4 on a client system so it sends mail bound for nonlocal systems
to an SMTP server that relays the mail to its destination. This type of server is called
a smarthost. Such a configuration is required by organizations that use firewalls to
prevent email from being sent out on the Internet from any system other than the
company’s official mail servers. As a partial defense against spreading viruses, some
ISPs block outbound port 25 to prevent their customers from sending email directly
to a remote computer. This configuration is required by these ISPs.

You can also set up exim4 as a server that sends mail to nonlocal systems and does
not use an ISP as a relay. In this configuration, exim4 connects directly to the SMTP
servers for the domains receiving the email. An ISP set up as a smarthost is config-
ured this way.

You can set up exim4 to accept email for a registered domain name as specified in
the domain’s DNS MX record (page 828). However, most mail clients (MUAs) do
not interact directly with exim4 to receive email. Instead, they use POP or IMAP—
protocols that include features for managing mail folders, leaving messages on the
server, and reading only the subject of an email without downloading the entire
message. If you want to collect your email from a system other than the one running
the incoming mail server, you may need to set up a POP or IMAP server, as dis-
cussed on page 735.

You do not need to set up exim4 to send and receive email
tip Most MUAs can use POP or IMAP to receive email from an ISP’s server. These protocols do not

require an MTA such as exim4. As a consequence, you do not need to install or configure exim4 (or
another MTA) to receive email. Although you still need SMTP to send email, the SMTP server can be
at a remote location, such as your ISP. Thus you may not need to concern yourself with it, either.

 From the Library of WoweBook.Com

ptg

Setting Up a Mail Server (exim4) 715

Alternatives to exim4

sendmail The most popular MTA today, sendmail (sendmail package) first appeared in
4.1BSD. The sendmail system is complex, but its complexity allows sendmail to be
flexible and to scale well. On the downside, because of its complexity, configuring
sendmail can be a daunting task. See www.sendmail.org for more information.

Postfix Postfix (postfix package) is an alternative MTA. Postfix is fast and easy to adminis-
ter, but is compatible enough with sendmail/exim4 to not upset sendmail/exim4
users. Postfix has a good reputation for ease of use and security and is a drop-in
replacement for sendmail. Point a browser at www.postfix.org/docs.html for Postfix
documentation.

Qmail Qmail is a direct competitor of Postfix and has the same objectives. By default,
Qmail stores email using the maildir format as opposed to the mbox format that
other MTAs use (page 720). The Qmail Web site is www.qmail.org.

More Information

Web exim4: www.exim.org (includes the complete exim4 specification),
www.exim-new-users.co.uk, wiki.debian.org/PkgExim4
SpamAssassin: spamassassin.apache.org, wiki.apache.org/spamassassin
Spam database: razor.sourceforge.net
Mailman: www.list.org
procmail: www.procmail.org
SquirrelMail: www.squirrelmail.org
IMAP: www.imap.org
Dovecot: www.dovecot.org
Postfix: www.postfix.org/docs.html (alternative MTA)
Qmail: www.qmail.org/top.html

Local exim4: /usr/share/doc/exim4*/*
SpamAssassin: /usr/share/doc/spam*
Dovecot: /usr/share/doc/dovecot*
man pages: exim4 exim4_files update-exim4.conf update-exim4defaults spamassassin
spamc spamd
SpamAssassin: Install the perl-doc and spamassassin packages and give the
following command:

$ perldoc Mail::SpamAssassin::Conf

Setting Up a Mail Server (exim4)

This section explains how to set up an exim4 mail server.

Prerequisites

Install the following packages:

• exim4 (a virtual package)

• eximon4 (optional; monitors exim4)

 From the Library of WoweBook.Com

www.sendmail.org
www.postfix.org/docs.html
www.qmail.org
www.exim.org
www.exim-new-users.co.uk
www.list.org
www.procmail.org
www.squirrelmail.org
www.imap.org
www.dovecot.org
www.postfix.org/docs.html
www.qmail.org/top.html

ptg

716 Chapter 20 exim4: Setting Up Mail Servers, Clients, and More

• mailutils (optional; installs mail, which is handy for testing exim4 from the
command line)

• exim4-doc-html (optional; exim4 documentation in HTML format)

• exim4-doc-info (optional; exim4 documentation in info format)

exim4 init script When you install the exim4 package, the dpkg postinst script minimally configures
exim4 and starts the exim4 daemon. After you configure exim4, call the exim4 init
script to restart exim4:

$ sudo service exim4 restart

After changing the exim4 configuration on an active server, use reload in place of
restart to reload exim4 configuration files without interrupting the work exim4 is
doing. The exim4 init script accepts several nonstandard arguments:

$ service exim4
Usage: /etc/init.d/exim4 {start|stop|restart|reload|status|what|force-stop}

The status and what arguments display information about exim4. The force-stop
argument immediately kills all exim4 processes.

Notes

Firewall An SMTP server normally uses TCP port 25. If an SMTP server system that
receives nonlocal mail is running a firewall, you need to open this port. To do so,
use gufw (page 876) to set a policy that allows SMTP service.

Log files You must be a member of the adm group or work with root privileges to view the
log files in /var/log/exim4.

sendmail and
exim4

Although it does not work the same way sendmail does, Ubuntu configures exim4
as a drop-in replacement for sendmail. The exim4-daemon-light package, which is
part of the exim4 virtual package, includes /usr/sbin/sendmail, which is a link to
exim4. Because the exim4 daemon accepts many of sendmail’s options, programs
that depend on sendmail will work with exim4 installed in place of sendmail.

Local and nonlocal
systems

The exim4 daemon sends and receives email. A piece of email that exim4 receives
can originate on a local system or on a nonlocal system. Similarly, email that exim4
sends can be destined for a local or a nonlocal system. The exim4 daemon processes
each piece of email based on its origin and destination.

The local system
versus

local systems

The local system is the one exim4 is running on. Local systems are systems that are
on the same LAN as the local system.

As it is installed, exim4 delivers mail to the local system only.

JumpStart I: Configuring exim4 to Use a Smarthost

This JumpStart configures an exim4 server that sends mail from users on local sys-
tems to local and nonlocal destinations and does not accept mail from nonlocal
systems. This server

 From the Library of WoweBook.Com

ptg

Setting Up a Mail Server (exim4) 717

• Accepts email originating on local systems for delivery to local systems.

• Accepts email originating on local systems for delivery to nonlocal systems,
delivering it using an SMTP server (a smarthost)—typically an ISP—to
relay email to its destination.

• Does not deliver email originating on nonlocal systems. As is frequently
the case, you need to use POP or IMAP to receive email.

• Does not forward email originating on nonlocal systems to other nonlocal
systems (does not relay email).

To set up this server, you need to change the values of a few configuration variables in
/etc/exim4/update-exim4.conf.conf (page 724) and restart exim4. The dpkg-reconfigure
utility (page 726) guides you in editing this file; this JumpStart uses a text editor.
Working with root privileges, use a text editor to make the following changes to
update-exim4.conf.conf:

dc_eximconfig_configtype='smarthost'
smarthost='mail.example.net'

Configuration type Set the dc_eximconfig_configtype configuration variable to smarthost to cause
exim4 to send mail bound for nonlocal systems to the system that the smarthost
configuration variable specifies. This line should appear exactly as shown in the
preceding example.

Smarthost With dc_eximconfig_configtype set to smarthost, set smarthost to the FQDN or IP
address (preferred) of the remote SMTP server (the smarthost) that exim4 uses to
relay email to nonlocal systems. Replace mail.example.net with this FQDN or IP
address. For Boolean variables in update-exim4.conf.conf, exim4 interprets the null
value (specified by '') as a value of false. With these changes, the file should look
similar to this:

$ cat /etc/exim4/update-exim4.conf.conf
...
dc_eximconfig_configtype='smarthost'
dc_other_hostnames='example.com'
dc_local_interfaces='127.0.0.1 ; ::1'
dc_readhost=''
dc_relay_domains=''
dc_minimaldns='false'
dc_relay_nets=''
dc_smarthost='mail.example.net'
CFILEMODE='644'
dc_use_split_config='false'
dc_hide_mailname=''
dc_mailname_in_oh='true'
dc_localdelivery='mail_spool'

The exim4 server does not use the value of the dc_local_interfaces variable in a
smarthost configuration, so you can leave it blank. However, in other configura-
tions, the value of 127.0.0.1 ; ::1 prevents exim4 from accepting email from nonlo-

 From the Library of WoweBook.Com

ptg

718 Chapter 20 exim4: Setting Up Mail Servers, Clients, and More

cal systems. It is a good idea to configure exim4 this way and change this variable
only when you are ready to accept mail from other systems.

To minimize network accesses for DNS lookups, which can be helpful if you are
using a dial-up line, change the value of the dc_minimaldns configuration variable
to true.

/etc/mailname The /etc/mailname file initially holds the node name (uname –n) of the server. The
string stored in /etc/mailname appears as the name of the sending system on the
envelope-from and From lines of email that originates on the local system. If you
want email to appear to come from a different system, change the contents of this
file. You can modify this file using a text editor; the dpkg-reconfigure utility can also
change it.

The following file causes mail sent from the local system to appear to come from
username@example.com, where username is the username of the user who is sending
the email:

$ cat /etc/mailname
example.com

See page 724 for more information on exim4 configuration variables. After making
these changes, restart exim4 (page 716).

Test Test exim4 with the following command:

$ echo "my exim4 test" | exim4 user@remote.host

Replace user@remote.host with an email address on another system where you
receive email. You need to send email to a remote system to make sure that exim4 is
sending email to the remote SMTP server (the smarthost). If the mail is not deliv-
ered, check the email of the user who sent the email (on the local system) for errors.
Also check the log file(s) in the /var/log/exim4 directory.

JumpStart II: Configuring exim4 to Send and Receive Mail

To receive email sent from a nonlocal system to a registered domain (that you
control), you need to configure exim4 to accept email from nonlocal systems. This
JumpStart describes how to set up a server that

• Accepts email from local and nonlocal systems.

• Delivers email that originates on local systems to a local system or directly
to a nonlocal system, without using a relay.

• Delivers email that originates on nonlocal systems to a local system only.

• Does not forward email originating on nonlocal systems to other nonlocal
systems (does not relay email).

This server does not relay email originating on nonlocal systems. (You must set the
dc_relay_domains variable [page 726] for the local system to act as a relay.) For this

 From the Library of WoweBook.Com

ptg

Setting Up a Mail Server (exim4) 719

configuration to work, you must be able to make outbound connections and receive
inbound connections on port 25 (see “Firewall” on page 716).

Working with root privileges, use a text editor to set the following configuration
variables in /etc/exim4/update-exim4.conf.conf:

dc_eximconfig_configtype='internet'
dc_other_hostnames='mydom.example.com'
dc_local_interfaces=''

Configuration type Set dc_eximconfig_configtype to internet to cause exim4 to send mail directly to
nonlocal systems as specified by the DNS MX record (page 828) for the domain the
mail is addressed to and to accept email on the interfaces specified by
dc_local_interfaces (next page). This line should appear exactly as shown above.

Other hostnames The dc_other_hostnames configuration variable specifies the FQDNs or IP addresses
that the local server receives mail addressed to. Replace mydom.example.com with
these FQDN or IP addresses. You must separate multiple entries with semi-
colons. These values do not necessarily include the FQDN or the IP address of
the local server.

Local interfaces Set dc_local_interfaces to the interface you want exim4 to listen on. Set it to the null
value ('') to listen on all interfaces.

As in JumpStart I, you may need to change the value of /etc/mailname (page 718).
For Boolean variables in this file, exim4 interprets the null value (specified by '') as
false. The file should look similar to this:

$ cat /etc/exim4/update-exim4.conf.conf
...
dc_eximconfig_configtype='internet'
dc_other_hostnames='mydom.example.com'
dc_local_interfaces=''
dc_readhost=''
dc_relay_domains=''
dc_minimaldns='false'
dc_relay_nets=''
dc_smarthost=''
CFILEMODE='644'
dc_use_split_config='false'
dc_hide_mailname=''
dc_mailname_in_oh='true'
dc_localdelivery='mail_spool'

See page 724 for more information on exim4 configuration variables. Once you
have restarted exim4, it will accept mail addressed to the local system. To receive
email addressed to a domain, the DNS MX record (page 828) for that domain must
point to the IP address of the local system. If you are not running a DNS server, you
must ask your ISP to set up an MX record or else receive mail at the IP address of
the server. If you receive email addressed to an IP address, set dc_other_hostnames
to that IP address.

 From the Library of WoweBook.Com

ptg

720 Chapter 20 exim4: Setting Up Mail Servers, Clients, and More

Working with exim4 Messages

When exim4 receives email, from both local and nonlocal systems, it creates in the
/var/spool/exim4/input directory two files that hold the message while exim4 pro-
cesses it. To identify a particular message, exim4 generates a 16-character message
ID and uses that string in filenames pertaining to the email. The exim4 daemon
stores the body of the message in a file named by the message ID followed by –D
(data). It stores the headers and envelope information in a file named by the message
ID followed by –H (header).

Frozen messages If exim4 cannot deliver a message, it marks the message as frozen and makes no fur-
ther attempt to deliver it. Once it has successfully delivered an email, exim4
removes all files pertaining to that email from /var/spool/exim4/input.

Mail addressed to
the local system

By default, exim4 delivers email addressed to the local system to users’ files in the
mail spool directory, /var/mail, in mbox format. Within this directory, each user has
a mail file named with the user’s username. Mail remains in these files until it is col-
lected, typically by an MUA. Once an MUA collects the mail from the mail spool,
the MUA stores the mail as directed by the user, usually in the user’s home directory.

Mail addressed to
nonlocal systems

The scheme that exim4 uses to process email addressed to a nonlocal system
depends on how it is configured: It can send the email to a smarthost, it can send
the email to the system pointed to by the DNS MX record of the domain the email
is addressed to, or it can refuse to send the email.

mbox versus
maildir

The mbox format holds all messages for a user in a single file. To prevent corruption,
a process must lock this file while it is adding messages to or deleting messages from
the file; thus the MUA cannot delete a message at the same time the MTA is adding
messages. A competing format, maildir, holds each message in a separate file. This
format does not use locks, allowing an MUA to delete messages from a user at the
same time as mail is delivered to the same user. In addition, the maildir format is bet-
ter able to handle larger mailboxes. The downside is that the maildir format adds
overhead when you are using a protocol such as IMAP to check messages. The
exim4 daemon supports both mbox and maildir formats (see dc_localdelivery on
page 725). Qmail (page 715), an alternative to sendmail and exim4, uses maildir-
format mailboxes.

Mail Logs

By default, exim4 sends normal log messages to /var/exim4/mainlog, with other
messages going to other files in the same directory. The following lines in a mainlog
file describe an email message sent directly to a remote system’s SMTP server. The
exim4 daemon writes one line each time it receives a message and one line each time
it attempts to deliver a message. The Completed line indicates that exim4 has com-
pleted its part in delivering the message. Each line starts with the date and time of
the entry followed by the message ID.

 From the Library of WoweBook.Com

ptg

Working with exim4 Messages 721

$ tail -3 /var/log/exim4/mainlog
2010-07-19 23:13:12 1IBljk-0000t8-1Z <= zachs@example.com U=sam P=local S=304
2010-07-19 23:13:17 1IBljk-0000t8-1Z => zachs@example.com R=dnslookup T=remote_smtp

H=filter.mx.meer.net [64.13.141.12]
2010-07-19 23:13:17 1IBljk-0000t8-1Z Completed

The next entry on each line except the Completed line is a two-character status flag
that tells you which kind of event the line describes:

<= Received a message
=> Delivered a message normally
–> Delivered a message normally to an additional address (same delivery)

*> Did not deliver because of a –N command-line option

** Did not deliver because the address bounced
== Did not deliver because of a temporary problem

Information following the flag is preceded by one of the following letters, which
indicates the type of the information, and an equal sign:

H Name of remote system (host)
U Username of the user who sent the message
P Protocol used to receive the message
R Router used to process the message
T Transport used to process the message
S Size of the message in bytes

The first line in the preceding example indicates that exim4 received a 304-byte
message to be delivered to zachs@example.com from sam on the local system. The
next line indicates that exim4 looked up the address using DNS (dnslookup) and
delivered it to the remote SMTP server (remote_smtp) at filter.mx.meer.net, which
has an IP address of 64.13.141.12.

The following log entries describe a message that exim4 received from a remote
system and delivered to the local system:

2010-07-19 23:13:32 1IBlk4-0000tL-8L <= zachs@gmail.com H=wx-out-0506.google.com
[66.249.82.229] P=esmtp S=1913 id=7154255d0707192313y304a1b27t39f...@mail.gmail.com

2010-07-19 23:13:32 1IBlk4-0000tL-8L => sam <sams@example.com> R=local_user T=mail_spool
2010-07-19 23:13:32 1IBlk4-0000tL-8L Completed

See the exim4 specification for more information on log files. If you send and
receive a lot of email, the mail logs can grow quite large. The logrotate (page 622)
exim4-base file archives and rotates these files regularly.

Working with Messages

You can call exim4 with many different options to work with mail that is on the
system and to generate records of mail that has passed through the system. Most of
these options begin with –M and require the message ID (see the preceding section)

 From the Library of WoweBook.Com

ptg

722 Chapter 20 exim4: Setting Up Mail Servers, Clients, and More

of the piece of email you want to work with. The following command removes a
message from the queue:

$ sudo exim4 -Mrm 1IEKKj-0006CQ-LM
Message 1IEKKj-0006CQ-LM has been removed

Following are some of the exim4 options you can use to work with a message. Each
of these options must be followed by a message ID. See the exim4 man page for a
complete list.

–Mf Mark message as frozen
–Mrm Remove message
–Mt Thaw message
–Mvb Display message body
–Mvh Display message header

Aliases and Forwarding

You can use the aliases and .forward (page 723) files to forward email.

/etc/aliases Most of the time when you send email, it goes to a specific person; the recipient,
user@system, maps to a real user on the specified system. Sometimes, however, you
may want email to go to a class of users and not to a specific recipient. Examples of
classes of users include postmaster, webmaster, root, and tech_support. Different
users may receive this email at different times or the email may go to a group of
users. You can use the /etc/aliases file to map local addresses and classes to local
users, files, commands, and local as well as to nonlocal addresses.

Each line in /etc/aliases contains the name of a local (pseudo)user, followed by a
colon, whitespace, and a comma-separated list of destinations. Because email sent to
the root account is rarely checked, the default installation includes an entry similar
to the following that redirects email sent to root to the initial user:

root: sam

You can set up an alias to forward email to more than one user. The following line
forwards mail sent to abuse on the local system to sam and max:

abuse: sam, max

You can create simple mailing lists with this type of alias. For example, the following
alias sends copies of all email sent to admin on the local system to several users,
including Zach, who is on a different system:

admin: sam, helen, max, zach@example.com

You can direct email to a file by specifying an absolute pathname in place of a destina-
tion address. The following alias, which is quite popular among less conscientious
system administrators, redirects email sent to complaints to /dev/null (page 489),
where it disappears:

complaints: /dev/null

 From the Library of WoweBook.Com

ptg

Working with exim4 Messages 723

You can also send email to standard input of a command by preceding the command
with the pipe character (|). This technique is commonly used by mailing list software
such as Mailman (page 734). For each list it maintains, Mailman has entries, such as
the following one for painting_class, in the aliases file:

painting_class: "|/var/lib/mailman/mail/mailman post painting_class"

See the exim4_files man page for information on exim4 files, including aliases.

newaliases After you edit /etc/aliases, you must run newaliases while you are working with
root privileges. The /usr/bin/newaliases file is a symbolic link to exim4. Running
newaliases calls exim4, which rebuilds the exim4 alias database.

~/.forward Systemwide aliases are useful in many cases, but nonroot users cannot make or
change them. Sometimes you may want to forward your own mail: Maybe you want
mail from several systems to go to one address or perhaps you want to forward your
mail while you are working at another office. The ~/.forward file allows ordinary
users to forward their email.

Lines in a .forward file are the same as the right column of the aliases file explained
earlier in this section: Destinations are listed one per line and can be a local user, a
remote email address, a filename, or a command preceded by the pipe character (|).

Mail that you forward does not go to your local mailbox. If you want to forward
mail and keep a copy in your local mailbox, you must specify your local username
preceded by a backslash to prevent an infinite loop. The following example sends
Sam’s email to himself on the local system and on the system at example.com:

$cat ~sam/.forward
sams@example.com
\sam

Related Programs

exim4 The exim4 packages include several programs. The primary program, exim4, reads
from standard input and sends an email to the recipient specified by its argument.
You can use exim4 from the command line to check that the mail delivery system is
working and to email the output of scripts. See “Test” on page 718 for an example.
The command apropos exim4 displays a list of exim4-related files and utilities. In
addition, you can call exim4 with options (page 721) or through links to cause it to
perform various tasks.

exim4 –bp When you call exim4 with the –bp option, or when you call the mailq utility (which
is a symbolic link to exim4), it displays the status of the outgoing mail queue. When
there are no messages in the queue, it displays nothing. Unless they are transient,
messages in the queue usually indicate a problem with the local or remote MTA
configuration or a network problem.

$ sudo exim4 -bp
24h 262 1IBhYI-0006iT-7Q <sam@> *** frozen ***
 zachs@example.com

 From the Library of WoweBook.Com

ptg

724 Chapter 20 exim4: Setting Up Mail Servers, Clients, and More

eximstats The eximstats utility displays statistics based on exim4 log files. Call this utility with an
argument of the name of a log file, such as /var/log/mainlog or /var/log/mainlog2.gz.
Without any options, eximstats sends information based on the log file in text format
to standard output. When you include the –html option, eximstats generates output in
HTML format, suitable for viewing with a browser:

$ eximstats -html /var/log/exim4/mainlog.2.gz > exim.0720.html

If you are not a member of the adm group, you must run the preceding command
with root privileges. See the eximstats man page for more information.

eximon Part of the eximon4 package, eximon displays a simple graphical representation of
the exim4 queue and log files.

Configuring an exim4 Mail Server

The exim4 daemon is a complex and capable MTA that is configured by
/etc/default/exim4 and the files in the /etc/exim4 directory hierarchy. The former
allows you to specify how the daemon is to be run; the latter configures all other
aspects of exim4. You can configure exim4 by editing its configuration files with a
text editor (discussed in the next section) or by using dpkg-reconfigure (page 726).

/etc/default/exim4 The default /etc/default/exim4 file sets QUEUERUNNER to combined, which
starts one daemon that both runs the queue and listens for incoming email. It sets
QUEUEINTERVAL to 30m, which causes the daemon to run the queue (that is,
check whether the queue contains mail to be delivered) every 30 minutes. See the
comments in the file for more information.

Using a Text Editor to Configure exim4

The files in the /etc/exim4 directory hierarchy control how exim4 works—which
interfaces it listens on, whether it uses a smarthost or sends email directly to its des-
tination, whether and for which systems it relays email, and so on. You can also cre-
ate an exim4.conf.localmacros file to turn on/off exim4 functions (see page 737 for
an example). Because of its flexibility, exim4 uses many configuration variables.
You can establish the values of these variables in one of two ways: You can edit a
single file, as the JumpStart sections of this chapter explain, or you can work with
the approximately 40 files in the /etc/exim4/conf.d directory hierarchy. For many
configurations, working with the single file update-exim4.conf.conf is sufficient.
This section describes the variables in that file but does not discuss working with
the files in conf.d. Refer to the exim4 specification if you need to set up a more
complex mail server.

The update-exim4.conf.conf Configuration File

update-
exim4.conf

The update-exim4.conf utility reads the exim4 configuration files in /etc/exim4, includ-
ing update-exim4.conf.conf, and generates the /var/lib/exim4/config.autogenerated

 From the Library of WoweBook.Com

ptg

Configuring an exim4 Mail Server 725

file. When exim4 starts, it reads this file for configuration information. Typically you
do not need to run update-exim4.conf manually because the exim4 init script
(page 716) runs this utility before it starts, restarts, or reloads exim4.

Split configuration Setting the dc_use_split_config variable in update-exim4.conf.conf to false specifies
an unsplit configuration, wherein update-exim4.conf merges the data from
exim4.conf.localmacros, update-exim4.conf.conf, and exim4.conf.template to cre-
ate config.autogenerated. Setting this variable to true specifies a split configura-
tion, wherein update-exim4.conf merges the data from exim4.conf.localmacros,
update-exim4.conf.conf, and all the files in the conf.d directory hierarchy to create
config.autogenerated.

Following is the list of configuration variables you can set in update-
exim4.conf.conf. Enclose all values within single quotation marks. For Boolean vari-
ables, exim4 interprets the null value (specified by '') as false.

CFILEMODE='perms'
Sets the permissions of config.autogenerated to the octal value perms, typically 644.

dc_eximconfig_configtype='type'
Specifies the type of configuration that exim4 will run, where type is one of the
following:

internet Sends and receives email locally and remotely. See “JumpStart II” on
page 718 for an example.

smarthost Sends and receives email locally and remotely, using a smarthost to
relay messages to nonlocal systems. See “JumpStart I” on page 716 for an example.

satellite Sends email remotely, using a smarthost to relay messages; does not
receive mail locally.

local Sends and receives local messages only.

none No configuration; exim4 will not work.

dc_hide_mailname='bool'
Controls whether exim4 displays the local mailname (from /etc/mailname,
page 718) in the headers of email originating on local systems. Set bool to true to
hide (not display) the local mailname or false to display it. When you set this vari-
able to true, exim4 uses the value of dc_readhost in headers.

dc_local_interfaces='interface-list'
The interface-list is a semicolon-separated list of interfaces that exim4 listens on.
Set interface-list to the null value ('') to cause exim4 to listen on all interfaces. Set it
to 127.0.0.1 to prevent exim4 from accepting email from other systems.

dc_localdelivery='lcl-transport'
Set lcl-transport to mail_spool to cause exim4 to store email in mbox format; set it
to maildir_home for maildir format. See page 720 for more information.

dc_mailname_in_oh='bool'
Used internally by exim4. Do not change this value.

 From the Library of WoweBook.Com

ptg

726 Chapter 20 exim4: Setting Up Mail Servers, Clients, and More

dc_minimaldns='bool'
Set bool to true to minimize DNS lookups (useful for dial-up connections) or to
false to perform DNS lookups as needed.

dc_other_hostnames='host-list'
The host-list is a semicolon-separated list of IP addresses and/or FQDNs the local
system accepts (but does not relay) email for; localhost (127.0.0.1) is assumed to be
in this list.

dc_readhost='hostname'
The hostname replaces the local mailname in the headers of email originating on
local systems. This setting is effective only if dc_hide_mailname is set to true and
dc_eximconfig_configtype is set to smarthost or satellite.

dc_relay_domains='host-list'
The host-list is a semicolon-separated list of IP addresses and/or FQDNs the local
system accepts mail for, but does not deliver to local systems. The local system
relays mail to these systems. For example, the local system may be a secondary
server for these systems.

dc_relay_nets='host-list'
The host-list is a semicolon-separated list of IP addresses and/or FQDNs of systems
that the local system relays mail for. The local system is a smarthost (page 717) for
these systems.

dc_smarthost='host-list'
The host-list is a semicolon-separated list of IP addresses (preferred) and/or FQDNs
the local system sends email to for relaying to nonlocal systems (a smarthost;
page 717). See “JumpStart I” on page 716 for an example.

dc_use_split_config='bool'
Controls which files update-exim4.conf uses to generate the configuration file for
exim4. See “Split configuration” (page 725) for more information.

dpkg-reconfigure: Configures exim4

The dpkg-reconfigure utility reconfigures the installed copy of a software package. It
displays a pseudographical window that can be used from any character-based
device, including a terminal emulator. The following command enables you to
reconfigure exim4 interactively:

$ sudo dpkg-reconfigure exim4-config

The first window this command displays briefly explains the differences between the
split and unsplit configurations (page 725), tells you where you can find more informa-
tion on this topic, and asks if you want to set up the split configuration (Figure 20-1).
If you choose to set up a split configuration, dpkg-reconfigure assigns a value of true to
dc_use_split_config (see “Split configuration” on page 725) and continues as though
you had chosen to use an unsplit configuration: It does not modify files in the
/etc/exim4/conf.d directory hierarchy. This setup causes update-exim4.conf to read the
files in the /etc/exim4/conf.d directory hierarchy, incorporating any changes you
make to those files.

 From the Library of WoweBook.Com

ptg

SpamAssassin 727

The dpkg-reconfigure utility continues providing information, asking questions, and
assigning values to the variables in /etc/exim4/update-exim4.conf.conf (page 724).
It may also change the string in /etc/mailname (page 718). When it is finished, it
restarts exim4, running update-exim4.conf in the process.

SpamAssassin

Spam—or more correctly UCE (unsolicited commercial email)—accounts for more
than three-fourths of all email. SpamAssassin evaluates each piece of incoming
email and assigns it a number that indicates the likelihood that the email is spam.
The higher the number, the more likely that the email is spam.You can filter email
based on its rating. SpamAssassin is effective as installed, but you can modify its
configuration files to make it better fit your needs. See page 715 for sources of more
information on SpamAssassin.

How SpamAssassin Works

spamc and spamd SpamAssassin comprises the spamd daemon and the spamc client. Although it
includes the spamassassin utility, the SpamAssassin documentation suggests using
spamc and not spamassassin to filter mail because spamc is much quicker to load than
spamassassin. While spamassassin works alone, spamc calls spamd. The spamd
daemon spawns children; when spamd is running, ps displays several spamd child
processes in addition to the parent spamd process:

$ ps -ef | grep spam
root 5073 1 0 10:53 ? 00:00:00 /usr/sbin/spamd --create-prefs ...
root 5106 5073 0 10:53 ? 00:00:00 spamd child
root 5107 5073 0 10:53 ? 00:00:00 spamd child
zach 16080 6225 0 12:58 pts/0 00:00:00 grep spam

Figure 20-1 Using dpkg-reconfigure on exim4-config

 From the Library of WoweBook.Com

ptg

728 Chapter 20 exim4: Setting Up Mail Servers, Clients, and More

The spamc utility is a filter. That is, it reads each piece of email from standard input,
sends the email to spamd for processing, and writes the modified email to standard
output. The spamd daemon uses several techniques to identify spam:

• Header analysis—Checks for tricks that people who send spam use to
make you think email is legitimate.

• Text analysis—Checks the body of an email for characteristics of spam.

• Blacklists—Checks lists to see whether the sender is known for sending spam.

• Database—Checks the signature of the message against Vipul’s Razor
(razor.sourceforge.net), a spam-tracking database.

Prerequisites

Packages Install the following packages:

• spamassassin

• spamc

• procmail (needed to run SpamAssassin on a mail server; page 730)

When you install the spamassassin package, the dpkg postinst script does not start
the spamd daemon. Before you can start spamd, you must change the value
assigned to ENABLED to 1 in /etc/default/spamassassin. Typically you do not need
to make other changes to this file.

$ cat /etc/default/spamassassin
...
Change to one to enable spamd
ENABLED=1
...

spamassassin init
script

After making this change, start the spamd daemon with the following command:

$ sudo service spamassassin start
Starting SpamAssassin Mail Filter Daemon: spamd.

After modifying any system SpamAssassin configuration files, give the same command,
but replacing start with reload, to cause spamd to reread its configuration files.

Testing SpamAssassin

With spamd running, you can see how spamc works by sending it a string:

$ echo "hi there" | spamc
...
X-Spam-Checker-Version: SpamAssassin 3.3.1 (2010-03-16) on 10.04B1
X-Spam-Flag: YES
X-Spam-Level: ******
X-Spam-Status: Yes, score=6.9 required=5.0 tests=EMPTY_MESSAGE,MISSING_DATE,
 MISSING_HEADERS,MISSING_MID,MISSING_SUBJECT,NO_HEADERS_MESSAGE,NO_RECEIVED,
 NO_RELAYS autolearn=no version=3.3.1
...
Content analysis details: (6.9 points, 5.0 required)

 From the Library of WoweBook.Com

ptg

SpamAssassin 729

 pts rule name description
---- ---------------------- --
-0.0 NO_RELAYS Informational: message was not relayed via SMTP
 1.2 MISSING_HEADERS Missing To: header
 0.1 MISSING_MID Missing Message-Id: header
 1.8 MISSING_SUBJECT Missing Subject: header
 2.3 EMPTY_MESSAGE Message appears to have no textual parts and no
 Subject: text
-0.0 NO_RECEIVED Informational: message has no Received headers
 1.4 MISSING_DATE Missing Date: header
 0.0 NO_HEADERS_MESSAGE Message appears to be missing most RFC-822 headers
...

Of course, SpamAssassin complains because the string you gave it did not contain
standard email headers. The logical line that starts with X-Spam-Status contains the
heart of the report on the string hi there. First it says Yes (it considers the message to
be spam). SpamAssassin uses a rating system that assigns a number of hits to a piece
of email. If the email receives more than the required number of hits (5.0 by
default), SpamAssassin marks it as spam. The string failed for many reasons that
are enumerated on this status line. The reasons are detailed in the section labeled
Content analysis details.

The following listing is from a real piece of spam processed by SpamAssassin. It
received 24.5 hits, indicating that it is almost certainly spam.

X-Spam-Status: Yes, hits=24.5 required=5.0
tests=DATE_IN_FUTURE_06_12,INVALID_DATE_TZ_ABSURD,
 MSGID_OE_SPAM_4ZERO,MSGID_OUTLOOK_TIME,
 MSGID_SPAMSIGN_ZEROES,RCVD_IN_DSBL,RCVD_IN_NJABL,
 RCVD_IN_UNCONFIRMED_DSBL,REMOVE_PAGE,VACATION_SCAM,
 X_NJABL_OPEN_PROXY
version=2.55

X-Spam-Level: ************************
X-Spam-Checker-Version: SpamAssassin 2.55 (1.174.2.19-2003-05-19-exp)
X-Spam-Report: This mail is probably spam. The original message has been attached
 along with this report, so you can recognize or block similar unwanted
 mail in future. See http://spamassassin.org/tag/ for more details.
 Content preview: Paradise SEX Island Awaits! Tropical 1 week vacations
 where anything goes! We have lots of WOMEN, SEX, ALCOHOL, ETC! Every
 man’s dream awaits on this island of pleasure. [...]
 Content analysis details: (24.50 points, 5 required)
 MSGID_SPAMSIGN_ZEROES (4.3 points) Message-Id generated by spam tool (zeroes variant)
 INVALID_DATE_TZ_ABSURD (4.3 points) Invalid Date: header (timezone does not exist)
 MSGID_OE_SPAM_4ZERO (3.5 points) Message-Id generated by spam tool (4-zeroes variant)
 VACATION_SCAM (1.9 points) BODY: Vacation Offers
 REMOVE_PAGE (0.3 points) URI: URL of page called “remove”
 MSGID_OUTLOOK_TIME (4.4 points) Message-Id is fake (in Outlook Express format)
 DATE_IN_FUTURE_06_12 (1.3 points) Date: is 6 to 12 hours after Received: date
 RCVD_IN_NJABL (0.9 points) RBL: Received via a relay in dnsbl.njabl.org
 [RBL check: found 94.99.190.200.dnsbl.njabl.org.]
 RCVD_IN_UNCONFIRMED_DSBL (0.5 points) RBL: Received via a relay in unconfirmed.dsbl.org
 [RBL check: found 94.99.190.200.unconfirmed.dsbl.org.]
 X_NJABL_OPEN_PROXY (0.5 points) RBL: NJABL: sender is proxy/relay/formmail/spam-source
 RCVD_IN_DSBL (2.6 points) RBL: Received via a relay in list.dsbl.org
 [RBL check: found 211.157.63.200.list.dsbl.org.]
X-Spam-Flag: YES
Subject: [SPAM] re: statement

 From the Library of WoweBook.Com

ptg

730 Chapter 20 exim4: Setting Up Mail Servers, Clients, and More

Configuring SpamAssassin

SpamAssassin looks in many locations for configuration files; for details, refer to
the spamassassin man page. The easiest configuration file to work with is
/etc/mail/spamassassin/local.cf. You can edit this file to configure SpamAssassin
globally. Users can override these global options and add their own options in the
~/.spamassassin/user_prefs file. You can put the options discussed in this section in
either of these files.

For example, you can configure SpamAssassin to rewrite the Subject line of email
that it rates as spam. The rewrite_header keyword in the configuration files controls
this behavior. The word Subject following this keyword tells SpamAssassin to
rewrite Subject lines. Remove the # from the following line to turn on this behavior:

rewrite_header Subject *****SPAM*****

The required_score keyword specifies the minimum score a piece of email must
receive before SpamAssassin considers it to be spam. The default is 5.00. Set the
value of this keyword to a higher number to cause SpamAssassin to mark fewer
pieces of email as spam.

required_score 5.00

Sometimes mail from addresses that should be marked as spam is not, or mail from
addresses that should not be marked as spam is. Use the whitelist_from keyword to
specify addresses that should never be marked as spam and blacklist_from to specify
addresses that should always be marked as spam:

whitelist_from sams@example.com
blacklist_from *@spammer.net

You can specify multiple addresses, separated by SPACEs, on the whitelist_from and
blacklist_from lines. Each address can include wildcards. To whitelist everyone
sending email from the example.com domain, use whitelist_from *@example.com.
You can use multiple whitelist_from and blacklist_from lines.

Running SpamAssassin on a Mail Server

This section explains how to set up SpamAssassin on a mail server so that it will
process all email being delivered to local systems before it is sent to users. It shows
how to use procmail as the MDA and have procmail send email through spamc.

Also make sure the procmail package is installed on the server system. Next, if the
/etc/procmailrc configuration file does not exist, create it so that this file is owned
by root and has 644 permissions and the following contents. If it does exist, append
the last two lines from the following file to it:

$ cat /etc/procmailrc
DROPPRIVS=yes
:0 fw
| /usr/bin/spamc

 From the Library of WoweBook.Com

ptg

Additional Email Tools 731

The first line of this file ensures that procmail runs with the least possible privileges.
The next two lines implement a rule that pipes each user’s incoming email through
spamc. The :0 tells procmail that a rule follows. The f flag indicates a filter; the w
flag causes procmail to wait for the filter to complete and check the exit code. The
last line specifies that the /usr/bin/spamc utility will be used as the filter.

With this file in place, all email that the server system receives for local delivery
passes through SpamAssassin, which rates it according to the options in the global
configuration file. Users with accounts on the server system can override the global
SpamAssassin configuration settings in their ~/.spamassassin/user_prefs files.

When you run SpamAssassin on a server, you typically want to rate the email conser-
vatively so that fewer pieces of good email are marked as spam. Setting required_hits
in the range of 6–10 is generally appropriate. Also, you do not want to remove any
email automatically because you could prevent a user from getting a piece of nonspam
email. When the server marks email as possibly being spam, users can manually or
automatically filter the spam and decide what to do with it.

Additional Email Tools

This section covers Webmail and mailing lists. In addition, it discusses how to set up
IMAP and POP3 servers.

Webmail

Traditionally you read email using a dedicated email client such as mail or Evolu-
tion. Recently it has become more common to use a Web application to read email.
If you have an email account with a commercial provider such as Gmail, HotMail,
or Yahoo! Mail, you use a Web browser to read email. Email read in this manner is
called Webmail. Unlike email you read on a dedicated client, you can read Webmail
from anywhere you can open a browser on the Internet: You can check your email
from an Internet cafe or a friend’s computer, for example.

SquirrelMail SquirrelMail provides Webmail services. It is written in PHP and supports the IMAP
and SMTP protocols. For maximum compatibility across browsers, SquirrelMail
renders pages in HTML 4.0 without the use of JavaScript.

SquirrelMail is modular, meaning that you can easily add functionality using plug-
ins. Plugins can allow you to share a calendar, for example, or give you the ability to
change passwords using the Webmail interface. See the plugins section of the
SquirrelMail Web site (www.squirrelmail.org) for more information.

To use SquirrelMail, you must run IMAP (page 735) because SquirrelMail uses
IMAP to receive and authenticate email. You must also run Apache (Chapter 26)
so a user can use a browser to connect to SquirrelMail. Because the squirrelmail
package depends on several Apache packages, APT installs apache2 when it installs
squirrelmail. You need to install an IMAP package manually.

 From the Library of WoweBook.Com

www.squirrelmail.org

ptg

732 Chapter 20 exim4: Setting Up Mail Servers, Clients, and More

Installation Install the following packages:

• squirrelmail

• apache2 (page 902; installed as a dependency when you install squirrelmail)

• exim4 (page 714) or sendmail

• php5-cgi

• dovecot-imapd (page 735) or another IMAP server

Startup You do not need to start SquirrelMail, nor do you have to open any ports for it. How-
ever, you need to configure, start, and open ports (if the server is running on a system
with a firewall) for exim4 (page 718), IMAP (page 735), and Apache (page 903).

Configuration The SquirrelMail files reside in /usr/share/squirrelmail. Create the following link to
make SquirrelMail accessible from the Web:

$ sudo ln -s /usr/share/squirrelmail /var/www/mail

Give the following command to configure SquirrelMail:

$ sudo squirrelmail-configure
SquirrelMail Configuration : Read: config.php (1.4.0)

Main Menu --
1. Organization Preferences
2. Server Settings
3. Folder Defaults
4. General Options
5. Themes
6. Address Books
7. Message of the Day (MOTD)
8. Plugins
9. Database
10. Languages

D. Set pre-defined settings for specific IMAP servers

C Turn color on
S Save data
Q Quit

Command >>

This menu has multiple levels. When you select a setting (and not a submenu),
squirrelmail-configure displays information that can help you decide how to answer
the question it poses. Set the server’s domain name (number 1 on the Server Settings
page) and the name of the IMAP server you are using (D on the main menu).
SquirrelMail provides several themes; if you do not like the way SquirrelMail looks,
choose another theme from Themes (number 5). When you are finished making
changes, exit from squirrelmail-configure. Run squirrelmail-configure whenever you
want to change the configuration of SquirrelMail.

SquirrelMail provides a Web page that tests its configuration. Point a browser on the
server at localhost/mail/src/configtest.php. Replace localhost with the IP address or

 From the Library of WoweBook.Com

ptg

Additional Email Tools 733

FQDN of the server to view the page from another system. SquirrelMail checks its
configuration and displays the results on this page. Figure 20-2 shows that Squirrel-
Mail cannot connect to the IMAP server on the local system, probably because
IMAP has not been installed.

Logging in Point a Web browser at localhost/mail or localhost/mail/src/login.php to display
the SquirrelMail login page (Figure 20-3). Replace localhost with the IP address or
FQDN of the server to view the page from another system. Enter the username and
password of a user who has an account on the server system.

Mailing Lists

A mailing list can be an asset if you regularly send email to the same large group of
people. It offers several advantages over listing numerous recipients in the To or Cc
field of an email or sending the same email individually to many people:

• Anonymity—None of the recipients of the email can see the addresses of
the other recipients.

Figure 20-2 SquirrelMail running a configuration test

Figure 20-3 SquirrelMail login page

 From the Library of WoweBook.Com

ptg

734 Chapter 20 exim4: Setting Up Mail Servers, Clients, and More

• Archiving—Email sent to the list is stored in a central location where list
members or the public, as specified by the list administrator, can browse
through it.

• Access control—You can specify who can send email to the list.

• Consistency—When you send mail to a group of people using To or Cc, it
is easy to forget people who want to be on the list and to erroneously
include people who want to be off the list.

• Efficiency—A mailing list application spreads email transmissions over
time so it does not overload the mail server.

Mailman Mailman, the GNU list manager, is written mostly in Python and manages email
discussions and email newsletter lists. Because it is integrated with the Web, Mail-
man makes it easy for users to manage their accounts and for administrators to
manage lists. See the Mailman home page (www.list.org) and the files in the
/usr/share/doc/mailman directory for more information.

Prerequisites Install the mailman package and an MTA such as exim4 (page 715). To use the Web
interface you must install Apache (page 902).

Installing Mailman When you install the mailman package, the dpkg postinst script displays a pseudo-
graphical interface that asks you to specify the language you want Mailman to display
and tells you that you must create a site list. Give the following newlist command to
create a site list, substituting the name of your mailing site for painting_class:

$ sudo newlist painting_class
Enter the email of the person running the list: helen@example.com
Initial painting_class password:
To finish creating your mailing list, you must edit your /etc/aliases (or
equivalent) file by adding the following lines, and possibly running the
'newaliases' program:

painting_class mailing list
painting_class: "|/var/lib/mailman/mail/mailman post painting_class"
painting_class-admin: "|/var/lib/mailman/mail/mailman admin painting_class"
painting_class-bounces: "|/var/lib/mailman/mail/mailman bounces painting_class"
painting_class-confirm: "|/var/lib/mailman/mail/mailman confirm painting_class"
painting_class-join: "|/var/lib/mailman/mail/mailman join painting_class"
painting_class-leave: "|/var/lib/mailman/mail/mailman leave painting_class"
painting_class-owner: "|/var/lib/mailman/mail/mailman owner painting_class"
painting_class-request: "|/var/lib/mailman/mail/mailman request painting_class"
painting_class-subscribe: "|/var/lib/mailman/mail/mailman subscribe painting_class"
painting_class-unsubscribe: "|/var/lib/mailman/mail/mailman unsubscribe painting_class"

Hit enter to notify painting_class owner...

Before users on the list can receive email, you need to copy the lines generated by
newlist (the ones that start with the name of your mailing site) to the end of
/etc/aliases (page 722) and run newaliases (page 723).

mailman site list Before you can start Mailman, you must create a site list named mailman. Give the
command sudo newlist mailman, copy the lines to the aliases file, and run newaliases.

 From the Library of WoweBook.Com

www.list.org

ptg

Additional Email Tools 735

mailman init script After setting up the mailman site list and a site list of your choice, start the Mailman
qrunner daemon with the following command:

$ sudo service mailman start
* Starting Mailman master qrunner mailmanctl [OK]

After modifying any Mailman configuration files or adding a new site list, give the
same command, but replacing start with reload, to cause Mailman to reread its
configuration files.

mm_cfg.py The main Mailman configuration file is /etc/mailman/mm_cfg.py. When you install
Mailman, it automatically assigns values to DEFAULT_EMAIL_HOST (the default
domain for mailing lists) and DEFAULT_URL_HOST (the default Web server for
Mailman). Change the value of these variables as needed and restart Mailman.

$ cat /etc/mailman/mm_cfg.py
...
Default domain for email addresses of newly created MLs
DEFAULT_EMAIL_HOST = 'example.com'

Default host for web interface of newly created MLs
DEFAULT_URL_HOST = 'example.com'
...

Web interface Assuming the host for the Web interface is example.com, anyone can point a
browser at example.com/cgi-bin/mailman/listinfo to display a list of available
mailing lists. Click the name of a mailing list to display a page that allows you to
view the list’s archives, send a message, or subscribe to the list. At the bottom of
the page is a link to the administrative interface for the list.

Setting Up an IMAP or POP3 Mail Server

Dovecot IMAP (Internet Message Access Protocol) and POP (Post Office Protocol) allow
users to retrieve and manipulate email remotely. This section explains how to set
up servers for these protocols. Dovecot (www.dovecot.org and wiki.dovecot.org)
provides the imap-login and pop3-login daemons that implement these protocols.

Prerequisites Install the dovecot-pop3d (for a POP3 server) and/or dovecot-imapd (for an IMAP
server) packages. APT installs the dovecot-common package automatically when
you install one of these packages. When you install either package, the dpkg postinst
script for the dovecot-common package generates self-signed SSL certificates if they
do not already exist.

Configuration Dovecot will not start until you specify in the /etc/dovecot/dovecot.conf configura-
tion file which servers you want to run. Near the beginning of this long file is a line
that starts with protocols =. Put the names of the servers you want to run at the end
of this line. Possible servers, depending on which packages you have installed, are
imap (IMAP on port 143), imaps (IMAP over SSL on port 993), pop3 (POP3 on
port 110), and pop3s (POP3 over SSL on port 995). See /usr/share/doc/dovecot*
for more information.

 From the Library of WoweBook.Com

www.dovecot.org

ptg

736 Chapter 20 exim4: Setting Up Mail Servers, Clients, and More

dovecot init script After configuring Dovecot, start the Dovecot daemon(s) with the following command:

$ sudo service dovecot start

After modifying a Dovecot configuration file, give the same command, but replac-
ing start with restart, to cause Dovecot to reread its configuration files.

Authenticated Relaying

If you travel with a portable computer such as a laptop, you may connect to the
Internet through a different connection at each location where you work. Perhaps
you travel for work, or maybe you just bring your laptop home at night.

This section does not apply if you always dial in to the network through your ISP. In
that case, you are always connected to your ISP’s network and it is as though you
never moved your computer.

On a laptop you do not use a local instance of exim4 to send email. Instead, you use
SMTP to connect to an ISP or to a company’s SMTP server (a smarthost), which
then relays your outgoing mail. To avoid relaying email for anyone, including mali-
cious users who would send spam, SMTP servers restrict who they relay email for,
based on IP address. By implementing authenticated relaying, you can cause the
SMTP server to authenticate, based on user identification. In addition, SMTP can
encrypt communication when you send mail from your email client and use an
SMTP server.

An authenticated relay provides several advantages over a plain connection:

• You can send email from any Internet connection.

• The secure connection makes it more difficult to intercept email as it
traverses the Internet.

• The outgoing mail server requires authentication, preventing it from being
used for spam.

You set up authenticated relaying by creating an SSL certificate or using an existing
one, enabling SSL in exim4, and telling your email client to connect to the SMTP
server using SSL. If you have an SSL certificate from a company such as VeriSign,
you can skip the next section, in which you create a self-signed certificate.

Creating a Self-Signed Certificate for exim4
Typically, installing Dovecot generates self-signed certificates. If necessary, give the
following command to create SSL certificates for exim4. The keys are stored in
exim.key and exim.crt in the /etc/exim4 directory. Apache uses a similar procedure
for creating a certificate (page 943).

$ sudo /usr/share/doc/exim4-base/examples/exim-gencert
[*] Creating a self signed SSL certificate for Exim!

 From the Library of WoweBook.Com

ptg

Authenticated Relaying 737

 This may be sufficient to establish encrypted connections but for
 secure identification you need to buy a real certificate!

 Please enter the hostname of your MTA at the Common Name (CN) prompt!

Generating a 1024 bit RSA private key
..............++++++
..............++++++
writing new private key to '/etc/exim4/exim.key'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Code (2 letters) [US]:
State or Province Name (full name) []:California
Locality Name (eg, city) []:San Francisco
Organization Name (eg, company; recommended) []:Sobell Associates Inc.
Organizational Unit Name (eg, section) []:
Server name (eg. ssl.domain.tld; required!!!) []:sobell.com
Email Address []:mgs@sobell.com
[*] Done generating self signed certificates for exim!
 Refer to the documentation and example configuration files
 over at /usr/share/doc/exim4-base/ for an idea on how to enable TLS
 support in your mail transfer agent.

You can enter any information you wish in the certificate.

Enabling SSL in exim4
Once you have a certificate, create a file named exim4.conf.localmacros in the
/etc/exim4 directory (you have to work with root privileges). With the following
contents, this file instructs exim4 to use SSL certificates:

$ cat /etc/exim4/exim4.conf.localmacros
MAIN_TLS_ENABLE = 1

Because exim4 will be relaying email, you need to add the name of the system you
will be sending email from to the dc_relay_nets variable (page 726). Restart exim4
(page 716).

Enabling SSL in the Mail Client

Enabling SSL in a mail client is usually quite simple. For example, Evolution pro-
vides the Edit Preferences Mail Accounts Sending Email Security Use Secure
Connection combo box that allows you to choose the type of encryption you
want to use: No encryption, SSL encryption, or TLS encryption. Clicking the
Check for Supported Types button (found just below this combo box) queries the
server and sets Evolution to use the type of security and authentication the server
supports.

 From the Library of WoweBook.Com

ptg

738 Chapter 20 exim4: Setting Up Mail Servers, Clients, and More

Chapter Summary

The exim4 daemon is an MTA (mail transfer agent). When you send a message,
exim4 works with other software to get the email to the proper recipients. You can set
up exim4 to send email to an SMTP server that then relays the email to its destination
or you can have exim4 send email directly to the SMTP servers for the domains
receiving the email. By default, exim4 stores incoming messages in the mail spool
directory, /var/mail.

The /etc/exim4/update-exim4.conf.conf file controls many aspects of how exim4
works. After you edit this file, you must use the exim4 init script to restart exim4 so
it rereads its configuration files. The system administrator can use the /etc/aliases
file and ordinary users can use ~/.forward files to reroute email to one or more local
or remote addresses, to files, or as input to programs.

You can use a program such as SpamAssassin to grade and mark email as to the
likelihood of it being spam. You can then decide what to do with the marked email:
You can look at each piece of potential spam and decide where to put it, or you can
have your MUA automatically put potential spam in a special mailbox for spam.

Other programs that can help with email include SquirrelMail, which provides Web-
mail services, and Mailman, which provides mailing list support. IMAP (Internet
Message Access Protocol) and POP (Post Office Protocol) allow users to retrieve and
manipulate email remotely. The Dovecot system provides IMAP and POP servers.

Exercises

1. By default, email addressed to system goes to root. How would you also
save a copy in /var/logs/systemmail?

2. How would Max store a copy of his email in ~/mbox and send a copy to
max@example.com?

3. If your firewall allowed only the machine with the IP address 192.168.1.1
to send email outside the network, how would you instruct the local copy
of exim4 to use this server as a relay?

4. Describe how setting the dc_eximconfig_configtype variable in
/etc/exim4/update-exim4.conf.conf to smarthost affects exim4 behavior.
What happens when you set this variable to internet?

5. SpamAssassin is installed on your mail server, with the threshold set to an
unusually low value of 3, resulting in a lot of false positives. What rule
could you give to your mail client to allow it to identify spam with a score
of 5 or higher?

 From the Library of WoweBook.Com

ptg

Advanced Exercises 739

6. Describe the software and protocols used when Max sends an email to
Sam on a remote Linux system.

Advanced Exercises

7. Explain the differences between configuring exim4 to use a split configuration
and configuring it to use an unsplit configuration. Which files would you
modify to set up each type of configuration? Name two files that are read by
both configurations.

8. Assume a script stores certain information in a variable named RESULT.
What line could you put in the script that would send the contents of
RESULT to the email address specified by the first argument on the
command line?

9. Give a simple way of reading your email that does not involve the use of
an MUA.

10. Describe the relationship between spamassassin, spamd, and spamc. How
does each work? Why not use the spamassassin utility by itself?

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

777444111

21Chapter21NIS (Network Information Service) simplifies the maintenance
of common administrative files by keeping them in a central
database and having clients contact the database server to
retrieve information from the database. Developed by Sun
Microsystems, NIS is an example of the client/server paradigm.

Just as DNS addresses the problem of keeping multiple copies of
/etc/hosts files up-to-date, so NIS deals with the issue of keeping
system-independent configuration files (such as /etc/passwd)
current. Most networks today are heterogeneous (page 1151);
even though they run different varieties of UNIX or Linux, they
have certain common attributes, such as a passwd file.

An LDAP (Lightweight Directory Access Protocol) directory
can hold many types of information, including names and
addresses, lists of network services, and authentication data.
Another example of a client/server setup, LDAP is appropriate
for any kind of relatively static, structured information where
fast lookups are required. Many types of clients are set up to
communicate with LDAP servers, including email clients,
browsers, and authentication servers.

In This Chapter

How NIS Works 742

Running an NIS Client 744

yppasswd: Changes NIS
Passwords 748

Setting Up an NIS Server 750

yppasswdd: The NIS Password
Update Daemon. 757

LDAP . 758

Setting Up an LDAP Server 760

Other Tools for Working with
LDAP . 767

21

NIS and LDAP

 From the Library of WoweBook.Com

ptg

742 Chapter 21 NIS and LDAP

Introduction to NIS

A primary goal of a LAN administrator is to make the network transparent to
users. One aspect of this transparency is presenting users with similar environments,
including usernames and passwords, when they log in on different machines. From
the administrator’s perspective, the information that supports a user’s environment
should not be replicated but rather should be kept in a central location and distrib-
uted as required. NIS simplifies this task.

As with DNS, users need not be aware that NIS is managing system configuration
files. Setting up and maintaining NIS databases are tasks for the system administra-
tor; individual users and users on single-user Linux systems rarely need to work
directly with NIS.

Yellow Pages NIS used to be called the Yellow Pages, and some people still refer to it by this
name. Sun renamed the service because another corporation holds the trademark to
the Yellow Pages name. The names of NIS utilities and files, however, are reminis-
cent of the old name: ypcat displays and ypmatch searches an NIS file, and the server
daemon is named ypserv.

How NIS Works

No encryption NIS does not encrypt data it transfers over the network—it transfers data as plain text.

NIS domain NIS makes a common set of information available to systems on a network. The
network, referred to as an NIS domain, is characterized by each system having the
same NIS domain name (different than a DNS domain name [page 1146]). Techni-
cally an NIS domain is a set of NIS maps (database files).

Master and slave
servers

Each NIS domain must have exactly one master server; larger networks may have
slave servers. Each slave server holds a copy of the NIS database from the master.
The need for slave servers is based on the size of the NIS domain and the reliability
of the systems and network. A system can belong to only one NIS domain at a time.

nsswitch.conf Whether a system uses NIS, DNS, local files, or a combination of these as the source
of certain information, and in what order, is determined by the /etc/nsswitch.conf
file (page 475). When it needs information from the NIS database, a client requests
the information from the NIS server. For example, when a user attempts to log in,
the client system may authenticate the user with username and password informa-
tion from the NIS server.

You can configure nsswitch.conf to cause /etc/passwd to override NIS password
information for the local system. When you do not export the root account to NIS
(and you should not), this setup allows you to have a unique root password (or no
root password, if the root account is locked) for each system.

Source files Under Ubuntu Linux, NIS derives the information it offers—such as usernames,
passwords, and local system names and IP addresses—from local ASCII configura-
tion files such as /etc/passwd and /etc/hosts. These files are called source files or
master files. (Some administrators avoid confusion by using different files to hold

 From the Library of WoweBook.Com

ptg

Introduction to NIS 743

local configuration information and NIS source information.) An NIS server can
include information from as many of the following source files as is appropriate:

/etc/group Defines groups and their members
/etc/gshadow Provides shadow passwords for groups
/etc/hosts Maps local systems and IP addresses
/etc/passwd Lists user information
/etc/printcap Lists printer information
/etc/rpc Maps RPC program names and numbers
/etc/services Maps system service names and port numbers
/etc/shadow Provides shadow passwords for users

The information that NIS offers is based on files that change from time to time. NIS
is responsible for making the updated information available in a timely manner to
all systems in the NIS domain.

NIS maps Before NIS can store the information contained in a source file, it must be converted
to a dbm (page 1144) format file called a map. Each map is indexed on one field
(column). Records (rows) from a map can be retrieved by specifying a value from the
indexed field. Some files generate two maps, each indexed on a different field. For
example, the /etc/passwd file generates two maps: one indexed by username, the
other indexed by UID. These maps are named passwd.byname and passwd.byuid,
respectively.

optional NIS maps correspond to C library functions. The getpwnam() and getpwuid() func-
tions obtain username and UID information from /etc/passwd on non-NIS systems.
On NIS systems, these functions place RPC calls to the NIS server in a process that
is transparent to the application calling the function.

Map names The names of the maps NIS uses correspond to the files in the /var/yp/nisdomain-
name directory on the master server, where nisdomainname is the name of the NIS
domain. The examples in this chapter use the NIS domain named mgs:

$ ls /var/yp/mgs
group.bygid netgroup.byhost protocols.byname services.byservicename
group.byname netgroup.byuser protocols.bynumber shadow.byname
hosts.byaddr netid.byname rpc.byname ypservers
hosts.byname passwd.byname rpc.bynumber
netgroup passwd.byuid services.byname

Map nicknames To make it easier to refer to NIS maps, you can assign nicknames to them. The
/var/yp/nicknames file on both clients and servers holds a list of commonly used
nicknames:

$ cat /var/yp/nicknames
passwd passwd.byname
group group.byname
networks networks.byaddr
hosts hosts.byname
protocols protocols.bynumber
services services.byname
aliases mail.aliases
ethers ethers.byname

 From the Library of WoweBook.Com

ptg

744 Chapter 21 NIS and LDAP

You can also use the command ypcat –x to display the list of nicknames. Each line
in nicknames contains a nickname followed by whitespace and the name of the map
corresponding to the nickname. You can add, remove, or modify nicknames by
changing the nicknames file.

Displaying maps The ypcat and ypmatch utilities display information from the NIS maps on the
server. Using the nickname passwd, the following command, which you can run on
any NIS client in the local domain, displays the information contained in the
passwd.byname map:

$ ypcat passwd
sam:x:1000:1000:Sam,,,,:/home/sam:/bin/bash
sls:x:1001:1001:Sam the Great,,,,:/home/sls:/bin/bash
...

By default, NIS stores passwords only for users with UIDs greater than or equal to
1000 (see MINUID on page 753). Thus ypcat does not display lines for root, bin,
and other system entries. You can display password information for a single user
with ypmatch:

$ ypmatch sam passwd
sam:x:1000:1000:Sam,,,,:/home/sam:/bin/bash

You can retrieve the same information by filtering the output of ypcat through grep,
but ypmatch is more efficient because it searches the map directly, using a single pro-
cess. The ypmatch utility works on the key for the map only. To match members of
the group or other fields not in a map, such as the GECOS (page 1150) field in
passwd, you need to use ypcat and grep:

$ ypcat passwd | grep -i great
sls:x:1001:1001:Sam the Great,,,,:/home/sls:/bin/bash

Terminology This chapter uses the following definitions:

NIS source files The ASCII files that NIS obtains information from
NIS maps The dbm-format files created from NIS source files
NIS database The collection of NIS maps

More Information

Local man pages: domainname, makedbm, netgroup, revnetgroup, ypbind, ypcat, ypinit,
ypmatch, yppasswd, yppoll, yppush, ypset, ypserv, ypserv.conf, ypwhich, ypxfr,
ypxfrd

Web www.linux-nis.org
NIS-HOWTO

Running an NIS Client

This section explains how to set up an NIS client on the local system.

 From the Library of WoweBook.Com

www.linux-nis.org

ptg

Running an NIS Client 745

Prerequisites

Install Install the following packages:

• nis

• portmap (installs automatically with nis)

When you install the nis package, the dpkg postinst script starts an NIS client. See
the “nis init script” section below if you want to start an NIS server or do not want
to start an NIS client. The dpkg postinst script asks you to specify the NIS domain
name of the local system if it does not find one in /etc/defaultdomain. If necessary,
the script creates this file and stores the NIS domain name in that file. If this file
does not exist, the NIS client (ypbind) will not start. If there is a server for the
domain you specify, the client quickly binds to that server.

No server If there is no NIS server for the NIS client to bind to when you install or start an
NIS client or boot the system, the client spends several minutes trying to find a
server, displaying the following message while doing so:

...
Setting up nis (3.17-14ubuntu2) ...
* Setting NIS domainname to: mgs
* Starting NIS services
* binding to YP server...
*
*

...

Broadcast mode Finally the client (ypbind) gives up on finding a server and runs in the background
in broadcast mode:

$ ps -ef | grep ypbind
root 16832 1 0 19:33 ? 00:00:00 /usr/sbin/ypbind -broadcast
sam 17390 5839 0 19:38 pts/0 00:00:00 grep ypbind

Broadcast mode is less secure than other modes because it exposes the system to
rogue servers by broadcasting a request for a server to identify itself. If ypbind starts
in this mode, it is a good idea to restart it after you set up an NIS server (page 750)
and configure an NIS client as explained in the next section.

nis init script After you configure nis, call the nis init script to restart nis. However, as explained
earlier, starting nis takes a while if it cannot connect to a server. The /etc/default/nis
file specifies whether this script starts an NIS client, server, or both:

$ sudo service nis restart

After changing the nis configuration on an active server, use reload in place of restart
to reload nis configuration files without disturbing clients connected to the server.

Notes

If there is no NIS server for the local system’s NIS domain, you need to set one up
(page 750). If there is an NIS server, you need to know the name of the NIS domain

 From the Library of WoweBook.Com

ptg

746 Chapter 21 NIS and LDAP

the system belongs to and (optionally) the name or IP address of one or more NIS
servers for the NIS domain.

An NIS client can run on the same system as an NIS server.

/etc/default/nis The /etc/default/nis file controls several aspects of NIS running on the local system,
including whether the nis init script starts a client, a server, or both. As installed,
this file causes the nis init script to start an NIS client (ypbind) and not to start an
NIS server (ypserv). Set NISSERVER to false if the local system is not an NIS server
or to master or slave as appropriate if it is a server. Set NISCLIENT to true if the
local system is an NIS client; otherwise set it to false.

$ head /etc/default/nis
...
Are we a NIS server and if so what kind (values: false, slave, master)?
NISSERVER=false

Are we a NIS client?
NISCLIENT=true

In the nis file you can also specify which ports the NIS server uses (refer to “Firewall”
on page 751) and control which values in /etc/passwd users can modify (refer to
“Allow GECOS and Login Shell Modification” on page 757).

Configuring an NIS Client

This section lists the steps involved in setting up and starting an NIS client.

/etc/defaultdomain: Specifies the NIS Domain Name

The /etc/defaultdomain file stores the name of the NIS domain the local system
belongs to. If you change this value, you need to reload the client and/or server dae-
mon to get NIS to recognize the change. The nis init script reads the defaultdomain
file and sets the name of the system’s NIS domain. If the defaultdomain file does not
exist when you install NIS, the dpkg postinst script prompts for it (refer to “Install”
on page 745). You can use the nisdomainname utility to set or view the NIS domain
name, but setting it in this manner does not maintain the name when the nis init
script is executed (for example, when the system is rebooted):

$ sudo nisdomainname
(none)
$ sudo nisdomainname mgs
$ sudo nisdomainname
mgs

A DNS domain name is different from an NIS domain name
tip The DNS domain name is used throughout the Internet to refer to a group of systems. DNS maps

these names to IP addresses to enable systems to communicate with one another.

The NIS domain name is used strictly to identify systems that share an NIS server and is normally
not seen or used by users and other programs. Although some administrators use one name as
both a DNS domain name and an NIS domain name, this practice can degrade security.

 From the Library of WoweBook.Com

ptg

Running an NIS Client 747

/etc/yp.conf: Specifies an NIS Server

Edit /etc/yp.conf to specify one or more NIS servers (masters and/or slaves). You
can use one of three formats to specify each server:

domain nisdomain server server_name

domain nisdomain broadcast (do not use)

ypserver server_name

where nisdomain is the name of the NIS domain that the local (client) system
belongs to and server_name is the hostname of the NIS server that the local system
queries. It is best to specify server_name as an IP address or a hostname from
/etc/hosts. If you specify a hostname that requires a DNS lookup and DNS is down,
NIS will not find the server. The second format puts ypbind in broadcast mode and
is less secure than the first and third formats because it exposes the system to rogue
servers by broadcasting a request for a server to identify itself. Under Ubuntu
Linux, if you do not specify an NIS server, or if the server you specify is not avail-
able, an NIS client runs in broadcast mode.

Following is a simple yp.conf file for a client in the mgs domain with a server at
192.168.0.10:

$ cat /etc/yp.conf
domain mgs server 192.168.0.10

You can use multiple lines to specify multiple servers for one or more domains.
Specifying multiple servers for a single domain allows the system to change to
another server when its current server is slow or down.

When you specify more than one NIS domain, you must set the system’s NIS domain
name before starting ypbind so the client queries the proper server. Specifying the
NIS domain name in /etc/defaultdomain before running the ypbind init script takes
care of this issue (page 746).

Testing the Setup

After starting ypbind, use nisdomainname to make sure the correct NIS domain name is
set. Refer to “/etc/defaultdomain: Specifies the NIS Domain Name” on page 746 if you
need to set the NIS domain name. Next use ypwhich to check whether the system is set up
to connect to the proper server; the name of this server is set in /etc/yp.conf (page 747):

$ ypwhich
plum

To avoid confusion, use nisdomainname, not domainname
tip The domainname and nisdomainname utilities do the same thing: They display or set the sys-

tem’s NIS domain name. Use nisdomainname to avoid confusion when you are also working
with DNS domain names.

You must set the local system’s NIS domain name

tip If the /etc/defaultdomain file is not present, the NIS server and client will not start.

 From the Library of WoweBook.Com

ptg

748 Chapter 21 NIS and LDAP

Use rpcinfo to make sure the NIS server is up and running (replace plum with the
name of the server that ypwhich returned):

$ rpcinfo -u plum ypserv
program 100004 version 1 ready and waiting
program 100004 version 2 ready and waiting

After starting ypbind, check that it is registered with portmap:

$ rpcinfo -u localhost ypbind
program 100007 version 1 ready and waiting
program 100007 version 2 ready and waiting

If rpcinfo does not report that ypbind is ready and waiting, check that ypbind is running:

$ ps -ef | grep ypbind
root 23144 1 0 18:10 ? 00:00:00 /usr/sbin/ypbind
sam 23670 5553 0 18:31 pts/2 00:00:00 grep ypbind

If NIS still does not work properly, stop the NIS server and start ypbind with debugging
turned on:

$ sudo service nis stop

$ sudo /usr/sbin/ypbind -debug
7607: parsing config file
7607: Trying entry: domain mgs server 192.168.0.10
7607: parsed domain 'mgs' server '192.168.0.10'
7607: add_server() domain: mgs, host: 192.168.0.10, slot: 0
7607: [Welcome to ypbind-mt, version 1.20.1]

7607: ping interval is 20 seconds

7609: NetworkManager is running.

7609: Are already online
7609: interface: org.freedesktop.DBus, object path:
/org/freedesktop/DBus, method: NameAcquired
7610: ping host '192.168.0.10', domain 'mgs'
7610: Answer for domain 'mgs' from server '192.168.0.10'
7610: Pinging all active servers.
7610: Pinging all active servers.
...

The –debug option keeps ypbind in the foreground and causes it to send error mes-
sages and debugging output to standard error. Use CONTROL-C to stop ypbind when it is
running in the foreground.

yppasswd: Changes NIS Passwords

The yppasswd utility—not to be confused with the yppasswdd daemon (two d’s; see
page 757) that runs on the NIS server—replaces the functionality of passwd on cli-
ents when you use NIS for passwords. Where passwd changes password informa-
tion in the /etc/shadow file on the local system, yppasswd changes password

 From the Library of WoweBook.Com

ptg

Running an NIS Client 749

information in the /etc/shadow file on the NIS master server and in the NIS
shadow.byname map. Optionally, yppasswd can also change user information in the
/etc/passwd file and the passwd.byname map.

The yppasswd utility changes the way you log in on all systems in the NIS domain that
use NIS to authenticate passwords. It cannot change root and system passwords; by
default, NIS does not store passwords of users with UIDs greater than or equal to
1000. You have to use passwd to change these users’ passwords locally.

To use yppasswd, the yppasswdd daemon must be running on the NIS master server.

passwd Versus yppasswd
When a user who is authenticated using NIS passwords runs passwd to change her
password, all appears to work properly, yet the user’s password is not changed: The
user needs to use yppasswd. The root and system accounts, in contrast, must use
passwd to change their passwords. A common solution to this problem is first to
rename passwd—for example, to rootpasswd—and then to change its permissions so
only root can execute it.1 Second, create a link to yppasswd named passwd:

$ ls -l /usr/bin/passwd
-rwsr-xr-x 1 root root 29104 2009-12-19 12:35 /usr/bin/passwd
$ sudo -i
mv /usr/bin/passwd /usr/bin/rootpasswd
chmod 700 /usr/bin/rootpasswd
ln -s /usr/bin/yppasswd /usr/bin/passwd
exit
logout
$ ls -l /usr/bin/{yppasswd,passwd,rootpasswd}
lrwxrwxrwx 1 root root 17 2010-05-08 18:42 /usr/bin/passwd -> /usr/bin/yppasswd
-rwx------ 1 root root 29104 2009-12-19 12:35 /usr/bin/rootpasswd
-rwxr-xr-x 1 root root 20688 2010-03-07 12:45 /usr/bin/yppasswd

The preceding example uses sudo –i to open a shell with root permissions so the
administrator does not have to type sudo several times in a row. The administrator
returns to using a normal shell as soon as possible.

With this setup, a nonroot user changing his password using passwd will run yppasswd,
which is appropriate. If root or a system account user runs passwd (really yppasswd),
yppasswd displays an error that reminds the administrator to run rootpasswd.

Modifying User Information

As long as the yppasswdd daemon is running on the NIS master server, a user can
use the yppasswd utility from an NIS client to change her NIS password while a user

1. The passwd utility has setuid permission with read and execute permissions for all users and read, write,
and execute permissions for root. If, after changing its name and permissions, you want to restore its original
name and permissions, first change its name and then give the command chmod 4755 /usr/bin/passwd.
(You must work with root privileges to make these changes.)

 From the Library of WoweBook.Com

ptg

750 Chapter 21 NIS and LDAP

running with root privileges can change any user’s password (except that of root or
a system account). A user can also use yppasswd to change his login shell and
GECOS (page 1150) information if the yppasswdd daemon is set up to permit these
changes. Refer to “yppasswdd: The NIS Password Update Daemon” on page 757
for information on how to configure yppasswdd to permit users to change these val-
ues. Use the –p option with yppasswd to change the password, –f to change GECOS
information, and –l to change the login shell:

$ yppasswd -l
Changing NIS account information for sam on plum.
Please enter password:

To accept the default, simply press return. To use the
system's default shell, type the word "none".
Login shell [/bin/bash]: /bin/sh

The login shell has been changed on plum.

$ ypmatch sam passwd
sam:x:1000:1000:Sam,,,,:/home/sam:/bin/sh

If yppasswd does not work and the server system is running a firewall, refer to “Fire-
wall” on page 751.

Adding and Removing Users

There are several ways to add and remove users from the NIS passwd map. The
simplest approach is to keep the /etc/passwd file on the NIS master server synchro-
nized with the passwd map. You can keep these files synchronized by first making
changes to the passwd file using standard tools such as adduser and deluser, or their
graphical counterparts, and then running ypinit (page 755) to update the map.

Setting Up an NIS Server

This section explains how to set up an NIS server.

Prerequisites

Installation Decide on an NIS domain name (page 746) and install the following packages:

• nis

• portmap (installs automatically with nis)

nis init script When you install the nis package, the dpkg postinst script starts an NIS client. See
“Install” on page 745 for information on how to start a server, a client, or both.
The /etc/default/nis configuration file controls whether an NIS server starts as a
master or a slave (page 746). You may also want to specify the ports for the NIS
server and yppasswdd to run on (see “Firewall,” next page). After you configure the
server you can start, restart, or reload it with the nis init script:

$ sudo service nis restart

 From the Library of WoweBook.Com

ptg

Setting Up an NIS Server 751

Notes

An NIS client can run on the same system as an NIS server.

There must be only one master server for each domain.

You can run multiple NIS domain servers (for different domains) on a single system.

An NIS server serves the NIS domains listed in /var/yp. For a more secure system,
remove the maps directories from /var/yp when disabling an NIS server.

Firewall The NIS server (ypserv) and the NIS password daemon (yppasswdd) use portmap
(page 462) to choose which ports they accept queries on. The portmap server
hands out a random unused port below 1024 when a service, such as ypserv,
requests a port. Having ypserv and yppasswdd use random port numbers makes it
difficult to set up a firewall on an NIS server. You can specify ports by editing the
ypserv and yppasswdd option lines in /etc/default/nis (choose any unused ports less
than 1024):

YPSERVARGS='--port 114'
...
YPPASSWDDARGS='--port 112'

If the NIS server system is running a firewall, open the ports you specify. Using
gufw (page 876), open these ports by setting two policies: one that allows service
on each of these ports. If you follow the preceding example, allow service on ports
114 and 112.

Configuring the Server

This section lists the steps involved in setting up and starting an NIS server.

/etc/default/nis: Allows the NIS Server to Start

Edit the /etc/default/nis file as described on page 746 so that the nis init script starts
the NIS server. You can also specify ports for the NIS server and yppasswdd to listen
on in this file; refer to “Firewall” above.

Specify the System’s NIS Domain Name

Specify the system’s NIS domain name as explained on page 746. This step is taken
care of when you install the nis package.

/etc/ypserv.conf: Configures the NIS Server

The /etc/ypserv.conf file, which holds NIS server configuration information, specifies
options and access rules. Option rules specify server options and have the following
format:

option: value

 From the Library of WoweBook.Com

ptg

752 Chapter 21 NIS and LDAP

Options

Following is a list of options and their default values:

files Specifies the maximum number of map files that ypserv caches. Set to 0 to turn off
caching. The default is 30.

trusted_master On a slave server, the name/IP address of the master server from which the slave
accepts new maps. The default is no master server, meaning no new maps are
accepted.

xfer_check_port YES (default) requires the master server to run on a privileged port (page 1166).
NO allows it to run on any port.

Access Rules

Access rules, which specify which hosts and domains can access which maps, have
the following format:

host:domain:map:security

where host and domain specify the IP address and NIS domain this rule applies to;
map is the name of the map this rule applies to; and security is either none (always
allow access), port (allow access from a privileged port), or deny (never allow
access).

The following lines appear in the ypserv.conf file supplied with Ubuntu Linux:

$ cat /etc/ypserv.conf
...
This is the default - restrict access to the shadow password file,
allow access to all others.
* : * : shadow.byname : port
* : * : passwd.adjunct.byname : port
* : * : * : none

These lines restrict the shadow.byname and passwd.adjunct.byname (the passwd
map with shadow [asterisk] entries) maps to access from ports numbered less than
1024. However, anyone using a DOS or early Windows system on the network can
read the maps because they can access ports numbered less than 1024. The last line
allows access to the other maps from any port on any host.

The following example describes a LAN with some addresses you want to grant
NIS access from and some that you do not; perhaps you have a wireless segment or
some public network connections you do not want to expose to NIS. You can list
the systems or an IP subnet that you want to grant access to in ypserv.conf. Anyone
logging in on another IP address will then be denied NIS services. The following line
from ypserv.conf grants access to anyone logging in from an IP address in the range
of 192.168.0.1 to 192.168.0.255 (specified as 192.168.0.1 with a subnet mask
[page 462] of /24):

$ cat /etc/ypserv.conf
...
 192.168.0.1/24 : * : * : none

 From the Library of WoweBook.Com

ptg

Setting Up an NIS Server 753

/var/yp/securenets: Enhances Security

To enhance system security, you can create the /var/yp/securenets file, which prevents
unauthorized systems from sending RPC requests to the NIS server and retrieving NIS
maps. Notably securenets prevents unauthorized users from retrieving the shadow
map, which contains encrypted passwords. When securenets does not exist or is
empty, an NIS server accepts requests from any system.

Each line of securenets lists a netmask and IP address. NIS accepts requests from
systems whose IP addresses are specified in securenets; it ignores and logs requests
from other addresses. You must include the (local) server system as localhost
(127.0.0.1) in securenets. A simple securenets file follows:

$ cat /var/yp/securenets
you must accept requests from localhost
255.255.255.255 127.0.0.1

accept requests from IP addresses 192.168.0.1 - 192.168.0.62
255.255.255.192 192.168.0.0

accept requests from IP addresses starting with 192.168.14
255.255.255.0 192.168.14.0

/var/yp/Makefile: Creates Maps

The make utility, which is controlled by /var/yp/Makefile, uses makedbm to create the
NIS maps that hold the information distributed by NIS. When you run ypinit (page 755)
on the master server, ypinit calls make: You do not need to run make manually.

Edit /var/yp/Makefile to set options and specify which maps to create. The follow-
ing sections discuss /var/yp/Makefile in more detail.

Variables

Following is a list of variables you can set in /var/yp/Makefile. The values following
Ubuntu are the values set in the file distributed by Ubuntu.

B Do not change.

Ubuntu: not set

NOPUSH Specifies that ypserv is not to copy (push) maps to slave servers. Set to TRUE if you
do not have any slave NIS servers; set to FALSE to cause NIS to copy maps to slave
servers.

Ubuntu: TRUE

YPPUSHARGS Specifies arguments for yppush. See the yppush man page for more information.

Ubuntu: not set

MINUID,
MINGID Specify the lowest UID and GID numbers, respectively, to include in NIS maps. In the

/etc/passwd and /etc/group files, lower ID numbers belong to root and system
accounts and groups. To enhance security, NIS does not distribute password and group

 From the Library of WoweBook.Com

ptg

754 Chapter 21 NIS and LDAP

information about these users and groups. Set MINUID to the lowest UID number
you want to include in the NIS maps and set MINGID to the lowest GID number you
want to include.

Ubuntu: 1000/1000

NFSNOBODYUID,
NFSNOBODYGID

Specify the UID and GID, respectively, of the user named nfsnobody. NIS does not
export values for this user. Set to 0 to export maps for nfsnobody.

Ubuntu: 4294967295/4294967295

MERGE_PASSWD,
MERGE_GROUP

When set to TRUE, merge the /etc/shadow and /etc/passwd files and the
/etc/gshadow and /etc/group files in the passwd and group maps, respectively,
enabling shadow user passwords and group passwords.

Ubuntu: FALSE/FALSE

File Locations

The next sections of /var/yp/Makefile specify standard file locations; you do not
normally need to change these entries. This part of the makefile is broken into the
following groups:

Commands Locates awk (mawk) and make and sets a value for umask (page 459)
Source directories Locates directories that contain NIS source files
NIS source files Locates NIS source files used to build the NIS database
Servers Locates the file that lists NIS servers

The ALL Target

The ALL target in /var/yp/Makefile specifies the maps that make is to build for NIS:

ALL = passwd group hosts rpc services netid protocols netgrp
#ALL += publickey mail ethers bootparams printcap
#ALL += amd.home auto.master auto.home auto.local
#ALL += timezone locale networks netmasks

The first line of the ALL target lists the maps that make builds by default. This line
starts with the word ALL, followed by an equal sign and a TAB. The last three lines
are commented out. Uncomment lines and delete or move map names until the list
matches your needs.

As your needs change, you can edit the ALL target in Makefile and run make in the
/var/yp directory to modify the list of maps distributed by NIS.

Start the Servers

Restart the master server (page 745) and then the slave servers after completing the
preceding steps. On a master server, the nis init script starts the ypserv, yppasswdd,

 From the Library of WoweBook.Com

ptg

Setting Up an NIS Server 755

and ypxfrd daemons. If you are running an NIS client on the local system, it also
starts ypbind. On a slave server, the nis init script starts only the ypserv daemon
and, optionally, the ypbind daemon.

When you start the master server before running ypinit (discussed in the next sec-
tion), as you must do to avoid getting errors, it takes a long time to start as
explained in “No server” on page 745. After running ypinit, you must restart the
server (page 745).

ypxfrd: the map
server

The ypxfrd daemon speeds up the process of copying large NIS databases from the
master server to slaves. It allows slaves to copy the maps, thereby avoiding the need
for each slave to copy the raw data and then compile the maps. When an NIS slave
receives a message from the server saying there is a new map, it starts ypxfr, which
reads the map from the server.

The ypxfrd daemon runs on the master server only; it is not necessary to run it on
slave servers. For more information refer to “Prerequisites” on page 750.

ypinit: Builds or Imports the Maps

The ypinit utility builds or imports and then installs the NIS database. On the master
server, ypinit gathers information from the passwd, group, hosts, networks, services,
protocols, netgroup, and rpc files in /etc and builds the database. On a slave server,
ypinit copies the database from the master server.

You must run ypinit by giving its absolute pathname (/usr/lib/yp/ypinit). Use the –m
option to create the domain subdirectory under /var/yp and build the maps that go
in it on the master server; use the –s master option on slave servers to import maps
from the master server named master. In the following example, ypinit asks for the
name of each of the slave servers; it already has the name of the master server
because this command is run on the system running the master server (plum in the
example). Terminate the list with CONTROL-D on a line by itself. After you respond to
the query about the list of servers being correct, ypinit builds the ypservers map and
calls make with /var/yp/Makefile, which builds the maps specified in Makefile.

$ sudo /usr/lib/yp/ypinit -m

At this point, we have to construct a list of the hosts which will run NIS
servers. dog is in the list of NIS server hosts. Please continue to add
the names for the other hosts, one per line. When you are done with the
list, type a <control D>.
next host to add: plum
next host to add:CONTROL-D
The current list of NIS servers looks like this:

plum

Is this correct? [y/n: y] y
We need a few minutes to build the databases...
Building /var/yp/mgs/ypservers...
Running /var/yp/Makefile...

 From the Library of WoweBook.Com

ptg

756 Chapter 21 NIS and LDAP

make[1]: Entering directory '/var/yp/mgs'
Updating passwd.byname...
Updating passwd.byuid...
Updating group.byname...
Updating group.bygid...
Updating hosts.byname...
Updating hosts.byaddr...
Updating rpc.byname...
Updating rpc.bynumber...
Updating services.byname...
Updating services.byservicename...
Updating netid.byname...
Updating protocols.bynumber...
Updating protocols.byname...
Updating netgroup...
Updating netgroup.byhost...
Updating netgroup.byuser...
Updating shadow.byname...
make[1]: Leaving directory '/var/yp/mgs'

plum has been set up as a NIS master server.

Now you can run ypinit -s plum on all slave server.

After running ypinit, you must restart the server (page 745).

Testing the Server

From the server, check that ypserv is connected to portmap:

$ rpcinfo -p | grep ypserv
100004 2 udp 770 ypserv
100004 1 udp 770 ypserv
100004 2 tcp 771 ypserv
100004 1 tcp 771 ypserv

Again from the server system, make sure the NIS server is up and running:

$ rpcinfo -u localhost ypserv
program 100004 version 1 ready and waiting
program 100004 version 2 ready and waiting

If the server is not working properly, use the nis init script to stop the NIS server.
Then start ypserv in the foreground with debugging turned on:

$ sudo service nis stop

$ sudo /usr/sbin/ypserv --debug
[ypserv (ypserv) 2.19]

If you are starting an NIS client, be sure to edit yp.conf
tip If you are starting ypbind (the NIS client) on the same system on which you are running ypserv

(the NIS server), you must edit /etc/yp.conf to specify a server as explained on page 747. If you
do not do so, the server will start properly but the client will take a long time to come up and will
start in broadcast mode. For more information refer to “No server” on page 745.

 From the Library of WoweBook.Com

ptg

Setting Up an NIS Server 757

Find securenet: 255.0.0.0 127.0.0.0
Find securenet: 0.0.0.0 0.0.0.0
ypserv.conf: 0.0.0.0/0.0.0.0:*:shadow.byname:2
ypserv.conf: 0.0.0.0/0.0.0.0:*:passwd.adjunct.byname:2
ypserv.conf: 0.0.0.0/0.0.0.0:*:*:0
ypserv.conf: 192.168.0.1/192.168.0.1:*:*:0
CONTROL-C

The ––debug option keeps ypserv in the foreground and causes it to send error mes-
sages and debugging output to standard error. Press CONTROL-C to stop ypserv when it
is running in the foreground.

yppasswdd: The NIS Password Update Daemon

The NIS password update daemon, yppasswdd, runs only on the master server; it is
not necessary to run it on slave servers. (If the master server is down and you try to
change your password from a client, yppasswd displays an error message.) When a
user runs yppasswd (page 748) on a client, this utility exchanges information with
the yppasswdd daemon to update the user’s password (and optionally other) infor-
mation in the NIS shadow (and optionally passwd) map and in the /etc/shadow
(and optionally /etc/passwd) file on the NIS master server. Password change
requests are sent to syslogd (page 625).

If the server system is running a firewall, open a port for yppasswdd. Refer to “Fire-
wall” on page 751.

Start yppasswdd
The nis init script starts yppasswdd (the daemon is named rpc.yppasswdd) on an
NIS server. For more information refer to “Prerequisites” on page 750.

Allow GECOS and Login Shell Modification

The /etc/default/nis file controls whether yppasswdd allows users to change
GECOS (page 1150) information and/or the login shell when they run yppasswd. As
shipped, yppasswdd allows users to change their login shell but not their GECOS
information. You can change these settings with options on the command line when
you start yppasswdd or, more conveniently, by modifying the /etc/default/nis config-
uration file. The –e chfn option to yppasswdd allows users to change their GECOS
information; –e chsh allows users to change their login shell. When you set the
options in /etc/default/nis, these values are set automatically each time yppasswdd is
run. Set YPCHANGEOK as explained in the comments.

$ cat /etc/default/nis
...
Do we allow the user to use ypchsh and/or ypchfn ? The YPCHANGEOK
fields are passed with -e to yppasswdd, see it's manpage.
Possible values: "chsh", "chfn", "chsh,chfn"
YPCHANGEOK=chsh
...

 From the Library of WoweBook.Com

ptg

758 Chapter 21 NIS and LDAP

LDAP

LDAP (Lightweight Directory Access Protocol) is an alternative to the older X.500
DAP (Directory Access Protocol). It runs over TCP/IP and is network aware, stan-
dards based, and available on many platforms. A client queries an LDAP server,
specifying the data it wants. For example, a query could ask for the first names and
email addresses of all people with a last name of Smith who live in San Francisco.

Directory Because LDAP is designed to work with data that does not change frequently, the
server holds a search and read optimized database, called a directory. LDAP clients
query and update this directory.

In addition to name and address information, an LDAP directory can hold lists of
network services. Or, other services can use it for authentication. LDAP is appropri-
ate for any kind of relatively static structured information where fast lookups are
required. Many types of clients are set up to communicate with LDAP servers,
including LDAP-specific clients (page 767), email clients, and authentication servers.

OpenLDAP Ubuntu provides the OpenLDAP (www.openldap.org) implementation of LDAP.
OpenLDAP uses the Sleepycat Berkeley Database (Berkeley DB, or BDB, now owned
by Oracle), which meets the needs of an LDAP database. It supports distributed
architecture, replication, and encryption. BDB differs from a relational database
(RDBMS): Instead of holding information in rows and columns, BDB implements an
LDAP directory as a hierarchical data structure that groups information with similar
attributes. This section describes OpenLDAP.

In addition to BDB, Ubuntu supplies HDB, which is based on BDB but which orga-
nizes data in a true hierarchical fashion. HDB provides faster writes than does BDB.
It also supports subtree renaming, which allows subtrees to be moved efficiently
within a database. Under Ubuntu, HDB is the default LDAP database.

Entries and
attributes

An entry (a node in the LDAP directory hierarchy, or a container) is the basic unit of
information in an LDAP directory. Each entry holds one or more attributes. Each
attribute has a name (an attribute type or description) and one or more values.
Attribute names come from a standard schema that is held in files found in the
/etc/ldap/schema directory. This schema is standard across many implementations of
LDAP, enabling LDAP clients to obtain data from many LDAP servers. Although it is
not usually necessary or advisable, you can augment or modify the standard schema.

DN A Distinguished Name (DN) uniquely identifies each entry in an LDAP directory. A
DN comprises a Relative Distinguished Name (RDN), which is constructed from
one or more attributes in the entry, followed by the DN of the parent entry. Because
a DN can change (e.g., a woman may change her last name), and because a consis-
tent, unique identifier is sometimes required, the server assigns a UUID (an unam-
biguous identifier) to each entry.

DSE and DC The DSE (DSA-Specific Entry) is the root, or top-level, entry in an LDAP directory.
(DSA stands for Directory System Agent.) The DSE specifies the domain name of
the server and is defined in the /etc/ldap/slapd.d hierarchy. LDAP defines a domain

 From the Library of WoweBook.Com

www.openldap.org

ptg

LDAP 759

name in terms of its component parts. The following line defines the DSE compris-
ing the Domain Component (DC) sobell and the DC com:

$ sudo grep -r sobell /etc/ldap/*
/etc/ldap/slapd.d/cn=config/olcDatabase={1}hdb.ldif:olcSuffix: dc=sobell,dc=com
...

LDIF and CN The LDAP directory specified by the example DSE could contain the following
entry, which is specified in LDAP Data Interchange Format (LDIF; see the ldif man
page for more information):

dn: cn=Samuel Smith,dc=sobell,dc=com
cn: Samuel Smith
cn: Sam
cn: SLS
givenName: Samuel
sn: Smith
mail: sls@example.com
objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: person
objectClass: top

Each line except the first specifies an attribute. The word on each line preceding the
colon is the attribute name. Following the colon and a SPACE is the attribute value.
The first line in this example specifies the DN of the entry. The attribute value used
in the RDN is a CN (Common Name) from the entry: Samuel Smith. This second-
level entry is a child of the top-level entry; thus the DN of the parent entry is the DN
of the top-level entry (dc=sobell,dc=com). You can uniquely identify this entry by its
DN: cn=Samuel Smith,dc=sobell,dc=com.

Because this entry defines three CNs, a search for Samuel Smith, Sam, or SLS will
return this entry. This entry also defines a given name, a surname (sn), and an email
address (mail).

objectClass
attribute

Entries inherit object class attributes from their parents. In addition, each entry
must have at least one objectClass attribute (the preceding entry has four). Each
objectClass value must be a class defined in the schema. The schema specifies both
mandatory and optional (allowed) attributes for an object class. For example, the
following entry in the schema defines the object class named person. The MUST
and MAY lines specify which attributes the person object class requires (sn [sur-
name] and cn; attribute names are separated by a dollar sign) and which attributes
are optional (userPassword, telephoneNumber, seeAlso, and description).

$ cat /etc/ldap/schema/core.schema
...
objectclass (2.5.6.6 NAME 'person'
 DESC 'RFC2256: a person'
 SUP top STRUCTURAL
 MUST (sn $ cn)
 MAY (userPassword $ telephoneNumber $ seeAlso $ description))
...

 From the Library of WoweBook.Com

ptg

760 Chapter 21 NIS and LDAP

Abbreviations The following list summarizes the abbreviations mentioned in this section.

CN Common Name
DC Domain Component
DN Distinguished Name
DSE DSA-Specific Entry
LDIF LDAP Data Interchange Format
RDN Relative Distinguished Name

More Information

Local man pages: ldap.conf, ldapmodify, ldapsearch, ldif, slapd, slapd.conf, slappasswd

Web LDAP home page: www.openldap.org
Administrator’s Guide: www.openldap.org/doc/admin24
Ubuntu: help.ubuntu.com/10.04/serverguide/C/openldap-server.html
OpenLDAP Faq-O-Matic: www.openldap.org/faq
book: www.zytrax.com/books/ldap
gq: gq-project.org

HOWTO LDAP Linux HOWTO

Setting Up an LDAP Server

This section explains the steps involved in setting up an LDAP server.

Prerequisites

Install the following packages:

• slapd

• ldap-utils

slapd init script After you manually configure slapd, call the slapd init script to restart slapd:

$ sudo service slapd restart
Stopping OpenLDAP: slapd.
Starting OpenLDAP: slapd.

Notes

DB_CONFIG You can modify parameters in the /var/lib/ldap/DB_CONFIG file to improve the perfor-
mance of an LDAP server. See the www.openldap.org/faq/data/cache/1072.html Web
page for more information. See also the /usr/share/doc/slapd/examples/DB_CONFIG
and /usr/share/doc/slapd/README.DB_CONFIG.gz files on the local system.

Firewall The slapd LDAP server normally listens on TCP port 389, which is not encrypted. If
you are using LDAP for authentication, use LDAP over SSL on port 636. If the
LDAP server system is running a firewall, you need to open one of these ports. Using

 From the Library of WoweBook.Com

www.openldap.org
www.openldap.org/doc/admin24
www.zytrax.com/books/ldap
www.openldap.org/faq
www.openldap.org/faq/data/cache/1072.html

ptg

Setting Up an LDAP Server 761

gufw (page 876), open one of these ports by adding a rule that allows service for port
389 or port 636 from the clients you want to be able to access the server.

Set up the Server

Back end OpenLDAP uses the Directory Information Tree (DIT) hierarchy with its root at
/etc/ldap/slapd.d/cn=config (the equal sign is part of the directory name) to config-
ure the slapd daemon. This setup allows the slapd daemon to be configured dynam-
ically (without having to restart the daemon). You must configure this DIT, referred
to as the back end, before you can add user data to the LDAP database.

Front end The front end of the database also needs to be configured before you can add user
data. You must set it up to hold the kinds of data the user wants to store. “Set Up
the Front End” on page 762 describes how to set up a database that is compatible
with many address book applications.

Once you have set up the back end and the front end, you can add user data as
explained in the section “Add Entries to the Directory” on page 764.

This section lists the steps involved in setting up an LDAP server at the sobell.com
domain. When you set up an LDAP server, substitute the domain name of the server
you are setting up for sobell.com in the examples.

To experiment with and learn about LDAP, set up and run locally the example server
described in this section. Although the example uses sobell.com, when working from
the server system you can refer to the LDAP server as localhost.

Set Up the Back End

You need to add three schema files and one setup file to the back end before you can
add information to the front end of the LDAP database. Installing LDAP installs the
three schema files. Give the following commands to add these files to the LDAP
directory:

$ sudo ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/ldap/schema/cosine.ldif
SASL/EXTERNAL authentication started
SASL username: gidNumber=0+uidNumber=0,cn=peercred,cn=external,cn=auth
SASL SSF: 0
adding new entry "cn=cosine,cn=schema,cn=config"
...
$ sudo ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/ldap/schema/nis.ldif
...
$ sudo ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/ldap/schema/inetorgperson.ldif
...

The following file sets up the back end of the LDAP database with a DSE compris-
ing the DC sobell and the DC com (page 758) and an administrative user named
admin with a password of porcupine. Change these values as is appropriate for the
database you are setting up. (Note the fourth line from the bottom is long and is
wrapped in the following display. This file is available on the Web at
www.sobell.com/UB3/code/chapter_21/backend.setup.ldif.)

 From the Library of WoweBook.Com

www.sobell.com/UB3/code/chapter_21/backend.setup.ldif

ptg

762 Chapter 21 NIS and LDAP

$ cat backend.setup.ldif
dn: cn=module,cn=config
objectClass: olcModuleList
cn: module
olcModulepath: /usr/lib/ldap
olcModuleload: back_hdb

dn: olcDatabase=hdb,cn=config
objectClass: olcDatabaseConfig
objectClass: olcHdbConfig
olcDatabase: {1}hdb
olcSuffix: dc=sobell,dc=com
olcDbDirectory: /var/lib/ldap
olcRootDN: cn=admin,dc=sobell,dc=com
olcRootPW: porcupine
olcDbConfig: set_cachesize 0 2097152 0
olcDbConfig: set_lk_max_objects 1500
olcDbConfig: set_lk_max_locks 1500
olcDbConfig: set_lk_max_lockers 1500
olcDbIndex: objectClass eq
olcLastMod: TRUE
olcDbCheckpoint: 512 30
olcAccess: to attrs=userPassword by dn="cn=admin,dc=sobell,dc=com"

write by anonymous auth by self write by * none
olcAccess: to attrs=shadowLastChange by self write by * read
olcAccess: to dn.base="" by * read
olcAccess: to * by dn="cn=admin,dc=sobell,dc=com" write by * read

Give the following command to load this file:

$ sudo ldapadd -Y EXTERNAL -H ldapi:/// -f backend.setup.ldif
SASL/EXTERNAL authentication started
SASL username: gidNumber=0+uidNumber=0,cn=peercred,cn=external,cn=auth
SASL SSF: 0
adding new entry "cn=module,cn=config"

adding new entry "olcDatabase=hdb,cn=config"

Set Up the Front End

The following file sets up the DSE (the top-level entry in the LDAP directory;
page 758) for the example database. Substitute the domain name you want to use
for dc=sobell,dc=com.

$ cat tl1.ldif
dn: dc=sobell,dc=com
changetype: add
objectClass: top
objectClass: dcObject
objectclass: organization
o: Sobell Associates
dc: Sobell
description: Sobell Example

 From the Library of WoweBook.Com

ptg

Setting Up an LDAP Server 763

Give the following command to add this information to the LDAP directory:

$ ldapmodify -xD "cn=admin,dc=sobell,dc=com" -w porcupine -f tl1.ldif
adding new entry "dc=sobell,dc=com"

Next, set up an administrative user. Substitute the password you want to use for
porcupine in the example.

$ cat tl2.ldif
dn: cn=admin,dc=sobell,dc=com
changetype: add
objectClass: simpleSecurityObject
objectClass: organizationalRole
cn: admin
description: LDAP administrator
userPassword: porcupine

$ ldapmodify -xD "cn=admin,dc=sobell,dc=com" -w porcupine -f tl2.ldif
adding new entry "cn=admin,dc=sobell,dc=com"

Test the Server

After you have set up the back end and front end of the database, test the server
with the following query (you may need to reboot before this query will work):

$ ldapsearch -x -s base namingContexts
extended LDIF

LDAPv3
base <> (default) with scope baseObject
filter: (objectclass=*)
requesting: namingContexts
#

dn:
namingContexts: dc=sobell,dc=com

search result
search: 2
result: 0 Success

numResponses: 2
numEntries: 1

The –x on the command line specifies simple authentication, –s base specifies the
scope of the search as the base object, and namingContexts is the attribute you are
searching for. The output of this command should look similar to that shown in the
preceding example. The namingContexts returned by the search should be the same
as the DSE you specified when you set up the front end (page 762).

slapcat The slapcat utility, which must run as a privileged user (not the LDAP administra-
tor), retrieves information from a slapd database and displays it in LDIF format

 From the Library of WoweBook.Com

ptg

764 Chapter 21 NIS and LDAP

(page 759). Although slapcat is a useful tool, be careful if you use it to back up a
database: Other users may be changing the data as you are backing it up. Follow-
ing, slapcat shows that the basic LDAP directory contains the two entries set up in
the previous sections of this chapter.

$ sudo slapcat
dn: dc=sobell,dc=com
objectClass: top
objectClass: dcObject
objectClass: organization
o: Sobell Associates
dc: Sobell
description:: U29iZWxsIEV4YW1wbGUg
structuralObjectClass: organization
entryUUID: 42d495ba-0785-102f-8764-434c55dbcc7e
creatorsName: cn=admin,dc=sobell,dc=com
createTimestamp: 20100608200751Z
entryCSN: 20100608200751.367377Z#000000#000#000000
modifiersName: cn=admin,dc=sobell,dc=com
modifyTimestamp: 20100608200751Z

dn: cn=admin,dc=sobell,dc=com
objectClass: simpleSecurityObject
objectClass: organizationalRole
cn: admin
description: LDAP administrator
userPassword:: cG9yY3VwaW5l
...

The first line of each entry specifies the DN for that entry. The line that starts with
dc specifies the DC (domain component). The objectClass lines specify the object
classes this entry belongs to. The line that starts with o (short for organization-
Name) specifies the name of the organization this entry is part of.

The server adds more information to the entry, including a UUID number that
remains constant throughout the life of the entry, timestamps, and the names of the
users who created and modified the entry.

Add Entries to the Directory

You can use many tools, both graphical and textual, to add information to and query
an LDAP directory. This section explains how to use the ldapmodify command-line
utility to set up an employee LDAP directory. See page 767 for descriptions of other
tools.

When you specify the following file on an ldapmodify command line, ldapmodify adds
a second-level entry (one level below the DSE entry) to the LDAP directory. This file
adds the object class organizationalUnit named employees (ou=employees). The
DN is ou=employees followed by the DSE.

 From the Library of WoweBook.Com

ptg

Setting Up an LDAP Server 765

$ cat sa1.ldif
dn: ou=employees,dc=sobell,dc=com
changetype: add
objectClass: organizationalUnit
ou: employees

The first line of sa1.ldif specifies the DN for the entry you are adding. The change-
type instruction tells ldapmodify to add the entry to the directory. You can omit this
instruction if you use the –a option on the ldapmodify command line or if you use the
ldapadd utility instead of ldapmodify. The objectClass line specifies the object classes
this entry belongs to. The ou (short for organizationalUnitName) specifies the name
of the organizational unit this entry is part of.

The following command modifies the LDAP directory based on the sa1.ldif file. The
ldif filename extension is commonly used but is not required for files holding LDIF
entries.

$ ldapmodify -xD "cn=admin,dc=sobell,dc=com" -w porcupine -f sa1.ldif
adding new entry "ou=employees,dc=sobell,dc=com"

The –x option causes the server to use simple authentication. The argument follow-
ing –D specifies the DN of the LDAP administrator of the directory the command is
to work with. By specifying this user, this argument also specifies the DSE of the
LDAP directory. (The DN of the parent of the LDAP administrator’s entry specifies
the DSE.) The argument following –w is the password for the LDAP administrator.
The name of the input file follows the –f option. The ldapmodify utility reports the
DN of the new entry.

With this object class in place, you can add employees to the LDAP directory. The
following file adds an employee:

$ cat sa2.ldif
dn: cn=Samuel Smith,ou=employees,dc=sobell,dc=com
changetype: add
cn: Samuel Smith
cn: smith
objectClass: inetOrgPerson
mail: sls@example.com
givenName: Samuel
surname: Smith
displayName: Samuel L Smith
telephoneNumber: 999 999 9999
homePhone: 000 000 0000
initials: SLS

The following command uses –W to cause ldapmodify to prompt for the LDAP
administrator password. Specifying a password in response to a prompt instead of
on the command line can improve security by not making the password visible to a
user running ps.

 From the Library of WoweBook.Com

ptg

766 Chapter 21 NIS and LDAP

$ ldapmodify -xD "cn=admin,dc=sobell,dc=com" -W -f sa2.ldif
Enter LDAP Password:
adding new entry "cn=Samuel Smith,ou=employees,dc=sobell,dc=com"

Now slapcat shows the employee you just added:

$ sudo slapcat
dn: dc=sobell,dc=com
...
dn: cn=Samuel Smith,ou=employees,dc=sobell,dc=com
cn: Samuel Smith
cn: smith
objectClass: inetOrgPerson
mail: sls@example.com
givenName: Samuel
sn: Smith
displayName: Samuel L Smith
telephoneNumber: 999 999 9999
homePhone: 000 000 0000
initials: SLS
...

The DN shows that the new employee is at the third level of the directory structure:
The first level is dc=sobell,dc=com; ou=employees,dc=sobell,dc=com is at the sec-
ond level; and cn=Samuel Smith,ou=employees,dc=sobell,dc=com, the employee, is
at the third level.

You can put as many entries in a file as you like, but each must be separated from the
next by a blank line. For clarity, the examples in this section show one entry per file.

The following example adds another employee at the third level:

$ cat sa3.ldif
dn: cn=Helen Simpson,ou=employees,dc=sobell,dc=com
changetype: add
cn: Helen Simpson
cn: simpson
objectClass: inetOrgPerson
mail: helen@sobell.com
givenName: Helen
surname: Simpson
displayName: Helen L Simpson
telephoneNumber: 888 888 8888
homePhone: 111 111 1111
initials: HLS

$ ldapmodify -xD "cn=admin,dc=sobell,dc=com" -W -f sa3.ldif
Enter LDAP Password:
adding new entry "cn=Helen Simpson,ou=employees,dc=sobell,dc=com"

 From the Library of WoweBook.Com

ptg

Other Tools for Working with LDAP 767

The next example uses the ldapmodify modify instruction to replace the mail
attribute value and add a title attribute for the employee named Helen Simpson.
Because the file specifies Helen’s DN, the server knows which entry to modify.

$ cat sa4.ldif
dn: cn=Helen Simpson,ou=employees,dc=sobell,dc=com
changetype: modify
replace: mail
mail: hls@sobell.com
-
add: title
title: CTO
$ ldapmodify -xD "cn=admin,dc=sobell,dc=com" -W -f sa4.ldif
Enter LDAP Password:
modifying entry "cn=Helen Simpson,ou=employees,dc=sobell,dc=com"

You can use slapcat to verify the change. The final example deletes Helen from the
LDAP directory:

$ cat sa5.ldif
dn: cn=Helen Simpson,ou=employees,dc=sobell,dc=com
changetype: delete
$ ldapmodify -xD "cn=admin,dc=sobell,dc=com" -W -f sa5.ldif
Enter LDAP Password:
deleting entry "cn=Helen Simpson,ou=employees,dc=sobell,dc=com"

Other Tools for Working with LDAP

You can use a variety of tools to work with LDAP. For example, most email clients
are able to retrieve data from an LDAP database.

Evolution Mail

This section explains how to use Evolution (Mail) to retrieve data from the example
LDAP database created earlier. It assumes you have configured Evolution on the
local system. If you are running KDE, you can use KAddressBook, which is inte-
grated into many KDE tools, including Kontact.

Open the Mail-Evolution window by selecting Main menu: Applications Office
Evolution Mail and Calendar or by giving the command evolution from a terminal
emulator or Run Application window (ALT-F2). To query an LDAP database, select
File New Address Book from the menubar. Evolution displays the General tab of
the New Address Book window (Figure 21-1, next page).

 From the Library of WoweBook.Com

ptg

768 Chapter 21 NIS and LDAP

General tab Select On LDAP Servers from the drop-down list labeled Type. Enter the name Evo-
lution Mail will use to refer to this LDAP directory in the text box labeled Name;
the example uses employees. Enter the FQDN of the LDAP server in the text box
labeled Server. If you are experimenting on the local system, enter localhost in this
box. If appropriate, change the value in the text box labeled Port. To follow the
example in this chapter, select No encryption from the drop-down list labeled Use
secure connection.

In the section labeled Authentication, select Using distinguished name (DN) from
the drop-down list labeled Login method. Enter the DN of the LDAP administrator
in the text box labeled Login (the example uses cn=admin,dc=sobell,dc=com).

Details tab Next click the tab labeled Details (Figure 21-2). Click Find Possible Search Bases. If
all is working properly, Evolution will display the Supported Search Bases window.
Highlight the DN of the directory you want to use and click OK. Evolution displays
the selected DN in the text box labeled Search base. Select Sub from the drop-down
list labeled Search scope to enable searches at all levels of the directory. Click OK.

Next click the Contacts button at the lower-left corner of the Mail-Evolution win-
dow. CouchDB, On This Computer, and On LDAP Servers appear at the left side of
the window. If the name of the address book you specified (employees in the exam-
ple) does not appear below On LDAP servers, click the plus sign (+) to the left of
this label. Then click the name of the address book you want to work with. Evolu-
tion prompts for the LDAP administrator password. Enter the password and click

Figure 21-1 The New Address Book window, General tab

 From the Library of WoweBook.Com

ptg

Other Tools for Working with LDAP 769

OK. Evolution highlights the name of the address book; you can now search the
LDAP database.

Enter the name of an entry in the text box labeled Search at the upper-right corner
of the window and press RETURN. Evolution displays the entry. Figure 21-3 shows
the result of following the example in this chapter and entering Sam in the Search
text box.

Figure 21-2 The New Address Book window, Details tab

Figure 21-3 Contacts - Evolution window

 From the Library of WoweBook.Com

ptg

770 Chapter 21 NIS and LDAP

Konqueror

If you are running KDE, you can use Konqueror to examine the contents of an LDAP
directory. Enter the following string in the Konqueror location bar and press RETURN:

ldap://server-name/DN

where server-name is the name or IP address of the LDAP server (or localhost if you
are running Konqueror on the server system) and DN is the DN of the entry you
want to view. Konqueror displays all entries below the DN you specify. Double-
click an entry to display it. For example, to work with the LDAP directory created
earlier, enter ldap://localhost/ou=employee,dc=sobell,dc=com in the location bar. In
response, Konqueror will display the entries with this RDN. You can then click one
of these entries to display that entry in its entirety.

Chapter Summary

NIS (Network Information Service) simplifies the management of common admin-
istrative files by maintaining them in a central database and having clients contact
the database server to retrieve information from the database. The network that
NIS serves is called an NIS domain. Each NIS domain has one master server; larger
networks may have slave servers.

NIS derives the information it offers from local configuration files, such as
/etc/passwd and /etc/hosts. These files are called source files or master files. Before
NIS can store the information contained in a source file, it must be converted to
dbm-format files, called maps. The ypcat and ypmatch utilities display information
from NIS maps.

The yppasswd utility replaces the functionality of passwd on clients when you use
NIS to authenticate passwords. The /etc/ypserv.conf file, which holds NIS server
configuration information, specifies options and access rules for the NIS server. To
enhance system security, you can create a /var/yp/securenets file, which prevents
unauthorized systems from retrieving NIS maps.

An LDAP (Lightweight Directory Access Protocol) server holds a search- and read-
optimized database, called a directory. LDAP clients, such as email clients, query
and update this directory. In addition, authentication servers can use an LDAP
directory to authenticate users.

Ubuntu provides the OpenLDAP implementation of LDAP. OpenLDAP uses the
Sleepycat Berkeley Database, which supports distributed architecture, replication,
and encryption.

 From the Library of WoweBook.Com

ptg

Advanced Exercises 771

Exercises

1. What is the difference between the passwd and yppasswd utilities?

2. How would you prevent NIS from exporting the root user and other sys-
tem users to clients?

3. How would you make NIS user information override local user information
on client systems?

4. Why does the /etc/passwd file need two NIS maps?

5. How does an LDAP directory differ from a relational database system?

6. What is the basic unit of information in an LDAP directory? What is the
structure of an attribute?

Advanced Exercises

7. How can you use NIS to mirror the functionality of a private DNS server for
a small network? Why should NIS not be used this way on a large network?

8. How can you determine whether the working directory is the home direc-
tory of an NIS user?

9. a. What advantage does NIS provide when you use it with NFS?
a.b. Suggest a way to implement NIS maps so they can be indexed on more

than one field.

10. Where is the LDAP device object class defined? Which of its attributes are
mandatory and which are optional?

11. How would you determine the longer name for the l (lowercase “l”) LDAP
object class?

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

777777333

22Chapter22The NFS (Network Filesystem) protocol, a UNIX de facto stan-
dard developed by Sun Microsystems, allows a server to share
selected local directory hierarchies with client systems on a heter-
ogeneous network. NFS runs on UNIX, DOS, Windows, VMS,
Linux, and more. Files on the remote computer (the fileserver)
appear as if they are present on the local system (the client). Most
of the time, the physical location of a file is irrelevant to an NFS
user; all standard Linux utilities work with NFS remote files the
same way as they operate with local files.

NFS reduces storage needs and system administration workload.
As an example, each system in a company traditionally holds its
own copy of an application program. To upgrade the program,
the administrator needs to upgrade it on each system. NFS allows
you to store a copy of a program on a single system and give other
users access to it over the network. This scenario minimizes stor-
age requirements by reducing the number of locations that need
to maintain the same data. In addition to boosting efficiency, NFS
gives users on the network access to the same data (not just appli-
cation programs), thereby improving data consistency and reli-
ability. By consolidating data, it reduces administrative overhead
and provides a convenience to users. This chapter covers NFSv3.

In This Chapter

Running an NFS Client 776

JumpStart I: Mounting a Remote
Directory Hierarchy 777

Improving Performance 780

Setting Up an NFS Server 782

JumpStart II: Configuring an NFS
Server Using shares-admin. . . . 783

Manually Exporting a Directory
Hierarchy 785

automount: Mounts Directory
Hierarchies on Demand. 792

22

NFS: Sharing

Filesystems

 From the Library of WoweBook.Com

ptg

774 Chapter 22 NFS: Sharing Filesystems

Introduction to NFS

Figure 22-1 shows the flow of data in a typical NFS client/server setup. An NFS
directory hierarchy appears to users and application programs as just another direc-
tory hierarchy. By looking at it, you cannot tell that a given directory holds a
remotely mounted NFS directory hierarchy and not a local filesystem. The NFS
server translates commands from the client into operations on the server’s filesystem.

Diskless systems In many computer facilities, user files are stored on a central fileserver equipped
with many large-capacity disk drives and devices that quickly and easily make
backup copies of the data. A diskless system boots from a fileserver (netboots—
discussed next) or a CD/DVD and loads system software from a fileserver. The
Linux Terminal Server Project (LTSP.org) Web site says it all: “Linux makes a great
platform for deploying diskless workstations that boot from a network server. The
LTSP is all about running thin client computers in a Linux environment.” Because
a diskless workstation does not require a lot of computing power, you can give
older, retired computers a second life by using them as diskless systems.

Netboot/PXE You can netboot (page 1161) systems that are appropriately set up. Ubuntu Linux
includes the PXE (Preboot Execution Environment; pxe package) server package for
netbooting Intel systems. Older systems sometimes use tftp (Trivial File Transfer Pro-
tocol; tftp and tftpd packages) for netbooting. Non-Intel architectures have histori-
cally included netboot capabilities, which Ubuntu Linux also supports. In addition,
you can build the Linux kernel so it mounts root (/) using NFS. Given the many
ways to set up a system, the one you choose depends on what you want to do. See
the Remote-Boot mini-HOWTO for more information.

Dataless systems Another type of Linux system is a dataless system, in which the client has a disk but
stores no user data (only Linux and the applications are kept on the disk). Setting
up this type of system is a matter of choosing which directory hierarchies are
mounted remotely.

df: shows where
directory hierarchies

are mounted

The df utility displays a list of the directory hierarchies available on the system,
along with the amount of disk space, free and used, on each. The –h (human)
option makes the output more intelligible. Device names in the left column that are
prepended with hostname: specify filesystems that are available through NFS.

zach@plum:~$ cd;pwd
/dog.home/zach
zach@plum:~$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 28G 8.9G 18G 35% /
...
/dev/sda2 28G 220M 26G 1% /home
/dev/sda5 9.2G 150M 8.6G 2% /pl5
/dev/sda6 1.4G 35M 1.3G 3% /pl6
dog:/home/zach 19G 6.7G 11G 39% /dog.home/zach
grape:/gc1 985M 92M 844M 10% /grape.gc1
grape:/gc5 3.9G 3.0G 738M 81% /grape.gc5

 From the Library of WoweBook.Com

ptg

Introduction to NFS 775

In the preceding example, Zach’s home directory, /home/zach, is on the remote sys-
tem dog. Using NFS, the /home/zach directory hierarchy on dog is mounted on plum;
to make it easy to recognize, it is mounted as /dog.home/zach. The /gc1 and /gc5
filesystems on grape are mounted on plum as /grape.gc1 and /grape.gc5, respectively.

You can use the –T option to df to add a Type column to the display. The following
command uses –t nfs to display NFS filesystems only:

zach@plum:~$ df -ht nfs
Filesystem Size Used Avail Use% Mounted on
dog:/home/zach 19G 6.7G 11G 39% /dog.home/zach
grape:/gc1 985M 92M 844M 10% /grape.gc1
grape:/gc5 3.9G 3.0G 738M 81% /grape.gc5

Errors Sometimes a client may lose access to files on an NFS server. For example, a network
problem or a remote system crash may make these files temporarily unavailable. If you
try to access a remote file in these circumstances, you will get an error message, such as

Figure 22-1 Flow of data in a typical NFS client/server setup

Other FS
NFS client

Network

types (devfs,
procfs, ...)

Disk FS
(ext4, ...)

User

NFS server
Disk FS
(ext4, ...)

Filesystem
interface

Other FS
types (devfs,

procfs, ...)

Client Server

Disk Disk

Filesystem
interface

 From the Library of WoweBook.Com

ptg

776 Chapter 22 NFS: Sharing Filesystems

NFS server dog not responding. When the local system can contact the remote server
again, NFS will display another message, such as NFS server dog OK. A stable net-
work and server (or not using NFS) is the best defense against this problem.

Security NFS is based on the trusted-host paradigm (page 391), so it has all the security
shortcomings that plague other services based on this paradigm. In addition, NFS is
not encrypted. Because of these issues, you should implement NFS on a single LAN
segment only, where you can be (reasonably) sure systems on the LAN segment are
what they claim to be. Make sure a firewall blocks NFS traffic from outside the
LAN and never use NFS over the Internet.

To improve security, make sure UIDs and GIDs are the same on the server and clients
(page 788).

NFSv4 NFSv4 addresses many of these security issues, including the problem of users hav-
ing different UIDs on different systems (NFSv4 uses usernames, not UID numbers).
The new version of NFS adds Kerberos authentication, provides for encrypted file
transfers, and increases WAN performance.

More Information

Web Good information on NFS, including the Linux NFS-HOWTO: nfs.sourceforge.net
Running NFS behind a firewall: wiki.debian.org/SecuringNFS
autofs tutorial: www.linuxhq.com/lg/issue24/nielsen.html

Local man pages: autofs, automount, auto.master, exportfs, exports, nfs (provides fstab
information), rpc.idmapd, rpc.mountd, rpc.nfsd, and showmount

HOWTO Linux NFS-HOWTO: nfs.sourceforge.net
Netboot and PXE: Remote-Boot mini-HOWTO
Automount mini-HOWTO

Book NFS Illustrated by Callaghan, Addison-Wesley (January 2000)

Running an NFS Client

This section describes how to set up an NFS client, mount remote directory hierar-
chies, and improve NFS performance.

Prerequisites

Installation Install the following package:

• nfs-common

portmap The portmap utility (which is part of the portmap package and is installed as a
dependency when you install nfs-common; page 406) must be running to enable
reliable file locking.

nfs-common init
script

When you install the nfs-common package, the dpkg postinst script starts the dae-
mons that an NFS client requires (not all daemons are always required): rpc.statd,

 From the Library of WoweBook.Com

www.linuxhq.com/lg/issue24/nielsen.html

ptg

Running an NFS Client 777

rpc.lockd (does not run but starts the NFS lock manager if necessary), rpc.idmapd,
and rpc.gssd. You do not normally need to restart any of these daemons.

JumpStart I: Mounting a Remote Directory Hierarchy

To set up an NFS client, mount the remote directory hierarchy the same way you
mount a local directory hierarchy (page 506).

The following examples show two ways to mount a remote directory hierarchy,
assuming dog is on the same network as the local system and is sharing /home and
/export with the local system. The /export directory on dog holds two directory
hierarchies you want to mount: /export/progs and /export/oracle. The example
mounts dog’s /home directory on /dog.home on the local system, /export/progs on
/apps, and /export/oracle on /oracle.

First run mkdir on the local (client) system to create the directories that are the
mount points for the remote directory hierarchies:

$ sudo mkdir /dog.home /apps /oracle

You can mount any directory hierarchy from an exported directory hierarchy. In
this example, dog exports /export and the local system mounts /export/progs and
/export/oracle. The following commands manually mount the directory hierarchies
one time:

$ sudo mount dog:/home /dog.home
$ sudo mount -o ro,nosuid dog:/export/progs /apps
$ sudo mount -o ro dog:/export/oracle /oracle

If you receive the error mount: RPC: Program not registered, it may mean NFS is
not running on the server.

By default, directory hierarchies are mounted read-write, assuming the NFS server
is exporting them with read-write permissions. The first of the preceding commands
mounts the /home directory hierarchy from dog on the local directory /dog.home.
The second and third commands use the –o ro option to force a readonly mount.
The second command adds the nosuid option, which forces setuid (page 218) exe-
cutables in the mounted directory hierarchy to run with regular permissions on the
local system.

nosuid option If a user has the ability to run a setuid program, that user has the power of a user
with root privileges. This ability should be limited. Unless you know a user will
need to run a program with setuid permissions from a mounted directory hierarchy,
always mount a directory hierarchy with the nosuid option. For example, you
would need to mount a directory hierarchy with setuid privileges when the root par-
tition of a diskless workstation is mounted using NFS.

nodev option Mounting a device file creates another potential security hole. Although the best
policy is not to mount untrustworthy directory hierarchies, it is not always possi-
ble to implement this policy. Unless a user needs to use a device on a mounted
directory hierarchy, mount directory hierarchies with the nodev option, which

 From the Library of WoweBook.Com

ptg

778 Chapter 22 NFS: Sharing Filesystems

prevents character and block special files (page 504) on the mounted directory
hierarchy from being used as devices.

fstab file If you mount directory hierarchies frequently, you can add entries for the directory
hierarchies to the /etc/fstab file (page 781). (Alternatively, you can use automount;
see page 792.) The following /etc/fstab entries automatically mount the same direc-
tory hierarchies as in the previous example at the same time that the system mounts
the local filesystems:

$ cat /etc/fstab
...
dog:/home /dog.home nfs rw 0 0
dog:/export/progs /apps nfs ro,nosuid 0 0
dog:/export/oracle /oracle nfs ro 0 0

A file mounted using NFS is always of type nfs on the local system, regardless of
what type it is on the remote system. Typically you do not run fsck on or back up an
NFS directory hierarchy. The entries in the third, fifth, and sixth columns of fstab
are usually nfs (filesystem type), 0 (do not back up this directory hierarchy with
dump [page 603]), and 0 (do not run fsck [page 512] on this directory hierarchy).
The options for mounting an NFS directory hierarchy differ from those for mount-
ing an ext4 or other type of filesystem. See the section on mount (below) for details.

Unmounting
directory hierarchies

Use umount to unmount a remote directory hierarchy the same way you unmount a
local filesystem (page 509).

mount: Mounts a Directory Hierarchy

The mount utility (page 506) associates a directory hierarchy with a mount point (a
directory). You can use mount to mount an NFS (remote) directory hierarchy. This
section describes some mount options. It lists default options first, followed by non-
default options (enclosed in parentheses). You can use these options on the command
line or set them in /etc/fstab (page 781). For a complete list of options, refer to the
mount and nfs man pages.

Attribute Caching

A file’s inode (page 501) stores file attributes that provide information about a file,
such as file modification time, size, links, and owner. File attributes do not include
the data stored in a file. Typically file attributes do not change very often for an
ordinary file; they change even less often for a directory file. Even the size attribute
does not change with every write instruction: When a client is writing to an NFS-
mounted file, several write instructions may be given before the data is transferred
to the server. In addition, many file accesses, such as that performed by ls, are read-
only operations and, therefore, do not change the file’s attributes or its contents.
Thus a client can cache attributes and avoid costly network reads.

The kernel uses the modification time of the file to determine when its cache is out-
of-date. If the time the attribute cache was saved is later than the modification time
of the file itself, the data in the cache is current. The server must periodically refresh

 From the Library of WoweBook.Com

ptg

Running an NFS Client 779

the attribute cache of an NFS-mounted file to determine whether another process
has modified the file. This period is specified as a minimum and maximum number
of seconds for ordinary and directory files. Following is a list of options that affect
attribute caching:

ac (noac) (attribute cache) Permits attribute caching (default). The noac option disables
attribute caching. Although noac slows the server, it avoids stale attributes when
two NFS clients actively write to a common directory hierarchy.

acdirmax=n (attribute cache directory file maximum) The n is the number of seconds, at a maxi-
mum, that NFS waits before refreshing directory file attributes (default is 60 seconds).

acdirmin=n (attribute cache directory file minimum) The n is the number of seconds, at a mini-
mum, that NFS waits before refreshing directory file attributes (default is 30 seconds).

acregmax=n (attribute cache regular file maximum) The n is the number of seconds, at a maxi-
mum, that NFS waits before refreshing regular file attributes (default is 60 seconds).

acregmin=n (attribute cache regular file minimum) The n is the number of seconds, at a mini-
mum, that NFS waits before refreshing regular file attributes (default is 3 seconds).

actimeo=n (attribute cache timeout) Sets acregmin, acregmax, acdirmin, and acdirmax to n
seconds (without this option, each individual option takes on its assigned or default
value).

Error Handling

The following options control what NFS does when the server does not respond or
when an I/O error occurs. To allow for a mount point located on a mounted device,
a missing mount point is treated as a timeout.

fg (bg) (foreground) Retries failed NFS mount attempts in the foreground (default). The bg
(background) option retries failed NFS mount attempts in the background.

hard (soft) Displays NFS server not responding on the console on a major timeout and keeps
retrying (default). The soft option reports an I/O error to the calling program on a
major timeout. In general, it is not advisable to use soft. As the mount man page says
of soft, “Usually it just causes lots of trouble.” For more information refer to
“Improving Performance” on page 780.

nointr (intr) (no interrupt) Does not allow a signal to interrupt a file operation on a hard-
mounted directory hierarchy when a major timeout (see retrans) occurs (default).
The intr option allows this type of interrupt.

retrans=n (retransmission value) After n minor timeouts, NFS generates a major timeout
(default is 3). A major timeout aborts the operation or displays server not responding
on the console, depending on whether hard or soft is set.

retry=n (retry value) The number of minutes that NFS retries a mount operation before giving
up (default is 10,000).

timeo=n (timeout value) The n is the number of tenths of a second that NFS waits before
retransmitting following an RPC, or minor, timeout (default is 7). The value is

 From the Library of WoweBook.Com

ptg

780 Chapter 22 NFS: Sharing Filesystems

increased at each timeout to a maximum of 60 seconds or until a major timeout
occurs (see retrans). On a busy network, in case of a slow server, or when the
request passes through multiple routers, increasing this value may improve perfor-
mance. See “Timeouts” below for more information.

Miscellaneous Options

Following are additional useful options:

lock (nolock) Permits NFS locking (default). The nolock option disables NFS locking (does not start
the lockd daemon) and is useful with older servers that do not support NFS locking.

nodev (no device) Causes mounted device files not to function as devices (page 777).

port=n The port used to connect to the NFS server (defaults to 2049 if the NFS daemon is
not registered with portmap). When n is set to 0 (default), NFS queries portmap on
the server to determine the port.

rsize=n (read block size) The number of bytes read at one time from an NFS server. The
default block size is 4096. Refer to “Improving Performance.”

wsize=n (write block size) The number of bytes written at one time to an NFS server. The
default block size is 4096. Refer to “Improving Performance.”

tcp Uses TCP in place of the default UDP protocol for an NFS mount. This option may
improve performance on a congested network; however, some NFS servers support
UDP only.

udp Uses the default UDP protocol for an NFS mount.

Improving Performance

hard/soft Several parameters can affect the performance of NFS, especially over slow connec-
tions such as a line with a lot of traffic or a line controlled by a modem. If you have
a slow connection, make sure hard (page 779) is set (this setting is the default) so
that timeouts do not abort program execution.

Block size One of the easiest ways to improve NFS performance is to increase the block
size—that is, the number of bytes NFS transfers at a time. The default of 4096 is
low for a fast connection using modern hardware. Try increasing rsize and wsize
(both above) to 8192 or higher. Experiment until you find the optimal block size.
Unmount and mount the directory hierarchy each time you change an option. See
the Linux NFS-HOWTO for more information on testing different block sizes.

Timeouts NFS waits the amount of time specified by the timeo (timeout, page 779) option for
a response to a transmission. If it does not receive a response in this amount of time,
NFS sends another transmission. The second transmission uses bandwidth that,
over a slow connection, may slow things down even more. You may be able to
increase performance by increasing timeo.

The default value of timeo is seven-tenths of a second (700 milliseconds). After a
timeout, NFS doubles the time it waits to 1400 milliseconds. On each timeout it
doubles the amount of time it waits to a maximum of 60 seconds. You can test the

 From the Library of WoweBook.Com

ptg

Running an NFS Client 781

speed of a connection with the size of packets you are sending (rsize and wsize; both
on page 780) by using ping with the –s (size) option:

$ ping -s 4096 dog
PING dog (192.168.0.12) 4096(4124) bytes of data.
4104 bytes from dog (192.168.0.12): icmp_seq=1 ttl=64 time=0.823 ms
4104 bytes from dog (192.168.0.12): icmp_seq=2 ttl=64 time=0.814 ms
4104 bytes from dog (192.168.0.12): icmp_seq=3 ttl=64 time=0.810 ms
...
4104 bytes from dog (192.168.0.12): icmp_seq=28 ttl=64 time=0.802 ms
4104 bytes from dog (192.168.0.12): icmp_seq=29 ttl=64 time=0.802 ms
4104 bytes from dog (192.168.0.12): icmp_seq=30 ttl=64 time=0.801 ms

--- dog.bogus.com ping statistics ---
30 packets transmitted, 30 received, 0% packet loss, time 28999ms
rtt min/avg/max/mdev = 0.797/0.803/0.823/0.020 ms

The preceding example uses Ubuntu Linux’s default packet size of 4096 bytes and
shows a fast average packet round-trip time of slightly less than 1 millisecond. Over
a modem line, you can expect times of several seconds. If the connection is dealing
with other traffic, the time will be even longer. Run the test during a period of heavy
traffic. Try increasing timeo to three or four times the average round-trip time (to
allow for unusually bad network conditions, such as when the connection is made)
and see whether performance improves. Remember that the timeo value is given in
tenths of a second (100 milliseconds = one-tenth of a second).

/etc/fstab: Mounts Directory Hierarchies Automatically

The /etc/fstab file (page 510) lists directory hierarchies that the system mounts
automatically as it comes up. You can use the options discussed in the preceding
sections on the command line or in the fstab file.

The following line from fstab mounts grape’s /gc1 filesystem on the /grape.gc1
mount point:

grape:/gc1 /grape.gc1 nfs rsize=8192,wsize=8192 0 0

A mount point should be an empty, local directory. (Files in a mount point are hid-
den when a directory hierarchy is mounted on it.) The type of a filesystem mounted
using NFS is always nfs, regardless of its type on its local system. You can increase
the rsize and wsize options to improve performance. Refer to “Improving Perfor-
mance” on page 780.

The next example from fstab mounts a filesystem from dog:

dog:/export /dog.export nfs timeo=50,hard 0 0

Because the local system connects to dog over a slow connection, timeo is increased
to 5 seconds (50-tenths of a second). Refer to “Timeouts” on page 780. In addition,
hard is set to make sure NFS keeps trying to communicate with the server after a
major timeout. Refer to “hard/soft” on page 780.

 From the Library of WoweBook.Com

ptg

782 Chapter 22 NFS: Sharing Filesystems

The final example from fstab shows a remote-mounted home directory. Because dog
is a local server and is connected via a reliable, high-speed connection, timeo is
decreased and rsize and wsize are increased substantially:

dog:/home /dog.home nfs timeo=4,rsize=16384,wsize=16384 0 0

Setting Up an NFS Server

Prerequisites

Installation Install the following package:

• nfs-kernel-server

portmap The portmap utility (which is part of the portmap package and is installed as a
dependency when you install nfs-kernel-server; page 406) must be running to enable
reliable file locking.

nfs-kernel-server
init script

When you install the nfs-kernel-server package, the dpkg postinst script starts the
nfsd (the NFS kernel) daemon. After you configure NFS, call the nfs-kernel-server
init script to reexport directory hierarchies and restart the nfsd daemon:

$ sudo service nfs-kernel-server restart
* Stopping NFS kernel daemon [OK]
* Unexporting directories for NFS kernel daemon... [OK]
* Exporting directories for NFS kernel daemon... [OK]
* Starting NFS kernel daemon [OK]

After changing the NFS configuration on an active server, use reload in place of restart
to reexport directory hierarchies without disturbing clients connected to the server.

Notes

Firewall An NFS server normally uses TCP port 111 for portmap and TCP port 2049 for
nfsd. In addition, unless you instruct it otherwise, the NFS server uses portmap to
assign (almost) random ports for the services it provides: rpc.statd, rpc.mountd,
and (optionally) rpc.quotad. It is difficult to set up a firewall to protect a server
from queries from random ports; it is much easier to specify which port each of
these services uses. To specify the ports that NFS services use, modify the lines in
the following files as shown:

$ grep STATD /etc/default/nfs-common
NEED_STATD=
STATDOPTS="--port 32765 --outgoing-port 32766"

$ grep MOUNTD /etc/default/nfs-kernel-server
RPCMOUNTDOPTS="-p 32767"

$ grep QUOTAD /etc/default/quota
RPCQUOTADOPTS="-p 32769"

 From the Library of WoweBook.Com

ptg

Setting Up an NFS Server 783

If you are not running rpc.quotad, you do not need to create or modify the quota file.
The ports used in the example are the ones suggested in the Linux NFS-HOWTO,
but you can use any unused ports you like. See wiki.debian.org/SecuringNFS for more
information.

If the NFS server system is running a firewall, you need to open ports 111 and
2049. To do so, use gufw (page 876) to set a policy that allows NFS service. In addi-
tion, open the ports you specified in the files in /etc/default, as explained earlier.
Because gufw has no defined policy for these ports, you need to specify the ports
manually when you add a rule in gufw.

Security The rpc.mountd daemon uses TCP wrappers to control client access to the server.
As explained on page 465, you can set up /etc/hosts.allow and /etc/hosts.deny files
to specify which clients can contact rpc.mountd on the server and thereby use NFS.
The name of the daemon to use in these files is mountd.

JumpStart II: Configuring an NFS Server

Using shares-admin
The Shared Folders window (Figure 22-2) enables the local system to share direc-
tory hierarchies using Samba (Chapter 23) and/or NFS. To display this window,
give the command shares-admin from a terminal emulator or Run Application win-
dow (ALT-F2). Click the lock icon labeled Click to make changes and enter your pass-
word to enable you to use this window to set up shares.

As part of the process of setting up an NFS server, the Shared Folders window mod-
ifies the /etc/exports file. If the system is running a firewall, see “Firewall” on
page 782. The shares-admin utility allows you to specify which directory hierarchies
you want to share and how they are shared using NFS. Each exported hierarchy is
called a share—terminology that is borrowed from Samba.

Figure 22-2 Shared Folders window

 From the Library of WoweBook.Com

ptg

784 Chapter 22 NFS: Sharing Filesystems

To add a share, click Add, which displays the Share Folder window (Figure 22-3).
This window has two sections: Shared Folder and Allowed Hosts. In the first sec-
tion, choose the pathname of the directory hierarchy you want to share from the list
box labeled Path. If the directory you want is not listed, click Other; then double-
click File System in the Places column and double-click the directory you want in
the Name column. Continue selecting directories in the Name column until the but-
tons at the top of the window display the pathname of the directory hierarchy you
want to share. Click Open to select the directory hierarchy. Then select Unix net-
works (NFS) from the list box labeled Share through.

In the Allowed Hosts section of the Share Folder window, click Add to display the
Add Allowed Hosts window (Figure 22-4). Select Specify hostname, Specify IP
address, or Specify network from the list box labeled Allowed hosts and specify the
system in the text box labeled Host name, IP address, or Network. Put a tick in the
check box labeled Read only if you do not want users on the remote system to be
able to write to the mounted directory hierarchy. Click OK. The shares-admin utility
stores this information in /etc/exports. Click Add and repeat this process for each
system you want to be able to access the directory hierarchy specified in the list box
labeled Path. Click Share.

To modify a share, highlight the object representing the share in the Shared Folders
window and click Properties, or double-click the object. The shares-admin utility
displays the Settings for Folder share-name window. To modify an existing host,
you must delete it from the Allowed Hosts list and then add it again. Make the
changes you want and click OK.

To remove a share, highlight the object representing the share in the Shared Folders
window and click Delete.

Click Close when you are finished setting up shares. There is no need to restart any
daemons. After running shares-admin, give the following command from a terminal
emulator:

$ sudo exportfs -r

Figure 22-3 The Share Folder window

 From the Library of WoweBook.Com

ptg

Setting Up an NFS Server 785

You can ignore error messages that refer to subtree_check. For more information on
this parameter, see page 787.

Give the command exportfs without any options to display a list of exported direc-
tory hierarchies and the systems each is exported to:

$ exportfs
/pl6 192.168.0.12

See page 791 for more information on exportfs.

Manually Exporting a Directory Hierarchy

Exporting a directory hierarchy makes the directory hierarchy available for mount-
ing by designated systems via a network. “Exported” does not mean “mounted”:
When a directory hierarchy is exported, it is placed in the list of directory hierar-
chies that can be mounted by other systems. An exported directory hierarchy may
be mounted (or not) at any given time.

A mounted directory hierarchy whose mount point is within an exported partition
is not exported with the exported partition. You need to explicitly export each
directory hierarchy you want exported, even if it resides within an already exported
directory hierarchy. For example, assume two directory hierarchies, /opt/apps and
/opt/apps/oracle, reside on two partitions. You must export each directory hierar-
chy explicitly, even though oracle is a subdirectory of apps. Most other subdirecto-
ries and files are exported automatically.

Figure 22-4 The Add Allowed Hosts window

Exporting symbolic links and device files

tip When you export a directory hierarchy that contains a symbolic link, make sure the object of the
link is available on the client (remote) system. If the object of the link does not exist on a client
system, you must export and mount it along with the exported link. Otherwise, the link will not
point to the same file it points to on the server.

A device file refers to a Linux kernel interface. When you export a device file, you export that inter-
face. If the client system does not have the same type of device available, the exported device will
not work. To improve security on a client, you can use mount’s nodev option (page 777) to pre-
vent device files on mounted directory hierarchies from being used as devices.

 From the Library of WoweBook.Com

ptg

786 Chapter 22 NFS: Sharing Filesystems

/etc/exports: Holds a List of Exported

Directory Hierarchies

The /etc/exports file is the access control list for exported directory hierarchies that
NFS clients can mount; it is the only file you need to edit to set up an NFS server.
The exportfs utility (page 791) reads this file when it updates the files in /var/lib/nfs
(page 789), which the kernel uses to keep its mount table current. The exports file
controls the following NFS characteristics:

• Which clients can access the server (see also “Security” on page 776)

• Which directory hierarchies on the server each client can access

• How each client can access each directory hierarchy

• How client usernames are mapped to server usernames

• Various NFS parameters

Each line in the exports file has the following format:

export-point client1(option-list) [client2(option-list) ...]

where export-point is the absolute pathname of the root directory of the directory
hierarchy to be exported. The client1-n are the names or IP addresses of one or
more clients, separated by SPACEs, that are allowed to mount the export-point. The
option-list, described in the next section, is a comma-separated list of options that
applies to the preceding client; it must not contain any SPACEs. There must not be any
SPACE between each client name and the open parenthesis that starts the option-list.

You can either use shares-admin (page 783) to make changes to exports or edit this
file manually. The following exports file gives grape read and write access to /home,
and jam and the system at 192.168.0.12 read and write access to /pl6:

$ cat /etc/exports
/home grape(rw,no_subtree_check)
/pl6 192.168.0.12(rw,no_subtree_check) jam(rw,no_subtree_check)

The specified directories are on the local server. In each case, access is implicitly
granted for the directory hierarchy rooted at the exported directory. You can specify
IP addresses or hostnames and you can specify more than one client system on a
line. By default, directory hierarchies are exported in readonly mode. The current
version of exportfs complains when you do not specify either subtree_check or
no_subtree_check (page 787).

General Options

The left column of this section lists default options, followed by nondefault options
enclosed in parentheses. Refer to the exports man page for more information.

auth_nlm (no_auth_nlm) or secure_locks (insecure_locks)
Causes the server to require authentication of lock requests (using the NLM [NFS
Lock Manager] protocol). Use no_auth_nlm for older clients when you find that
only files that anyone can read can be locked.

 From the Library of WoweBook.Com

ptg

Setting Up an NFS Server 787

mountpoint[=path]
Allows a directory to be exported only if it has been mounted. This option prevents
a mount point that does not have a directory hierarchy mounted on it from being
exported and prevents the underlying mount point from being exported. Also mp.

nohide (hide) When a server exports two directory hierarchies, one of which is mounted on the
other, a client has to mount both directory hierarchies explicitly to access both.
When the second (child) directory hierarchy is not explicitly mounted, its mount
point appears as an empty directory and the directory hierarchy is hidden. The
nohide option causes the underlying second directory hierarchy to appear when it is
not explicitly mounted, but this option does not work in all cases.

ro (rw) (readonly) Permits only read requests on an NFS directory hierarchy. Use rw to
permit read and write requests.

secure (insecure) Requires NFS requests to originate on a privileged port (page 1166) so a program
running without root privileges cannot mount a directory hierarchy. This option
does not guarantee a secure connection.

no_subtree_check (subtree_check)
Checks subtrees for valid files. Assume you have an exported directory hierarchy
that has its root below the root of the filesystem that holds it (that is, an exported
subdirectory of a filesystem). When the NFS server receives a request for a file in
that directory hierarchy, it performs a subtree check to confirm the file is in the
exported directory hierarchy.

Subtree checking can cause problems with files that are renamed while opened and,
when no_root_squash is used, files that only a process running with root privileges
can access. The no_subtree_check option disables subtree checking and can improve
reliability in some cases.

For example, you may need to disable subtree checking for home directories. Home
directories are frequently subtrees (of /home), are written to often, and can have files
within them frequently renamed. You would probably not need to disable subtree
checking for directory hierarchies that contain files that are mostly read, such as /usr.

Because the default has changed (it is now no_subtree_check), exportfs displays a
warning when you do not specify either subtree_check or no_subtree_check.

sync (async) (synchronize) Specifies that the server should reply to requests only after disk
changes made by the request are written to disk. The async option specifies that the
server does not have to wait for information to be written to disk and can improve
performance, albeit at the cost of possible data corruption if the server crashes or
the connection is interrupted.

wdelay
(no_wdelay)

(write delay) Causes the server to delay committing write requests when it antici-
pates that another, related request will follow, thereby improving performance by
committing multiple write requests within a single operation. The no_wdelay
option does not delay committing write requests and can improve performance
when the server receives multiple, small, unrelated requests.

 From the Library of WoweBook.Com

ptg

788 Chapter 22 NFS: Sharing Filesystems

User ID Mapping Options

Each user has a UID number and a primary GID number on the local system. The
local /etc/passwd and /etc/group files may map these numbers to names. When a
user makes a request of an NFS server, the server uses these numbers to identify the
user on the remote system, raising several issues:

• The user may not have the same ID numbers on both systems. As a conse-
quence, the user may have owner access to files of another user and not
have owner access to his own files (see “NIS and NFS” for a solution).

• You may not want a user with root privileges on the client system to have
owner access to root-owned files on the server.

• You may not want a remote user to have owner access to some important
system files that are not owned by root (such as those owned by bin).

Owner access to a file means that the remote user can execute or—worse—modify
the file. NFS gives you two ways to deal with these cases:

• You can use the root_squash option to map the ID number of the root
account on a client to UID 65534 on the server.

• You can use the all-squash option to map all NFS users on the client to
UID 65534 on the server.

Use the anonuid and anongid options to override these values.

NIS and NFS When you use NIS (page 741) for user authorization, users automatically have the
same UIDs on both systems. If you are using NFS on a large network, it is a good
idea to use a directory service such as NIS or LDAP (page 758) for authorization.
Without such a service, you must synchronize the passwd files on all the systems
manually.

root_squash (no_root_squash)
Maps requests from root on a remote system so they appear to come from the UID
65534, a nonprivileged user on the local system, or as specified by anonuid. This
option does not affect other sensitive UIDs such as bin. The no_root_squash option
turns off this mapping so that requests from root appear to come from root.

Critical files in NFS-mounted directories should be owned by root
security Despite the mapping done by the root-squash option, a user with root privileges on a client system

can use sudo or su to assume the identity of any user on the system and then access that user’s
files on the server. Thus, without resorting to all-squash, you can protect only files owned by root
on an NFS server. Make sure that root—and not bin or another user—owns and is the only user
who can modify or delete critical files within any NFS-mounted directory hierarchy.

Taking this precaution does not completely protect the system against an attacker with root priv-
ileges, but it can help thwart an attack from a less experienced malicious user.

 From the Library of WoweBook.Com

ptg

Setting Up an NFS Server 789

no_all_squash
(all_squash)

Does not change the mapping of users making requests of the NFS server. The
all_squash option maps requests from all users—not just root—on remote systems
to appear to come from the UID 65534, a nonprivileged user on the local system, or
as specified by anonuid. This option is useful for controlling access to exported
public FTP, news, and other directories.

anonuid=un and
anongid=gn

Set the UID or the GID of the anonymous account to un or gn, respectively. NFS
uses these accounts when it does not recognize an incoming UID or GID and when
it is instructed to do so by root_squash or all_squash.

Where the System Keeps NFS Mount Information

A server holds several lists of directory hierarchies it can export. The list that you as
a system administrator work with is /etc/exports. The following discussion assumes
that the local server, plum, is exporting these directory hierarchies:

$ cat /etc/exports
/home grape(rw,no_subtree_check)
/pl6 192.168.0.12(rw,no_subtree_check) jam(rw,no_subtree_check)

As explained in more detail on page 791, exportfs displays the list of exported direc-
tory hierarchies:

$ exportfs
/home grape
/pl6 jam
/pl6 192.168.0.12

The important files and pseudofiles that NFS works with are described next.

/var/lib/nfs/etab (export table) On the server, lists the directory hierarchies that are exported (can be
mounted, but are not necessarily mounted at the moment) and the options they are
exported with:

$ cat /var/lib/nfs/etab
/home grape(rw,sync,wdelay,hide,nocrossmnt,secure,root_squash,no_all_s
quash,no_subtree_check,secure_locks,acl,mapping=identity,anonuid=65534,
anongid=65534)
/pl6 jam(rw,sync,wdelay,hide,nocrossmnt,secure,root_squash,no_all_squa
sh,no_subtree_check,secure_locks,acl,mapping=identity,anonuid=65534,ano
ngid=65534)
/pl6 192.168.0.12(rw,sync,wdelay,hide,nocrossmnt,secure,root_squash,no
_all_squash,no_subtree_check,secure_locks,acl,mapping=identity,anonuid=
65534,anongid=65534)

The preceding output shows that grape can mount /home and that jam and
192.168.0.12 can mount /pl6. The etab file is initialized from /etc/exports when the
system is brought up, read by mountd when a client asks to mount a directory hierar-
chy, and modified by exportfs (page 791) as the list of exported directory hierarchies
changes.

 From the Library of WoweBook.Com

ptg

790 Chapter 22 NFS: Sharing Filesystems

/var/lib/nfs/rmtab
(remote mount table) On the server, lists the directory hierarchies that are mounted
by client systems:

$ cat /var/lib/nfs/rmtab
192.168.0.12:/pl6:0x00000002

The preceding output shows /pl6 is mounted by 192.168.0.12. The rmtab file is
updated by mountd as it mounts and unmounts directory hierarchies. This file is
“mostly ornamental” (from the mountd man page) and may not be accurate.

/proc/mounts On the client, this pseudofile displays the kernel mount table, which lists filesystems
mounted by the local system. In the following example, grep displays lines that con-
tain the string nfs followed by a SPACE. The SPACE, which you must quote, eliminates
lines with the string nfs that do not pertain to mounted filesystems.

$ grep nfs\ /proc/mounts
plum:/pl6 /mnt nfs rw,vers=3,rsize=131072,wsize=131072,hard,intr,proto=
tcp,timeo=600,retrans=2,sec=sys,addr=plum 0 0

showmount: Displays NFS Status Information

Without any options, the showmount utility displays a list of systems that are
allowed to mount local directories. You typically use showmount to display a list of
directory hierarchies that a server is exporting. To display information for a remote
system, give the name of the remote system as an argument. The information show-
mount provides may not be complete, however, because it depends on mountd and
trusts that remote servers are reporting accurately.

In the following example, 192.168.0.12 is allowed to mount local directories, but
you do not know which ones:

$ showmount
Hosts on plum:
192.168.0.12

If showmount displays an error such as RPC: Program not registered, NFS is not run-
ning on the server. Start NFS on the server with the nfs-kernel-server init script
(page 782).

–a (all) Displays a list of client systems and indicates which directories each client sys-
tem can mount. This information is stored in /etc/exports. In the following exam-
ple, showmount lists the directories that 192.168.0.12 can mount from the local
system:

$ /sbin/showmount -a
All mount points on plum:
192.168.0.12:/pl6

–e (exports) Displays a list of exported directories and the systems that each directory
is exported to.

$ showmount -e
Export list for plum:
/pl6 192.168.0.12

 From the Library of WoweBook.Com

ptg

Setting Up an NFS Server 791

exportfs: Maintains the List of Exported

Directory Hierarchies

The exportfs utility maintains the /var/lib/nfs/etab file (page 789). When mountd is
called, it checks this file to see if it is allowed to mount the requested directory hier-
archy. Typically exportfs is called with simple options and modifies the etab file
based on changes in /etc/exports. When called with client and directory arguments,
it can add to or remove the directory hierarchies specified by those arguments from
the list kept in etab, without reference to the exports file. An exportfs command has
the following format:

/usr/sbin/exportfs [options] [client:dir ...]

where options is one or more options (as discussed in the next section), client is the
name of the system that dir is exported to, and dir is the absolute pathname of the
directory at the root of the directory hierarchy being exported. Without any argu-
ments, exportfs reports which directory hierarchies are exported to which systems:

$ exportfs
/home grape
/pl6 jam
/pl6 192.168.0.12

The system executes the following command when it comes up (it is in the nfs-
kernel-server init script). This command reexports the entries in /etc/exports and
removes invalid entries from /var/lib/nfs/etab so etab is synchronized with
/etc/exports:

$ sudo exportfs -r

Options

–a (all) Exports directory hierarchies specified in /etc/exports. This option does not
unexport entries you have removed from exports (that is, it does not remove invalid
entries from /var/lib/nfs/etab); use –r to perform this task.

–f (flush) Removes everything from the kernel’s export table.

–i (ignore) Ignores /etc/exports; uses what is specified on the command line only.

–o (options) Specifies options. You can specify options following –o the same way you
do in the exports file. For example, exportfs –i –o ro dog:/home/sam exports
/home/sam on the local system to dog for readonly access.

–r (reexport) Reexports the entries in /etc/exports and removes invalid entries from
/var/lib/nfs/etab so /var/lib/nfs/etab is synchronized with /etc/exports.

–u (unexport) Makes an exported directory hierarchy no longer exported. If a direc-
tory hierarchy is mounted when you unexport it, users see the message Stale NFS
file handle when they try to access the directory hierarchy from a remote system.

–v (verbose) Provides more information. Displays export options when you use exportfs
to display export information.

 From the Library of WoweBook.Com

ptg

792 Chapter 22 NFS: Sharing Filesystems

Testing the Server Setup

From the server, run the nfs-kernel-server init script with an argument of status. If
all is well, the system displays the following:

$ service nfs-kernel-server status
nfsd running

Also check that mountd is running:

$ ps -e | grep mountd
29609 ? 00:00:00 rpc.mountd

Next, from the server, use rpcinfo to make sure NFS is registered with portmap:

$ rpcinfo -p localhost | grep nfs
 100003 2 udp 2049 nfs
 100003 3 udp 2049 nfs
 100003 4 udp 2049 nfs
 100003 2 tcp 2049 nfs
 100003 3 tcp 2049 nfs
 100003 4 tcp 2049 nfs

Repeat the preceding command from the client, replacing localhost with the name
of the server. The results should be the same.

Finally, try mounting directory hierarchies from remote systems and verify access.

automount: Mounts Directory Hierarchies

on Demand

In a distributed computing environment, when you log in on any system on the net-
work, all your files—including startup scripts—are available. All systems are also
commonly able to mount all directory hierarchies on all servers: Whichever system
you log in on, your home directory is waiting for you.

As an example, assume /home/zach is a remote directory hierarchy that is
mounted on demand. When you issue the command ls /home/zach, autofs goes to
work: It looks in the /etc/auto.home map, finds zach is a key that says to mount
plum:/export/home/zach, and mounts the remote directory hierarchy. Once the
directory hierarchy is mounted, ls displays the list of files in that directory. If you
give the command ls /home after this mounting sequence, ls shows that zach is
present within the /home directory. The df utility shows that zach is mounted
from plum.

Prerequisites

Installation Install the following package:

• autofs

 From the Library of WoweBook.Com

ptg

automount: Mounts Directory Hierarchies on Demand 793

autofs init script When you install the autofs package, the dpkg postinst script starts the automount
daemon. After you configure automount, call the autofs init script to restart the
automount daemon:

$ sudo service autofs restart

After changing the automount configuration on an active server, use reload in place
of restart to reload automount configuration files without disturbing automatically
mounted filesystems.

autofs: Automatically Mounted Directory Hierarchies

An autofs directory hierarchy is like any other directory hierarchy but remains
unmounted until it is needed, at which time the system mounts it automatically
(demand mounting). The system unmounts an autofs directory hierarchy when it
is no longer needed—by default, after 5 minutes of inactivity. Automatically
mounted directory hierarchies are an important part of managing a large collec-
tion of systems in a consistent way. The automount daemon is particularly useful
when an installation includes a large number of servers or a large number of
directory hierarchies. It also helps to remove server–server dependencies (dis-
cussed next).

When you boot a system that uses traditional fstab-based mounts and an NFS server
is down, the system can take a long time to come up as it waits for the server to time
out. Similarly, when you have two servers, each mounting directory hierarchies from
the other, and both systems are down, both may hang as they are brought up while
each tries to mount a directory hierarchy from the other. This situation is called a
server–server dependency. The automount facility gets around these issues by
mounting a directory hierarchy from another system only when a process tries to
access it.

When a process attempts to access one of the directories within an unmounted
autofs directory hierarchy, the kernel notifies the automount daemon, which mounts
the directory hierarchy. You must give a command, such as cd /home/zach, that
accesses the autofs mount point (in this case /home/zach) to create the demand that
causes automount to mount the autofs directory hierarchy; only then can the system
display or use the autofs directory hierarchy. Before you issue this cd command, zach
does not appear in /home.

The main file that controls the behavior of automount is /etc/auto.master. A simple
example follows:

$ cat /etc/auto.master
/free1 /etc/auto.misc --timeout=60
/plum /etc/auto.plum

The auto.master file has three columns. The first column names the parent of the
autofs mount point—the location where the autofs directory hierarchy is to be
mounted. (The /free1 and /plum directories in the example are not mount points
but will hold the mount points when the directory hierarchies are mounted.) The

 From the Library of WoweBook.Com

ptg

794 Chapter 22 NFS: Sharing Filesystems

second column names the files, called map files, that store supplemental configura-
tion information. The optional third column holds mount options for map entries.
In the preceding example, the first line sets the timeout (the length of time a direc-
tory stays mounted when it is not in use) to 60 seconds; the default timeout value is
300 seconds. You can change autofs default values in /etc/default/autofs.

Although the map files can have any names, one is traditionally named auto.misc.
Following are the two map files specified in auto.master:

$ cat /etc/auto.misc
music -fstype=ext4 :/dev/sdb7

$ cat /etc/auto.plum
pl6 -fstype=nfs plum:/pl6

The first column of a map file holds the relative autofs mount point (music and pl6
in the preceding files). This mount point is appended to the corresponding autofs
mount point from column 1 of the auto.master file to create the absolute autofs
mount point. In this example, music (from auto.misc) is appended to /free1 (from
auto.master) to make /free1/music; pl6 is appended to /plum to make /plum/pl6.
The second column holds options, and the third column shows the server and direc-
tory hierarchy to be mounted. The first example shows a local drive (/dev/sdb7).
You can tell it is local because its filesystem type is specified as ext4 and no system
name appears before the colon. The second example shows a filesystem on a remote
system. It has a filesystem type of nfs and specifies the name of the remote system, a
colon, and the name the filesystem is mounted under on the remote system.

Before the new setup can work, you must reload the automount daemon using the
autofs init script (page 793). This script creates the directories that hold the mount
points (/free1 and /plum in the example) when you start, restart, or reload autofs
and removes those directories when you stop it.

In the following example, the first ls command shows that the /free1 and /plum
directories do not exist. The next command, running with root privileges, runs the
autofs init script to reload autofs. Now the directories exist but do not hold any
files. When the user lists the contents of /plum/pl6, autofs mounts pl6 and ls dis-
plays its contents:

$ ls /free1 /plum
ls: /free1: No such file or directory
ls: /plum: No such file or directory

$ sudo service autofs reload
Reloading automounter: checking for changes ...
Reloading automounter map for: /free1
Reloading automounter map for: /plum

$ ls /free1 /plum
/free1:
/plum:

$ ls /plum/pl6
lost+found memo

 From the Library of WoweBook.Com

ptg

Advanced Exercises 795

Chapter Summary

NFS allows a server to share selected local directory hierarchies with client systems
on a heterogeneous network, thereby reducing storage needs and administrative
overhead. NFS defines a client/server relationship in which a server provides direc-
tory hierarchies that clients can mount.

On the server, the /etc/exports file typically lists the directory hierarchies that the
system exports. Each line in exports specifies a directory hierarchy and the client
systems that are allowed to mount it, including options for each client (readonly,
read-write, and so on). An exportfs –r command causes NFS to reread this file.

From a client, a mount command mounts an exported NFS directory hierarchy.
Alternatively, you can put an entry in /etc/fstab to have the system automatically
mount the directory hierarchy when it boots.

Automatically mounted directory hierarchies help manage large groups of systems
containing many servers and filesystems in a consistent way and can help remove
server–server dependencies. The automount daemon automatically mounts autofs
directory hierarchies when they are needed and unmounts them when they are no
longer needed.

Exercises

1. What are three reasons to use NFS?

2. Which command would you give to mount on the local system the /home
directory hierarchy that resides on the file server named plum? Assume the
mounted directory hierarchy will appear as /plum.home on the local sys-
tem. How would you mount the same directory hierarchy if it resided on
the fileserver at 192.168.1.1? How would you unmount /home?

3. How would you list the mount points on the remote system named plum
that the local system named grape can mount?

4. Which command line lists the currently mounted NFS directory hierarchies?

5. What does the /etc/fstab file do?

6. From a server, how would you allow readonly access to /opt for any system
in example.com?

Advanced Exercises

7. When is it a good idea to disable attribute caching?

 From the Library of WoweBook.Com

ptg

796 Chapter 22 NFS: Sharing Filesystems

8. Describe the difference between the root_squash and all_squash options in
/etc/exports.

9. Why does the secure option in /etc/exports not really provide any security?

10. Some diskless workstations use NFS as swap space. Why is this approach
useful? What is the downside?

11. NFS maps users on the client to users on the server. Explain why this map-
ping is a security risk.

12. What does the mount nosuid option do? Why would you want to use this
option?

 From the Library of WoweBook.Com

ptg

777999777

23Chapter23Samba is a suite of programs that enables UNIX-like operating
systems, including Linux, Solaris, FreeBSD, and Mac OS X, to
work with other operating systems, such as OS/2 and Win-
dows, as both a server and a client.

As a server, Samba shares Linux files and printers with Win-
dows systems. As a client, Samba gives Linux users access to
files on Windows systems. Its ability to share files across oper-
ating systems makes Samba an ideal tool in a heterogeneous
computing environment.

Refer to pages 566 and 568 for information about printing
using Samba.

In This Chapter

Introduction to Samba 798

JumpStart: Configuring a
Samba Server Using
system-config-samba 800

ssmb.conf: Manually Configuring
a Samba Server 807

Working with Linux Shares from
Windows 814

Working with Windows Shares
from Linux 815

Troubleshooting 817

23

Samba: Linux and

Windows File and

Printer Sharing

 From the Library of WoweBook.Com

ptg

798 Chapter 23 Samba: Linux and Windows File and Printer Sharing

Introduction to Samba

This chapter starts by providing a list of Samba tools followed by some basic infor-
mation. The JumpStart section discusses how to set up a simple Samba server using
the Shared Folders window. The section following that covers how to use swat, a
Web-based advanced configuration tool, to set up a Samba server. The final server
section discusses how to set up a Samba server by using a text editor to manually
edit the files that control Samba. The next two sections of this chapter, “Working
with Linux Shares from Windows” (page 814) and “Working with Windows Shares
from Linux” (page 815), explain how to work with Linux and Windows files and
printers. The final section, “Troubleshooting” (page 817), offers tips on what to do
when Samba does not work properly.

Table 23-1 lists some of the utilities and daemons that make up the Samba suite of
programs. See the samba man page for a complete list.

Table 23-1 Samba utilities and daemons

Utility or daemon Function

net This utility has the same syntax as the DOS net command and, over time, will
eventually replace other Samba utilities such as smbpasswd.

nmbd The NetBIOS (page 1161) nameserver program, run as a daemon by
default. Provides NetBIOS over IP naming services for Samba clients. Also
provides browsing support (as in the Windows Network Neighborhood or
My Network Places view).

nmblookup Queries the NetBIOS (page 1161) name; see page 818.

pdbedit Maintains Samba user database.

smbclient Displays shares on a Samba server such as a Windows machine; uses ftp-
like commands (page 815).

smbd The Samba program, run as a daemon by default. Provides file and print
services for Samba clients.

smbpasswd Changes Windows NT password hashes on Samba and Windows NT serv-
ers (page 803).

smbstatus Displays information about current smbd connections.

smbtar Backs up and restores data from Samba servers; similar to tar.

smbtree Displays a hierarchical diagram of available shares (page 815).

swat Samba Web Administration Tool. A browser-based editor for the smb.conf
file (page 804).

testparm Checks syntax of the smb.conf file (page 817).

 From the Library of WoweBook.Com

ptg

Introduction to Samba 799

More Information

Local Samba/swat home page has links to local Samba documentation (page 804)
Documentation: /usr/share/doc/samba-doc*

Web Samba: www.samba.org (mailing lists, documentation, downloads, and more)
CIFS: www.samba.org/cifs

HOWTO Unofficial Samba HOWTO: hr.uoregon.edu/davidrl/samba.html
Samba Documentation Collection: Point a browser at /usr/share/doc/samba-doc/

htmldocs/index.html; if you have installed the samba-doc-pdf package, look in
/usr/share/doc/samba-doc-pdf.

Notes

Firewall The Samba server normally uses UDP ports 137 and 138 and TCP ports 139 and
445. If the Samba server system is running a firewall, you need to open these ports.
Using gufw (page 876), open these ports by setting a policy that allows service for
Samba.

Share Under Samba, an exported directory hierarchy is called a share.

Mapping a share The Samba term mapping a share is equivalent to the Linux term mounting a direc-
tory hierarchy.

Samba The name Samba is derived from SMB (page 1172), the protocol that is the native
method of file and printer sharing for Windows.

swat You must set up a root password to use swat to change the Samba configuration; see
page 431 for instructions.

Samba Users, User Maps, and Passwords

For a Windows user to access Samba services on a Linux system, the user must pro-
vide a Windows username and a Samba password. In some cases, Windows supplies
the username and password for you. It is also possible to authenticate using other
methods. For example, Samba can use LDAP (page 1156) or PAM (page 478)
instead of the default password file. Refer to the Samba documentation for more
information on authentication methods.

Usernames The username supplied by Windows must be the same as a Linux username or must
map to a Linux username.

User maps You can create a file, typically named /etc/samba/smbusers, to map Windows user-
names to Linux usernames. For more information see username map on page 811.

Passwords By default, Samba uses Linux passwords to authenticate users. However, Ubuntu
sets passdb backend (page 809) to tdbsam, causing Samba to use trivial database
passwords. Change this parameter to smbpasswd in smb.conf (page 807) to cause
Samba to use Linux passwords.

 From the Library of WoweBook.Com

www.samba.org
www.samba.org/cifs

ptg

800 Chapter 23 Samba: Linux and Windows File and Printer Sharing

Setting Up a Samba Server

This section describes how to install and configure a Samba server using both the
shares-admin utility and the swat browser-based configuration tool.

Prerequisites

Installation Install the following packages:

• samba

• samba-client

• smbfs (the only package needed to mount a Windows share)

• system-config-samba (optional)

• swat (optional, but useful)

• openbsd-inetd (needed to run swat; installed as a swat dependency)

• samba-doc (optional documentation; installed with swat)

• samba-doc-pdf (optional; documentation in PDF format)

smbd init script When you install the samba package, the dpkg postinst script configures Samba to
run as a normal daemon (not from inetd), copies all Linux users to the list of Samba
users, sets up Samba to use encrypted passwords, and starts the smbd and nmbd
daemons. After you configure samba, give the following command (page 434) to
restart the smbd and nmbd daemons:

$ sudo service smbd restart
smbd start/running, process 4662

JumpStart: Configuring a Samba Server Using

system-config-samba
The system-config-samba utility can set up only basic features of a Samba server. It
is, however, the best tool to use if you are not familiar with Samba and you want to
set up a simple Samba server quickly. The system-config-samba utility performs three
basic functions: configuring the server, configuring users, and setting up shares
(directory hierarchies) that are exported to Windows machines.

To display the Samba Server Configuration window (Figure 23-1), select Main
menu: System Administration Samba or enter sudo system-config-samba from a
terminal emulator or Run Application window (ALT-F2). Printers are shared by default.

Make a copy of smb.conf
tip As installed, the /etc/samba/smb.conf file has extensive comments (page 807). The system-

config-samba utility overwrites this file. Make a copy of smb.conf for safekeeping before you
run this utility for the first time.

 From the Library of WoweBook.Com

ptg

Setting Up a Samba Server 801

Select Menubar: Preferences Server Settings to display the Server Settings win-
dow Basic tab (Figure 23-2). Change the workgroup to the one in use on the
Windows machines. Change the description of the server if you like. Click the
Security tab and make sure Authentication Mode is set to User; you do not need
to specify an Authentication Server or a Kerberos Realm. If you are using Win-
dows 98 or later, set Encrypt Passwords to Yes. When you specify a username in
the Guest Account, anyone logging in on the Samba server as guest maps to that
user’s ID. Typically the guest account maps to the UID of the Linux user named
nobody. Click OK.

Samba users Select Menubar: Preferences Samba Users to display the Samba Users window
(Figure 23-3, next page). If the user you want to log in as is not already specified in
this window, click Add User. When you have the proper permissions, the Create
New Samba User window displays a combo box labeled Unix Username that allows
you to select a Linux user; otherwise, your username is displayed as the Unix User-
name. The Windows Username is the Windows username that you want to map to
the specified Linux (UNIX) username. The Samba Password is the password this
user or Windows enters to gain access to the Samba server.

Figure 23-1 Samba Server Configuration window

Figure 23-2 Server Settings window, Basic tab

 From the Library of WoweBook.Com

ptg

802 Chapter 23 Samba: Linux and Windows File and Printer Sharing

If Sam has accounts named sam on both the Windows and Linux systems, you
would select sam from the Unix Username combo box, enter sam in the Windows
Username text box, and enter Sam’s Windows password in the two Samba Pass-
word text boxes. Click OK to close the Create New Samba User window and click
OK to close the Samba Users window.

Linux shares Next you need to add a share, which is the directory hierarchy you export from the
Linux system to the Windows system. Click the green plus sign (+) on the toolbar to
display the Basic tab in the Create Samba Share window (Figure 23-4). In the Direc-
tory text box, enter the absolute pathname of the directory you want to share (/tmp
is an easy directory to practice with). Enter a description if you like. It can be useful
to enter the Linux hostname and the pathname of the directory you are sharing
here. Specify Writable if you want to be able to write to the directory from the Win-
dows machine; Visible allows the share to be seen from the Windows machine.
Click the Access tab and specify whether you want to limit access to specified users

Figure 23-3 Samba Users window

Adding a Samba password for the Linux user nobody
tip Because the user nobody exists in smbusers when you install Samba, you cannot add the user

nobody, nor can you add a password for nobody from system-config-samba. Instead, you
must use smbpasswd from the command line as follows:

$ sudo smbpasswd -a nobody
New SMB password:
Retype new SMB password:

Normally the user nobody does not have a password because it is the guest login. Press RETURN
(without typing any characters) in response to each of the SMB password prompts to add nobody
to the Samba password file without a password.

 From the Library of WoweBook.Com

ptg

Setting Up a Samba Server 803

or whether you want to allow anyone to access this share. Click OK. Close the
Samba Server Configuration window.

You should now be able to access the share from a Windows machine (page 814).
There is no need to restart the Samba server.

smbpasswd Working with root privileges, you can use smbpasswd to change a Linux user’s
Samba password.

$ sudo smbpasswd sam
New SMB password:
Retype new SMB password:

This example assumes Sam was a user on the Linux system before Samba was
installed. When you install Samba, it copies all Linux users to the list of Samba
users. If you add a user after you install Samba, you need to use the –a option to
instruct smbpasswd to add the user to the list of Samba users. The following com-
mand adds a new Linux user, Max, to the list of Samba users and assigns a Samba
password to Max:

$ sudo smbpasswd -a max
New SMB password:
Retype new SMB password:
Added user max.

Once a user has a Samba password, he can use smbpasswd without any arguments
to change his password.

If a user has different usernames on the Linux and Windows systems, you must map
the Windows username to a Linux username (see username map on page 811).
Make sure all Linux users who will log in using Samba have Samba passwords.

You should now be able to access the new shares from a Windows machine
(page 814). There is no need to restart the Samba server.

Figure 23-4 Create Samba Share window, Basic tab

 From the Library of WoweBook.Com

ptg

804 Chapter 23 Samba: Linux and Windows File and Printer Sharing

swat: Configures a Samba Server

The swat (Samba Web Administration Tool, swat package) utility is a browser-based
graphical editor for the /etc/samba/smb.conf file. For each of the configurable
parameters, it provides Help links, default values, and a text box to change the
value. The swat utility is a well-designed tool in that it remains true to the lines in
the smb.conf file you edit: You can use and learn from swat, so that, if you want to
use a text editor to modify smb.conf, the transition will be straightforward.

The swat utility is run from inetd (openbsd-inetd package). When you install the
swat package, it installs openbsd-inetd as a dependency and places the following
line in /etc/inetd.conf:

swat stream tcp nowait.400 root /usr/sbin/tcpd /usr/sbin/swat

This line enables swat when inetd is running. If necessary, give the following com-
mand to restart inetd so that it rereads its configuration file:

$ sudo service openbsd-inetd restart

* Restarting internet superserver inetd [OK]

Make a copy of smb.conf
tip As installed, the /etc/samba/smb.conf file contains extensive comments (page 807). The swat

utility overwrites this file, removing the comments. Make a copy of smb.conf for safekeeping
before you run this utility for the first time.

Figure 23-5 The local swat home page

 From the Library of WoweBook.Com

ptg

Setting Up a Samba Server 805

Now you should be able to run swat: From the local system, open a browser and
enter either http://127.0.0.1:901 or http://localhost:901 in the location bar. When
prompted, enter the username root and the root password. (You must set up a root
password to use swat to change the Samba configuration; see page 431 for instruc-
tions.) If you provide a username other than root, you will be able to view some
configuration information but will not be able to make changes. From a remote sys-
tem, replace 127.0.0.1 with the IP address of the server (but see the adjacent secu-
rity tip). If a firewall is running on the local system and you want to access swat
from a remote system, open TCP port 901 using gufw (page 876).

The browser displays the local Samba/swat home page (Figure 23-5). This page
includes links to local Samba documentation and the buttons listed below.

HOME Links to local Samba documentation. When you click the word Samba (not the
logo, but the one just before the word Documentation in the Samba/swat home
page), swat displays the Samba man page, which defines each Samba program.

GLOBALS Edits global parameters (variables) in smb.conf.

SHARES Edits share information in smb.conf.

PRINTERS Edits printer information in smb.conf.

WIZARD Rewrites the smb.conf file, removing all comment lines and lines that specify default
values.

STATUS Shows the active connections, active shares, and open files. Stops and restarts the
smbd and nmbd daemons.

VIEW Displays a subset (click Full View) or all of the configuration parameters as deter-
mined by the default values and settings in smb.conf (click Normal View).

PASSWORD Manages Samba passwords.

It is quite easy to establish a basic Samba setup so you can work with a Linux direc-
tory hierarchy from a Windows system. More work is required to set up a secure
connection or one with special features. The following example creates a basic setup
based on the sample smb.conf file included with Ubuntu Linux.

swat Help and
defaults

Each of the parameters swat displays has a button labeled Help next to it. Click
Help to open a new browser window containing an explanation of that parameter.
Each parameter also has a Set Default button that sets the parameter to its default
value (not necessarily the initial value as supplied by Ubuntu).

For this example, do not click any of the Set Default buttons. Make sure to click
Commit Changes at the top of each page after you finish making changes on a page

Do not allow unencrypted remote access to swat
security Do not allow access to swat from a remote system on an insecure network. When you do so and

log in, the root password is sent in cleartext over whatever connection you are using and can easily
be sniffed. If you want to access swat over an insecure network, use ssh to forward port 901
(page 681).

 From the Library of WoweBook.Com

http://127.0.0.1:901
http://localhost:901

ptg

806 Chapter 23 Samba: Linux and Windows File and Printer Sharing

but before you click a menu button at the top of the page. Otherwise, swat will dis-
card your changes.

GLOBALS page To follow this example, first click GLOBALS at the top of the Samba/swat home
page. Leave everything at its current setting with two exceptions: hosts allow and
hosts deny. Setting these parameters makes the server more secure by limiting the
clients that Samba responds to. Scroll to the bottom of the Security Options and set
hosts allow to the names or IP addresses of systems you want to allow to access the
local system’s shares and printers. If there are any addresses in hosts allow or if you
set hosts deny to ALL, you must also add 127.0.0.1 to hosts allow to be able to use
swat. Separate the entries with SPACEs or commas. See page 809 for more information
on the various ways you can set hosts allow. Set hosts deny to ALL. Click Commit
Changes (near the top of the page) when you are done with the GLOBALS page.

SHARES page Next click SHARES at the top of the page. Three buttons and two text boxes
appear near the bottom of the page (Figure 23-6). In the text box adjacent to the
Create Share button, enter the name you want to assign to the share you are setting
up. You will use this share name from Windows when you map (mount) the share.
Click Create Share. To modify an existing share, display the name of the share in
the drop-down list labeled Choose Share, and click Choose Share. Either of these
actions expands the Share Parameters page so it displays information about the
selected share.

Set path to the absolute pathname on the Linux server of the share and, if you like,
set comment to a string that will help you remember where the share is located. The

Figure 23-6 Share Parameters page

 From the Library of WoweBook.Com

ptg

Setting Up a Samba Server 807

values for hosts allow and hosts deny, if any, are taken from the global parameters.
Make sure read only, guest ok, and browseable are set as you desire. Set available to
YES or you will not have access to the share. Click Commit Changes when you are
done with the SHARES page. If you want to see how many parameters there really
are, click Advanced near the top of the page. Switching between the Basic and
Advanced views removes any changes you have not committed.

From a Windows machine, you should now be able to access the share you just
created (page 814).

smb.conf: Manually Configuring a Samba Server

The /etc/samba/smb.conf file controls most aspects of how Samba works and is
divided into sections. Each section begins with a line that holds some text between
brackets ([...]). The text within the brackets identifies the section. Typical sections are

[globals] Defines global parameters
[printers] Defines printers
[homes] Defines shares in the homes directory
[share name] Defines a share (you can have more than one of these sections)

smb.conf
comments

As installed on an Ubuntu Linux system, the smb.conf sample configuration file
contains extensive comments and commented-out examples. Comment lines start
with either a hashmark (#) or a semicolon (;). The sample file uses hashmarks to
begin lines that are intended to remain as comments. Semicolons begin lines that
you may want to mimic or use as is by removing the semicolons. The following seg-
ment of smb.conf contains three lines of true comments and three lines beginning
with semicolons that you may want to uncomment and change:

Un-comment the following (and tweak the other settings below to suit)
to enable the default home directory shares. This will share each
user's home directory as \\server\username
;[homes]
; comment = Home Directories
; browseable = no

If you can no longer use swat

tip If you can no longer use swat, you probably changed the hosts allow setting incorrectly. In this case
you need to edit /etc/samba/smb.conf manually and fix the line with the words hosts allow in it:

$ grep hosts smb.conf
 hosts allow = 127.0.0.1, 192.168.0.8
 hosts deny = ALL

The preceding entries allow access from 192.168.0.8 only. They also allow swat to work. You do
not need to restart Samba after changing smb.conf.

You do not need to restart Samba when you change smb.conf
tip Samba rereads its configuration files each time a client connects. Unless you change the security

parameter (page 810), you do not need to restart Samba when you change smb.conf.

 From the Library of WoweBook.Com

ptg

808 Chapter 23 Samba: Linux and Windows File and Printer Sharing

As Ubuntu sets the global parameters in smb.conf, you need simply add a share for
a Windows system to be able to access a directory on the Linux server. Add the fol-
lowing simple share to the end of the smb.conf file to enable a user on a Windows
system to be able to read from and write to the local /tmp directory:

[tmp]
 comment = temporary directory
 path = /tmp
 writable = YES
 guest ok = YES

The name of the share under Windows is tmp; the path under Linux is /tmp. Any
Windows user who can log in on Samba, including guest, can read from and write
to this directory, assuming the user’s Linux permissions allow it. To allow a user to
log in on Samba, you must run smbpasswd (page 803). Because browseable defaults
to YES, unless you specify browseable = NO, the share appears as a share on the
server without explicitly being declared browseable. The Linux permissions that
apply to a Windows user using Samba are the same permissions that apply to the
Linux user that the Windows user maps to.

Parameters in the smbd.conf File

The smb.conf man page and the Help feature of swat list all the parameters you can
set in smb.conf. The following sections identify some of the parameters you are
likely to want to change.

Global Parameters

interfaces A SPACE-separated list of networks Samba uses. Specify as interface names (such as
eth0) or as IP address/net mask pairs (page 462).

Default: all active interfaces except 127.0.0.1

server string The string that the Windows machine displays in various places. Within the string,
Samba replaces %v with the Samba version number and %h with the hostname.

Default: Samba %v
Ubuntu: %h server (Samba, Ubuntu)

workgroup The workgroup the server belongs to. Set to the same workgroup as the Windows
clients that use the server. This parameter controls the domain name that Samba
uses when security (page 810) is set to DOMAIN.

Default: WORKGROUP

Security Parameters

encrypt
passwords

YES accepts only encrypted passwords from clients. Windows 98 and Windows NT
4.0 Service Pack 3 and later use encrypted passwords by default. This parameter
uses smbpasswd to authenticate passwords unless you set security to SERVER or
DOMAIN, in which case Samba authenticates using another server.

Default: YES

 From the Library of WoweBook.Com

ptg

Setting Up a Samba Server 809

guest account The username that is assigned to users logging in as guest or mapped to guest; appli-
cable only when guest ok (page 813) is set to YES. This username should be present
in /etc/passwd but should not be able to log in on the system. Typically guest
account is assigned a value of nobody because the user nobody can access only files
that any user can access. If you are using the nobody account for other purposes on
the Linux system, set this parameter to a name other than nobody.

Default: nobody

hosts allow Analogous to the /etc/hosts.allow file (page 465); specifies hosts that are allowed to
connect to the server. Overrides hosts specified in hosts deny. A good strategy is to
specify ALL in hosts deny and to specify the hosts you want to grant access to in
this file. Specify hosts in the same manner as in hosts.allow.

Default: none (all hosts permitted access)

hosts deny Analogous to the /etc/hosts.deny file (page 465); specifies hosts that are not
allowed to connect to the server. Overridden by hosts specified in hosts allow. If you
specify ALL in this file, remember to include the local system (127.0.0.1) in hosts
allow. Specify hosts in the same manner as in hosts.deny.

Default: none (no hosts excluded)

invalid users Lists users who are not allowed to log in using Samba.

Default: none (all users are permitted to log in)
Ubuntu: none (all users are permitted to log in)

map to guest Defines when a failed login is mapped to the guest account. Useful only when
security (page 810) is not set to SHARE.

Never: Allows guest to log in only when the user explicitly provides guest as the
username and a blank password.

Bad User: Treats any attempt to log in as a user who does not exist as a guest login.
This parameter is a security risk because it allows a malicious user to retrieve a list
of users on the system quickly.

Bad Password: Silently logs in as guest any user who incorrectly enters her pass-
word. This parameter may confuse a user when she mistypes her password and is
unknowingly logged in as guest because she will suddenly see fewer shares than she
is used to.

Default: Never
Ubuntu: Bad User

passdb backend Specifies how Samba stores passwords. Set to ldapsam for LDAP, smbpasswd for
Samba, or tdbsam for TDB (trivial database) password storage. See page 803 for
instructions on using smbpasswd to change Samba passwords.

Default: smbpasswd
Ubuntu: tdbsam

 From the Library of WoweBook.Com

ptg

810 Chapter 23 Samba: Linux and Windows File and Printer Sharing

passwd chat The chat script Samba uses to converse with the passwd program. If this script is not
followed, Samba does not change the password. Used only when unix password
sync (page 810) is set to YES.

Default: *new*password* %n\n*new*password* %n\n *changed*
Ubuntu: *Enter\snew\s*\spassword:* %n\n *Retype\snew\s*\spassword:*

%n\n *password\supdated\ssuccessfully* .

passwd program The program Samba uses to set Linux passwords. Samba replaces %u with the
user’s username.

Default: none
Ubuntu: /usr/bin/passwd %u

security Specifies if and how clients transfer user and password information to the server.
Choose one of the following:

USER: Causes Samba to require a username and password from Windows users
when logging in on the Samba server. With this setting you can use

• username map (page 811) to map Samba usernames to Linux usernames

• encrypt passwords (page 808) to encrypt passwords (recommended)

• guest account (page 809) to map users to the guest account

SHARE: Causes Samba not to authenticate clients on a per-user basis. Instead,
Samba uses the Windows 9x setup, in which each share can have an individual pass-
word for either read or full access. This option is not compatible with more recent
versions of Windows.

SERVER: Causes Samba to use another SMB server to validate usernames and
passwords. If the remote validation fails, the local Samba server tries to validate
usernames and passwords as though security were set to USER.

DOMAIN: Samba passes an encrypted password to a Windows NT domain con-
troller for validation. The workgroup parameter (page 808) must be properly set in
smb.conf for DOMAIN to work.

ADS: Instructs Samba to use an Active Directory server for authentication, allowing
a Samba server to participate as a native Active Directory member. (Active Direc-
tory is the centralized information system that Windows 2000 and later use. It
replaces Windows Domains, which was used by Windows NT and earlier.)

Default: USER

unix password
sync

YES causes Samba to change a user’s Linux password when the associated user
changes the encrypted Samba password.

Default: NO
Ubuntu: YES

update
encrypted

YES allows users to migrate from cleartext passwords to encrypted passwords with-
out logging in on the server and using smbpasswd. To migrate users, set to YES and

 From the Library of WoweBook.Com

ptg

Setting Up a Samba Server 811

set encrypt passwords to NO. As each user logs in on the server with a cleartext
Linux password, smbpasswd encrypts and stores the password. Set to NO and set
encrypt passwords to YES after all users have been converted.

Default: NO

username map The name of the file, typically /etc/samba/smbusers, that maps usernames from a
Windows client to usernames on the Linux server. This parameter is effective only
when security (page 810) is set to USER. Each line of the map file starts with a
server (Linux) username, followed by a SPACE, an equal sign, another SPACE, and one
or more SPACE-separated client (Windows) usernames. An asterisk (*) on the client
side matches any client username.

This file frequently maps Windows usernames to Linux usernames and/or maps
multiple Windows usernames to a single Linux username to facilitate file sharing.
Following is a sample map file:

$ cat /etc/samba/smbusers
Unix_name = SMB_name1 SMB_name2 ...
root = administrator admin
nobody = guest pcguest smbguest

The first entry maps the two Windows usernames (administrator and admin) to the
Linux username root (you must change the Ubuntu value for invalid users
[page 809] to be able to log in as root). The second entry maps three Windows user-
names, including guest, to the Linux username nobody: When a Windows user
attempts to log in on the Samba server as guest, Samba authenticates the Linux user
named nobody. Each user, including nobody, must have a Samba password (refer to
smbpasswd on page 803), even if it is blank.

Add the following line to the file this parameter points to, creating the file if neces-
sary, to map the Windows username sam to the Linux username sls:

sls = sam

After you add a user to this file, you must give the user a password using
smbpasswd. When Sam logs in as sam, Samba now maps sam to sls and looks up sls
in the Samba password database. Assuming Sam provides the correct password, he
logs in on the Samba server as sls.

Default: no map

Logging Parameters

log file The name of the Samba log file. Samba replaces %m with the name of the client sys-
tem, allowing you to generate a separate log file for each client.

Default: none
Ubuntu: /var/log/samba/log.%m

log level Sets the log level, with 0 (zero) being off and higher numbers being more verbose.

Default: 0 (off)

 From the Library of WoweBook.Com

ptg

812 Chapter 23 Samba: Linux and Windows File and Printer Sharing

max log size An integer specifying the maximum size of the log file in kilobytes. A 0 (zero) speci-
fies no limit. When a file reaches this size, Samba appends .old to the filename and
starts a new log, deleting any old log file.

Default: 5000
Ubuntu: 1000

Browser Parameters

The domain master browser is the system responsible for maintaining the list of
machines on a network used when browsing a Windows Network Neighborhood
or My Network Places. SMB (page 1172) uses weighted elections every 11–15 min-
utes to determine which machine is the domain master browser.

Whether a Samba server wins this election depends on two parameters:

• Setting domain master to YES instructs the Samba server to enter the election.

• The os level determines how much weight the Samba server’s vote receives.

Setting os level to 2 should cause the Samba server to win against any Windows 9x
machines. NT Server series domain controllers—including Windows 2000, XP, and
2003—use an os level of 32. The maximum setting for os level is 255, although set-
ting it to 65 should ensure that the Samba server wins.

domain master YES causes nmbd to attempt to be the domain master browser. If a domain master
browser exists, then local master browsers will forward copies of their browse lists
to it. If there is no domain master browser, then browse queries may not be able to
cross subnet boundaries. A Windows PDC (primary domain controller) will always
try to become the domain master and may behave in unexpected ways if it fails.
Refer to the preceding discussion for more information.

Default: AUTO

local master YES causes nmbd to enter elections for the local master browser on a subnet. A
local master browser stores a cache of the NetBIOS (page 1161) names of entities
on the local subnet, allowing browsing. Windows machines automatically enter
elections; for browsing to work, the network must have at least one Windows
machine or one Samba server with local master set to YES. It is poor practice to set
local master to NO. If you do not want a computer to act as a local master, set its os
level to a lower number, allowing it to be used as the local master if all else fails.

Default: YES

os level An integer that controls how much Samba advertises itself for browser elections and
how likely nmbd is to become the local master browser for its workgroup. A higher
number increases the chances of the local server becoming the local master browser.
Refer to the discussion at the beginning of this section for more information.

Default: 20

preferred master YES forces nmbd to hold an election for local master and enters the local system
with a slight advantage. With domain master set to YES, this parameter helps ensure
the local Samba server becomes the domain master. Setting this parameter to YES on
more than one server causes the servers to compete to become master, generating a

 From the Library of WoweBook.Com

ptg

Setting Up a Samba Server 813

lot of network traffic and sometimes leading to unpredictable results. A Windows
PDC automatically acts as if this parameter is set.

Default: AUTO

Communication Parameters

dns proxy When acting as a WINS server (page 1181), YES causes nmbd to use DNS if Net-
BIOS (page 1161) resolution fails.

Default: YES
Ubuntu: NO

socket options Tunes the network parameters used when exchanging data with a client. Adding
SO_RCVBUF=8192 SO_SNDBUF=8192 to this parameter may improve network
performance.

Default: TCP_NODELAY

wins server The IP address of the WINS server nmbd should register with.

Default: not enabled

wins support YES specifies nmbd is to act as a WINS server.

Default: NO

Share Parameters

Each of the following parameters can appear many times in smb.conf, once in each
share definition.

available YES specifies the share as active. Set this parameter to NO to disable the share but
continue logging requests for it.

Default: YES

browseable Determines whether the share can be browsed, for example, in Windows My Net-
work Places.

Default: YES
Ubuntu: YES, except for printers

comment A description of the share, shown when browsing the network from Windows.

Default: none
Ubuntu: varies

guest ok Allows a user who logs in as guest to access this share.

Default: NO

path The path of the directory being shared.

Default: none
Ubuntu: various

read only Does not allow write access. Use writable to allow read-write access.

Default: YES

 From the Library of WoweBook.Com

ptg

814 Chapter 23 Samba: Linux and Windows File and Printer Sharing

The [homes] Share: Sharing Users’ Home Directories

Frequently users want to share their Linux home directories with a Windows
machine. To make this task easier, Samba provides the [homes] share, which
Ubuntu comments out. When you define this share, each user’s home directory is
shared with the specified parameters. In most cases, the following parameters are
adequate:

[homes]
 comment = Home Directories
 browseable = NO
 writable = YES

These settings prevent users other than the owners from browsing home directories
while allowing logged-in owners full access.

Working with Linux Shares from Windows

This section describes how to access Linux directories from a Windows machine.

Browsing Shares

To access a share on a Samba server from Windows, open My Computer or
Explorer on the Windows system and, in the text box labeled Address, enter \\ fol-
lowed by the NetBIOS name (or just the hostname if you have not assigned a differ-
ent NetBIOS name) of the Samba server. Windows then displays the directories the
Linux system is sharing. To view the shares on the Linux system named dog, for
example, enter \\dog. From this window, you can view and, if permitted, browse
the shares available on the Linux system. If you set a share so it is not browseable,
you need to enter the path of the share using the format \\servername\sharename
to display the share.

Mapping a Share

Another way to access a share on a Samba server is by mapping (mounting) a share.
Open My Computer or Explorer on the Windows system and click Map Network
Drive from one of the drop-down lists on the menubar (found on the Tools menu
on Windows XP). Windows displays the Map Network Drive window. Select an
unused Windows drive letter from the list box labeled Drive and enter the Windows
path to the share you want to map in the text box labeled Folder. The format of the
windows path is \\hostname\sharename. For example, to map /tmp on dog to
Windows drive J, assuming the share is named tmp on the Linux system, select J in
the list box labeled Drive, enter \\dog\tmp in the text box labeled Folder, and click
Finish. After supplying a username and password, you should be able to access the

 From the Library of WoweBook.Com

ptg

Working with Windows Shares from Linux 815

/tmp directory from dog as J (tmp) on the Windows machine. If you cannot map the
drive, refer to “Troubleshooting” on page 817.

Working with Windows Shares from Linux

Samba enables you to view and work with files on a Windows system (client) from
a Linux system (server). This section discusses several ways of accessing Windows
files from Linux.

smbtree: Displays Windows Shares

The smbtree utility displays a hierarchical diagram of available shares. When you
run smbtree, it prompts you for a password; do not enter a password if you want to
browse shares that are visible to the guest user. The password allows you to view
restricted shares, such as a user’s home directory in the [homes] share. Following is
sample output from smbtree:

$ smbtree
Password: RETURN (do not enter a password)
MGS
 \\JAM
 \\JAM\C$ Default share
 \\JAM\ADMIN$ Remote Admin
 \\JAM\F
 \\JAM\E
 ...
 \\DOG Samba 3.0.22
 \\DOG\dogprinter HP LaserJet 1320
 \\DOG\print$ Printer Drivers
 \\DOG\home
 \\DOG\p01 common backed-up directory
 \\DOG\p02 common backed-up directory

In the preceding output, MGS is the name of the workgroup, JAM is the name of
the Windows machine, and DOG is the name of the Samba server that the smbtree
utility is run from. Workgroup and machine names are always shown in uppercase
letters. If smbtree does not display output, set the workgroup (page 808) and wins
server (page 813) parameters in smb.conf. Refer to the smbtree man page for more
information.

smbclient: Connects to Windows Shares

The smbclient utility functions similarly to ftp (page 687) and connects to a Windows
share. However, smbclient uses Linux-style forward slashes (/) as path separators
rather than Windows-style backslashes (\). The next example connects to one of the
shares displayed in the preceding example:

 From the Library of WoweBook.Com

ptg

816 Chapter 23 Samba: Linux and Windows File and Printer Sharing

$ smbclient //JAM/D
Enter sam’s password: RETURN (do not enter a password)
Anonymous login successful
Domain=[JAM] OS=[Windows 5.1] Server=[Windows 2000 LAN Manager]
smb: \> ls
 audit D 0 Tue May 4 18:46:33 2010
 data D 0 Tue May 4 18:47:09 2010
 laptop.data D 0 Tue May 4 19:12:16 2010
 Linux D 0 Tue May 4 18:57:49 2010
 oldfonts D 0 Wed May 5 00:02:17 2010
 PSFONTS D 0 Tue May 4 18:45:36 2010
 RECYCLER DHS 0 Thu May 6 20:05:21 2010
 System Volume Information DHS 0 Tue May 4 18:45:32 2010

 46547 blocks of size 1048576. 42136 blocks available
smb: \>

You can use most ftp commands from smbclient. Refer to “Tutorial Session” on
page 690 for some examples. Alternatively, give the command help to display a list of
commands or help followed by a command for information on a specific command:

smb: \> help history
HELP history:
 displays the command history

Browsing Windows Networks

Browsing Windows shares using smbtree and smbclient is quite awkward compared
with the ease of browsing a network from Windows; GNOME provides a more
user-friendly alternative. From Nautilus, enter smb:/// in the location bar to browse
the Windows shares on the network.

Nautilus uses virtual filesystem add-ons, which are part of the desktop environment
and not part of the native Linux system. As a consequence, only native GNOME appli-
cations can open files on remote shares; normal Linux programs cannot. For example,
gedit can open files on remote shares, while OpenOffice, mplayer, and xedit cannot.

Mounting Windows Shares

The mount utility (page 506) with a –t cifs option mounts a Windows share as if it
were a Linux directory hierarchy. See page 1141 for more information on the CIFS
protocol. When you mount a Windows share, you can write to the files on the
share; you cannot write to files on a share using smbclient.

A mount command that mounts a Windows share has the following syntax (you
must run this command with root privileges):

mount -t cifs //host/share dir

where host is the name of the system the share is on, share is the name of the Win-
dows share that you want to mount, and dir is the absolute pathname of the Linux
directory that you are mounting the share on (the mount point).

 From the Library of WoweBook.Com

ptg

Troubleshooting 817

The following command, when run with root privileges, mounts on the /share
directory the share used in the preceding example:

$ sudo mount -t cifs //jam/d /share -o username=sam
Password:
$ ls /share
Linux RECYCLER audit laptop.data
PSFONTS System Volume Information data oldfonts

You can omit the username argument and provide a blank password to mount
shares that are visible to the guest user. Use the uid, file_mode, and dir_mode mount
options with type cifs filesystems to establish ownership and permissions of
mounted files.

$ sudo mount -t cifs //jam/d /share -o username=sam,uid=sam,file_mode=0644,dir_mode=0755

Permissions must be expressed as octal numbers preceded by a zero. For more infor-
mation refer to the mount.cifs man page.

Troubleshooting

Samba provides two utilities that can help troubleshoot a connection: testparm
checks the syntax of /etc/samba/smb.conf and displays its contents; smbstatus dis-
plays a report on open Samba connections.

The following steps can help you narrow down the problem when you cannot get
Samba to work.

1. Restart the Samba daemons. Make sure smbd is running.

$ sudo service smbd restart
smbd start/running, process 4420

testparm 2. Run testparm to confirm that the smb.conf file is syntactically correct:

$ testparm
Load smb config files from /etc/samba/smb.conf
Processing section "[printers]"
Processing section "[print$]"
Processing section "[pl2]"
Loaded services file OK.
Server role: ROLE_STANDALONE
Press enter to see a dump of your service definitions
...

You can ignore an error message about rlimit_max. If you misspell a key-
word in smb.conf, you get an error such as the following:

$ testparm
Load smb config files from /etc/samba/smb.conf
Unknown parameter encountered: "workgruop"
Ignoring unknown parameter "workgruop"
...

 From the Library of WoweBook.Com

ptg

818 Chapter 23 Samba: Linux and Windows File and Printer Sharing

ping 3. Use ping (page 393) from both sides of the connection to make sure the
network is up.

Firewall 4. Confirm the firewall on the server is not blocking the Samba connection
(page 799).

Password 5. Make sure you have set up a password for the Samba user you are trying
to log in as.

net view 6. From a Windows command prompt, use net view to display a list of shares
available from the server (dog in this example):

C:>net view \\dog
Shared resources at \\dog

Samba 3.0.24

Share name Type Used as Comment

--
backup Disk The backup partition
dogprinter Print HP Laserjet 1320
homes Disk Home Directories
p04 Disk O: common backed-up directory
...
The command completed successfully.

net use 7. Try to map (mount) the drive from a Windows command prompt. The fol-
lowing command attempts to mount the share named p04 on dog as drive
X:

C:>net use x: \\dog\p04
The command completed successfully.

nmblookup 8. From the Samba server, query the nmbd server, using the special name
__SAMBA__ for the server’s NetBIOS name. The –d 2 option turns the
debugger on at level 2, which generates a moderate amount of output. The
–B option specifies the server you are querying.

$ nmblookup -d 2 -B localhost __SAMBA__
added interface ip=192.168.0.10 bcast=192.168.0.127 nmask=255.255.255.128
querying __SAMBA__ on 127.0.0.1
Got a positive name query response from 127.0.0.1 (192.168.0.10)
192.168.0.10 __SAMBA__<00>

The next example uses nmblookup, without setting the debug level, to
query the local system for all NetBIOS names.

$ nmblookup -B localhost *
querying * on 127.0.0.1
192.168.0.10 *<00>

To query for the master browser from the local server, run nmblookup with
the –A option followed localhost or the name of the server:

 From the Library of WoweBook.Com

ptg

Chapter Summary 819

$ nmblookup -A localhost
Looking up status of 127.0.0.1
 PLUM <00> - H <ACTIVE>
 PLUM <03> - H <ACTIVE>
 PLUM <20> - H <ACTIVE>
 ..__MSBROWSE__. <01> - <GROUP> H <ACTIVE>
 MGS <1d> - H <ACTIVE>
 MGS <1e> - <GROUP> H <ACTIVE>
 MGS <00> - <GROUP> H <ACTIVE>

 MAC Address = 00-00-00-00-00-00

smbclient 9. From the Samba server, use smbclient with the –L option followed by the
name of the server to generate a list of shares offered by the server:

$ smbclient -L localhost
Password: RETURN (do not enter a password)
Anonymous login successful
Domain=[MGS] OS=[Unix] Server=[Samba 3.0.24]

 Sharename Type Comment
 --------- ---- -------
 IPC$ IPC IPC Service (plum server (Samba, Ubuntu))
 tmp Disk mgs comment tmp
 pl5 Disk
 print$ Disk Printer Drivers
Anonymous login successful
Domain=[MGS] OS=[Unix] Server=[Samba 3.0.24]

 Server Comment
 --------- -------
 PLUM plum server (Samba, Ubuntu)

 Workgroup Master
 --------- -------
 MGS PLUM

Chapter Summary

Samba is a suite of programs that enables Linux and Windows to share directory
hierarchies and printers. A directory hierarchy or printer that is shared between
Linux and Windows systems is called a share. To access a share on a Linux system,
a Windows user must supply a username and password. Usernames must corre-
spond to Linux usernames either directly or as mapped by the file that is pointed to
by the username map parameter in smb.conf, often /etc/samba/smbusers. Samba
passwords are generated by smbpasswd.

The main Samba configuration file is /etc/samba/smb.conf, which you can edit
using the Shared Folders window, swat (a Web-based administration utility), or a

 From the Library of WoweBook.Com

ptg

820 Chapter 23 Samba: Linux and Windows File and Printer Sharing

text editor. The swat utility is a powerful configuration tool that provides integrated
online documentation and clickable default values to help you set up Samba.

From a Windows machine, you can access a share on a Linux Samba server by
opening My Computer or Explorer and, in the text box labeled Address, entering \\
followed by the name of the server. In response, Windows displays the shares on the
server. You can work with these shares as though they were Windows files.

From a Linux system, you can use any of several Samba tools to access Windows
shares. These tools include smbtree (displays shares), smbclient (similar to ftp), and
mount with the –t cifs option (mounts shares). In addition, you can enter smb:/// in
the Nautilus location bar and browse the shares.

Exercises

1. Which two daemons are part of the Samba suite? What does each do?

2. What steps are required for mapping a Windows user to a Linux user?

3. How can a system administrator add a Samba password for a new user?

4. What is the purpose of the [homes] share?

Advanced Exercises

5. Describe how Samba’s handling of users differs from that of NFS.

6. Which configuration changes would you need to apply to routers if you
wanted to allow SMB/CIFS browsing across multiple subnets without con-
figuring master browsers?

7. How could you use swat securely from a remote location?

8. WINS resolution allows hosts to define their own names. Suggest a way to
use Samba to assign names from a centralized list.

 From the Library of WoweBook.Com

ptg

888222111

24Chapter24DNS (Domain Name System) maps domain names to IP
addresses, and vice versa. It reduces the need for humans to
work with IP addresses, which, with the introduction of IPv6,
are complex. The DNS specification defines a secure, general-
purpose database that holds Internet host information. It also
specifies a protocol that is used to exchange this information.
Further, DNS defines library routines that implement the proto-
col. Finally, DNS provides a means for routing email. Under
DNS, nameservers work with clients, called resolvers, to dis-
tribute host information in the form of resource records in a
timely manner as needed.

This chapter describes BIND (Berkeley Internet Name Domain)
version 9, a popular open-source implementation of DNS. Part
of the Ubuntu Linux distribution, BIND includes the DNS
server daemon (named), a DNS resolver library, and tools for
working with DNS. Although DNS can be used for private net-
works, this chapter covers DNS as used by the Internet.

In This Chapter

Introduction to DNS 822

JumpStart: Setting Up a DNS
Cache . 834

Configuring a DNS Server 836

Troubleshooting 849

A Full-Functioned Nameserver . . . 850

A Slave Server 854

A Split Horizon Server. 855

24

DNS/BIND: Tracking

Domain Names and

Addresses

 From the Library of WoweBook.Com

ptg

822 Chapter 24 DNS/BIND: Tracking Domain Names and Addresses

Introduction to DNS

You typically use DNS when you display a Web page. For example, to display
Ubuntu’s home page, you enter its name, www.ubuntu.com, in a browser; the
browser then displays the page you want. You never enter or see the IP address for
the displayed page. However, without the IP address, the browser could not display
the page. DNS works behind the scenes to find the IP address when you enter the
name in the browser. The DNS database is

• Hierarchical, so it provides quick responses to queries. DNS has a root,
branches, and nodes.

• Distributed, so it offers fast access to servers. The DNS database is spread
across thousands of systems worldwide; each system is referred to as a
DNS server (or a domain server or nameserver).

• Replicated, to enhance reliability. Because many systems hold the same
information, when some systems fail, DNS does not stop functioning.

As implemented, DNS is

• Secure, so your browser or email is directed to the correct location.

• Flexible, so it can adapt to new names, deleted names, and names whose
information changes.

• Fast, so Internet connections are not delayed by slow DNS lookups.

History The mapping that DNS does was originally handled statically in a /etc/hosts file
(page 493) on each system on a network. Small LANs still make use of this file. As
networks—specifically the Internet—grew, a dynamic mapping system was
required. DNS was specified in 1983 and BIND became part of BSD in 1985. Today
BIND is by far the most popular implementation of DNS.

Security Historically BIND has not been very secure. Recently, however, developers have focused
on improving the security of BIND. You may want to run BIND inside a chroot jail
(page 847) and use transaction signatures (TSIG, page 845) to improve security.

host and dig The host and dig utilities (page 396) query DNS servers. The host utility is simpler, is
easier to use, and returns less information than dig. This chapter uses both tools to
explore DNS.

Nodes, Domains, and Subdomains

Node Each node in the hierarchical DNS database is called a domain and is labeled with a
(domain) name. As with the Linux file structure, the node at the top of the DNS
hierarchy is called the root node or root domain. While the Linux file structure sep-
arates the nodes (directory and ordinary files) with slashes (/) and labels the root
node (directory) with a slash, the DNS structure uses periods in place of the file
structure’s slashes (Figure 24-1).

You read an absolute pathname in a Linux filesystem from left to right: It starts
with the root directory (represented by /) at the left and, as you read to the right,

 From the Library of WoweBook.Com

www.ubuntu.com

ptg

Introduction to DNS 823

describes the path to the file being identified (for example, /var/spool/cups). Unlike
a Linux pathname, you read a DNS domain name from right to left: It starts with
the root domain at the right (represented by a period [.]) and, as you read to the left,
works its way down through the top-level and second-level domains to a subdo-
main or host. Frequently the name of the root domain (the period at the right) is
omitted from a domain name.

Domain The term domain refers both to a single node in the DNS domain structure and to a
catenated, period-separated list (path) of domain names that describes the location
of a domain.

FQDN A fully qualified domain name (FQDN) is the DNS equivalent of a filesystem’s
absolute pathname: It is a pointer that positively locates a domain on the Internet.
Just as you (and Linux) can identify an absolute pathname by its leading slash (/)
that represents the root directory, so an FQDN can be identified by its trailing
period (.) that names the root domain (Figure 24-2).

Figure 24-1 The DNS domain structure (FQDNs are shown below hostnames.)

ubuntu
ubuntu.com

berkeley
berkeley.edu

sobell
sobell.com

netcom edu

wiki
wiki.ubuntu.com

releases
releases.ubuntu.com

lib
lib.berkeley.edu

hrweb
hrweb.berkeley.edu

. (root)
Root
domain

Top-level
domains

Second-level
domains

Subdomains or hosts

Figure 24-2 A fully qualified domain name (FQDN)

wiki.ubuntu.com.

Root domain
Top-level domain

Second-level domain
Subdomain or hostname

Period separating parts of an FQDN

 From the Library of WoweBook.Com

ptg

824 Chapter 24 DNS/BIND: Tracking Domain Names and Addresses

Resolver The resolver comprises the routines that turn an unqualified domain name into an
FQDN that is passed to DNS to be mapped to an IP address. The resolver can
append several domains, one at a time, to an unqualified domain name, producing
several FQDNs that it then passes, one at a time, to DNS. For each FQDN, DNS
reports success (it found the FQDN and is returning the corresponding IP address)
or failure (the FQDN does not exist).

The resolver always appends the root domain (.) to an unqualified domain name
first, thereby allowing you to type www.sobell.com instead of www.sobell.com.
(including the trailing period) in a browser. You can specify other domains for the
resolver to try if the root domain fails. Put the domain names, in the order you want
them tried, after the search keyword in /etc/resolv.conf (page 496). For example, if
your search domains include ubuntu.com., then the domains wiki and
wiki.ubuntu.com. will resolve to the same address.

Subdomains Each node in the domain hierarchy is a domain. Each domain that has a parent (that
is, every domain except the root domain) is also a subdomain, regardless of whether
it has children. All subdomains can resolve to hosts—even those with children. For
example, the ubuntu.com. domain resolves to the host that serves the Ubuntu Web
site, without preventing its children—domains such as wiki.ubuntu.com—from
resolving. The leftmost part of an FQDN is often called the hostname.

Hostnames In the past, hostnames could contain only characters from the set a–z, A–Z, 0–9,
and –. As of March 2004, however, hostnames can include various accents,
umlauts, and so on (www.switch.ch/id/idn). DNS considers uppercase and lower-
case letters to be the same (it is not case sensitive), so www.sobell.com is the same as
WWW.sObEll.coM.

Zones

For administrative purposes, domains are grouped into zones that extend down-
ward from a domain (Figure 24-3). A single DNS server is responsible for (holds the
information required to resolve) all domains within a zone. The DNS server for a
zone also holds pointers to DNS servers that are responsible for the zones immedi-
ately below the zone it is responsible for. Information about zones originates in zone
files, one zone per file.

Root domain The highest zone—the one containing the root domain—does not contain any
hosts. Instead, this domain delegates to the DNS servers for the top-level domains
(Figure 24-1, page 823).

Authority Each zone has at least one authoritative DNS server. This server holds all information
about the zone. A DNS query returns information about a domain and specifies
which DNS server is authoritative for that domain.

DNS employs a hierarchical structure to keep track of names and authority. At the top
or root of the structure is the root domain, which employs 13 authoritative nameserv-
ers. These are the only servers that are authoritative for the root and top-level domains.

 From the Library of WoweBook.Com

www.sobell.com
www.sobell.com
www.switch.ch/id/idn
www.sobell.com
WWW.sObEll.coM

ptg

Introduction to DNS 825

Delegation of
authority

When referring to DNS, the term delegation means delegation of authority. ICANN
(Internet Corporation for Assigned Names and Numbers, www.icann.org) delegates
authority to the root and top-level domains. In other words, ICANN says which
servers are authoritative for these domains. Authority is delegated to each domain
below the top-level domains by the authoritative server at the next-higher-level
domain. ICANN is not authoritative for most second-level domains. For example,
Ubuntu is authoritative for the ubuntu.com domain. This scheme of delegating
authority allows for local control over segments of the DNS database while making
all segments available to the public.

Queries

There are two types of DNS queries: iterative and recursive.1

Iterative queries An iterative query sends a domain name to a DNS server and asks the server to
return either the IP address of the domain or the name of the DNS server that is
authoritative for the domain or one of its parents: The server does not query other
servers when seeking an answer. Nameservers typically send each other iterative
queries.

Recursive queries A recursive query sends a domain name to a DNS server and asks the server to
return the IP address of the domain. The server may need to query other servers to
get the answer.

Both iterative and recursive queries can fail. In this case, the server returns a message
saying it is unable to locate the domain.

Figure 24-3 DNS structure showing zones

org comedu gov

. (root)

ubuntu

smtp

example

ftp

site2www site1

1. A third type of query is not covered in this book: inverse. An inverse query provides a domain name
given a resource record. Reverse name resolution (page 831), not an inverse query, is used to query for a
domain name given an IP address.

 From the Library of WoweBook.Com

www.icann.org

ptg

826 Chapter 24 DNS/BIND: Tracking Domain Names and Addresses

When a client, such as a browser, needs the IP address that corresponds to a domain
name, the client queries a resolver. Most resolvers are quite simple and require a
DNS server to do most of the work—that is, they send recursive queries. The
resolver communicates with a single DNS server, which can perform multiple itera-
tive queries in response to the resolver’s recursive query.

All DNS servers must answer iterative queries. DNS servers can also be set up to
answer recursive queries. A DNS server that is not set up to answer recursive queries
treats a recursive query as though it is an iterative query.

In Figure 24-4, the resolver on a client system is trying to discover the IP address of
the server ftp.site1.example.com. on the network with the DNS layout shown in
Figure 24-3 on page 825. The resolver on the client sends a recursive query to its
primary DNS server. This server interrogates the root server and one additional
server for each zone until it receives an answer, which it returns to the resolver on
the client. In practice, the query would not start with the root server because most
servers have the location of the authoritative nameserver for the com. domain
stored in cache (memory).

Servers

There are three main types of DNS servers: primary (master), secondary (slave), and
caching-only.

• A primary master server, also called a primary server or master server, is
the authoritative server that holds the master copy of zone data. It copies
information from the zone or master file, a local file that the server admin-
istrator maintains. For security and efficiency, a primary master server
should provide iterative answers only. A primary master server that pro-
vides recursive answers is more easily subverted by a DoS attack
(page 1146) than one that provides iterative answers only.

Figure 24-4 A recursive query that starts several iterative queries to find the answer

2. Do you know the address
of ftp.site1.example.com.?

3. No, but DNS server 1 should.

4. Do you know the address
of ftp.site1.example.com.?

5. No, but DNS server 2 should.

6. Do you know the address
of ftp.site1.example.com.?

7. No, but DNS server 3 should.

8. Do you know the address
of ftp.site1.example.com.?

9. Yes, here it is.

Root DNS
server

Authoritative
server for

Authoritative
server for

Authoritative
server for

Client’s
primary
DNS
server

1. Do you know
the address
of ftp.site1.-
example.com.?

10. Yes,
here it is.

Resolver

example.com

com

site1.example.com

 From the Library of WoweBook.Com

ptg

Introduction to DNS 827

• Slave servers, also called secondary servers, are authoritative and copy
zone information from the primary master server or another slave server.
On some systems, when information on the primary master server
changes, the primary master server notifies the slave servers. When a slave
receives such a message, it uses a process called zone transfer to copy the
new zone information from the master server to itself.

• DNS caches, also called caching-only servers, are not authoritative. These
servers store answers to previous queries in cache (memory). When a DNS
cache receives a query, it answers it from cache if it can. If the DNS cache does
not have the answer in cache, it forwards the query to an authoritative server.

It is possible—but for reasons of security not recommended—for the same server to
be the primary master server (authoritative) for some zones and a DNS cache for
others. When the same server acts as both a DNS cache and a master server, if a mali-
cious local user or malfunctioning resolver on the local network floods the DNS
cache with more traffic than it can handle (a DoS attack), users may be prevented
from accessing the public servers handled by the primary master server. Conversely,
if the authoritative server is compromised, the attacker can subvert all traffic leaving
the network.

Resource Records

Resource records store information about nodes (domains) in the DNS database
and are kept in zone files (page 838). The zone that a resource record pertains to is
defined by the zone file that contains the resource record. The zone is named in the
named.conf file (page 836) that references the zone file.

A resource record has the following fields:

• Name—The domain name or IP address

• TTL—Time to live (not in all resource records; see page 1178)

• Class—Always IN for Internet (the only class supported by DNS)

• Type—Record type (discussed in the next section)

• Data—Varies with record type

If the Name field is missing, the resource record inherits the name from the previous
resource record in the same file. Cached resource records become out-of-date when
the information in the record changes on the authoritative server. The TTL field
indicates the maximum amount of time a server may keep a record in cache before
checking whether a newer one is available. Typically the TTL is on the order of
days. A TTL of 0 (zero) means that the resource record should not be cached.

More than 30 types of resource records exist, ranging from common types, such as
address records that store the address of a host, to those that contain geographical
information. The following paragraphs describe the types of resource records you
are most likely to encounter.

 From the Library of WoweBook.Com

ptg

828 Chapter 24 DNS/BIND: Tracking Domain Names and Addresses

A IPv4 Address Maps a domain name to the IPv4 address of a host. There must be at
least one address record for each domain; multiple address records can point to the
same IP address. The Name field holds the domain name, which is assumed to be in
the same zone as the domain. The Data field holds the IP address associated with
the name. The following address resource record maps the ns domain in the zone to
192.168.0.1:

ns IN A 192.168.0.1

AAAA IPv6 Address Maps a domain name to the IPv6 address of a host. The following
address resource record maps the ns domain in the zone to an IPv6 address:

ns IN AAAA 2001:630:d0:131:a00:20ff:feb5:ef1e

CNAME Canonical Name Maps an alias or nickname to a domain name. The Name field
holds the alias or nickname; the Data field holds the official or canonical name.
CNAME is useful for specifying an easy-to-remember name or multiple names for
the same domain. It is also useful when a system changes names or IP addresses. In
this case the alias can point to the real name that must resolve to an IP address.

When a query returns a CNAME, a client or DNS tool performs a DNS lookup on the
domain name returned with the CNAME. It is acceptable to provide multiple levels of
CNAME records. The following resource record maps ftp in the zone to www.sam.net.:

ftp IN CNAME www.sam.net.

MX Mail Exchange Specifies a destination for mail addressed to the domain. MX
records must always point to A (or AAAA) records. The Name field holds the
domain name, which is assumed to be in the zone; the Data field holds the name of
a mail server preceded by its priority. Unlike A records, MX records contain a prior-
ity number that allows mail delivery agents to fall back to a backup server if the pri-
mary server is down. Several mail servers can be ranked in priority order, where the
lowest number has the highest priority. DNS selects randomly from among mail
servers with the same priority. The following resource records forward mail sent to
speedy in the zone first to mail in the zone and then, if that attempt fails, to
mail.sam.net. . The value of speedy in the Name field on the second line is implicit.

speedy IN MX 10 mail
IN MX 20 mail.sam.net.

NS Nameserver Specifies the name of the system that provides domain service (DNS
records) for the domain. The Name field holds the domain name; the Data field
holds the name of the DNS server. Each domain must have at least one NS record.
DNS servers do not need to reside in the domain and, in fact, it is better if at least
one does not. The system name ns is frequently used to specify a nameserver, but
this name is not required and does not have any significance beyond assisting
humans in identifying a nameserver. The following resource record specifies
ns.max.net. as a nameserver for peach in the zone:

peach IN NS ns.max.net.

PTR Pointer Maps an IP address to a domain name and is used for reverse name resolu-
tion. The Name field holds the IP address; the Data field holds the domain name.
Do not use PTR resource records with aliases. The following resource record maps

 From the Library of WoweBook.Com

www.sam.net
www.sam.net

ptg

Introduction to DNS 829

3 in a reverse zone (for example, 3 in the 0.168.192.in-addr.arpa zone is
192.168.0.3) to peach in the zone:

3 IN PTR peach

For more information refer to “Reverse Name Resolution” on page 831.

SOA Start of Authority Designates the start of a zone. Each zone must have exactly one
SOA record. An authoritative server maintains the SOA record for the zone it is
authoritative for.

All zone files must have one SOA resource record, which must be the first resource
record in the file. The Name field holds the name of the domain at the start of the
zone. The Data field holds the name of the host the data was created on, the email
address of the person responsible for the zone, and the following information,
which must be enclosed within parentheses if the record does not fit on one line. If
this information is enclosed within parentheses (and it usually is), the opening
parenthesis must appear on the first physical line of the SOA record:

serial A value in the range 1 to 2,147,483,647. A change in this number indicates the
zone data has changed. By convention, this field is set to the string yyyymmddnn
(year, month, day, change number). Along with the date, the final two digits—that is,
the change number—should be incremented each time you change the SOA record.

refresh The elapsed time after which the primary master server notifies slave (sec-
ondary) servers to refresh the record; the amount of time between updates.

retry The time to wait after a refresh fails before trying to refresh again.

expiry The elapsed time after which the zone is no longer authoritative and the root
servers must be queried. The expiry applies to slave servers only.

minimum The negative caching (page 1161) TTL, which is the amount of time that
a nonexistent domain error (NXDOMAIN) can be held in a slave server’s cache. A
negative caching TTL is the same as a normal TTL except that it applies to domains
that do not exist rather than to domains that do exist.

The $TTL directive (page 839) specifies the default zone TTL (the maximum
amount of time data stays in a slave server’s cache). Jointly, the default zone TTL
and the negative caching TTL encompass all types of replies the server can generate.
If you will be adding subdomains or modifying existing domains frequently, set the
negative caching TTL to a low number. A short TTL increases traffic to DNS for cli-
ents requesting domains that do not exist, but allows new domains to propagate
quickly, albeit at the expense of increased traffic.

The following two SOA resource records are equivalent (the parentheses in the first
record are optional because the record fits on one physical line):

@ IN SOA ns.zach.net. mgs@sobell.com. (2010111247 8H 2H 4W 1D)

@ IN SOA ns.zach.net. mgs@sobell.com. (
2010111247 ; serial
8H ; refresh
2H ; retry
4W ; expire
1D) ; minimum

 From the Library of WoweBook.Com

ptg

830 Chapter 24 DNS/BIND: Tracking Domain Names and Addresses

The second format is more readable because of its layout and the comments. The at
symbol (@) at the start of the SOA resource record stands for the zone name (also
called the origin) as specified in the named.conf file. Because the named.conf file
specifies the zone name to be zach.net, you could rewrite the first line as follows:

zach.net. IN SOA ns.zach.net. mgs@sobell.com. (

The host utility returns something closer to the first format with each of the times
specified in seconds:

$ host -t soa zach.net
zach.net. SOA ns.zach.net. mgs\@sobell.com. 03111 28800 7200 2419200 86400

TXT Text Associates a character string with a domain. The Name field holds the domain
name. The data field can contain up to 256 characters and must be enclosed within
quotation marks. TXT records can contain any arbitrary text value. As well as gen-
eral information, they can be used for things such as public key distribution. Fol-
lowing is a TXT resource record that specifies a company name:

zach.net IN TXT "Sobell Associates Inc."

DNS Queries and Responses

Queries A DNS query has three parts:

1. Name—Domain name, FQDN, or IP address for reverse name resolution

2. Type—Type of record requested (page 827)

3. Class—Always IN for Internet class

Cache Most DNS servers store in cache memory the query responses from other DNS
servers. When a DNS server receives a query, it first tries to resolve the query
from its cache. If that attempt fails, the server may query other servers to get an
answer. Because DNS uses cache, when you make a change to a DNS record, the
change takes time—sometimes a matter of days—to propagate throughout the
DNS hierarchy.

Responses A DNS message sent in response to a query can hold the following records:

• Header record—Information about this message

• Query record—Repeats the query

• Answer records—Resource records that answer the query

• Authority records—Resource records for servers that have authority for
the answers

• Additional records—Additional resource records, such as NS records

The dig utility does not consult /etc/nsswitch.conf (page 475) to determine which
server to query. The following example uses dig to query a DNS server. The +all
option causes dig to query for all records.

 From the Library of WoweBook.Com

ptg

Introduction to DNS 831

$ dig +all ubuntu.com

; <<>> DiG 9.7.0-P1 <<>> +all ubuntu.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 51842
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;ubuntu.com. IN A

;; ANSWER SECTION:
ubuntu.com. 600 IN A 91.189.94.156

;; AUTHORITY SECTION:
ubuntu.com. 50715 IN NS ns2.canonical.com.
ubuntu.com. 50715 IN NS ns3.canonical.com.
ubuntu.com. 50715 IN NS ns1.canonical.com.

;; ADDITIONAL SECTION:
ns1.canonical.com. 78819 IN A 91.189.94.173
ns2.canonical.com. 78819 IN A 91.189.94.219
ns3.canonical.com. 78819 IN A 209.6.3.210

...

Reverse Name Resolution

In addition to normal or forward name resolution, DNS provides reverse name res-
olution (also referred to as inverse mapping or reverse mapping) so you can look up
domain names given an IP address. Because resource records in the forward DNS
database are indexed hierarchically by domain name, DNS cannot perform an effi-
cient search by IP address on this database.

DNS implements reverse name resolution by means of special domains named
in-addr.arpa (IPv4) and ip6.int (IPv6). Resource records in these domains have
Name fields that hold IP addresses; the records are indexed hierarchically by IP
address. The Data fields hold the FQDNs that correspond to these IP addresses.

Reverse name resolution can verify that someone is who he says he is or at least is
from the domain he says he is from. In general, it allows a server to retrieve and
record the domain names of the clients it provides services to. For example, legiti-
mate mail contains the domain of the sender and the IP address of the sending
machine. A mail server can verify the stated domain of a sender by checking the
domain associated with the IP address. Reverse name resolution can also be used by
anonymous FTP servers to verify that a domain specified in an email address used as
a password is legitimate.

For example, to determine the domain name that corresponds to the IP address
82.211.81.150 in Figure 24-5 on the next page, a resolver would query DNS for
information about the domain named 150.81.211.82.in-addr.arpa.

 From the Library of WoweBook.Com

ptg

832 Chapter 24 DNS/BIND: Tracking Domain Names and Addresses

The following example uses dig to query DNS for the IP address that corresponds to
www.sobell.com, which is 209.157.128.22. The second command line uses the dig
utility to query the same IP address, reversed and appended with .in-addr.arpa
(22.128.157.209.in-addr.arpa) to display a PTR resource record (page 828). The
data portion of the resultant resource record is the domain name from the original
query: www.sobell.com.

$ dig www.sobell.com
...
;; QUESTION SECTION:
;www.sobell.com. IN A

;; ANSWER SECTION:
www.sobell.com. 2274 IN A 209.157.128.22
...
$ dig 22.128.157.209.in-addr.arpa PTR
...
;; QUESTION SECTION:
;22.128.157.209.in-addr.arpa. IN PTR

;; ANSWER SECTION:
22.128.157.209.in-addr.arpa. 2244 IN PTR www.sobell.com.
...

Instead of reformatting the IP address as in the preceding example, you can use the
–x option to dig to perform a reverse query:

$ dig -x 209.157.128.22
...

Figure 24-5 Reverse name resolution and the in-addr.arpa domain

.

com arpanet

in-addr

11182

sobell ubuntu

help wiki

233211

81 229

150
PTR

 From the Library of WoweBook.Com

www.sobell.com
www.sobell.com

ptg

Introduction to DNS 833

;; QUESTION SECTION:
;22.128.157.209.in-addr.arpa. IN PTR

;; ANSWER SECTION:
22.128.157.209.in-addr.arpa. 2204 IN PTR www.sobell.com.
...

Alternatively, you can just use host:

$ host 209.157.128.22
22.128.157.209.in-addr.arpa domain name pointer www.sobell.com.

How DNS Works

Application programs do not issue DNS queries directly but rather use the
gethostbyname() system call. How the system comes up with the corresponding IP
address is transparent to the calling program. The gethostbyname() call examines the
hosts line in /etc/nsswitch.conf (page 475) to determine which files it should examine
and/or which services it should query and in what order to obtain the IP address corre-
sponding to a domain name. When it needs to query DNS, the local system (i.e., the
DNS client) queries the DNS database by calling the resolver library on the local sys-
tem. This call returns the required information to the application program.

More Information

DNS for Rocket Scientists is an excellent site that makes good use of links to
present information on DNS in a very digestible form. The same information is
available in the Pro DNS and BIND book.

Local Bind Administrator Reference Manual:
/usr/share/doc/bind9-doc/arm/Bv9ARM.html.

Web DNS for Rocket Scientists: www.zytrax.com/books/dns
BIND: www.isc.org/products/BIND
DNS security: www.sans.org/reading_room/whitepapers/dns/1069.php
(downloadable PDF file)

HOWTO DNS HOWTO

Book DNS & BIND, fifth edition, by Albitz & Liu, O’Reilly & Associates (May 2006)
Pro DNS and BIND, first edition, by Ron Aitchison, Apress (August 2005)

Notes

Terms:
DNS and named

The name of the DNS server is named. This chapter uses “DNS” and “named”
interchangeably.

Firewall The named server normally accepts queries on TCP and UDP port 53. If the server
system is running a firewall, you need to open these ports. Using gufw (page 876),
open this port by setting a policy that allows service for DNS.

chroot jail The bind-chroot.sh script sets up named to run in a chroot jail. After you run this
script, all files that control BIND are located within this jail. In this case the file-
names used in this chapter are symbolic links to the files in the chroot jail. See
page 847 for more information.

 From the Library of WoweBook.Com

www.zytrax.com/books/dns
www.isc.org/products/BIND
www.sans.org/reading_room/whitepapers/dns/1069.php

ptg

834 Chapter 24 DNS/BIND: Tracking Domain Names and Addresses

named options The /etc/default/bind9 file is installed with the resolvconf package. If this package
is installed, when the bind9 init script starts or restarts the named server, but not
when it just reloads the configuration files, it reads the options in the
/etc/default/bind9 file. If the RESOLVCONF variable is set to yes (as it is by
default), the script runs resolvconf, which rebuilds /etc/resolv.conf. You can cause
the script not to run resolvconf by setting RESOLVCONF to no. The –u bind option
causes named to run as the user named bind.

$ cat /etc/default/bind9
run resolvconf?
RESOLVCONF=yes

startup options for the server
OPTIONS="-u bind"

Setting Up a DNS Server

This section starts with an explanation of how to set up the simplest type of DNS
server, a DNS cache.

Prerequisites

Installation Install the following packages:

• bind9 (automatically installs bind9utils)

• bind9-doc (optional; installs bind documentation)

• dnsutils (installed by default; includes dig, nslookup, and nsupdate)

bind9 init script When you install the bind9 package, the dpkg postinst script starts the named daemon.
After you configure BIND, call the bind9 init script to restart the named daemon:

$ sudo service bind9 restart

After changing the BIND configuration on an active server, use reload in place of
restart to reload named configuration files without disturbing clients connected to
the server. By default, starting or restarting—but not reloading—named runs resolv-
conf, which rebuilds the /etc/resolv.conf file. See “named options” above for more
information.

JumpStart: Setting Up a DNS Cache

As explained earlier, a DNS cache is a bridge between a resolver and authoritative
DNS servers: It is not authoritative, but simply stores the results of its queries in
memory. Most ISPs provide a DNS cache for the use of their customers. Setting up a
local cache can reduce the traffic between the LAN and the outside world, thereby
improving response times. While it is possible to set up a DNS cache on each system
on a LAN, setting up a single DNS cache on a LAN prevents multiple systems on
the LAN from having to query a remote server for the same information.

After installing BIND, you have most of a caching-only nameserver ready to run.
Refer to “Setting Up a DNS Cache” on page 839 for an explanation of which files
this nameserver uses and how it works.

 From the Library of WoweBook.Com

ptg

Setting Up a DNS Server 835

resolvconf and
resolv.conf

Before you start the DNS cache, you need to modify the /etc/resolv.conf file
(page 496). How you go about modifying this file depends on whether the resolv-
conf package is installed and set up to run on the local system. When you give the
command resolvconf, a usage message tells you the package is installed, whereas a
not installed message tells you it is not installed.

If resolvconf is not installed or you have turned it off as explained in “named
options,” put the following line in /etc/resolv.conf, before other nameserver lines:

nameserver 127.0.0.1

If resolvconf is installed and is set up to rebuild resolv.conf when you run the bind9
init script (page 834), put the preceding line in /etc/resolvconf/resolv.conf.d/head,
following the comments and before any other nameserver lines. You can ignore the
comment telling you not to edit the file: This comment is intended for someone
who is trying to edit /etc/resolv.conf. You must put this line in the head file so
resolvconf puts it in resolv.conf before any other nameserver lines; otherwise the
local DNS cache will never be used. Put other nameserver lines in base in the same
directory as needed.

The nameserver line tells the resolver to use the local system (localhost or
127.0.0.1) as the primary nameserver. To experiment with using the local system as
the only nameserver, comment out other nameserver lines in resolv.conf or base by
preceding each with a hashmark (#).

Finally, run the bind9 init script to restart the named daemon (page 834). When
you do so, if resolvconf is installed and set up to run, the bind9 init script will
rebuild resolv.conf. See the resolver and resolv.conf man pages for more information
on resolv.conf.

Refer to “Troubleshooting” on page 849 for ways to confirm that the DNS cache is
working. Once you have restarted named, you can see the effect of the cache by
using dig to look up the IP address of a remote system:

$ dig www.ubuntu.com

; <<>> DiG 9.7.0-P1 <<>> www.ubuntu.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19622
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 0

;; QUESTION SECTION:
;www.ubuntu.com. IN A

;; ANSWER SECTION:
www.ubuntu.com. 585 IN A 91.189.90.40

;; Query time: 496 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Mon Apr 5 16:45:38 2010
;; MSG SIZE rcvd: 112

 From the Library of WoweBook.Com

ptg

836 Chapter 24 DNS/BIND: Tracking Domain Names and Addresses

The fourth line from the bottom of the example on the preceding page shows that
this query took 496 milliseconds (about one-half of a second). When you run the
same query again, it runs more quickly because the DNS cache has saved the infor-
mation locally in memory:

$ dig www.ubuntu.com
...
;; Query time: 1 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Mon Apr 5 16:45:46 2010
;; MSG SIZE rcvd: 112

Configuring a DNS Server

This section discusses the /etc/bind/named.conf file, zone files, implementation of a
DNS cache, and running DNS inside a chroot jail.

named.conf: The named Configuration File

Configuration information for named is kept in /etc/bind/named.conf. By default,
the zone files reside in /etc/bind. If you are running named in a chroot jail, these files
are kept in /var/lib/named/etc/bind, with a link in /etc/bind (page 847).

IP-list
In the descriptions in this section, IP-list is a semicolon-separated list of IP
addresses, where each IP address is optionally followed by a slash and a subnet
mask length (page 462). Prefix an IP-list with an exclamation point (!) to negate it.
Builtin names you can use in IP-list include any, none, and localhost. You must
enclose these builtin names within double quotation marks.

Comments

Within named.conf, specify a comment by preceding it with a hashmark (#) as in a
Perl or shell program, preceding it with a double slash (//) as in a C++ program, or

Try not to modify named.conf
tip The Ubuntu bind9 package breaks the named.conf file distributed with BIND into four files:

named.conf, named.conf.default-zones, named.conf.local, and named.conf.options. There are
two motivations for breaking this file apart. First, it makes the configuration files easier to understand.
Second, it enables you to configure named without modifying named.conf. This setup allows the
bind9 package to be upgraded, including changes to named.conf, without requiring you to modify
the local configuration.

When you configure named, try to put your changes in the named.conf.options and
named.conf.local files. For more complex setups it may be easier to modify named.conf and
carry those changes forward when bind9 is upgraded.

 From the Library of WoweBook.Com

ptg

Setting Up a DNS Server 837

enclosing it between /* and */ as in a C program. Within a DNS db.* file, a com-
ment starts with a semicolon (;).

Included Files

An include statement within the named.conf file includes the file named as its
argument as though its contents appeared inline in the named.conf file. The
default Ubuntu named.conf file includes the /etc/bind/named.conf.options,
/etc/bind/named.conf.local, and /etc/bind/named.conf.default-zones files. The
named.conf.options file holds the Options clause of named.conf. The
named.conf.local file gives you a place to put local configuration information.
The named.conf.default-zones file defines the default zones.

Options Clause

Options statements can appear in two places: in the Options clause found in
named.conf.options and in the Zone clauses found in named.conf.default-zones.
Option statements within the Options clause apply globally. When an option state-
ment appears in a Zone clause, the option applies to the zone, and within that zone,
overrides a corresponding global option.

An Options clause starts with the keyword options and continues with braces sur-
rounding the statements. Following is a list of some option statements. Statements
that can appear only in an Options clause and statements that cannot appear in a
View clause (page 855) are so noted.

allow-query {IP-list}
Allows queries from IP-list only. Without this option, the server responds to all queries.

allow-recursion {IP-list}
Specifies systems for which this server will perform recursive queries (page 825).
For systems not in IP-list, the server performs iterative queries only. Without this
option, the server performs recursive queries for any system. This statement may be
overridden by the recursion statement.

allow-transfer {IP-list}
Specifies systems that are allowed to perform zone transfers from this server. Specify
an IP-list of "none" (include the quotation marks) to prevent zone transfers. For a
more secure network, include only trusted systems in IP-list because systems on the
list can obtain a list of all systems on the network.

directory path Specifies the absolute pathname of the directory containing the zone files. Under
Ubuntu Linux, this directory is initially /var/cache/bind. Relative pathnames specified
in named.conf are relative to this directory. Options clause only; not in View clause.

forward ONLY|FIRST
ONLY forwards all queries and fails if it does not receive an answer. FIRST for-
wards all queries and, if a query does not receive an answer, attempts to find an
answer using additional queries. Valid with the forwarders statement only.

 From the Library of WoweBook.Com

ptg

838 Chapter 24 DNS/BIND: Tracking Domain Names and Addresses

forwarders {IP [port] [; ...]}
Specifies IP addresses and optionally port numbers that queries are forwarded to.
See the forward statement.

notify YES|NO YES sends a message to slave servers for the zone when zone information changes.
Master servers only. See page 854.

recursion YES|NO
YES (default) provides recursive queries (page 825) if the client requests. NO provides
iterative queries only (page 825). An answer is always returned if it appears in the
server’s cache. This statement overrides allow-recursion statements. Options clause only.

Zone Clause

A Zone clause defines a zone and can include any of the statements listed for the
Options clause except as noted. A Zone clause is introduced by the keyword zone,
the name of the zone enclosed within double quotation marks, and the class (always
IN). The body of the Zone clause consists of a pair of braces surrounding one or
more zone statements. See the listing of named.conf.default-zones on page 840 for
examples of Zone clauses. Following is a list of some zone statements:

allow-update {IP-list}
Specifies systems that are allowed to update this zone dynamically. This statement
may be useful when hosting a master DNS server for a domain owned by someone
other than the local administrator because it allows a remote user to update the
DNS entry without granting the user access to the server.

file filename Specifies the zone file—the file that specifies the characteristics of the zone. The file-
name is relative to the directory specified by the directory statement in the Options
clause. The file statement is mandatory for master and hint zones. Including it for
slave zones is a good idea (see type).

masters (IP-list) Specifies systems that a slave zone can use to update zone files. Slave zones only.

type ztype Specifies the type of zone defined by this clause. Choose ztype from the following list:

• forward—Specifies a forward zone, which forwards queries directed to this
zone. See the forward and/or forwarders statements in the Options clause.

• hint—Specifies a hint zone. A hint zone lists root servers that the local
server queries when it starts and when it cannot find an answer in its cache.

• master—Specifies the local system as a primary master server (page 826)
for this zone.

• slave—Specifies the local system as a slave server (page 826) for this zone.

Zone Files

Zone files define zone characteristics. The name of the zone is typically specified in
named.conf.default-zones. In contrast to named.conf and named.conf.local, zone
files use periods at the ends of domain names. See page 841 for example zone files.

 From the Library of WoweBook.Com

ptg

Setting Up a DNS Server 839

Time Formats

All times in BIND files are given in seconds, unless they are followed by one of these
letters (uppercase or lowercase): S (seconds), M (minutes), H (hours), D (days), or
W (weeks). You can combine formats. For example, the time 2h25m30s means 2
hours, 25 minutes, and 30 seconds and is the same as 8,730 seconds.

Domain Qualification

An unqualified domain in a zone file is assumed to be in the current zone (the zone
defined by the zone file and named by the named.conf.default-zones file that refers
to the zone file). The name zach in the zone file for myzone.com, for example,
would be expanded to the FQDN zach.myzone.com. . Use an FQDN (include the
trailing period) to specify a domain that is not in the current zone. Any name that
does not end with a period is regarded as a subdomain of the current zone.

Zone Name

Within a zone file, an at sign (@) is replaced with the zone name as specified by the
named.conf file that refers to the zone file. The zone name is also referred to as the
origin. See “$ORIGIN” in the next section.

Zone File Directives

The following directives can appear within a zone file. Each directive is identified by
a leading dollar sign. The $TTL directive is mandatory and must be the first entry in
a zone file.

$TTL Defines the default time to live for all resource records in the zone. This directive
must appear in a zone file before any resource records that it applies to. Any
resource record can include a TTL value that overrides this value, except for the
resource record in the root zone (.).

$ORIGIN Changes the zone name from that specified in the named.conf.default-zones file.
This name, or the zone name if this directive does not appear in the zone file,
replaces an @ sign in the Name field of a resource record.

$INCLUDE Includes a file as though it were part of the zone file. The scope of an $ORIGIN
directive within an included file is the included file. That is, an $ORIGIN directive
within an included file does not affect the file that holds the $INCLUDE directive.

Setting Up a DNS Cache

You install a DNS cache (also called a resolving, caching nameserver) when you
install the bind9 package. The section “JumpStart: Setting Up a DNS Cache”
(page 834) explains how to run this server. This section describes how the files pro-
vided by Ubuntu Linux implement this server.

named.conf: The named Configuration File

The default /etc/bind/named.conf file is shown on the next page. This file simply
includes the three other BIND configuration files.

 From the Library of WoweBook.Com

ptg

840 Chapter 24 DNS/BIND: Tracking Domain Names and Addresses

$ cat /etc/bind/named.conf
// This is the primary configuration file for the BIND DNS server named.
//
// Please read /usr/share/doc/bind9/README.Debian.gz for information on the
// structure of BIND configuration files in Debian, *BEFORE* you customize
// this configuration file.
//
// If you are just adding zones, please do that in
/etc/bind/named.conf.local

include "/etc/bind/named.conf.options";
include "/etc/bind/named.conf.local";
include "/etc/bind/named.conf.default-zones";

named.conf.default-zones: Default Zones File

The named.conf.default-zones file, which the named.conf file incorporates with an
include statement, holds five Zone clauses, each of which uses an absolute filename
to locate its zone file. Any relative filenames appearing in this file would be relative
to /var/cache/bind, which the directory statement in named.conf.options points to.

$ cat named.conf.default-zones
// prime the server with knowledge of the root servers
zone "." {
 type hint;
 file "/etc/bind/db.root";
};

// be authoritative for the localhost forward and reverse zones, and for
// broadcast zones as per RFC 1912

zone "localhost" {
 type master;
 file "/etc/bind/db.local";
};

zone "127.in-addr.arpa" {
 type master;
 file "/etc/bind/db.127";
};

zone "0.in-addr.arpa" {
 type master;
 file "/etc/bind/db.0";
};

zone "255.in-addr.arpa" {
 type master;
 file "/etc/bind/db.255";
};

 From the Library of WoweBook.Com

ptg

Setting Up a DNS Server 841

The named.conf.default-zones file holds the following Zone clauses:

• .—(The name of the zone is a period.) The hint zone. Specifies that when
the server starts or does not know which server to query, it should look in
the /etc/bind/db.root file to find the addresses of authoritative servers for
the root domain.

• localhost—Sets up the normal server on the local system.

• 127.in-addr.arpa—Sets up IPv4 reverse name resolution.

• 0.in-addr.arpa—Specifies that the local server handle reverse lookup for IP
addresses starting with 0, thereby preventing the local server from looking
upstream for this information.

• 255.in-addr.arpa—Specifies that the local server handle reverse lookup for
IP addresses starting with 255, preventing the local server from looking
upstream for this information.

named.conf.options: Options File

The named.conf.options file, which named.conf incorporates with an include state-
ment, holds mostly comments with the following uncommented statements:

directory "/var/cache/bind";

auth-nxdomain no; # conform to RFC1035

listen-on-v6 { any; };

The directory statement specifies the directory that all relative pathnames in this
file, named.conf, and all other files incorporated in named.conf are relative to. If
you are running named in a chroot jail, this directory is located under
/var/lib/named (page 847). The auth-nxdomain no statement does not allow the
server to answer authoritatively on NXDOMAIN (nonexistent domain error; see
negative caching [page 1161]) answers. The listen-on-v6 { any; } statement enables
the server to listen for IPv6 queries on any address. Change any to none to cause the
server not to listen for IPv6 queries.

Zone Files

There are five zone files in /etc/bind, each of which corresponds to one of the Zone
clauses in named.conf.default-zones. This section describes three of these zone files.

The root zone:
db.root

The hint zone file, db.root, is similar to the output of a dig @a.root-servers.net.
command, which does not change frequently (check the date on the last update line
near the beginning of the file). It specifies authoritative servers for the root domain.
The DNS server initializes its cache from this file and can determine an authorita-
tive server for any domain from this information.

 From the Library of WoweBook.Com

ptg

842 Chapter 24 DNS/BIND: Tracking Domain Names and Addresses

The root zone is required only for servers that answer recursive queries: If a server
responds to recursive queries, it needs to perform a series of iterative queries start-
ing at the root domain. Without the root domain hint file, it would not know where
to find the root domain servers.

$ cat /etc/bind/db.root
; This file holds the information on root name servers needed to
; initialize cache of Internet domain name servers
; (e.g. reference this file in the "cache . <file>"
; configuration file of BIND domain name servers).
;
; This file is made available by InterNIC
; under anonymous FTP as
; file /domain/named.root
; on server FTP.INTERNIC.NET
; -OR- RS.INTERNIC.NET
;
; last update: Dec 12, 2008
; related version of root zone: 2008121200
;
; formerly NS.INTERNIC.NET
;
. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
A.ROOT-SERVERS.NET. 3600000 AAAA 2001:503:BA3E::2:30
;
; FORMERLY NS1.ISI.EDU
;
. 3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 A 192.228.79.201
;
; FORMERLY C.PSI.NET
;
. 3600000 NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12
;
; FORMERLY TERP.UMD.EDU
;
. 3600000 NS D.ROOT-SERVERS.NET.
D.ROOT-SERVERS.NET. 3600000 A 128.8.10.90
;
; FORMERLY NS.NASA.GOV
;
. 3600000 NS E.ROOT-SERVERS.NET.
E.ROOT-SERVERS.NET. 3600000 A 192.203.230.10
;
; FORMERLY NS.ISC.ORG
;
. 3600000 NS F.ROOT-SERVERS.NET.
F.ROOT-SERVERS.NET. 3600000 A 192.5.5.241
F.ROOT-SERVERS.NET. 3600000 AAAA 2001:500:2F::F
;
; FORMERLY NS.NIC.DDN.MIL
;
. 3600000 NS G.ROOT-SERVERS.NET.
G.ROOT-SERVERS.NET. 3600000 A 192.112.36.4

 From the Library of WoweBook.Com

ptg

Setting Up a DNS Server 843

;
; FORMERLY AOS.ARL.ARMY.MIL
;
. 3600000 NS H.ROOT-SERVERS.NET.
H.ROOT-SERVERS.NET. 3600000 A 128.63.2.53
H.ROOT-SERVERS.NET. 3600000 AAAA 2001:500:1::803F:235
;
; FORMERLY NIC.NORDU.NET
;
. 3600000 NS I.ROOT-SERVERS.NET.
I.ROOT-SERVERS.NET. 3600000 A 192.36.148.17
;
; OPERATED BY VERISIGN, INC.
;
. 3600000 NS J.ROOT-SERVERS.NET.
J.ROOT-SERVERS.NET. 3600000 A 192.58.128.30
J.ROOT-SERVERS.NET. 3600000 AAAA 2001:503:C27::2:30
;
; OPERATED BY RIPE NCC
;
. 3600000 NS K.ROOT-SERVERS.NET.
K.ROOT-SERVERS.NET. 3600000 A 193.0.14.129
K.ROOT-SERVERS.NET. 3600000 AAAA 2001:7FD::1
;
; OPERATED BY ICANN
;
. 3600000 NS L.ROOT-SERVERS.NET.
L.ROOT-SERVERS.NET. 3600000 A 199.7.83.42
L.ROOT-SERVERS.NET. 3600000 AAAA 2001:500:3::42
;
; OPERATED BY WIDE
;
. 3600000 NS M.ROOT-SERVERS.NET.
M.ROOT-SERVERS.NET. 3600000 A 202.12.27.33
M.ROOT-SERVERS.NET. 3600000 AAAA 2001:DC3::35
; End of File

db.local The db.local zone file defines the localhost zone, the normal server on the local sys-
tem. It starts with a $TTL directive and holds four resource records: SOA, NS, A,
and AAAA. The $TTL directive in the following file specifies that the default time
to live for the resource records specified in this file is 604,800 seconds (one week):

$ cat /etc/bind/db.local
;
; BIND data file for local loopback interface
;
$TTL 604800
@ IN SOA localhost. root.localhost. (
 2 ; Serial
 604800 ; Refresh
 86400 ; Retry
 2419200 ; Expire
 604800) ; Negative Cache TTL
;
@ IN NS localhost.
@ IN A 127.0.0.1
@ IN AAAA ::1

 From the Library of WoweBook.Com

ptg

844 Chapter 24 DNS/BIND: Tracking Domain Names and Addresses

As explained earlier, the @ stands for the origin (the name of the zone), which is
localhost, as specified in named.conf. The last three lines are the NS resource record
that specifies the nameserver for the zone as localhost, the A resource record that
specifies the IPv4 address of the host as 127.0.0.1, and the AAAA resource record
that specifies the IPv6 address of the host as ::1.

db.127 The db.127 zone file provides information about the 127.in-addr.arpa reverse
lookup zone. It follows the same pattern as the localhost zone file, with one excep-
tion: Instead of the A resource record, this file has a PTR record that provides the
name the zone associates with the IP address. The PTR resource record specifies the
name 1.0.0, which equates the system at address 1.0.0 in the zone (127.in-addr.arpa)
with the name localhost, which has an IP address of 127.0.0.1:

$ cat /etc/bind/db.127
;
; BIND reverse data file for local loopback interface
;
$TTL 604800
@ IN SOA localhost. root.localhost. (
 1 ; Serial
 604800 ; Refresh
 86400 ; Retry
 2419200 ; Expire
 604800) ; Negative Cache TTL
;
@ IN NS localhost.
1.0.0 IN PTR localhost.

The other zone files perform similar functions as described on page 840. Once
named is started (page 834), you can use the tests described under “Troubleshoot-
ing” on page 849 to make sure the server is working.

DNS Glue Records

It is common practice to put the nameserver for a zone inside the zone it serves. For
example, you might put the nameserver for the zone starting at site1.example.com
(Figure 24-3, page 825) in ns.site1.example.com. When a DNS cache tries to resolve
www.site1.example.com, the authoritative server for example.com gives it the NS
record pointing to ns.site1.example.com. In an attempt to resolve ns.site1.exam-
ple.com, the DNS cache again queries the authoritative server for example.com,
which points back to ns.site1.example.com. This loop does not allow ns.site1.exam-
ple.com to be resolved.

The simplest solution to this problem is to prohibit any nameserver from residing
inside the zone it points to. Because every zone is a child of the root zone, this
solution means every domain would be served by the root server and would not
scale at all.

 From the Library of WoweBook.Com

www.site1.example.com

ptg

Setting Up a DNS Server 845

A better solution is to use glue records. A glue record is an A record for a nameserver
that is returned in addition to the NS record when an NS query is performed.
Because the A record provides an IP address for the nameserver, it does not need to
be resolved and does not create the problematic loop.

The nameserver setup for ubuntu.com illustrates the use of glue records. When you
query for NS records for ubuntu.com, DNS returns three NS records. In addition, it
returns three A records that provide the IP addresses for the three hosts that the NS
records point to:

$ dig -t NS ubuntu.com
...
;; QUESTION SECTION:
;ubuntu.com. IN NS

;; ANSWER SECTION:
ubuntu.com. 78941 IN NS ns1.canonical.com.
ubuntu.com. 78941 IN NS ns2.canonical.com.
ubuntu.com. 78941 IN NS ns3.canonical.com.

;; ADDITIONAL SECTION:
ns1.canonical.com. 9538 IN A 91.189.94.173
ns2.canonical.com. 9538 IN A 91.189.94.219
ns3.canonical.com. 9538 IN A 209.6.3.210
...

You can create a glue record by providing an A record for the nameserver inside the
delegating domain’s zone file:

site1.example.com IN NS ns.site1.example.com
ns.site1.example.com IN A 1.2.3.4

TSIGs: Transaction Signatures

Interaction between DNS components is based on the query–response model: One
part queries another and receives a reply. Traditionally a server determines whether
and how to reply to a query based on the client’s IP address. IP spoofing
(page 1154) is relatively easy to carry out, making this situation less than ideal.
Recent versions of BIND support transaction signatures (TSIGs), which allow two
systems to establish a trust relationship by using a shared secret key.

TSIGs provide an additional layer of authentication between master and slave serv-
ers for a zone. When a slave server is located at a different site than the master
server (as it should be), a malicious person operating a router between the sites can
spoof the IP address of the master server and change the DNS data on the slave (a
man-in-the-middle scenario). With TSIGs, this person would need to know the
secret key to change the DNS data on the slave.

 From the Library of WoweBook.Com

ptg

846 Chapter 24 DNS/BIND: Tracking Domain Names and Addresses

Creating a Secret Key

A secret key is an encoded string of up to 512 bits. The dnssec-keygen utility, which is
included with BIND, generates this key. The following command, which may take a
while to run, generates a 512-bit random key using MD5, a one-way hash function
(page 1163):

$ /usr/sbin/dnssec-keygen -a hmac-md5 -b 512 -n HOST keyname
Kkeyname.+157+47586

In the preceding command, replace keyname with a string that is unique yet mean-
ingful. This command creates a key in a file whose name is similar to the string
Kkeyname.+157+47586.private, where keyname is replaced by the name of the key,
+157 indicates the algorithm used, and +47586 is a hash of the key. If you run the
same command again, the hash part will be different.

The key file is not used directly. Use cat with an argument of the private filename to
display the algorithm and key information you will need in the next step:

$ cat Kkeyname.+157+47586.private
Private-key-format: v1.3
Algorithm: 157 (HMAC_MD5)
Key: uNPDouqVwR7fvo/zFyjkqKbQhcTd6Prm...
...

Using the Shared Secret

The next step is to tell the nameservers about the shared secret by inserting the fol-
lowing code in the /etc/named.conf file on both servers. This code is a top-level
clause; insert it at the end of the named.conf.local file (which is included in
named.conf):

key keyname {
algorithm "hmac-md5";
secret "uNPDouqVwR7fvo/zFyjkqKbQhcTd6Prm...";

};

The keyname is the name of the key you created. The algorithm is the string that
follows algorithm in the output of cat, above. The secret is the string that follows
secret in the output of cat. You must enclose each string within double quotation
marks. Be careful when you copy the key; although it is long, you must not break it
into multiple lines.

Because key names are unique, you can insert any number of Keys clauses into
named.conf. To keep the key a secret, make sure users other than bind cannot read
it: Either give named.conf.local permissions such that no one except bind has access
to it or put the key in a file that only bind can read and incorporate it in
named.conf.local using an include statement.

Once both servers know about the key, use a server statement in named.conf.local
to tell them when to use it:

 From the Library of WoweBook.Com

ptg

Setting Up a DNS Server 847

server 1.2.3.4 {
1.2.3.4 is the IP address of the other server using this key

keys {
"keyname";

};
};

Each server must have a Server clause, each containing the IP address of the other
server. The servers will now communicate with each other only if they first authen-
ticate each other using the secret key.

Running BIND in a chroot Jail

To increase security, you can run BIND in a chroot jail. See page 466 for information
about the security advantages of, and ways to set up, a chroot jail. The bind-chroot.sh
shell script (below), which sets up BIND to run in a chroot jail, creates a directory
named /var/lib/named that takes the place of the root directory (/) for all BIND
files. The bind-chroot.sh shell installs the bind9 and resolvconf packages if they are
not already installed and then runs the bind9 and resolvconf init scripts to stop
named. It then adds the –t option to the named options in /etc/default/bind9 so
named chroots to the /var/lib/named directory before it reads its configuration files.
The named daemon is already set up to run as the user bind (–u bind).

After creating the necessary directories in /var/lib/named, the script moves the files
from /etc/bind to /var/lib/named, creates a symbolic link from /var/lib/named back
to /etc/bind, and creates and sets permissions on devices BIND may need. Next,
bind-chroot.sh disables apparmor protection for named. Finally, the script starts
named and resolvconf, and displays the end of the syslog file.

$ cat bind-chroot.sh
#!/bin/bash

install and stop bind
aptitude -y install bind9
service bind9 stop

install and stop resolvconf
aptitude -y install resolvconf
service resolvconf stop

add -t /var/lib/named to OPTIONS in /etc/default/bind9
sed -i 's:OPTIONS="\(.*\)":OPTIONS="\1\ -t /var/lib/named":' /etc/default/bind9

make the chroot directories
mkdir -p /var/lib/named/{etc,dev,var/cache/bind,var/run/bind/run}

move the configuration to the chroot and link back to /etc
mv /etc/bind /var/lib/named/etc
ln -s /var/lib/named/etc/bind /etc/bind

 From the Library of WoweBook.Com

ptg

848 Chapter 24 DNS/BIND: Tracking Domain Names and Addresses

create devices and set permissions
mknod /var/lib/named/dev/null c 1 3
mknod /var/lib/named/dev/random c 1 8
chmod 666 /var/lib/named/dev/{null,random}
chown -R bind:bind /var/lib/named/var/*
chown -R bind:bind /var/lib/named/etc/bind

disable apparmor protection of /usr/sbin/named and restart apparmor
cd /etc/apparmor.d/disable
ln -s /etc/apparmor.d/usr.sbin.named .
service apparmor restart

start bind and resolvconf
service resolvconf start
service bind9 start

check that everything started fine
tail /var/log/syslog

Following is the output of the execution of bind-chroot.sh. You must run this script
while working with root privileges. You must also have execute permission to run
the script. In the example, the bind-chroot.sh file is in the working directory.

$ sudo ./bind-chroot.sh
Reading package lists... Done
Building dependency tree
Reading state information... Done
Reading extended state information
Initializing package states... Done
No packages will be installed, upgraded, or removed.
0 packages upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
Need to get 0B of archives. After unpacking 0B will be used.
Writing extended state information... Done
Reading package lists... Done
Building dependency tree
Reading state information... Done
Reading extended state information
Initializing package states... Done

* Stopping domain name service... bind9 [OK]
Reading package lists... Done
Building dependency tree
Reading state information... Done
Reading extended state information
Initializing package states... Done
No packages will be installed, upgraded, or removed.
0 packages upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
Need to get 0B of archives. After unpacking 0B will be used.
Writing extended state information... Done
Reading package lists... Done
Building dependency tree
Reading state information... Done
Reading extended state information
Initializing package states... Done

* Stopping resolvconf... [OK]

* Reloading AppArmor profiles

 From the Library of WoweBook.Com

ptg

Setting Up a DNS Server 849

Skipping profile in /etc/apparmor.d/disable: usr.bin.firefox
Skipping profile in /etc/apparmor.d/disable: usr.sbin.named [OK]

* Setting up resolvconf... [OK]

* Starting domain name service... bind9 [OK]
Apr 5 11:28:21 10 named[4138]: command channel listening on ::1#953
Apr 5 11:28:21 10 named[4138]: zone 0.in-addr.arpa/IN: loaded serial 1
Apr 5 11:28:21 10 named[4138]: zone 127.in-addr.arpa/IN: loaded serial 1
Apr 5 11:28:21 10 named[4138]: zone 255.in-addr.arpa/IN: loaded serial 1
Apr 5 11:28:21 10 named[4138]: zone localhost/IN: loaded serial 2
Apr 5 11:28:21 10 named[4138]: running

After you run this script, all files that control BIND are located within this chroot
jail and the filenames used in this chapter are symbolic links to the files in the chroot
jail. See the command and output on the next page.

$ ls -l /etc/bind /var/lib/named/etc/bind
lrwxrwxrwx 1 root root 23 2010-04-05 11:28 /etc/bind -> /var/lib/named/etc/bind

/var/lib/named/etc/bind:
-rw-r--r-- 1 bind bind 601 2010-03-22 12:59 bind.keys
-rw-r--r-- 1 bind bind 237 2010-03-22 12:59 db.0
-rw-r--r-- 1 bind bind 271 2010-03-22 12:59 db.127
-rw-r--r-- 1 bind bind 237 2010-03-22 12:59 db.255
-rw-r--r-- 1 bind bind 353 2010-03-22 12:59 db.empty
-rw-r--r-- 1 bind bind 270 2010-03-22 12:59 db.local
-rw-r--r-- 1 bind bind 2940 2010-03-22 12:59 db.root
-rw-r--r-- 1 bind bind 463 2010-03-22 12:59 named.conf
-rw-r--r-- 1 bind bind 490 2010-03-22 12:59 named.conf.default-zones
-rw-r--r-- 1 bind bind 165 2010-03-22 12:59 named.conf.local
-rw-r--r-- 1 bind bind 572 2010-03-22 12:59 named.conf.options
-rw-r----- 1 bind bind 77 2010-04-05 11:26 rndc.key
-rw-r--r-- 1 bind bind 1317 2010-03-22 12:59 zones.rfc1918

BIND is running in a chroot jail in /var/lib/named. Because the /etc/bind directory is
now a link to /var/lib/named, you can make changes to BIND from either location.

Troubleshooting

When you start a DNS cache, the /var/log/syslog file contains lines similar to the
following. Other types of DNS servers display similar messages.

$ cat /var/log/syslog
...
Apr 26 11:00:02 plum named[9301]: starting 9.7.0-P1 -u bind
Apr 26 11:00:02 plum named[9301]: found 1 CPU, using 1 worker thread
Apr 26 11:00:02 plum named[9301]: loading configuration from '/etc/bind/named.conf'
Apr 26 11:00:02 plum named[9301]: listening on IPv6 interfaces, port 53
Apr 26 11:00:02 plum named[9301]: listening on IPv4 interface lo, 127.0.0.1#53
Apr 26 11:00:02 plum named[9301]: listening on IPv4 interface eth0, 192.168.0.10#53
Apr 26 11:00:02 plum named[9301]: command channel listening on 127.0.0.1#953
Apr 26 11:00:02 plum named[9301]: command channel listening on ::1#953
Apr 26 11:00:02 plum named[9301]: zone 0.in-addr.arpa/IN: loaded serial 1
Apr 26 11:00:02 plum named[9301]: zone 127.in-addr.arpa/IN: loaded serial 1
Apr 26 11:00:02 plum named[9301]: zone 255.in-addr.arpa/IN: loaded serial 1
Apr 26 11:00:02 plum named[9301]: zone localhost/IN: loaded serial 1
Apr 26 11:00:02 plum named[9301]: running

 From the Library of WoweBook.Com

ptg

850 Chapter 24 DNS/BIND: Tracking Domain Names and Addresses

When you create or update DNS information, you can use dig or host to test
whether the server works as planned. The most useful part of the output from dig is
usually the answer section, which gives the nameserver’s reply to your query:

$ dig example.com
...
;; ANSWER SECTION:
example.com. 172800 IN A 192.0.32.10
...

The preceding output shows that the example.com. domain has a single A record
that points to 192.0.32.10. The TTL of this record, which tells you how long the
record can be held in cache, is 172,800 seconds (two days). You can also use dig to
query other record types by using the –t option followed by the type of record you
want to query for (–t works with host, too):

$ dig -t MX ubuntu.com
...
;; ANSWER SECTION:
ubuntu.com. 3587 IN MX 10 mx.canonical.com.
...

If you query for a domain that does not exist, dig returns the SOA record for the
authority section of the highest-level domain in your query that does exist:

$ dig domaindoesnotexist.info
...
;; AUTHORITY SECTION:
info. 900 IN SOA a0.info.afilias-nst.info. noc.afilias-nst.info. ...
...

Because it tells you the last zone that was queried correctly, this information can be
useful in tracing faults.

TSIGs If two servers using TSIGs (page 845) fail to communicate, confirm that the time is
the same on both servers. The TSIG authentication mechanism is dependent on the
current time. If the clocks on the two servers are not synchronized, TSIG will fail.
Consider setting up NTP (page 1163) on the servers to prevent this problem.

Setting Up Different Types of DNS Servers

This section describes how to set up a full-functioned nameserver, a slave server, and
a split-horizon server.

A Full-Functioned Nameserver

Because the IP addresses used in this example are part of the private address space
(page 1166), you can copy the example and run the server without affecting global
DNS. Also, to prevent contamination of the global DNS, each zone has the notify
option set to NO. When you build a nameserver that is integrated with the Internet,

 From the Library of WoweBook.Com

ptg

Setting Up Different Types of DNS Servers 851

you will want to use IP addresses that are unique to your installation. You may
want to change the settings of the notify statements.

named.conf The named.conf file in this example limits the IP addresses that named answers
queries from and sets up logging (next page).

$ cat /etc/bind/named.conf
options {

directory "/etc/bind";
// recursion NO;

allow-query {127.0.0.1; 192.168.0.0/24;};
};

zone "." IN {
type hint;
file "db.root";

};

zone "0.168.192.in-addr.arpa" IN {
type master;
file "named.conf.local";
notify NO;

};

zone "sam.net" IN {
type master;
file "sam.net";
notify NO;

};

logging{
channel "misc" {

file "/var/log/bind/misc.log" versions 4 size 4m;
print-time YES;
print-severity YES;
print-category YES;

};
channel "query" {

file "/var/log/bind/query.log" versions 4 size 4m;
print-time YES;
print-severity NO;
print-category NO;

};
category default {

"misc";
};
category queries {

"query";
};

};

The allow-query statement in the Options clause specifies the IP addresses of sys-
tems the server answers queries from. You must include the local system as
127.0.0.1 if it will be querying the server. The server is authoritative for the zone
sam.net; the zone file for sam.net is /etc/bind/sam.net.

 From the Library of WoweBook.Com

ptg

852 Chapter 24 DNS/BIND: Tracking Domain Names and Addresses

Logging Logging is turned on by the Logging clause. Logging is separate from named mes-
sages, which go to syslogd. The Logging clause in the preceding example opens two
logging channels: one that logs information to /var/log/bind/misc.log and one that
logs information to /var/log/bind/query.log. When either of these logs grows to 4
megabytes (size 4m in the file statement), it is renamed by appending .1 to its file-
name and a new log is started. The numbers at the ends of other, similarly named
logs are incremented. Any log that would have a larger number than that specified
by the versions keyword (4 in the example) is removed. See logrotate (page 622) for
another way to maintain log files.

The print statements determine whether the time, severity, and category of the infor-
mation are sent to the log; specify each as YES or NO. The category determines what
information is logged to the channel. In the previous example, default information is
sent to the misc channel and queries are sent to the query channel. Refer to the
named.conf man page for more choices.

named.conf.local The origin for the reverse zone file (named.conf.local) is 0.168.192.in-addr.arpa
(as specified in the Zone clause that refers to this file in named.conf). Following
the SOA and NS resource records, the first three PTR resource records equate
address 1 in the subnet 0.168.192.in-addr.arpa (192.168.0.1) with the names
gw.sam.net. , www.sam.net. , and ftp.sam.net. , respectively. The next three PTR
records equate 192.168.0.3 with mark.sam.net., 192.168.0.4 with mail.sam.net. ,
and 192.168.0.6 with ns.sam.net..

$ cat /etc/bind/named.conf.local
$TTL 3D
@ IN SOA ns.sam.net. mgs@sobell.com. (

2010110501 ; serial
8H ; refresh
2H ; retry
4W ; expire
1D) ; minimum

IN NS ns.sam.net.
1 IN PTR gw.sam.net.
1 IN PTR www.sam.net.
1 IN PTR ftp.sam.net.
3 IN PTR mark.sam.net.
4 IN PTR mail.sam.net.
6 IN PTR ns.sam.net.

sam.net The zone file for sam.net takes advantage of many BIND features and includes TXT
(page 830), CNAME (page 828), and MX (page 828) resource records. When you
query for resource records, named returns the TXT resource record along with the
records you requested. The first of the two NS records specifies an unqualified
name (ns) to which BIND appends the zone name (sam.net), yielding an FQDN of
ns.sam.net. The second nameserver is specified with an FQDN name that BIND
does not alter. The MX records specify mail servers in a similar manner and include
a priority number at the start of the data field, where lower numbers indicate pre-
ferred servers.

 From the Library of WoweBook.Com

www.sam.net

ptg

Setting Up Different Types of DNS Servers 853

$ cat sam.net
; zone "sam.net"
;
$TTL 3D
@ IN SOA ns.sam.net. mgs@sobell.com. (

2010110501 ; serial
8H ; refresh
2H ; retry
4W ; expire
1D) ; minimum

TXT "Sobell Associates Inc."
NS ns ; Nameserver address (unqualified)
NS ns.max.net.; Nameserver address (qualified)
MX 10 mail ; Mail exchange (primary/unqualified)
MX 20 mail.max.net.; Mail exchange (2nd/qualified)

localhost IN A 127.0.0.1

www IN CNAME ns
ftp IN CNAME ns

gw IN A 192.168.0.1
TXT "Router"

ns IN A 192.168.0.6
MX 10 mail
MX 20 mail.max.net.

mark IN A 192.168.0.3
MX 10 mail
MX 20 mail.max.net.
TXT "MGS"

mail IN A 192.168.0.4
MX 10 mail
MX 20 mail.max.net.

Some resource records have a value in the Name field; those without a name inherit
the name from the previous resource record. In a similar manner, the previous
resource record may have an inherited name value, and so on. The five resource
records following the SOA resource record inherit the @, or zone name, from the
SOA resource record. These resource records pertain to the zone as a whole. In the
preceding example, the first TXT resource record inherits its name from the SOA
resource record; it is the TXT resource record for the sam.net zone (give the com-
mand host –t TXT sam.net to display the TXT resource record).

Following these five resource records are resource records that pertain to a domain
within the zone. For example, the MX resource records that follow the A resource
record with the Name field set to mark are resource records for the mark.sam.net.
domain.

 From the Library of WoweBook.Com

ptg

854 Chapter 24 DNS/BIND: Tracking Domain Names and Addresses

The A resource record for localhost is followed by two CNAME resource records
that specify www(.sam.net.) and ftp(.sam.net.) as aliases for the nameserver
ns.sam.net.. For example, a user connecting to ftp.sam.net will connect to
192.168.0.6. The resource records named gw, ns, mark, and mail are resource
records for domains within the sam.net zone.

Log files Before restarting named, create the directory for the log files and give it permissions
and ownership as shown below. If you are running named in a chroot jail, create the
bind directory in /var/lib/named/var/log.

$ sudo mkdir /var/log/bind
$ sudo chown bind:bind /var/log/bind
$ ls -ld /var/log/bind
drwxr-xr-x 2 bind bind 4096 2010-04-26 17:43 /var/log/bind

With the log directory in place, and the named.conf, db.root, named.conf.local, and
sam.net zone files in /etc/bind (or in /var/lib/named/etc/bind if you are running
named in a chroot jail), restart named and check the log files. The file /var/log/syslog
should show something like the following (the example shows named started in a
chroot jail):

cat /var/log/syslog
...
Apr 26 18:05:19 plum named[22119]: 9.7.0-P1 -u bind -t /var/lib/named
Apr 26 18:05:19 plum named[22119]: found 1 CPU, using 1 worker thread
Apr 26 18:05:19 plum named[22119]: loading configuration from '/etc/bind/named.conf'
Apr 26 18:05:19 plum named[22119]: listening on IPv4 interface lo, 127.0.0.1#53
Apr 26 18:05:19 plum named[22119]: listening on IPv4 interface eth0, 192.168.0.10#53
Apr 26 18:05:19 plum named[22119]: command channel listening on 127.0.0.1#953
Apr 26 18:05:19 plum named[22119]: command channel listening on ::1#953
...

The misc.log file may show errors that do not appear in the syslog file:

cat /var/log/bind/misc.log
... 01:05:19.932 general: info: zone 0.168.192.in-addr.arpa/IN: loaded serial 2010110501
... 01:05:19.933 general: info: zone sam.net/IN: loaded serial 2010110501
... 01:05:19.933 general: notice: running

A Slave Server

To set up a slave server, copy the /etc/bind/named.conf file from the master server
to the slave server, replacing the type master statement with type slave and adding a
masters { 1.2.3.4; }; directive. Remove any zones the slave server will not be acting
as a slave for, including the root (.) zone, if the slave server will not respond to
recursive queries. If necessary, create the /var/log/bind directory for log files as
explained at the end of the previous section.

notify statement Slave servers copy zone information from the primary master server or another
slave server. The notify statement specifies whether you want a master server to
notify slave servers when information on the master server changes. Set the (global)

 From the Library of WoweBook.Com

www.sam.net

ptg

Setting Up Different Types of DNS Servers 855

value of notify in the Options clause or set it within a Zone clause, which overrides
a global setting for a given zone. The format is

notify YES | NO | EXPLICIT

YES causes the master server to notify all slaves listed in NS resource records for the
zone as well as servers at IP addresses listed in an also-notify statement. When you
set notify to EXPLICIT, the server notifies servers listed in the also-notify statement
only. NO turns off notification.

If you specify notify YES on the master server, the zone files on the slave server
will be updated each time you change the serial field of the SOA resource record
in a zone. You must manually distribute changes to /etc/bind/named.conf and
included files.

A Split Horizon Server

Assume you want to set up a LAN that provides all of its systems and services to
local users on internal systems, which may be behind a firewall, but only certain
public services—such as Web, FTP, and mail—to Internet (public) users. A split
horizon (also called DMZ) DNS server takes care of this situation by treating que-
ries from internal systems differently from queries from public systems (systems on
the Internet).

View clauses BIND 9 introduced View clauses in named.conf. View clauses facilitate the imple-
mentation of a split DNS server. Each view provides a different perspective of the
DNS namespace to a group of clients. When there is no View clause, all zones spec-
ified in named.conf are part of the implicit default view.

Assume that an office has several systems on a LAN and public Web, FTP, DNS, and
mail servers. The single connection to the Internet is NATed (page 1161) so it is
shared by the local systems and the servers. The system connected directly to the
Internet is a router, firewall, and server. This scenario takes advantage of the View
clauses in named.conf and supports separate secondary nameservers for local and
public users. Although public users need access to the DNS server as the authority
on the domain that supports the servers, they do not require the DNS server to sup-
port recursive queries. Not supporting recursion for public users limits the load on
the DNS server and the Internet connection. For security reasons, public users must
not have access to information about local systems other than the servers. Local
users should have access to information about local systems and should be able to
use the DNS server recursively.

Figure 24-6 (next page) shows that the server responds differently to queries from
the LAN and from the Internet.

The gufw (page 876) or iptables utility (page 880) controls which ports on which
systems users on internal and external systems can access. DNS controls which sys-
tems are advertised to which users.

 From the Library of WoweBook.Com

ptg

856 Chapter 24 DNS/BIND: Tracking Domain Names and Addresses

The named.conf file has four clauses: an Options clause, two View clauses, and a
Logging clause. The Options clause specifies that the zone files be located in the
/etc/bind directory. The View clauses specify the characteristics and zones that a
resolver is given access to, which depend on the resolver’s address. One zone is for
use by the LAN/local users; the other is used by Internet/public users. The Logging
clause sets up the misc2.log file for default messages.

There are several ways to specify which clients see a view. The following
named.conf file uses match-clients statements:

$ cat /etc/bind/named.conf
options {

directory "/etc/bind";
}; //end options

view "local" IN { // start local view
match-clients { 127.0.0.1; 192.168.0.0/24;};
recursion YES;

zone"zach.net" IN {
type master;
file "local.net";
notify YES;

};

zone "0.168.192.in-addr.arpa" IN {
type master;
file "named.local";
notify YES;

};

zone "." IN {
type hint;
file "named.ca";

};

}; // end local view

Figure 24-6 A split horizon DNS server

Internet LAN

Do you know the address
of grape.zach.net?

No, it does not exist.

Do you know the address
of www.zach.net?

Yes, it is 66.187.232.50

Do you know the address
of grape.zach.net?

Yes, it is 192.168.0.3.

Do you know the address
of www.zach.net?

Yes, it is 66.187.232.50

 From the Library of WoweBook.Com

ptg

Setting Up Different Types of DNS Servers 857

view "public" IN { // start public view
match-clients { "all";};
recursion NO;

zone"zach.net" IN {
type master;
file "public.net";
notify YES;

};

zone "0.168.192.in-addr.arpa" IN {
type master;
file "named.public";
notify YES;

};

zone "." IN {
type hint;
file "named.ca";

};

}; // end public view

logging{
channel "misc" {

file "/var/log/bind/misc2.log" versions 2 size 1m;
print-time YES;
print-severity YES;
print-category YES;

};
category default {

"misc";
};

}; //end logging

The ordering of View clauses within named.conf is critical because the view that is
presented to a client is the first view that the client matches. The preceding
named.conf file holds two View clauses: one for local users and one for public users,
in that order. Local users are defined to be those on the 192.168.0.0/24 subnet or
localhost (127.0.0.1); public users are defined to be any users. If you reversed the
order of the View clauses, all users—including local users—would get the view
intended for the public and no users would see the local view.

Many statements from the Options clause can be used within View clauses, where
they override statements in the (global) Options clause. The recursion statement,
which can appear within an Options clause, appears in each View clause. This
named.conf file sets up a server that provides recursive answers to queries that orig-
inate locally and iterative answers to queries from the public. This setup provides
quick, complete answers to local users, limiting the network and processor band-
width that is devoted to other users while continuing to provide authoritative name
service for the local servers.

 From the Library of WoweBook.Com

ptg

858 Chapter 24 DNS/BIND: Tracking Domain Names and Addresses

To make named.conf easier to understand and maintain, zones in different View
clauses can have the same name but different zone files. Both the local and public
View clauses in the example have zones named zach.net: The public zach.net zone
file is named public.net and the local one is named local.net.

The Logging clause is described on page 852.

The zone files defining zach.net are similar to the ones in the previous examples; the
public file is a subset of the local one. Following the SOA resource record in both
files is a TXT, two NS, and two MX resource records. Next are three CNAME
resource records that direct queries addressed to www.zach.net, ftp.zach.net, and
mail.zach.net to the system named ns.zach.net. The next four resource records spec-
ify two nameserver addresses and two mail servers for the ns.zach.net domain.

The final four resource records appear in the local zach.net zone file and not in
the public zone file; they are address (A) resource records for local systems.
Instead of keeping this information in /etc/hosts files on each system, you can
keep it on the DNS server, where it can be updated easily. When you use DNS
instead of /etc/hosts, you must change the hosts line in /etc/nsswitch.conf
(page 475) accordingly.

$ cat local.net
; zach.net local zone file
;
$TTL 3D
@ IN SOA ns.zach.net. mgs@sobell.com. (

201011118 ; serial
8H ; refresh
2H ; retry
4W ; expire
1D) ; minimum

IN TXT "Sobell Associates Inc."
IN NS ns ; Nameserver address (unqualified)
IN NS ns.speedy.net.; Nameserver address (qualified)
IN MX 10 mail ; Mail exchange (primary/unqualified)
IN MX 20 mail.max.net.; Mail exchange (2nd/qualified)

www IN CNAME ns
ftp IN CNAME ns
mail IN CNAME ns

ns IN A 192.168.0.1
IN A 192.168.0.6
IN MX 10 mail
IN MX 20 mail.max.net.

speedy IN A 192.168.0.1
grape IN A 192.168.0.3
potato IN A 192.168.0.4
peach IN A 192.168.0.6

 From the Library of WoweBook.Com

www.zach.net

ptg

Setting Up Different Types of DNS Servers 859

The public version of the zach.net zone file follows:

$ cat public.net
; zach.net public zone file
;
$TTL 3D
@ IN SOA ns.zach.net. mgs@sobell.com. (

201011118 ; serial
8H ; refresh
2H ; retry
4W ; expire
1D) ; minimum

IN TXT "Sobell Associates Inc."
IN NS ns ; Nameserver address (unqualified)
IN NS ns.speedy.net.; Nameserver address (qualified)

IN MX 10 mail ; Mail exchange (primary/unqualified)
IN MX 20 mail.max.net.; Mail exchange (2nd/qualified)

www IN CNAME ns
ftp IN CNAME ns
mail IN CNAME ns

ns IN A 192.168.0.1
IN A 192.168.0.6
IN MX 10 mail
IN MX 20 mail.max.net.

Here there are two reverse zone files, each of which starts with SOA and NS
resource records, followed by PTR resource records for each of the names of the
servers. The local version of this file also lists the names of the local systems:

$ cat named.local
;"0.168.192.in-addr.arpa" reverse zone file
;
$TTL 3D
@ IN SOA ns.zach.net. mgs@sobell.com. (

2010110501 ; serial
8H ; refresh
2H ; retry
4W ; expire
1D) ; minimum

IN NS ns.zach.net.
IN NS ns.speedy.net.

1 IN PTR gw.zach.net.
1 IN PTR www.zach.net.
1 IN PTR ftp.zach.net.
1 IN PTR mail.zach.net.
1 IN PTR speedy.zach.net.
3 IN PTR grape.zach.net.
4 IN PTR potato.zach.net.
6 IN PTR peach.zach.net.

 From the Library of WoweBook.Com

ptg

860 Chapter 24 DNS/BIND: Tracking Domain Names and Addresses

Chapter Summary

DNS maps domain names to IP addresses, and vice versa. It is implemented as a
hierarchical, distributed, and replicated database on the Internet. You can improve
the security of BIND, which implements DNS, by running it inside a chroot jail and
using transaction signatures (TSIGs).

When a program on the local system needs to look up an IP address that corre-
sponds to a domain name, it calls the resolver. The resolver queries the local DNS
cache, if available, and then queries DNS servers on the LAN or Internet. There are
two types of queries: iterative and recursive. When a server responds to an iterative
query, it returns whatever information it has at hand; it does not query other serv-
ers. Recursive queries cause a server to query other servers if necessary to respond
with an answer.

There are three types of servers. Master servers, which hold the master copy of zone
data, are authoritative for a zone. Slave servers are also authoritative and copy their
data from a master server or other slave servers. DNS caches are not authoritative
and either answer queries from cache or forward queries to another server.

The DNS database holds resource records for domains. Many types of resource
records exist, including A (address), MX (mail exchange), NS (nameserver), PTR
(pointer for performing reverse name resolution), and SOA (start of authority,
which describes the zone) records.

Exercises

1. What kind of server responds to recursive queries? How does this server work?

2. What kind of DNS record is likely to be returned when a Web browser
tries to resolve the domain part of a URI?

3. What are MX resource records for?

4. How would you find the IP address of example.com from the command line?

5. How would you instruct a Linux system to use the local network’s DNS
cache, located at 192.168.1.254, or the ISP’s DNS cache, located at
1.2.3.4, if the LAN nameserver is unavailable?

6. How would you instruct a DNS server to respond only to queries from the
137.44.* IP range?

7. How might a resolver attempt to find the IP address of the example domain?

 From the Library of WoweBook.Com

ptg

Advanced Exercises 861

Advanced Exercises

8. How would you set up a private domain name hierarchy that does not
include any of the official InterNIC-assigned domain names?

9. Which part of DNS is most vulnerable to an attack from a malicious user
and why?

10. It is often irritating to have to wait for DNS records to update around the
world when you change DNS entries. You could prevent this delay by set-
ting the TTL to a small number. Why is setting the TTL to a small number
a bad idea?

11. Outline a method by which DNS could be used to support encryption.

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

888666333

25Chapter25The gufw and firestarter utilities are user-friendly, graphical
front-ends for iptables; iptables builds and manipulates network
packet filtering (page 1164) rules in the Linux kernel. You can
use firestarter, or iptables directly, to create a firewall that pro-
tects a system from malicious users and to set up NAT (Net-
work Address Translation, page 1161), which can allow several
systems to share a single Internet connection. In addition, fire-
starter can control a DHCP server.

The iptables utility is flexible and extensible, allowing you to set
up both simple and complex network packet filtering solutions.
It provides connection tracking (stateful packet filtering), allow-
ing you to handle packets (page 1164) based on the state of their
connection. For example, you can set up rules that reject
inbound packets trying to open a new connection and accept
inbound packets that are responses to locally initiated connec-
tions. Many features not included in the base iptables package
are available as patches via the patch-o-matic program.

In This Chapter

Introduction to firestarter 864

firestarter: Setting Up and
Maintaining a Firewall 866

ufw: The Uncomplicated
Firewall . 874

gufw: The Graphical Interface
to ufw . 876

Rules, matches, targets, and
chains. 880

Anatomy of an iptables
Command. 884

Building a Set of Rules Using
iptables 885

Copying Rules to and from the
Kernel . 891

Sharing an Internet Connection
Using NAT 892

25

firestarter, gufw, and

iptables: Setting Up a

Firewall

 From the Library of WoweBook.Com

ptg

864 Chapter 25 firestarter, gufw, and iptables: Setting Up a Firewall

The firestarter utility is frequently sufficient to protect a single system or a small LAN
but, because of its user-friendly nature, it does not provide access to the full com-
plexity and power of iptables. Most of the concepts involving firestarter will proba-
bly be familiar, or easy to learn, for someone who is familiar with basic networking.
Some of the concepts required to fully understand iptables are beyond the scope of
this book. Although you can use iptables at different levels, this chapter presents
only the fundamentals. There are, however, some sections of this chapter that delve
into areas that may require additional understanding or explanation. If a concept is
not clear, refer to one of the resources in “More Information” on page 883.

ufw and gufw Ubuntu has added ufw (uncomplicated firewall) and its graphical interface gufw to its
security arsenal. As these products mature, you may want to consider experimenting
with and using them in place of firestarter. See page 874 (ufw) and page 876 (gufw) for
more information.

Introduction to firestarter
The firestarter utility is a sophisticated, graphical tool for building and maintaining a
firewall. Although it works with GTK and is designed to run under GNOME, it is
equally at home under KDE. This utility enables a system to share an Internet connec-
tion with other systems on a LAN. It can also set up and control a DHCP (page 470)
server. It provides a real-time view of intrusion and other events and allows you to
tune ICMP (page 1153) parameters to help stop DoS attacks (page 1146). As
installed, firestarter allows outbound connections and blocks and displays information
about inbound connections that originate outside the system or LAN it is protecting
(that is, connections that originate on the Internet). As you view these events, you can
set up rules to allow them, facilitating firewall customization.

The firestarter utility can protect the single system it runs on (the firewall host) or it
can protect the system it runs on as well as other client systems on a LAN that con-
nect to the Internet through the firewall host. Figure 25-1 shows a typical setup
where all network traffic to and from a LAN must pass through the firewall,
enabling the firewall to control access between the Internet and the LAN (including
the firewall host). In this setup the firewall host acts as a router (page 377).

Notes

Terminology This section explains what some of the words used to explain firestarter mean in this
context. The terms firewall and firestarter are used interchangeably.

• (Firewall) host (system)—The system the firewall is running on.

Routers have firewalls too

tip Many systems are already protected by a firewall located in a router. If you use a router that has
a firewall, you may need to open ports on the router firewall in addition to opening ports on any
firewall you set up on an Ubuntu system.

 From the Library of WoweBook.Com

ptg

Introduction to firestarter 865

• Client systems—Systems that are on the same LAN as the firewall host and
whose packets to and from systems outside the LAN (specifically the Inter-
net) pass through the firewall host.

• Policy—The set of rules that the firewall applies.

• Rule—A statement that specifies what the firewall does with specific types
of packets it receives from specific systems on its network interface(s).

• Connection—Under TCP, the path through which two systems exchange
data. A client system opens a connection with a server system by sending it
a SYN (synchronization) packet. The server sends an ACK (acknowledge)
packet back to the client and the two systems exchange data. The client
closes the connection with a SYN packet. Although UDP works differently
because it has no concept of a connection, for the purposes of this discus-
sion the concept of a UDP connection is appropriate.

• Inbound connections—Include connections that originate from the Internet
and client systems with the firewall host as the destination.

• Outbound connections—Include connections that originate from the
firewall host and client systems with the Internet as the destination.

Default policy By default, firestarter implements a user-friendly policy that protects the firewall host
and client systems. In general, it allows outbound traffic and blocks inbound traffic
that is not sent in response to outbound traffic. Specifically, the default firestarter policy

• Blocks new inbound connections from the Internet that are destined for
the firewall host or the client systems.

• Allows inbound packets that are sent in response to connections initiated
by the firewall host or client systems to the Internet.

• Allows the firewall host to establish connections.

Figure 25-1 A typical firewall setup

Internet Firewall host LAN
(client systems)(router)

 From the Library of WoweBook.Com

ptg

866 Chapter 25 firestarter, gufw, and iptables: Setting Up a Firewall

• Allows client systems to establish connections to the Internet.

• Does not allow client systems to establish connections to the firewall host.

After you set up firestarter with the Firewall Wizard, you can modify the default policy
to meet your needs.

iptables and
firestarter

Although firestarter is a front-end for iptables, it does not store its rules the way iptables
does (using iptables-save [page 891]). Instead, it keeps configuration information in its
own format in the /etc/firestarter directory hierarchy.

More Information

Web www.fs-security.com

firestarter: Setting Up and Maintaining a Firewall

This section describes how to set up a firewall using the firestarter Firewall Wizard
and how to maintain the firewall once it is set up.

Prerequisites

Install the following package:

• firestarter

• dhcp3-server (needed only if you want firestarter to run DHCP; page 472)

When you install the firestarter package, you must run the Firewall Wizard before
firestarter will start (see the JumpStart section, next). After you configure it, fire-
starter starts running each time you boot the system. Although there is a firestarter
init file, you never need to run it manually; use the firestarter GUI to turn the firewall
on or off or to lock the system so no network traffic can enter or leave it. When you
bring the system up, firestarter comes up in the state it was in when you shut the sys-
tem down. The firestarter utility runs regardless of whether its GUI is displayed.

Figure 25-2 The Firewall Wizard: Welcome to Firestarter screen

 From the Library of WoweBook.Com

www.fs-security.com

ptg

firestarter: Setting Up and Maintaining a Firewall 867

JumpStart: Configuring a Firewall Using the

firestarter Firewall Wizard

The Firewall Wizard and Firestarter windows (Figure 25-2 and Figure 25-6 on
page 869) enable you to set up and control firestarter. To display this window, select
Main menu: System Administration firestarter or give the command gksudo fire-
starter from a terminal emulator or Run Application window (ALT-F2).

When you run firestarter for the first time, it opens the Firewall Wizard
(Figure 25-2), which helps you configure firestarter. You can rerun this wizard at any
time by selecting Firestarter menu: Firewall Run Wizard. The last step of the wiz-
ard allows you to start the firewall and display the Firestarter window.

Device setup The first Firewall Wizard screen welcomes you to firestarter; click Forward to get
started. The Firewall Wizard displays the Network device setup screen
(Figure 25-3). In this screen you select the device that is connected to the Internet.
You can also specify that you want the firewall to start when you dial out from the
system (if you are using a modem to connect to the Internet) and/or that you want
firestarter to use DHCP (page 470) to assign IP addresses and provide other network
configuration information to the client systems.

From the drop-down list labeled Detected device(s), select the device that is con-
nected to the Internet. If the local system is functioning as a router, make sure to
select the device that is connected to the Internet, not the device that is connected to
the LAN. If the local system connects to the Internet using a modem only, put a tick
in the check box labeled Start the firewall on dial-out.

DHCP If you want to run DHCP, put a tick in the check box labeled IP address is assigned via
DHCP. (You can also configure DHCP using Firestarter menu: Edit Preferences.) If
firestarter is going to control DHCP, you must install the DHCP package (page 866).
Click Forward.

Figure 25-3 The Network device setup screen

 From the Library of WoweBook.Com

ptg

868 Chapter 25 firestarter, gufw, and iptables: Setting Up a Firewall

NAT (connection
sharing)

The Internet connection sharing setup screen (Figure 25-4) allows you to set up
NAT (page 1161) so systems on the LAN can share a single Internet connection.
This window appears only if the system you are installing the firewall on has at
least two network connections. Put a tick in the check box labeled Enable Internet
connection sharing if the firewall host is to function as a router (Figure 25-1,
page 865) and share an Internet connection; otherwise skip this screen. When you
put a tick in this check box, firestarter enables you to select the device that is con-
nected to the LAN (not the one that is connected to the Internet). Put a tick in the
check box labeled Enable DHCP for local network to cause firestarter to run DHCP.
When you put a tick in this check box, click the plus sign adjacent to DHCP server
details to choose whether to keep an existing DHCP configuration or create a new
one. The Server name can be the IP address or name of the DHCP server. If you set
the name to <dynamic>, firestarter determines the IP address of the DHCP server at
runtime, which can be useful if the server is assigned an IP address using DHCP.
Click Forward.

Starting the firewall In the Ready to start your firewall screen (Figure 25-5), you can choose to start the
firewall. The firewall starts in secure mode, which protects the LAN but may cause
problems for some users and does not allow systems on the Internet to access servers
behind the firewall. If you are configuring the firewall from a remote system, you
will not be able to work with firestarter once you start the firewall. Put a tick in the
check box labeled Start firewall now if you want to start the firewall immediately.
Click Save.

Maintaining a Firewall using firestarter
After you configure firestarter, you can make changes to the policy from the Firestarter
window. After you run the Firewall Wizard, firestarter displays this window. You can
display this window at any time by following the instruction at the start of the Jump-
Start section on page 867. The firewall runs regardless of whether the Firestarter

Figure 25-4 The Internet connection sharing setup screen

 From the Library of WoweBook.Com

ptg

firestarter: Setting Up and Maintaining a Firewall 869

window is displayed. When you bring the system up, the firewall resumes the status
it had (running, stopped, or locked) when you brought the system down.

The Status Tab

The Firestarter window Status tab (Figure 25-6) displays an overview of the fire-
wall. This tab can display active connections to the firewall. The toolbar allows you

Figure 25-5 The Ready to start your firewall screen

Figure 25-6 The Status tab with Active connections expanded

 From the Library of WoweBook.Com

ptg

870 Chapter 25 firestarter, gufw, and iptables: Setting Up a Firewall

to change the state of the firewall and specify preferences. The large round icon in
the Firewall frame of the window indicates the status of the firewall:

• Disabled—The firewall is turned off—it is as though firestarter was not installed.

• Active—The firewall is up and running and implementing the policy you
have set up (or the default policy).

• Locked—The firewall is up and running and blocking all packets. Noth-
ing can get in or out of the firewall host over the network interfaces that
firestarter controls.

Click the appropriate icon on the toolbar to change the state of the firewall.

Events An event occurs when the firewall blocks a packet based on a rule. The Events col-
umns in the Firewall frame list the number of inbound and outbound events the
firewall has blocked and indicate how many of those were of a serious nature.
Events are considered serious if they could have been attempts by malicious users
to gain access to the system. For example, a blocked attempt to log in using ssh is a
serious event; a blocked ping is not.

The Network frame shows the activity on each of the system’s network connections.

When you click the plus sign to the left of Active connections, firestarter displays a
scrollable list of active connections; lengthen the window to display more connec-
tions. Click on a line in this list to select it and then right-click and select Lookup
Hostnames to change the value in the Source and Destination columns from IP
addresses to hostnames. The Port column lists the port on the target host that the
connection uses. The Service column indicates the service that is associated with
the specified port. The Program column shows the name the program running the
service if it is local and known to firestarter.

The Events Tab

The Firestarter window Events tab (Figure 25-7) is the key to modifying the default
firewall policy. It displays a list of blocked connections. Each line in this list specifies
an event that the firewall blocked based on a rule. Events displayed in black are
attempts to connect to a random port and are typically not of concern. Events in
gray are harmless, consisting mostly of broadcast traffic. Events in red are attempts

Figure 25-7 Events tab, right-click menu

 From the Library of WoweBook.Com

ptg

firestarter: Setting Up and Maintaining a Firewall 871

to access a service that is not provided to the public and may indicate that a mali-
cious user is attempting to gain access to the firewall host or a client system.

You can modify this list in several ways.

• To display a hostname in place of an IP address, highlight the entry you
want to change, right-click, and select Lookup Hostnames (Figure 25-7).

• By default, the Blocked Connections list does not include redundant
entries. To display redundant entries, remove the tick from the check box
at Firestarter menu: Edit Preferences Events Skip redundant entries.

• You can specify the columns that firestarter includes in the Blocked Con-
nections list by selecting from the menu displayed by Firestarter menu:
Events Show Column (Figure 25-8).

As Figure 25-7 shows, the right-click menu also allows you to change the rule for
the highlighted system and port (service). Inbound and outbound connections
present different menus. The inbound menu includes the following selections:

• Allow Connections from Source—Enables the originating system on the
Internet that the highlighted event blocked to make any type of connection
to client systems or the firewall host. Set this rule only if you completely
trust the source system.

• Allow Inbound Service for Everyone—Enables any system on the Internet
to connect to the service (port) that the highlighted event blocked. Set this
rule to allow the public to access servers behind the firewall.

• Allow Inbound Service for Source—Enables the originating system on the
Internet to connect to the service (port) that the highlighted event blocked.
The port protected by this rule is called a stealth port because it is invisible
to all systems on the Internet except the specified system.

Figure 25-8 Selecting columns for the Blocked Connections list

 From the Library of WoweBook.Com

ptg

872 Chapter 25 firestarter, gufw, and iptables: Setting Up a Firewall

The outbound menu includes the following selections:

• Allow Connections to Destination—Enables the firewall host and client
systems to establish a connection with the destination system that the
highlighted event blocked.

• Allow Outbound Service for Everyone—Enables the firewall host and client
systems to establish a connection to the service (port) that the highlighted
event blocked.

• Allow Outbound Service for Source—Enables the firewall host or a spe-
cific client that the event blocked to establish a connection to the service
that the highlighted event blocked.

In addition, both menus include these two selections:

• Disable Events from Source—Prevents the highlighted originating system
on the Internet from connecting to client systems or the firewall host.

• Disable Events on Port—Prevents any system on the Internet from con-
necting to the service (port) that the highlighted event blocked.

The Policy Tab

The Policy tab (Figure 25-9) displays the firewall rules and allows you to add,
remove, and edit rules. The drop-down list labeled Editing allows you to select
whether firestarter displays (and you can edit) inbound or outbound rules.

The Policy tab displays three frames each for inbound and outbound groups of
rules. Right-click with the mouse pointer in a frame to display a context menu with
these selections: Add Rule, Remove Rule, and Edit Rule. To use the last two selec-
tions, you must highlight a rule before right-clicking.

Figure 25-9 The Policy tab

Events tab: ease of use

tip It is easiest to set up rules from the Events tab and view them in the Policy tab. However, you can-
not set up certain rules, such as forwarding rules, from the Events tab. Also, you cannot edit rules
from the Events tab.

 From the Library of WoweBook.Com

ptg

firestarter: Setting Up and Maintaining a Firewall 873

Applying changes By default, firestarter does not apply changes you make in this tab until you click
Apply Policy at the top of the window. You can cause firestarter to apply changes
immediately by selecting Firestarter menu: Edit Preferences Policy and putting a
tick in the check box labeled Apply policy changes immediately.

Inbound Policy

The default inbound policy is to block all inbound connections except connections
that are responding to outbound connections. When you select Inbound traffic pol-
icy, firestarter displays three frames that enable you to work with rules that are
exceptions to the default policy:

• Allow connections from host—Specifies a host or network that firestarter
accepts any incoming connection from. Make sure you trust this system or
network completely.

• Allow service—Specifies a service (port) that firestarter accepts inbound
connections on. You can specify that firestarter accept inbound connections
on the specified port from anyone, all clients, or a specific host or network
on the Internet.

• Forward service—Specifies a service (port) that firestarter will accept
inbound connections on. The firestarter firewall forwards these connec-
tions to the client you specify on the port you specify. Forwarding a service
is appropriate if you are running a server on a client system and want sys-
tems on the Internet to be able to connect to the server.

Outbound Policy

When you select Outbound traffic policy, firestarter displays two radio buttons that
enable you to set the default outbound policy:

• Permissive by default, blacklist traffic—The default outbound policy.
Allows all outbound connections that originate from the firewall host or
clients. You must set up specific policies (a blacklist) to block outbound
requests for specific services and/or requests from specific systems.

• Restrictive by default, whitelist traffic—Blocks all outbound traffic except
connections that you set up rules to allow (a whitelist).

Permissive by
default

With the default policy of Permissive by default, firestarter displays three frames that
enable you to deny connections and/or services:

• Deny connections to host—Specifies systems on the Internet that the firewall
host and all client systems are not allowed to connect to.

• Deny connections from LAN host—Specifies client systems that are not
allowed to connect to any system on the Internet.

• Deny service—Specifies a service and/or port that firestarter blocks out-
bound connections on. You can specify that firestarter block outbound
connections on the specified port from anyone, clients, the firewall host,
or a specific host or network on the Internet.

 From the Library of WoweBook.Com

ptg

874 Chapter 25 firestarter, gufw, and iptables: Setting Up a Firewall

Restrictive by
default

With the Restrictive by default policy, firestarter displays three frames that enable
you to allow connections and/or services:

• Allow connections to host—Specifies systems on the Internet that the
firewall host and all client systems are allowed to connect to.

• Allow connections from LAN host—Specifies client systems that are
allowed to connect to any system on the Internet.

• Allow service—Specifies a service and/or port that firestarter allows out-
bound connections on. You can specify that firestarter allow outbound
connections on the specified port from anyone, clients, the firewall host,
or a specific host or network on the Internet.

ufw: The Uncomplicated Firewall

The ufw (uncomplicated firewall) utility is a simple, easy-to-use, command-line inter-
face to iptables. It is installed as part of the base system. The gufw (gufw.tuxfamily.org;
page 876) utility is a graphical interface to ufw and is available in the gufw package.

As installed, ufw is turned off. The status command reports ufw is inactive:

$ sudo ufw status
Status: inactive

Use the enable command to turn ufw on (and use disable to turn it off). When you
enable ufw, it starts each time you boot the system. By default, ufw starts with a
default policy that blocks all inbound traffic (ufw default deny) and allows out-
bound traffic. If you want to allow all inbound traffic, give the command ufw
default allow. If you are working from a remote system, you must open the port you
are using to connect to the firewall system or you will not be able to reconnect to
the system once you start the firewall and log off.

In the following example, first the allow command opens a port for ssh and then
enable turns on ufw. Alternatively, you can specify the port number in the allow
command (ufw allow 22). Because the enable command is given by a user logged in
from a remote system using ssh, it warns that turning on ufw may disconnect you
from the system and asks whether you want to proceed. It then reports that the fire-
wall has been started and is set up to be enabled each time the system starts.

$ sudo ufw allow ssh
Rules updated
$ sudo ufw enable
Command may disrupt existing ssh connections. Proceed with operation (y|n)? y
Firewall is active and enabled on system startup

Many services that are ufw-aware (e.g., Apache, CUPS, and OpenSSH) install a set
of firewall rules in /etc/ufw/applications.d. The command ufw app list lists those
services that have firewall rules installed on the local system.

$ sudo ufw app list
Available applications:
 CUPS
 OpenSSH

 From the Library of WoweBook.Com

ptg

ufw: The Uncomplicated Firewall 875

When you specify the name of a service (ssh in the preceding example) in a ufw com-
mand, ufw searches /etc/services to find the port number used by the service. When
you specify the name of the application as listed by ufw app list (OpenSSH in the
preceding list), ufw reads the rules from the file in applications.d. The difference
between these techniques is important with services/applications that use multiple
ports or a range of ports. The /etc/services file cannot represent this information;
the rules in the files in applications.d can.

When you give a status command with an argument of verbose, it reports that ufw is
loaded, logging is turned on, and the default policy is to deny incoming connections
and allow outgoing connections. With or without verbose, status reports that ufw
allows connections on port 22 (the port ssh uses).

$ sudo ufw status verbose
Status: active
Logging: on (low)
Default: deny (incoming), allow (outgoing)
New profiles: skip

To Action From
-- ------ ----
22 ALLOW IN Anywhere

If you log in on the firewall system from one remote system only, you can make the
firewall system more secure by limiting those systems you can log in from. The follow-
ing allow command opens port 22 to connections from the system at 10.10.4.15 only:

$ sudo ufw allow from 10.10.4.15 port 22
Rule added

You remove a rule by giving the same command as you used to establish the rule,
preceded by the word delete:

$ sudo ufw delete allow ssh
Rule deleted

$ sudo ufw status
Status: active

To Action From
-- ------ ----
Anywhere ALLOW 10.10.4.15 22

By default, logging is turned on (ufw logging on) and ufw sends messages about
intrusion attempts to the kern syslogd facility (page 625). These messages go to the
file named /var/log/kern.log. The same information is available from the dmesg
utility (page 589).

$ sudo tail -1 /var/log/kern.log
Apr 8 14:27:05 1004B2 kernel: [2095.405395] [UFW BLOCK] IN=eth0 OUT= MAC=00:...
SRC=10.10.4.16 DST=10.10.4.100 LEN=44 TOS=0x00 PREC=0x00 TTL=64 ID=19466 DF PROTO=TCP
SPT=51016 DPT=22 WINDOW=5840 RES=0x00 SYN URGP=0

 From the Library of WoweBook.Com

ptg

876 Chapter 25 firestarter, gufw, and iptables: Setting Up a Firewall

If you want to set up an Apache Web server that accepts requests on port 80 on the
local system, you need to open port 80. The following commands open port 80 and
verify the new rule:

$ sudo ufw allow 80
Rule added

$ sudo ufw status
...
80 ALLOW Anywhere

See the ufw man page for more information.

gufw: The Graphical Interface to ufw

The gufw utility is a graphical interface to ufw (page 874), the uncomplicated fire-
wall. Any changes you make using one interface are reflected by the other, although
you may have to close and reopen the gufw Firewall window to update its contents.
You must install the gufw software package to run gufw.

The Firewall Window

Before you enable ufw and add rules, the gufw Firewall window appears as shown in
Figure 25-10; the shield in the window appears in shades of gray. To display this win-
dow, select Main menu: System Administration Firewall configuration or enter
the command gufw from a terminal emulator or Run Application window (ALT-F2).

To enable the ufw firewall, put a tick in the check box labeled Enabled (under the
words Actual Status). When you enable the firewall, the shield takes on colors. Dis-
able the firewall by removing the tick.

The two drop-down lists in this window are labeled Incoming and Outgoing. Each
of these lists provides three selections:

Allow—Allow network traffic to pass in the direction indicated by the label.

Deny—Deny network traffic attempting to pass in the direction indicated by the label.

Reject—Deny network traffic attempting to pass in the direction indicated by the
label and inform the originating system that the traffic has been denied.

Initially Incoming is set to Deny and Outgoing is set to Allow. This setup stops all
traffic coming to the local system from the network and allows all traffic originat-
ing on the local system out to the network. Incoming packets sent in response to
outgoing packets are allowed in to the local system.

Read the section on ufw first

tip The section of this chapter starting on page 874 describes how ufw works. This section describes
gufw, the graphical interface to ufw. The former section provides a good background for under-
standing this section.

 From the Library of WoweBook.Com

ptg

gufw: The Graphical Interface to ufw 877

With this setup, no network traffic originating outside of the local system can enter
the local system. You must set up rules to allow this traffic to pass. The next section
covers setting up rules. You can change the default setup by changing the selections in
the Incoming and Outgoing drop-down lists. This section assumes the default setup.

Adding Rules

To add a rule, click the button labeled Add; gufw displays the Add Rule window
(Figure 25-11). This window has a check box labeled Show extended options and
three tabs labeled Preconfigured, Simple, and Advanced.

Figure 25-10 The Firewall window showing no rules

Figure 25-11 The Add Rule window

 From the Library of WoweBook.Com

ptg

878 Chapter 25 firestarter, gufw, and iptables: Setting Up a Firewall

The Preconfigured Tab

Initially, this window displays the Preconfigured tab with four drop-down lists that
are not labeled. From left to right they are:

Disposition—Specifies what the firewall does with the traffic this rule controls.
Choices are Allow, Deny, Reject, and Limit. Allow and Deny allow the traffic to
pass through the firewall and deny the traffic passage through the firewall, respec-
tively. Reject denies traffic and sends a message to the source of the traffic saying
the traffic was rejected. Limit allows traffic to pass through the firewall unless the
originating IP address has attempted to connect six or more times in 30 seconds, in
which case it denies the traffic.

Direction—Specifies the direction of the traffic. In indicates the traffic is inbound
from the network to the local system. Out indicates the traffic is outbound to the
network from the local system.

Source—Specifies if the source of the traffic is a program or a service. The selection
in this list affects what appears in the Name list.

Name—Specifies the name of the program or service.

Opening the firewall
for ssh

If the system is set up as an ssh server (page 676), you need to set up the firewall to
allow inbound ssh traffic. To do so, first enable the firewall by putting a tick in the
check box labeled Enabled in the Firewall window. (You cannot add rules when the
firewall is disabled.) Next click Add to open the Add Rule window. Then set the
four drop-down lists as appropriate: You want to (1) allow traffic (2) in to the local

Figure 25-12 Adding a rule to allow ssh traffic

 From the Library of WoweBook.Com

ptg

gufw: The Graphical Interface to ufw 879

system. You are setting up a (3) service named (4) ssh. When you click Add in the
Add Rule window, gufw writes the rule to the Firewall window (Figure 25-12). In a
similar manner, you can open the firewall to allow HTTP traffic if you are running
an Apache server.

The Simple Tab

The Simple tab of the Add Rule window holds three drop-down lists and a text box.
The first two drop-down lists are the same as the first two in the Preconfigured tab: Dis-
position and Direction. See the previous section for information on these lists. The third
drop-down list specifies the Protocol: TCP, UDP, or Both. The text box specifies the Port
the rule controls. In this box you can specify a service such as ssh, a port such as 22,
several ports separated by commas such as 22,24,26 (ports 22, 24, and 26), or a range
of ports separated by a colon such as 135:139 (ports 135 through 139, inclusive).

The Advanced Tab

The Advanced tab of the Add Rule window holds the same three drop-down lists as
the Simple tab: Disposition, Direction, and Protocol (Figure 25-13). To the right of
these lists are two rows of two text boxes. The first row is labeled From and the sec-
ond is labeled To. The box on the left in each row specifies an IP address or host-
name. The box on the right specifies a service, port, or range of ports in the same
manner as the text box in the Simple tab. Using these text boxes, you can specify the
origin and destination of the traffic the rule applies to.

Figure 25-13 The Advanced tab of the Add Rule window

 From the Library of WoweBook.Com

ptg

880 Chapter 25 firestarter, gufw, and iptables: Setting Up a Firewall

The rule shown in Figure 25-13 allows inbound traffic from any port (there is no
entry in the upper-right text box) on the system with the IP address of 10.10.4.15 to
port 22 on the system with an IP address of 10.10.4.91 (the local system in this case).

The Show Extended Actions Check Box

Putting a tick in the check box labeled Show extended actions adds two items to the
Add Rule window: A spin box on the left and a drop-down list between the Direc-
tion and Protocol lists (Figure 25-14). The spin box specifies the ordinal number of
the rule you are adding. It allows you to place rules before other rules when you are
adding more than one rule. It is not useful when you are adding a single rule.
Because the first rule that matches traffic controls the traffic, the order of rules can
be important. The drop-down list specifies the type of Log you want the rule to cre-
ate. You can specify No log, Log, and Log all. The second choice specifies minimal
logging, while the last choice specifies extensive logging.

Introduction to iptables
netfilter and

iptables
The functionality referred to as iptables is composed of two components: netfilter
and iptables. Running in kernelspace (page 1156), the netfilter component is a set of
tables that hold rules that the kernel uses to control network packet filtering. Run-
ning in userspace (page 1179), the iptables utility sets up, maintains, and displays
the rules stored by netfilter.

Rules, matches,
targets, and chains

A rule comprises one or more criteria (matches or classifiers) and a single action (a
target). If, when a rule is applied to a network packet, the packet matches all the cri-
teria, the action is applied to the packet. Rules are stored in chains. Each rule in a
chain is applied, in order, to a packet until a match is found. If there is no match,
the chain’s policy, or default action, is applied to the packet (page 886).

History In the kernel, iptables replaces the earlier ipchains as a method of filtering network
packets. It provides multiple chains for increased filtration flexibility. The iptables
utility also provides stateful packet inspection (page 882).

Example rules As an example of how rules work, assume a chain has two rules (Figure 25-15). The
first rule tests whether a packet’s destination is port 23 (TELNET) and drops the
packet if it is. The second rule tests whether a packet was received from the IP address
192.168.1.1 and alters the packet’s destination if it was. When a packet is processed by
the example chain, the kernel applies the first rule in the chain to see whether the
packet arrived on port 23. If the answer is yes, the packet is dropped and that is the

Figure 25-14 The Extended Actions boxes

 From the Library of WoweBook.Com

ptg

Introduction to iptables 881

end of processing for that packet. If the answer is no, the kernel applies the second rule
in the chain to see whether the packet came from the specified IP address. If the answer
is yes, the destination in the packet’s header is changed and the modified packet is sent
on its way. If the answer is no, the packet is sent on without being changed.

Chains are collected in three tables: Filter, NAT, and Mangle. Each of these tables
has builtin chains (described next). You can create additional, user-defined chains in
Filter, the default table.

Filter table The default table. This table is mostly used to DROP or ACCEPT packets based on
their content; it does not alter packets. Builtin chains are INPUT, FORWARD, and
OUTPUT. All user-defined chains go in this table.

NAT table The Network Address Translation table. Packets that create new connections are
routed through this table, which is used exclusively to translate the source or desti-
nation fields of packets. Builtin chains are PREROUTING, OUTPUT, and POS-
TROUTING. Use this table with DNAT, SNAT, and MASQUERADE targets only.

• DNAT (destination NAT) alters the destination IP address of the first
inbound packet in a connection so it is rerouted to another host. Subsequent
packets in the connection are automatically DNATed. DNAT is useful for
redirecting packets from the Internet that are bound for a firewall or a
NATed server (page 896).

• SNAT (source NAT) alters the source IP address of the first outbound
packet in a connection so it appears to come from a fixed IP address—
for example, a firewall or router. Subsequent packets in the connection
are automatically SNATed. Replies to SNATed packets are automatically
de-SNATed so they go back to the original sender. SNAT is useful for
hiding LAN addresses from systems outside the LAN and using a single
IP address to serve multiple local hosts.

• MASQUERADE differs from SNAT only in that it checks for an IP address
to apply to each outbound packet, making it suitable for use with dynamic
IP addresses such as those provided by DHCP (page 470). MASQUERADE
is slightly slower than SNAT.

Mangle table Used exclusively to alter the TOS (type of service), TTL (time to live), and MARK
fields in a packet. Builtin chains are PREROUTING and OUTPUT.

Figure 25-15 Example of how rules in a chain work

Destination
=

Port 23?

Source
=

192.168.1.1?
Packet TCP stack

Alter
destination

Yes

No

Drop

No

Yes

 From the Library of WoweBook.Com

ptg

882 Chapter 25 firestarter, gufw, and iptables: Setting Up a Firewall

Network packets When a packet from the network enters the kernel’s network protocol stack, it is
given some basic sanity tests, including checksum verification. After passing these
tests, the packet goes through the PREROUTING chain, where its destination
address may be changed (Figure 25-16).

Next the packet is routed based on its destination address. If it is bound for the local
system, it first goes through the INPUT chain, where it can be filtered (accepted,
dropped, or sent to another chain) or altered. If the packet is not addressed to the
local system (the local system is forwarding the packet), it goes through the FOR-
WARD and POSTROUTING chains, where it can again be filtered or altered.

Packets created locally pass through the OUTPUT and POSTROUTING chains,
where they can be filtered or altered before being sent to the network.

State The connection tracking machine (also called the state machine) provides informa-
tion on the state of a packet, allowing you to define rules that match criteria based
on the state of the connection the packet is part of. For example, when a connection
is opened, the first packet is part of a NEW connection, whereas subsequent packets
are part of an ESTABLISHED connection. Connection tracking is handled by the
conntrack module.

The OUTPUT chain handles connection tracking for locally generated packets. The
PREROUTING chain handles connection tracking for all other packets. For more
information refer to “State” on page 889.

Before the advent of connection tracking, it was sometimes necessary to open many
or all nonprivileged ports to make sure that the system accepted all RETURN and
RELATED traffic. Because connection tracking allows you to identify these kinds of
traffic, you can keep many more ports closed to general traffic, thereby increasing
system security.

Figure 25-16 Filtering a packet in the kernel

(Routing)

INPUT

POSTROUTINGFORWARDPREROUTING

OUTPUT

Filter, Mangle

Mangle, Filter Mangle, (S)NAT

Mangle, NAT, Filter

(Routing)

Mangle, (D)NAT

Local system

Network

 From the Library of WoweBook.Com

ptg

Introduction to iptables 883

Jumps and targets A jump or target (page 890) specifies the action the kernel takes if a network packet
matches all the match criteria (page 884) for the rule being processed.

More Information

Web Documentation, HOWTOs, FAQs, patch-o-matic, security information:
www.netfilter.org
Tutorial: www.faqs.org/docs/iptables
Multicast DNS: www.multicastdns.org
Scripts and more: www.yourwebexperts.com/forum/viewforum.php?f=35

HOWTO KernelAnalysis-HOWTO
IP-Masquerade-HOWTO (contains useful scripts)
Netfilter Extensions HOWTO: www.netfilter.org
Netfilter Hacking-HOWTO: www.netfilter.org

Book TCP/IP Illustrated by W. Richard Stevens, Addison-Wesley, January 2002

Prerequisites

Installation Install the following package:

• iptables

iptables init script The iptables package does not include an init script because, under Ubuntu, it is gener-
ally called from gufw. This chapter includes instructions for configuring and running ipta-
bles. You can save and reload iptables rules as explained in “Saving rules” below.

Notes

Startup The iptables utility is a tool that manipulates rules in the kernel. It differs from dae-
mons (servers) in its setup and use. Whereas Linux daemons such as Apache, vsftpd,
and sshd read the data that controls their operation from a configuration file, you
must provide iptables with a series of commands that build a set of packet filtering
rules that are kept in the kernel.

Saving rules You can save and reload iptables rules as explained on page 891. Run iptables with
the –L option to display the packet filtering rules the kernel is using. You can put a
command to load iptables rules in /etc/rc.local. Or, if you want to start iptables ear-
lier in the boot process, you can write a simple init script, put it in /etc/init.d, and
use sysv-rc-conf (page 441) to tell init when to run it.

Resetting iptables If you encounter problems related to the firewall rules, you can return the packet
processing rules in the kernel to their default state without rebooting by giving the
following commands:

$ sudo iptables --flush
$ sudo iptables --delete-chain

These commands flush all chains and delete any user-defined chains, leaving the
system without a firewall.

 From the Library of WoweBook.Com

www.netfilter.org
www.faqs.org/docs/iptables
www.multicastdns.org
www.yourwebexperts.com/forum/viewforum.php?f=35
www.netfilter.org
www.netfilter.org

ptg

884 Chapter 25 firestarter, gufw, and iptables: Setting Up a Firewall

Anatomy of an iptables Command

Command line This section lists the components of an iptables command line that follow the name
of the utility, iptables. Except as noted, the iptables utility is not sensitive to the
positions of arguments on the command line. The examples in this chapter reflect a
generally accepted syntax that allows commands to be easily read, understood, and
maintained. Not all commands have all components.

Many tokens on an iptables command line have two forms: a short form, consisting
of a single letter preceded by a single hyphen, and a long form, consisting of a word
preceded by two hyphens. Most scripts use the short forms for brevity; lines using
the long forms can get unwieldy. The following iptables command lines are equiva-
lent and are used as examples in this section:

$ sudo iptables --append FORWARD --in-interface eth1 --out-interface eth0 --jump ACCEPT
$ sudo iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT

Table Specifies the name of the table the command operates on: Filter, NAT, or Mangle.
You can specify a table name in any iptables command. When you do not specify a
table name, the command operates on the Filter table. Most examples in this chap-
ter do not specify table names and, therefore, work on the Filter table. Specify a
table as –t tablename or ––table tablename.

Command Tells iptables what to do with the rest of the command line—for example, add or
delete a rule, display rules, or add a chain. The example commands, –A and
––append, append the rule specified by the command line to the specified table
(defaults to Filter table) and chain. See page 885 for a list of commands.

Chain Specifies the name of the chain that this rule belongs to or that this command works
on. The chain is INPUT, OUTPUT, FORWARD, PREROUTING, POSTROUTING,
or the name of a user-defined chain. Specify a chain by putting the name of the
chain on the command line without any preceding hyphens. The examples at the
beginning of this section work with the FORWARD chain.

Match criteria There are two kinds of match criteria: packet match criteria, which match a net-
work packet, and rule match criteria, which match an existing rule.

Packet match
criteria/rule

specifications

Packet match criteria identify network packets and implement rules that take action
on packets that match the criteria. The combination of packet match criteria and an
action is called a rule specification. Rule specifications form the basis for packet fil-
tering. The first example at the beginning of this section uses the ––in-interface eth1
––out-interface eth0 rule match criteria. The second example uses the short form of
the same criteria: –i eth1 –o eth0. Both of these rules forward packets that come in
on device eth1 and go out on device eth0.

Rule match criteria Rule match criteria identify existing rules. An iptables command can modify,
remove, or position a new rule adjacent to a rule specified by a rule match criterion.
There are two ways to identify an existing rule: You can use the same rule specifica-
tion that was used to create the rule or you can use the rule’s ordinal number, called
a rule number. Rule numbers begin with 1, signifying the first rule in a chain, and

 From the Library of WoweBook.Com

ptg

Building a Set of Rules Using iptables 885

can be displayed with iptables –L (or ––line-numbers). The first command below
deletes the rule listed at the beginning of this section; the second command replaces
rule number 3 in the INPUT chain with a rule that rejects all packets from IP
address 192.168.0.10:

$ sudo iptables --delete -A FORWARD -i eth1 -o eth0 -j ACCEPT
$ sudo iptables -R INPUT 3 --source 192.168.0.10 --jump REJECT

A jump or target specifies what action the kernel takes on packets that match all
match criteria for a rule. Specify a jump or target as –j target or ––jump target. The
examples at the beginning of this section specify the ACCEPT target using the fol-
lowing commands: ––jump ACCEPT and –j ACCEPT.

Jumps A jump transfers control to a different chain within the same table. The following
command adds (––append) a rule to the INPUT chain that transfers packets that
use the TCP protocol (––protocol tcp) to a user-defined chain named tcp_rules
(––jump tcp_rules):

$ sudo iptables --append INPUT --protocol tcp --jump tcp_rules

When the packet finishes traversing the tcp_rules chain, assuming it has not been
dropped or rejected, it continues traversing the INPUT chain from the rule follow-
ing the one it jumped from.

Targets A target specifies an action the kernel takes on the packet; the simplest actions are
ACCEPT, DROP, and REJECT. The following command adds a rule to the FOR-
WARD chain that rejects packets coming from the FTP port (/etc/services, the file
iptables consults to determine which port to use, shows that FTP uses port 21):

$ sudo iptables --append FORWARD --sport ftp --jump REJECT

Some targets, such as LOG, are nonterminating: Control passes to the next rule
after the target is executed. See page 890 for information on how to use targets.

Building a Set of Rules Using iptables
To specify a table, it is common practice to put the table declaration on the com-
mand line immediately following iptables. For example, the following command
flushes (deletes all the rules from) the NAT table:

$ sudo iptables -t NAT -F

Commands

Following is a list of iptables commands:

––append –A Adds rule(s) specified by rule-specifications to the end of chain. When a
packet matches all of the rule-specifications, target processes it.

iptables –A chain rule-specifications ––jump target

 From the Library of WoweBook.Com

ptg

886 Chapter 25 firestarter, gufw, and iptables: Setting Up a Firewall

––delete –D Removes one or more rules from chain, as specified by the rule-numbers or
rule-specifications.

iptables –D chain rule-numbers | rule-specifications

––insert –I Adds rule(s) specified by rule-specifications and target to the location in chain
specified by rule-number. If you do not specify rule-number, it defaults to 1, the
head of the chain.

iptables –I chain rule-number rule-specifications ––jump target

––replace –R Replaces rule number rule-number in chain with rule-specification and target.
The command fails if rule-number or rule-specification resolves to more than one
address.

iptables –R chain rule-number rule-specification ––jump target

––list –L Displays the rules in chain. Omit chain to display the rules for all chains. Use
––line-numbers to display rule numbers or select other display criteria from the list
on page 887.

iptables –L [chain] display-criteria

––flush –F Deletes all rules from chain. Omit chain to delete all rules from all chains.

iptables –F [chain]

––zero –Z Changes to zero the value of all packet and byte counters in chain or in all
chains when you do not specify chain. Use with –L to display the counters before
clearing them.

iptables –Z [–L] [chain]

––delete-chain –X Removes the user-defined chain named chain. If you do not specify chain,
removes all user-defined chains. You cannot delete a chain that a target points to.

iptables –X chain

––policy –P Sets the default target or policy builtin-target for the builtin chain builtin-
chain. This policy is applied to packets that do not match any rule in the chain. If a
chain does not have a policy, unmatched packets are ACCEPTed.

iptables –P builtin-chain builtin-target

––rename-chain –E Changes the name of the chain old to new.

iptables –E old new

––help –h Displays a summary of the iptables command syntax.

iptables –h

Follow a match extension protocol with –h to display options you can use with that
protocol. For more information refer to “Help with extensions” on page 888.

 From the Library of WoweBook.Com

ptg

Building a Set of Rules Using iptables 887

Packet Match Criteria

The following criteria match network packets. When you precede a criterion with
an exclamation point (!), the rule matches packets that do not match the criterion.

––protocol [!] proto
–p Matches if the packet uses the proto protocol. This criterion is a match exten-
sion (below).

––source [!] address[/mask]
–s or ––src Matches if the packet came from address. The address can be a name
or IP address. See page 462 for formats of the optional mask (only with an IP
address).

––destination [!] address[/mask]
–d or ––dst Matches if the packet is going to address. The address can be a name
or IP address. See page 462 for formats of the optional mask (only with an IP
address).

––in-interface [!] iface[+]
–i For the INPUT, FORWARD, and PREROUTING chains, matches if iface is the
name of the interface the packet was received from. Append a plus sign (+) to iface
to match any interface whose name begins with iface. When you do not specify in-
interface, the rule matches packets coming from any interface.

––out-interface [!] iface[+]
–o For the OUTPUT, FORWARD, and POSTROUTING chains, matches if iface
is the interface the packet will be sent to. Append a plus sign (+) to iface to match
any interface whose name begins with iface. When you do not specify out-interface,
the rule matches packets going to any interface.

[!] –fragment –f Matches the second and subsequent fragments of fragmented packets. Because
these packets do not contain source or destination information, they do not match
any other rules.

Display Criteria

The following criteria display information. All packets match these criteria.

––verbose –v Displays additional output.

––numeric –n Displays IP addresses and port numbers as numbers, not names.

––exact –x Use with –L to display exact packet and byte counts instead of rounded values.

––line-numbers Displays line numbers when listing rules. These line numbers are also the rule num-
bers that you can use in rule match criteria (page 884).

Match Extensions

Rule specification (packet match criteria) extensions, called match extensions, add
matches based on protocols and state to the matches described previously. Each of
the protocol extensions is kept in a module that must be loaded before that match

 From the Library of WoweBook.Com

ptg

888 Chapter 25 firestarter, gufw, and iptables: Setting Up a Firewall

extension can be used. The command that loads the module must appear in the
same rule specification as, and to the left of, the command that uses the module.
There are two types of match extensions: implicit and explicit.

Implicit Match Extensions

Help with
extensions

Implicit extensions are loaded (somewhat) automatically when you use a ––protocol
command (described below). Each protocol has its own extensions. Follow the pro-
tocol with –h to display extensions you can use with that protocol. For example, the
following command displays TCP extensions at the end of the Help output:

$ iptables -p tcp -h
...
tcp match options:
 --tcp-flags [!] mask comp match when TCP flags & mask == comp
 (Flags: SYN ACK FIN RST URG PSH ALL NONE)
[!] --syn match when only SYN flag set
 (equivalent to --tcp-flags SYN,RST,ACK SYN)
 --source-port [!] port[:port]
 --sport ...
 match source port(s)
 --destination-port [!] port[:port]
 --dport ...
 match destination port(s)
 --tcp-option [!] number match if TCP option set

This section does not describe all extensions. Use –h, as in the preceding example, to
display a complete list.

––protocol [!] proto
–p Loads the proto module and matches if the packet uses the proto protocol. The
proto can be a name or number from /etc/protocols, including tcp, udp, and icmp
(page 1153). Specifying all or 0 (zero) matches all protocols and is the same as not
including this match in a rule.

The following criteria load the TCP module and match TCP protocol packets com-
ing from port 22 (ssh packets):

--protocol tcp --source-port 22

The following command expands the preceding match to cause the kernel to drop
all incoming ssh packets. This command uses ssh, which iptables looks up in
/etc/services, in place of 22:

$ sudo iptables --protocol tcp --source-port ssh --jump DROP

TCP

The extensions in this section are loaded when you specify ––protocol tcp.

––destination-port [!] [port][:port]]
––dport Matches a destination port number or service name (see /etc/services).
You can also specify a range of port numbers. Specifically, :port specifies ports 0
through port, and port: specifies ports port through 65535.

 From the Library of WoweBook.Com

ptg

Building a Set of Rules Using iptables 889

––source-port [!] [port][:port]]
––sport Matches a source port number or service name (see /etc/services). You can
also specify a range of port numbers. Specifically, :port specifies ports 0 through
port, and port: specifies ports port through 65535.

[!] ––syn Matches packets with the SYN bit set and the ACK and FIN bits cleared. This
match extension is shorthand for ––tcp-flags SYN,RST,ACK SYN.

––tcp-flags [!] mask comp
Defines which TCP flag settings constitute a match. Valid flags are SYN, ACK, FIN,
RST, URG, PSH, ALL, and NONE. The mask is a comma-separated list of flags to
be examined; comp is a comma-separated subset of mask that specifies the flags
that must be set for a match to occur. Flags not specified in mask must be unset.

––tcp-option [!] n Matches a TCP option with a decimal value of n.

UDP

When you specify ––protocol udp, you can specify a source and/or destination port
in the same manner as described under “TCP” on the preceding page.

ICMP

The extension in this section is loaded when you specify ––protocol icmp. ICMP
(page 1153) packets carry messages only.

––icmp-type [!] name
Matches when the packet is an ICMP packet of type name. The name can be a
numeric ICMP type or one of the names returned by

$ iptables -p icmp -h

Explicit Match Extensions

Explicit match extensions differ from implicit match extensions in that you must
use a –m or ––match option to specify a module before you can use the extension.
Many explicit match extension modules are available; this section covers state, one
of the most important.

State

The state extension matches criteria based on the state of the connection the packet
is part of (page 882).

––state state Matches a packet whose state is defined by state, a comma-separated list of states
from the following list:

• ESTABLISHED—Any packet, within a specific connection, following the
exchange of packets in both directions for that connection.

• INVALID—A stateless or unidentifiable packet.

• NEW—The first packet within a specific connection, typically a SYN
packet.

 From the Library of WoweBook.Com

ptg

890 Chapter 25 firestarter, gufw, and iptables: Setting Up a Firewall

• RELATED—Any packets exchanged in a connection spawned from an
ESTABLISHED connection. For example, an FTP data connection might
be related to the FTP control connection. (You need the ip_conntrack_ftp
module for FTP connection tracking.)

The following command loads the state extension and establishes a rule that
matches and drops both invalid packets and packets from new connections:

$ sudo iptables --match state --state INVALID,NEW --jump DROP

Targets

All targets are built in; there are no user-defined targets. This section lists some of
the targets available with iptables. Applicable target options are listed following
each target.

ACCEPT Continues processing the packet.

DNAT Destination Network Address Translation Rewrites the destination address of the
packet (page 881).

––to-destination ip[-ip][:port-port]
Same as SNAT with to-source, except that it changes the destination addresses of
packets to the specified addresses and ports and is valid only in the PREROUTING
or OUTPUT chains of the NAT table and any user-defined chains called from those
chains. The following command adds to the PREROUTING chain of the NAT table
a rule that changes the destination in the headers of TCP packets with a destination
of 66.187.232.50 to 192.168.0.10:

$ sudo iptables -t NAT -A PREROUTING -p tcp -d 66.187.232.50 -j DNAT --to-destination 192.168.0.10

DROP Ends the packet’s life without notice.

LOG Turns on logging for the packet being processed. The kernel uses syslogd (page 625)
to process output generated by this target. LOG is a nonterminating target, so pro-
cessing continues with the next rule. Use two rules to LOG packets that you
REJECT or DROP, one each with the targets LOG and REJECT or DROP, with the
same matching criteria.

––log-level n Specifies logging level n as per syslog.conf (page 626).

––log-prefix string
Prefixes log entries with string, which can be a maximum of 14 characters long.

––log-tcp-options Logs options from the TCP packet header.

––log-ip-options Logs options from the IP packet header.

MASQUERADE Similar to SNAT with ––to-source, except that it grabs the IP information from the
interface on the specified port. For use on systems with dynamically assigned IP
addresses, such as those using DHCP, including most dial-up lines. Valid only in
rules in the POSTROUTING chain of the NAT table.

 From the Library of WoweBook.Com

ptg

Copying Rules to and from the Kernel 891

––to-ports port[-port]
Specifies the port for the interface you want to masquerade. Forgets connections
when the interface goes down, as is appropriate for dial-up lines. You must specify
the TCP or UDP protocol (––protocol tcp or udp) with this target.

REJECT Similar to DROP, except that it notifies the sending system that the packet was
blocked.

––reject-with type Returns the error type to the originating system. The type can be any of the following,
all of which return the appropriate ICMP (page 1153) error: icmp-net-unreachable,
icmp-host-unreachable, icmp-port-unreachable, icmp-proto-unreachable, icmp-net-
prohibited, or icmp-host-prohibited. You can specify type as echo-reply from rules
that require an ICMP ping (page 393) packet to return a ping reply. You can specify
tcp-reset from rules in or called from the INPUT chain to return a TCP RST packet.
This parameter is valid in the INPUT, FORWARD, and OUTPUT chains and user-
defined chains called from these chains.

RETURN Stops traversing this chain and returns the packet to the calling chain.

SNAT Source Network Address Translation Rewrites the source address of the packet.
Appropriate for hosts on a LAN that share an Internet connection.

––to-source ip[-ip][:port-port]
Alters the source IP address of an outbound packet, and the source IP addresses of
all future packets in this connection, to ip. Skips additional rules, if any exist.
Returning packets are automatically de-SNATed so they return to the originating
host. Valid only in the POSTROUTING chain of the NAT table.

When you specify a range of IP addresses (ip-ip) or use multiple to-source targets,
iptables assigns the addresses in a round-robin fashion, cycling through the
addresses, one for each new connection.

When the rule specifies the TCP or UDP protocol (–p tcp or –p udp), you can spec-
ify a range of ports. When you do not specify a range of ports, the rule matches all
ports. Every connection on a NATed subnet must have a unique IP address and port
combination. If two systems on a NATed subnet try to use the same port, the kernel
maps one of the ports to another (unused) port. Ports less than 512 are mapped to
other ports less than 512, ports from 512 to 1024 are mapped to other ports from
512 to 1024, and ports above 1024 are mapped to other ports above 1024.

Copying Rules to and from the Kernel

The iptables-save utility copies packet filtering rules from the kernel to standard out-
put so you can save them in a file. The iptables-restore utility copies rules from stan-
dard input, as written by iptables-save, to the kernel. Sample output from iptables-
save appears on the next page.

 From the Library of WoweBook.Com

ptg

892 Chapter 25 firestarter, gufw, and iptables: Setting Up a Firewall

$ sudo iptables-save
Generated by iptables-save v1.4.4 on Thu Apr 8 13:47:27 2010
*filter
:INPUT ACCEPT [371:29762]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [288:28720]
-A INPUT -s 198.144.192.2/32 -p tcp -m tcp ! --tcp-flags FIN,SYN,RST,ACK SYN -j ACCEPT
-A INPUT -s 198.144.192.2/32 -p udp -j ACCEPT
-A INPUT -s 209.157.152.23/32 -p tcp -m tcp ! --tcp-flags FIN,SYN,RST,ACK SYN -j ACCEPT
-A INPUT -s 209.157.152.23/32 -p udp -j ACCEPT
-A INPUT -i lo -j ACCEPT
COMMIT
Completed on Thu Apr 8 13:47:27 2010

Most lines that iptables-save writes are iptables command lines without the iptables
at the beginning. Lines that begin with a hashmark (#) are comments. Lines that
begin with an asterisk (*) are names of tables that the following commands work
on; the commands in the preceding example work on the Filter table. The COM-
MIT line must appear at the end of all commands for a table; it executes the preced-
ing commands. Lines that begin with colons specify chains in the following format:

:chain policy [packets:bytes]

where chain is the name of the chain, policy is the policy (default target) for the
chain, and packets and bytes are the packet and byte counters, respectively. The
square brackets must appear in the line; they do not indicate optional parameters.
Visit www.faqs.org/docs/iptables/iptables-save.html for more information.

Sharing an Internet Connection Using NAT

Many scripts that set up Internet connection sharing using iptables are available on
the Internet. Each of these scripts boils down to the same few basic iptables com-
mands, albeit with minor differences. This section discusses those few statements to
explain how a connection can be shared. You can use the statements presented in
this section or refer to the Linux IP Masquerade HOWTO for complete scripts.
The tldp.org/HOWTO/IP-Masquerade-HOWTO/firewall-examples.html Web page
holds the simplest of these scripts.

There are two ways you can share a single connection to the Internet (one IP
address), both of which involve setting up NAT to alter addresses in packets and
then forward them. The first allows clients (browsers, mail readers, and so on) on
several systems on a LAN to share a single IP address to connect to servers on the
Internet. The second allows servers (mail, Web, FTP, and so on) on different systems
on a LAN to provide their services over a single connection to the Internet. You can
use iptables to set up one or both of these configurations. In both cases, you need to
set up a system that is a router: It must have two network connections—one con-
nected to the Internet and the other to the LAN.

 From the Library of WoweBook.Com

www.faqs.org/docs/iptables/iptables-save.html

ptg

Sharing an Internet Connection Using NAT 893

For optimal security, use a dedicated system as a router. Because data transmission
over a connection to the Internet—even over a broadband connection—is relatively
slow, using a slower, older system as a router does not generally slow down a LAN.
This setup also offers some defense against intrusion from the Internet. A worksta-
tion on the LAN can function as a router as well, but this setup means that you
maintain data on a system that is directly connected to the Internet. The following
sections discuss the security of each setup.

The examples in this section assume that the device named eth0 connects to the
Internet on 10.255.255.255 and that eth1 connects to the LAN on 192.168.0.1.
Substitute the devices and IP addresses that the local systems use. If you use a
modem to connect to the Internet, you need to substitute ppp0 (or another device)
for eth0 in the examples.

For the examples in this section to work, you must turn on IP forwarding. First give
the following command and make sure everything is working:

$ sudo sysctl -w net.ipv4.ip_forward=1
net.ipv4.ip_forward = 1

If you want to forward IPv6 packets, give this command instead:

$ sudo sysctl -w
net.ipv6.conf.all.forwarding=1net.ipv6.conf.all.forwarding = 1

Once you know that iptables is working correctly, follow the instructions in
/etc/sysctl.conf and uncomment one or both of the following assignments to make
the kernel always perform IP forwarding for IPv4 and/or IPv6:

Uncomment the next line to enable packet forwarding for IPv4
#net.ipv4.ip_forward=1

Uncomment the next line to enable packet forwarding for IPv6
#net.ipv6.conf.all.forwarding=1

After making this change, give the command /sbin/sysctl –p to apply the change
and to make sure that there are no typographical errors in the configuration file.

Connecting Several Clients to a Single

Internet Connection

Configuring the kernel of the router system to allow clients on multiple local sys-
tems on the LAN to connect to the Internet requires you to set up IP masquerading,
or SNAT (source NAT). IP masquerading translates the source and destination
addresses in the headers of network packets that originate on local systems and the
packets that remote servers send in response to those packets. These packets are
part of connections that originate on a local system. The example in this section
does nothing to packets that are part of connections that originate on the remote

 From the Library of WoweBook.Com

ptg

894 Chapter 25 firestarter, gufw, and iptables: Setting Up a Firewall

systems (on the Internet): These packets cannot get past the router system, which
provides some degree of security.

The point of rewriting the packet headers is to allow systems with different local IP
addresses to share a single IP address on the Internet. The router system translates
the source or origin address of packets from the local systems to that of the Internet
connection, so that all packets passing from the router to the Internet appear to
come from a single system—10.255.255.255 in the example. All packets sent in
response by remote systems on the Internet to the router system have the address of
the Internet connection—10.255.255.255 in the example—as their destination
address. The router system remembers each connection and alters the destination
address of each response packet to that of the local, originating system.

The router system is established by four iptables commands, one of which sets up a
log of masqueraded connections. The first command puts the first rule in the FOR-
WARD chain of the Filter (default) table (–A FORWARD):

$ sudo iptables -A FORWARD -i eth0 -o eth1 -m state --state ESTABLISHED,RELATED -j ACCEPT

To match this rule, a packet must be

1. Received on eth0 (coming in from the Internet): –i eth0.

2. Going to be sent out on eth1 (going out to the LAN): –o eth1.

3. Part of an established connection or a connection that is related to an
established connection: ––state ESTABLISHED,RELATED.

The kernel accepts (–j ACCEPT) packets that meet these three criteria. Accepted
packets pass to the next appropriate chain or table. Packets from the Internet that
attempt to create a new connection are not matched and, therefore, are not
accepted by this rule. Packets that are not accepted pass to the next rule in the FOR-
WARD chain.

The second command puts the second rule in the FORWARD chain of the Filter
table:

$ sudo iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT

To match this rule, a packet must be

1. Received on eth1 (coming in from the LAN): –i eth1.

2. Going to be sent out on eth0 (going out to the Internet): –o eth0.

The kernel accepts packets that meet these two criteria, which means all packets
that originate locally and are going to the Internet are accepted. Accepted packets
pass to the next appropriate chain/table; packets that are not accepted pass to the
next rule in the FORWARD chain.

The third command puts the third rule in the FORWARD chain of the Filter table:

 From the Library of WoweBook.Com

ptg

Sharing an Internet Connection Using NAT 895

$ sudo iptables -A FORWARD -j LOG

Because this rule has no match criteria, it acts on all packets it processes. This rule’s
action is to log packets—that is, it logs packets from the Internet that attempt to
create a new connection.

Packets that reach the end of the FORWARD chain of the Filter table are done with
the rules set up by iptables and are handled by the local TCP stack. Packets from the
Internet that attempt to create a new connection on the router system are accepted
or returned, depending on whether the service they are trying to connect to is avail-
able on the router system.

The fourth command puts the first rule in the POSTROUTING chain of the NAT
table. Only packets that are establishing a new connection are passed to the NAT
table. Once a connection has been set up for SNAT or MASQUERADE, the headers
on all subsequent ESTABLISHED and RELATED packets are altered the same way
as the header of the first packet. Packets sent in response to these packets automati-
cally have their headers adjusted so that they return to the originating local system.

$ sudo iptables -t NAT -A POSTROUTING -o eth0 -j MASQUERADE

To match this rule, a packet must be

1. Establishing a new connection (otherwise it would not have come to the
NAT table).

2. Going to be sent out on eth0 (going out to the Internet): –o eth0.

The kernel MASQUERADEs all packets that meet these criteria. In other words, all
locally originating packets that are establishing new connections have their source
address changed to the address that is associated with eth0 (10.255.255.255 in the
example).

The following example shows all four commands together:

$ sudo iptables -A FORWARD -i eth0 -o eth1 -m state --state ESTABLISHED,RELATED -j ACCEPT
$ sudo iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT
$ sudo iptables -A FORWARD -j LOG
$ sudo iptables -t NAT -A POSTROUTING -o eth0 -j MASQUERADE

See page 883 for instructions on how to save these rules so that the firewall comes
up each time the system boots. To limit the local systems that can connect to the
Internet, you can add a –s (source) match criterion to the last command:

$ sudo iptables -t NAT -A POSTROUTING -o eth0 -s 192.168.0.0-192.168.0.32 -j MASQUERADE

In the preceding command, –s 192.168.0.0-192.168.0.32 causes only packets from
an IP address in the specified range to be MASQUERADEd.

 From the Library of WoweBook.Com

ptg

896 Chapter 25 firestarter, gufw, and iptables: Setting Up a Firewall

Connecting Several Servers to a Single

Internet Connection

DNAT (destination NAT) can set up rules that allow clients from the Internet to
send packets to servers on the LAN. This example sets up an SMTP mail server on
192.168.1.33 and an Apache (Web) server on 192.168.1.34. Both protocols use
TCP. SMTP uses port 25 and Apache uses port 80, so the rules match TCP packets
with destination ports of 25 and 80. The example assumes that the mail server does
not make outgoing connections and uses another server on the LAN for DNS and
mail relaying. Both commands put rules in the PREROUTING chain of the NAT
table (–A PREROUTING –t NAT):

$ sudo iptables -A PREROUTING -t NAT -p tcp --dport 25 --to-source 192.168.0.33:25 -j DNAT
$ sudo iptables -A PREROUTING -t NAT -p tcp --dport 80 --to-source 192.168.0.34:80 -j DNAT

To match these rules, the packet must use the TCP protocol (–p tcp) and have a des-
tination port of either 25 (first rule, ––dport 25) or 80 (second rule, ––dport 80).

The ––to-source is a target specific to the PREROUTING and OUTPUT chains of
the NAT table; it alters the destination address and port of matched packets as spec-
ified. As with MASQUERADE and SNAT, subsequent packets in the same and
related connections are altered the same way.

The fact that the servers cannot originate connections means that neither server can be
exploited to participate in a DDoS attack (page 1144) on systems on the Internet, nor
can they send private data from the local system back to a malicious user’s system.

Chapter Summary

A firewall, such as iptables, gufw, or firestarter, is designed to prevent unauthorized
access to a system or network. The firestarter and gufw utilities are sophisticated,
graphical tools for building and maintaining a firewall. Each can protect just the
single system it runs on or can protect the system it runs on plus other systems on a
LAN that connect to the Internet through the system running firestarter or gufw.

An iptables command sets up or maintains in the kernel rules that control the flow
of network packets; rules are stored in chains. Each rule includes a criteria part and
an action part, called a target. When the criteria part matches a network packet, the
kernel applies the action from the rule to the packet.

Chains are collected in three tables: Filter, NAT, and Mangle. Filter (the default
table) DROPs or ACCEPTs packets based on their content. NAT (the Network
Address Translation table) translates the source or destination field of packets.
Mangle is used exclusively to alter the TOS (type of service), TTL (time to live), and
MARK fields in a packet. The connection tracking machine, which is handled by
the conntrack module, defines rules that match criteria based on the state of the
connection a packet is part of.

 From the Library of WoweBook.Com

ptg

Advanced Exercises 897

Exercises

1. How would you remove all iptables rules and chains?

2. What is firestarter? How is it related to iptables?

3. What is the easiest way to set up a rule using firestarter?

4. How would you list all current iptables rules?

5. How is configuring iptables different from configuring most Linux services?

6. Define an iptables rule that will reject incoming connections on the TEL-
NET port.

7. What does NAT stand for? What does the NAT table do?

Advanced Exercises

8. What does the conntrack module do?

9. What do rule match criteria do? What are they used for?

10. What do packet match criteria do? What are they used for?

11. Which utilities copy packet filtering rules to and from the kernel? How do
they work?

12. Define a rule that will silently block incoming SMTP connections from
spmr.com.

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

888999999

26Chapter26The World Wide Web (WWW or Web for short), is a collection
of servers that hold material, called content, that Web browsers
(or just browsers) can display. Each of the servers on the Web is
connected to the Internet, a network of networks (an internet-
work). Much of the content on the Web is coded in HTML
(Hypertext Markup Language, page 1152). Hypertext, the
links you click on a Web page, allows browsers to display and
react to links that point to other Web pages on the Internet.

Apache is the most popular Web server on the Internet. It is
both robust and extensible. The ease with which you can
install, configure, and run it in the Linux environment makes it
an obvious choice for publishing content on the World Wide
Web. The Apache server and related projects are developed and
maintained by the Apache Software Foundation (ASF), a not-
for-profit corporation formed in June 1999. The ASF grew out
of the Apache Group, which was established in 1995 to develop
the Apache server.

In This Chapter

JumpStart: Getting Apache
Up and Running 903

Configuring Apache 905

Configuration Directives 909

Contexts and Containers 915

The Ubuntu apache2.conf File . . . 932

Redirects . 935

Content Negotiation 935

Type Maps 935

MultiViews. 936

Virtual Hosts 937

Troubleshooting 940

26

Apache: Setting Up a

Web Server

 From the Library of WoweBook.Com

ptg

900 Chapter 26 Apache: Setting Up a Web Server

This chapter starts by providing introductory information about Apache. Following
this information is the JumpStart section, which describes the minimal steps needed
to get Apache up and running. Next is “Filesystem Layout,” which tells you where
the various Apache files are located.

Configuration directives (referred to simply as directives) are a key part of Apache
and are discussed starting on page 909. This section includes coverage of contexts
and containers, two features/concepts that are critical to understanding Apache.
The next section, which starts on page 932, explains the main Apache configura-
tion file, apache2.conf, as distributed by Ubuntu. The final pages of the chapter
cover virtual hosts, troubleshooting, and modules you can use with Apache,
including CGI and SSL.

Introduction

Apache is a server that responds to requests from Web browsers, or clients, such as
Firefox, Netscape, lynx, and Internet Explorer. When you enter the address of a Web
page (a URI, page 1179) in a Web browser’s location bar, the browser sends a
request over the Internet to the (Apache) server at that address. In response, the
server sends (serves) the requested content back to the browser. The browser then
displays or plays the content, which might be a song, picture, video clip, or other
information.

Content Aside from add-on modules that can interact with the content, Apache looks only
at the type of data it is sending so that it can specify the correct MIME
(page 1160) type; otherwise it remains oblivious to the content itself. Server
administration and content creation are two different aspects of bringing up a
Web site. This chapter concentrates on setting up and running an Apache server; it
spends little time discussing content creation.

Modules Apache, like the Linux kernel, uses external modules to increase load-time flexibility
and allow parts of its code to be recompiled without recompiling the whole program.
Rather than being part of the Apache binary, modules are stored as separate files that
can be loaded when Apache is started.

Apache uses external modules, called dynamic shared objects (DSOs), for basic
and advanced functions; there is not much to Apache without these modules.
Apache also uses modules to extend its functionality. For example, modules can
process scripts written in Perl, PHP, Python, and other languages; use several dif-
ferent methods to authenticate users; facilitate publishing content; and process
nontextual content, such as audio. The list of modules written by the ASF and
third-party developers is constantly growing. For more information refer to
“Modules” on page 941.

Setup The Debian/Ubuntu Apache team provides one of the easiest-to-use Apache setups
of any distribution. Most packages that provide a Web interface and that depend on
Apache run as installed; typically you do not need to modify the configuration files.

 From the Library of WoweBook.Com

ptg

Introduction 901

For example, installing phpmyadmin (sourceforge.net/projects/phpmyadmin) makes
it available to a browser as /phpmyadmin.

This section describes the packages you need to install and provides references for
the programs covered in this chapter. The “Notes” section introduces terminology
and other topics that may help you make better sense of this chapter. The JumpStart
section (page 903) gets Apache up and running as quickly as possible.

More Information

Local Apache HTTP Server Version 2.2 Documentation: With Apache running and
apache2-doc installed, point a browser at server/manual, where server is localhost
or the name or IP address of the Apache server.
Apache directives: server/manual/mod/directives.html
SSI directives: server/manual/howto/ssi.html

Web Apache documentation: httpd.apache.org/docs/2.2
Apache directives: httpd.apache.org/docs/2.2/mod/directives.html
Apache Software Foundation (newsletters, mailing lists, projects, module registry,
and more): www.apache.org
webalizer: www.mrunix.net/webalizer
awstats: awstats.sourceforge.net
libapache2-mod-perl2: perl.apache.org (mod_perl)
libapache2-mod-php5: www.php.net (mod_php)
libapache2-mod-python: www.modpython.org (mod_python)
SSL: www.modssl.org (mod_ssl)
MRTG: mrtg.hdl.com/mrtg
SNMP: net-snmp.sourceforge.net
SSI directives: httpd.apache.org/docs/2.2/howto/ssi.html

Notes

Terms: Apache
and apache2

Apache is the name of a server that serves HTTP and other content. The name of the
Apache 2 daemon is apache2. This chapter uses Apache and apache2 interchangeably.

Terms: server and
process

An Apache server is the same thing as an Apache process. An Apache child process
exists to handle incoming client requests; hence it is referred to as a server.

Firewall An Apache server normally uses TCP port 80; a secure server uses TCP port 443. If
the Apache server system is running or behind a firewall, you must open one or both
of these ports. To get started, open port 80 (HTTP). Using gufw (page 876), open
these ports by setting a policy that allows service for HTTP and/or HTTPS.

Running with root
privileges

Because Apache serves content on privileged ports, you must start it running with
root privileges. For security reasons, Ubuntu sets up Apache to spawn processes
that run as the user and group www-data.

Locale The apache2 daemon starts using the C locale by default. You can modify this behav-
ior—for example, to use the configured system locale—by setting the LANG variable
(in the line that starts with ENV="env -i LANG=C ...) in the /etc/init.d/apache2 file.

 From the Library of WoweBook.Com

www.apache.org
www.mrunix.net/webalizer
www.php.net
www.modpython.org
www.modssl.org
httpd.apache.org/docs/2.2
httpd.apache.org/docs/2.2/mod/directives.html
httpd.apache.org/docs/2.2/howto/ssi.html

ptg

902 Chapter 26 Apache: Setting Up a Web Server

Document root The root of the directory hierarchy that Apache serves content from is called the
document root and is controlled by the DocumentRoot directive (page 913). This
directive defines a directory on the server that maps to /. This directory appears to
users who are browsing a Web site as the root directory. As distributed by Ubuntu,
the document root is /var/www.

Modifying content With the default Ubuntu configuration of Apache, only a user working with root
privileges (using sudo) can add or modify content in /var/www. To avoid having
people work as root when they are manipulating content, create a group (webwork,
for example), put people who need to work with Web content in this group, and
make the directory hierarchy starting at /var/www (or another document root)
writable by that group. In addition, if you give the directory hierarchy setgid per-
mission, all new files created within this hierarchy will belong to the group, which
facilitates sharing files. The first three commands below add the new group, change
the mode of the document root to setgid, and change the group that the document
root belongs to. The last command adds username to the webwork group; you must
repeat this command for each user you want to add to the group.

$ sudo addgroup webwork
$ sudo chmod g+s /var/www
$ sudo chown :webwork /var/www

$ sudo usermod -aG webwork username

See page 597 for more information about working with groups.

Versions Ubuntu runs Apache version 2.2.

Running a Web Server (Apache)

This section explains how to install, test, and configure a basic Web server.

Prerequisites

Minimal installation Install the following package:

• apache2

apache2 init script When you install the apache2 package, the dpkg postinst script starts the apache2 dae-
mon. After you configure Apache, call the apache2 init script to restart the apache2
daemon:

$ sudo service apache2 restart

After changing the Apache configuration on an active server, use reload in place of
restart to reload Apache configuration files without disturbing clients connected to
the server.

Optional packages The mod_ssl package is installed as part of the apache2 package—you do not need
to install it separately. You may want to install the following optional packages:

 From the Library of WoweBook.Com

ptg

Running a Web Server (Apache) 903

• apache2-doc—The Apache manual

• webalizer—Web server log analyzer (page 948)

• awstats—Web server log analyzer

• libapache2-mod-perl2—Embedded Perl scripting language (mod_perl)

• libapache2-mod-python—Metapackage that installs the embedded Python
scripting language (mod_python)

• libapache2-mod-php5—Embedded PHP scripting language, including
IMAP and LDAP support (mod_php)

• mrtg—MRTG traffic monitor (page 948)

JumpStart: Getting Apache Up and Running

To get Apache up and running, modify the /etc/apache2/sites-available/default con-
figuration file as described in this section. “Directives I: Directives You May Want
to Modify as You Get Started” on page 910 explains more about this file and
explores other changes you may want to make to it.

Modifying the Configuration Files

Apache runs as installed, but it is a good idea to add the three lines described in this
section to the /etc/apache2/sites-available/default configuration file. If you do not
add these lines, Apache will assign values that may not work for you. After you
modify this file, you must restart Apache (page 902).

The ServerName line establishes a name for the server. Add one of the following
lines to /etc/apache2/sites-available/default to set the name of the server to the
domain name of the server or, if you do not have a domain name, to the IP address
of the server. Add the line just below the ServerAdmin line near the top of the file.

ServerName example.com

or

ServerName IP_address

where example.com is the domain name of the server and IP_address is the IP
address of the server. If you are not connected to a network, you can use the localhost
address, 127.0.0.1, so you can start the server and experiment with it. See page 934
for more information on the ServerName directive.

The apache2ctl utility and restarting Apache gracefully

tip The apache2 init script calls apache2ctl to start and stop Apache. The reload argument calls this
utility with an argument of graceful, which does not disturb clients that are connected to the
server. The restart and force-reload arguments call it with arguments of stop and then start; this
pair of commands shuts down the server completely before restarting it.

 From the Library of WoweBook.Com

ptg

904 Chapter 26 Apache: Setting Up a Web Server

When a client has trouble getting information from a server, the server typically
displays an error page that identifies the problem. For example, when Apache can-
not find a requested page, it displays a page that says Error 404: Not Found. Each
error page can include a mailto: link that the user can click to send mail to the
server’s administrator. The ServerSignature directive can specify that you want an
email link on error pages. This link appears as the domain name the user called in
the Browser. The ServerAdmin directive specifies the email address that the server
sends mail to when a user clicks the link on an error page. Add these two lines to
the file named default.

Add both directives following the ServerAdmin directive.

ServerAdmin email_address

ServerSignature EMail

where email_address is the email address of the person who needs to know when
people are having trouble using the server. Make sure that someone checks this
email account frequently. But also see the tip “ServerAdmin attracts spam” on
page 912.

It can make system administration much easier if you use a role alias (for example,
webmaster@example.com) instead of a specific username (e.g., max@example.com)
as an email_address. See the discussion of email aliases on page 722.

After making the changes to the file named default, restart apache2 as explained on
page 902.

Testing Apache

Once you restart the apache2 daemon, you can confirm that Apache is working cor-
rectly by pointing a browser on the local (server) system to http://localhost/. From
a remote system, point a browser to http:// followed by the ServerName you speci-
fied in the previous section. If you are displaying a page from a system other than
the local one, the local system must know how to resolve the domain name you
enter (e.g., by using DNS or the /etc/hosts file). For example, you might use either
of these URI formats: http://192.168.0.16 or http://example.org.

When you point a browser at a directory that holds a file named index.html,
Apache causes the browser to display the contents of that file (otherwise it displays
a directory listing). In response to your request, the browser should display the page
stored at /var/www/index.html on the server. In this case, the browser should dis-
play It works!

If the server is behind a firewall, open TCP port 80 (page 901). If you are having
problems getting Apache to work, see “Troubleshooting” on page 940.

 From the Library of WoweBook.Com

http://localhost/
http://192.168.0.16
http://example.org

ptg

Running a Web Server (Apache) 905

Putting Your Content in Place

Place the content you want Apache to serve in /var/www. As shown previously,
Apache automatically displays the file named index.html in this directory. Give the
following command to create such a page, replacing the default page:

$ sudo tee /var/www/index.html
<html><body><p>This is <i>my</i> test page.</p></body></html>
<html><body><p>This is <i>my</i> test page.</p></body></html>
CONTROL-D

The tee utility (page 254) copies standard input (page 243) to the file you give as its
argument and to standard output (page 243). Because of this redirection, tee repeats
each line you type after you press RETURN. After you create this file, either refresh the
page on the browser (if it is still running) or start it again and point it at the server.
The browser should display the page you just created.

Configuring Apache

This section describes configuration tools you can use to make your job easier. It
also tells you where you can find many of the files you may need to work with as
you set up and modify an Apache server. Most of the configuration files are in the
/etc/apache2 hierarchy.

Configuration Tools

This section describes the utilities that manage some of the files in the /etc/apache2
hierarchy. These utilities are part of the apache2.2-common package, which is
installed as a dependency when you install apache2.

a2enmod and
a2dismod

The a2enmod (Apache 2 enable module) and a2dismod (Apache 2 disable module) utili-
ties enable and disable an Apache module. The /etc/apache2/mods-available directory
holds files that contain LoadModule directives (page 928) and options for modules that
are installed on the local system. The /etc/apache2/mods-enabled directory holds sym-
bolic links to the files in mods-available. Apache incorporates these links into its config-
uration files by using Include directives (next section). The a2enmod utility creates
symbolic links in the mods-enabled directory from configuration files in the mods-
available directory. It works on files whose basename is given as its argument.

$ sudo -i
cd /etc/apache2
ls mods-available/userdir*
mods-available/userdir.conf mods-available/userdir.load
ls mods-enabled/userdir*
ls: mods-enabled/userdir*: No such file or directory
a2enmod userdir
Enabling module userdir.
Run '/etc/init.d/apache2 restart' to activate new configuration!
ls mods-enabled/userdir*
mods-enabled/userdir.conf mods-enabled/userdir.load
exit
$

 From the Library of WoweBook.Com

ptg

906 Chapter 26 Apache: Setting Up a Web Server

The a2dismod utility removes the symbolic links that a2enmod creates. You must
reload Apache (page 902) after you give one or more of these commands before
they will take effect.

The a2enmod and a2dismod utilities simplify Apache administration. Instead of add-
ing or commenting out a LoadModule directive in the httpd.conf or apache2.conf
file, you can use these programs to enable or disable a module. This setup
enables APT or Synaptic, after it installs a package, to call a2enmod via a dpkg
postinst script and then reload Apache so that the package is functional upon
installation.

a2ensite and
a2dissite

The a2ensite (Apache 2 enable site) and a2dissite (Apache 2 disable site) utilities
enable and disable an Apache virtual host (page 937). These commands work simi-
larly to the module commands described earlier. First you design a virtual host in a file
in the /etc/apache2/sites-available directory. Then you call a2ensite with the name of
the site as an argument to create a symbolic link in the /etc/apache2/sites-enabled
directory. The a2dissite utility removes the symbolic link, disabling the virtual host.

Include Directives

Under Ubuntu, the primary configuration file is /etc/apache2/apache2.conf. This
file incorporates other files using Include directives (page 927):

$ grep '^Include' /etc/apache2/apache2.conf
Include /etc/apache2/mods-enabled/*.load
Include /etc/apache2/mods-enabled/*.conf
Include /etc/apache2/httpd.conf
Include /etc/apache2/ports.conf
Include /etc/apache2/conf.d/
Include /etc/apache2/sites-enabled/

apache2.conf Typically, when you configure Apache, you do not make changes to apache2.conf;
instead, you modify files that are specified in Include directives. You can also use
the configuration tools described in the previous section. This setup allows updates
to Apache to change apache2.conf without affecting the server.

When Apache reads its configuration files, if it finds more than one occurrence of the
same directive, even in an Include file, it uses the value assigned by the last directive
it encounters.

In the apache2.conf file, the Include directive for the httpd.conf file occurs after
directives that set up the global environment, which includes various timeouts and
limits as shown in Table 26-1. To change any of these directives, copy them to
httpd.conf and make the changes there. You must change directives that appear after
the Include httpd.conf directive in other included files as explained in this section.

The Include directive for /etc/apache2/conf.d (it includes all files in this directory)
appears after the Include directive for httpd.conf, with only a few lines and the
Include directive for /etc/apache2/ports.conf separating them. This directory is a
good place to put small configuration snippets, or break out parts of httpd.conf if it
is growing too large.

 From the Library of WoweBook.Com

ptg

Running a Web Server (Apache) 907

Directives that control log formats, indexing options, MIME handling, and browser
bug handling appear after the Include directive for httpd.conf, but before the Include
directive for /etc/apache2/sites-enabled, which is the last line in apache2.conf. You
can override these directives on a per-site basis by copying them to individual site
files in the sites-enabled directory and modifying them there.

If you manage more than one Ubuntu Web server, it is nice to keep all the custom-
ized configuration code separate from the main configuration. That way you can
use scp to copy the files to each new server. Or you can keep the custom code under
a version control system and check it out to configure a new system. This technique
is much easier than using diff to find out what you changed from system to system.

Filesystem Layout

This section lists the locations and uses of files you will work with to configure
Apache and serve Web pages.

Binaries, scripts,
and modules

The Apache server and related binary files are kept in several directories:

/usr/sbin/apache2—The Apache server (daemon).

/usr/sbin/apache2ctl—Starts and stops Apache. The apache2 init script calls apachectl.

/usr/bin/htpasswd—Creates and maintains the password files used by the Apache
authentication module (page 945).

/usr/sbin/rotatelogs—Rotates Apache log files so that these files do not get too
large. See logrotate (page 622) for information about rotating log files.

/etc/apache2/mods-available—Holds files containing LoadModule directives
(page 928) for their respective modules. The alias.conf file is kept in this directory

Table 26-1 Directives that you can override in httpd.conf

AccessFileName MaxRequestsPerChild

DefaultType MaxSpareThreads

ErrorLog MinSpareThreads

Group PidFile

HostnameLookups ServerRoot

KeepAlive StartServers

KeepAliveTimeout ThreadsPerChild

LockFile Timeout

LogLevel TypesConfig

MaxClients User

MaxKeepAliveRequests

 From the Library of WoweBook.Com

ptg

908 Chapter 26 Apache: Setting Up a Web Server

and is enabled by default. Two of the most frequently used module binary files are
mod_perl (part of the libapache2-mod-perl2 package) and mod_python (part of the
libapache2-mod-python metapackage). The *.load files in this directory load mod-
ules from the /usr/lib/apache2/modules directory (page 941). The *.conf files con-
figure the modules for use. See page 905 for information on using a2enmod to
enable a module.

/etc/apache2/mods-enabled—Holds links to files in mods-available. Use a2enmod
to create links and a2dismod to remove links (page 905).

Configuration files Apache configuration files are kept in the /etc/apache2 hierarchy:

/etc/apache2/apache2.conf—Holds configuration directives. This file is the main
Apache configuration file. You do not typically make changes to this file, but rather
put any configuration directives in httpd.conf and other files.

/etc/apache2/envvars—Holds variables that modify the environment Apache runs in.

/etc/apache2/ports.conf—Holds the Listen directive (page 910), which controls
which IP address(es) and port(s) Apache listens on.

/etc/apache2/sites-available—Holds files containing the code that describes virtual
hosts. See page 906 for information on using a2ensite to enable a site.

/etc/apache2/sites-enabled—Holds links to files in sites-available. Use a2ensite to
create links and a2dissite to remove links (page 906).

/etc/apache2/httpd.conf—Holds local configuration directives. This file augments
the apache2.conf file in the same directory. The discussion of configuration direc-
tives starts on page 909.

/etc/apache2/conf.d—Holds configuration files.

Logs Logs are kept in /var/log/apache2:

/var/log/apache2/access_log—Logs requests made to the server.

/var/log/apache2/error_log—Logs request and runtime server errors.

Web documents Web documents (including the Web pages displayed by client browsers), custom
error messages, and CGI scripts are kept in /var/www by default:

/usr/lib/cgi-bin—Holds CGI scripts (page 942). This directory is aliased to /cgi-bin/.

/usr/share/apache2/error—Holds default error documents. You can modify these
documents to conform to the style of your Web site. This directory is aliased to
/error/. See ErrorDocument (page 924).

/usr/share/apache2/icons—Holds icons used to display directory entries. This direc-
tory is aliased to /icons/.

/usr/share/doc/apache2-doc/manual/index.html—Apache HTTP Server Version
2.2 Documentation. With Apache running and apache2-doc installed, point a

 From the Library of WoweBook.Com

ptg

Configuration Directives 909

browser at server/manual, where server is localhost or the name or IP address of the
Apache server.

Document root By default, the document root (page 902) is /var/www. You can change this loca-
tion with the DocumentRoot directive (page 913). In addition to content for the
Web pages that Apache serves, this directory can house the webalizer directory,
which holds webalizer (page 948) output.

.htaccess files A .htaccess file contains configuration directives and can appear in any directory in
the document root hierarchy. The location of a .htaccess file is critical: The directives
in a .htaccess file apply to all files in the hierarchy rooted at the directory that holds
the .htaccess file. The AllowOverride directive (page 930) controls whether Apache
examines .htaccess files. Because the default site contains AllowOverride None
directives, you must use an AllowOverride directive to cause Apache to examine
.htaccess files and process directives in those files. This protection is duplicated and
enhanced in the apache2.conf file distributed by Ubuntu, where a directive instructs
Apache not to serve files whose names start with .ht. Because of this directive,
Apache does not serve .htaccess files (nor does it serve .htpassword files).

Configuration Directives

Configuration directives, or simply directives, are lines in a configuration file that
control some aspect of how Apache functions. A configuration directive is com-
posed of a keyword followed by one or more arguments (values) separated by SPACEs.
For example, the following configuration directive sets Timeout to 300 (seconds):

Timeout 300

You must enclose arguments that contain SPACEs within double quotation marks.
Keywords are not case sensitive, but arguments (pathnames, filenames, and so on)
often are.

apache2.conf The main file that holds Apache configuration directives is, by default,
/etc/apache2/apache2.conf. This file holds global directives that affect all content
served by Apache. Include directives (pages 906 and 927) within apache2.conf incor-
porate the contents of other files as though they were part of apache2.conf.

.htaccess Local directives can appear in .htaccess files. A .htaccess file can appear in any
directory within the document root hierarchy; it affects files in the directory hierar-
chy rooted at the directory it appears in.

Pathnames When you specify an absolute pathname in a configuration directive, the directive
uses that pathname without modifying it. When you specify a relative pathname,
such as a simple filename or the name of a directory, Apache prepends to that name
the value specified by the ServerRoot (page 926) directive (/etc/apache2 by default).

 From the Library of WoweBook.Com

ptg

910 Chapter 26 Apache: Setting Up a Web Server

Directives I: Directives You May Want to Modify as

You Get Started

When it starts, Apache reads the /etc/apache2/apache2.conf configuration file (by
default) for instructions governing every aspect of how Apache runs and serves content.
The apache2.conf file shipped by Ubuntu is more than 600 lines long. As explained
under apache2.conf on page 906, you do not normally make changes to this file.

This section details some directives you may want to add to the
/etc/apache2/httpd.conf file, or change in one of the other configuration files, as
you are getting started with Apache. You can use each of the following directives in
httpd.conf to override the corresponding directive in apache2.conf. Or you can
change the directive if it appears in another configuration file. In this chapter, the
Specify in line near the end of each explanation tells you in which configuration file
in the /etc/apache2 hierarchy you typically specify that directive. If the directive
already appears in a file, you must specify the new directive after the one you want
to override. See apache2.conf (page 906) for more information. The Context line in
each explanation tells you which locations the directives can appear in; contexts are
explained on page 915. The section titled “Directives II: Advanced Directives” on
page 919 describes more directives.

Listen Specifies the port(s) that Apache listens for requests on.

Listen [IP-address:]portnumber

where IP-address is the IP address that Apache listens on and portnumber is the
number of the port that Apache listens on for the given IP-address. When IP-address
is absent or is set to 0.0.0.0, Apache listens on all network interfaces. At least one
Listen directive must appear in the configuration files or Apache will not work.

The following minimal directive from the ports.conf file listens for requests on all
interfaces on port 80:

Listen 80

The next directive changes the port from the default value of 80 to 8080:

Listen 8080

When you specify a port other than 80, each request to the server must include a
port number (as in www.example.org:8080) or the kernel will return a Connection
Refused message. Use multiple Listen directives to have Apache listen on multiple IP
addresses and ports. For example,

Listen 80
Listen 192.168.1.1:8080
Listen 192.168.1.2:443

accepts connections on all network interfaces on port 80, on 192.168.1.1 on port
8080, and on 192.168.1.2 on port 443.

Context: server config
Specify in ports.conf

 From the Library of WoweBook.Com

www.example.org:8080

ptg

Configuration Directives 911

Default: none (Apache will not start without this directive)
Ubuntu: Listen 80

Redirect Tells the client to fetch a requested resource from a different, specified location.

Redirect [status] requested-path [new-URI]

where status is the status that Apache returns along with the redirect. If you omit
status, Apache assumes temp. The status can be an Apache error code in the range
300–399 or one of the following:

permanent Returns status 301 (the resource has moved permanently)
temp Returns status 302 (the resource has moved temporarily)
seeother Returns status 303 (the resource has been replaced)
gone Returns status 410 (the resource has been removed—does not

take a new-URI argument

The requested-path is the absolute pathname of the ordinary file or directory that
Apache is to redirect requests for. Apache redirects all requests that start with the abso-
lute pathname specified by requested-path. (See the example below.) Use RedirectMatch
(discussed next) if you want to use a regular expression in this argument.

The new-URI is the URI that Apache redirects requests to. If the new-URI starts
with a slash (/) and not http://, ftp://, or a similar prefix, Apache uses the same pre-
fix that it was called with. Most Redirect directives require a new-URI argument.

A request must match all segments of the requested-path argument. Assume the fol-
lowing directive:

Redirect /www.example.com/pictures http://pictures.example.com/

Apache will redirect a request for http://www.example.com/pictures/mom.jpg to
http://pictures.example.com/mom.jpg but, because the final segment does not match,
it will not redirect a request for http://www.example.com/pictures_mom.jpg.

Contexts: server config, virtual host, directory, .htaccess
Specify in sites-available/*
Default: none
Ubuntu: none

RedirectMatch Tells the client to fetch a requested resource from a different location specified by a
regular expression.

RedirectMatch [status] requested-path-re [new-URI]

This directive is the same as Redirect (discussed above), except that you can use a
regular expression (Appendix A) in requested-path-re.

Contexts: server config, virtual host, directory, .htaccess
Specify in sites-available/*
Default: none
Ubuntu: none

 From the Library of WoweBook.Com

http://pictures.example.com/
http://www.example.com/pictures/mom.jpg
http://pictures.example.com/mom.jpg
http://www.example.com/pictures_mom.jpg

ptg

912 Chapter 26 Apache: Setting Up a Web Server

ServerAdmin Sets the email address used in mailto: links on error pages.

ServerAdmin email-address

where email-address is the email address of the person who is responsible for man-
aging the Web content. Apache includes this address as a link on Apache-generated
error pages. However, Ubuntu Linux sets ServerSignature (page 927) to On, which
causes Apache to display information about the server—rather than a link to an
email address—on error pages. If you want to display the link on error pages, set
ServerSignature to EMail. Make sure email-address points to an email account
that someone checks frequently. Users can use this address to get help with the
Web site or to inform the administrator of problems. There is no default value for
ServerAdmin; if you do not use this directive and ServerSignature is set to EMail,
the mailto: link on error pages points to [no address given].

You can use a role alias such as webmaster at your domain and use a mail alias to
forward mail that is sent to webmaster to the person who is responsible for main-
taining the Web site. See the discussion of mail aliases on page 722.

Contexts: server config, virtual host
Specify in sites-available/*
Default: none
Ubuntu: webmaster@localhost

ServerName Specifies the server’s name and the port it listens on.

ServerName FQDN [:port]

where FQDN is the fully qualified domain name or IP address of the server and port
is the optional port number Apache listens on. The domain name of the server must
be able to be resolved (by DNS or /etc/hosts) and may differ from the hostname of
the system running the server. If you do not specify a ServerName, Apache performs
a DNS reverse name resolution (page 831) on the system’s IP address and assigns
that value to ServerName. If the reverse lookup fails, Apache assigns the system’s IP
address to ServerName.

In the following example, substitute the FQDN or IP address of the server for
www.example.com. Change the 80 to the port number Apache listens on (if it is not
port 80).

ServerName www.example.com:80

The ports specified by ServerName and Listen (page 910) must be the same if you
want the FQDN specified by ServerName to be tied to the IP address specified by
the Listen directive.

ServerAdmin attracts spam

security The email address you put in ServerAdmin often attracts spam. Use a spam-guarded address such
as "mgs at sobell dot com" (you must use the quotation marks) or use a custom error page to
point to a Web page with a form for sending mail to the right person.

 From the Library of WoweBook.Com

www.example.com
www.example.com:80

ptg

Configuration Directives 913

Apache uses ServerName to construct a URI when it redirects a client (page 935).
See also UseCanonicalName (page 922).

Contexts: server config, virtual host
Specify in sites-available/*
Default: none
Ubuntu: none

DocumentRoot Points to the root of the directory hierarchy that holds the server’s content.

DocumentRoot dirname

where dirname is the absolute pathname of the directory at the root of the directory
hierarchy that holds the content Apache serves. Do not use a trailing slash. You can
put the document root wherever you like, as long as the user www-data has read
access to the ordinary files and execute access to the directory files in the directory
hierarchy. The FHS (page 213) specifies /srv as the top-level directory for this pur-
pose. The following directive puts the document root at /srv/www:

DocumentRoot /srv/www

Contexts: server config, virtual host
Specify in sites-available/*
Default: /usr/local/apache/htdocs
Ubuntu: /var/www

UserDir Allows users to publish content from their home directories.

UserDir dirname | disabled | enabled user-list

where dirname is the name of a directory that, if it appears in a local user’s home
directory, Apache publishes to the Web. The disabled keyword prevents content
from being published from users’ home directories; enabled causes content to be
published from the home directories of users specified in the SPACE-separated user-list.
When you do not specify a dirname, Apache publishes content to ~/public_html.

Apache can combine the effects of multiple UserDir directives. Suppose you have
the following directives:

UserDir disabled
UserDir enabled user1 user2 user3
UserDir web

The first directive turns off user publishing for all users. The second directive
enables user publishing for three users. The third directive makes web the name of
the directory that, if it appears in one of the specified users’ home directories,
Apache publishes to the Web.

To cause a browser to display the content published by a user, specify in the location bar
the name of the Web site followed by a /~ and the user’s username. For example, if Sam
published content in the public_html directory in his home directory and the URI of the
Web site was www.example.com, you would enter http://www.example.com/~sam

 From the Library of WoweBook.Com

www.example.com
http://www.example.com/~sam

ptg

914 Chapter 26 Apache: Setting Up a Web Server

to display Sam’s Web page. To display a user’s Web page, Apache must have execute
permission (as user www-data) for the user’s home directory and the directory holding
the content, and read permission for the content files.

Ubuntu Linux provides the following configuration for user directories in the
/etc/apache2/mods-available/userdir.conf file, which is disabled by default:

UserDir public_html
UserDir disabled root

Give the command a2enmod userdir to enable user directories.

Contexts: server config, virtual host
Specify in mods-available/userdir.conf
Default: none
Ubuntu: public_html, disabled root

DirectoryIndex Specifies which file Apache serves when a user requests a directory.

DirectoryIndex filename [filename ...]

where filename is the name of the file that Apache serves.

This directive specifies a list of filenames. When a client requests a directory,
Apache attempts to find a file in the specified directory whose name matches a file
in the list. When Apache finds a match, it returns that file. When this directive is
absent or when none of the files specified by this directive exists in the specified
directory, Apache displays a directory listing as specified by the IndexOptions direc-
tive (page 924).

The following DirectoryIndex directive, which Ubuntu Linux provides in the mods-
enabled/dir.conf file, is enabled by default:

DirectoryIndex index.html index.cgi index.pl index.php index.xhtml index.htm

This directive causes Apache to search the specified directory and return the file
named index.html, index.cgi, index.pl, index.php, index.xhtml, or index.htm, where
index.html, index.htm, and index.xhtml are the names of the standard, default
HTML and XHTML documents; index.cgi is a CGI document; index.pl is a Perl doc-
ument; and index.php is a PHP document. The name index is standard but arbitrary.

Using headers, a client can communicate a language preference to a server. If the
server can handle the preference, it determines the best response from among its
resources. The .var is an Ubuntu addition (a line in apache2.conf, AddHandler
type-map var, makes the .var extension a type map, one of the forms of content
negotiation; MultiViews is the other form). For more information refer to “Con-
tent Negotiation” on page 935.

Contexts: server config, virtual host
Specify in mods-available/dir.conf
Default: index.html
Ubuntu: index.html index.cgi index.pl index.php index.xhtml index.htm

 From the Library of WoweBook.Com

ptg

Configuration Directives 915

Contexts and Containers

To make it flexible and easy to customize, Apache uses configuration directives,
contexts, and containers. Configuration directives were covered in the previous sec-
tion. This section discusses contexts and containers, which are critical to managing
an Apache server.

Contexts

Four locations, called contexts, define where configuration directives can appear.
This chapter marks each configuration directive to indicate which context(s) it can
appear in. Table 26-2 describes each of these contexts.

Directives in files incorporated by means of an Include directive (page 927) are part
of the context they are included in and must be allowed in that context.

Putting a directive in the wrong context generates a configuration error and can
cause Apache not to serve content correctly or not to start.

Containers

Containers, or special directives, are directives that group other directives. Contain-
ers are delimited by XML-style tags. Three examples are shown here:

<Directory> ... </Directory>

<Location> ... </Location>

<VirtualHost> ... </VirtualHost>

Look in apache2.conf and sites-available/default for examples of containers. Like
other directives, containers are limited to use within specified contexts. This section
describes some of the more frequently used containers.

<Directory> Applies directives to all directories within the specified directory hierarchies.

<Directory directory> ... </Directory>

where directory is an absolute pathname specifying the root of the directory hierar-
chy that holds the directories the directives in the container apply to. The directory
can include wildcards; a * does not match a /.

Table 26-2 Contexts

Context Location(s) directives can appear in

server config In apache2.conf or included files only, but not inside <VirtualHost> or
<Directory> containers (next section) unless so marked

virtual host Inside <VirtualHost> containers in apache2.conf or included files only

directory Inside <Directory>, <Location>, and <Files> containers in apache2.conf or
included files only

.htaccess In .htaccess files (page 909) only

 From the Library of WoweBook.Com

ptg

916 Chapter 26 Apache: Setting Up a Web Server

A <Directory> container provides the same functionality as a .htaccess file. While an
administrator can use a <Directory> container in Apache configuration files, regular users
cannot. Regular users can use .htaccess files to control access to their own directories.

The directives in the <Directory> container shown in the following example apply
to the /var/www/html/corp directory hierarchy. The Deny directive denies access to
all clients, the Allow directive grants clients from the 192.168.10. subnet access,
and the AllowOverride directive (page 930) enables Apache to process directives in
.htaccess files in the hierarchy:

<Directory /var/www/html/corp>
 Deny from all
 Allow from 192.168.10.
 AllowOverride All
</Directory>

Contexts: server config, virtual host

<Files> Applies directives to specified ordinary files.

<Files directory> ... </Files>

where directory is an absolute pathname specifying the root of the directory hier-
archy that holds the ordinary files the directives in the container apply to. The
directory can include wildcards; a * does not match a /. This container is similar
to <Directory> but applies to ordinary files rather than to directories.

The following directive, from the Ubuntu apache2.conf file, denies access to all files
whose filenames start with .ht , meaning that Apache will not serve these files. The
tilde (~) changes how Apache interprets the following string. Without a tilde, the
string is a simple shell match that interprets shell special characters (page 256).
With a tilde, Apache interprets the string as a regular expression (page 1089):

<Files ~ "^\.ht">
 Order allow,deny
 Deny from all
</Files>

Contexts: server config, virtual host, directory, .htaccess

<IfModule> Applies directives if a specified module is loaded.

<IfModule [!]module-name> ... </IfModule>

where module-name is the name of the module (page 941) that is tested for. Apache
executes the directives in this container if module-name is loaded or with ! if
module-name is not loaded.

Apache will not start if you specify a configuration directive that is specific to a
module that is not loaded.

The following <IfModule> container, which is located in the Ubuntu file named
mods-available/mime_magic.conf, depends on the mod_mime_magic.c module

 From the Library of WoweBook.Com

ptg

Configuration Directives 917

being loaded. If this module is loaded, Apache runs the MIMEMagicFile directive,
which tells the mod_mime_magic.c module where its hints file is located.

<IfModule mod_mime_magic.c>
MIMEMagicFile /usr/share/file/magic.mime

</IfModule>

See page 933 for another example of an <IfModule> container.

Contexts: server config, virtual host, directory, .htaccess

<Limit> Limits access-control directives to specified HTTP methods.

<Limit method [method] ... > ... </Limit>

where method is an HTTP method. An HTTP method specifies which action is to be
performed on a URI. The most frequently used methods are GET, PUT, POST, and
OPTIONS; method names are case sensitive. GET (the default method) sends any
data indicated by the URI. PUT stores data from the body section of the communica-
tion at the specified URI. POST creates a new document containing the body of the
request at the specified URI. OPTIONS requests information about the capabilities
of the server.

The <Limit> container binds a group of access-control directives to specified HTTP
methods: Only methods named by this container are affected by this group of directives.

The following example disables HTTP uploads (PUTs) from systems that are not in
a subdomain of example.com:

<Limit PUT>
order deny,allow
deny from all
allow from .example.com
</Limit>

Contexts: server config, virtual host, directory, .htaccess

<LimitExcept> Limits access-control directives to all except specified HTTP methods.

<LimitExcept method [method] ... > ... </LimitExcept>

where method is an HTTP method. See <Limit> for a discussion of methods.

This container causes a group of access-control directives not to be bound to specified
HTTP methods. Thus methods not named in <LimitExcept> are affected by this
group of directives.

Use <LimitExcept> instead of <Limit>
caution It is safer to use the <LimitExcept> container than to use the <Limit> container, as the former pro-

tects against arbitrary methods. When you use <Limit>, you must be careful to name explicitly all
possible methods that the group of directives could affect.

It is safer still not to put access-control directives in any container.

 From the Library of WoweBook.Com

ptg

918 Chapter 26 Apache: Setting Up a Web Server

The access-control directives within the following <LimitExcept> container affect
HTTP methods other than GET, POST, and OPTIONS. You could put this con-
tainer in a <Directory> container to limit its scope:

<LimitExcept GET POST OPTIONS>
 Order deny,allow
 Deny from all
 </LimitExcept>

Contexts: server config, virtual host, directory, .htaccess

<Location> Applies directives to specified URIs.

<Location URI> ... </Location>

where URI points to content; it specifies a file or the root of the directory hierarchy
that the directives in the container apply to. While the <Directory> container points
within the local filesystem, <Location> points outside the local filesystem. The URI
can include wildcards; a * does not match a /.

The following <Location> container limits access to http://server/pop to clients
from the example.net domain, where server is the FQDN of the server:

<Location /pop>
 Order deny,allow
 Deny from all
 Allow from .example.net
</Location>

Contexts: server config, virtual host

<LocationMatch> Applies directives to URIs specified by a regular expression.

<LocationMatch regexp> ... </LocationMatch>

where regexp is a regular expression that matches one or more URIs. This container
works the same way as <Location>, except that it applies to any URIs that regexp
matches.

Contexts: server config, virtual host

<VirtualHost> Applies directives to a specified virtual host.

<VirtualHost addr[:port] [addr[:port]] ... > ... </VirtualHost>

where addr is the IP address (or FQDN, although it is not recommended) of the vir-
tual host (or * to represent all addresses) and port is the port that Apache listens on

Use <Location> with care

caution Use this powerful container with care. Do not use it to replace the <Directory> container: When
several URIs point to the same location in a filesystem, a client may be able to circumvent the
desired access control by using a URI not specified by this container.

 From the Library of WoweBook.Com

http://server/pop

ptg

Configuration Directives 919

for the virtual host. This directive does not control which addresses and ports
Apache listens on; use a Listen directive (page 910) for that purpose. This container
holds commands that Apache applies to a virtual host. For more information see
“NameVirtualHost” on page 920 and “Virtual Hosts” on page 937.

Context: server config

Directives II: Advanced Directives

This section discusses configuration directives that you may want to use after you
have gained some experience with Apache.

Directives That Control Processes

MaxClients Specifies the maximum number of child processes.

MaxClients num

where num is the maximum number of child processes (servers) Apache runs at one
time, including idle processes and processes that are serving requests. When Apache
is running num processes and there are no idle processes, Apache issues Server too
busy errors to new connections; it does not start new child processes. A value of
150 is usually sufficient, even for moderately busy sites.

Context: server config
Change in httpd.conf
Default: 256
Ubuntu: 150

MaxRequestsPerChild

Specifies the maximum number of requests a child process can serve.

MaxRequestsPerChild num

where num is the maximum number of requests a child process (server) can serve
during its lifetime. After a child process serves num requests, it does not process
any more requests but dies after it finishes processing its current requests. Apache
can start another child process to replace the one that dies. Additional requests are
processed by other processes from the server pool.

Set num to 0 to not set a limit on the number of requests a child can process, except
for the effects of MinSpareServers. By limiting the lives of processes, this directive
can prevent memory leaks from consuming too much system memory. However,
setting MaxRequestsPerChild to a too-small value can hurt performance by causing
Apache to create new child servers constantly.

Context: server config
Specify in httpd.conf
Default: 10000
Ubuntu: 0

 From the Library of WoweBook.Com

ptg

920 Chapter 26 Apache: Setting Up a Web Server

MaxSpareServers Specifies the maximum number of idle processes.

MaxSpareServers num

where num is the maximum number of idle processes (servers) Apache keeps running
to serve requests as they come in. Do not set this number too high, as each process
consumes system resources.

Context: server config
Specify in httpd.conf
Default: 10
Ubuntu: 10

MinSpareServers Specifies the minimum number of idle processes.

MinSpareServers num

where num is the minimum number of idle processes (servers) Apache keeps running
to serve requests as they come in. More idle processes occupy more computer
resources; increase this value for busy sites only.

Context: server config
Specify in httpd.conf
Default: 5
Ubuntu: 5

NameVirtualHost

Specifies the address and port for a name-based (host-by-name) virtual host.

NameVirtualHost addr[:port]

where addr is the IP address (or FQDN, although it is not recommended) that Apache
will use for serving a name-based virtual host and port is the port that Apache listens
on for that virtual host. Specify addr as * to cause the server to process requests on
all interfaces as name-based virtual hosts.

This directive does not control which addresses and ports Apache listens on; use a Lis-
ten directive (page 910) for that purpose. For more information see “<VirtualHost>”
on page 918 and “Virtual Hosts” on page 937.

Context: server config
Specify in sites-available/*
Default: none
Ubuntu: *

StartServers Specifies the number of child processes that Apache starts with.

StartServers num

where num is the number of child processes (servers) that Apache starts when it is
brought up. This value is significant only when Apache starts; MinSpareServers and
MaxSpareServers control the number of idle processes once Apache is up and run-
ning. Starting Apache with multiple servers ensures that a pool of servers is waiting
to serve requests immediately.

 From the Library of WoweBook.Com

ptg

Configuration Directives 921

Context: server config
Specify in httpd.conf
Default: 5
Ubuntu: 5 (prefork MPM) or 2 (worker MPM)

Networking Directives

HostnameLookups

Specifies whether Apache puts a client’s hostname or its IP address in the logs.

HostnameLookups On | Off | Double

On: Performs DNS reverse name resolution (page 831) to determine the hostname
of each client for logging purposes.

Off: Logs each client’s IP address.

Double: To provide greater security, performs DNS reverse name resolution
(page 831) to determine the hostname of each client, performs a forward DNS
lookup to verify the original IP address, and logs the hostname. Denies access if it
cannot verify the original IP address.

Contexts: server config, virtual host, directory
Specify in httpd.conf
Default: Off
Ubuntu: Off

Timeout Specifies the amount of time Apache waits for network operations to complete.

Timeout num

where num is the number of seconds that Apache waits for network operations to
finish. You can usually set this directive to a lower value; five minutes is a long time
to wait on a busy server. The Apache documentation says that the default is not
lower “because there may still be odd places in the code where the timer is not reset
when a packet is sent.”

Context: server config
Specify in httpd.conf
Default: 300
Ubuntu: 300

Lookups can consume a lot of system resources
tip Use the On and Double options with caution: They can consume a lot of resources on a busy sys-

tem. You can use a program such as logresolve to perform reverse name resolution offline for
statistical purposes.

If you perform hostname resolution offline, you run the risk that the name may have changed;
you usually want the name that was current at the time of the request. To minimize this problem,
perform the hostname resolution as soon as possible after writing the log.

 From the Library of WoweBook.Com

ptg

922 Chapter 26 Apache: Setting Up a Web Server

UseCanonicalName

Specifies the method the server uses to identify itself.

UseCanonicalName On | Off | DNS

On: Apache uses the value of the ServerName directive (page 912) as its identity.

Off: Apache uses the name and port from the incoming request as its identity.

DNS: Apache performs a DNS reverse name resolution (page 831) on the IP address
from the incoming request and uses the result as its identity. Rarely used.

This directive is important when a server has more than one name and needs to per-
form a redirect. Ubuntu does not set this directive because it does not set the Server-
Name directive (page 912). Once you set ServerName, change UseCanonicalName
to On. See page 935 for a discussion of redirects and this directive.

Contexts: server config, virtual host, directory
Specify in sites-available/*
Default: Off
Ubuntu: none

Logging Directives

ErrorLog Specifies where Apache sends error messages.

ErrorLog filename | syslog[:facility]

where filename specifies the name of the file, relative to ServerRoot (page 926), that
Apache sends error messages to. The syslog keyword specifies that Apache send
errors to syslogd (page 625); facility specifies which syslogd facility to use. The
default facility is local7.

Contexts: server config, virtual host
Specify in httpd.conf or sites-available/*
Default: logs/error_log
Ubuntu: /var/log/apache2/error.log

LogLevel Specifies the level of error messages that Apache logs.

LogLevel level

where level specifies that Apache log errors of that level and higher (more urgent).
Choose level from the following list, which is presented here in order of decreasing
urgency and increasing verbosity:

emerg System unusable messages
alert Need for immediate action messages
crit Critical condition messages
error Error condition messages
warn Nonfatal warning messages

 From the Library of WoweBook.Com

ptg

Configuration Directives 923

notice Normal but significant messages
info Operational messages and recommendations
debug Messages for finding and solving problems

Contexts: server config, virtual host
Specify in httpd.conf or sites-available/*
Default: warn
Ubuntu: warn

Directives That Control Content

AddHandler Creates a mapping between filename extensions and a builtin Apache handler.

AddHandler handler extension [extension] ...

where handler is the name of a builtin handler and extension is a filename exten-
sion that maps to the handler. Handlers are actions that are built into Apache and
are directly related to loaded modules. Apache uses a handler when a client requests
a file with a specified filename extension.

For example, the following AddHandler directive causes Apache to process files
that have a filename extension of .cgi with the cgi-script handler:

AddHandler cgi-script .cgi

See “Type Maps” on page 935 for another example of an AddHandler directive.

Contexts: server config, virtual host, directory, .htaccess
Specify in httpd.conf
Default: none
Ubuntu: type-map var

Alias Maps a URI to a directory or file.

Alias alias pathname

where alias must match part of the URI that the client requested to invoke the
alias. The pathname is the absolute pathname of the target of the alias, usually a
directory.

For example, the following alias causes Apache to serve /usr/local/pix/milk.jpg
when a client requests http://www.example.com/pix/milk.jpg:

Alias /pix /usr/local/pix

In some cases, you need to use a <Directory> container (page 915) to grant access to
aliased content.

Contexts: server config, virtual host
Specify in httpd.conf, sites-available/*, or mods-available/alias.conf
Default: None
Ubuntu: /icons/ /usr/share/apache2/icons/ and /doc/ /usr/share/doc/

 From the Library of WoweBook.Com

http://www.example.com/pix/milk.jpg

ptg

924 Chapter 26 Apache: Setting Up a Web Server

ErrorDocument Specifies the action Apache takes when the specified error occurs.

ErrorDocument code action

where code is the error code (page 948) that this directive defines a response for and
action is one of the following:

string: Defines the message that Apache returns to the client.

absolute pathname: Points to a local script or other content that Apache redirects
the client to.

URI: Points to an external script or other content that Apache redirects the client to.

When you do not specify this directive for a given error code, Apache returns a
hardcoded error message when that error occurs.

Some examples of ErrorDocument directives follow:

ErrorDocument 403 "Sorry, access is forbidden."
ErrorDocument 403 /cgi-bin/uh-uh.pl
ErrorDocument 403 http://errors.example.com/not_allowed.html

Contexts: server config, virtual host, directory, .htaccess
Specify in httpd.conf
Default: none; Apache returns hardcoded error messages
Ubuntu: none (but see the comments in apache2.conf)

IndexOptions Specifies how Apache displays directory listings.

IndexOptions [±]option [[±]option] ...

where option can be any combination of the following:

DescriptionWidth=n: Sets the width of the description column to n characters. Use

* in place of n to accommodate the widest description.

FancyIndexing: In directory listings, displays column headers that are links. When
you click one of these links, Apache sorts the display based on the content of the
column. Clicking the link a second time reverses the order.

FoldersFirst: Sorts the listing so that directories come before plain files. Use only
with FancyIndexing.

HTMLTable: Displays a directory listing in a table.

IconsAreLinks: Makes the icons clickable. Use only with FancyIndexing.

IconHeight=n: Sets the height of icons to n pixels. Use only with IconWidth.

IconWidth=n: Sets the width of icons to n pixels. Use only with IconHeight.

IgnoreCase: Ignores case when sorting names.

IgnoreClient: Ignores options the client supplied in the URI.

 From the Library of WoweBook.Com

ptg

Configuration Directives 925

NameWidth=n: Sets the width of the filename column to n characters. Use * in
place of n to accommodate the widest filename.

ScanHTMLTitles: Extracts and displays titles from HTML documents. Use only
with FancyIndexing. Not normally used because it is CPU and disk intensive.

SuppressColumnSorting: Suppresses clickable column headings that can be used for
sorting columns. Use only with FancyIndexing.

SuppressDescription: Suppresses file descriptions. Use only with FancyIndexing.

SuppressHTMLPreamble: Suppresses the contents of the file specified by the Header-
Name directive, even if that file exists.

SuppressIcon: Suppresses icons. Use only with FancyIndexing.

SuppressLastModified: Suppresses the modification date. Use only with Fancy-
Indexing.

SuppressRules: Suppresses horizontal lines. Use only with FancyIndexing.

SuppressSize: Suppresses file sizes. Use only with FancyIndexing.

VersionSort: Sorts version numbers (in filenames) in a natural way; character
strings, except for substrings of digits, are not affected.

As an example, suppose a client requests a URI that points to a directory (such as
http://www.example.com/support/) and none of the files specified by the Directory-
Index directive (page 914) is present in that directory. If the directory hierarchy is
controlled by a .htaccess file and AllowOverride (page 930) has been set to allow
indexes, then Apache displays a directory listing according to the options specified
by this directive.

When this directive appears more than once within a directory, Apache merges the
options from the directives. Use + and – to merge IndexOptions options with
options from higher-level directories. (Unless you use + or – with all options,
Apache discards any options set in higher-level directories.) For example, the fol-
lowing directives and containers set the options for /custsup/download to Version-
Sort; Apache discards FancyIndexing and IgnoreCase in the download directory
because there is no + or – before VersionSort in the second <Directory> container:

<Directory /custsup>
 IndexOptions FancyIndexing
 IndexOptions IgnoreCase
</Directory

<Directory /custsup/download>
 IndexOptions VersionSort
</Directory>

Because + appears before VersionSort, the directives and containers on the next page set
the options for /custsup/download to FancyIndexing, IgnoreCase, and VersionSort.

 From the Library of WoweBook.Com

http://www.example.com/support/

ptg

926 Chapter 26 Apache: Setting Up a Web Server

<Directory /custsup>
 IndexOptions FancyIndexing
 IndexOptions IgnoreCase
</Directory

<Directory /custsup/download>
 IndexOptions +VersionSort
</Directory>

Contexts: server config, virtual host, directory, .htaccess
Specify in httpd.conf
Default: none; lists only filenames
Ubuntu: FancyIndexing VersionSort HTMLTable NameWidth=*

 DescriptionWidth=* Charset=UTF-8

ServerRoot Specifies the root directory for server files (not content).

ServerRoot directory

where directory specifies the pathname of the root directory for the files that make up
the server. Apache prepends directory to relative pathnames in httpd.conf. This direc-
tive does not specify the location of the content that Apache serves; the DocumentRoot
directive (page 913) performs that function. Do not change this value unless you move
the server files.

Context: server config
Specify in httpd.conf
Default: /usr/local/apache
Ubuntu: /etc/apache2

ServerTokens Specifies the server information that Apache returns to a client.

ServerTokens Prod | Major | Minor | Min | OS | Full

Prod: Returns the product name: Apache. Also ProductOnly.

Major: Returns the major release number of the server: Apache/2.

Minor: Returns the major and minor release numbers of the server: Apache/2.2.

Min: Returns the complete version: Apache/2.2.4. Also Minimal.

OS: Returns the name of the operating system and the complete version:
Apache/2.2.4 (Ubuntu). Provides less information that might help a malicious user
than Full does.

Full: Same as OS, except that Full also sends the names and versions of non-ASF
modules: Apache/2.2.4 (Ubuntu) PHP/5.1.2.

Unless you want clients to know the details of the software you are running, set
ServerTokens to reveal as little as possible.

Context: server config
Specify in httpd.conf
Default: Full
Ubuntu: Full

 From the Library of WoweBook.Com

ptg

Configuration Directives 927

ServerSignature Adds a line to server-generated pages.

ServerSignature On | Off | EMail

On: Turns the signature line on. The signature line contains the server version as
specified by the ServerTokens directive (discussed on the precedig page) and the
name specified by the <VirtualHost> container (page 918).

Off: Turns the signature line off.

EMail: To the signature line, adds a mailto: link to the server email address. This
option produces output that can attract spam. See ServerAdmin (page 912) for
information on specifying an email address.

Contexts: server config, virtual host, directory, .htaccess
Specify in httpd.conf or sites-available/*
Default: Off
Ubuntu: On

Configuration Directives

Group Sets the GID of the processes that run the servers.

Group #groupid | groupname

where groupid is a GID value, preceded by #, and groupname is the name of a
group. The processes (servers) that Apache spawns are run as the group specified by
this directive. See the User directive (page 929) for more information.

Context: server config
Specify in httpd.conf
Default: #–1
Ubuntu: www-data

Include Loads directives from files.

Include filename | directory

where filename is the relative pathname of a file that contains directives. Apache
prepends ServerRoot (page 926) to filename. The directives in filename are
included in the file holding this directive at the location of the directive. Because
filename can include wildcards, it can specify more than one file.

The directory is the relative pathname that specifies the root of a directory hierar-
chy that holds files containing directives. Apache prepends ServerRoot to directory.
The directives in ordinary files in this hierarchy are included in the file holding this
directive at the location of the directive. The directory can include wildcards.

Ubuntu Linux categorizes and splits Apache configuration information into files
and directories related to virtual hosts, server configuration, ports, modules, and
miscellaneous configuration options. These files are incorporated into the main
apache2.conf file using Include directives; see page 906 for more information.

 From the Library of WoweBook.Com

ptg

928 Chapter 26 Apache: Setting Up a Web Server

Contexts: server config, virtual host, directory
Specify anywhere
Default: none
Ubuntu:/etc/apache2/mods-enabled/*.load

/etc/apache2/mods-enabled/*.conf
/etc/apache2/httpd.conf
/etc/apache2/ports.conf
/etc/apache2/conf.d/
/etc/apache2/sites-enabled/

LoadModule Loads a module.

LoadModule module filename

where module is the name of an external DSO module and filename is the relative
pathname of the named module. Apache prepends ServerRoot (page 926) to filename
and loads the external module specified by this directive. Use a2enmod (page 905) to
enable modules. For more information refer to “Modules” on page 941.

Context: server config
Specify in mods-available/*.load
Default: none; nothing is loaded by default if this directive is omitted
Ubuntu: see the *.load files in the mods-enabled directory

Options Controls server features by directory.

Options [±]option [[±]option ...]

This directive controls which server features are enabled for a directory hierarchy.
The directory hierarchy is specified by the container this directive appears in. A + or
the absence of a – turns an option on, and a – turns it off.

The option may be one of the following:

None—None of the features this directive can control are enabled.

All—All of the features this directive can control are enabled, except for MultiViews,
which you must explicitly enable.

ExecCGI—Apache can execute CGI scripts (page 942).

FollowSymLinks—Apache follows symbolic links.

Includes—Permits SSIs (server-side includes). SSIs are containers embedded in
HTML pages that are evaluated on the server before the content is passed to the cli-
ent.

IncludesNOEXEC—The same as Includes but disables the #exec and #exec cgi
commands that are part of SSIs. Does not prevent the #include command from ref-
erencing CGI scripts.

Indexes—Generates a directory listing if DirectoryIndex (page 914) is not set.

 From the Library of WoweBook.Com

ptg

Configuration Directives 929

MultiViews—Allows MultiViews (page 936).

SymLinksIfOwnerMatch—The same as FollowSymLinks but follows the link only
if the file or directory being pointed to has the same owner as the link.

The following Options directive from the Ubuntu sites-available/default file sets the
Indexes, FollowSymLinks, and MultiViews options and, because the <Directory>
container specifies the /var/www directory hierarchy (the document root), affects
all content:

<Directory /var/www/>
Options Indexes FollowSymLinks MultiViews

...

Context: directory
Specify in httpd.conf or sites-available/*
Default: All
Ubuntu: various

ScriptAlias Maps a URI to a directory or file and declares the target to be a server (CGI) script.

ScriptAlias alias pathname

where alias must match part of the URI the client requested to invoke the ScriptAlias.
The pathname is the absolute pathname of the target of the alias, usually a directory.
Similar to the Alias directive, this directive specifies the target is a CGI script
(page 942).

The following ScriptAlias directive from the Ubuntu default file maps client
requests that include /cgi-bin/ to the /var/lib/cgi-bin directory (and indicates that
these requests will be treated as CGI requests):

ScriptAlias /cgi-bin/ "/usr/lib/cgi-bin/"

Contexts: server config, virtual host
Specify in sites-available/*
Default: none
Ubuntu: /cgi-bin/ /usr/lib/cgi-bin/

User Sets the UID of the processes that run the servers.

User #userid | username

where userid is a UID value, preceded by #, and username is the name of a local user.
The processes that Apache spawns are run as the user specified by this directive.

Do not set User to root or 0
security For a more secure system, do not set User to root or 0 (zero) and do not allow the www-data user

to have write access to the DocumentRoot directory hierarchy (except as needed for storing data),
especially not to configuration files.

 From the Library of WoweBook.Com

ptg

930 Chapter 26 Apache: Setting Up a Web Server

Apache must start with root privileges to listen on a privileged port. For reasons of
security, Apache’s child processes (servers) run as nonprivileged users. The default
UID of –1 does not map to a user under Ubuntu Linux. Instead, Ubuntu’s apache2
package creates a user named www-data during installation and sets User to that user.

Context: server config
Specify in httpd.conf
Default: #–1
Ubuntu: www-data via the APACHE_RUN_USER variable (page 933)

Security Directives

Allow Specifies which clients can access specified content.

Allow from All | host [host ...] | env=var [env=var ...]

This directive, which must be written as Allow from, grants access to a directory
hierarchy to the specified clients. The directory hierarchy is specified by the container
or .htaccess file this directive appears in.

All: Serves content to any client.

host: Serves content to the client(s) specified by host, which can take several forms:
an FQDN, a partial domain name (such as example.com), an IP address, a partial IP
address, or a network/netmask pair.

var: Serves content when the environment variable named var is set. You can set a vari-
able with the SetEnvIf directive. See the Order directive (page 931) for an example.

Contexts: directory, .htaccess
Specify in httpd.conf or sites-available/*
Default: none; default behavior depends on the Order directive
Ubuntu: various

AllowOverride Specifies whether Apache examines .htaccess files and which classes of directives in
those files it processes.

AllowOverride All | None | directive-class [directive-class ...]

This directive specifies whether Apache examines .htaccess files in the directory
hierarchy specified by its container. If Apache does examine .htaccess files, this
directive specifies which classes of directives within .htaccess files Apache processes.

All: Processes all classes of directives in .htaccess files.

None: Ignores directives in .htaccess files. However, Apache will still serve the con-
tent of .htaccess files, possibly exposing sensitive information. This choice does not
affect .htpasswrd files. The example in the description of the <Files> container
(page 916) shows how to prevent Apache from serving the content of files whose
names begin with .ht.

The directive-class is one of the following directive class identifiers:

 From the Library of WoweBook.Com

ptg

Configuration Directives 931

AuthConfig: Class of directives that control authorization (AuthName, AuthType,
Require, and so on). This class is used mostly in .htaccess files to require a username
and password to access the content. For more information refer to “Authentication
Modules and .htaccess” on page 945.

FileInfo: Class of directives that controls document types (DefaultType, Error-
Document, SetHandler, and so on).

Indexes: Class of directives relating to directory indexing (DirectoryIndex, Fancy-
Indexing, IndexOptions, and so on).

Limit: Class of client-access directives (Allow, Deny, and Order).

Options: Class of directives controlling directory features.

Context: directory
Specify in httpd.conf or sites-available/*
Default: All
Ubuntu: various

Deny Specifies which clients are not allowed to access specified content.

Deny from All | host [host ...] | env=var [env=var ...]

This directive, which must be written as Deny from, denies access to a directory
hierarchy to the specified clients. The directory hierarchy is specified by the con-
tainer or .htaccess file this directive appears in. See the Order directive (next) for an
example.

All: Denies content to all clients.

host: Denies content to the client(s) specified by host, which can take several forms:
an FQDN, a partial domain name (such as example.com), an IP address, a partial IP
address, or a network/netmask pair.

var: Denies content when the environment variable named var is set. You can set a
variable with the SetEnvIf directive.

Contexts: directory, .htaccess
Specify in mods-available/proxy.conf, httpd.conf, and sites-available/*
Default: none
Ubuntu: All

Order Specifies the default access and the order in which Allow and Deny directives are
evaluated.

Order Deny,Allow | Allow,Deny

Deny,Allow: Allows access by default; denies access only to clients specified in Deny
directives. (First evaluates Deny directives, then evaluates Allow directives.)

Allow,Deny: Denies access by default; allows access only to clients specified in
Allow directives. (First evaluates Allow directives, then evaluates Deny directives.)

 From the Library of WoweBook.Com

ptg

932 Chapter 26 Apache: Setting Up a Web Server

There must not be SPACEs on either side of the comma. Access defaults to the second
entry in the pair (Deny,Allow defaults to Allow) if there is no Allow from or Deny
from directive that matches the client. If a single Allow from or Deny from directive
matches the client, that directive overrides the default. If multiple Allow from and
Deny from directives match the client, Apache evaluates the directives in the order
specified by the Order directive; the last match takes precedence.

Access granted or denied by this directive applies to the directory hierarchy speci-
fied by the container or .htaccess file this directive appears in. Although Ubuntu
Linux has a default of Allow,Deny, which denies access to all clients not specified by
Allow directives, the next directive in sites-available/default, Allow from all, grants
access to all clients:

Order allow,deny
Allow from all

You can restrict access by specifying Deny,Allow to deny all access and then specify-
ing only those clients you want to grant access to in an Allow directive. The follow-
ing directives grant access to clients from the example.net domain only and would
typically appear within a <Directory> container (page 915):

Order deny,allow
Deny from all
Allow from .example.net

Contexts: directory, .htaccess
Specify in httpd.conf or sites-available/*
Default: Deny,Allow
Ubuntu: Allow,Deny (for /var/www)

Configuration Files

This section describes the apache2.conf and default configuration files.

The Ubuntu apache2.conf File

This section highlights some of the important features of the Ubuntu version of the
/etc/apache2/apache2.conf file, which is based on the httpd.conf file distributed by
Apache. The version of this heavily commented file that is distributed by Apache is
broken into three parts, of which Ubuntu uses the first (Section 1: Global Environ-
ment) as apache2.conf. Ubuntu distributes the contents of the other two sections
among other configuration files, including the sites-available/default configuration
file, which is described in the next section.

Include directives See page 906 for information on Include directives in the apache2.conf file.

ServerRoot The ServerRoot directive (page 926) is set to /etc/apache2, which is the pathname
that Apache prepends to relative pathnames in the configuration files:

ServerRoot "/etc/apache2"

 From the Library of WoweBook.Com

ptg

Configuration Files 933

<IfModule> The <IfModule> containers (page 916) allow you to use the same apache2.conf file
with different multiprocessing modules (MPMs, page 947). Apache executes the
directives in an <IfModule> container only if the specified module is loaded. The
apache2.conf file holds two <IfModule> containers that configure Apache differ-
ently, depending on which module—prefork or worker—is loaded. Ubuntu ships
with the more efficient worker MPM loaded.

Server-Pool Size Regulation (MPM specific)
...
<IfModule mpm_prefork_module>

StartServers 5
MinSpareServers 5
MaxSpareServers 10
MaxClients 150
MaxRequestsPerChild 0

</IfModule>

<IfModule mpm_worker_module>
StartServers 2
MinSpareThreads 25
MaxSpareThreads 75
ThreadLimit 64
ThreadsPerChild 25
MaxClients 150
MaxRequestsPerChild 0

</IfModule>

For more information refer to “Multiprocessing Modules (MPMs)” on page 947.

User The User directive causes Apache to run as the user specified by the variable named
APACHE_RUN_USER:

User ${APACHE_RUN_USER}

In the /etc/apache2/envvars file, the APACHE_RUN_USER variable is assigned a
value of www-data:

export APACHE_RUN_USER=www-data

TypesConfig The TypesConfig directive specifies the file that defines the MIME (page 1160)
types that Apache uses for content negotiation (page 935). It is used to match file-
name extensions with MIME types (e.g., .png with image/png).

TypesConfig /etc/mime.types

DefaultType Defines the content-type Apache sends if it cannot determine a type.

DefaultType text/plain

Do not modify apache2.conf
tip Typically, when you configure Apache, you do not make changes to apache2.conf; instead, you

modify files that are specified in Include directives (page 906). You can also use the configuration
tools described on page 905. This setup allows updates to Apache to change apache2.conf with-
out affecting the server.

 From the Library of WoweBook.Com

ptg

934 Chapter 26 Apache: Setting Up a Web Server

Modules Instead of having a lot of LoadModule directives (page 928) in the apache2.conf
file, Ubuntu puts the following Include directives in that file:

Include /etc/apache2/mods-enabled/*.load
Include /etc/apache2/mods-enabled/*.conf

These directives include all the *.load and *.conf files in the mods-enabled direc-
tory. For more information on how to enable modules, see the discussion of a2enmod
on page 905.

There are many more directives in the apache2.conf file; the comments in the file
provide a guide as to what they do. There is nothing here you need to change as you
get started using Apache.

The Ubuntu default Configuration File

This section highlights some of the important features of the Ubuntu default config-
uration file, which is located in the /etc/apache2/sites-available directory.

ServerAdmin and
ServerName

As Ubuntu Linux is shipped, the ServerAdmin directive is set to webmaster@localhost.
Add a ServerName directive and change ServerAdmin to a useful value as suggested
under ServerAdmin (page 912) and ServerName (page 912).

DocumentRoot The DocumentRoot directive (page 913) appears as follows:

DocumentRoot /var/www/

Modify this directive only if you want to put content somewhere other than in the
/var/www directory.

<Directory> The following <Directory> container (page 915) sets up a restrictive environment
for the entire local filesystem (specified by /):

<Directory />
 Options FollowSymLinks
 AllowOverride None
</Directory>

The Options directive (page 928) allows Apache to follow symbolic links but disal-
lows many options. The AllowOverride directive (page 930) causes Apache not to
process directives in .htaccess files. You must explicitly enable less restrictive
options if you want them, but be aware that doing so can expose the root filesystem
and compromise system security.

Next, another <Directory> container sets up less restrictive options for the Document-
Root (/var/www). The code in default is interspersed with many comments. Without
the comments it looks like this:

<Directory /var/www/>
Options Indexes FollowSymLinks MultiViews
AllowOverride None
Order allow,deny
allow from all

</Directory>

 From the Library of WoweBook.Com

ptg

Advanced Configuration 935

The Indexes option in the Options directive allows Apache to display directory list-
ings. The Order (page 931) and Allow (page 930) directives combine to allow
requests from all clients. This container is slightly less restrictive than the preceding
one, although it still does not allow Apache to follow directives in .htaccess files.

Advanced Configuration

This section describes how to configure some advanced features of Apache.

Redirects

Apache can respond to a request for a URI by asking the client to request a different
URI. This response is called a redirect. A redirect works because redirection is part
of the HTTP implementation: Apache sends the appropriate response code and the
new URI, and a compliant browser requests the new location.

The Redirect directive can establish an explicit redirect that sends a client to a dif-
ferent page when a Web site is moved. Or, when a user enters the URI of a directory
in a browser but leaves off the trailing slash, Apache can automatically redirect the
client to the same URI terminated with a slash.

UseCanonicalName The ServerName directive (page 912), which establishes the name of the server, and
the UseCanonicalName directive (page 922) are both important when a server has
more than one name and needs to perform an automatic redirect. For example,
assume the server with the name zach.example.com and the alias www.example.com
has ServerName set to www.example.com. When a client specifies a URI of a direc-
tory but leaves off the trailing slash (zach.example.com/dir), Apache has to perform a
redirect to determine the URI of the requested directory. When UseCanonicalName is
set to On, Apache uses the value of ServerName and returns www.example.com/dir/.
With UseCanonicalName set to Off, Apache uses the name from the incoming request
and returns zach.example.com/dir/.

Content Negotiation

Apache can serve multiple versions of the same page, using a client’s preference to
determine which version to send. The process Apache uses to determine which ver-
sion of a page (file) to send is called content negotiation. Apache supports two
methods of content negotiation: MultiViews search and type maps, which can work
together.

Type Maps

The following AddHandler directive from apache2.conf tells Apache to use any file-
name ending in .var as a type map:

AddHandler type-map var

 From the Library of WoweBook.Com

www.example.com
www.example.com
www.example.com/dir/

ptg

936 Chapter 26 Apache: Setting Up a Web Server

To see how type maps work, create the following files in /var/www:

$ cat /var/www/index.html.en
<html><body><h1>Hello</h1></body></html>

$ cat /var/www/index.html.fr
<html><body><h1>Bonjour</h1><body></html>

$ cat /var/www/index.html.var
URI: index.html.en
Content-Language: en
Content-type: text/html; charset=ISO-8859-1

URI: index.html.fr
Content-Language: fr
Content-type: text/html; charset=ISO-8859-1

If your browser’s preferred language is set to English (en), it will display the Hello
page when you browse to http://localhost/index.html.var. If your browser’s pre-
ferred language is set to French (fr), it will display the Bonjour page. (With the
MultiViews option turned on, as it is by default, the browser displays the correct
page when you browse to http://localhost. See the next section.) You can change the
default language in Firefox by selecting Edit Preferences from the menubar, clicking
the Advanced icon and then the General tab, and finally clicking Choose from the
Languages frame. Select a language from the Select a language to add combo box, if
necessary, and then move the preferred language to the top of the list. In the exam-
ple, the charset assignments are not necessary. However, they would be helpful if you
were sending pages using different encodings such as English, Russian, and Korean.

Type maps are used for more than selecting among different languages. Instead of
matching Content-Language as in the preceding example, the map could match
Content-type and send jpeg or png images depending on how the browser’s prefer-
ences are set.

MultiViews

When you set the MultiViews option on a directory, Apache attempts to deliver the
correct page when a requested resource does not exist. The following lines in the
sites-available/default file set MultiViews for the document root (/):

<Directory /var/www/>
Options Indexes FollowSymLinks MultiViews

...

To see how MultiViews work, remove the /var/www/index.html.var type map file
that you created in the preceding section. Now browse to http://localhost. The
proper language page is displayed, but why?

When a browser sends Apache a request for a directory, Apache looks for a file
named index.html in that directory. In the example, Apache does not find the file. If
MultiViews is enabled, as it is by default, Apache looks for files named index.html.*.

 From the Library of WoweBook.Com

http://localhost
http://localhost/index.html.var
http://localhost

ptg

Advanced Configuration 937

In the example it finds index.html.en and index.html.fr. Apache effectively creates a
type map on the fly, mapping the index.html.* files to various languages, and sends
its best guess as to the page you want.

MultiViews provides an easy way to serve multiple versions of the same file without
having to create a type map. However if you require finer-grained control over
which version of a resource should be sent, type maps are a better solution.

Server-Generated Directory Listings (Indexing)

When a client requests a directory, the Apache configuration determines what is
returned to the client. Apache can return a file as specified by the DirectoryIndex direc-
tive (page 914), a directory listing if no file matches DirectoryIndex and the Options
Indexes directive (page 928) is set, or an error message if no file matches Directory-
Index and Options Indexes is not set. Figure 26-1 shows the server-generated directory
listing that results from pointing a local browser at http://localhost/doc/ (you must
include the trailing slash) on the server system (assuming the default configuration).

Virtual Hosts

Apache supports virtual hosts, which means that one instance of Apache can
respond to requests directed to multiple IP addresses or hostnames as though it
were multiple servers. Each IP address or hostname can then provide different con-
tent and be configured differently.

Setting Up a Virtual Host

To improve portability and make software upgrades easier, Ubuntu provides two directo-
ries that can hold the code to support virtual hosts. The apache2.conf file has an Include
directive (page 906) that incorporates the files in the /etc/apache2/sites-enabled
directory.

To create a new virtual host, you can create a file that defines the virtual host in
/etc/apache2/sites-available. Then run a2ensite (page 906) with the name of the file

Figure 26-1 A server-generated directory listing

 From the Library of WoweBook.Com

http://localhost/doc/

ptg

938 Chapter 26 Apache: Setting Up a Web Server

you created as an argument and reload Apache. Running a2ensite enables the vir-
tual host by creating a link in /etc/apache2/sites-enabled.

Types of Virtual Hosts

There are two types of virtual hosts: host-by-name (also called host-based) and host-
by-IP. Host-by-name relies on the FQDN the client uses in its request to Apache—
for example, www.example.com versus www2.example.com. Host-by-IP examines
the IP address the host resolves as and responds according to that match.

Host-by-name is handy if there is only one IP address, but Apache must support
multiple FQDNs. Although you can use host-by-IP if a given Web server has aliases,
Apache should serve the same content regardless of which name is used.

The VirtualHost container and the ServerName directive control which kind of vir-
tual host you are running. The NameVirtualHost directive specifies which IP
address supports host-by-name virtual hosting. You can specify many virtual hosts
for a single instance of Apache.

The default Virtual Host

Ubuntu ships with the host-by-name virtual host named default defined in
/etc/apache2/sites-available/default. This virtual host displays a server-generated
directory listing (page 937) of /var/www. This directory includes the apache2-
default directory. When you click this directory, Apache serves the index.html file,
which displays It works! If you uncomment the RewriteMatch directive in the
default file, Apache serves the apache2-default directory in response to a request for
/ and automatically displays It works! Alternatively, if you put your content in
/var/www, the default configuration will serve your site as you would expect. It is
safe to remove the apache2-default directory.

Examples

The following examples of host-by-name virtual hosting use wildcards (*) to remain
as flexible as possible. You may want to replace the wildcards with the IP address of
the server for more precise control when Apache is serving multiple virtual hosts.

The first <VirtualHost> container sets up host-by-name for the site named example.com.
This virtual host handles requests that are directed to example.com. The ServerAlias
directive allows it to also process requests directed to www.example.com.

<VirtualHost *>
ServerName example.com
ServerAlias www.example.com
ServerAdmin webmaster@example.com
DocumentRoot /var/www/example.com
CustomLog /var/log/apache2/example.com.log combined
ErrorLog /var/lo, e2/example.com.err

</VirtualHost>

 From the Library of WoweBook.Com

www.example.com
www2.example.com
www.example.com

ptg

Advanced Configuration 939

The next example is similar to the previous one. It adds a Directory directive that
prevents remote users (users not coming from the 192.168. subnet) from accessing
the Web site.

<VirtualHost *>
ServerName intranet.example.com
ServerAdmin webmaster@example.com
DocumentRoot /var/www
ErrorLog /var/log/apache2/intra.error_log
CustomLog /var/log/apache2/example.com.log combined
<Directory /var/www>

Order deny,allow
Deny from all
Allow from 192.168. # allow from private subnet only

</Directory>
</VirtualHost>

The next example sets up two virtual hosts. The VirtualHost containers accept all
traffic directed to the server by specifying *. The ServerName directives accept traffic
for sam.example.com (or the alias www.example.com/sam) and mail.example.com.
The first virtual host serves documents from Sam’s public_html directory; the second
is a Webmail server with its content at /var/www/squirrelmail. This example works
because all three addresses resolve to the IP address of the server.

NameVirtualHost *:
<VirtualHost *>

ServerName sam.example.com
ServerAdmin webmaster@example.com
DocumentRoot /home/sam/public_html

</VirtualHost>

<VirtualHost *:>
ServerName mail.example.com
ServerAdmin webmaster2@example.com
DocumentRoot /var/www/squirrelmail

</VirtualHost>

If the user specifies an IP address and not a URI, that address may match more than
one of the virtual hosts, as in the example. In this case, Apache serves the virtual
host that best matches. If none of the virtual host addresses matches the IP address
better than another, Apache serves the first virtual host. In the preceding example,
both virtual hosts match an IP address the same way; neither is a better match, so
Apache serves the first virtual host (sam.example.com). If mail.example.com was
defined as <VirtualHost 192.168.1.102> and a user specified that IP address,
Apache would serve mail.example.com because it is a better match for the IP
address than the wildcard that the other virtual host specifies.

The next example shows VirtualHost containers for a host-by-IP server. The exam-
ple assumes that 111.111.0.0 and 111.111.0.1 point to the local server. Here each
virtual host has its own IP/port combination. The third virtual host is distinguished
from the first by the port that a request comes in on.

 From the Library of WoweBook.Com

www.example.com/sam

ptg

940 Chapter 26 Apache: Setting Up a Web Server

<VirtualHost 111.111.0.0:80>
DocumentRoot /var/www/www0

</VirtualHost>

<VirtualHost 111.111.0.1:80>
DocumentRoot /var/www/www1

</VirtualHost>

<VirtualHost 111.111.0.0:8080>
DocumentRoot /var/www/www2
Listen 8080 # this directive should go in ports.conf

</VirtualHost>

The final example sets up a virtual server for Webmail that can be accessed only
over SSL. It would be appropriate to put the code for this example in a file named
/etc/apache2/sites-available/mail.example.com. To use this example you must cre-
ate an SSL certificate (page 943), enable the ssl module (included in the default
Apache installation) with a2enmod (page 905), and enable the virtual domain using
a2ensite (page 906).

<VirtualHost mail.example.com:80>
 Redirect permanent / https://mail.example.com/
</VirtualHost>
<VirtualHost mail.example.com:443>

ServerName mail.example.com
ServerAdmin postmaster@example.com
DocumentRoot /var/www/mail.example.com
ErrorLog /var/log/apache2/mail.example.com.err
CustomLog /var/log/apache2/mail.example.com.log combined
SSLEngine On
SSLCertificateFile /etc/apache2/ssl/apache.pem

</VirtualHost>

Troubleshooting

The apache2 init script checks the syntax of the Apache configuration files and
logs an error if there is a problem. You can also call apache2ctl directly to check the
syntax:

$ apache2ctl configtest
Syntax OK

Once you start the apache2 daemon, you can confirm that Apache is working cor-
rectly by pointing a browser on the local system at http://localhost/. From a remote
system, use http://server/, substituting the hostname of the server for server. In
response, Apache displays a directory listing for /var/www unless you have added
an index file or changed the default virtual host.

 From the Library of WoweBook.Com

http://localhost/
http://server/

ptg

Modules 941

If the browser does not display the directory listing, it will display one of two
errors: Connection refused or an error page. If you get a Connection refused error,
make sure that port 80 is not blocked by a firewall (page 901) and check that the
server is running:

$ ps -ef | grep apache2
max 3479 12869 0 16:55 pts/1 00:00:00 grep apache2
root 5031 1 0 Mar26 ? 00:00:00 /usr/sbin/apache2 -k start
www-data 5032 5031 0 Mar26 ? 00:00:00 /usr/sbin/apache2 -k start
www-data 5088 5031 0 Mar26 ? 00:00:00 /usr/sbin/apache2 -k start
www-data 5092 5031 0 Mar26 ? 00:00:00 /usr/sbin/apache2 -k start

If the server is running, confirm that you did not specify a port other than 80 in a
Listen directive. If you did, the URI you specify in the browser must reflect this port
number (http://localhost:port specifies port port). Otherwise, check the error log
(/var/log/httpd/error_log) for information about what is not working.

To verify that the browser is not at fault, use telnet to try to connect to port 80 of
the server:

$ telnet www.example.com 80
Trying 192.0.34.166...
Connected to www.example.com.
Escape character is '^]'.
CONTROL-]
telnet> quit
Connection closed.

If telnet displays Connection refused, it means that the local system cannot connect
to the server.

Modules

Apache is a skeletal program that relies on external modules, called dynamic shared
objects (DSOs), to provide most of its functionality. In addition to the modules
included with Ubuntu Linux, many other modules are available. See
httpd.apache.org/modules for more information. See a2enmod on page 905 for
information on enabling modules.

The names of the files that hold modules start with the prefix libapache2-mod-. The
following command displays a complete list of modules. You can pipe the list through
grep to find the module you want. See page 530 for information on apt-cache.

Configuring modules

tip You can configure some modules by editing their corresponding *.conf file in the mods-available
directory.

 From the Library of WoweBook.Com

http://localhost:port

ptg

942 Chapter 26 Apache: Setting Up a Web Server

$ apt-cache search libapache2-mod
libapache2-mod-auth-kerb - apache2 module for Kerberos authentication
libapache2-mod-auth-mysql - Apache 2 module for MySQL authentication
libapache2-mod-auth-pam - module for Apache2 which authenticate using PAM
libapache2-mod-auth-pgsql - Module for Apache2 which provides pgsql authentication
libapache2-mod-auth-plain - Module for Apache2 which provides plaintext authentication
libapache2-mod-auth-sys-group - Module for Apache2 which checks user against system group
libapache2-mod-macro - Create macros inside apache2 config files
libapache2-mod-perl2 - Integration of perl with the Apache2 web server
libapache2-mod-perl2-dev - Integration of perl with the Apache2 server - development files
libapache2-mod-perl2-doc - Integration of perl with the Apache2 web server - documentation
libapache2-mod-php5 - server-side, HTML-embedded scripting language (apache 2 module)
libapache2-mod-php5filter - server-side, HTML-embedded scripting language (apache 2...)
libapache2-mod-python - Apache 2 module that embeds Python within the server
...

$ apt-cache search libapache2-mod | grep ruby
libapache2-mod-ruby - Embedding Ruby in the Apache2 web server

mod_cgi and CGI Scripts

The CGI (Common Gateway Interface) allows external application programs to
interface with Web servers. Any program can be a CGI program if it runs in real
time (at the time of the request) and relays its output to the requesting client. Vari-
ous kinds of scripts, including shell, Perl, Python, and PHP, are the most commonly
encountered CGI programs because a script can call a program and reformat its
output in HTML for a client.

Apache can handle requests for CGI programs in several different ways. The most
common method is to put a CGI program in the cgi-bin directory and then enable its
execution from that directory only. The location of the cgi-bin directory, as specified
by the ScriptAlias directive (page 929), is /usr/lib/cgi-bin. Alternatively, an Add-
Handler directive (page 923) can identify the filename extensions of scripts, such as
.cgi or .pl, within the regular content (for example, AddHandler cgi-script .cgi). If
you use AddHandler, you must also specify the ExecCGI option in an Options direc-
tive within the appropriate <Directory> container. The mod_cgi module must be
loaded to access and execute CGI scripts.

The following Perl CGI script displays the Apache environment. This script should be
used for debugging only because it presents a security risk if remote clients can access it:

#!/usr/bin/perl

printenv -- demo CGI program that prints its environment
##

print "Content-type: text/plain\n\n";
foreach $var (sort(keys(%ENV))) {
 $val = $ENV{$var};
 $val =~ s|\n|\\n|g;
 $val =~ s|"|\\"|g;
 print "${var}=\"${val}\"\n";
}

 From the Library of WoweBook.Com

ptg

Modules 943

mod_ssl
SSL (Secure Sockets Layer), which is implemented by the mod_ssl module, has two
functions: It allows a client to verify the identity of a server and it enables secure
two-way communication between a client and a server. SSL is used on Web pages in
conjunction with forms that require passwords, credit card numbers, or other sensi-
tive data.

Apache uses the HTTPS protocol—not HTTP—for SSL communication. When
Apache uses SSL, it listens on a second port (443 by default) for a connection
and performs a handshaking sequence before sending the requested content to
the client.

Server verification is critical for financial transactions. After all, you do not want to
give your credit card number to a fraudulent Web site posing as a known company.
SSL uses a certificate to positively identify a server. Over a public network such as
the Internet, the identification is reliable only if the certificate contains a digital sig-
nature from an authoritative source such as VeriSign or Thawte. SSL Web pages are
denoted by a URI beginning with https://.

Data encryption prevents malicious users from eavesdropping on Internet connec-
tions and copying personal information. To encrypt communication, SSL sits
between the network and an application and encrypts communication between the
server and the client.

Setting Up mod_ssl
The mod_ssl package is installed as part of the apache2 package—you do not need
to install it separately. The /etc/apache2/mods-available/ssl.conf file configures
mod_ssl; ssl.load, which is in the same directory, loads it. You must enable the mod-
ule with the command a2enmod ssl. The first few directives in this file set various
parameters for SSL operation.

You can set up a virtual host for SSL in the sites-available directory and enable it
using a2ensite (page 906). As with any virtual host, a virtual host for SSL holds
directives such as ServerName and ServerAdmin that need to be configured. In addi-
tion, it holds some SSL-related directives. See the example on page 940.

Using a Self-Signed Certificate for Encryption

If you require SSL for encryption and not verification—that is, if the client already
trusts the server—you can generate and use a self-signed certificate, bypassing the
time and expense involved in obtaining a digitally signed certificate. Self-signed cer-
tificates generate a warning when you connect to the server: Most browsers display
a dialog box that allows you to examine and accept the certificate. The exim4 dae-
mon also uses certificates (page 736).

The following example creates a self-signed certificate. (See the procedure at
www.modssl.org/docs/2.8/ssl_faq.html#ToC28if apache2-ssl-certificate is missing from
the system. You do not need to send in the CSR for a self-signed certificate.)

 From the Library of WoweBook.Com

www.modssl.org/docs/2.8/ssl_faq.html#ToC28

ptg

944 Chapter 26 Apache: Setting Up a Web Server

$ sudo apache2-ssl-certificate
creating selfsigned certificate
replace it with one signed by a certification authority (CA)

enter your ServerName at the Common Name prompt

If you want your certificate to expire after x days call this program
with -days x
Generating a 1024 bit RSA private key++++++
........++++++
writing new private key to '/etc/apache2/ssl/apache.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [GB]:US
State or Province Name (full name) [Some-State]:California
Locality Name (eg, city) []:San Francisco
Organization Name (eg, company; recommended) []:Sobell Associates Inc.
Organizational Unit Name (eg, section) []:
server name (eg. ssl.domain.tld; required!!!) []:www.sobell.com
Email Address []:mgs@sobell.com

The answers to the first five questions are arbitrary: They can help clients identify a
site when they examine the certificate. The answer to the sixth question (server name)
is critical. Because certificates are tied to the name of the server, you must enter the
server’s FQDN accurately. If you mistype this information, the server name and the
name of the certificate will not match. A browser will then generate a warning mes-
sage each time a connection is made.

Now you must create an SSL-enabled virtual host in /etc/apache2/sites-available.
Host-by-name virtual hosting will not work with SSL because the HTTP Host head-
er sent by the client that Apache uses to differentiate between host-by-name virtual
hosts is encrypted. You can use only one SSL certificate, matching one domain per
IP address. You can have multiple virtual hosts on that IP address, but if they are
accessed over HTTPS, the client will receive an error saying that the certificate does
not match the domain name. After you enable the new virtual host and restart
Apache, the new certificate will be in use.

Following is an example wildcard setup for /etc/apache2/sites-available/ssl. Enable
it with sudo a2ensite ssl:

<VirtualHost *:80>
Redirect permanent / https://www.sobell.com/

</VirtualHost>

 From the Library of WoweBook.Com

ptg

Modules 945

<VirtualHost *:443>
ServerName www.sobell.com
SSLEngine On
SSLCertificateFile /etc/apache2/ssl/apache.pem
DocumentRoot /var/www

</VirtualHost>

This example directs all non-SSL traffic to the SSL site. You must add a Listen 443
directive to /etc/apache2/ports.conf if you want Apache to listen on the default
HTTPS port.

Notes on Certificates

• Although the server name is part of the certificate, the SSL connection is
tied to the IP address of the server: You can have only one certificate per IP
address. For multiple virtual hosts to have separate certificates, you must
specify host-by-IP rather than host-by-name virtual hosts (page 937).

• As long as the server is identified by the name for which the certificate was
issued, you can use the certificate on another server or IP address.

• A root certificate is the certificate that identifies the root certificate authority
(root CA). Every browser contains a database of the public keys for the root
certificates of the major signing authorities, including VeriSign and Thawte.

• It is possible to generate a root certificate and sign all your server certifi-
cates with this root CA. Regular clients can import the public key of the
root CA so that they recognize every certificate signed by that root CA.
This setup is convenient for a server with multiple SSL-enabled virtual
hosts and no commercial certificates. For more information see
www.modssl.org/docs/2.8/ssl_faq.html#ToC29.

• A self-signed certificate does not enable clients to verify the identity of the server.

Authentication Modules and .htaccess
To restrict access to a Web page, Apache and third parties provide authentication
modules and methods that can verify a user’s credentials, such as a username and
password. Some modules support authentication against various databases includ-
ing LDAP (page 1156) and NIS (page 741).

User authentication directives are commonly placed in a .htaccess file. A basic .htaccess
file that uses the Apache default authentication module (mod_auth) follows. Substitute
appropriate values for the local server.

$ sudo cat .htaccess
AuthUserFile /var/www/.htpasswd
AuthGroupFile /dev/null
AuthName "Browser dialog box query"
AuthType Basic
require valid-user

 From the Library of WoweBook.Com

www.modssl.org/docs/2.8/ssl_faq.html#ToC29

ptg

946 Chapter 26 Apache: Setting Up a Web Server

The /var/www/.htpasswd is a typical absolute pathname of a .htpasswd file and
Browser dialog box query is the string that the user will see as part of the dialog
box that requests a username and password.

The second line of the preceding .htaccess file turns off the group function. The
fourth line specifies the user authentication type Basic, which is implemented by the
default mod_auth module. The last line tells Apache which users can access the pro-
tected directory. The entry valid-user grants access to the directory to any user whose
username appears in the Apache password file and who enters the correct password.

You can put the Apache password file anywhere on the system, as long as Apache
can read it. It is safe to put this file in the same directory as the .htaccess file because,
by default, Apache will not answer any requests for files whose names start with .ht.

The following command creates a .htpasswd file in the working directory for Sam:

$ htpasswd -c .htpasswd sam
New password:
Re-type new password:
Adding password for user sam

The default virtual host includes an AllowOverride None directive (page 930) for
/var/www. You must change this directive to at least AllowOverride AuthConfig in
sites-available/default or remove it to enable Apache to process user authentication
directives.

Scripting Modules

Apache can process content before serving it to a client. In earlier versions of
Apache, only CGI scripts could process content. In the current version, scripting
modules can work with scripts embedded in HTML documents.

Scripting modules manipulate content before Apache serves it to a client. Because
they are built into Apache, scripting modules are fast. Scripting modules are espe-
cially efficient at working with external data sources such as relational databases.
Clients can pass data to a scripting module that modifies the information that
Apache serves.

Scripting modules stand in contrast to CGI scripts that are run externally to
Apache. In particular, CGI scripts do not allow client interaction and are slow
because they must make external calls.

Ubuntu provides packages that allow you to embed Perl (mod_perl), Python
(mod_python), and PHP (mod_php) code in HTML content. Perl and Python,
which are general-purpose scripting languages, are encapsulated for use directly in
Apache and are available in the libapache2-mod-perl2 and libapache2-mod-python
packages, respectively.

PHP, which was developed for manipulating Web content, outputs HTML by default.
Implemented in the mod_php module and available in libapache2-mod-php5, this

 From the Library of WoweBook.Com

ptg

Modules 947

language is easy to set up, has a syntax similar to that of Perl and C, and comes with
a large number of Web-related functions.

Multiprocessing Modules (MPMs)

If Apache were to execute in only one process, every time a client requested a page,
Apache would have to ignore other requests while it read that page from disk (or
waited for a CGI script to generate it). After it read the page, it could send the page
to the client and respond to the next request. With this setup, Apache could serve
only one client at a time.

prefork MPM Apache 1.3 and earlier forked servers to respond to multiple clients. Apache 2
moved the forking behavior to the prefork multiprocessing module (MPM). MPMs
introduced the ability to switch between various multiprocessing techniques.

The prefork MPM uses the fork() system call to create an exact copy of the running
Apache process to serve each request. The MaxServers, MaxSpareServers, and simi-
lar directives control how many copies of Apache run at the same time. Because the
operating system has to spend time context switching between Apache processes,
and because each process has its own memory, the prefork MPM generates consid-
erable overhead on a busy server.

worker MPM The worker MPM reduces this overhead by using threads. A thread is similar to a
process in that it can execute independently of other threads or processes. Waiting
for a read to complete in one thread does not stop (block) other threads from exe-
cuting. The difference between threads and processes is that all the threads running
under one process share the same memory, and the program—rather than the oper-
ating system—is responsible for managing the threads. The worker MPM maintains
a pool of threads it can use to serve each request. Instead of the parent Apache pro-
cess forking a child to serve each request for content as in prefork, the worker
MPM uses threads to serve requests for content.

Threads Because all these threads run under the same process, they share the same memory.
Code that is not thread safe (see reentrant on page 1168) can return inconsistent
results. For example, some PHP library functions use the strtok() C function to con-
vert a string to tokens. This function maintains internal variables. If it is called by
multiple threads sharing the same memory, strtok()’s internal variables are put in an
inconsistent state.

PHP If you want to use PHP, either you must use the prefork MPM or, if you want to use
the worker MPM and PHP, you must remove libapache2-mod-php5 and run PHP
as a CGI script (page 942).

MPMs Available MPMs include

• apache2-mpm-prefork—Traditional MPM.

• apache2-mpm-worker—High-speed threaded MPM.

• apache2-mpm-event—Event driven MPM.

 From the Library of WoweBook.Com

Admin
Text Box
Download form www.eBookTM.com

ptg

948 Chapter 26 Apache: Setting Up a Web Server

The apache2-mpm-worker, apache2-mpm-event, and apache2-mpm-prefork pack-
ages each supply the apache2 binary and conflict with one another. You cannot have
more than one of these modules installed at the same time. When you install one of
these packages, the installer automatically removes the existing MPM.

webalizer: Analyzes Web Traffic

The webalizer package creates a directory at /var/www/webalizer and a cron file
(page 605) at /etc/cron.daily/webalizer. Once a day, the cron file generates usage
data and puts it in the webalizer directory; you can view this data by pointing a
browser at http://server/webalizer/, where server is the hostname of the server.

The /etc/webalizer/webalizer.conf file controls the behavior of the webalizer utility.
If you change the location of the DocumentRoot or log files, you must edit this file
to reflect those changes. For more information on webalizer, refer to the webalizer
man page and the sites listed under “More Information” on page 901.

MRTG: Monitors Traffic Loads

Multi Router Traffic Grapher (MRTG; mrtg package) is an open-source application
that graphs statistics available through SNMP (Simple Network Management Pro-
tocol). SNMP information is available on all high-end routers and switches as well
as on some other networked equipment, such as printers and wireless access points.

Once MRTG is installed and running, you can view the reports at
http://server/mrtg, where server is the hostname of the server. For more information
see the mrtg man page and the sites listed under “More Information” on page 901.

Error Codes

Following is a list of Apache error codes:

100 Continue 404 Not Found
101 Switching Protocols 405 Method Not Allowed
200 OK 406 Not Acceptable
201 Created 407 Proxy Authentication Required
202 Accepted 408 Request Timed out
203 Non-Authoritative Info... 409 Conflict
204 No Content 410 Gone
205 Reset Content 411 Length Required
206 Partial Content 412 Precondition Failed
300 Multiple Choices 413 Request Entity Too Large
301 Moved Permanently 414 Request-URI Too Large

 From the Library of WoweBook.Com

http://server/webalizer/
http://server/mrtg

ptg

Chapter Summary 949

302 Moved Temporarily 415 Unsupported Media Type
303 See Other 500 Internal Server Error
304 Not Modified 501 Not Implemented
305 Use Proxy 502 Bad Gateway
400 Bad Request 503 Service Unavailable
401 Unauthorized 504 Gateway Time-out
402 Payment Required 505 HTTP Version Not Supported
403 Forbidden

Chapter Summary

Apache is the most popular Web server on the Internet today. It is both robust and
extensible. The /etc/apache2/apache2.conf configuration file controls many aspects
of how Apache runs. This file, which is based on the first part of the httpd.conf file
distributed by Apache, is heavily commented. Ubuntu also puts some configuration
directives in the /etc/apache2/sites-available/default file.

Content to be served is typically placed in /var/www, called the document root.
Apache automatically displays the file named index.html in this directory.

Configuration directives, or simply directives, are lines in a configuration file that
control some aspect of how Apache functions. Four locations, called contexts,
define where a configuration directive can appear: server config, virtual host,
directory, and .htaccess. Containers, or special directives, are directives that group
other directives.

To restrict access to a Web page, Apache and third parties provide authentication
modules and methods that can verify a user’s credentials, such as a username and
password. Some modules enable authentication against various databases, including
LDAP and NIS.

Apache can respond to a request for a URI by asking the client to request a different
URI. This response is called a redirect. Apache can also process content before serv-
ing it to a client using scripting modules that work with scripts embedded in HTML
documents.

Apache supports virtual hosts, which means that one instance of Apache can
respond to requests directed to multiple IP addresses or hostnames as though it
were multiple servers. Each IP address or hostname can provide different content
and be configured differently.

The CGI (Common Gateway Interface) allows external application programs to
interface with Web servers. Any program can be a CGI program if it runs in real
time and relays its output to the requesting client.

SSL (Secure Sockets Layer) has two functions: It allows a client to verify the identity
of a server and it enables secure two-way communication between a client and server.

 From the Library of WoweBook.Com

ptg

950 Chapter 26 Apache: Setting Up a Web Server

Exercises

1. How would you tell Apache that your content is in /usr/local/www?

2. How would you instruct an Apache server to listen on port 81 instead of
port 80?

3. How would you enable Sam to publish Web pages from his ~/website
directory but not allow anyone else to publish to the Web?

4. Apache must be started with root privileges. Why? Why does this action
not present a security risk?

Advanced Exercises

5. If you are running Apache on a firewall system, perhaps to display a Web
front-end for firewall configuration, how would you make sure that it is
accessible only from inside the local network?

6. Why is it more efficient to run scripts using mod_php or mod_perl than to
run them through CGI?

7. What two things does SSL provide and how does this situation differ if the
certificate is self-signed?

8. Some Web sites generate content by retrieving data from a database and
inserting it into a template using PHP or CGI each time the site is accessed.
Why is this practice often a poor idea?

9. Assume you want to provide Webmail access for employees on the
same server that hosts the corporate Web site. The Web site address is
example.com, you want to use mail.example.com for Webmail, and the
Webmail application is located in /var/www/webmail. Describe two
ways you can set up this configuration.

10. Part of a Web site is a private intranet. Describe how you would prevent
people outside the company’s internal 192.168.0.0/16 network from
accessing this site. The site is defined as follows:

<VirtualHost *>
ServerName example.com
DocumentRoot /var/www
<Directory /var/www/intranet>

AllowOverride AuthConfig
</Directory>

</VirtualHost>

 From the Library of WoweBook.Com

ptg

951

I

PART VI

Programming Tools

CHAPTER 27

Programming the Bourne Again Shell 953

CHAPTER 28

The Perl Scripting Language 1041

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

999555333

27Chapter27Chapter 7 introduced the shells and Chapter 9 went into detail
about the Bourne Again Shell. This chapter introduces addi-
tional Bourne Again Shell commands, builtins, and concepts
that carry shell programming to a point where it can be useful.
Although you may make use of shell programming as a system
administrator, you do not have to read this chapter to perform
system administration tasks. Feel free to skip this chapter and
come back to it if and when you like.

The first part of this chapter covers programming control struc-
tures, also called control flow constructs. These structures allow
you to write scripts that can loop over command-line arguments,
make decisions based on the value of a variable, set up menus,
and more. The Bourne Again Shell uses the same constructs
found in such high-level programming languages as C.

The next part of this chapter discusses parameters and variables,
going into detail about array variables, local versus global vari-
ables, special parameters, and positional parameters. The explo-
ration of builtin commands covers type, which displays
information about a command, and read, which allows a shell

In This Chapter

Control Structures 954

File Descriptors 987

Parameters and Variables 990

Array Variables 990

Locality of Variables 992

Special Parameters. 994

Positional Parameters. 996

Builtin Commands 1002

Expressions 1016

Shell Programs 1024

A Recursive Shell Script 1025

The quiz Shell Script. 1028

27

Programming the

Bourne Again Shell

 From the Library of WoweBook.Com

ptg

954 Chapter 27 Programming the Bourne Again Shell

script to accept user input. The section on the exec builtin demonstrates how to use
exec to execute a command efficiently by replacing a process and explains how to
use exec to redirect input and output from within a script.

The next section covers the trap builtin, which provides a way to detect and respond
to operating system signals (such as the signal generated when you press CONTROL-C).
The discussion of builtins concludes with a discussion of kill, which can abort a pro-
cess, and getopts, which makes it easy to parse options for a shell script. Table 27-6
on page 1015 lists some of the more commonly used builtins.

Next the chapter examines arithmetic and logical expressions as well as the opera-
tors that work with them. The final section walks through the design and imple-
mentation of two major shell scripts.

This chapter contains many examples of shell programs. Although they illustrate cer-
tain concepts, most use information from earlier examples as well. This overlap not
only reinforces your overall knowledge of shell programming but also demonstrates
how you can combine commands to solve complex tasks. Running, modifying, and
experimenting with the examples in this book is a good way to become comfortable
with the underlying concepts.

This chapter illustrates concepts with simple examples, which are followed by more
complex ones in sections marked “Optional.” The more complex scripts illustrate
traditional shell programming practices and introduce some Linux utilities often
used in scripts. You can skip these sections without loss of continuity. Return to
them when you feel comfortable with the basic concepts.

Control Structures

The control flow commands alter the order of execution of commands within a shell
script. Control structures include the if...then, for...in, while, until, and case state-
ments. In addition, the break and continue statements work in conjunction with the
control structures to alter the order of execution of commands within a script.

if...then

The if...then control structure has the following syntax:

if test-command
then

commands
fi

Do not name a shell script test
tip You can unwittingly create a problem if you give a shell script the name test because a Linux utility

has the same name. Depending on how the PATH variable is set up and how you call the program,
you may run either your script or the utility, leading to confusing results.

 From the Library of WoweBook.Com

ptg

Control Structures 955

The bold words in the syntax description are the items you supply to cause the
structure to have the desired effect. The nonbold words are the keywords the shell
uses to identify the control structure.

test builtin Figure 27-1 shows that the if statement tests the status returned by the test-command
and transfers control based on this status. The end of the if structure is marked
by a fi statement (if spelled backward). The following script prompts for two
words, reads them, and then uses an if structure to execute commands based on
the result returned by the test builtin when it compares the two words. (See the
test info page for information on the test utility, which is similar to the test
builtin.) The test builtin returns a status of true if the two words are the same
and false if they are not. Double quotation marks around $word1 and $word2
make sure test works properly if you enter a string that contains a SPACE or other
special character:

$ cat if1
echo -n "word 1: "
read word1
echo -n "word 2: "
read word2

if test "$word1" = "$word2"
then

echo "Match"
fi
echo "End of program."

Figure 27-1 An if...then flowchart

then
commands

fi

if
test-command

True

False

 From the Library of WoweBook.Com

ptg

956 Chapter 27 Programming the Bourne Again Shell

$./if1
word 1: peach
word 2: peach
Match
End of program.

In the preceding example the test-command is test "$word1" = "$word2". The test
builtin returns a true status if its first and third arguments have the relationship
specified by its second argument. If this command returns a true status (= 0), the
shell executes the commands between the then and fi statements. If the command
returns a false status (not = 0), the shell passes control to the statement following fi
without executing the statements between then and fi. The effect of this if statement
is to display Match if the two words are the same. The script always displays End of
program.

Builtins In the Bourne Again Shell, test is a builtin—part of the shell. It is also a stand-alone
utility kept in /usr/bin/test. This chapter discusses and demonstrates many Bourne
Again Shell builtins. You typically use the builtin version if it is available and the
utility if it is not. Each version of a command may vary slightly from one shell to the
next and from the utility to any of the shell builtins. See page 1002 for more infor-
mation on shell builtins.

Checking arguments The next program uses an if structure at the beginning of a script to confirm that you
have supplied at least one argument on the command line. The test –eq operator
compares two integers; the $# special parameter (page 997) takes on the value of the
number of command-line arguments. This structure displays a message and exits
from the script with an exit status of 1 if you do not supply at least one argument:

$ cat chkargs
if test $# -eq 0

then
echo "You must supply at least one argument."
exit 1

fi
echo "Program running."
$./chkargs
You must supply at least one argument.
$./chkargs abc
Program running.

A test like the one shown in chkargs is a key component of any script that requires
arguments. To prevent the user from receiving meaningless or confusing informa-
tion from the script, the script needs to check whether the user has supplied the
appropriate arguments. Some scripts simply test whether arguments exist (as in
chkargs). Other scripts test for a specific number or specific kinds of arguments.

You can use test to verify the status of a file argument or the relationship between
two file arguments. After verifying that at least one argument has been given on the
command line, the following script tests whether the argument is the name of an

 From the Library of WoweBook.Com

ptg

Control Structures 957

ordinary file (not a directory or other type of file) in the working directory. The test
builtin with the –f option and the first command-line argument ($1) checks the file:

$ cat is_ordfile
if test $# -eq 0

then
echo "You must supply at least one argument."
exit 1

fi
if test -f "$1"

then
echo "$1 is an ordinary file in the working directory"

else
echo "$1 is NOT an ordinary file in the working directory"

fi

You can test many other characteristics of a file using test options; see Table 27-1.

Other test options provide ways to test relationships between two files, such as
whether one file is newer than another. Refer to later examples in this chapter for
more information.

[] is a synonym
for test

The following example—another version of chkargs—checks for arguments in a
way that is more traditional for Linux shell scripts. This example uses the bracket
([]) synonym for test . Rather than using the word test in scripts, you can surround
the arguments to test with brackets. The brackets must be surrounded by white-
space (SPACEs or TABs).

Table 27-1 Options to the test builtin

Option Tests file to see if it

–d Exists and is a directory file

–e Exists

–f Exists and is an ordinary file (not a directory)

–r Exists and is readable

–s Exists and has a size greater than 0 bytes

–w Exists and is writable

–x Exists and is executable

Always test the arguments
tip To keep the examples in this book short and focused on specific concepts, the code to verify argu-

ments is often omitted or abbreviated. It is good practice to test arguments in shell programs that
other people will use. Doing so results in scripts that are easier to run and debug.

 From the Library of WoweBook.Com

ptg

958 Chapter 27 Programming the Bourne Again Shell

$ cat chkargs2
if [$# -eq 0]

then
echo "Usage: chkargs2 argument..." 1>&2
exit 1

fi
echo "Program running."
exit 0
$./chkargs2
Usage: chkargs2 argument...
$./chkargs2 abc
Program running.

Usage messages The error message that chkargs2 displays is called a usage message and uses the
1>&2 notation to redirect its output to standard error (page 297). After issuing the
usage message, chkargs2 exits with an exit status of 1, indicating an error has
occurred. The exit 0 command at the end of the script causes chkargs2 to exit with
a 0 status after the program runs without an error. The Bourne Again Shell returns a
0 status if you omit the status code.

The usage message is commonly employed to specify the type and number of argu-
ments the script takes. Many Linux utilities provide usage messages similar to the
one in chkargs2. If you call a utility or other program with the wrong number or
wrong kind of arguments, it will often display a usage message. Following is the
usage message that cp displays when you call it without any arguments:

$ cp
cp: missing file operand
Try 'cp --help' for more information.

if...then...else

The introduction of an else statement turns the if structure into the two-way branch
shown in Figure 27-2. The if...then...else control structure has the following syntax:

if test-command
then

commands
else

commands
fi

Because a semicolon (;) ends a command just as a NEWLINE does, you can place then on
the same line as if by preceding it with a semicolon. (Because if and then are sepa-
rate builtins, they require a command separator between them; a semicolon and NEW-

LINE work equally well [page 304].) Some people prefer this notation for aesthetic
reasons; others like it because it saves space.

if test-command; then
commands

else
commands

fi

 From the Library of WoweBook.Com

ptg

Control Structures 959

If the test-command returns a true status, the if structure executes the commands
between the then and else statements and then diverts control to the statement fol-
lowing fi. If the test-command returns a false status, the if structure executes the
commands following the else statement.

When you run the out script with arguments that are filenames, it displays the files
on the terminal. If the first argument is –v (called an option in this case), out uses
less (page 162) to display the files one screen at a time. After determining that it
was called with at least one argument, out tests its first argument to see whether it is
–v. If the result of the test is true (the first argument is –v), out uses the shift builtin
(page 998) to shift the arguments to get rid of the –v and displays the files using
less . If the result of the test is false (the first argument is not –v), the script uses cat
to display the files:

$ cat out
if [$# -eq 0]

then
echo "Usage: out [-v] filenames..." 1>&2
exit 1

fi

if ["$1" = "-v"]
then

shift
less -- "$@"

else
cat -- "$@"

fi

Figure 27-2 An if ...then...else flowchart

fi

if
test-commandTrue False

else
commands

then
commands

 From the Library of WoweBook.Com

ptg

960 Chapter 27 Programming the Bourne Again Shell

optional In out the –– argument to cat and less tells these utilities that no more options fol-
low on the command line and not to consider leading hyphens (–) in the following
list as indicating options. Thus –– allows you to view a file with a name that starts
with a hyphen. Although not common, filenames beginning with a hyphen do occa-
sionally occur. (You can create such a file by using the command cat > –fname.) The
–– argument works with all Linux utilities that use the getopts builtin (page 1012)
to parse their options; it does not work with more and a few other utilities. This
argument is particularly useful when used in conjunction with rm to remove a file
whose name starts with a hyphen (rm –– –fname), including any you create while
experimenting with the –– argument.

Figure 27-3 An if ...then...elif flowchart

fi

if
test-command

True False

else
commands

then
commands elif

test-commandTrue False

then
commands

 From the Library of WoweBook.Com

ptg

Control Structures 961

if...then...elif
The if...then...elif control structure (Figure 27-3) has the following syntax:

if test-command
then

commands
elif test-command

then
commands

. . .
else

commands
fi

The elif statement combines the else statement and the if statement and enables you
to construct a nested set of if...then...else structures (Figure 27-3). The difference
between the else statement and the elif statement is that each else statement must be
paired with a fi statement, whereas multiple nested elif statements require only a sin-
gle closing fi statement.

The following example shows an if...then...elif control structure. This shell script com-
pares three words that the user enters. The first if statement uses the Boolean AND oper-
ator (–a) as an argument to test . The test builtin returns a true status only if the first and
second logical comparisons are true (that is, word1 matches word2 and word2 matches
word3). If test returns a true status, the script executes the command following the next
then statement, passes control to the statement following fi, and terminates:

$ cat if3
echo -n "word 1: "
read word1
echo -n "word 2: "
read word2
echo -n "word 3: "
read word3
if ["$word1" = "$word2" -a "$word2" = "$word3"]

then
echo "Match: words 1, 2, & 3"

elif ["$word1" = "$word2"]
then

echo "Match: words 1 & 2"
elif ["$word1" = "$word3"]
then

echo "Match: words 1 & 3"
elif ["$word2" = "$word3"]
then

echo "Match: words 2 & 3"
else

echo "No match"
fi

 From the Library of WoweBook.Com

ptg

962 Chapter 27 Programming the Bourne Again Shell

$./if3
word 1: apple
word 2: orange
word 3: pear
No match
$./if3
word 1: apple
word 2: orange
word 3: apple
Match: words 1 & 3
$./if3
word 1: apple
word 2: apple
word 3: apple
Match: words 1, 2, & 3

If the three words are not the same, the structure passes control to the first elif,
which begins a series of tests to see if any pair of words is the same. As the nesting
continues, if any one of the if statements is satisfied, the structure passes control
to the next then statement and subsequently to the statement following fi. Each
time an elif statement is not satisfied, the structure passes control to the next elif
statement. The double quotation marks around the arguments to echo that con-
tain ampersands (&) prevent the shell from interpreting the ampersands as special
characters.

optional The lnks Script

The following script, named lnks, demonstrates the if...then and if...then...elif con-
trol structures. This script finds hard links to its first argument, a filename. If you
provide the name of a directory as the second argument, lnks searches for links in
the directory hierarchy rooted at that directory. If you do not specify a directory,
lnks searches the working directory and its subdirectories. This script does not
locate symbolic links.

$ cat lnks
#!/bin/bash
Identify links to a file
Usage: lnks file [directory]

if [$# -eq 0 -o $# -gt 2]; then
echo "Usage: lnks file [directory]" 1>&2
exit 1

fi
if [-d "$1"]; then

echo "First argument cannot be a directory." 1>&2
echo "Usage: lnks file [directory]" 1>&2
exit 1

else
file="$1"

fi

 From the Library of WoweBook.Com

ptg

Control Structures 963

if [$# -eq 1]; then
directory="."

elif [-d "$2"]; then
directory="$2"

else
echo "Optional second argument must be a directory." 1>&2
echo "Usage: lnks file [directory]" 1>&2
exit 1

fi

Check that file exists and is an ordinary file
if [! -f "$file"]; then

echo "lnks: $file not found or special file" 1>&2
exit 1

fi
Check link count on file
set -- $(ls -l "$file")

linkcnt=$2
if ["$linkcnt" -eq 1]; then

echo "lnks: no other hard links to $file" 1>&2
exit 0

fi

Get the inode of the given file
set $(ls -i "$file")

inode=$1

Find and print the files with that inode number
echo "lnks: using find to search for links..." 1>&2
find "$directory" -xdev -inum $inode -print

Max has a file named letter in his home directory. He wants to find links to this file
in his and other users’ home directory file trees. In the following example, Max
calls lnks from his home directory to perform the search. The second argument to
lnks, /home, is the pathname of the directory where he wants to start the search.
The lnks script reports that /home/max/letter and /home/zach/draft are links to
the same file:

$./lnks letter /home
lnks: using find to search for links...
/home/max/letter
/home/zach/draft

In addition to the if...then...elif control structure, lnks introduces other features
that are commonly used in shell programs. The following discussion describes lnks
section by section.

Specify the shell The first line of the lnks script uses #! (page 302) to specify the shell that will execute
the script:

#!/bin/bash

 From the Library of WoweBook.Com

ptg

964 Chapter 27 Programming the Bourne Again Shell

In this chapter, the #! notation appears only in more complex examples. It ensures
that the proper shell executes the script, even when the user is running a different
shell or the script is called from a script running a different shell.

Comments The second and third lines of lnks are comments; the shell ignores text that follows
a hashmark (#) up to the next NEWLINE character. These comments in lnks briefly iden-
tify what the file does and explain how to use it:

Identify links to a file
Usage: lnks file [directory]

Usage messages The first if statement tests whether lnks was called with zero arguments or more
than two arguments:

if [$# -eq 0 -o $# -gt 2]; then
echo "Usage: lnks file [directory]" 1>&2
exit 1

fi

If either of these conditions is true, lnks sends a usage message to standard error
and exits with a status of 1. The double quotation marks around the usage message
prevent the shell from interpreting the brackets as special characters. The brackets
in the usage message indicate that the directory argument is optional.

The second if statement tests whether the first command-line argument ($1) is a
directory (the –d argument to test returns true if the file exists and is a directory):

if [-d "$1"]; then
echo "First argument cannot be a directory." 1>&2
echo "Usage: lnks file [directory]" 1>&2
exit 1

else
file="$1"

fi

If the first argument is a directory, lnks displays a usage message and exits. If it is
not a directory, lnks saves the value of $1 in the file variable because later in the
script set resets the command-line arguments. If the value of $1 is not saved before
the set command is issued, its value is lost.

Test the arguments The next section of lnks is an if...then...elif statement:

if [$# -eq 1]; then
directory="."

elif [-d "$2"]; then
directory="$2"

else
echo "Optional second argument must be a directory." 1>&2
echo "Usage: lnks file [directory]" 1>&2
exit 1

fi

 From the Library of WoweBook.Com

ptg

Control Structures 965

The first test-command determines whether the user specified a single argument on
the command line. If the test-command returns 0 (true), the directory variable is
assigned the value of the working directory (.). If the test-command returns false, the
elif statement tests whether the second argument is a directory. If it is a directory, the
directory variable is set equal to the second command-line argument, $2. If $2 is not
a directory, lnks sends a usage message to standard error and exits with a status of 1.

The next if statement in lnks tests whether $file does not exist. This test keeps lnks
from wasting time looking for links to a nonexistent file. The test builtin, when
called with the three arguments !, –f, and $file, evaluates to true if the file $file does
not exist:

[! -f "$file"]

The ! operator preceding the –f argument to test negates its result, yielding false if
the file $file does exist and is an ordinary file.

Next lnks uses set and ls –l to check the number of links $file has:

Check link count on file
set -- $(ls -l "$file")

linkcnt=$2
if ["$linkcnt" -eq 1]; then

echo "lnks: no other hard links to $file" 1>&2
exit 0

fi

The set builtin uses command substitution (page 362) to set the positional parame-
ters to the output of ls –l. The second field in this output is the link count, so the
user-created variable linkcnt is set equal to $2. The –– used with set prevents set
from interpreting as an option the first argument produced by ls –l (the first argu-
ment is the access permissions for the file and typically begins with –). The if state-
ment checks whether $linkcnt is equal to 1; if it is, lnks displays a message and exits.
Although this message is not truly an error message, it is redirected to standard error.
The way lnks has been written, all informational messages are sent to standard error.
Only the final product of lnks—the pathnames of links to the specified file—is sent
to standard output, so you can redirect the output as you please.

If the link count is greater than 1, lnks goes on to identify the inode (page 1153) for
$file. As explained on page 229, comparing the inodes associated with filenames is
a good way to determine whether the filenames are links to the same file. The lnks
script uses set to set the positional parameters to the output of ls –i. The first argu-
ment to set is the inode number for the file, so the user-created variable named
inode is assigned the value of $1:

Get the inode of the given file
set $(ls -i "$file")

inode=$1

 From the Library of WoweBook.Com

ptg

966 Chapter 27 Programming the Bourne Again Shell

Finally lnks uses the find utility to search for files having inode numbers that match
$inode:

Find and print the files with that inode number
echo "lnks: using find to search for links..." 1>&2
find "$directory" -xdev -inum $inode -print

The find utility searches the directory hierarchy rooted at the directory specified by
its first argument ($directory) for files that meet the criteria specified by the remain-
ing arguments. In this example, the remaining arguments send the names of files
having inodes matching $inode to standard output. Because files in different filesys-
tems can have the same inode number yet not be linked, find must search only direc-
tories in the same filesystem as $directory. The –xdev (cross-device) argument
prevents find from searching directories on other filesystems. Refer to page 226 for
more information about filesystems and links.

The echo command preceding the find command in lnks, which tells the user that find
is running, is included because find can take a long time to run. Because lnks does not
include a final exit statement, the exit status of lnks is that of the last command it
runs, find .

Debugging Shell Scripts

When you are writing a script such as lnks, it is easy to make mistakes. You can use
the shell’s –x option to help debug a script. This option causes the shell to display
each command before it runs the command. Tracing a script’s execution in this way
can give you information about where a problem lies.

You can run lnks as in the previous example and cause the shell to display each
command before it is executed. Either set the –x option for the current shell (set –x)
so all scripts display commands as they are run or use the –x option to affect only
the shell running the script called by the command line.

$ bash -x lnks letter /home
+ '[' 2 -eq 0 -o 2 -gt 2 ']'
+ '[' -d letter ']'
+ file=letter
+ '[' 2 -eq 1 ']'
+ '[' -d /home ']'
+ directory=/home
+ '[' '!' -f letter ']'
...

PS4 Each command the script executes is preceded by the value of the PS4 variable—a
plus sign (+) by default, so you can distinguish debugging output from script-
produced output. You must export PS4 if you set it in the shell that calls the script.
The next command sets PS4 to >>>> followed by a SPACE and exports it:

$ export PS4='>>>> '

 From the Library of WoweBook.Com

ptg

Control Structures 967

You can also set the –x option of the shell running the script by putting the following
set command near the beginning of the script:

set -x

Put set –x anywhere in the script you want to turn debugging on. Turn the debugging
option off with a plus sign:

set +x

The set –o xtrace and set +o xtrace commands do the same things as set –x and set
+x, respectively.

for...in

The for...in control structure has the following syntax:

for loop-index in argument-list
do

commands
done

Figure 27-4 A for...in flowchart

Assign next
argument in
argument-list
to loop-index

do

commands

Another
argument in
argument-list

done

Yes

No

?

 From the Library of WoweBook.Com

ptg

968 Chapter 27 Programming the Bourne Again Shell

The for...in structure (Figure 27-4, previous page) assigns the value of the first argu-
ment in the argument-list to the loop-index and executes the commands between
the do and done statements. The do and done statements mark the beginning and
end of the for loop.

After it passes control to the done statement, the structure assigns the value of the
second argument in the argument-list to the loop-index and repeats the commands.
It then repeats the commands between the do and done statements one time for
each argument in the argument-list. When the structure exhausts the argument-list,
it passes control to the statement following done.

The following for...in structure assigns apples to the user-created variable fruit and
then displays the value of fruit, which is apples. Next the structure assigns oranges
to fruit and repeats the process. When it exhausts the argument list, the structure
transfers control to the statement following done, which displays a message.

$ cat fruit
for fruit in apples oranges pears bananas
do

echo "$fruit"
done
echo "Task complete."

$./fruit
apples
oranges
pears
bananas
Task complete.

The next script lists the names of the directory files in the working directory by
looping through the files in the working directory and using test to determine which
are directory files:

$ cat dirfiles
for i in *
do

if [-d "$i"]
then

echo "$i"
fi

done

The ambiguous file reference character * matches the names of all files (except hid-
den files) in the working directory. Prior to executing the for loop, the shell expands
the * and uses the resulting list to assign successive values to the index variable i.

for
The for control structure has the following syntax:

for loop-index
do

commands
done

 From the Library of WoweBook.Com

ptg

Control Structures 969

In the for structure, the loop-index takes on the value of each of the command-
line arguments, one at a time. The for structure is the same as the for...in struc-
ture (Figure 27-4, page 967) except in terms of where it gets values for the loop-
index. The for structure performs a sequence of commands, usually involving
each argument in turn.

The following shell script shows a for structure displaying each command-line argu-
ment. The first line of the script, for arg, implies for arg in "$@", where the shell
expands "$@" into a list of quoted command-line arguments "$1" "$2" "$3" and
so on. The balance of the script corresponds to the for...in structure.

$ cat for_test
for arg
do

echo "$arg"
done
$ for_test candy gum chocolate
candy
gum
chocolate

optional The whos Script

The following script, named whos, demonstrates the usefulness of the implied "$@"
in the for structure. You give whos one or more users’ full names or usernames as
arguments, and whos displays information about the users. The whos script gets the
information it displays from the first and fifth fields in the /etc/passwd file. The first
field contains a username, and the fifth field typically contains the user’s full name.
You can provide a username as an argument to whos to identify the user’s name or
provide a name as an argument to identify the username. The whos script is similar
to the finger utility, although whos delivers less information.

$ cat whos
#!/bin/bash

if [$# -eq 0]
then

echo "Usage: whos id..." 1>&2
exit 1

fi
for id
do

mawk -F: '{print $1, $5}' /etc/passwd |
grep -i "$id"

done

In the next example, whos identifies the user whose username is chas and the user
whose name is Marilou Smith:

$./whos chas "Marilou Smith"
chas Charles Casey
msmith Marilou Smith

 From the Library of WoweBook.Com

ptg

970 Chapter 27 Programming the Bourne Again Shell

Use of "$@" The whos script uses a for statement to loop through the command-line arguments.
In this script the implied use of "$@" in the for loop is particularly beneficial
because it causes the for loop to treat an argument that contains a SPACE as a single
argument. This example encloses Marilou Smith in quotation marks, which causes
the shell to pass it to the script as a single argument. Then the implied "$@" in the
for statement causes the shell to regenerate the quoted argument Marilou Smith so
that it is again treated as a single argument.

mawk For each command-line argument, whos searches the /etc/passwd file. Inside the for
loop, the mawk utility extracts the first ($1) and fifth ($5) fields from each line in
/etc/passwd. The –F: option causes mawk to use a colon (:) as a field separator when
it reads /etc/passwd, allowing it to break each line into fields. The mawk command
sets and uses the $1 and $5 arguments; they are included within single quotation
marks and are not interpreted by the shell. Do not confuse these arguments with
positional parameters, which correspond to command-line arguments. The first and
fifth fields are sent to grep (page 166) via a pipe. The grep utility searches for $id (to
which the shell has assigned the value of a command-line argument) in its input.
The –i option causes grep to ignore case as it searches; grep displays each line in its
input that contains $id.

| at the end of a line An interesting syntactical exception that bash makes for the pipe symbol (|) appears
on the line with the mawk command: You do not have to quote a NEWLINE that imme-
diately follows a pipe symbol (that is, a pipe symbol that is the last character on a
line) to keep the NEWLINE from executing a command. Try giving the command who |
and pressing RETURN. The shell displays a secondary prompt. If you then enter sort
followed by another RETURN, you see a sorted who list. The pipe works even though a
NEWLINE follows the pipe symbol.

while

The while control structure has the following syntax:

while test-command
do

commands
done

As long as the test-command (Figure 27-5) returns a true exit status, the while
structure continues to execute the series of commands delimited by the do and done
statements. Before each loop through the commands, the structure executes the test-
command. When the exit status of the test-command is false, the structure passes
control to the statement after the done statement.

test builtin The following shell script first initializes the number variable to zero. The test builtin
then determines whether number is less than 10. The script uses test with the –lt
argument to perform a numerical test. For numerical comparisons, you must use –ne
(not equal), –eq (equal), –gt (greater than), –ge (greater than or equal to), –lt (less
than), or –le (less than or equal to). For string comparisons, use = (equal) or != (not
equal) when you are working with test . In this example, test has an exit status of 0
(true) as long as number is less than 10. As long as test returns true, the structure

 From the Library of WoweBook.Com

ptg

Control Structures 971

executes the commands between the do and done statements. See page 955 for infor-
mation on the test builtin.

$ cat count
#!/bin/bash
number=0
while ["$number" -lt 10]

do
echo -n "$number"
((number +=1))

done
echo
$./count
0123456789
$

The echo command following do displays number. The –n prevents echo from issu-
ing a NEWLINE following its output. The next command uses arithmetic evaluation
[((...)); page 1016] to increment the value of number by 1. The done statement ter-
minates the loop and returns control to the while statement to start the loop over
again. The final echo causes count to send a NEWLINE character to standard output,
so the next prompt occurs in the leftmost column on the display (rather than
immediately following 9).

optional The spell_check Script

The aspell utility checks the words in a file against a dictionary of correctly spelled
words. With the list command, aspell runs in list mode: Input comes from standard
input and aspell sends each potentially misspelled word to standard output. The fol-
lowing command produces a list of possible misspellings in the file letter.txt:

$ aspell list < letter.txt
quikly
portible
frendly

Figure 27-5 A while flowchart

while
test-command

do
commands

doneFalse

True

 From the Library of WoweBook.Com

ptg

972 Chapter 27 Programming the Bourne Again Shell

The next shell script, named spell_check, shows another use of a while structure. To
find the incorrect spellings in a file, spell_check calls aspell to check a file against a
system dictionary. But it goes a step further: It enables you to specify a list of cor-
rectly spelled words and removes these words from the output of aspell . This script
is useful for removing words that you use frequently, such as names and technical
terms, that do not appear in a standard dictionary. Although you can duplicate the
functionality of spell_check by using additional aspell dictionaries, the script is
included here for its instructive value.

The spell_check script requires two filename arguments: the file containing the list
of correctly spelled words and the file you want to check. The first if statement ver-
ifies that the user specified two arguments. The next two if statements verify that
both arguments are readable files. (The exclamation point negates the sense of the
following operator; the –r operator causes test to determine whether a file is read-
able. The result is a test that determines whether a file is not readable.)

$ cat spell_check
#!/bin/bash
remove correct spellings from aspell output

if [$# -ne 2]
then

echo "Usage: spell_check file1 file2" 1>&2
echo "file1: list of correct spellings" 1>&2
echo "file2: file to be checked" 1>&2
exit 1

fi

if [! -r "$1"]
then

echo "spell_check: $1 is not readable" 1>&2
exit 1

fi

if [! -r "$2"]
then

echo "spell_check: $2 is not readable" 1>&2
exit 1

fi

aspell list < "$2" |
while read line
do

if ! grep "^$line$" "$1" > /dev/null
then

echo $line
fi

done

The spell_check script sends the output from aspell (with the list argument, so it
produces a list of misspelled words on standard output) through a pipe to standard
input of a while structure, which reads one line at a time (each line has one word on

 From the Library of WoweBook.Com

ptg

Control Structures 973

it) from standard input. The test-command (that is, read line) returns a true exit sta-
tus as long as it receives a line from standard input.

Inside the while loop, an if statement1 monitors the return value of grep , which
determines whether the line that was read is in the user’s list of correctly spelled
words. The pattern grep searches for (the value of $line) is preceded and followed
by special characters that specify the beginning and end of a line (^ and $, respec-
tively). These special characters ensure that grep finds a match only if the $line vari-
able matches an entire line in the file of correctly spelled words. (Otherwise, grep
would match a string, such as paul, in the output of aspell if the file of correctly
spelled words contained the word paulson.) These special characters, together with
the value of the $line variable, form a regular expression (Appendix A).

The output of grep is redirected to /dev/null (page 250) because the output is not
needed; only the exit code is important. The if statement checks the negated exit sta-
tus of grep (the leading exclamation point negates or changes the sense of the exit
status—true becomes false, and vice versa), which is 0 or true (false when negated)
when a matching line is found. If the exit status is not 0 or false (true when negated),
the word was not in the file of correctly spelled words. The echo builtin sends a list
of words that are not in the file of correctly spelled words to standard output.

Once it detects the EOF (end of file), the read builtin returns a false exit status,
control passes out of the while structure, and the script terminates.

Before you use spell_check, create a file of correct spellings containing words you use
frequently but that are not in a standard dictionary. For example, if you work for a
company named Blinkenship and Klimowski, Attorneys, you would put Blinkenship
and Klimowski in the file. The following example shows how spell_check checks the
spelling in a file named memo and removes Blinkenship and Klimowski from the
output list of incorrectly spelled words:

$ aspell list < memo
Blinkenship
Klimowski
targat
hte
$ cat word_list
Blinkenship
Klimowski
$./spell_check word_list memo
targat
hte

Refer to the aspell manual (in the /usr/share/doc/aspell directory or at aspell.net)
for more information.

1. This if statement can also be written as

if ! grep -qw "$line" "$1"

The –q option suppresses the output from grep so it returns only an exit code. The –w option causes grep

to match only a whole word.

 From the Library of WoweBook.Com

ptg

974 Chapter 27 Programming the Bourne Again Shell

until
The until and while structures are very similar, differing only in the sense of the test
performed at the top of the loop. Figure 27-6 shows that until continues to loop
until the test-command returns a true exit status. The while structure loops while
the test-command continues to return a true or nonerror condition. The until con-
trol structure has the following syntax:

until test-command
do

commands
done

The following script demonstrates an until structure that includes read . When the
user enters the correct string of characters, the test-command is satisfied and the
structure passes control out of the loop.

$ cat until1
secretname=zach
name=noname
echo "Try to guess the secret name!"
echo
until ["$name" = "$secretname"]
do

echo -n "Your guess: "
read name

done
echo "Very good."

$./until1
Try to guess the secret name!

Your guess: helen
Your guess: barbara
Your guess: rachael
Your guess: zach
Very good

Figure 27-6 An until flowchart

until
test-command

do
commands

done

False

True

 From the Library of WoweBook.Com

ptg

Control Structures 975

The following locktty script is similar to the lock command on Berkeley UNIX and
the Lock Screen menu selection in GNOME. The script prompts for a key (pass-
word) and uses an until control structure to lock the terminal. The until statement
causes the system to ignore any characters typed at the keyboard until the user types
the key followed by a RETURN on a line by itself, which unlocks the terminal. The
locktty script can keep people from using your terminal while you are away from it
for short periods of time. It saves you from having to log out if you are concerned
about other users using your login.

$ cat locktty
#! /bin/bash

trap '' 1 2 3 18
stty -echo
echo -n "Key: "
read key_1
echo
echo -n "Again: "
read key_2
echo
key_3=
if ["$key_1" = "$key_2"]

then
tput clear
until ["$key_3" = "$key_2"]
do

read key_3
done

else
echo "locktty: keys do not match" 1>&2

fi
stty echo

trap builtin The trap builtin (page 1009) at the beginning of the locktty script stops a user from
being able to terminate the script by sending it a signal (for example, by pressing
the interrupt key). Trapping signal 18 means that no one can use CONTROL-Z (job con-
trol, a stop from a tty) to defeat the lock. Table 27-5 on page 1009 provides a list
of signals. The stty –echo command causes the terminal not to display characters
typed at the keyboard, preventing the key the user enters from appearing on the
screen. After turning off keyboard echo, the script prompts the user for a key, reads
it into the user-created variable key_1, prompts the user to enter the same key
again, and saves it in key_2. The statement key_3= creates a variable with a NULL

value. If key_1 and key_2 match, locktty clears the screen (with the tput command)

Forget your password for locktty?

tip If you forget your key (password), you will need to log in from another (virtual) terminal and kill
the process running locktty.

 From the Library of WoweBook.Com

ptg

976 Chapter 27 Programming the Bourne Again Shell

and starts an until loop. The until loop keeps attempting to read from the terminal
and assigning the input to the key_3 variable. Once the user types a string that
matches one of the original keys (key_2), the until loop terminates and keyboard
echo is turned on again.

break and continue
You can interrupt a for, while, or until loop by using a break or continue statement.
The break statement transfers control to the statement after the done statement,
thereby terminating execution of the loop. The continue command transfers control
to the done statement, continuing execution of the loop.

The following script demonstrates the use of these two statements. The for...in
structure loops through the values 1–10. The first if statement executes its com-
mands when the value of the index is less than or equal to 3 ($index –le 3). The
second if statement executes its commands when the value of the index is greater
than or equal to 8 ($index –ge 8). In between the two ifs, echo displays the value
of the index. For all values up to and including 3, the first if statement displays
continue, executes a continue statement that skips echo $index and the second if
statement, and continues with the next for statement. For the value of 8, the sec-
ond if statement displays break and executes a break statement that exits from the
for loop.

$ cat brk
for index in 1 2 3 4 5 6 7 8 9 10

do
if [$index -le 3] ; then

echo "continue"
continue

fi
#

echo $index
#

if [$index -ge 8] ; then
echo "break"
break

fi
done

$./brk
continue
continue
continue
4
5
6
7
8
break

 From the Library of WoweBook.Com

ptg

Control Structures 977

case

The case structure (Figure 27-7, next page) is a multiple-branch decision mechanism.
The path taken through the structure depends on a match or lack of a match between the
test-string and one of the patterns. The case control structure has the following syntax:

case test-string in
pattern-1)

commands-1
;;

pattern-2)
commands-2
;;

pattern-3)
commands-3
;;

. . .
esac

The following case structure examines the character the user enters as the test-string.
This value is held in the variable letter. If the test-string has a value of A, the struc-
ture executes the command following the pattern A. The right parenthesis is part of
the case control structure, not part of the pattern. If the test-string has a value of B
or C, the structure executes the command following the matching pattern. The aster-
isk (*) indicates any string of characters and serves as a catchall in case there is no
match. If no pattern matches the test-string and if there is no catchall (*) pattern,
control passes to the command following the esac statement, without the case struc-
ture taking any action.

$ cat case1
echo -n "Enter A, B, or C: "
read letter
case "$letter" in

A)
echo "You entered A"
;;

B)
echo "You entered B"
;;

C)
echo "You entered C"
;;

*)
echo "You did not enter A, B, or C"
;;

esac

$./case1
Enter A, B, or C: B
You entered B

 From the Library of WoweBook.Com

ptg

978 Chapter 27 Programming the Bourne Again Shell

The next execution of case1 shows the user entering a lowercase b. Because the test-
string b does not match the uppercase B pattern (or any other pattern in the case
statement), the program executes the commands following the catchall pattern and
displays a message:

$./case1
Enter A, B, or C: b
You did not enter A, B, or C

The pattern in the case structure is analogous to an ambiguous file reference. It can
include any special characters and strings shown in Table 27-2.

The next script accepts both uppercase and lowercase letters:

Figure 27-7 A case flowchart

case

esac

test-string
=

pattern-1
?

test-string
=

pattern-2
?

test-string
=

pattern-3
?

commands-1

commands-2

commands-3

 From the Library of WoweBook.Com

ptg

Control Structures 979

$ cat case2
echo -n "Enter A, B, or C: "
read letter
case "$letter" in

a|A)
echo "You entered A"
;;

b|B)
echo "You entered B"
;;

c|C)
echo "You entered C"
;;

*)
echo "You did not enter A, B, or C"
;;

esac

$./case2
Enter A, B, or C: b
You entered B

optional The following example shows how you can use the case structure to create a simple
menu. The command_menu script uses echo to present menu items and prompt the
user for a selection. (The select control structure [page 983] is a much easier way of
coding a menu.) The case structure then executes the appropriate utility depending
on the user’s selection.

$ cat command_menu
#!/bin/bash
menu interface to simple commands

echo -e "\n COMMAND MENU\n"
echo " a. Current date and time"
echo " b. Users currently logged in"
echo " c. Name of the working directory"
echo -e " d. Contents of the working directory\n"
echo -n "Enter a, b, c, or d: "
read answer
echo

Table 27-2 Patterns

Pattern Function

* Matches any string of characters. Use for the default case.

? Matches any single character.

[...] Defines a character class. Any characters enclosed within brackets are tried,
one at a time, in an attempt to match a single character. A hyphen between two
characters specifies a range of characters.

| Separates alternative choices that satisfy a particular branch of the case structure.

 From the Library of WoweBook.Com

ptg

980 Chapter 27 Programming the Bourne Again Shell

case "$answer" in

a)
date
;;

b)
who
;;

c)
pwd
;;

d)
ls
;;

*)
echo "There is no selection: $answer"
;;

esac

$./command_menu

COMMAND MENU

a. Current date and time
b. Users currently logged in
c. Name of the working directory
d. Contents of the working directory

Enter a, b, c, or d: a

Wed Jan 6 12:31:12 PST 2010

echo –e The –e option causes echo to interpret \n as a NEWLINE character. If you do not include
this option, echo does not output the extra blank lines that make the menu easy to
read but instead outputs the (literal) two-character sequence \n. The –e option causes
echo to interpret several other backslash-quoted characters (Table 27-3). Remember
to quote (i.e., place double quotation marks around the string) the backslash-quoted
character so the shell does not interpret it but passes the backslash and the character
to echo . See xpg_echo (page 355) for a way to avoid using the –e option.

Table 27-3 Special characters in echo (must use –e)

Quoted
character echo displays

\a Alert (bell)

\b BACKSPACE

\c Suppress trailing NEWLINE

\f FORMFEED

\n NEWLINE

\r RETURN

 From the Library of WoweBook.Com

ptg

Control Structures 981

You can also use the case control structure to take various actions in a script, depend-
ing on how many arguments the script is called with. The following script, named
safedit, uses a case structure that branches based on the number of command-line
arguments ($#). It saves a backup copy of a file you are editing with vim .

$ cat safedit
#!/bin/bash

PATH=/bin:/usr/bin
script=$(basename $0)
case $# in

0)
vim.tiny
exit 0
;;

1)
if [! -f "$1"]

then
vim.tiny "$1"
exit 0

fi
if [! -r "$1" -o ! -w "$1"]

then
echo "$script: check permissions on $1" 1>&2
exit 1

else
editfile=$1

fi
if [! -w "."]

then
echo "$script: backup cannot be " \

"created in the working directory" 1>&2
exit 1

fi
;;

*)
echo "Usage: $script [file-to-edit]" 1>&2
exit 1
;;

esac

Quoted
character echo displays

\t Horizontal TAB

\v Vertical TAB

\\ Backslash

\nnn The character with the ASCII octal code nnn; if nnn is not valid, echo displays
the string literally

Table 27-3 Special characters in echo (must use –e) (continued)

 From the Library of WoweBook.Com

ptg

982 Chapter 27 Programming the Bourne Again Shell

tempfile=/tmp/$$.$script
cp $editfile $tempfile
if vim.tiny $editfile

then
mv $tempfile bak.$(basename $editfile)
echo "$script: backup file created"

 else
mv $tempfile editerr
echo "$script: edit error--copy of " \

"original file is in editerr" 1>&2
fi

If you call safedit without any arguments, the case structure executes its first branch
and calls vim without a filename argument. Because an existing file is not being
edited, safedit does not create a backup file. If you call safedit with one argument, it
runs the commands in the second branch of the case structure and verifies that the
file specified by $1 does not yet exist or is the name of a file for which the user has
read and write permission. The safedit script also verifies that the user has write
permission for the working directory. If the user calls safedit with more than one
argument, the third branch of the case structure presents a usage message and exits
with a status of 1.

Set PATH In addition to using a case structure for branching based on the number of
command-line arguments, the safedit script introduces several other features. At the
beginning of the script, the PATH variable is set to search /bin and /usr/bin. Setting
PATH in this way ensures that the commands executed by the script are standard
utilities, which are kept in those directories. By setting this variable inside a script,
you can avoid the problems that might occur if users have set PATH to search their
own directories first and have scripts or programs with the same names as the utili-
ties the script calls. You can also include absolute pathnames within a script to
achieve this end, although this practice can make a script less portable.

Name of the
program

The next line creates a variable named script and uses command substitution to
assign the simple filename of the script to it:

script=$(basename $0)

The basename utility sends the simple filename component of its argument to stan-
dard output, which is assigned to the script variable, using command substitution.
The $0 holds the command the script was called with (page 997). No matter which
of the following commands the user calls the script with, the output of basename is
the simple filename safedit:

$ /home/max/bin/safedit memo
$./safedit memo
$ safedit memo

After the script variable is set, it replaces the filename of the script in usage and
error messages. By using a variable that is derived from the command that invoked
the script rather than a filename that is hardcoded into the script, you can create

 From the Library of WoweBook.Com

ptg

Control Structures 983

links to the script or rename it, and the usage and error messages will still provide
accurate information.

Naming
temporary files

Another feature of safedit relates to the use of the $$ parameter in the name of a
temporary file. The statement following the esac statement creates and assigns a
value to the tempfile variable. This variable contains the name of a temporary file
that is stored in the /tmp directory, as are many temporary files. The temporary file-
name begins with the PID number of the shell and ends with the name of the script.
Using the PID number ensures that the filename is unique. Thus safedit will not
attempt to overwrite an existing file, as might happen if two people were using
safedit at the same time. The name of the script is appended so that, should the file
be left in /tmp for some reason, you can figure out where it came from.

The PID number is used in front of—rather than after—$script in the filename
because of the 14-character limit placed on filenames by some older versions of
UNIX. Linux systems do not have this limitation. Because the PID number ensures
the uniqueness of the filename, it is placed first so that it cannot be truncated. (If the
$script component is truncated, the filename is still unique.) For the same reason,
when a backup file is created inside the if control structure a few lines down in the
script, the filename consists of the string bak. followed by the name of the file being
edited. On an older system, if bak were used as a suffix rather than a prefix and the
original filename were 14 characters long, .bak might be lost and the original file
would be overwritten. The basename utility extracts the simple filename of $editfile
before it is prefixed with bak.

The safedit script uses an unusual test-command in the if structure: vim.tiny
$editfile. The test-command calls vim to edit $editfile. When you finish editing
the file and exit from vim , vim returns an exit code. The if control structure uses
that exit code to determine which branch to take. If the editing session com-
pleted successfully, vim returns 0 and the statements following the then statement
are executed. If vim does not terminate normally (as would occur if the user kill ed
[page 455] the vim process), vim returns a nonzero exit status and the script exe-
cutes the statements following else.

select
The select control structure is based on the one found in the Korn Shell. It displays a
menu, assigns a value to a variable based on the user’s choice of items, and executes
a series of commands. The select control structure has the following syntax:

select varname [in arg . . .]
do

commands
done

The select structure displays a menu of the arg items. If you omit the keyword in
and the list of arguments, select uses the positional parameters in place of the arg

 From the Library of WoweBook.Com

ptg

984 Chapter 27 Programming the Bourne Again Shell

items. The menu is formatted with numbers before each item. For example, a select
structure that begins with

select fruit in apple banana blueberry kiwi orange watermelon STOP

displays the following menu:

1) apple 3) blueberry 5) orange 7) STOP
2) banana 4) kiwi 6) watermelon

The select structure uses the values of the LINES and COLUMNS variables to spec-
ify the size of the display. (LINES has a default value of 24; COLUMNS has a
default value of 80.) With COLUMNS set to 20, the menu looks like this:

1) apple
2) banana
3) blueberry
4) kiwi
5) orange
6) watermelon
7) STOP

PS3 After displaying the menu, select displays the value of PS3, the select prompt. The
default value of PS3 is ?#, but it is typically set to a more meaningful value. When
you enter a valid number (one in the menu range) in response to the PS3 prompt,
select sets varname to the argument corresponding to the number you entered. An
invalid entry causes the shell to set varname to null. Either way select stores your
response in the keyword variable REPLY and then executes the commands between
do and done. If you press RETURN without entering a choice, the shell redisplays the
menu and the PS3 prompt.

The select structure continues to issue the PS3 prompt and execute the commands
until something causes it to exit—typically a break or exit statement. A break state-
ment exits from the loop and an exit statement exits from the script.

The following script illustrates the use of select:

$ cat fruit2
#!/bin/bash
PS3="Choose your favorite fruit from these possibilities: "
select FRUIT in apple banana blueberry kiwi orange watermelon STOP
do
 if ["$FRUIT" == ""]; then
 echo -e "Invalid entry.\n"
 continue
 elif [$FRUIT = STOP]; then
 echo "Thanks for playing!"
 break
 fi
echo "You chose $FRUIT as your favorite."
echo -e "That is choice number $REPLY.\n"
done

 From the Library of WoweBook.Com

ptg

Control Structures 985

$./fruit2
1) apple 3) blueberry 5) orange 7) STOP
2) banana 4) kiwi 6) watermelon
Choose your favorite fruit from these possibilities: 3
You chose blueberry as your favorite.
That is choice number 3.

Choose your favorite fruit from these possibilities: 99
Invalid entry.

Choose your favorite fruit from these possibilities: 7
Thanks for playing!

After setting the PS3 prompt and establishing the menu with the select statement,
fruit2 executes the commands between do and done. If the user submits an invalid
entry, the shell sets varname ($FRUIT) to a null value. If $FRUIT is null, echo dis-
plays an error; continue then causes the shell to redisplay the PS3 prompt. If the entry
is valid, the script tests whether the user wants to stop. If so, echo displays a message
and break exits from the select structure (and from the script). If the user enters a
valid response and does not want to stop, the script displays the name and number of
the user’s response. (See page 980 for information about the echo –e option.)

Here Document

A Here document allows you to redirect input to a shell script from within the shell
script itself. A Here document is so named because it is here—immediately accessible
in the shell script—instead of there, perhaps in another file.

The following script, named birthday, contains a Here document. The two less
than symbols (<<) in the first line indicate a Here document follows. One or more
characters that delimit the Here document follow the less than symbols—this
example uses a plus sign. Whereas the opening delimiter must appear adjacent to
the less than symbols, the closing delimiter must be on a line by itself. The shell
sends everything between the two delimiters to the process as standard input. In
the example it is as though you have redirected standard input to grep from a file,
except that the file is embedded in the shell script:

$ cat birthday
grep -i "$1" <<+
Max June 22
Barbara February 3
Darlene May 8
Helen March 13
Zach January 23
Nancy June 26
+
$./birthday Zach
Zach January 23
$./birthday june
Max June 22
Nancy June 26

 From the Library of WoweBook.Com

ptg

986 Chapter 27 Programming the Bourne Again Shell

When you run birthday, it lists all the Here document lines that contain the argu-
ment you called it with. In this case the first time birthday is run, it displays Zach’s
birthday because it is called with an argument of Zach. The second run displays all
the birthdays in June. The –i argument causes grep ’s search not to be case sensitive.

optional The next script, named bundle,2 includes a clever use of a Here document. The bundle
script is an elegant example of a script that creates a shell archive (shar) file. The script
creates a file that is itself a shell script containing several other files as well as the code
to re-create the original files:

$ cat bundle
#!/bin/bash
bundle: group files into distribution package

echo "# To unbundle, bash this file"
for i
do

echo "echo $i 1>&2"
echo "cat >$i <<'End of $i'"
cat $i
echo "End of $i"

done

Just as the shell does not treat special characters that occur in standard input of a
shell script as special, so the shell does not treat the special characters that occur
between the delimiters in a Here document as special.

As the following example shows, the output of bundle is a shell script, which is
redirected to a file named bothfiles. It contains the contents of each file given as an
argument to bundle (file1 and file2 in this case) inside a Here document. To
extract the original files from bothfiles, you simply give it as an argument to a
bash command. Before each Here document is a cat command that causes the
Here document to be written to a new file when bothfiles is run:

$ cat file1
This is a file.
It contains two lines.
$ cat file2
This is another file.
It contains
three lines.

$./bundle file1 file2 > bothfiles
$ cat bothfiles
To unbundle, bash this file
echo file1 1>&2
cat >file1 <<'End of file1'

2. Thanks to Brian W. Kernighan and Rob Pike, The Unix Programming Environment (Englewood Cliffs,
N.J.: Prentice-Hall, 1984), 98. Reprinted with permission.

 From the Library of WoweBook.Com

ptg

File Descriptors 987

This is a file.
It contains two lines.
End of file1
echo file2 1>&2
cat >file2 <<'End of file2'
This is another file.
It contains
three lines.
End of file2

In the next example, file1 and file2 are removed before bothfiles is run. The bothfiles
script echoes the names of the files it creates as it creates them. The ls command then
shows that bothfiles has re-created file1 and file2:

$ rm file1 file2
$ bash bothfiles
file1
file2
$ ls
bothfiles
file1
file2

File Descriptors

As discussed on page 297, before a process can read from or write to a file, it must
open that file. When a process opens a file, Linux associates a number (called a file
descriptor) with the file. A file descriptor is an index into the process’s table of open
files. Each process has its own set of open files and its own file descriptors. After
opening a file, a process reads from and writes to that file by referring to its file
descriptor. When it no longer needs the file, the process closes the file, freeing the
file descriptor.

A typical Linux process starts with three open files: standard input (file descriptor 0),
standard output (file descriptor 1), and standard error (file descriptor 2). Often these
are the only files the process needs. Recall that you redirect standard output with the
symbol > or the symbol 1> and that you redirect standard error with the symbol 2>.
Although you can redirect other file descriptors, because file descriptors other than
0, 1, and 2 do not have any special conventional meaning, it is rarely useful to do so.
The exception is in programs that you write yourself, in which case you control the
meaning of the file descriptors and can take advantage of redirection.

Opening a file
descriptor

The Bourne Again Shell opens files using the exec builtin as follows:

exec n> outfile
exec m< infile

The first line opens outfile for output and holds it open, associating it with file
descriptor n. The second line opens infile for input and holds it open, associating it
with file descriptor m.

 From the Library of WoweBook.Com

ptg

988 Chapter 27 Programming the Bourne Again Shell

Duplicating a
file descriptor

The <& token duplicates an input file descriptor; >& duplicates an output file
descriptor. You can duplicate a file descriptor by making it refer to the same file as
another open file descriptor, such as standard input or output. Use the following
format to open or redirect file descriptor n as a duplicate of file descriptor m:

exec n<&m

Once you have opened a file, you can use it for input and output in two ways. First,
you can use I/O redirection on any command line, redirecting standard output to a
file descriptor with >&n or redirecting standard input from a file descriptor with
<&n. Second, you can use the read (page 1003) and echo builtins. If you invoke
other commands, including functions (page 349), they inherit these open files and
file descriptors. When you have finished using a file, you can close it using

exec n<&–

When you invoke the shell function in the next example, named mycp, with two
arguments, it copies the file named by the first argument to the file named by the
second argument. If you supply only one argument, the script copies the file named
by the argument to standard output. If you invoke mycp with no arguments, it
copies standard input to standard output.

function mycp ()
{
case $# in
 0)
 # Zero arguments
 # File descriptor 3 duplicates standard input
 # File descriptor 4 duplicates standard output
 exec 3<&0 4<&1
 ;;
 1)
 # One argument
 # Open the file named by the argument for input
 # and associate it with file descriptor 3
 # File descriptor 4 duplicates standard output
 exec 3< $1 4<&1
 ;;
 2)
 # Two arguments
 # Open the file named by the first argument for input
 # and associate it with file descriptor 3
 # Open the file named by the second argument for output
 # and associate it with file descriptor 4
 exec 3< $1 4> $2
 ;;

A function is not a shell script

tip The mycp example is a shell function; it will not work as you expect if you execute it as a shell
script. (It will work: The function will be created in a very short-lived subshell, which is probably
of little use.) You can enter this function from the keyboard. If you put the function in a file, you
can run it as an argument to the . (dot) builtin (page 296). You can also put the function in a
startup file if you want it to be always available (page 351).

 From the Library of WoweBook.Com

ptg

File Descriptors 989

 *)
 echo "Usage: mycp [source [dest]]"
 return 1
 ;;
esac

Call cat with input coming from file descriptor 3
and output going to file descriptor 4
cat <&3 >&4

Close file descriptors 3 and 4
exec 3<&- 4<&-
}

The real work of this function is done in the line that begins with cat . The rest of the
script arranges for file descriptors 3 and 4, which are the input and output of the cat
command, to be associated with the appropriate files.

optional The next program takes two filenames on the command line, sorts both, and sends
the output to temporary files. The program then merges the sorted files to standard
output, preceding each line by a number that indicates which file it came from.

$ cat sortmerg
#!/bin/bash
usage ()
{
if [$# -ne 2]; then

echo "Usage: $0 file1 file2" 2>&1
exit 1
fi

}

Default temporary directory
: ${TEMPDIR:=/tmp}

Check argument count
usage "$@"

Set up temporary files for sorting
file1=$TEMPDIR/$$.file1
file2=$TEMPDIR/$$.file2

Sort
sort $1 > $file1
sort $2 > $file2

Open $file1 and $file2 for reading. Use file descriptors 3 and 4.
exec 3<$file1
exec 4<$file2

Read the first line from each file to figure out how to start.
read Line1 <&3
status1=$?
read Line2 <&4
status2=$?

 From the Library of WoweBook.Com

ptg

990 Chapter 27 Programming the Bourne Again Shell

Strategy: while there is still input left in both files:
Output the line that should come first.
Read a new line from the file that line came from.
while [$status1 -eq 0 -a $status2 -eq 0]

do
if [["$Line2" > "$Line1"]]; then

echo -e "1.\t$Line1"
read -u3 Line1
status1=$?

else
echo -e "2.\t$Line2"
read -u4 Line2
status2=$?

fi
done

Now one of the files is at end-of-file.
Read from each file until the end.
First file1:
while [$status1 -eq 0]

do
echo -e "1.\t$Line1"
read Line1 <&3
status1=$?

done
Next file2:
while [[$status2 -eq 0]]

do
echo -e "2.\t$Line2"
read Line2 <&4
status2=$?

done

Close and remove both input files
exec 3<&- 4<&-
rm -f $file1 $file2
exit 0

Parameters and Variables

Shell parameters and variables were introduced on page 312. This section adds to
the previous coverage with a discussion of array variables, global versus local vari-
ables, special and positional parameters, and expansion of null and unset variables.

Array Variables

The Bourne Again Shell supports one-dimensional array variables. The subscripts
are integers with zero-based indexing (i.e., the first element of the array has the
subscript 0). The following format declares and assigns values to an array:

 From the Library of WoweBook.Com

ptg

Parameters and Variables 991

name=(element1 element2 ...)

The following example assigns four values to the array NAMES:

$ NAMES=(max helen sam zach)

You reference a single element of an array as follows:

$ echo ${NAMES[2]}
sam

The subscripts [*] and [@] both extract the entire array but work differently when
used within double quotation marks. An @ produces an array that is a duplicate of
the original array; an * produces a single element of an array (or a plain variable)
that holds all the elements of the array separated by the first character in IFS (nor-
mally a SPACE). In the following example, the array A is filled with the elements of
the NAMES variable using an *, and B is filled using an @. The declare builtin
with the –a option displays the values of the arrays (and reminds you that bash
uses zero-based indexing for arrays):

$ A=("${NAMES[*]}")
$ B=("${NAMES[@]}")

$ declare -a
declare -a A='([0]="max helen sam zach")'
declare -a B='([0]="max" [1]="helen" [2]="sam" [3]="zach")'
...
declare -a NAMES='([0]="max" [1]="helen" [2]="sam" [3]="zach")'

From the output of declare , you can see that NAMES and B have multiple elements.
In contrast, A, which was assigned its value with an * within double quotation
marks, has only one element: A has all its elements enclosed between double quota-
tion marks.

In the next example, echo attempts to display element 1 of array A. Nothing is dis-
played because A has only one element and that element has an index of 0. Element
0 of array A holds all four names. Element 1 of B holds the second item in the array
and element 0 holds the first item.

$ echo ${A[1]}

$ echo ${A[0]}
max helen sam zach
$ echo ${B[1]}
helen
$ echo ${B[0]}
max

You can apply the ${#name[*]} operator to array variables, returning the number
of elements in the array:

$ echo ${#NAMES[*]}
4

 From the Library of WoweBook.Com

ptg

992 Chapter 27 Programming the Bourne Again Shell

The same operator, when given the index of an element of an array in place of *,
returns the length of the element:

$ echo ${#NAMES[1]}
5

You can use subscripts on the left side of an assignment statement to replace
selected elements of the array:

$ NAMES[1]=max
$ echo ${NAMES[*]}
max max sam zach

Locality of Variables

By default variables are local to the process in which they are declared. Thus a shell
script does not have access to variables declared in your login shell unless you
explicitly make the variables available (global). Under bash , export makes a variable
available to child processes.

export Once you use the export builtin with a variable name as an argument, the shell
places the value of the variable in the calling environment of child processes. This
call by value gives each child process a copy of the variable for its own use.

The following extest1 shell script assigns a value of american to the variable named
cheese and then displays its filename (extest1) and the value of cheese. The extest1
script then calls subtest, which attempts to display the same information. Next
subtest declares a cheese variable and displays its value. When subtest finishes, it
returns control to the parent process, which is executing extest1. At this point
extest1 again displays the value of the original cheese variable.

$ cat extest1
cheese=american
echo "extest1 1: $cheese"
subtest
echo "extest1 2: $cheese"
$ cat subtest
echo "subtest 1: $cheese"
cheese=swiss
echo "subtest 2: $cheese"
$./extest1
extest1 1: american
subtest 1:
subtest 2: swiss
extest1 2: american

The subtest script never receives the value of cheese from extest1, and extest1 never
loses the value. In bash —unlike in the real world—a child can never affect its par-
ent’s attributes. When a process attempts to display the value of a variable that has
not been declared, as is the case with subtest, the process displays nothing; the value
of an undeclared variable is that of a null string.

 From the Library of WoweBook.Com

ptg

Parameters and Variables 993

The following extest2 script is the same as extest1 except it uses export to make
cheese available to the subtest script:

$ cat extest2
export cheese=american
echo "extest2 1: $cheese"
subtest
echo "extest2 2: $cheese"
$./extest2
extest2 1: american
subtest 1: american
subtest 2: swiss
extest2 2: american

Here the child process inherits the value of cheese as american and, after displaying
this value, changes its copy to swiss. When control is returned to the parent, the
parent’s copy of cheese retains its original value: american.

An export builtin can optionally include an assignment:

export cheese=american

The preceding statement is equivalent to the following two statements:

cheese=american
export cheese

Although it is rarely done, you can export a variable before you assign a value to it.
You do not need to export an already-exported variable a second time after you
change its value.

Functions

Because functions run in the same environment as the shell that calls them, variables
are implicitly shared by a shell and a function it calls.

$ function nam () {
> echo $myname
> myname=zach
> }

$ myname=sam
$ nam
sam
$ echo $myname
zach

In the preceding example, the myname variable is set to sam in the interactive shell.
The nam function then displays the value of myname (sam) and sets myname to
zach. The final echo shows that, in the interactive shell, the value of myname has
been changed to zach.

 From the Library of WoweBook.Com

ptg

994 Chapter 27 Programming the Bourne Again Shell

Function local
variables

Local variables are helpful in a function written for general use. Because the func-
tion is called by many scripts that may be written by different programmers, you
need to make sure the names of the variables used within the function do not con-
flict with (i.e., duplicate) the names of the variables in the programs that call the
function. Local variables eliminate this problem. When used within a function, the
typeset builtin declares a variable to be local to the function it is defined in.

The next example shows the use of a local variable in a function. It features two
variables named count. The first is declared and assigned a value of 10 in the inter-
active shell. Its value never changes, as echo verifies after count_down is run. The
other count is declared, using typeset , to be local to the function. Its value, which is
unknown outside the function, ranges from 4 to 1, as the echo command within the
function confirms.

The example shows the function being entered from the keyboard; it is not a shell
script. See the tip “A function is not a shell script” on page 988.

$ function count_down () {
> typeset count
> count=$1
> while [$count -gt 0]
> do
> echo "$count..."
> ((count=count-1))
> sleep 1
> done
> echo "Blast Off."
> }
$ count=10
$ count_down 4
4...
3...
2...
1...
Blast Off.
$ echo $count
10

The ((count=count–1)) assignment is enclosed between double parentheses, which
cause the shell to perform an arithmetic evaluation (page 1016). Within the double
parentheses you can reference shell variables without the leading dollar sign ($).

Special Parameters

Special parameters enable you to access useful values pertaining to command-line
arguments and the execution of shell commands. You reference a shell special
parameter by preceding a special character with a dollar sign ($). As with posi-
tional parameters, it is not possible to modify the value of a special parameter by
assignment.

 From the Library of WoweBook.Com

ptg

Parameters and Variables 995

$$: PID Number

The shell stores in the $$ parameter the PID number of the process that is execut-
ing it. In the following interaction, echo displays the value of this variable and the
ps utility confirms its value. Both commands show that the shell has a PID number
of 5209:

$ echo $$
5209
$ ps
 PID TTY TIME CMD
 5209 pts/1 00:00:00 bash
 6015 pts/1 00:00:00 ps

Because echo is built into the shell, the shell does not create another process when
you give an echo command. However, the results are the same whether echo is a
builtin or not, because the shell substitutes the value of $$ before it forks a new
process to run a command. Try using the echo utility (/bin/echo), which is run by
another process, and see what happens. In the following example, the shell substi-
tutes the value of $$ and passes that value to cp as a prefix for a filename:

$ echo $$
8232
$ cp memo $$.memo
$ ls
8232.memo memo

Incorporating a PID number in a filename is useful for creating unique filenames
when the meanings of the names do not matter; this technique is often used in shell
scripts for creating names of temporary files. When two people are running the same
shell script, having unique filenames keeps the users from inadvertently sharing the
same temporary file.

The following example demonstrates that the shell creates a new shell process when
it runs a shell script. The id2 script displays the PID number of the process running
it (not the process that called it—the substitution for $$ is performed by the shell
that is forked to run id2):

$ cat id2
echo "$0 PID= $$"
$ echo $$
8232
$ id2
./id2 PID= 8362
$ echo $$
8232

The first echo displays the PID number of the interactive shell. Then id2 displays its
name ($0) and the PID number of the subshell that it is running in. The last echo
shows that the PID number of the interactive shell has not changed.

 From the Library of WoweBook.Com

ptg

996 Chapter 27 Programming the Bourne Again Shell

$! The shell stores the value of the PID number of the last process that ran in the back-
ground in $!. The following example executes sleep as a background task and uses
echo to display the value of $! :

$ sleep 60 &
[1] 8376
$ echo $!
8376

$?: Exit Status

When a process stops executing for any reason, it returns an exit status to its parent
process. The exit status is also referred to as a condition code or a return code. The
$? variable stores the exit status of the last command.

By convention a nonzero exit status represents a false value and means the command
failed. A zero is true and indicates the command executed successfully. In the follow-
ing example, the first ls command succeeds and the second fails, as demonstrated by
the exit status:

$ ls es
es
$ echo $?
0
$ ls xxx
ls: xxx: No such file or directory
$ echo $?
1

You can specify the exit status that a shell script returns by using the exit builtin, fol-
lowed by a number, to terminate the script. If you do not use exit with a number to ter-
minate a script, the exit status of the script is that of the last command the script ran.

$ cat es
echo This program returns an exit status of 7.
exit 7
$ es
This program returns an exit status of 7.
$ echo $?
7
$ echo $?
0

The es shell script displays a message and terminates execution with an exit com-
mand that returns an exit status of 7, the user-defined exit status in this script. The
first echo then displays the value of the exit status of es. The second echo displays
the value of the exit status of the first echo . This value is 0, indicating the first echo
was successful.

Positional Parameters

Positional parameters comprise the command name and command-line arguments.
These parameters are called positional because within a shell script, you refer to

 From the Library of WoweBook.Com

ptg

Parameters and Variables 997

them by their position on the command line. Only the set builtin (page 998) allows
you to change the values of positional parameters. However, you cannot change the
value of the command name from within a script.

$#: Number of Command-Line Arguments

The $# parameter holds the number of arguments on the command line (positional
parameters), not counting the command itself:

$ cat num_args
echo "This script was called with $# arguments."
$./num_args sam max zach
This script was called with 3 arguments.

$0: Name of the Calling Program

The shell stores the name of the command you used to call a program in parameter
$0. This parameter is numbered zero because it appears before the first argument
on the command line:

$ cat abc
echo "The command used to run this script is $0"
$./abc
The command used to run this script is ./abc
$ /home/sam/abc
The command used to run this script is /home/sam/abc

The preceding shell script uses echo to verify the name of the script you are executing.
You can use the basename utility and command substitution to extract and display
the simple filename of the command:

$ cat abc2
echo "The command used to run this script is $(basename $0)"
$ /home/sam/abc2
The command used to run this script is abc2

$1–$n: Command-Line Arguments

The first argument on the command line is represented by parameter $1, the second
argument by $2, and so on up to $n. For values of n greater than 9, the number
must be enclosed within braces. For example, the twelfth command-line argument
is represented by ${12}. The following script displays positional parameters that
hold command-line arguments:

$ cat display_5args
echo First 5 arguments are $1 $2 $3 $4 $5

$./display_5args zach max helen
First 5 arguments are zach max helen

The display_5args script displays the first five command-line arguments. The shell
assigns a null value to each parameter that represents an argument that is not

 From the Library of WoweBook.Com

ptg

998 Chapter 27 Programming the Bourne Again Shell

present on the command line. Thus the $4 and $5 parameters have null values in
this example.

shift: Promotes Command-Line Arguments

The shift builtin promotes each command-line argument. The first argument
(which was $1) is discarded. The second argument (which was $2) becomes the
first argument (now $1), the third becomes the second, and so on. Because no
“unshift” command exists, you cannot bring back arguments that have been dis-
carded. An optional argument to shift specifies the number of positions to shift
(and the number of arguments to discard); the default is 1.

The following demo_shift script is called with three arguments. Double quotation
marks around the arguments to echo preserve the spacing of the output. The pro-
gram displays the arguments and shifts them repeatedly until no more arguments
are left to shift:

$ cat demo_shift
echo "arg1= $1 arg2= $2 arg3= $3"
shift
echo "arg1= $1 arg2= $2 arg3= $3"
shift
echo "arg1= $1 arg2= $2 arg3= $3"
shift
echo "arg1= $1 arg2= $2 arg3= $3"
shift
$./demo_shift alice helen zach
arg1= alice arg2= helen arg3= zach
arg1= helen arg2= zach arg3=
arg1= zach arg2= arg3=
arg1= arg2= arg3=

Repeatedly using shift is a convenient way to loop over all command-line arguments
in shell scripts that expect an arbitrary number of arguments. See page 959 for a
shell script that uses shift .

set: Initializes Command-Line Arguments

When you call the set builtin with one or more arguments, it assigns the values of
the arguments to the positional parameters, starting with $1. The following script
uses set to assign values to the positional parameters $1, $2, and $3:

$ cat set_it
set this is it
echo $3 $2 $1
$./set_it
it is this

Combining command substitution (page 362) with the set builtin is a convenient
way to get standard output of a command in a form that can be easily manipulated
in a shell script. The following script shows how to use date and set to provide the

 From the Library of WoweBook.Com

ptg

Parameters and Variables 999

date in a useful format. The first command shows the output of date . Then cat dis-
plays the contents of the dateset script. The first command in this script uses com-
mand substitution to set the positional parameters to the output of the date utility.
The next command, echo $*, displays all positional parameters resulting from the
previous set . Subsequent commands display the values of parameters $1, $2, $3,
and $6. The final command displays the date in a format you can use in a letter or
report:

$ date
Wed Aug 14 17:35:29 PDT 2010
$ cat dateset
set $(date)
echo $*
echo
echo "Argument 1: $1"
echo "Argument 2: $2"
echo "Argument 3: $3"
echo "Argument 6: $6"
echo
echo "$2 $3, $6"
$./dateset
Wed Aug 14 17:35:34 PDT 2010

Argument 1: Wed
Argument 2: Aug
Argument 3: 14
Argument 6: 2010

Aug 14, 2010

You can also use the +format argument to date to modify the format of its output.

When used without any arguments, set displays a list of the shell variables that are
set, including user-created variables and keyword variables. Under bash , this list is
the same as that displayed by declare and typeset when they are called without any
arguments.

The set builtin also accepts options that let you customize the behavior of the shell.
For more information refer to “set ±o: Turns Shell Features On and Off” on
page 353.

$* and $@: Represent All Command-Line Arguments

The $* parameter represents all command-line arguments, as the display_all pro-
gram demonstrates:

$ cat display_all
echo All arguments are $*

$./display_all a b c d e f g h i j k l m n o p
All arguments are a b c d e f g h i j k l m n o p

 From the Library of WoweBook.Com

ptg

1000 Chapter 27 Programming the Bourne Again Shell

It is a good idea to enclose references to positional parameters between double quo-
tation marks. The quotation marks are particularly important when you are using
positional parameters as arguments to commands. Without double quotation
marks, a positional parameter that is not set or that has a null value disappears:

$ cat showargs
echo "$0 was called with $# arguments, the first is :$1:."

$./showargs a b c
./showargs was called with 3 arguments, the first is :a:.
$ echo $xx

$./showargs $xx a b c
./showargs was called with 3 arguments, the first is :a:.
$./showargs "$xx" a b c
./showargs was called with 4 arguments, the first is ::.

The showargs script displays the number of arguments ($#) followed by the value of
the first argument enclosed between colons. In the preceding example, showargs is
initially called with three simple arguments. Next the echo command demonstrates
that the $xx variable, which is not set, has a null value. In the final two calls to
showargs, the first argument is $xx. In the first case the command line becomes
showargs a b c; the shell passes showargs three arguments. In the second case the
command line becomes showargs "" a b c, which results in calling showargs with
four arguments. The difference in the two calls to showargs illustrates a subtle
potential problem that you should keep in mind when using positional parameters
that may not be set or that may have a null value.

"$*" versus "$@" The $* and $@ parameters work the same way except when they are enclosed within
double quotation marks. Using "$*" yields a single argument (with SPACEs or the value
of the first character of IFS [page 323] between the positional parameters), whereas
using "$@" produces a list wherein each positional parameter is a separate argument.
This difference typically makes "$@" more useful than "$*" in shell scripts.

The following scripts help explain the difference between these two special parame-
ters. In the second line of both scripts, the single quotation marks keep the shell from
interpreting the enclosed special characters so they are passed to echo and displayed
as themselves. The bb1 script shows that set "$*" assigns multiple arguments to the
first command-line parameter:

$ cat bb1
set "$*"
echo $# parameters with '"$*"'
echo 1: $1
echo 2: $2
echo 3: $3
$./bb1 a b c
1 parameters with "$*"
1: a b c
2:
3:

The bb2 script shows that set "$@" assigns each argument to a different command-
line parameter:

 From the Library of WoweBook.Com

ptg

Parameters and Variables 1001

$ cat bb2
set "$@"
echo $# parameters with '"$@"'
echo 1: $1
echo 2: $2
echo 3: $3

$./bb2 a b c
3 parameters with "$@"
1: a
2: b
3: c

Expanding Null and Unset Variables

The expression ${name} (or just $name if it is not ambiguous) expands to the value
of the name variable. If name is null or not set, bash expands ${name} to a null
string. The Bourne Again Shell provides the following alternatives to accepting the
expanded null string as the value of the variable:

• Use a default value for the variable.

• Use a default value and assign that value to the variable.

• Display an error.

You can choose one of these alternatives by using a modifier with the variable
name. In addition, you can use set –o nounset (page 355) to cause bash to display
an error and exit from a script whenever an unset variable is referenced.

:– Uses a Default Value

The :– modifier uses a default value in place of a null or unset variable while allowing
a nonnull variable to represent itself:

${name:–default}

The shell interprets :– as “If name is null or unset, expand default and use the
expanded value in place of name; else use name.” The following command lists the
contents of the directory named by the LIT variable. If LIT is null or unset, it lists
the contents of /home/max/literature:

$ ls ${LIT:-/home/max/literature}

The default can itself have variable references that are expanded:

$ ls ${LIT:-$HOME/literature}

:= Assigns a Default Value

The :– modifier does not change the value of a variable. However, you can change
the value of a null or unset variable to its default in a script by using the := modifier:

${name:=default}

 From the Library of WoweBook.Com

ptg

1002 Chapter 27 Programming the Bourne Again Shell

The shell expands the expression ${name:=default} in the same manner as it
expands ${name:–default} but also sets the value of name to the expanded value
of default. If a script contains a line such as the following and LIT is unset or null at
the time this line is executed, LIT is assigned the value /home/max/literature:

$ ls ${LIT:=/home/max/literature}

: (null) builtin Shell scripts frequently start with the : (null) builtin followed on the same line by the
:= expansion modifier to set any variables that may be null or unset. The : builtin
evaluates each token in the remainder of the command line but does not execute
any commands. Without the leading colon (:), the shell evaluates and attempts to
execute the “command” that results from the evaluation.

Use the following syntax to set a default for a null or unset variable in a shell script
(a SPACE follows the first colon):

: ${name:=default}

When a script needs a directory for temporary files and uses the value of TEMPDIR
for the name of this directory, the following line assigns to TEMPDIR the value
/tmp if TEMPDIR is null:

: ${TEMPDIR:=/tmp}

:? Displays an Error Message

Sometimes a script needs the value of a variable but you cannot supply a reasonable
default at the time you write the script. If the variable is null or unset, the :? modi-
fier causes the script to display an error message and terminate with an exit status
of 1:

${name:?message}

If you omit message, the shell displays the default error message (parameter null or
not set). Interactive shells do not exit when you use :? . In the following command,
TESTDIR is not set so the shell displays on standard error the expanded value of
the string following :?. In this case the string includes command substitution for
date with the %T format, followed by the string error, variable not set.

cd ${TESTDIR:?$(date +%T) error, variable not set.}
bash: TESTDIR: 16:16:14 error, variable not set.

Builtin Commands

Builtin commands, which were introduced in Chapter 7, do not fork a new process
when you execute them. This section discusses the type , read , exec , trap , kill , and
getopts builtins. Table 27-6 on page 1015 lists many bash builtin commands.

 From the Library of WoweBook.Com

ptg

Builtin Commands 1003

type: Displays Information About a Command

The type builtin provides information about a command:

$ type cat echo who if lt
cat is hashed (/bin/cat)
echo is a shell builtin
who is /usr/bin/who
if is a shell keyword
lt is aliased to 'ls -ltrh | tail'

The preceding output shows the files that would be executed if you gave cat or who
as a command. Because cat has already been called from the current shell, it is in the
hash table (page 1151) and type reports that cat is hashed. The output also shows
that a call to echo runs the echo builtin, if is a keyword, and lt is an alias.

read: Accepts User Input

One of the most common uses for user-created variables is storing information that
a user enters in response to a prompt. Using read , scripts can accept input from the
user and store that input in variables. The read builtin reads one line from standard
input and assigns the words on the line to one or more variables:

$ cat read1
echo -n "Go ahead: "
read firstline
echo "You entered: $firstline"
$./read1
Go ahead: This is a line.
You entered: This is a line.

The first line of the read1 script uses echo to prompt for a line of text. The –n
option suppresses the following NEWLINE, allowing you to enter a line of text on the
same line as the prompt. The second line reads the text into the variable firstline.
The third line verifies the action of read by displaying the value of firstline. The vari-
able is quoted (along with the text string) in this example because you, as the script
writer, cannot anticipate which characters the user might enter in response to the
prompt. Consider what would happen if the variable were not quoted and the user
entered * in response to the prompt:

$ cat read1_no_quote
echo -n "Go ahead: "
read firstline
echo You entered: $firstline
$./read1_no_quote
Go ahead: *
You entered: read1 read1_no_quote script.1
$ ls
read1 read1_no_quote script.1

 From the Library of WoweBook.Com

ptg

1004 Chapter 27 Programming the Bourne Again Shell

The ls command lists the same words as the script, demonstrating that the shell
expands the asterisk into a list of files in the working directory. When the variable
$firstline is surrounded by double quotation marks, the shell does not expand the
asterisk. Thus the read1 script behaves correctly:

$./read1
Go ahead: *
You entered: *

REPLY The read builtin includes several features that can make it easier to use. For exam-
ple, when you do not specify a variable to receive read ’s input, bash puts the input
into the variable named REPLY. You can use the –p option to prompt the user
instead of using a separate echo command. The following read1a script performs
exactly the same task as read1:

$ cat read1a
read -p "Go ahead: "
echo "You entered: $REPLY"

The read2 script prompts for a command line, reads the user’s response, and assigns
it to the variable cmd. The script then attempts to execute the command line that
results from the expansion of the cmd variable:

$ cat read2
read -p "Enter a command: " cmd
$cmd
echo "Thanks"

In the following example, read2 reads a command line that calls the echo builtin.
The shell executes the command and then displays Thanks. Next read2 reads a
command line that executes the who utility:

$./read2
Enter a command: echo Please display this message.
Please display this message.
Thanks
$./read2
Enter a command: who
max pts/4 2010-06-17 07:50 (:0.0)
sam pts/12 2010-06-17 11:54 (bravo.example.com)
Thanks

If cmd does not expand into a valid command line, the shell issues an error message:

$./read2
Enter a command: xxx
./read2: line 2: xxx: command not found
Thanks

The read3 script reads values into three variables. The read builtin assigns one word
(a sequence of nonblank characters) to each variable:

$ cat read3
read -p "Enter something: " word1 word2 word3
echo "Word 1 is: $word1"
echo "Word 2 is: $word2"
echo "Word 3 is: $word3"

 From the Library of WoweBook.Com

ptg

Builtin Commands 1005

$./read3
Enter something: this is something
Word 1 is: this
Word 2 is: is
Word 3 is: something

When you enter more words than read has variables, read assigns one word to each
variable, assigning all leftover words to the last variable. Both read1 and read2
assigned the first word and all leftover words to the one variable the scripts each
had to work with. In the following example, read assigns five words to three vari-
ables: It assigns the first word to the first variable, the second word to the second
variable, and the third through fifth words to the third variable.

$./read3
Enter something: this is something else, really.
Word 1 is: this
Word 2 is: is
Word 3 is: something else, really.

Table 27-4 lists some of the options supported by the read builtin.

The read builtin returns an exit status of 0 if it successfully reads any data. It has a
nonzero exit status when it reaches the EOF (end of file).

Table 27-4 read options

Option Function

–a aname (array) Assigns each word of input to an element of array aname.

–d delim (delimiter) Uses delim to terminate the input instead of NEWLINE.

–e (Readline) If input is coming from a keyboard, uses the Readline Library
(page 340) to get input.

–n num (number of characters) Reads num characters and returns. As soon as the user
types num characters, read returns; there is no need to press RETURN.

–p prompt (prompt) Displays prompt on standard error without a terminating NEWLINE
before reading input. Displays prompt only when input comes from the
keyboard.

–s (silent) Does not echo characters.

–un (file descriptor) Uses the integer n as the file descriptor that read takes its
input from. Thus

read –u4 arg1 arg2

is equivalent to
read arg1 arg2 <&4

See “File Descriptors” (page 987) for a discussion of redirection and file
descriptors.

 From the Library of WoweBook.Com

ptg

1006 Chapter 27 Programming the Bourne Again Shell

The following example runs a while loop from the command line. It takes its input
from the names file and terminates after reading the last line from names.

$ cat names
Alice Jones
Robert Smith
Alice Paulson
John Q. Public

$ while read first rest
> do
> echo $rest, $first
> done < names
Jones, Alice
Smith, Robert
Paulson, Alice
Q. Public, John
$

The placement of the redirection symbol (<) for the while structure is critical. It is
important that you place the redirection symbol at the done statement and not at
the call to read .

optional Each time you redirect input, the shell opens the input file and repositions the read
pointer at the start of the file:

$ read line1 < names; echo $line1; read line2 < names; echo $line2
Alice Jones
Alice Jones

Here each read opens names and starts at the beginning of the names file. In the fol-
lowing example, names is opened once, as standard input of the subshell created by
the parentheses. Each read then reads successive lines of standard input:

$ (read line1; echo $line1; read line2; echo $line2) < names
Alice Jones
Robert Smith

Another way to get the same effect is to open the input file with exec and hold it
open (refer to “File Descriptors” on page 987):

$ exec 3< names
$ read -u3 line1; echo $line1; read -u3 line2; echo $line2
Alice Jones
Robert Smith
$ exec 3<&-

exec: Executes a Command or Redirects File Descriptors

The exec builtin has two primary purposes: to run a command without creating a
new process and to redirect a file descriptor—including standard input, output, or
error—of a shell script from within the script (page 987). When the shell executes a
command that is not built into the shell, it typically creates a new process. The new
process inherits environment (global or exported) variables from its parent but does
not inherit variables that are not exported by the parent. (For more information refer

 From the Library of WoweBook.Com

ptg

Builtin Commands 1007

to “Locality of Variables” on page 992.) In contrast, exec executes a command in
place of (overlays) the current process.

exec: Executes a Command

The exec builtin used for running a command has the following syntax:

exec command arguments
exec versus . (dot) Insofar as exec runs a command in the environment of the original process, it is sim-

ilar to the . (dot) command (page 296). However, unlike the . command, which can
run only shell scripts, exec can run both scripts and compiled programs. Also,
whereas the . command returns control to the original script when it finishes run-
ning, exec does not. Finally, the . command gives the new program access to local
variables, whereas exec does not.

exec does not
return control

Because the shell does not create a new process when you use exec , the command
runs more quickly. However, because exec does not return control to the original
program, it can be used only as the last command in a script. The following script
shows that control is not returned to the script:

$ cat exec_demo
who
exec date
echo "This line is never displayed."

$./exec_demo
zach pts/7 May 20 7:05 (bravo.example.com)
hls pts/1 May 20 6:59 (:0.0)
Mon May 24 11:42:56 PDT 2010

The next example, a modified version of the out script (page 959), uses exec to exe-
cute the final command the script runs. Because out runs either cat or less and then
terminates, the new version, named out2, uses exec with both cat and less :

$ cat out2
if [$# -eq 0]

then
echo "Usage: out2 [-v] filenames" 1>&2
exit 1

fi
if ["$1" = "-v"]

then
shift
exec less "$@"

else
exec cat -- "$@"

fi

exec: Redirects Input and Output

The second major use of exec is to redirect a file descriptor—including standard
input, output, or error—from within a script. The next command causes all subse-
quent input to a script that would have come from standard input to come from the
file named infile:

exec < infile

 From the Library of WoweBook.Com

ptg

1008 Chapter 27 Programming the Bourne Again Shell

Similarly the following command redirects standard output and standard error to
outfile and errfile, respectively:

exec > outfile 2> errfile

When you use exec in this manner, the current process is not replaced with a new
process, and exec can be followed by other commands in the script.

/dev/tty When you redirect the output from a script to a file, you must make sure the user
sees any prompts the script displays. The /dev/tty device is a pseudonym for the
screen the user is working on; you can use this device to refer to the user’s screen
without knowing which device it is. (The tty utility displays the name of the device
you are using.) By redirecting the output from a script to /dev/tty, you ensure that
prompts and messages go to the user’s terminal, regardless of which terminal the
user is logged in on. Messages sent to /dev/tty are also not diverted if standard out-
put and standard error from the script are redirected.

The to_screen1 script sends output to three places: standard output, standard error,
and the user’s screen. When run with standard output and standard error redi-
rected, to_screen1 still displays the message sent to /dev/tty on the user’s screen.
The out and err files hold the output sent to standard output and standard error.

$ cat to_screen1
echo "message to standard output"
echo "message to standard error" 1>&2
echo "message to the user" > /dev/tty

$./to_screen1 > out 2> err
message to the user
$ cat out
message to standard output
$ cat err
message to standard error

The following command redirects the output from a script to the user’s screen:

exec > /dev/tty

Putting this command at the beginning of the previous script changes where the out-
put goes. In to_screen2, exec redirects standard output to the user’s screen so the >
/dev/tty is superfluous. Following the exec command, all output sent to standard
output goes to /dev/tty (the screen). Output to standard error is not affected.

$ cat to_screen2
exec > /dev/tty
echo "message to standard output"
echo "message to standard error" 1>&2
echo "message to the user" > /dev/tty

$./to_screen2 > out 2> err
message to standard output
message to the user

One disadvantage of using exec to redirect the output to /dev/tty is that all subse-
quent output is redirected unless you use exec again in the script.

 From the Library of WoweBook.Com

ptg

Builtin Commands 1009

You can also redirect the input to read (standard input) so that it comes from
/dev/tty (the keyboard):

read name < /dev/tty

or

exec < /dev/tty

trap: Catches a Signal

A signal is a report to a process about a condition. Linux uses signals to report
interrupts generated by the user (for example, pressing the interrupt key) as well as
bad system calls, broken pipes, illegal instructions, and other conditions. The trap
builtin catches (traps) one or more signals, allowing you to direct the actions a
script takes when it receives a specified signal.

This discussion covers six signals that are significant when you work with shell scripts.
Table 27-5 lists these signals, the signal numbers that systems often ascribe to them, and
the conditions that usually generate each signal. Give the command kill –l (lowercase
“ell”), trap –l (lowercase “ell”), or man 7 signal to display a list of all signal names.

Table 27-5 Signals

Type Name Number Generating condition

Not a real signal EXIT 0 Exit because of exit command or reaching the
end of the program (not an actual signal but use-
ful in trap)

Hang up SIGHUP or
HUP

1 Disconnect the line

Terminal
interrupt

SIGINT or
INT

2 Press the interrupt key (usually CONTROL-C)

Quit SIGQUIT or
QUIT

3 Press the quit key (usually CONTROL-SHIFT-| or
CONTROL-SHIFT-\)

Kill SIGKILL or
KILL

9 The kill builtin with the –9 option (cannot be
trapped; use only as a last resort)

Software
termination

SIGTERM or
TERM

15 Default of the kill command

Stop SIGTSTP or
TSTP

20 Press the suspend key (usually CONTROL-Z)

Debug DEBUG Executes commands specified in the trap state-
ment after each command (not an actual signal
but useful in trap)

Error ERR Executes commands specified in the trap state-
ment after each command that returns a nonzero
exit status (not an actual signal but useful in trap)

 From the Library of WoweBook.Com

ptg

1010 Chapter 27 Programming the Bourne Again Shell

When it traps a signal, a script takes whatever action you specify: It can remove
files or finish other processing as needed, display a message, terminate execution
immediately, or ignore the signal. If you do not use trap in a script, any of the six
actual signals listed in Table 27-5 (not EXIT, DEBUG, or ERR) will terminate the
script. Because a process cannot trap a KILL signal, you can use kill –KILL (or kill
–9) as a last resort to terminate a script or other process. (See page 1012 for more
information on kill .)

The trap command has the following syntax:

trap ['commands'] [signal]

The optional commands specifies the commands that the shell executes when it
catches one of the signals specified by signal. The signal can be a signal name or
number—for example, INT or 2. If commands is not present, trap resets the trap to
its initial condition, which is usually to exit from the script.

Quotation marks The trap builtin does not require single quotation marks around commands as shown
in the preceding syntax, but it is a good practice to use them. The single quotation
marks cause shell variables within the commands to be expanded when the signal
occurs, rather than when the shell evaluates the arguments to trap . Even if you do not
use any shell variables in the commands, you need to enclose any command that
takes arguments within either single or double quotation marks. Quoting commands
causes the shell to pass to trap the entire command as a single argument.

After executing the commands, the shell resumes executing the script where it left
off. If you want trap to prevent a script from exiting when it receives a signal but
not to run any commands explicitly, you can specify a null (empty) commands
string, as shown in the locktty script (page 975). The following command traps
signal number 15, after which the script continues:

trap '' 15

The following script demonstrates how the trap builtin can catch the terminal inter-
rupt signal (2). You can use SIGINT, INT, or 2 to specify this signal. The script
returns an exit status of 1:

$ cat inter
#!/bin/bash
trap 'echo PROGRAM INTERRUPTED; exit 1' INT
while true
do

echo "Program running."
sleep 1

done
$./inter
Program running.
Program running.
Program running.
CONTROL-C
PROGRAM INTERRUPTED
$

 From the Library of WoweBook.Com

ptg

Builtin Commands 1011

: (null) builtin The second line of inter sets up a trap for the terminal interrupt signal using INT.
When trap catches the signal, the shell executes the two commands between the sin-
gle quotation marks in the trap command. The echo builtin displays the message
PROGRAM INTERRUPTED, exit terminates the shell running the script, and the
parent shell displays a prompt. If exit were not there, the shell would return control
to the while loop after displaying the message. The while loop repeats continuously
until the script receives a signal because the true utility always returns a true exit sta-
tus. In place of true you can use the : (null) builtin, which is written as a colon and
always returns a 0 (true) status.

The trap builtin frequently removes temporary files when a script is terminated prema-
turely, thereby ensuring the files are not left to clutter the filesystem. The following
shell script, named addbanner, uses two trap s to remove a temporary file when the
script terminates normally or owing to a hangup, software interrupt, quit, or software
termination signal:

$ cat addbanner
#!/bin/bash
script=$(basename $0)

if [! -r "$HOME/banner"]
then

echo "$script: need readable $HOME/banner file" 1>&2
exit 1

fi

trap 'exit 1' 1 2 3 15
trap 'rm /tmp/$$.$script 2> /dev/null' 0

for file
do

if [-r "$file" -a -w "$file"]
then

cat $HOME/banner $file > /tmp/$$.$script
cp /tmp/$$.$script $file
echo "$script: banner added to $file" 1>&2

else
echo "$script: need read and write permission for $file" 1>&2

fi
done

When called with one or more filename arguments, addbanner loops through the
files, adding a header to the top of each. This script is useful when you use a stan-
dard format at the top of your documents, such as a standard layout for memos, or
when you want to add a standard header to shell scripts. The header is kept in a file
named ~/banner. Because addbanner uses the HOME variable, which contains the
pathname of the user’s home directory, the script can be used by several users with-
out modification. If Max had written the script with /home/max in place of
$HOME and then given the script to Zach, either Zach would have had to change it
or addbanner would have used Max’s banner file when Zach ran it (assuming Zach
had read permission for the file).

 From the Library of WoweBook.Com

ptg

1012 Chapter 27 Programming the Bourne Again Shell

The first trap in addbanner causes it to exit with a status of 1 when it receives a
hangup, software interrupt (terminal interrupt or quit signal), or software termina-
tion signal. The second trap uses a 0 in place of signal-number, which causes trap to
execute its command argument whenever the script exits because it receives an exit
command or reaches its end. Together these trap s remove a temporary file whether
the script terminates normally or prematurely. Standard error of the second trap is
sent to /dev/null whenever trap attempts to remove a nonexistent temporary file. In
those cases rm sends an error message to standard error; because standard error is
redirected, the user does not see the message.

See page 975 for another example that uses trap .

kill: Aborts a Process

The kill builtin sends a signal to a process or job. The kill command has the following
syntax:

kill [–signal] PID

where signal is the signal name or number (for example, INT or 2) and PID is the
process identification number of the process that is to receive the signal. You can
specify a job number (page 254) as %n in place of PID. If you omit signal, kill sends
a TERM (software termination, number 15) signal. For more information on signal
names and numbers, see Table 27-5 on page 1009.

The following command sends the TERM signal to job number 1, regardless of
whether it is in the foreground (running) or in the background (running or stopped):

$ kill -TERM %1

Because TERM is the default signal for kill , you can also give this command as kill
%1. Give the command kill –l (lowercase “l”) to display a list of signal names.

A program that is interrupted can leave matters in an unpredictable state: Temporary
files may be left behind (when they are normally removed), and permissions may be
changed. A well-written application traps, or detects, signals and cleans up before
exiting. Most carefully written applications trap the INT, QUIT, and TERM signals.

To terminate a program, first try INT (press CONTROL-C, if the job running is in the
foreground). Because an application can be written to ignore these signals, you may
need to use the KILL signal, which cannot be trapped or ignored; it is a “sure kill.”
For more information refer to “kill: Sends a Signal to a Process” on page 455.

getopts: Parses Options

The getopts builtin parses command-line arguments, making it easier to write pro-
grams that follow the Linux argument conventions. The syntax for getopts is

getopts optstring varname [arg ...]

where optstring is a list of the valid option letters, varname is the variable that
receives the options one at a time, and arg is the optional list of parameters to be
processed. If arg is not present, getopts processes the command-line arguments. If
optstring starts with a colon (:), the script must take care of generating error mes-
sages; otherwise, getopts generates error messages.

 From the Library of WoweBook.Com

ptg

Builtin Commands 1013

The getopts builtin uses the OPTIND (option index) and OPTARG (option argu-
ment) variables to track and store option-related values. When a shell script starts,
the value of OPTIND is 1. Each time getopts is called and locates an argument, it
increments OPTIND to the index of the next option to be processed. If the option
takes an argument, bash assigns the value of the argument to OPTARG .

To indicate that an option takes an argument, follow the corresponding letter in
optstring with a colon (:). The option string dxo:lt:r indicates that getopts should
search for –d, –x, –o, –l, –t, and –r options and that the –o and –t options take
arguments.

Using getopts as the test-command in a while control structure allows you to loop
over the options one at a time. The getopts builtin checks the option list for options
that are in optstring. Each time through the loop, getopts stores the option letter it
finds in varname.

Suppose that you want to write a program that can take three options:

1. A –b option indicates that the program should ignore whitespace at the
start of input lines.

2. A –t option followed by the name of a directory indicates that the program
should store temporary files in that directory. Otherwise, it should use /tmp.

3. A –u option indicates that the program should translate all output to
uppercase.

In addition, the program should ignore all other options and end option processing
when it encounters two hyphens (––).

The problem is to write the portion of the program that determines which options
the user has supplied. The following solution does not use getopts :

SKIPBLANKS=
TMPDIR=/tmp
CASE=lower
while [["$1" = -*]] # [[=]] does pattern match
do

case $1 in
-b) SKIPBLANKS=TRUE ;;
-t) if [-d "$2"]

then
TMPDIR=$2
shift

else
echo "$0: -t takes a directory argument." >&2
exit 1

fi ;;
-u) CASE=upper ;;
--) break ;; # Stop processing options

*) echo "$0: Invalid option $1 ignored." >&2 ;;
esac

shift
done

 From the Library of WoweBook.Com

ptg

1014 Chapter 27 Programming the Bourne Again Shell

This program fragment uses a loop to check and shift arguments while the argument
is not ––. As long as the argument is not two hyphens, the program continues to
loop through a case statement that checks for possible options. The –– case label
breaks out of the while loop. The * case label recognizes any option; it appears as
the last case label to catch any unknown options, displays an error message, and
allows processing to continue. On each pass through the loop, the program uses
shift to access the next argument. If an option takes an argument, the program uses
an extra shift to get past that argument.

The following program fragment processes the same options, but uses getopts :

SKIPBLANKS=
TMPDIR=/tmp
CASE=lower

while getopts :bt:u arg
do

case $arg in
b) SKIPBLANKS=TRUE ;;
t) if [-d "$OPTARG"]

then
TMPDIR=$OPTARG

else
echo "$0: $OPTARG is not a directory." >&2
exit 1

fi ;;
u) CASE=upper ;;
:) echo "$0: Must supply an argument to -$OPTARG." >&2

exit 1 ;;
\?) echo "Invalid option -$OPTARG ignored." >&2 ;;
esac

done

In this version of the code, the while structure evaluates the getopts builtin each time
control transfers to the top of the loop. The getopts builtin uses the OPTIND vari-
able to keep track of the index of the argument it is to process the next time it is
called. There is no need to call shift in this example.

In the getopts version of the script, the case patterns do not start with a hyphen
because the value of arg is just the option letter (getopts strips off the hyphen). Also,
getopts recognizes –– as the end of the options, so you do not have to specify it
explicitly, as in the case statement in the first example.

Because you tell getopts which options are valid and which require arguments, it can
detect errors in the command line and handle them in two ways. This example uses
a leading colon in optstring to specify that you check for and handle errors in your
code; when getopts finds an invalid option, it sets varname to ? and OPTARG to the
option letter. When it finds an option that is missing an argument, getopts sets var-
name to : and OPTARG to the option lacking an argument.

The \? case pattern specifies the action to take when getopts detects an invalid
option. The : case pattern specifies the action to take when getopts detects a missing

 From the Library of WoweBook.Com

ptg

Builtin Commands 1015

option argument. In both cases getopts does not write any error message but rather
leaves that task to you.

If you omit the leading colon from optstring, both an invalid option and a missing
option argument cause varname to be assigned the string ?. OPTARG is not set and
getopts writes its own diagnostic message to standard error. Generally this method is less
desirable because you have less control over what the user sees when an error occurs.

Using getopts will not necessarily make your programs shorter. Its principal advan-
tages are that it provides a uniform programming interface and that it enforces
standard option handling.

A Partial List of Builtins

Table 27-6 lists some of the bash builtins. You can use type (page 1003) to see if a
command runs a builtin. See “Listing bash builtins” on page 261 for instructions on
how to display complete lists of builtins.

Table 27-6 bash builtins

Builtin Function

: Returns 0 or true (the null builtin; page 1011)

. (dot) Executes a shell script as part of the current process (page 296)

bg Puts a suspended job in the background (page 309)

break Exits from a looping control structure (page 976)

cd Changes to another working directory (page 209)

continue Starts with the next iteration of a looping control structure (page 976)

echo Displays its arguments (page 171)

eval Scans and evaluates the command line (page 351)

exec Executes a shell script or program in place of the current process (page 1006)

exit Exits from the current shell (usually the same as CONTROL-D from an interactive
shell; page 996)

export Places the value of a variable in the calling environment (makes it global;
page 992)

fg Brings a job from the background into the foreground (page 308)

getopts Parses arguments to a shell script (page 1012)

jobs Displays a list of background jobs (page 307)

kill Sends a signal to a process or job (page 455)

pwd Displays the name of the working directory (page 204)

 From the Library of WoweBook.Com

ptg

1016 Chapter 27 Programming the Bourne Again Shell

Expressions

An expression comprises constants, variables, and operators that the shell can pro-
cess to return a value. This section covers arithmetic, logical, and conditional
expressions as well as operators. Table 27-8 on page 1019 lists the bash operators.

Arithmetic Evaluation

The Bourne Again Shell can perform arithmetic assignments and evaluate many dif-
ferent types of arithmetic expressions, all using integers. The shell performs arith-
metic assignments in a number of ways. One is with arguments to the let builtin:

$ let "VALUE=VALUE * 10 + NEW"

In the preceding example, the variables VALUE and NEW contain integer values.
Within a let statement you do not need to use dollar signs ($) in front of variable
names. Double quotation marks must enclose a single argument, or expression, that
contains SPACEs. Because most expressions contain SPACEs and need to be quoted, bash
accepts ((expression)) as a synonym for let "expression", obviating the need for
both quotation marks and dollar signs:

$ ((VALUE=VALUE * 10 + NEW))

You can use either form wherever a command is allowed and can remove the SPACEs
if you like. In the following example, the asterisk (*) does not need to be quoted
because the shell does not perform pathname expansion on the right side of an
assignment (page 315):

$ let VALUE=VALUE*10+NEW

Builtin Function

read Reads a line from standard input (page 1003)

readonly Declares a variable to be readonly (page 317)

set Sets shell flags or command-line argument variables; with no argument, lists
all variables (pages 353 and 998)

shift Promotes each command-line argument (page 998)

test Compares arguments (page 955)

times Displays total times for the current shell and its children

trap Traps a signal (page 1009)

type Displays how each argument would be interpreted as a command (page 1003)

umask Returns the value of the file-creation mask (page 459)

unset Removes a variable or function (page 316)

wait Waits for a background process to terminate

Table 27-6 bash builtins (continued)

 From the Library of WoweBook.Com

ptg

Expressions 1017

Because each argument to let is evaluated as a separate expression, you can assign
values to more than one variable on a single line:

$ let "COUNT = COUNT + 1" VALUE=VALUE*10+NEW

You need to use commas to separate multiple assignments within a set of double
parentheses:

$ ((COUNT = COUNT + 1, VALUE=VALUE*10+NEW))

Logical expressions You can use the ((expression)) syntax for logical expressions, although that task is fre-
quently left to [[expression]]. The next example expands the age_check script
(page 360) to include logical arithmetic evaluation in addition to arithmetic expansion:

$ cat age2
#!/bin/bash
echo -n "How old are you? "
read age
if ((30 < age && age < 60)); then

echo "Wow, in $((60-age)) years, you'll be 60!"
else

echo "You are too young or too old to play."
fi

$./age2
How old are you? 25
You are too young or too old to play.

The test-statement for the if structure evaluates two logical comparisons joined by a
Boolean AND and returns 0 (true) if they are both true or 1 (false) otherwise.

Logical Evaluation (Conditional Expressions)

The syntax of a conditional expression is

[[expression]]

where expression is a Boolean (logical) expression. You must precede a variable
name with a dollar sign ($) within expression. The result of executing this builtin, as
with the test builtin, is a return status. The conditions allowed within the brackets
are almost a superset of those accepted by test (page 955). Where the test builtin uses
–a as a Boolean AND operator, [[expression]] uses &&. Similarly, where test uses
–o as a Boolean OR operator, [[expression]] uses ||.

Arithmetic evaluation versus arithmetic expansion

tip Arithmetic evaluation differs from arithmetic expansion. As explained on page 360, arithmetic
expansion uses the syntax $((expression)), evaluates expression, and replaces $((expression)) with
the result. You can use arithmetic expansion to display the value of an expression or to assign that
value to a variable.

Arithmetic evaluation uses the let expression or ((expression)) syntax, evaluates expression, and
returns a status code. You can use arithmetic evaluation to perform a logical comparison or an
assignment.

 From the Library of WoweBook.Com

ptg

1018 Chapter 27 Programming the Bourne Again Shell

To see how conditional expressions work, replace the line that tests age in the age2 script
with the following conditional expression. You must surround the [[and]] tokens with
whitespace or a command terminator, and place dollar signs before the variables:

if [[30 < $age && $age < 60]]; then

You can also use test ’s relational operators –gt, –ge, –lt, –le, –eq, and –ne :

if [[30 -lt $age && $age -lt 60]]; then

String comparisons The test builtin tests whether strings are equal. The [[expression]] syntax adds
comparison tests for string operators. The > and < operators compare strings for
order (for example, "aa" < "bbb"). The = operator tests for pattern match, not just
equality: [[string = pattern]] is true if string matches pattern. This operator is not
symmetrical; the pattern must appear on the right side of the equal sign. For exam-
ple, [[artist = a*]] is true (= 0), whereas [[a* = artist]] is false (= 1):

$ [[artist = a*]]
$ echo $?
0
$ [[a* = artist]]
$ echo $?
1

The next example uses a command list that starts with a compound condition. The
condition tests that the directory bin and the file src/myscript.bash exist. If this is
true, cp copies src/myscript.bash to bin/myscript. If the copy succeeds, chmod
makes myscript executable. If any of these steps fails, echo displays a message.

$ [[-d bin && -f src/myscript.bash]] && cp src/myscript.bash \
bin/myscript && chmod +x bin/myscript || echo "Cannot make \
executable version of myscript"

String Pattern Matching

The Bourne Again Shell provides string pattern-matching operators that can manip-
ulate pathnames and other strings. These operators can delete from strings prefixes
or suffixes that match patterns. Table 27-7 lists the four operators.

The syntax for these operators is

${varname op pattern}

Table 27-7 String operators

Operator Function

Removes minimal matching prefixes

Removes maximal matching prefixes

% Removes minimal matching suffixes

%% Removes maximal matching suffixes

 From the Library of WoweBook.Com

ptg

Expressions 1019

where op is one of the operators listed in Table 27-7 and pattern is a match pattern
similar to that used for filename generation. These operators are commonly used to
manipulate pathnames to extract or remove components or to change suffixes:

$ SOURCEFILE=/usr/local/src/prog.c
$ echo ${SOURCEFILE#/*/}
local/src/prog.c
$ echo ${SOURCEFILE##/*/}
prog.c
$ echo ${SOURCEFILE%/*}
/usr/local/src
$ echo ${SOURCEFILE%%/*}

$ echo ${SOURCEFILE%.c}
/usr/local/src/prog
$ CHOPFIRST=${SOURCEFILE#/*/}
$ echo $CHOPFIRST
local/src/prog.c
$ NEXT=${CHOPFIRST%%/*}
$ echo $NEXT
local

Here the string-length operator, ${#name}, is replaced by the number of characters
in the value of name:

$ echo $SOURCEFILE
/usr/local/src/prog.c
$ echo ${#SOURCEFILE}
21

Operators

Arithmetic expansion and arithmetic evaluation in bash use the same syntax, pre-
cedence, and associativity of expressions as in the C language. Table 27-8 lists
operators in order of decreasing precedence (priority of evaluation); each group of
operators has equal precedence. Within an expression you can use parentheses to
change the order of evaluation.

Table 27-8 Operators

Type of operator/operator Function

Post

var++

var––

Postincrement

Postdecrement

Pre

++var

––var

Preincrement

Predecrement

 From the Library of WoweBook.Com

ptg

1020 Chapter 27 Programming the Bourne Again Shell

Type of operator/operator Function

Unary

– Unary minus

+ Unary plus

Negation

! Boolean NOT (logical negation)

~ Complement (bitwise negation)

Exponentiation

** Exponent

Multiplication, division,
remainder

* Multiplication

/ Division

% Remainder

Addition, subtraction

– Subtraction

+ Addition

Bitwise shifts

<< Left bitwise shift

>> Right bitwise shift

Comparison

<= Less than or equal

>= Greater than or equal

< Less than

> Greater than

Equality, inequality

== Equality

!= Inequality

Bitwise

& Bitwise AND

^ Bitwise XOR (exclusive OR)

| Bitwise OR

Table 27-8 Operators (continued)

 From the Library of WoweBook.Com

ptg

Expressions 1021

Pipe The pipe token has higher precedence than operators. You can use pipes anywhere
in a command that you can use simple commands. For example, the command line

$ cmd1 | cmd2 || cmd3 | cmd4 && cmd5 | cmd6

is interpreted as if you had typed

$ ((cmd1 | cmd2) || (cmd3 | cmd4)) && (cmd5 | cmd6)

Increment and
decrement

The postincrement, postdecrement, preincrement, and predecrement operators
work with variables. The pre- operators, which appear in front of the variable name
(as in ++COUNT and ––VALUE), first change the value of the variable (++ adds 1;
–– subtracts 1) and then provide the result for use in the expression. The post- oper-
ators appear after the variable name (as in COUNT++ and VALUE––); they first
provide the unchanged value of the variable for use in the expression and then
change the value of the variable.

$ N=10
$ echo $N
10
$ echo $((--N+3))
12
$ echo $N
9
$ echo $((N++ - 3))
6
$ echo $N
10

Type of operator/operator Function

Boolean (logical)

&& Boolean AND

|| Boolean OR

Conditional evaluation

? : Ternary operator

Assignment

=, *=, /=, %=, +=, –=,
<<=, >>=, &=, ^=, |=

Assignment

Comma

, Comma

Table 27-8 Operators (continued)

Do not rely on rules of precedence: use parentheses

tip Do not rely on the precedence rules when you use compound commands. Instead, use paren-
theses to explicitly state the order in which you want the shell to interpret the commands.

 From the Library of WoweBook.Com

ptg

1022 Chapter 27 Programming the Bourne Again Shell

Remainder The remainder operator (%) yields the remainder when its first operand is divided
by its second. For example, the expression $((15%7)) has the value 1.

Boolean The result of a Boolean operation is either 0 (false) or 1 (true).

The && (AND) and || (OR) Boolean operators are called short-circuiting operators.
If the result of using one of these operators can be decided by looking only at the left
operand, the right operand is not evaluated. The && operator causes the shell to test
the exit status of the command preceding it. If the command succeeded, bash exe-
cutes the next command; otherwise, it skips the remaining commands on the com-
mand line. You can use this construct to execute commands conditionally.

$ mkdir bkup && cp -r src bkup

This compound command creates the directory bkup. If mkdir succeeds, the contents
of directory src is copied recursively to bkup.

The || separator also causes bash to test the exit status of the first command but has
the opposite effect: The remaining command(s) are executed only if the first one
failed (that is, exited with nonzero status).

$ mkdir bkup || echo "mkdir of bkup failed" >> /tmp/log

The exit status of a command list is the exit status of the last command in the list.
You can group lists with parentheses. For example, you could combine the previous
two examples as

$ (mkdir bkup && cp -r src bkup) || echo "mkdir failed" >> /tmp/log

In the absence of parentheses, && and || have equal precedence and are grouped
from left to right. The following examples use the true and false utilities. These util-
ities do nothing and return true (0) and false (1) exit statuses, respectively:

$ false; echo $?
1

The $? variable holds the exit status of the preceding command (page 996). The
next two commands yield an exit status of 1 (false):

$ true || false && false
$ echo $?
1
$ (true || false) && false
$ echo $?
1

Similarly the next two commands yield an exit status of 0 (true):

$ false && false || true
$ echo $?
0
$ (false && false) || true
$ echo $?
0

 From the Library of WoweBook.Com

ptg

Expressions 1023

Because || and && have equal precedence, the parentheses in the two preceding
pairs of examples do not change the order of operations.

Because the expression on the right side of a short-circuiting operator may never be
executed, you must be careful when placing assignment statements in that location.
The following example demonstrates what can happen:

$ ((N=10,Z=0))
$ echo $((N || ((Z+=1))))
1
$ echo $Z
0

Because the value of N is nonzero, the result of the || (OR) operation is 1 (true), no
matter what the value of the right side is. As a consequence, ((Z+=1)) is never evalu-
ated and Z is not incremented.

Ternary The ternary operator, ? :, decides which of two expressions should be evaluated,
based on the value returned by a third expression:

expression1 ? expression2 : expression3

If expression1 produces a false (0) value, expression3 is evaluated; otherwise,
expression2 is evaluated. The value of the entire expression is the value of
expression2 or expression3, depending on which is evaluated. If expression1 is true,
expression3 is not evaluated. If expression1 is false, expression2 is not evaluated.

$ ((N=10,Z=0,COUNT=1))
$ ((T=N>COUNT?++Z:--Z))
$ echo $T
1
$ echo $Z
1

Assignment The assignment operators, such as +=, are shorthand notations. For example, N+=3
is the same as ((N=N+3)) .

Other bases The following commands use the syntax base#n to assign base 2 (binary) values.
First v1 is assigned a value of 0101 (5 decimal) and then v2 is assigned a value of
0110 (6 decimal). The echo utility verifies the decimal values.

$ ((v1=2#0101))
$ ((v2=2#0110))
$ echo "$v1 and $v2"
5 and 6

Next the bitwise AND operator (&) selects the bits that are on in both 5 (0101
binary) and 6 (0110 binary). The result is binary 0100, which is 4 decimal.

$ echo $((v1 & v2))
4

 From the Library of WoweBook.Com

ptg

1024 Chapter 27 Programming the Bourne Again Shell

The Boolean AND operator (&&) produces a result of 1 if both of its operands are
nonzero and a result of 0 otherwise. The bitwise inclusive OR operator (|) selects
the bits that are on in either 0101 or 0110, resulting in 0111, which is 7 decimal.
The Boolean OR operator (||) produces a result of 1 if either of its operands is non-
zero and a result of 0 otherwise.

$ echo $((v1 && v2))
1
$ echo $((v1 | v2))
7
$ echo $((v1 || v2))
1

Next the bitwise exclusive OR operator (^) selects the bits that are on in either, but
not both, of the operands 0101 and 0110, yielding 0011, which is 3 decimal. The
Boolean NOT operator (!) produces a result of 1 if its operand is 0 and a result of 0
otherwise. Because the exclamation point in $((! v1)) is enclosed within double
parentheses, it does not need to be escaped to prevent the shell from interpreting the
exclamation point as a history event. The comparison operators produce a result of
1 if the comparison is true and a result of 0 otherwise.

$ echo $((v1 ^ v2))
3
$ echo $((! v1))
0
$ echo $((v1 < v2))
1
$ echo $((v1 > v2))
0

Shell Programs

The Bourne Again Shell has many features that make it a good programming lan-
guage. The structures that bash provides are not a random assortment, but rather
have been chosen to provide most of the structural features that are found in
other procedural languages, such as C or Perl. A procedural language provides the
following abilities:

• Declare, assign, and manipulate variables and constant data. The Bourne
Again Shell provides string variables, together with powerful string opera-
tors, and integer variables, along with a complete set of arithmetic operators.

• Break large problems into small ones by creating subprograms. The Bourne
Again Shell allows you to create functions and call scripts from other
scripts. Shell functions can be called recursively; that is, a Bourne Again
Shell function can call itself. You may not need to use recursion often, but it
may allow you to solve some apparently difficult problems with ease.

• Execute statements conditionally, using statements such as if.

• Execute statements iteratively, using statements such as while and for.

 From the Library of WoweBook.Com

ptg

Shell Programs 1025

• Transfer data to and from the program, communicating with both data
files and users.

Programming languages implement these capabilities in different ways but with the
same ideas in mind. When you want to solve a problem by writing a program, you
must first figure out a procedure that leads you to a solution—that is, an algorithm.
Typically you can implement the same algorithm in roughly the same way in differ-
ent programming languages, using the same kinds of constructs in each language.

Chapter 9 and this chapter have introduced numerous bash features, many of which
are useful for both interactive use and shell programming. This section develops
two complete shell programs, demonstrating how to combine some of these features
effectively. The programs are presented as problems for you to solve, with sample
solutions provided.

A Recursive Shell Script

A recursive construct is one that is defined in terms of itself. Alternatively, you
might say that a recursive program is one that can call itself. This concept may seem
circular, but it need not be. To avoid circularity, a recursive definition must have a
special case that is not self-referential. Recursive ideas occur in everyday life. For
example, you can define an ancestor as your mother, your father, or one of their
ancestors. This definition is not circular; it specifies unambiguously who your
ancestors are: your mother or your father, or your mother’s mother or father or
your father’s mother or father, and so on.

A number of Linux system utilities can operate recursively. See the –R option to the
chmod , chown , and cp utilities for examples.

Solve the following problem by using a recursive shell function:

One algorithm for a recursive solution follows:

1. Examine the path argument. If it is a null string or if it names an existing
directory, do nothing and return.

2. If the path argument is a simple path component, create it (using mkdir)
and return.

3. Otherwise, call makepath using the path prefix of the original argument.
This step eventually creates all the directories up to the last component,
which you can then create using mkdir.

In general, a recursive function must invoke itself with a simpler version of the
problem than it was given until it is finally called with a simple case that does not
need to call itself. Following is one possible solution based on this algorithm:

Write a shell function named makepath that, given a pathname, creates all compo-
nents in that pathname as directories. For example, the command makepath
a/b/c/d should create directories a, a/b, a/b/c, and a/b/c/d. (The mkdir –p option
creates directories in this manner. Solve the problem without using mkdir –p.)

 From the Library of WoweBook.Com

ptg

1026 Chapter 27 Programming the Bourne Again Shell

makepath # This is a function
Enter it at the keyboard, do not run it as a shell script

function makepath()
{

if [[${#1} -eq 0 || -d "$1"]]
then

return 0 # Do nothing
fi
if [["${1%/*}" = "$1"]]

then
mkdir $1
return $?

fi
makepath ${1%/*} || return 1
mkdir $1
return $?

}

In the test for a simple component (the if statement in the middle of the function),
the left expression is the argument after the shortest suffix that starts with a / char-
acter has been stripped away (page 1018). If there is no such character (for exam-
ple, if $1 is max), nothing is stripped off and the two sides are equal. If the
argument is a simple filename preceded by a slash, such as /usr, the expression
${1%/*} evaluates to a null string. To make the function work in this case, you
must take two precautions: Put the left expression within quotation marks and
ensure that the recursive function behaves sensibly when it is passed a null string as
an argument. In general, good programs are robust: They should be prepared for
borderline, invalid, or meaningless input and behave appropriately in such cases.

By giving the following command from the shell you are working in, you turn on
debugging tracing so that you can watch the recursion work:

$ set -o xtrace

(Give the same command, but replace the hyphen with a plus sign (+) to turn debug-
ging off.) With debugging turned on, the shell displays each line in its expanded
form as it executes the line. A + precedes each line of debugging output.

In the following example, the first line that starts with + shows the shell calling
makepath. The makepath function is initially called from the command line with
arguments of a/b/c. It then calls itself with arguments of a/b and finally a. All the
work is done (using mkdir) as each call to makepath returns.

$./makepath a/b/c
+ makepath a/b/c
+ [[5 -eq 0]]
+ [[-d a/b/c]]
+ [[a/b = \a\/\b\/\c]]
+ makepath a/b
+ [[3 -eq 0]]
+ [[-d a/b]]
+ [[a = \a\/\b]]

 From the Library of WoweBook.Com

ptg

Shell Programs 1027

+ makepath a
+ [[1 -eq 0]]
+ [[-d a]]
+ [[a = \a]]
+ mkdir a
+ return 0
+ mkdir a/b
+ return 0
+ mkdir a/b/c
+ return 0

The function works its way down the recursive path and back up again.

It is instructive to invoke makepath with an invalid path and see what happens. The
following example, which is run with debugging turned on, tries to create the path
/a/b. Creating this path requires that you create directory a in the root directory.
Unless you have permission to write to the root directory, you are not permitted to
create this directory.

$./makepath /a/b
+ makepath /a/b
+ [[4 -eq 0]]
+ [[-d /a/b]]
+ [[/a = \/\a\/\b]]
+ makepath /a
+ [[2 -eq 0]]
+ [[-d /a]]
+ [['' = \/\a]]
+ makepath
+ [[0 -eq 0]]
+ return 0
+ mkdir /a
mkdir: cannot create directory '/a': Permission denied
+ return 1
+ return 1

The recursion stops when makepath is denied permission to create the /a directory.
The error returned is passed all the way back, so the original makepath exits with
nonzero status.

Use local variables with recursive functions
tip The preceding example glossed over a potential problem that you may encounter when you use a

recursive function. During the execution of a recursive function, many separate instances of that
function may be active simultaneously. All but one of them are waiting for their child invocation to
complete.

Because functions run in the same environment as the shell that calls them, variables are implicitly
shared by a shell and a function it calls. As a consequence, all instances of the function share a
single copy of each variable. Sharing variables can give rise to side effects that are rarely what you
want. As a rule, you should use typeset to make all variables of a recursive function be local vari-
ables. See page 994 for more information.

 From the Library of WoweBook.Com

ptg

1028 Chapter 27 Programming the Bourne Again Shell

The quiz Shell Script

Solve the following problem using a bash script:

The detailed design of this program and even the detailed description of the prob-
lem depend on a number of choices: How will the program know which subjects are
available for quizzes? How will the user choose a subject? How will the program
know when the quiz is over? Should the program present the same questions (for a
given subject) in the same order each time, or should it scramble them?

Of course, you can make many perfectly good choices that implement the specification
of the problem. The following details narrow the problem specification:

• Each subject will correspond to a subdirectory of a master quiz directory.
This directory will be named in the environment variable QUIZDIR, whose
default will be ~/quiz. For example, you could have the following directories
correspond to the subjects engineering, art, and politics: ~/quiz/engineering,
~/quiz/art, and ~/quiz/politics. Put the quiz directory in /usr/games if you
want all users to have access to it (requires root privileges).

• Each subject can have several questions. Each question is represented by a
file in its subject’s directory.

• The first line of each file that represents a question holds the text of the
question. If it takes more than one line, you must escape the NEWLINE with a
backslash. (This setup makes it easy to read a single question with the read
builtin.) The second line of the file is an integer that specifies the number
of choices. The next lines are the choices themselves. The last line is the
correct answer. Following is a sample question file:

Who discovered the principle of the lever?
4
Euclid
Archimedes
Thomas Edison
The Lever Brothers
Archimedes

• The program presents all the questions in a subject directory. At any point
the user can interrupt the quiz with CONTROL-C, whereupon the program will
summarize the results so far and exit. If the user does not interrupt the
program, the program summarizes the results and exits when it has asked
all questions for the chosen subject.

• The program scrambles the questions in a subject before presenting them.

Write a generic multiple-choice quiz program. The program should get its questions
from data files, present them to the user, and keep track of the number of correct
and incorrect answers. The user must be able to exit from the program at any time
and receive a summary of results to that point.

 From the Library of WoweBook.Com

ptg

Shell Programs 1029

Following is a top-level design for this program:

1. Initialize. This involves a number of steps, such as setting the counts of the
number of questions asked so far and the number of correct and wrong
answers to zero. It also sets up the program to trap CONTROL-C.

2. Present the user with a choice of subjects and get the user’s response.

3. Change to the corresponding subject directory.

4. Determine the questions to be asked (that is, the filenames in that direc-
tory). Arrange them in random order.

5. Repeatedly present questions and ask for answers until the quiz is over or
is interrupted by the user.

6. Present the results and exit.

Clearly some of these steps (such as step 3) are simple, whereas others (such as step
4) are complex and worthy of analysis on their own. Use shell functions for any
complex step, and use the trap builtin to handle a user interrupt.

Here is a skeleton version of the program with empty shell functions:

function initialize
{
Initializes variables.
}

function choose_subj
{
Writes choice to standard output.
}

function scramble
{
Stores names of question files, scrambled,
in an array variable named questions.
}

function ask
{
Reads a question file, asks the question, and checks the
answer. Returns 1 if the answer was correct, 0 otherwise. If it
encounters an invalid question file, exit with status 2.
}

function summarize
{
Presents the user's score.
}

Main program
initialize # Step 1 in top-level design

subject=$(choose_subj) # Step 2
[[$? -eq 0]] || exit 2 # If no valid choice, exit

 From the Library of WoweBook.Com

ptg

1030 Chapter 27 Programming the Bourne Again Shell

cd $subject || exit 2 # Step 3
echo # Skip a line
scramble # Step 4

for ques in ${questions[*]}; do # Step 5
 ask $ques
 result=$?
 ((num_ques=num_ques+1))
 if [[$result == 1]]; then
 ((num_correct += 1))
 fi
 echo # Skip a line between questions
 sleep ${QUIZDELAY:=1}
done

summarize # Step 6
exit 0

To make reading the results a bit easier for the user, a sleep call appears inside the
question loop. It delays $QUIZDELAY seconds (default = 1) between questions.

Now the task is to fill in the missing pieces of the program. In a sense this program
is being written backward. The details (the shell functions) come first in the file but
come last in the development process. This common programming practice is called
top-down design. In top-down design you fill in the broad outline of the program
first and supply the details later. In this way you break the problem up into smaller
problems, each of which you can work on independently. Shell functions are a great
help in using the top-down approach.

One way to write the initialize function follows. The cd command causes QUIZDIR
to be the working directory for the rest of the script and defaults to ~/quiz if
QUIZDIR is not set.

function initialize ()
{
trap 'summarize ; exit 0' INT # Handle user interrupts
num_ques=0 # Number of questions asked so far
num_correct=0 # Number answered correctly so far
first_time=true # true until first question is asked
cd ${QUIZDIR:=~/quiz} || exit 2
}

Be prepared for the cd command to fail. The directory may be unsearchable or con-
ceivably another user may have removed it. The preceding function exits with a
status code of 2 if cd fails.

The next function, choose_subj, is a bit more complicated. It displays a menu using
a select statement:

 From the Library of WoweBook.Com

ptg

Shell Programs 1031

function choose_subj ()
{
subjects=($(ls))
PS3="Choose a subject for the quiz from the preceding list: "
select Subject in ${subjects[*]}; do
 if [[-z "$Subject"]]; then
 echo "No subject chosen. Bye." >&2
 exit 1
 fi
 echo $Subject
 return 0
done
}

The function first uses an ls command and command substitution to put a list of sub-
ject directories in the subjects array. Next the select structure (page 983) presents the
user with a list of subjects (the directories found by ls) and assigns the chosen direc-
tory name to the Subject variable. Finally the function writes the name of the subject
directory to standard output. The main program uses command substitution to
assign this value to the subject variable [subject=$(choose_subj)].

The scramble function presents a number of difficulties. In this solution it uses an
array variable (questions) to hold the names of the questions. It scrambles the entries
in an array using the RANDOM variable (each time you reference RANDOM, it has
the value of a [random] integer between 0 and 32767):

function scramble ()
{
typeset -i index quescount
questions=($(ls))
quescount=${#questions[*]} # Number of elements
((index=quescount-1))
while [[$index > 0]]; do
 ((target=RANDOM % index))
 exchange $target $index
 ((index -= 1))
done
}

This function initializes the array variable questions to the list of filenames (questions)
in the working directory. The variable quescount is set to the number of such files. Then
the following algorithm is used: Let the variable index count down from quescount – 1
(the index of the last entry in the array variable). For each value of index, the function
chooses a random value target between 0 and index, inclusive. The command

((target=RANDOM % index))

produces a random value between 0 and index – 1 by taking the remainder (the %
operator) when $RANDOM is divided by index. The function then exchanges the
elements of questions at positions target and index. It is convenient to take care of
this step in another function named exchange:

 From the Library of WoweBook.Com

ptg

1032 Chapter 27 Programming the Bourne Again Shell

function exchange ()
{
temp_value=${questions[$1]}
questions[$1]=${questions[$2]}
questions[$2]=$temp_value
}

The ask function also uses the select structure. It reads the question file named in its
argument and uses the contents of that file to present the question, accept the
answer, and determine whether the answer is correct. (See the code that follows.)

The ask function uses file descriptor 3 to read successive lines from the question file,
whose name was passed as an argument and is represented by $1 in the function. It
reads the question into the ques variable and the number of questions into
num_opts. The function constructs the variable choices by initializing it to a null
string and successively appending the next choice. Then it sets PS3 to the value of
ques and uses a select structure to prompt the user with ques. The select structure
places the user’s answer in answer, and the function then checks that response
against the correct answer from the file.

The construction of the choices variable is done with an eye toward avoiding a
potential problem. Suppose that one answer has some whitespace in it—then it
might appear as two or more arguments in choices. To avoid this problem, make
sure that choices is an array variable. The select statement does the rest of the work:

quiz $ cat quiz
#!/bin/bash

remove the # on the following line to turn on debugging
set -o xtrace

#==================
function initialize ()
{
trap 'summarize ; exit 0' INT # Handle user interrupts
num_ques=0 # Number of questions asked so far
num_correct=0 # Number answered correctly so far
first_time=true # true until first question is asked
cd ${QUIZDIR:=~/quiz} || exit 2
}

#==================
function choose_subj ()
{
subjects=($(ls))
PS3="Choose a subject for the quiz from the preceding list: "
select Subject in ${subjects[*]}; do
 if [[-z "$Subject"]]; then
 echo "No subject chosen. Bye." >&2
 exit 1
 fi
 echo $Subject
 return 0
done
}

 From the Library of WoweBook.Com

ptg

Shell Programs 1033

#==================
function exchange ()
{
temp_value=${questions[$1]}
questions[$1]=${questions[$2]}
questions[$2]=$temp_value
}

#==================
function scramble ()
{
typeset -i index quescount
questions=($(ls))
quescount=${#questions[*]} # Number of elements
((index=quescount-1))
while [[$index > 0]]; do
 ((target=RANDOM % index))
 exchange $target $index
 ((index -= 1))
done
}

#==================
function ask ()
{
exec 3<$1
read -u3 ques || exit 2
read -u3 num_opts || exit 2

index=0
choices=()
while ((index < num_opts)) ; do
 read -u3 next_choice || exit 2
 choices=("${choices[@]}" "$next_choice")
 ((index += 1))
done
read -u3 correct_answer || exit 2
exec 3<&-

if [[$first_time = true]]; then
 first_time=false
 echo -e "You may press the interrupt key at any time to quit.\n"
fi

PS3=$ques" " # Make $ques the prompt for select
 # and add some spaces for legibility.
select answer in "${choices[@]}"; do
 if [[-z "$answer"]]; then
 echo Not a valid choice. Please choose again.
 elif [["$answer" = "$correct_answer"]]; then
 echo "Correct!"
 return 1
 else
 echo "No, the answer is $correct_answer."
 return 0
 fi
done
}

 From the Library of WoweBook.Com

ptg

1034 Chapter 27 Programming the Bourne Again Shell

#==================
function summarize ()
{
echo # Skip a line
if ((num_ques == 0)); then
 echo "You did not answer any questions"
 exit 0
fi

((percent=num_correct*100/num_ques))
echo "You answered $num_correct questions correctly, out of \
$num_ques total questions."
echo "Your score is $percent percent."
}

#==================
Main program
initialize # Step 1 in top-level design

subject=$(choose_subj) # Step 2
[[$? -eq 0]] || exit 2 # If no valid choice, exit

cd $subject || exit 2 # Step 3
echo # Skip a line
scramble # Step 4

for ques in ${questions[*]}; do # Step 5
 ask $ques
 result=$?
 ((num_ques=num_ques+1))
 if [[$result == 1]]; then
 ((num_correct += 1))
 fi
 echo # Skip a line between questions
 sleep ${QUIZDELAY:=1}
done

summarize # Step 6
exit 0

Chapter Summary

The shell is a programming language. Programs written in this language are called
shell scripts, or simply scripts. Shell scripts provide the decision and looping control
structures present in high-level programming languages while allowing easy access
to system utilities and user programs. Shell scripts can use functions to modularize
and simplify complex tasks.

Control structures The control structures that use decisions to select alternatives are if...then,
if...then...else, and if...then...elif. The case control structure provides a multiway
branch and can be used when you want to express alternatives using a simple
pattern-matching syntax.

The looping control structures are for...in, for, until, and while. These structures
perform one or more tasks repetitively.

 From the Library of WoweBook.Com

ptg

Chapter Summary 1035

The break and continue control structures alter control within loops: break trans-
fers control out of a loop, and continue transfers control immediately to the top of
a loop.

The Here document allows input to a command in a shell script to come from
within the script itself.

File descriptors The Bourne Again Shell provides the ability to manipulate file descriptors. Coupled
with the read and echo builtins, file descriptors allow shell scripts to have as much
control over input and output as do programs written in lower-level languages.

Variables The typeset builtin assigns attributes, such as readonly, to bash variables. The Bourne
Again Shell provides operators to perform pattern matching on variables, provide
default values for variables, and evaluate the length of variables. This shell also sup-
ports array variables and local variables for functions and provides built-in integer
arithmetic, using the let builtin and an expression syntax similar to that found in the
C programming language.

Builtins Bourne Again Shell builtins include type , read , exec , trap , kill , and getopts . The type
builtin displays information about a command, including its location; read allows a
script to accept user input.

The exec builtin executes a command without creating a new process. The new
command overlays the current process, assuming the same environment and PID
number of that process. This builtin executes user programs and other Linux com-
mands when it is not necessary to return control to the calling process.

The trap builtin catches a signal sent by Linux to the process running the script and
allows you to specify actions to be taken upon receipt of one or more signals. You
can use this builtin to cause a script to ignore the signal that is sent when the user
presses the interrupt key.

The kill builtin terminates a running program. The getopts builtin parses command-
line arguments, making it easier to write programs that follow standard Linux
conventions for command-line arguments and options.

Utilities in scripts In addition to using control structures, builtins, and functions, shell scripts gener-
ally call Linux utilities. The find utility, for instance, is commonplace in shell scripts
that search for files in the system hierarchy and can perform a vast range of tasks,
from simple to complex.

Expressions There are two basic types of expressions: arithmetic and logical. Arithmetic expres-
sions allow you to do arithmetic on constants and variables, yielding a numeric result.
Logical (Boolean) expressions compare expressions or strings, or test conditions to
yield a true or false result. As with all decisions within Linux shell scripts, a true status
is represented by the value zero; false, by any nonzero value.

Good programming
practices

A well-written shell script adheres to standard programming practices, such as spec-
ifying the shell to execute the script on the first line of the script, verifying the num-
ber and type of arguments that the script is called with, displaying a standard usage
message to report command-line errors, and redirecting all informational messages
to standard error.

 From the Library of WoweBook.Com

ptg

1036 Chapter 27 Programming the Bourne Again Shell

Exercises

1. Rewrite the journal script of Chapter 9 (exercise 5, page 368) by adding
commands to verify that the user has write permission for a file named
journal-file in the user’s home directory, if such a file exists. The script
should take appropriate actions if journal-file exists and the user does not
have write permission to the file. Verify that the modified script works.

2. The special parameter "$@" is referenced twice in the out script (page 959).
Explain what would be different if the parameter "$*" was used in its place.

3. Write a filter that takes a list of files as input and outputs the basename
(page 982) of each file in the list.

4. Write a function that takes a single filename as an argument and adds execute
permission to the file for the user.

a. When might such a function be useful?

b. Revise the script so it takes one or more filenames as arguments and
adds execute permission for the user for each file argument.

c. What can you do to make the function available every time you log in?

d. Suppose that, in addition to having the function available on subsequent
login sessions, you want to make the function available in your current
shell. How would you do so?

5. When might it be necessary or advisable to write a shell script instead of a
shell function? Give as many reasons as you can think of.

6. Write a shell script that displays the names of all directory files, but no
other types of files, in the working directory.

7. Write a script to display the time every 15 seconds. Read the date man page
and display the time, using the %r field descriptor. Clear the window
(using the clear command) each time before you display the time.

8. Enter the following script named savefiles, and give yourself execute
permission to the file:

$ cat savefiles
#! /bin/bash
echo "Saving files in current directory in file savethem."
exec > savethem
for i in *
 do
 echo "==="
 echo "File: $i"
 echo "==="
 cat "$i"
 done

 From the Library of WoweBook.Com

ptg

Exercises 1037

a. Which error message do you get when you execute this script? Rewrite
the script so that the error does not occur, making sure the output still
goes to savethem.

b. What might be a problem with running this script twice in the same
directory? Discuss a solution to this problem.

9. Read the bash man or info page, try some experiments, and answer the
following questions:

a. How do you export a function?

b. What does the hash builtin do?

c. What happens if the argument to exec is not executable?

10. Using the find utility, perform the following tasks:

a. List all files in the working directory and all subdirectories that have
been modified within the last day.

b. List all files that you have read access to on the system that are larger
than 1 megabyte.

c. Remove all files named core from the directory structure rooted at your
home directory.

d. List the inode numbers of all files in the working directory whose
filenames end in .c.

e. List all files that you have read access to on the root filesystem that have
been modified in the last 30 days.

11. Write a short script that tells you whether the permissions for two files,
whose names are given as arguments to the script, are identical. If the per-
missions for the two files are identical, output the common permission
field. Otherwise, output each filename followed by its permission field.
(Hint: Try using the cut utility.)

12. Write a script that takes the name of a directory as an argument and
searches the file hierarchy rooted at that directory for zero-length files.
Write the names of all zero-length files to standard output. If there is no
option on the command line, have the script delete the file after displaying
its name, asking the user for confirmation, and receiving positive confir-
mation. A –f (force) option on the command line indicates that the script
should display the filename but not ask for confirmation before deleting
the file.

 From the Library of WoweBook.Com

ptg

1038 Chapter 27 Programming the Bourne Again Shell

Advanced Exercises

13. Write a script that takes a colon-separated list of items and outputs the
items, one per line, to standard output (without the colons).

14. Generalize the script written in exercise 13 so that the character separating
the list items is given as an argument to the function. If this argument is
absent, the separator should default to a colon.

15. Write a function named funload that takes as its single argument the name
of a file containing other functions. The purpose of funload is to make all
functions in the named file available in the current shell; that is, funload
loads the functions from the named file. To locate the file, funload
searches the colon-separated list of directories given by the environment
variable FUNPATH. Assume that the format of FUNPATH is the same as
PATH and that searching FUNPATH is similar to the shell’s search of the
PATH variable.

16. Rewrite bundle (page 986) so the script it creates takes an optional list of
filenames as arguments. If one or more filenames are given on the com-
mand line, only those files should be re-created; otherwise, all files in the
shell archive should be re-created. For example, suppose all files with the
filename extension .c are bundled into an archive named srcshell, and you
want to unbundle just the files test1.c and test2.c. The following command
will unbundle just these two files:

$ bash srcshell test1.c test2.c

17. What kind of links will the lnks script (page 962) not find? Why?

18. In principle, recursion is never necessary. It can always be replaced by an
iterative construct, such as while or until. Rewrite makepath (page 1026)
as a nonrecursive function. Which version do you prefer? Why?

19. Lists are commonly stored in environment variables by putting a colon (:)
between each of the list elements. (The value of the PATH variable is an
example.) You can add an element to such a list by catenating the new ele-
ment to the front of the list, as in

PATH=/opt/bin:$PATH

If the element you add is already in the list, you now have two copies of it
in the list. Write a shell function named addenv that takes two arguments:
(1) the name of a shell variable and (2) a string to prepend to the list that is
the value of the shell variable only if that string is not already an element
of the list. For example, the call

addenv PATH /opt/bin

 From the Library of WoweBook.Com

ptg

Advanced Exercises 1039

would add /opt/bin to PATH only if that pathname is not already in
PATH. Be sure that your solution works even if the shell variable starts out
empty. Also make sure that you check the list elements carefully. If
/usr/opt/bin is in PATH but /opt/bin is not, the example just given should
still add /opt/bin to PATH. (Hint: You may find this exercise easier to
complete if you first write a function locate_field that tells you whether a
string is an element in the value of a variable.)

20. Write a function that takes a directory name as an argument and writes to
standard output the maximum of the lengths of all filenames in that direc-
tory. If the function’s argument is not a directory name, write an error
message to standard output and exit with nonzero status.

21. Modify the function you wrote for exercise 20 to descend all subdirectories
of the named directory recursively and to find the maximum length of any
filename in that hierarchy.

22. Write a function that lists the number of ordinary files, directories, block
special files, character special files, FIFOs, and symbolic links in the working
directory. Do this in two different ways:

a. Use the first letter of the output of ls –l to determine a file’s type.

b. Use the file type condition tests of the [[expression]] syntax to determine
a file’s type.

23. Modify the quiz program (page 1032) so that the choices for a question
are randomly arranged.

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

111000444111

ABChapter28Larry Wall created the Perl (Practical Extraction and Report
Language) programming language for working with text. Perl
uses syntax and concepts from awk , sed , C, the Bourne Shell,
Smalltalk, Lisp, and English. It was designed to scan and extract
information from text files and generate reports based on that
information. Since its introduction in 1987, Perl has expanded
enormously—its documentation growing up with it. Today, in
addition to text processing, Perl is used for system administra-
tion, software development, and general-purpose programming.

Perl code is portable because Perl has been implemented on many
operating systems (see www.cpan.org/ports). Perl is an informal,
practical, robust, easy-to-use, efficient, and complete language. It
is a down-and-dirty language that supports procedural and
object-oriented programming. It is not necessarily elegant.

One of the things that distinguishes Perl from many other lan-
guages is its linguistic origins. In English you say, “I will buy a
car if I win the lottery.” Perl allows you to mimic that syntax.
Another distinction is that Perl has singular and plural vari-
ables, the former holding single values and the latter holding
lists of values.

In This Chapter

Introduction to Perl 1042

Help . 1043

Running a Perl Program 1046

Syntax . 1047

Variables 1049

Control Structures 1057

Working with Files. 1066

Sort . 1069

Subroutines. 1071

Regular Expressions 1073

CPAN Modules. 1079

Examples 1081

28

The Perl Scripting

Language

 From the Library of WoweBook.Com

www.cpan.org/ports

ptg

1042 Chapter 28 The Perl Scripting Language

Introduction to Perl

A couple of quotes from the manual shed light on Perl’s philosophy:

Many of Perl’s syntactic elements are optional. Rather than requir-
ing you to put parentheses around every function call and declare
every variable, you can often leave such explicit elements off and
Perl will frequently figure out what you meant. This is known as
Do What I Mean, abbreviated DWIM. It allows programmers to
be lazy and to code in a style with which they are comfortable.

The Perl motto is “There’s more than one way to do it.” Divining
how many more is left as an exercise to the reader.

One of Perl’s biggest assets is its support by thousands of third-party modules. The
Comprehensive Perl Archive Network (CPAN; www.cpan.org) is a repository for
many of the modules and other information related to Perl. See page 1079 for infor-
mation on downloading, installing, and using these modules in Perl programs.

The best way to learn Perl is to work with it. Copy and modify the programs in this
chapter until they make sense to you. Many system tools are written in Perl. The
first line of most of these tools begins with #!/usr/bin/perl, which tells the shell to
pass the program to Perl for execution. Most files that contain the string
/usr/bin/perl are Perl programs. The following command uses grep to search the
/usr/bin and /usr/sbin directories recursively (–r) for files containing the string
/usr/bin/perl; it lists many local system tools written in Perl:

$ grep -r /usr/bin/perl /usr/bin /usr/sbin | head -4
/usr/bin/defoma-user:#! /usr/bin/perl -w
/usr/bin/pod2latex:#!/usr/bin/perl
/usr/bin/pod2latex: eval 'exec /usr/bin/perl -S $0 ${1+"$@"}'
/usr/bin/splain:#!/usr/bin/perl

Review these programs—they demonstrate how Perl is used in the real world. Copy
a system program to a directory you own before modifying it. Do not run a system
program while running with root privileges unless you know what you are doing.

More Information

Local man pages: See the perl and perltoc man pages for lists of Perl man pages

Web Perl home page: www.perl.com
CPAN: www.cpan.org
blog: perlbuzz.com

Install perl-doc
tip The perl-doc package holds a wealth of information. Install this package before you start using

Perl; see the next page for more information.

 From the Library of WoweBook.Com

www.cpan.org
www.perl.com
www.cpan.org

ptg

Introduction to Perl 1043

Book Programming Perl, third edition, by Wall, Christiansen, & Orwant, O’Reilly &
Associates (July 2000)

Help

Perl is a forgiving language. As such, it is easy to write Perl code that runs but
does not perform as you intended. Perl includes many tools that can help you
find coding mistakes. The –w option and the use warnings statement can produce
helpful diagnostic messages. The use strict statement (see the perldebtut man
page) can impose order on a program by requiring, among other things, that you
declare variables before you use them. When all else fails, you can use Perl’s
builtin debugger to step through a program. See the perldebtut and perldebug man
pages for more information.

perldoc

You must install the perl-doc package before you can use perldoc .

The perldoc utility locates and displays local Perl documentation. It is similar to man
(page 136) but specific to Perl. It works with files that include lines of pod (plain
old documentation), a clean and simple documentation language. When embedded
in a Perl program, pod enables you to include documentation for the entire pro-
gram, not just code-level comments, in a Perl program.

Following is a simple Perl program that includes pod. The two lines following =cut
are the program; the rest is pod-format documentation.

$ cat pod.ex1.pl
#!/usr/bin/perl

=head1 A Perl Program to Say I<Hi there.>

This simple Perl program includes documentation in B<pod> format.
The following B<=cut> command tells B<perldoc> that what follows
is not documentation.

=cut
A Perl program
print "Hi there.\n";

=head1 pod Documentation Resumes with Any pod Command

See the B<perldoc.perl.org/perlpod.html> page for more information
on B<pod> and B<perldoc.perl.org> for complete Perl documentation.

You can use Perl to run the program:

$ perl pod.ex1.pl
Hi there.

 From the Library of WoweBook.Com

ptg

1044 Chapter 28 The Perl Scripting Language

Or you can use perldoc to display the documentation:

$ perldoc pod.ex1.pl
POD.EX1(1) User Contributed Perl Documentation POD.EX1(1)

A Perl Program to Say Hi there.
 This simple Perl program includes documentation in pod format. The
 following =cut command tells perldoc that what follows is not documen-
 tation.

pod Documentation Resumes with Any pod Command
 See the perldoc.perl.org/perlpod.html page for more information on pod
 and perldoc.perl.org for complete Perl documentation.

perl v5.10.0 2008-10-14 POD.EX1(1)

Most publicly distributed modules and scripts, as well as Perl itself, include
embedded pod-format documentation. For example, the following command dis-
plays information about the Perl print function:

$ perldoc -f print
print FILEHANDLE LIST
print LIST
print Prints a string or a list of strings. Returns true if success-

ful. FILEHANDLE may be a scalar variable name, in which case
the variable contains the name of or a reference to the file-
handle, thus introducing one level of indirection. (NOTE: If
FILEHANDLE is a variable and the next token is a term, it may
...

Once you have installed a module (page 1079), you can use perldoc to display doc-
umentation for that module. The following example shows perldoc displaying
information on the locally installed Timestamp::Simple module:

$ perldoc Timestamp::Simple
Timestamp::Simple(3) User Contributed Perl Documentation Timestamp::Simple(3)

NAME
 Timestamp::Simple - Simple methods for timestamping

SYNOPSIS
 use Timestamp::Simple qw(stamp);
 print stamp, "\n";
...

Give the command man perldoc or perldoc perldoc to display the perldoc man page
and read more about this tool.

Make Perl programs readable
tip Although Perl has many shortcuts that are good choices for one-shot programming, the code in

this chapter presents code that is easy to understand and easy to maintain.

 From the Library of WoweBook.Com

ptg

Introduction to Perl 1045

Terminology

This section defines some of the terms used in this chapter.

Module A Perl module is a self-contained chunk of Perl code, frequently containing several
functions that work together. A module can be called from another module or
from a Perl program. A module must have a unique name. To help ensure unique
names, Perl provides a hierarchical namespace (page 1161) for modules, separat-
ing components of a name with double colons (::). Example module names are
Timestamp::Simple and WWW::Mechanize.

Distribution A Perl distribution is a set of one or more modules that perform a task. You can
search for distributions and modules at search.cpan.org. Examples of distributions
include Timestamp-Simple (the Timestamp-Simple-1.01.tar.gz archive file contains
the Timestamp::Simple module only) and WWW-Mechanize (WWW-Mechanize-
1.34.tar.gz contains the WWW::Mechanize module, plus supporting modules
including WWW::Mechanize::Link and WWW::Mechanize::Image).

Package A package defines a Perl namespace. For example, in the variable with the name
$WWW::Mechanize::ex, $ex is a scalar variable in the WWW::Mechanize package,
where “package” is used in the sense of a namespace. Using the same name, such as
WWW::Mechanize, for a distribution, a package, and a module can be confusing.

Block A block is zero or more statements, delimited by curly braces ({}), that defines a
scope. The shell control structure syntax explanations refer to these elements as
commands. See the if...then control structure on page 954 for an example.

Package variable A package variable is defined within the package it appears in. Other packages can
refer to package variables by using the variable’s fully qualified name (for example,
$Text::Wrap::columns). By default, variables are package variables unless you
define them as lexical variables.

Lexical variable A lexical variable, which is defined by preceding the name of a variable with the key-
word my (see the tip on page 1050), is defined only within the block or file it appears
in. Other languages refer to a lexical variable as a local variable. Because Perl 4 used
the keyword local with a different meaning, Perl 5 uses the keyword lexical in its
place. When programming using bash , variables that are not exported (page 992) are
local to the program they are used in.

List A list is a series of zero or more scalars. The following list has three elements—two
numbers and a string:

(2, 4, 'Zach')

Array An array is a variable that holds a list of elements in a defined order. In the follow-
ing line of code, @a is an array. See page 1053 for more information about array
variables.

@a = (2, 4, 'Zach')

Compound
statement

A compound statement is a statement made up of other statements. For example,
the if compound statement (page 1057) incorporates an if statement that normally
includes other statements within the block it controls.

 From the Library of WoweBook.Com

ptg

1046 Chapter 28 The Perl Scripting Language

Running a Perl Program

There are several ways you can run a program written in Perl. The –e option
enables you to enter a program on the command line:

$ perl -e 'print "Hi there.\n"'
Hi there.

The –e option is a good choice for testing Perl syntax and running brief, one-shot
programs. This option requires that the Perl program appear as a single argument
on the command line. The program must immediately follow this option—it is an
argument to this option. An easy way to write this type of program is to enclose the
program within single quotation marks.

Because Perl is a member of the class of utilities that take input from a file or standard
input (page 248), you can give the command perl and enter the program terminated
by CONTROL-D (end of file). Perl reads the program from standard input:

$ perl
print "Hi there.\n";
CONTROL-D
Hi there.

The preceding techniques are useful for quick, one-off command-line programs but
are not helpful for running more complex programs. Most of the time, a Perl program
is stored in a text file. Although not required, the file typically has a filename exten-
sion of .pl. Following is the same simple program used in the previous examples
stored in a file:

$ cat simple.pl
print "Hi there.\n";

You can run this program by specifying its name as an argument to Perl:

$ perl simple.pl
Hi there.

Most commonly and similarly to most shell scripts, the file containing the Perl pro-
gram is executable. In the following example, chmod (page 300) makes the simple2.pl
file executable. As explained on page 302, the #! at the start of the first line of the file
instructs the shell to pass the rest of the file to /usr/bin/perl for execution.

$ chmod 755 simple2.pl
$ cat simple2.pl
#!/usr/bin/perl -w
print "Hi there.\n";

$./simple2.pl
Hi there.

In this example, the simple2.pl program is executed as ./simple2.pl because the
working directory is not in the user’s PATH (page 319). The –w option tells Perl to
issue warning messages when it identifies potential errors in the code.

 From the Library of WoweBook.Com

ptg

Introduction to Perl 1047

Perl Version 5.10

All examples in this chapter were run under Perl 5.10. Give the following command
to see which version of Perl the local system is running:

$ perl -v

This is perl, v5.10.0 built for i486-linux-gnu-thread-multi
...

use feature 'say' The say function is a Perl 6 feature that is available in Perl 5.10. It works the same
way as print, except it adds a NEWLINE (\n) at the end of each line it outputs. Some ver-
sions of Perl require you to tell Perl explicitly that you want to use say. The use
function in the following example tells Perl to enable say. Try running this program
without the use line to see if the local version of Perl requires it.

$ cat 5.10.pl
use feature 'say';
say 'Output by say.';
print 'Output by print.';
say 'End.'
$ perl 5.10.pl
Output by say.
Output by print.End.
$

Earlier versions
of Perl

If you are running an earlier version of Perl, you will need to replace say in the
examples in this chapter with print and terminate the print statement with a
quoted \n:

$ cat 5.8.pl
print 'Output by print in place of say.', "\n";
print 'Output by print.';
print 'End.', "\n";

$ perl 5.8.pl
Output by print in place of say.
Output by print.End.

Syntax

This section describes the major components of a Perl program.

Statements A Perl program comprises one or more statements, each terminated by a semicolon
(;). These statements are free-form with respect to whitespace (page 1180), except
for whitespace within quoted strings. Multiple statements can appear on a single
line, each terminated by a semicolon. The following programs are equivalent. The
first occupies two lines, the second only one; look at the differences in the spacing
around the equal and plus signs. See use feature 'say' (above) if these programs
complain about say not being available.

 From the Library of WoweBook.Com

ptg

1048 Chapter 28 The Perl Scripting Language

$ cat statement1.pl
$n=4;
say "Answer is ", $n + 2;
$ perl statement1.pl
Answer is 6

$ cat statement2.pl
$n = 4; say "Answer is ", $n+2;
$ perl statement2.pl
Answer is 6

Expressions The syntax of Perl expressions frequently corresponds to the syntax of C expressions
but is not always the same. Perl expressions are covered in examples throughout this
chapter.

Quotation marks All character strings must be enclosed within single or double quotation marks. Perl
differentiates between the two types of quotation marks in a manner similar to the
way the shell does (page 314): Double quotation marks allow Perl to interpolate
enclosed variables and interpret special characters such as \n (NEWLINE), whereas sin-
gle quotation marks do not. Table 28-1 lists some of Perl’s special characters.

The following example demonstrates how different types of quotation marks, and
the absence of quotation marks, affect Perl in converting scalars between numbers
and strings. The single quotation marks in the first print statement prevent Perl
from interpolating the $string variable and from interpreting the \n special charac-
ter. The leading \n in the second print statement forces the output of that statement
to appear on a new line.

$ cat string1.pl
$string="5"; # $string declared as a string, but it will not matter

print '$string+5\n'; # Perl displays $string+5 literally because of
 # the single quotation marks
print "\n$string+5\n"; # Perl interpolates the value of $string as a string
 # because of the double quotation marks
print $string+5, "\n"; # Lack of quotation marks causes Perl to interpret
 # $string as a numeric variable and to add 5;
 # the \n must appear between double quotation marks

$ perl string1.pl
$string+5\n
5+5
10

Slash By default, regular expressions are delimited by slashes (/). The following example
tests whether the string hours contains the pattern our; see page 1074 for more
information on regular expression delimiters in Perl.

$ perl -e 'if ("hours" =~ /our/) {say "yes";}'

The local version of Perl may require use feature 'say' (page 1047) to work properly:

$ perl -e 'use feature "say"; if ("hours" =~ /our/) {say "yes";}'

 From the Library of WoweBook.Com

ptg

Variables 1049

Backslash Within a string enclosed between double quotation marks, a backslash escapes
(quotes) another backslash. Thus Perl displays "\\n" as \n. Within a regular expres-
sion, Perl does not expand a metacharacter preceded by a backslash. See the
string1.pl program on the previous page.

Comments As in the shell, a comment in Perl begins with a hashmark (#) and ends at the end of
the line (just before the NEWLINE character).

Special characters Table 28-1 lists some of the characters that are special within strings in Perl. Perl
interpolates these characters when they appear between double quotation marks
but not when they appear between single quotation marks. Table 28-3 on
page 1076 lists metacharacters, which are special within regular expressions.

Variables

Like human languages, Perl distinguishes between singular and plural data. Strings
and numbers are singular; lists of strings or numbers are plural. Perl provides three
types of variables: scalar (singular), array (plural), and hash (plural; also called
associative arrays). Perl identifies each type of variable by a special character pre-
ceding its name. The name of a scalar variable begins with a dollar sign ($), an array
variable begins with an at sign (@), and a hash variable begins with a percent sign
(%). As opposed to the way the shell identifies variables, Perl requires the leading
character to appear each time you reference a variable, including when you assign a
value to the variable:

$ name="Zach" ; echo "$name" (bash)
Zach

$ perl -e '$name="Zach" ; print "$name\n";' (perl)
Zach

Variable names, which are case sensitive, can include letters, digits, and the underscore
character (_). A Perl variable is a package variable (page 1045) unless it is preceded by

Table 28-1 Some Perl special characters

Character When within double quotation marks, interpolated as

\0xx (zero) The ASCII character whose octal value is xx

\a An alarm (bell or beep) character (ASCII 7)

\e An ESCAPE character (ASCII 27)

\n A NEWLINE character (ASCII 10)

\r A RETURN character (ASCII 13)

\t A TAB character (ASCII 9)

 From the Library of WoweBook.Com

ptg

1050 Chapter 28 The Perl Scripting Language

the keyword my, in which case it is a lexical variable (page 1045) that is defined only
within the block or file it appears in. See “Subroutines” on page 1071 for a discussion
of the locality of Perl variables.

A Perl variable comes into existence when you assign a value to it—you do not need
to define or initialize a variable, although it may make a program more understand-
able to do so. Normally, Perl does not complain when you reference an uninitialized
variable:

$ cat variable1.pl
#!/usr/bin/perl
my $name = 'Sam';
print "Hello, $nam, how are you?\n"; # Typo, e left off of name

$./variable1.pl
Hello, , how are you?

use strict Include use strict to cause Perl to require variables to be declared before being
assigned values. See the perldebtut man page for more information. When you
include use strict in the preceding program, Perl displays an error message:

$ cat variable1b.pl
#!/usr/bin/perl
use strict;
my $name = 'Sam';
print "Hello, $nam, how are you?\n"; # Typo, e left off of name

$./variable1b.pl
Global symbol "$nam" requires explicit package name at ./variable1b.pl line 4.
Execution of ./variable1b.pl aborted due to compilation errors.

Lexical variables overshadow package variables
caution If a lexical variable and a package variable have the same name, within the block or file in which

the lexical variable is defined, the name refers to the lexical variable and not to the package
variable.

Using my: lexical versus package variables

tip In variable1.pl, $name is declared to be lexical by preceding its name with the keyword my; its
name and value are known within the file variable1.pl only. Declaring a variable to be lexical limits
its scope to the block or file it is defined in. Although not necessary in this case, declaring variables
to be lexical is good practice. This habit becomes especially useful when you write longer pro-
grams, subroutines, and packages, where it is harder to keep variable names unique. Declaring all
variables to be lexical is mandatory when you write routines that will be used within code written
by others. This practice allows those who work with your routines to use whichever variable
names they like, without regard to which variable names you used in the code you wrote.

The shell and Perl scope variables differently. In the shell, if you do not export a variable, it is local
to the routine it is used in (page 992). In Perl, if you do not use my to declare a variable to be lex-
ical, it is defined for the package it appears in.

ptg

Variables 1051

–w and
use warnings

The –w option and the use warnings statement perform the same function: They
cause Perl to generate an error message when it detects a syntax error. In the fol-
lowing example, Perl displays two warnings. The first tells you that you have used
the variable named $nam once, on line 3, which probably indicates an error. This
message is helpful when you mistype the name of a variable. Under Perl 5.10, the
second warning specifies the name of the uninitialized variable. This warning
refers to the same problem as the first warning. Although it is not hard to figure
out which of the two variables is undefined in this simple program, doing so in a
complex program can take a lot of time.

$ cat variable1a.pl
#!/usr/bin/perl -w
my $name = 'Sam';
print "Hello, $nam, how are you?\n"; # Prints warning because of typo and -w

$./variable1a.pl
Name "main::nam" used only once: possible typo at ./variable1a.pl line 3.
Use of uninitialized value $nam in concatenation (.) or string at ./variable1a.pl line 3.
Hello, , how are you?

You can also use –w on the command line. If you use –e as well, make sure the argu-
ment that follows this option is the program you want to execute (e.g., –e –w does
not work). See the tip on page 1074.

$ perl -w -e 'my $name = "Sam"; print "Hello, $nam, how are you?\n"'
Name "main::nam" used only once: possible typo at -e line 1.
Use of uninitialized value $nam in concatenation (.) or string at -e line 1.
Hello, , how are you?

undef and defined An undefined variable has the special value undef, which evaluates to zero (0) in a
numeric expression and expands to an empty string ("") when you print it. Use the
defined function to determine whether a variable has been defined. The following
example, which uses constructs explained later in this chapter, calls defined with an
argument of $name and negates the result with an exclamation point (!). The result
is that the print statement is executed if $name is not defined.

$ cat variable2.pl
#!/usr/bin/perl
if (!defined($name)) {
print "The variable '\$name' is not defined.\n"
};

$./variable2.pl
The variable '$name' is not defined.

Because the –w option causes Perl to warn you when you reference an undefined
variable, using this option would generate a warning.

Scalar Variables

A scalar variable has a name that begins with a dollar sign ($) and holds a single
string or number: It is a singular variable. Because Perl converts between the two

ptg

1052 Chapter 28 The Perl Scripting Language

when necessary, you can use strings and numbers interchangeably. Perl interprets
scalar variables as strings when it makes sense to interpret them as strings, and as
numbers when it makes sense to interpret them as numbers. Perl's judgment in these
matters is generally good.

The following example shows some uses of scalar variables. The first two lines of
code (lines 3 and 4) assign the string Sam to the scalar variable $name and the
numbers 5 and 2 to the scalar variables $n1 and $n2, respectively. In this example,
multiple statements, each terminated with a semicolon (;), appear on a single line.
See use feature 'say' on page 1047 if this program complains about say not being
available.

$ cat scalars1.pl
#!/usr/bin/perl -w

$name = "Sam";
$n1 = 5; $n2 = 2;

say "$name $n1 $n2";
say "$n1 + $n2";
say '$name $n1 $n2';
say $n1 + $n2, " ", $n1 * $n2;
say $name + $n1;

$./scalars1.pl
Sam 5 2
5 + 2
$name $n1 $n2
7 10
Argument "Sam" isn't numeric in addition (+) at ./scalers1.pl line 11.
5

Double quotation
marks

The first say statement sends the string enclosed within double quotation marks to
standard output (the screen unless you redirect it). Within double quotation marks,
Perl expands variable names to the value of the named variable. Thus the first say
statement displays the values of three variables, separated from each other by SPACEs.
The second say statement includes a plus sign (+). Perl does not recognize operators
such as + within either type of quotation marks. Thus Perl displays the plus sign
between the values of the two variables.

Single quotation
marks

The third say statement sends the string enclosed within single quotation marks to
standard output. Within single quotation marks, Perl interprets all characters liter-
ally, so it displays the string exactly as it appears between the single quotation
marks.

In the fourth say statement, the operators are not quoted, and Perl performs the
addition and multiplication as specified. Without the quoted SPACE, Perl would cate-
nate the two numbers (710). The last say statement attempts to add a string and a
number; the –w option causes Perl to display an error message before displaying 5.
The 5 results from adding Sam, which Perl evaluates as 0 in a numerical context, to
the number 5 (0 + 5 = 5).

ptg

Variables 1053

Array Variables

An array variable is an ordered container of scalars whose name begins with an at
sign (@) and whose first element is numbered zero (zero-based indexing). Because
an array can hold zero or more scalars, it is a plural variable. Arrays are ordered;
hashes (page 1056) are unordered. In Perl, arrays grow as needed. If you reference
an uninitialized element of an array, such as an element beyond the end of the array,
Perl returns undef.

The first statement in the following program assigns the values of two numbers
and a string to the array variable named @arrayvar. Because Perl uses zero-based
indexing, the first say statement displays the value of the second element of the
array (the element with the index 1). This statement specifies the variable
$arrayvar[1] as a scalar (singular) because it refers to a single value. The second
say statement specifies the variable @arrayvar[1,2] as a list (plural) because it refers
to multiple values (the elements with the indexes 1 and 2).

$ cat arrayvar1.pl
#!/usr/bin/perl -w
@arrayvar = (8, 18, "Sam");
say $arrayvar[1];
say "@arrayvar[1,2]";

$ perl arrayvar1.pl
18
18 Sam

The next example shows a couple of ways to determine the length of an array and
presents more information on using quotation marks within print statements. The
first assignment statement in arrayvar2.pl assigns values to the first six elements of
the @arrayvar2 array. When used in a scalar context, Perl evaluates the name of an
array as the length of the array. The second assignment statement assigns the num-
ber of elements in @arrayvar2 to the scalar variable $num.

$ cat arrayvar2.pl
#!/usr/bin/perl -w
@arrayvar2 = ("apple", "bird", 44, "Tike", "metal", "pike");

$num = @arrayvar2; # number of elements in array
print "Elements: ", $num, "\n"; # two equivalent print statements
print "Elements: $num\n";

print "Last: $#arrayvar2\n"; # index of last element in array

$./arrayvar2.pl
Elements: 6
Elements: 6
Last: 5

The first two print statements in arrayvar2.pl display the string Elements:, a SPACE,
the value of $num, and a NEWLINE, each using a different syntax. The first of these

ptg

1054 Chapter 28 The Perl Scripting Language

statements displays three values, using commas to separate them within the print
statement. The second print statement has one argument and demonstrates that Perl
expands a variable (replaces the variable with its value) when the variable is
enclosed within double quotation marks.

$#array The final print statement in arrayvar2.pl shows that Perl evaluates the variable
$#array as the index of the last element in the array named array. Because Perl uses
zero-based indexing by default, this variable evaluates to one less than the number
of elements in the array.

The next example works with elements of an array and uses a dot (.; the string cat-
enation operator). The first two lines assign values to four scalar variables. The
third line shows that you can assign values to array elements using scalar variables,
arithmetic, and catenated strings. The dot operator catenates strings, so Perl evalu-
ates $va . $vb as Sam catenated with uel—that is, as Samuel (see the output of the
last print statement).

$ cat arrayvar3.pl
#!/usr/bin/perl -w
$v1 = 5; $v2 = 8;
$va = "Sam"; $vb = "uel";
@arrayvar3 = ($v1, $v1 * 2, $v1 * $v2, "Max", "Zach", $va . $vb);

print $arrayvar3[2], "\n"; # one element of an array is a scalar
print @arrayvar3[2,4], "\n"; # two elements of an array are a list
print @arrayvar3[2..4], "\n\n"; # a slice

print "@arrayvar3[2,4]", "\n"; # a list, elements separated by SPACEs
print "@arrayvar3[2..4]", "\n\n"; # a slice, elements separated by SPACEs

print "@arrayvar3\n"; # an array, elements separated by SPACEs

$./arrayvar3.pl
40
40Zach
40MaxZach

40 Zach
40 Max Zach

5 10 40 Max Zach Samuel

The first print statement in arrayvar3.pl displays the third element (the element with
an index of 2) of the @arrayvar3 array. This statement uses $ in place of @ because
it refers to a single element of the array. The subsequent print statements use @
because they refer to more than one element. Within the brackets that specify an
array subscript, two subscripts separated by a comma specify two elements of an
array. The second print statement, for example, displays the third and fifth elements
of the array.

ptg

Variables 1055

Array slice When you separate two elements of an array with two dots (..; the range operator),
Perl substitutes all elements between and including the two specified elements. A
portion of an array comprising elements is called a slice. The third print statement
in the preceding example displays the elements with indexes 2, 3, and 4 (the third,
fourth, and fifth elements) as specified by 2..4. Perl puts no SPACEs between the ele-
ments it displays.

Within a print statement, when you enclose an array variable, including its subscripts,
within double quotation marks, Perl puts a SPACE between each of the elements. The
fourth and fifth print statements in the preceding example illustrate this syntax. The
last print statement displays the entire array, with elements separated by SPACEs.

shift, push,
pop, and splice

The next example demonstrates several functions you can use to manipulate arrays.
The example uses the @colors array, which is initialized to a list of seven colors. The
shift function returns and removes the first element of an array, push adds an ele-
ment to the end of an array, and pop returns and removes the last element of an
array. The splice function replaces elements of an array with another array; in the
example, splice inserts the @ins array starting at index 1 (the second element),
replacing two elements of the array. See use feature 'say' on page 1047 if this pro-
gram complains about say not being available. See the perlfunc man page for more
information on the functions described in this paragraph.

$ cat ./shift1.pl
#!/usr/bin/perl -w

@colors = ("red", "orange", "yellow", "green", "blue", "indigo", "violet");

say " Display array: @colors";
say " Display and remove first element of array: ", shift (@colors);
say " Display remaining elements of array: @colors";

push (@colors, "WHITE");
say " Add element to end of array and display: @colors";

say " Display and remove last element of array: ", pop (@colors);
say " Display remaining elements of array: @colors";

@ins = ("GRAY", "FERN");
splice (@colors, 1, 2, @ins);
say "Replace second and third elements of array: @colors";

$./shift1.pl
 Display array: red orange yellow green blue indigo violet
 Display and remove first element of array: red
 Display remaining elements of array: orange yellow green blue indigo violet
 Add element to end of array and display: orange yellow green blue indigo violet WHITE
 Display and remove last element of array: WHITE
 Display remaining elements of array: orange yellow green blue indigo violet
Replace second and third elements of array: orange GRAY FERN blue indigo violet

ptg

1056 Chapter 28 The Perl Scripting Language

Hash Variables

A hash variable, sometimes called an associative array variable, is a plural data
structure that holds an array of key-value pairs. It uses strings as keys (indexes) and
is optimized to return a value quickly when given a key. Each key must be a unique
scalar. Hashes are unordered; arrays (page 1053) are ordered. When you assign a
hash to a list, the key-value pairs are preserved, but their order is neither alphabeti-
cal nor the order in which they were inserted into the hash; instead, the order is
effectively random.

Perl provides two syntaxes to assign values to a hash. The first uses a single assignment
statement for each key-value pair:

$ cat hash1.pl
#!/usr/bin/perl -w
$hashvar1{boat} = "tuna";
$hashvar1{"number five"} = 5;
$hashvar1{4} = "fish";

@arrayhash1 = %hashvar1;
say "@arrayhash1";

$./hash1.pl
boat tuna 4 fish number five 5

Within an assignment statement, the key is located within braces to the left of the
equal sign; the value is on the right side of the equal sign. As illustrated in the pre-
ceding example, keys and values can take on either numeric or string values. You do
not need to quote string keys unless they contain SPACEs. This example also shows
that you can display the keys and values held by a hash, each separated from the
next by a SPACE, by assigning the hash to an array variable and then printing that
variable enclosed within double quotation marks.

The next example shows the other way of assigning values to a hash and illustrates
how to use the keys and values functions to extract keys and values from a hash. After
assigning values to the %hash2 hash, hash2.pl calls the keys function with an argu-
ment of %hash2 and assigns the resulting list of keys to the @array_keys array. The
program then uses the values function to assign values to the @array_values array.

$ cat hash2.pl
#!/usr/bin/perl -w

%hash2 = (
 boat => "tuna",
 "number five" => 5,
 4 => "fish",
);

@array_keys = keys(%hash2);
say " Keys: @array_keys";

@array_values = values(%hash2);
say "Values: @array_values";

ptg

Control Structures 1057

$./hash2.pl
 Keys: boat 4 number five
Values: tuna fish 5

Because Perl automatically quotes a single word that appears to the left of the =>
operator, you do not need quotation marks around boat in the third line of this pro-
gram. However, removing the quotation marks from around number five would
generate an error because the string contains a SPACE.

Control Structures

Control flow statements alter the order of execution of statements within a Perl
program. Starting on page 954, Chapter 27 discusses bash control structures in
detail and includes flow diagrams. Perl control structures perform the same func-
tions as their bash counterparts, although the two languages use different syntaxes.
The description of each control structure in this section references the discussion of
the same control structure under bash.

In this section, the bold italic words in the syntax description are the items you sup-
ply to cause the structure to have the desired effect, the nonbold italic words are the
keywords Perl uses to identify the control structure, and {...} represents a block
(page 1045) of statements. Many of these structures use an expression, denoted as
expr, to control their execution. See if/unless (next) for an example and explanation
of a syntax description.

if/unless

The if and unless control structures are compound statements that have the following
syntax:

if (expr) {...}

unless (expr) {...}

These structures differ only in the sense of the test they perform. The if structure
executes the block of statements if expr evaluates to true; unless executes the block
of statements unless expr evaluates to true (i.e., if expr is false).

The if appears in nonbold type because it is a keyword; it must appear exactly as
shown. The expr is an expression; Perl evaluates it and executes the block
(page 1045) of statements represented by {...} if the expression evaluates as required
by the control structure.

File test operators The expr in the following example, –r memo1, uses the –r file test operator to
determine if a file named memo1 exists in the working directory and if the file is
readable. Although this operator tests only whether you have read permission
for the file, the file must exist for you to have read permission; thus it implicitly
tests that the file is present. (Perl uses the same file test operators as bash; see
Table 27-1 on page 957.) If this expression evaluates to true, Perl executes the

ptg

1058 Chapter 28 The Perl Scripting Language

block of statements (in this case one statement) between the braces. If the
expression evaluates to false, Perl skips the block of statements. In either case,
Perl then exits and returns control to the shell.

$ cat if1.pl
#!/usr/bin/perl -w
if (-r "memo1") {
 say "The file 'memo1' exists and is readable.";
 }

$./if1.pl
The file 'memo1' exists and is readable.

Following is the same program written using the postfix if syntax. Which syntax you
use depends on which part of the statement is more important to someone reading
the code.

$ cat if1a.pl
#!/usr/bin/perl -w
say "The file 'memo1' exists and is readable." if (-r "memo1");

The next example uses a print statement to display a prompt on standard output
and uses the statement $entry = <>; to read a line from standard input and assign
the line to the variable $entry. Reading from standard input, working with other
files, and use of the magic file handle (<>) for reading files specified on the com-
mand line are covered on page 1066.

Comparison
operators

Perl uses different operators to compare numbers from those it uses to compare
strings. Table 28-2 lists numeric and string comparison operators. In the following
example, the expression in the if statement uses the == numeric comparison operator
to compare the value the user entered and the number 28. This operator performs a
numeric comparison, so the user can enter 28, 28.0, or 00028 and in all cases the
result of the comparison will be true. Also, because the comparison is numeric, Perl
ignores both the whitespace around and the NEWLINE following the user’s entry. The –w
option causes Perl to issue a warning if the user enters a nonnumeric value and the
program uses that value in an arithmetic expression; without this option Perl silently
evaluates the expression as false.

$ cat if2.pl
#!/usr/bin/perl -w
print "Enter 28: ";
$entry = <>;
if ($entry == 28) { # use == for a numeric comparison

print "Thank you for entering 28.\n";
}

print "End.\n";

$./if2.pl
Enter 28: 28.0
Thank you for entering 28.
End.

ptg

Control Structures 1059

The next program is similar to the preceding one, except it tests for equality
between two strings. The chomp function (page 1067) removes the trailing NEWLINE

from the user’s entry—without this function the strings in the comparison would
never match. The eq comparison operator compares strings. In this example the
result of the string comparison is true when the user enters the string five. Leading
or trailing whitespace will yield a result of false, as would the string 5, although
none of these entries would generate a warning because they are legitimate strings.

$ cat if2a.pl
#!/usr/bin/perl -w
print "Enter the word 'five': ";
$entry = <>;
chomp ($entry);
if ($entry eq "five") { # use eq for a string comparison
 print "Thank you for entering 'five'.\n";
 }
print "End.\n";

$./if2a.pl
Enter the word 'five': five
Thank you for entering 'five'.
End.

if...else

The if...else control structure is a compound statement that is similar to the bash
if...then...else control structure (page 958). It implements a two-way branch using
the following syntax:

if (expr) {...} else {...}

die The next program prompts the user for two different numbers and stores those
numbers in $num1 and $num2. If the user enters the same number twice, an if
structure executes a die function, which sends its argument to standard error and
aborts program execution.

Table 28-2 Comparison operators

Numeric
operators

String
operators

Value returned based on the relationship between the
values preceding and following the operator

== eq True if equal

!= ne True if not equal

< lt True if less than

> gt True if greater than

<= le True if less than or equal

>= ge True if greater than or equal

<=> cmp 0 if equal, 1 if greater than, –1 if less than

ptg

1060 Chapter 28 The Perl Scripting Language

If the user enters different numbers, the if...else structure reports which number is
larger. Because expr performs a numeric comparison, the program accepts numbers
that include decimal points.

$ cat ifelse.pl
#!/usr/bin/perl -w
print "Enter a number: ";
$num1 = <>;
print "Enter another, different number: ";
$num2 = <>;

if ($num1 == $num2) {
 die ("Please enter two different numbers.\n");
 }
if ($num1 > $num2) {
 print "The first number is greater than the second number.\n";
 }
else {
 print "The first number is less than the second number.\n";
 }

$./ifelse.pl
Enter a number: 8
Enter another, different number: 8
Please enter two different numbers.

$./ifelse.pl
Enter a number: 5.5
Enter another, different number: 5
The first number is greater than the second number.

if...elsif...else

Similar to the bash if...then...elif control structure (page 961), the Perl if...elsif...else
control structure is a compound statement that implements a nested set of if...else
structures using the following syntax:

if (expr) {...} elsif {...} ... else {...}

The next program implements the functionality of the preceding ifelse.pl program
using an if...elsif...else structure. A print statement replaces the die statement
because the last statement in the program displays the error message; the program
terminates after executing this statement anyway. You can use the STDERR handle
(page 1066) to cause Perl to send this message to standard error instead of standard
output.

$ cat ifelsif.pl
#!/usr/bin/perl -w
print "Enter a number: ";
$num1 = <>;
print "Enter another, different number: ";
$num2 = <>;

ptg

Control Structures 1061

if ($num1 > $num2) {
 print "The first number is greater than the second number.\n";
 }
 elsif ($num1 < $num2) {
 print "The first number is less than the second number.\n";
 }
 else {
 print "Please enter two different numbers.\n";
 }

foreach/for
The Perl foreach and for keywords are synonyms; you can replace one with the other
in any context. These structures are compound statements that have two syntaxes.
Some programmers use one syntax with foreach and the other syntax with the for,
although there is no need to do so. This book uses foreach with both syntaxes.

foreach: Syntax 1

The first syntax for the foreach structure is similar to the shell’s for...in structure
(page 967):

foreach|for [var] (list) {...}

where list is a list of expressions or variables. Perl executes the block of statements
once for each item in list, sequentially assigning to var the value of one item in list
on each iteration, starting with the first item. If you do not specify var, Perl assigns
values to the $_ variable (page 1065).

The following program demonstrates a simple foreach structure. On the first pass
through the loop, Perl assigns the string Mo to the variable $item and the say state-
ment displays the value of this variable followed by a NEWLINE. On the second and
third passes through the loop, $item is assigned the value of Larry and Curly. When
there are no items left in the list, Perl continues with the statement following the
foreach structure. In this case, the program terminates. See use feature 'say' on
page 1047 if this program complains about say not being available.

$ cat foreach.pl
foreach $item ("Mo", "Larry", "Curly") {
 say "$item says hello.";
 }

$ perl foreach.pl
Mo says hello.
Larry says hello.
Curly says hello.

Using $_ (page 1065), you can write this program as follows:

$ cat foreacha.pl
foreach ("Mo", "Larry", "Curly") {
 say "$_ says hello.";
 }

ptg

1062 Chapter 28 The Perl Scripting Language

Following is the program using an array:

$ cat foreachb.pl
@stooges = ("Mo", "Larry", "Curly");
foreach (@stooges) {
 say "$_ says hello.";
 }

Following is the program using the foreach postfix syntax:

$ cat foreachc.pl
@stooges = ("Mo", "Larry", "Curly");
say "$_ says hello." foreach @stooges;

The loop variable ($item and $_ in the preceding examples) references the elements
in the list within the parentheses. When you modify the loop variable, you modify
the element in the list. The uc function returns an upshifted version of its argument.
The next example shows that modifying the loop variable $stooge modifies the
@stooges array:

$ cat foreachd.pl
@stooges = ("Mo", "Larry", "Curly");
foreach $stooge (@stooges) {
 $stooge = uc $stooge;
 say "$stooge says hello.";
 }
say "$stooges[1] is uppercase"

$ perl foreachd.pl
MO says hello.
LARRY says hello.
CURLY says hello.
LARRY is uppercase

See page 1069 for an example that loops through command-line arguments.

last and next
Perl’s last and next statements allow you to interrupt a loop; they are analogous to the
Bourne Again Shell’s break and continue statements (page 976). The last statement
transfers control to the statement following the block of statements controlled by the
loop structure, terminating execution of the loop. The next statement transfers control
to the end of the block of statements, which continues execution of the loop with the
next iteration.

In the following program, the if structure tests whether $item is equal to the string
two; if it is, the structure executes the next command, which skips the say statement
and continues with the next iteration of the loop. If you replaced next with last, Perl
would exit from the loop and not display three. See use feature 'say' on page 1047 if
this program complains about say not being available.

ptg

Control Structures 1063

$ cat foreach1.pl
foreach $item ("one", "two", "three") {
 if ($item eq "two") {
 next;
 }
 say "$item";
 }

$ perl foreach1.pl
one
three

foreach: Syntax 2

The second syntax for the foreach structure is similar to the C for structure:

foreach|for (expr1; expr2; expr3) {...}

The expr1 initializes the foreach loop; Perl evaluates expr1 one time, before it executes
the block of statements. The expr2 is the termination condition; Perl evaluates it before
each pass through the block of statements and executes the block of statements if
expr2 evaluates as true. Perl evaluates expr3 after each pass through the block of
statements—it typically increments a variable that is part of expr2.

In the next example, the foreach2.pl program prompts for three numbers; displays
the first number; repeatedly increments this number by the second number, display-
ing each result until the result would be greater than the third number; and quits.
See page 1066 for a discussion of the magic file handle (<>).

$ cat ./foreach2.pl
#!/usr/bin/perl -w

print "Enter starting number: ";
$start = <>;

print "Enter ending number: ";
$end = <>;

print "Enter increment: ";
$incr = <>;

if ($start >= $end || $incr < 1) {
 die ("The starting number must be less than the ending number\n",
 "and the increment must be greater than zero.\n");
 }

foreach ($count = $start+0; $count <= $end; $count += $incr) {
 say "$count";
 }

ptg

1064 Chapter 28 The Perl Scripting Language

$./foreach2.pl
Enter starting number: 2
Enter ending number: 10
Enter increment: 3
2
5
8

After prompting for three numbers, the preceding program tests whether the starting
number is greater than or equal to the ending number or if the increment is less than
1. The | | is a Boolean OR operator; the expression within the parentheses following if
evaluates to true if either the expression before or the expression after this operator
evaluates to true.

The foreach statement begins by assigning the value of $start+0 to $count. Adding
0 (zero) to the string $start forces Perl to work in a numeric context, removing the
trailing NEWLINE when it performs the assignment. Without this fix, the program
would display an extra NEWLINE following the first number it displayed.

while/until
The while (page 970) and until (page 974) control structures are compound statements
that implement conditional loops using the following syntax:

while (expr) {...}

until (expr) {...}

These structures differ only in the sense of their termination conditions. The while
structure repeatedly executes the block of statements while expr evaluates to true;
until continues until expr evaluates to true (i.e., while expr remains false).

The following example demonstrates one technique for reading and processing
input until there is no more input. Although this example shows input coming from
the user (standard input), the technique works the same way for input coming from
a file (see the example on page 1068). The user enters CONTROL-D on a line by itself to
signal the end of file.

In this example, expr is $line = <>. This statement uses the magic file handle (<>;
page 1066) to read one line from standard input and assigns the string it reads to
the $line variable. This statement evaluates to true as long as it reads data. When it
reaches the end of file, the statement evaluates to false. The while loop continues to
execute the block of statements (in this example, only one statement) as long as
there is data to read.

$ cat while1.pl
#!/usr/bin/perl -w
$count = 0;
while ($line = <>) {

print ++$count, ". $line";
}

print "\n$count lines entered.\n";

ptg

Control Structures 1065

$./while1.pl
Good Morning.
1. Good Morning.
Today is Monday.
2. Today is Monday.
CONTROL-D

2 lines entered.

In the preceding example, $count keeps track of the number of lines the user enters.
Putting the ++ increment operator before a variable (++$count; called a preincre-
ment operator) increments the variable before Perl evaluates it. Alternatively, you
could initialize $count to 1 and increment it with $count++ (postincrement), but
then in the final print statement $count would equal one more than the number of
lines entered.

$. The $. variable keeps track of the number of lines of input a program has read.
Using $. you can rewrite the previous example as follows:

$ cat while1a.pl
#!/usr/bin/perl -w
while ($line = <>) {
 print $., ". $line";
 }
print "\n$. lines entered.\n";

$_ Frequently you can simplify Perl code by using the $_ variable. You can use $_
many places in a Perl program—think of $_ as meaning it, the object of what you
are doing. It is the default operand for many operations. For example, the following
section of code processes a line using the $line variable. It reads a line into $line,
removes any trailing NEWLINE from $line using chomp (page 1067), and checks
whether a regular expression matches $line.

while (my $line = <>) {
 chomp $line;
 if ($line =~ /regex/) ...
}

You can rewrite this code by using $_ to replace $line:

while (my $_ = <>) {
 chomp $_;
 if ($_ =~ /regex/) ...
}

Because $_ is the default operand in each of these instances, you can also omit $_
altogether:

while (<>) { # read into $_
 chomp; # chomp $_
 if (/regex/) ... # if $_ matches regex
}

ptg

1066 Chapter 28 The Perl Scripting Language

Working with Files

Opening a file and
assigning a handle

A handle is a name that you can use in a Perl program to refer to a file or pro-
cess that is open for reading and/or writing. When you are working with the
shell, handles are referred to as file descriptors (page 987). As when you are
working with the shell, the kernel automatically opens handles for standard
input (page 243), standard output (page 243), and standard error (page 297)
before it runs a program. The kernel closes these descriptors after a program
finishes running. The names for these handles are STDIN, STDOUT, and
STDERR, respectively. You must manually open handles to read from or write
to other files or processes. The syntax of an open statement is

open (file-handle, ['mode',] "file-ref");

where file-handle is the name of the handle or a variable you will use in the pro-
gram to refer to the file or process named by file-ref. If you omit mode or specify a
mode of <, Perl opens the file for input (reading). Specify mode as > to truncate and
write to a file or as >> to append to a file.

See page 1082 for a discussion of reading from and writing to processes.

Writing to a file The print function writes output to a file or process. The syntax of a print statement is

print [file-handle] "text";

where file-handle is the name of the handle you specified in an open statement and
text is the information you want to output. The file-handle can also be STDOUT
or STDERR, as explained earlier. Except when you send information to standard
output, you must specify a handle in a print statement. Do not place a comma after
file-handle. Also, do not enclose arguments to print within parentheses because
doing so can create problems.

Reading from a file The following expression reads one line, including the NEWLINE (\n), from the file or
process associated with file-handle:

<file-handle>

This expression is typically used in a statement such as

$line = <IN>;

which reads into the variable $line one line from the file or process identified by the
handle IN.

Magic file
handle (<>)

To facilitate reading from files named on the command line or from standard input,
Perl provides the magic file handle. This book uses this file handle in most exam-
ples. In place of the preceding line, you can use

$line = <>;

ptg

Working with Files 1067

This file handle causes a Perl program to work like many Linux utilities: It reads
from standard input unless the program is called with one or more arguments, in
which case it reads from the files named by the arguments. See page 248 for an
explanation of how this feature works with cat.

The print statement in the first line in the next example includes the optional han-
dle STDOUT; the next print statement omits this handle; the final print statement
uses the STDERR file handle, which causes print’s output to go to standard error.
The first print statement prompts the user to enter something. The string that this
statement outputs is terminated with a SPACE, not a NEWLINE, so the user can enter
information on the same line as the prompt. The second line then uses a magic file
handle to read one line from standard input, which it assigns to $userline. Because
of the magic file handle, if you call file1.pl with an argument that is a filename, it
reads one line from that file instead of from standard input. The command line
that runs file1.pl uses 2> (see “File descriptors” on page 297) to redirect standard
error (the output of the third print statement) to the file1.err file.

$ cat file1.pl
print STDOUT "Enter something: ";
$userline = <>;
print "1>>>$userline<<<\n";
chomp ($userline);
print "2>>>$userline<<<\n";
print STDERR "3. Error message.\n";

$ perl file1.pl 2> file1.err
Enter something: hi there
1>>>hi there
<<<
2>>>hi there<<<

$ cat file1.err
3. Error message.

chomp/chop The two print statements following the user input in file1.pl display the value of
$userline immediately preceded by greater than signs (>) and followed by less than
signs (<). The first of these statements demonstrates that $userline includes a NEWLINE:
The less than signs following the string the user entered appear on the line following
the string. The chomp function removes a trailing NEWLINE, if it exists, from a string.
After chomp processes $userline, the print statement shows that this variable no
longer contains a NEWLINE. (The chop function is similar to chomp, except it removes
any trailing character from a string.)

The next example shows how to read from a file. It uses an open statement to assign
the lexical file handle $infile to the file /usr/share/dict/words. Each iteration of the
while structure evaluates an expression that reads a line from the file represented by
$infile and assigns the line to $line. When while reaches the end of file, the expres-
sion evaluates to false; control then passes out of the while structure. The block of
one statement displays the line as it was read from the file, including the NEWLINE.

ptg

1068 Chapter 28 The Perl Scripting Language

This program copies /usr/share/dict/words to standard output. A pipe (|; page 170)
is then used to send the output through head (page 166), which displays the first
four lines of the file (the first line is blank).

$ cat file2.pl
open (my $infile, "/usr/share/dict/words") or die "Cannot open dictionary: $!\n";
while ($line = <$infile>) {
 print $line;
 }

$ perl file2.pl | head -4

A
A's
AOL

$! The $! variable holds the last system error. In a numeric context, it holds the system
error number; in a string context, it holds the system error string. If the words file is
not present on the system, file2.pl displays the following message:

Cannot open dictionary: No such file or directory

If you do not have read permission for the file, the program displays this message:

Cannot open dictionary: Permission denied

Displaying the value of $! gives the user more information about what went wrong
than simply saying that the program could not open the file.

@ARGV The @ARGV array holds the arguments from the command line Perl was called
with. When you call the following program with a list of filenames, it displays the
first line of each file. If the program cannot read a file, die (page 1059) sends an
error message to standard error and quits. The foreach structure loops through the
command-line arguments, as represented by @ARGV, assigning each argument in
turn to $filename. The foreach block starts with an open statement. Perl executes
the open statement that precedes the OR Boolean operator (or) or, if that fails, Perl
executes the statement following the or operator (die). The result is that Perl either
opens the file named by $filename and assigns IN as its handle or, if it cannot open
that file, executes the die statement and quits. The print statement displays the
name of the file followed by a colon and the first line of the file. When it accepts
$line = <IN> as an argument to print, Perl displays the value of $line following the
assignment. After reading a line from a file, the program closes the file.

Always check for an error when opening a file

tip When a Perl program attempts to open a file and fails, the program does not display an error
message unless it checks whether open returned an error. In file2.pl, the or operator in the
open statement causes Perl to execute die (page 1059) if open fails. The die statement sends
the message Cannot open the dictionary followed by the system error string to standard error
and terminates the program.

ptg

Sort 1069

$ cat file3.pl
foreach $filename (@ARGV) {
 open (IN, $filename) or die "Cannot open file '$filename': $!\n";
 print "$filename: ", $line = <IN>;
 close (IN);
 }
$ perl file3.pl f1 f2 f3 f4
f1: First line of file f1.
f2: First line of file f2.
Cannot open file 'f3': No such file or directory

The next example is similar to the preceding one, except it takes advantage of several
Perl features that make the code simpler. It does not quit when it cannot read a file.
Instead, Perl displays an error message and continues. The first line of the program
uses my to declare $filename to be a lexical variable. Next, while uses the magic file
handle to open and read each line of each file named by the command-line argu-
ments; $ARGV holds the name of the file. When there are no more files to read, the
while condition [(<>)] is false, while transfers control outside the while block, and
the program terminates. Perl takes care of all file opening and closing operations;
you do not have to write code to take care of these tasks. Perl also performs error
checking.

The program displays the first line of each file named by a command-line argument.
Each time through the while block, while reads another line. When it finishes with
one file, it starts reading from the next file. Within the while block, if tests whether
it is processing a new file. If it is, the if block displays the name of the file and the
(first) line from the file and then assigns the new filename ($ARGV) to $filename.

$ cat file3a.pl
my $filename;
while (<>) {
 if ($ARGV ne $filename) {
 print "$ARGV: $_";
 $filename = $ARGV;
 }
}

$ perl file3a.pl f1 f2 f3 f4
f1: First line of file f1.
f2: First line of file f2.
Can't open f3: No such file or directory at file3a.pl line 3, <> line 3.
f4: First line of file f4.

Sort

reverse The sort function returns elements of an array ordered numerically or alphabeti-
cally, based on the locale (page 1157) environment. The reverse function is not
related to sort; it simply returns the elements of an array in reverse order.

ptg

1070 Chapter 28 The Perl Scripting Language

The first two lines of the following program assign values to the @colors array and
display these values. Each of the next two pairs of lines uses sort to put the values in
the @colors array in order, assign the result to @scolors, and display @scolors. These
sorts put uppercase letters before lowercase letters. Observe the positions of Orange
and Violet, both of which begin with an uppercase letter, in the sorted output. The
first assignment statement in these two pairs of lines uses the full sort syntax, includ-
ing the block {$a cmp $b} that tells Perl to use the cmp subroutine, which compares
strings, and to put the result in ascending order. When you omit the block in a sort
statement, as is the case in the second assignment statement, Perl also performs an
ascending textual sort.

$ cat sort3.pl
@colors = ("red", "Orange", "yellow", "green", "blue", "indigo", "Violet");

say "@colors";

@scolors = sort {$a cmp $b} @colors; # ascending sort with
say "@scolors"; # an explicit block

@scolors = sort @colors; # ascending sort with
say "@scolors"; # an implicit block

@scolors = sort {$b cmp $a} @colors; # descending sort
say "@scolors";

@scolors = sort {lc($a) cmp lc($b)} @colors; # ascending folded sort
say "@scolors";

$ perl sort3.pl
red Orange yellow green blue indigo Violet
Orange Violet blue green indigo red yellow
Orange Violet blue green indigo red yellow
yellow red indigo green blue Violet Orange
blue green indigo Orange red Violet yellow

The third sort in the preceding example reverses the positions of $a and $b in the
block to specify a descending sort. The last sort converts the strings to lowercase
before comparing them, providing a sort wherein the uppercase letters are folded
into the lowercase letters. As a result, Orange and Violet appear in alphabetical
order.

To perform a numerical sort, specify the <=> subroutine in place of cmp. The following
example demonstrates ascending and descending numerical sorts:

$ cat sort4.pl
@numbers = (22, 188, 44, 2, 12);

print "@numbers\n";

@snumbers = sort {$a <=> $b} @numbers;
print "@snumbers\n";

@snumbers = sort {$b <=> $a} @numbers;
print "@snumbers\n";

ptg

Subroutines 1071

$ perl sort4.pl
22 188 44 2 12
2 12 22 44 188
188 44 22 12 2

Subroutines

All variables are package variables (page 1045) unless you use the my function to
define them to be lexical variables (page 1045). Lexical variables defined in a sub-
routine are local to that subroutine.

The following program includes a main part and a subroutine named add(). This
program uses the variables named $one, $two, and $ans, all of which are package
variables: They are available to both the main program and the subroutine. The call
to the subroutine does not pass values to the subroutine and the subroutine returns
no values. This setup is not typical: It demonstrates that all variables are package
variables unless you use my to declare them to be lexical variables.

The subroutine1.pl program assigns values to two variables and calls a subroutine.
The subroutine adds the values of the two variables and assigns the result to
another variable. The main part of the program displays the result.

$ cat subroutine1.pl
$one = 1;
$two = 2;
add();
print "Answer is $ans\n";

sub add {
 $ans =$one + $two
 }

$ perl subroutine1.pl
Answer is 3

The next example is similar to the previous one, except the subroutine takes advan-
tage of a return statement to return a value to the main program. The program
assigns the value returned by the subroutine to the variable $ans and displays that
value. Again, all variables are package variables.

$ cat subroutine2.pl
$one = 1;
$two = 2;
$ans = add();
print "Answer is $ans\n";

sub add {
 return ($one + $two)
 }

$ perl subroutine2.pl
Answer is 3

ptg

1072 Chapter 28 The Perl Scripting Language

Keeping variables local to a subroutine is important in many cases. The subroutine in
the next example changes the values of variables and insulates the calling program
from these changes by declaring and using lexical variables. This setup is more typical.

@_ When you pass values in a call to a subroutine, Perl makes those values available in
the array named @_ in the subroutine. Although @_ is local to the subroutine, its
elements are aliases for the parameters the subroutine was called with. Changing a
value in the @_ array changes the value of the underlying variable, which may not
be what you want. The next program avoids this pitfall by assigning the values
passed to the subroutine to lexical variables.

The subroutine3.pl program calls the addplusone() subroutine with two variables as
arguments and assigns the value returned by the subroutine to a variable. The first
statement in the subroutine declares two lexical variables and assigns to them the
values from the @_ array. The my function declares these variables to be lexical.
(See the tip on lexical and package variables on page 1050.) Although you can use
my without assigning values to the declared variables, the syntax in the example is
more commonly used. The next two statements increment the lexical variables
$lcl_one and $lcl_two. The print statement displays the value of $lcl_one within the
subroutine. The return statement returns the sum of the two incremented, lexical
variables.

$ cat subroutine3.pl
$one = 1;
$two = 2;
$ans = addplusone($one, $two);
print "Answer is $ans\n";
print "Value of 'lcl_one' in main: $lcl_one\n";
print "Value of 'one' in main: $one\n";

sub addplusone {
 my ($lcl_one, $lcl_two) = @_;
 $lcl_one++;
 $lcl_two++;
 print "Value of 'lcl_one' in sub: $lcl_one\n";
 return ($lcl_one + $lcl_two)
 }

$ perl subroutine3.pl
Value of 'lcl_one' in sub: 2
Answer is 5
Value of 'lcl_one' in main:
Value of 'one' in main: 1

After displaying the result returned by the subroutine, the print statements in the
main program demonstrate that $lcl_one is not defined in the main program (it is
local to the subroutine) and that the value of $one has not changed.

The next example illustrates another way to work with parameters passed to a sub-
routine. This subroutine does not use variables other than the @_ array it was
passed and does not change the values of any elements of that array.

ptg

Regular Expressions 1073

$ cat subroutine4.pl
$one = 1;
$two = 2;
$ans = addplusone($one, $two);
print "Answer is $ans\n";
sub addplusone {
 return ($_[0] + $_[1] + 2);
 }

$ perl subroutine4.pl
Answer is 5

The final example in this section presents a more typical Perl subroutine. The sub-
routine max() can be called with any number of numeric arguments and returns the
value of the largest argument. It uses the shift function to assign to $biggest the
value of the first argument the subroutine was called with and to shift the rest of the
arguments. After using shift, argument number 2 becomes argument number 1 (8),
argument 3 becomes argument 2 (64), and argument 4 becomes argument 3 (2).
Next, foreach loops over the remaining arguments (@_). Each time through the
foreach block, Perl assigns to $_ the value of each of the arguments, in order. The
$biggest variable is assigned the value of $_ if $_ is bigger than $biggest. When
max() finishes going through its arguments, $biggest holds the maximum value,
which max() returns.

$ cat subroutine5.pl
$ans = max (16, 8, 64, 2);
print "Maximum value is $ans\n";

sub max {
 my $biggest = shift; # Assign first and shift the rest of the arguments to max()
 foreach (@_) { # Loop through remaining arguments
 $biggest = $_ if $_ > $biggest;
 }
return ($biggest);
}

$ perl subroutine5.pl
Maximum value is 64

Regular Expressions

Appendix A defines and discusses regular expressions as you can use them in many
Linux utilities. All of the material in Appendix A applies to Perl, except as noted. In
addition to the facilities described in Appendix A, Perl offers regular expression fea-
tures that allow you to perform more complex string processing. This section
reviews some of the regular expressions covered in Appendix A and describes some
of the additional features of regular expressions available in Perl. It also introduces
the syntax Perl uses for working with regular expressions.

ptg

1074 Chapter 28 The Perl Scripting Language

Syntax and the =~ Operator

The –l option The Perl –l option applies chomp to each line of input and places \n at the end of
each line of output. The examples in this section use the Perl –l and –e (page 1046)
options. Because the program must be specified as a single argument, the examples
enclose the Perl programs within single quotation marks. The shell interprets the
quotation marks and does not pass them to Perl.

/ is the default
delimiter

By default, Perl delimits a regular expression with slashes (/). The first program uses
the =~ operator to search for the pattern ge in the string aged. You can think of the
=~ operator as meaning “contains.” Using different terminology, the =~ operator
determines whether the regular expression ge has a match in the string aged. The
regular expression in this example contains no special characters; the string ge is
part of the string aged. Thus the expression within the parentheses evaluates to true
and Perl executes the print statement.

$ perl -le 'if ("aged" =~ /ge/) {print "true";}'
true

You can achieve the same functionality by using a postfix if statement:

$ perl -le 'print "true" if "aged" =~ /ge/'
true

!~ The !~ operator works in the opposite sense from the =~ operator. The expression in
the next example evaluates to true because the regular expression xy does not
match any part of aged:

$ perl -le 'print "true" if ("aged" !~ /xy/)'
true

As explained on page 1091, a period within a regular expression matches any single
character, so the regular expression a..d matches the string aged:

$ perl -le 'print "true" if ("aged" =~ /a..d/)'
true

You can use a variable to hold a regular expression. The following syntax quotes
string as a regular expression:

qr/string/

Using other options with –e
tip When you use another option with –e, the program must immediately follow the –e on the com-

mand line. Like many other utilities, Perl allows you to combine options following a single hyphen;
if –e is one of the combined options, it must appear last in the list of options. Thus you can use
perl –l –e or perl –le but not perl –e –l or perl –el.

ptg

Regular Expressions 1075

The next example uses this syntax to assign the regular expression /a..d/ (includ-
ing the delimiters) to the variable $re and then uses that variable as the regular
expression:

$ perl -le '$re = qr/a..d/; print "true" if ("aged" =~ $re)'
true

If you want to include the delimiter within a regular expression, you must quote
it. In the next example, the default delimiter, a slash (/), appears in the regular
expression. To keep Perl from interpreting the / in /usr as the end of the regular
expression, the / that is part of the regular expression is quoted by preceding it
with a backslash (\). See page 1093 for more information on quoting characters in
regular expressions.

$ perl -le 'print "true" if ("/usr/doc" =~ /\/usr/)'
true

Quoting several characters by preceding each one with a backslash can make a
complex regular expression harder to read. Instead, you can precede a delimited
regular expression with m and use a paired set of characters, such as {}, as the
delimiters. In the following example, the caret (^) anchors the regular expression to
the beginning of the line (page 1092):

$ perl -le 'print "true" if ("/usr/doc" =~ m{^/usr})'
true

You can use the same syntax when assigning a regular expression to a variable:

$ perl -le '$pn = qr{^/usr}; print "true" if ("/usr/doc" =~ $pn)'
true

Replacement string
and assignment

Perl uses the syntax shown in the next example to substitute a string (the replacement
string) for a matched regular expression. The syntax is the same as that found in vim
and sed. In the second line of the example, an s before the regular expression instructs
Perl to substitute the string between the second and third slashes (worst; the replace-
ment string) for a match of the regular expression between the first two slashes (best).
Implicit in this syntax is the notion that the substitution is made in the string held in
the variable on the left of the =~ operator.

$ cat re10a.pl
$stg = "This is the best!";
$stg =~ s/best/worst/;
print "$stg\n";

$ perl re10a.pl
This is the worst!

Table 28-3 (on the next page) list some of the characters, called metacharacters,
that are considered special within Perl regular expressions. Give the command
perldoc perlre for more information.

ptg

1076 Chapter 28 The Perl Scripting Language

Greedy Matches

By default Perl performs greedy matching, which means a regular expression
matches the longest string possible (page 1093). In the following example, the regu-
lar expression /{.*} / matches an opening brace followed by any string of characters,
a closing brace, and a SPACE ({remove me} may have two {keep me}). Perl substitutes
a null string (//) for this match.

$ cat 5ha.pl
$string = "A line {remove me} may have two {keep me} pairs of braces.";
$string =~ s/{.*} //;
print "$string\n";

$ perl 5ha.pl
A line pairs of braces.

Nongreedy matches The next example shows the classic way of matching the shorter brace-enclosed string
from the previous example. This type of match is called nongreedy or parsimonious
matching. Here the regular expression matches

1. An opening brace followed by

2. A character belonging to the character class (page 1091) that includes all
characters except a closing brace ([^}]) followed by

Table 28-3 Some Perl regular expression metacharacters

Character Matches

^ (caret) Anchors a regular expression to the beginning of a line (page 1092)

$ (dollar sign) Anchors a regular expression to the end of a line (page 1092)

(...) Brackets a regular expression (page 1077)

. (period) Any single character except NEWLINE (\n; page 1091)

\\ A backslash (\)

\b A word boundary (zero-width match)

\B A nonword boundary ([^\b])

\d A single decimal digit ([0–9])

\D A single nondecimal digit ([^0–9] or [^\d])

\s (lowercase) A single whitespace character SPACE, NEWLINE, RETURN, TAB, FORMFEED

\S (uppercase) A single nonwhitespace character ([^\s])

\w (lowercase) A single word character (a letter or digit; [a–zA–Z0–9])

\W (uppercase) A single nonword character ([^\w])

ptg

Regular Expressions 1077

3. Zero or more occurrences of the preceding character (*) followed by

4. A closing brace followed by

5. A SPACE.

(A caret as the first character of a character class specifies the class of all characters
that do not match the following characters, so [^}] matches any character that is not
a closing brace.)

$ cat re5b.pl
$string = "A line {remove me} may have two {keep me} pairs of braces.";
$string =~ s/{[^}]*} //;
print "$string\n";

$ perl re5b.pl
A line may have two {keep me} pairs of braces.

Perl provides a shortcut that allows you to specify a nongreedy match. In the follow-
ing example, the question mark in {.*?} causes the regular expression to match the
shortest string that starts with an opening brace followed by any string of characters
followed by a closing brace.

$ cat re5c.pl
$string = "A line {remove me} may have two {keep me} pairs of braces.";
$string =~ s/{.*?} //;
print "$string\n";

$ perl re5c.pl
A line may have two {keep me} pairs of braces.

Bracketing Expressions

As explained on page 1094, you can bracket parts of a regular expression and
recall those parts in the replacement string. Most Linux utilities use quoted paren-
theses [i.e., \(and \)] to bracket a regular expression. In Perl regular expressions,
parentheses are special characters. Perl omits the backslashes and uses unquoted
parentheses to bracket regular expressions. To specify a parenthesis as a regular
character within a regular expression in Perl, you must quote it (page 1093).

The next example uses unquoted parentheses in a regular expression to bracket part
of the expression. It then assigns the part of the string that the bracketed expression
matched to the variable that held the string in which Perl originally searched for the
regular expression.

First the program assigns the string My name is Sam to $stg. The next statement
looks for a match for the regular expression /My name is (.*)/ in the string held by
$stg. The part of the regular expression bracketed by parentheses matches Sam; the
$1 in the replacement string matches the first (and only in this case) matched brack-
eted portion of the regular expression. The result is that the string held in $stg is
replaced by the string Sam.

ptg

1078 Chapter 28 The Perl Scripting Language

$ cat re11.pl
$stg = "My name is Sam";
$stg =~ s/My name is (.*)/$1/;
print "Matched: $stg\n";

$ perl re11.pl
Matched: Sam

The next example uses regular expressions to parse a string for numbers. Two vari-
ables are initialized to hold a string that contains two numbers. The third line of the
program uses a regular expression to isolate the first number in the string. The \D*
matches a string of zero or more characters that does not include a digit: The \D
special character matches any single nondigit character. The trailing asterisk makes
this part of the regular expression perform a greedy match that does not include a
digit (it matches What is). The bracketed regular expression \d+ matches a string of
one or more digits. The parentheses do not affect what the regular expression
matches; they allow the $1 in the replacement string to match what the bracketed
regular expression matched. The final .* matches the rest of the string. This line
assigns the value of the first number in the string to $string.

The next line is similar but assigns the second number in the string to $string2. The
print statements display the numbers and the result of subtracting the second num-
ber from the first.

$ cat re8.pl
$string = "What is 488 minus 78?";
$string2 = $string;
$string =~ s/\D*(\d+).*/$1/;
$string2 =~ s/\D*\d+\D*(\d+).*/$1/;

print "$string\n";
print "$string2\n";
print $string - $string2, "\n";

$ perl re8.pl
488
78
410

The next few programs show some of the pitfalls of using unquoted parentheses in
regular expressions when you do not intend to bracket part of the regular expres-
sion. The first of these programs attempts to match parentheses in a string with
unquoted parentheses in a regular expression, but fails. The regular expression ag(e
matches the same string as the regular expression age because the parenthesis is a
special character; the regular expression does not match the string ag(ed).

$ perl -le 'if ("ag(ed)" =~ /ag(ed)/) {print "true";} else {print "false";}'
false

The regular expression in the next example quotes the parentheses by preceding
each with a backslash, causing Perl to interpret them as regular characters. The
match is successful.

ptg

CPAN Modules 1079

$ perl -le 'if ("ag(ed)" =~ /ag\(ed\)/) {print "true";} else {print "false";}'
true

Next, Perl finds an unmatched parenthesis in a regular expression:

$ perl -le 'if ("ag(ed)" =~ /ag(e/) {print "true";} else {print "false";}'
Unmatched (in regex; marked by <-- HERE in m/ag(<-- HERE e/ at -e line 1.

When you quote the parenthesis, all is well and Perl finds a match:

$ perl -le 'if ("ag(ed)" =~ /ag\(e/) {print "true";} else {print "false";}'
true

CPAN Modules

CPAN (Comprehensive Perl Archive Network) provides Perl documentation, FAQs,
modules (page 1045), and scripts on its Web site (www.cpan.org). It holds more
than 16,000 distributions (page 1045) and provides links, mailing lists, and versions
of Perl compiled to run under various operating systems (ports of Perl). One way to
locate a module is to visit search.cpan.org and use the search box or click one of the
classes of modules listed on that page.

This section explains how to download a module from CPAN and how to install
and run the module. Perl provides a hierarchical namespace for modules, separating
components of a name with double colons (::). The example in this section uses the
module named Timestamp::Simple, which you can read about and download from
search.cpan.org/dist/Timestamp-Simple. The timestamp is the date and time in the
format YYYYMMDDHHMMSS

To use a Perl module, you first download the file that holds the module. For this
example, the search.cpan.org/~shoop/Timestamp-Simple-1.01/Simple.pm Web page
has a link on the right side labeled Download. Click this link and save the file to the
directory you want to work in. You do not need to work as a privileged user until
the last step of this procedure, when you install the module.

Most Perl modules come as compressed tar files (page 176). With the downloaded
file in the working directory, decompress the file:

$ tar xzvf Timestamp-Simple-1.01.tar.gz
Timestamp-Simple-1.01/
Timestamp-Simple-1.01/Simple.pm
Timestamp-Simple-1.01/Makefile.PL
Timestamp-Simple-1.01/README
Timestamp-Simple-1.01/test.pl
Timestamp-Simple-1.01/Changes
Timestamp-Simple-1.01/MANIFEST
Timestamp-Simple-1.01/ARTISTIC
Timestamp-Simple-1.01/GPL
Timestamp-Simple-1.01/META.yml

www.cpan.org

ptg

1080 Chapter 28 The Perl Scripting Language

The README file in the newly created directory usually provides instructions for
building and installing the module. Most modules follow the same steps.

$ cd Timestamp-Simple-1.01
$ perl Makefile.PL
Checking if your kit is complete...
Looks good
Writing Makefile for Timestamp::Simple

If the module you are building depends on other modules that are not installed on
the local system, running perl Makefile.PL will display one or more warnings about
prerequisites that are not found. This step writes out the makefile even if modules
are missing. In this case the next step will fail, and you must build and install miss-
ing modules before continuing.

The next step is to run make on the makefile you just created. After you run make,
run make test to be sure the module is working.

$ make
cp Simple.pm blib/lib/Timestamp/Simple.pm
Manifying blib/man3/Timestamp::Simple.3pm

$ make test
PERL_DL_NONLAZY=1 /usr/bin/perl "-Iblib/lib" "-Iblib/arch" test.pl
1..1
Running under perl version 5.100000 for linux
Current time local: Fri Sep 3 18:20:41 2010
Current time GMT: Sat Sep 4 01:20:41 2010
Using Test.pm version 1.25
ok 1
ok 2
ok 3

Finally, running with root privileges, install the module:

$ sudo make install
Installing /usr/local/share/perl/5.10.0/Timestamp/Simple.pm
Installing /usr/local/man/man3/Timestamp::Simple.3pm
Writing /usr/local/lib/perl/5.10.0/auto/Timestamp/Simple/.packlist
Appending installation info to /usr/local/lib/perl/5.10.0/perllocal.pod

Once you have installed a module, you can use perldoc to display the documentation
that tells you how to use the module. See page 1043 for an example.

Some modules contain SYNOPSIS sections. If the module you installed includes
such a section, you can test the module by putting the code from the SYNOPSIS sec-
tion in a file and running it as a Perl program:

$ cat times.pl
use Timestamp::Simple qw(stamp);
print stamp, "\n";

$ perl times.pl
20100904182627

ptg

Examples 1081

You can then incorporate the module in a Perl program. The following example
uses the timestamp module to generate a unique filename:

$ cat fn.pl
use Timestamp::Simple qw(stamp);

Save timestamp in a variable
$ts = stamp, "\n";

Strip off the year
$ts =~ s/....(.*)/\1/;

Create a unique filename
$fn = "myfile." . $ts;

Open, write to, and close the file
open (OUTFILE, '>', "$fn");
print OUTFILE "Hi there.\n";
close (OUTFILE);

$ perl fn.pl
$ ls myf*
myfile.0905183010

substr You can use the substr function in place of the regular expression to strip off the
year. To do so, replace the line that starts with $ts =~ with the following line. Here,
substr takes on the value of the string $ts starting at position 4 and continuing to
the end of the string:

$ts = substr ($ts, 4);

Examples

This section provides some sample Perl programs. First try running these programs
as is, and then modify them to learn more about programming with Perl.

The first example runs under Linux and displays the list of groups that the user
given as an argument is a member of. Without an argument, it displays the list of
groups that the user running the program is a member of. In a Perl program, the
%ENV hash holds the environment variables from the shell that called Perl. The
keys in this hash are the names of environment variables; the values in this hash are
the values of the corresponding variables. The first line of the program assigns a
username to $user. The shift function (page 1055) takes on the value of the first
command-line argument and shifts the rest of the arguments, if any remain. If the
user runs the program with an argument, that argument is assigned to $user. If no
argument appears on the command line, shift fails and Perl executes the statement
following the Boolean OR (| |). This statement extracts the value associated with
the USER key in %ENV, which is the name of the user running the program.

ptg

1082 Chapter 28 The Perl Scripting Language

Accepting output
from a process

The third statement initializes the array @list. Although this statement is not
required, it is good practice to include it to make the code easier to read. The next
statement opens the $fh lexical handle. The trailing pipe symbol (|) in the file-ref
(page 1066) portion of this open statement tells Perl to pass the command line pre-
ceding the pipe symbol to the shell for execution and to accept standard output
from the command when the program reads from the file handle. In this case the
command uses grep to filter the /etc/group file (page 492) for lines containing the
username held in $user. The die statement displays an error message if Perl cannot
open the handle.

$ cat groupfind.pl
$user = shift || $ENV{"USER"};
say "User $user belongs to these groups:";
@list = ();
open (my $fh, "grep $user /etc/group |") or die "Error: $!\n";
while ($group = <$fh>) {
 chomp $group;
 $group =~ s/(.*?):.*/$1/;
 push @list, $group;
}
close $fh;
@slist = sort @list;
say "@slist";

$ perl groupfind.pl
User sam belongs to these groups:
adm admin audio cdrom dialout dip floppy kvm lpadmin ...

The while structure in groupfind.pl reads lines from standard output of grep and
terminates when grep finishes executing. The name of the group appears first on
each line in /etc/group, followed by a colon and other information, including the
names of the users who belong to the group. Following is a line from this file:

sam:x:1000:max,zach,helen

The line

$group =~ s/(.*?):.*/$1/;

uses a regular expression and substitution to remove everything except the name of
the group from each line. The regular expression .*: would perform a greedy match
of zero or more characters followed by a colon; putting a question mark after the
asterisk causes the expression to perform a nongreedy match (page 1076). Putting
parentheses around the part of the expression that matches the string the program
needs to display enables Perl to use the string that the regular expression matches in
the replacement string. The final .* matches the rest of the line. Perl replaces the $1
in the replacement string with the string the bracketed portion of the regular expres-
sion (the part between the parentheses) matched and assigns this value (the name of
the group) to $group.

ptg

Examples 1083

The chomp statement removes the trailing NEWLINE (the regular expression did not
match this character). The push statement adds the value of $group to the end of
the @list array. Without chomp, each group would appear on a line by itself in the
output. After the while structure finishes processing input from grep, sort orders
@list and assigns the result to @slist. The final statement displays the sorted list of
groups the user belongs to.

opendir and readdir The next example introduces the opendir and readdir functions. The opendir func-
tion opens a directory in a manner similar to the way open opens an ordinary file. It
takes two arguments: the name of the directory handle and the name of the direc-
tory to open. The readdir function reads the name of a file from an open directory.

In the example, opendir opens the working directory (specified by .) using the
$dir lexical directory handle. If opendir fails, Perl executes the statement follow-
ing the or operator: die sends an error message to standard error and terminates
the program. With the directory opened, while loops through the files in the
directory, assigning the filename that readdir returns to the lexical variable
$entry. An if statement executes print only for those files that are directories (–d).
The print function displays the name of the directory unless the directory is
named . or .. . When readdir has read all files in the working directory, it returns
false and control passes to the statement following the while block. The closedir
function closes the open directory and print displays a NEWLINE following the list of
directories the program displayed.

$ cat dirs2a.pl
#!/usr/bin/perl
print "The working directory contains these directories:\n";

opendir my $dir, '.' or die "Could not open directory: $!\n";
while (my $entry = readdir $dir) {
 if (-d $entry) {
 print $entry, ' ' unless ($entry eq '.' || $entry eq '..');
 }
}
closedir $dir;
print "\n";

$./dirs2a.pl
The working directory contains these directories:
two one

split The split function divides a string into substrings as specified by a delimiter. The
syntax of a call to split is

split (/re/, string);

where re is the delimiter, which is a regular expression (frequently a single regular
character), and string is the string that is to be divided. As the next example shows,
you can assign the list that split returns to an array variable.

ptg

1084 Chapter 28 The Perl Scripting Language

The next program runs under Linux and lists the usernames of users with UIDs
greater than or equal to 100 listed in the /etc/passwd (page 494) file. It uses a while
structure to read lines from passwd into $user, and it uses split to break the line into
substrings separated by colons. The line that begins with @row assigns each of these
substrings to an element of the @row array. The expression the if statement evalu-
ates is true if the third substring (the UID) is greater than or equal to 100. This
expression uses the >= numeric comparison operator because it compares two num-
bers; an alphabetic comparison would use the ge string comparison operator.

The print statement sends the UID number and the associated username to the
$sortout file handle. The open statement for this handle establishes a pipe that sends
its output to sort –n. Because the sort utility (page 168) does not display any output
until it finishes receiving all of the input, split3.pl does not display anything until it
closes the $sortout handle, which it does when it finishes reading the passwd file.

$ cat split3.pl
#!/usr/bin/perl -w

open ($pass, "/etc/passwd");
open ($sortout, "| sort -n");
while ($user = <$pass>) {
 @row = split (/:/, $user);
 if ($row[2] >= 100) {
 print $sortout "$row[2] $row[0]\n";
 }
 }
close ($pass);
close ($sortout);

$./split3.pl
100 libuuid
101 syslog
102 klog
103 avahi-autoipd
104 pulse
...

The next example counts and displays the arguments it was called with, using
@ARGV (page 1068). A foreach structure loops through the elements of the
@ARGV array, which holds the command-line arguments. The ++ preincrement
operator increments $count before it is displayed.

$ cat 10.pl
#!/usr/bin/perl -w

$count = 0;
$num = @ARGV;
print "You entered $num arguments on the command line:\n";
foreach $arg (@ARGV) {
 print ++$count, ". $arg\n";
 }

ptg

Exercises 1085

$./10.pl apple pear banana watermelon
You entered 4 arguments on the command line:
1. apple
2. pear
3. banana
4. watermelon

Chapter Summary

Perl was written by Larry Wall in 1987. Since that time Perl has grown in size and
functionality and is now a very popular language used for text processing, system
administration, software development, and general-purpose programming. One of
Perl’s biggest assets is its support by thousands of third-party modules, many of
which are stored in the CPAN repository.

The perldoc utility locates and displays local Perl documentation. It also allows you
to document a Perl program by displaying lines of pod (plain old documentation)
that you include in the program.

Perl provides three types of variables: scalar (singular variables that begin with a $),
array (plural variables that begin with an @), and hash (also called associative
arrays; plural variables that begin with a %). Array and hash variables both hold
lists, but arrays are ordered while hashes are unordered. Standard control flow
statements allow you to alter the order of execution of statements within a Perl pro-
gram. In addition, Perl programs can take advantage of subroutines that can include
variables local to the subroutines (lexical variables).

Regular expressions are one of Perl’s strong points. In addition to the same facilities
that are available in many Linux utilities, Perl offers regular expression features that
allow you to perform more complex string processing.

Exercises

1. What are two different ways to turn on warnings in Perl?

2. What is the difference between an array and a hash?

3. In each example, when would you use a hash and when would you use an
array?

a. Counting the number of occurrences of an IP address in a log file.

b. Generating a list of users who are over disk quota for use in a report.

4. Write a regular expression to match a quoted string, such as

He said, "Go get me the wrench," but I didn’t hear him.

ptg

1086 Chapter 28 The Perl Scripting Language

5. Write a regular expression to match an IP address in a log file.

6. Many configuration files contain many comments, including commented-
out default configuration directives. Write a program to remove these
comments from a configuration file.

Advanced Exercises

7. Write a program that removes *~ and *.ico files from a directory hierarchy.
(Hint: Use the File::Find module.)

8. Describe a programming mistake that Perl’s warnings do not report on.

9. Write a Perl program that counts the number of files in the working
directory and the number of bytes in those files, by filename extension.

10. Describe the difference between quoting strings using single quotation
marks and using double quotation marks.

11. Write a program that copies all files with a .ico filename extension in a
directory hierarchy to a directory named icons in your home directory.
(Hint: Use the File::Find and File::Copy modules.)

12. Write a program that analyzes Apache logs. Display the number of bytes
served by each path. Ignore unsuccessful page requests. If there are more
than ten paths, display the first ten only.

Following is a sample line from an Apache access log. The two numbers
following the HTTP/1.1 are the response code and the byte count. A
response code of 200 means the request was successful. A byte count of –
means no data was transferred.

__DATA__
92.50.103.52 - - [19/Aug/2008:08:26:43 -0400] "GET /perl/automated-testing/next_active.gif
HTTP/1.1" 200 980 "http://example.com/perl/automated-testing/navigation_bar.htm"
"Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.8.1.6) Gecko/20061201 Firefox/3.0.0.6
(Fedora); Blazer/4.0"

ptg

1087

I

PART VII

Appendixes

APPENDIX A

Regular Expressions 1089

APPENDIX B

Help 1099

APPENDIX C

Security 1109

APPENDIX D

The Free Software Definition 1129

ptg

This page intentionally left blank

ptg

10891089

AAppendixAA regular expression defines a set of one or more strings of
characters. A simple string of characters is a regular expression
that defines one string of characters: itself. A more complex
regular expression uses letters, numbers, and special characters
to define many different strings of characters. A regular expres-
sion is said to match any string it defines.

This appendix describes the regular expressions used by ed,
vim, emacs, grep, mawk/gawk, sed, Perl, and many other utili-
ties. Refer to page 1073 for more information on Perl regular
expressions. The regular expressions used in shell ambiguous
file references are different and are described in “Filename
Generation/Pathname Expansion” on page 256.

In This Appendix

Characters 1090

Delimiters 1090

Simple Strings. 1090

Special Characters 1090

Rules . 1093

Bracketing Expressions 1094

The Replacement String 1094

Extended Regular
Expressions 1095

A

Regular Expressions

ptg

1090 Appendix A Regular Expressions

Characters

As used in this appendix, a character is any character except a NEWLINE. Most charac-
ters represent themselves within a regular expression. A special character, also called
a metacharacter, is one that does not represent itself. If you need to use a special
character to represent itself, you must quote it as explained on page 1093.

Delimiters

A character called a delimiter usually marks the beginning and end of a regular
expression. The delimiter is always a special character for the regular expression it
delimits (that is, it does not represent itself but marks the beginning and end of the
expression). Although vim permits the use of other characters as a delimiter and grep
does not use delimiters at all, the regular expressions in this appendix use a forward
slash (/) as a delimiter. In some unambiguous cases, the second delimiter is not
required. For example, you can sometimes omit the second delimiter when it would
be followed immediately by RETURN.

Simple Strings

The most basic regular expression is a simple string that contains no special char-
acters except the delimiters. A simple string matches only itself (Table A-1). In
the examples in this appendix, the strings that are matched are underlined and
look like this.

Special Characters

You can use special characters within a regular expression to cause the regular
expression to match more than one string. A regular expression that includes a

Table A-1 Simple strings

Regular
expression Matches Examples

/ring/ ring ring, spring, ringing,
stringing

/Thursday/ Thursday Thursday, Thursday’s

/or not/ or not or not, poor nothing

ptg

Special Characters 1091

special character always matches the longest possible string, starting as far toward
the beginning (left) of the line as possible.

Periods

A period (.) matches any character (Table A-2).

Brackets

Brackets ([]) define a character class1 that matches any single character within
the brackets (Table A-3). If the first character following the left bracket is a caret
(^), the brackets define a character class that matches any single character not
within the brackets. You can use a hyphen to indicate a range of characters. Within
a character-class definition, backslashes and asterisks (described in the following
sections) lose their special meanings. A right bracket (appearing as a member of the
character class) can appear only as the first character following the left bracket. A
caret is special only if it is the first character following the left bracket. A dollar sign
is special only if it is followed immediately by the right bracket.

Table A-2 Periods

Regular
expression Matches Examples

/ .alk/ All strings consisting of a SPACE followed by
any character followed by alk

will talk, may balk

/.ing/ All strings consisting of any character pre-
ceding ing

sing song, ping,
before inglenook

1. GNU documentation calls these List Operators and defines Character Class operators as expressions
that match a predefined group of characters, such as all numbers (page 1140).

Table A-3 Brackets

Regular
expression Matches Examples

/[bB]ill/ Member of the character class b and B fol-
lowed by ill

bill, Bill, billed

/t[aeiou].k/ t followed by a lowercase vowel, any char-
acter, and a k

talkative, stink, teak, tanker

/# [6–9]/ # followed by a SPACE and a member of the
character class 6 through 9

60, # 8:, get # 9

/[^a–zA–Z]/ Any character that is not a letter (ASCII
character set only)

1, 7, @, ., }, Stop!

ptg

1092 Appendix A Regular Expressions

Asterisks

An asterisk can follow a regular expression that represents a single character
(Table A-4). The asterisk represents zero or more occurrences of a match of the reg-
ular expression. An asterisk following a period matches any string of characters. (A
period matches any character, and an asterisk matches zero or more occurrences of
the preceding regular expression.) A character-class definition followed by an aster-
isk matches any string of characters that are members of the character class.

Carets and Dollar Signs

A regular expression that begins with a caret (^) can match a string only at the
beginning of a line. In a similar manner, a dollar sign ($) at the end of a regular
expression matches the end of a line. The caret and dollar sign are called anchors
because they force (anchor) a match to the beginning or end of a line (Table A-5).

Table A-4 Asterisks

Regular
expression Matches Examples

/ab*c/ a followed by zero or more b’s followed by
a c

ac, abc, abbc, debbcaabbbc

/ab.*c/ ab followed by zero or more characters fol-
lowed by c

abc, abxc, ab45c,
xab 756.345 x cat

/t.*ing/ t followed by zero or more characters fol-
lowed by ing

thing, ting, I thought of going

/[a–zA–Z]*/ A string composed only of letters and
SPACEs

1. any string without
numbers or punctuation!

/(.*)/ As long a string as possible between (and) Get (this) and (that);

/([^)]*)/ The shortest string possible that starts
with (and ends with)

(this), Get (this and that)

Table A-5 Carets and dollar signs

Regular
expression Matches Examples

/^T/ A T at the beginning of a line This line...,
That Time...,
In Time

/^+[0–9]/ A plus sign followed by a digit at the begin-
ning of a line

+5 +45.72,
+759 Keep this...

/:$/ A colon that ends a line ...below:

ptg

Rules 1093

Quoting Special Characters

You can quote any special character (but not parentheses [except in Perl; page 1077]
or a digit) by preceding it with a backslash (Table A-6). Quoting a special character
makes it represent itself.

Rules

The following rules govern the application of regular expressions.

Longest Match Possible

A regular expression always matches the longest possible string, starting as far
toward the beginning of the line as possible. Perl calls this type of match a greedy
match (page 1076). For example, given the string

This (rug) is not what it once was (a long time ago), is it?

the expression /Th.*is/ matches

This (rug) is not what it once was (a long time ago), is

and /(.*)/ matches

(rug) is not what it once was (a long time ago)

However, /([^)]*)/ matches

(rug)

Given the string

singing songs, singing more and more

the expression /s.*ing/ matches

singing songs, singing

and /s.*ing song/ matches

singing song

Table A-6 Quoted special characters

Regular
expression Matches Examples

/end\./ All strings that contain end followed by a
period

The end., send., pretend.mail

/ \\ / A single backslash \

/ */ An asterisk *.c, an asterisk (*)

/ \[5\]/ [5] it was five [5]

/and\/or/ and/or and/or

ptg

1094 Appendix A Regular Expressions

Empty Regular Expressions

Within some utilities, such as vim and less (but not grep), an empty regular expression
represents the last regular expression that you used. For example, suppose you give
vim the following Substitute command:

:s/mike/robert/

If you then want to make the same substitution again, you can use the following
command:

:s//robert/

Alternatively, you can use the following commands to search for the string mike and
then make the substitution

/mike/
:s//robert/

The empty regular expression (//) represents the last regular expression you used
(/mike/).

Bracketing Expressions

You can use quoted parentheses, \(and \), to bracket a regular expression. (How-
ever, Perl uses unquoted parentheses to bracket regular expressions; page 1077.)
The string that the bracketed regular expression matches can be recalled, as
explained in “Quoted Digit.” A regular expression does not attempt to match
quoted parentheses. Thus a regular expression enclosed within quoted parentheses
matches what the same regular expression without the parentheses would match.
The expression /\(rexp\)/ matches what /rexp/ would match; /a\(b*\)c/ matches
what /ab*c/ would match.

You can nest quoted parentheses. The bracketed expressions are identified only by
the opening \(, so no ambiguity arises in identifying them. The expression
/\([a–z]\([A–Z]*\)x\)/ consists of two bracketed expressions, one nested within the
other. In the string 3 t dMNORx7 l u, the preceding regular expression matches
dMNORx, with the first bracketed expression matching dMNORx and the second
matching MNOR.

The Replacement String

The vim and sed editors use regular expressions as search strings within Substitute
commands. You can use the ampersand (&) and quoted digits (\n) special characters
to represent the matched strings within the corresponding replacement string.

ptg

Extended Regular Expressions 1095

Ampersand

Within a replacement string, an ampersand (&) takes on the value of the string that
the search string (regular expression) matched. For example, the following vim Sub-
stitute command surrounds a string of one or more digits with NN. The ampersand
in the replacement string matches whatever string of digits the regular expression
(search string) matched:

:s/[0-9][0-9]*/NN&NN/

Two character-class definitions are required because the regular expression [0–9]*
matches zero or more occurrences of a digit, and any character string constitutes
zero or more occurrences of a digit.

Quoted Digit

Within the search string, a bracketed regular expression, \(xxx\) [(xxx) in Perl],
matches what the regular expression would have matched without the quoted
parentheses, xxx. Within the replacement string, a quoted digit, \n, represents the
string that the bracketed regular expression (portion of the search string) beginning
with the nth \(matched. Perl accepts a quoted digit for this purpose, but the pre-
ferred style is to precede the digit with a dollar sign ($n; page 1077). For example,
you can take a list of people in the form

last-name, first-name initial

and put it in the form

first-name initial last-name

with the following vim command:

:1,$s/\([^,]*\), \(.*\)/\2 \1/

This command addresses all the lines in the file (1,$). The Substitute command (s)
uses a search string and a replacement string delimited by forward slashes. The first
bracketed regular expression within the search string, \([^,]*\), matches what the
same unbracketed regular expression, [^,]*, would match: zero or more characters
not containing a comma (the last-name). Following the first bracketed regular
expression are a comma and a SPACE that match themselves. The second bracketed
expression, \(.*\), matches any string of characters (the first-name and initial).

The replacement string consists of what the second bracketed regular expression
matched (\2), followed by a SPACE and what the first bracketed regular expression
matched (\1).

Extended Regular Expressions

This section covers patterns that use an extended set of special characters. These pat-
terns are called full regular expressions or extended regular expressions. In addition

ptg

1096 Appendix A Regular Expressions

to ordinary regular expressions, Perl and vim provide extended regular expressions.
The three utilities egrep, grep when run with the –E option (similar to egrep), and
mawk/gawk provide all the special characters included in ordinary regular expressions,
except for \(and \), as well those included in extended regular expressions.

Two of the additional special characters are the plus sign (+) and the question mark
(?). They are similar to *, which matches zero or more occurrences of the previous
character. The plus sign matches one or more occurrences of the previous character,
whereas the question mark matches zero or one occurrence. You can use any one of
the special characters *, +, and ? following parentheses, causing the special charac-
ter to apply to the string surrounded by the parentheses. Unlike the parentheses in
bracketed regular expressions, these parentheses are not quoted (Table A-7).

In full regular expressions, the vertical bar (|) special character is a Boolean OR
operator. Within vim, you must quote the vertical bar by preceding it with a back-
slash to make it special (\|). A vertical bar between two regular expressions causes a
match with strings that match the first expression, the second expression, or both.
You can use the vertical bar with parentheses to separate from the rest of the regular
expression the two expressions that are being ORed (Table A-8).

Table A-7 Extended regular expressions

Regular
expression Matches Examples

/ab+c/ a followed by one or more b’s followed by
a c

yabcw, abbc57

/ab?c/ a followed by zero or one b followed by c back, abcdef

/(ab)+c/ One or more occurrences of the string ab
followed by c

zabcd, ababc!

/(ab)?c/ Zero or one occurrence of the string ab fol-
lowed by c

xc, abcc

Table A-8 Full regular expressions

Regular
expression Meaning Examples

/ab|ac/ Either ab or ac ab, ac, abac (abac is two
matches of the regular
expression)

/^Exit|^Quit/ Lines that begin with Exit or Quit Exit,
Quit,
No Exit

/(D|N)\. Jones/ D. Jones or N. Jones P.D. Jones, N. Jones

ptg

Appendix Summary 1097

Appendix Summary

A regular expression defines a set of one or more strings of characters. A regular
expression is said to match any string it defines.

In a regular expression, a special character is one that does not represent itself. Table A-9
lists special characters.

Table A-10 lists ways of representing character classes and bracketed regular
expressions.

In addition to the preceding special characters and strings (excluding quoted paren-
theses, except in vim), the characters in Table A-11 are special within full, or
extended, regular expressions.

Table A-9 Special characters

Character Meaning

. Matches any single character

* Matches zero or more occurrences of a match of the preceding character

^ Forces a match to the beginning of a line

$ A match to the end of a line

\ Quotes special characters

\< Forces a match to the beginning of a word

\> Forces a match to the end of a word

Table A-10 Character classes and bracketed regular expressions

Class Defines

[xyz] Defines a character class that matches x, y, or z

[^xyz] Defines a character class that matches any character except x, y, or z

[x–z] Defines a character class that matches any character x through z inclusive

\(xyz \) Matches what xyz matches (a bracketed regular expression; not Perl)

(xyz) Matches what xyz matches (a bracketed regular expression; Perl only)

Table A-11 Extended regular expressions

Expression Matches

+ Matches one or more occurrences of the preceding character

? Matches zero or one occurrence of the preceding character

ptg

1098 Appendix A Regular Expressions

Table A-12 lists characters that are special within a replacement string in sed and vim.

Expression Matches

(xyz)+ Matches one or more occurrences of what xyz matches

(xyz)? Matches zero or one occurrence of what xyz matches

(xyz)* Matches zero or more occurrences of what xyz matches

xyz |abc Matches either what xyz or what abc matches (use \| in vim)

(xy|ab)c Matches either what xyc or what abc matches (use \| in vim)

Table A-12 Replacement strings

String Represents

& Represents what the regular expression (search string) matched

\n A quoted number, n, represents what the nth bracketed regular expression in
the search string matched

$n A number preceded by a dollar sign, n, represents what the nth bracketed reg-
ular expression in the search string matched (Perl only)

Table A-11 Extended regular expressions (continued)

ptg

10991099

BAppendixBYou need not be a user or system administrator in isolation. A
large community of Linux experts is willing to assist you in
learning about, helping you solve problems with, and getting
the most out of a Linux system. Before you ask for help, how-
ever, make sure you have done everything you can to solve the
problem yourself. No doubt, someone has experienced the
same problem before you and the answer to your question
exists somewhere on the Internet. Your job is to find it. This
appendix lists resources and describes methods that can help
you in that task.

In This Appendix

Solving a Problem 1100

Finding Linux-Related
Information 1101

Documentation 1101

Useful Linux Sites 1102

Linux Newsgroups. 1103

Mailing Lists 1103

Words. 1104

Software 1104

Office Suites and Word
Processors 1106

Specifying a Terminal 1106

B

Help

ptg

1100 Appendix B Help

Solving a Problem

Following is a list of steps that can help you solve a problem without asking someone
for help. Depending on your understanding of and experience with the hardware and
software involved, these steps may lead to a solution.

1. Ubuntu Linux comes with extensive documentation. Read the documenta-
tion on the specific hardware or software you are having a problem with. If
it is a GNU product, use info; otherwise, use man to find local information.
Also look in /usr/share/doc for documentation on specific tools. For more
information refer to “Where to Find Documentation” on page 136.

2. When the problem involves some type of error or other message, use a
search engine, such as Google (www.google.com/linux) or Google Groups
(groups.google.com), to look up the message on the Internet. If the message
is long, pick a unique part of the message to search for; 10 to 20 characters
should be enough. Enclose the search string within double quotation
marks. See “Using the Internet to Get Help” on page 143 for an example of
this kind of search.

3. Check whether the Linux Documentation Project (www.tldp.org) has a
HOWTO or mini-HOWTO on the subject in question. Search its site for
keywords that relate directly to the product and problem. Read the FAQs.

4. See Table B-1 for other sources of documentation.

5. Use Google or Google Groups to search on keywords that relate directly
to the product and problem.

6. When all else fails (or perhaps before you try anything else), examine the
system logs in /var/log. First look at the end of the messages file using the
following command:

$ sudo tail -20 /var/log/messages

If messages contains nothing useful, run the following command. It dis-
plays the names of the log files in chronological order, with the most
recently modified files appearing at the bottom of the list:

$ ls -ltr /var/log

Look at the files at the bottom of the list first. If the problem involves a
network connection, review the auth.log file on the local and remote sys-
tems. Also look at messages on the remote system.

7. The /var/spool directory contains subdirectories with useful information:
cups holds the print queues, mail or exim4 holds the user’s mail files, and
so on.

www.google.com/linux
www.tldp.org

ptg

Finding Linux-Related Information 1101

If you are unable to solve a problem yourself, a thoughtful question to an appropriate
newsgroup (page 1103) or mailing list (page 1103) can elicit useful information. When
you send or post a question, make sure you describe the problem and identify the local
system carefully. Include the version numbers of Ubuntu Linux and any software pack-
ages that relate to the problem. Describe the hardware, if appropriate. There is an eti-
quette to posting questions—see www.catb.org/~esr/faqs/smart-questions.html for a
good paper by Eric S. Raymond and Rick Moen titled “How To Ask Questions the
Smart Way.”

The author’s home page (www.sobell.com) contains corrections to this book,
answers to selected chapter exercises, and pointers to other Linux sites.

Finding Linux-Related Information

Ubuntu Linux comes with reference pages stored online. You can read these docu-
ments by using the man or info (page 139) utility. You can read man and info pages to
get more information about specific topics while reading this book or to determine
which features are available with Linux. To search for topics, use apropos (see
page 139 or give the command man apropos).

Documentation

Good books are available on various aspects of using and managing UNIX systems
in general and Linux systems in particular. In addition, you may find the sites listed
in Table B-1 useful.1

1. The right-hand columns of most of the tables in this appendix show Internet addresses (URLs). All sites
have an implicit http:// prefix unless ftp:// or https:// is shown. Refer to “URLs (Web addresses)” on page 21.

Table B-1 Documentation

Site About the site URL

freedesktop.org Creates standards for interoperability
between open-source desktop
environments.

freedesktop.org

GNOME GNOME home page. www.gnome.org

GNU Manuals GNU manuals. www.gnu.org/manual

info Instructions for using the info utility. www.gnu.org/software/texinfo/manual/info

Internet FAQ
Archives

Searchable FAQ archives. www.faqs.org

www.catb.org/~esr/faqs/smart-questions.html
www.sobell.com
www.gnome.org
www.gnu.org/manual
www.gnu.org/software/texinfo/manual/info
www.faqs.org

ptg

1102 Appendix B Help

Useful Linux Sites

Sometimes the sites listed in Table B-2 are so busy that you cannot connect to them.
In this case, you are usually given a list of alternative, or mirror, sites to try.

Site About the site URL

KDE
Documentation

KDE documentation. kde.org/documentation

KDE News KDE news. dot.kde.org

Linux
Documentation
Project

All things related to Linux documenta-
tion (in many languages): HOWTOs,
guides, FAQs, man pages, and maga-
zines. This is the best overall source
for Linux documentation. Make sure
to visit the Links page.

www.tldp.org

Ubuntu
Documentation
and Support

These URIs have links to many pages
that provide documentation and sup-
port.

www.ubuntu.com/support
help.ubuntu.com/community
ubuntuforums.org

RFCs Requests for comments; see RFC
(page 1169).

www.rfc-editor.org

System
Administrators
Guild (SAGE)

SAGE is a group for system
administrators.

www.sage.org

Table B-1 Documentation (continued)

Table B-2 Useful Linux sites

Site About the site URL

DistroWatch A survey of many Linux distributions,
including news, reviews, and articles.

distrowatch.com

GNU GNU Project Web server. www.gnu.org

Hardware
compatibility

User-written hardware reviews for
Ubuntu Linux.

www.ubuntuhcl.org

ibiblio A large library and digital archive. For-
merly Metalab; formerly Sunsite.

www.ibiblio.org
www.ibiblio.org/pub/linux
www.ibiblio.org/pub/historic-linux

Linux Standard
Base (LSB)

A group dedicated to standardizing
Linux.

www.linuxfoundation.org/en/LSB

www.tldp.org
www.ubuntu.com/supporthelp.ubuntu.com/communityubuntuforums.org
www.ubuntu.com/supporthelp.ubuntu.com/communityubuntuforums.org
www.ubuntu.com/supporthelp.ubuntu.com/communityubuntuforums.org
www.rfc-editor.org
www.sage.org
www.gnu.org
www.ubuntuhcl.org
www.ibiblio.org
www.ibiblio.org/pub/linux
www.ibiblio.org/pub/historic-linux
www.linuxfoundation.org/en/LSB

ptg

Finding Linux-Related Information 1103

Linux Newsgroups

One of the best ways of getting specific information is through a newsgroup (refer
to “Usenet” on page 407). You can often find the answer to a question by reading
postings to the newsgroup. Try using Google Groups (groups.google.com) to search
through newsgroups to see whether the question has already been asked and
answered. Or open a newsreader program and subscribe to appropriate news-
groups. If necessary, you can post a question for someone to answer. Before you do
so, make sure you are posting to the correct group and that your question has not
already been answered.

The newsgroup comp.os.linux.answers provides postings of solutions to common
problems and periodic postings of the most up-to-date versions of FAQ and
HOWTO documents. The comp.os.linux.misc newsgroup has answers to miscella-
neous Linux-related questions.

Mailing Lists

Subscribing to a mailing list (page 733) allows you to participate in an electronic
discussion. With most lists, you can send and receive email dedicated to a specific
topic to and from a group of users. Moderated lists do not tend to stray as much as
unmoderated lists, assuming the list has a good moderator. The disadvantage of a
moderated list is that some discussions may be cut off when they get interesting if
the moderator deems that the discussion has gone on for too long. Mailing lists
described as bulletins are strictly unidirectional: You cannot post information to
these lists but can only receive periodic bulletins. If you have the subscription
address for a mailing list but are not sure how to subscribe, put the word help in the
body and/or header of email you send to the address. You will usually receive
instructions via return email. Ubuntu hosts several mailing lists; go to
lists.ubuntu.com for more information. You can also use a search engine to search
for mailing list linux.

Site About the site URL

Sobell The author’s home page contains use-
ful links, errata for this book, code for
many of the examples in this book,
and answers to selected exercises.

www.sobell.com

USENIX A large, well-established UNIX group.
This site has many links, including a
list of conferences.

www.usenix.org

X.Org The X Window System home. www.x.org

Table B-2 Useful Linux sites (continued)

www.sobell.com
www.usenix.org
www.x.org

ptg

1104 Appendix B Help

Words

Many dictionaries, thesauruses, and glossaries are available online. Table B-3 lists a
few of them.

Software

There are many ways to learn about interesting software packages and their avail-
ability on the Internet. Table B-4 lists sites you can download software from. For
security-related programs, refer to Table C-1 on page 1124. Another way to learn
about software packages is through a newsgroup (page 1103).

Table B-3 Looking up words

Site About the site URL

DICT.org Multiple-database search for words www.dict.org

Dictionary.com Everything related to words dictionary.reference.com

FOLDOC The Free On-Line Dictionary of
Computing

foldoc.org

GNOME Controls Defines many GUI controls (widgets) developer.gnome.org/projects/gup/hig/2.0/controls.html

The Jargon File An online version of The New
Hacker’s Dictionary

www.catb.org/~esr/jargon

Merriam-Webster English language www.merriam-webster.com

OneLook Multiple-site word search with a
single query

www.onelook.com

Roget’s
Thesaurus

Thesaurus humanities.uchicago.edu/forms_unrest/ROGET.html

Webopedia Commercial technical dictionary www.webopedia.com

Wikipedia An open-source (user-contributed)
encyclopedia project

wikipedia.org

Wordsmyth Dictionary and thesaurus www.wordsmyth.net

Yahoo Reference Search multiple sources at the same
time

education.yahoo.com/reference

Table B-4 Software

Site About the site URL

BitTorrent BitTorrent efficiently distributes large
amounts of static data

azureus.sourceforge.net
help.ubuntu.com/community/BitTorrent

CVS CVS (Concurrent Versions System) is
a version control system

www.nongnu.org/cvs

www.dict.org
www.catb.org/~esr/jargon
www.merriam-webster.com
www.onelook.com
www.webopedia.com
www.wordsmyth.net
www.nongnu.org/cvs

ptg

Finding Linux-Related Information 1105

Site About the site URL

ddd The ddd utility is a graphical front-
end for command-line debuggers
such as gdb

www.gnu.org/software/ddd

Firefox Web browser www.mozilla.com/firefox

Free Software
Directory

Categorized, searchable lists of free
software

directory.fsf.org

Freshmeat A large index of UNIX and cross-
platform software and themes

freshmeat.net

gdb The gdb utility is a command-line
debugger

www.gnu.org/software/gdb

GNOME Project Links to all GNOME projects www.gnome.org/projects

IceWALKERS Categorized, searchable lists of free
software

www.icewalkers.com

kdbg The kdbg utility is a graphical user
interface to gdb

freshmeat.net/projects/kdbg

Linux Software
Map

A database of packages written for,
ported to, or compiled for Linux

www.boutell.com/lsm

Mtools A collection of utilities to access DOS
floppy diskettes from Linux without
mounting the diskettes

mtools.linux.lu

Network
Calculators

Subnet mask calculator www.subnetmask.info

NTFS driver Driver that enables Linux to read
from and write to Windows NTFS
filesystems (available in the ntfs-3g
package)

www.ntfs-3g.org

Savannah Central point for development, dis-
tribution, and maintenance of free
software

savannah.gnu.org

SourceForge A development Web site with a large
repository of open-source code and
applications

sourceforge.net

strace The strace utility is a system call
trace debugging tool

http://sourceforge.net/

Thunderbird Mail application www.mozilla.com/thunderbird

ups The ups utility is a graphical source-
level debugger

ups.sourceforge.net

Table B-4 Software (continued)

www.gnu.org/software/ddd
www.mozilla.com/firefox
www.gnu.org/software/gdb
www.gnome.org/projects
www.icewalkers.com
www.boutell.com/lsm
www.subnetmask.info
www.ntfs-3g.org
www.mozilla.com/thunderbird
http://sourceforge.net/

ptg

1106 Appendix B Help

Office Suites and Word Processors

Several office suites and many word processors are available for Linux. Table B-5
lists a few of them. If you are exchanging documents with people using Windows,
make sure the import from/export to MS Word functionality covers your needs.

Specifying a Terminal

Because vim, emacs, and other textual and pseudographical programs take advan-
tage of features specific to various kinds of terminals and terminal emulators, you
must tell these programs the name of the terminal you are using or the terminal
your terminal emulator is emulating. Most of the time the terminal name is set for
you. If the terminal name is not specified or is not specified correctly, the characters
on the screen will be garbled or, when you start a program, the program will ask
which type of terminal you are using.

Terminal names describe the functional characteristics of a terminal or terminal
emulator to programs that require this information. Although terminal names are
referred to as either Terminfo or Termcap names, the difference relates to the
method each system uses to store the terminal characteristics internally—not to the
manner in which you specify the name of a terminal. Terminal names that are often
used with Linux terminal emulators and with graphical monitors while they are run
in textual mode include ansi, linux, vt100, vt102, vt220, and xterm.

When you are running a terminal emulator, you can specify the type of terminal you
want to emulate. Set the emulator to either vt100 or vt220, and set TERM to the
same value.

When you log in, you may be prompted to identify the type of terminal you are using:

TERM = (vt100)

You can respond to this prompt in one of two ways. First you can press RETURN to set
your terminal type to the name in parentheses. If that name does not describe the
terminal you are using, you can enter the correct name and then press RETURN.

TERM = (vt100) ansi

Table B-5 Office suites and word processors

Product name What it does URL

AbiWord Word processor www.abisource.com

KOffice Integrated suite of office applications,
including the KWord word processing
program

www.koffice.org

OpenOffice A multiplatform and multilingual
office suite

www.openoffice.org
www.gnome.org/projects/ooo

www.abisource.com
www.koffice.org
www.openoffice.org
www.gnome.org/projects/ooo

ptg

Specifying a Terminal 1107

You may also receive the following prompt:

TERM = (unknown)

This prompt indicates that the system does not know which type of terminal you
are using. If you plan to run programs that require this information, enter the name
of the terminal or terminal emulator you are using before you press RETURN.

TERM If you do not receive a prompt, you can give the following command to display the
value of the TERM variable and check whether the terminal type has been set:

$ echo $TERM

If the system responds with the wrong name, a blank line, or an error message, set
or change the terminal name. From the Bourne Again Shell (bash), enter a command
similar to the following to set the TERM variable so the system knows which type
of terminal you are using:

export TERM=name

Replace name with the terminal name for the terminal you are using, making sure
you do not put a SPACE before or after the equal sign. If you always use the same type
of terminal, you can place this command in your ~/.bashrc file (page 293), causing
the shell to set the terminal type each time you log in. For example, give the follow-
ing command to set your terminal name to vt100:

$ export TERM=vt100

LANG For some programs to display information correctly, you may need to set the LANG
variable (page 326). Frequently you can set this variable to C. Under bash use the
command

$ export LANG=C

ptg

This page intentionally left blank

ptg

11091109

CAppendixCSecurity is a major part of the foundation of any system that is
not totally cut off from other machines and users. Some aspects
of security have a place even on isolated machines. Examples of
these measures include periodic system backups, BIOS or
power-on passwords, and self-locking screensavers.

A system that is connected to the outside world requires other
mechanisms to secure it: tools to check files (tripwire), audit tools
(tiger/cops), secure access methods (kerberos/ssh), services that
monitor logs and machine states (swatch/watcher), packet-filtering
and routing tools (ipfwadm/iptables/gufw), and more.

System security has many dimensions. The security of a system as
a whole depends on the security of individual components, such
as email, files, network, login, and remote access policies, as well
as the physical security of the host itself. These dimensions fre-
quently overlap, and their borders are not always static or clear.
For instance, email security is affected by the security of both
files and the network. If the medium (the network) over which
you send and receive your email is not secure, then you must take
extra steps to ensure the security of your messages. If you save

In This Appendix

Encryption 1110

File Security 1115

Email Security 1115

Network Security. 1116

Host Security 1119

Login Security 1120

Remote Access Security 1121

Viruses and Worms 1122

Physical Security 1122

Security Resources 1124

C

Security

ptg

1110 Appendix C Security

your secure email in a file on the local system, then you rely on the filesystem and host
access policies for file security. A failure in any one of these areas can start a domino
effect, diminishing reliability and integrity in other areas and potentially compromis-
ing system security as a whole.

This short appendix cannot cover all facets of system security in depth, but provides
an overview of the complexity of setting up and maintaining a secure system. This
appendix offers some specifics, concepts, guidelines to consider, and many pointers
to security resources (Table C-1 on page 1124).

Encryption

One of the building blocks of security is encryption, which provides a means of
scrambling data for secure transmission to other parties. In cryptographic terms, the
data or message to be encrypted is referred to as plaintext, and the resulting
encrypted block of text as ciphertext. Processes exist for converting plaintext into
ciphertext through the use of keys, which are essentially random numbers of a spec-
ified length used to lock and unlock data. This conversion is achieved by applying
the keys to the plaintext according to a set of mathematical instructions, referred to
as the encryption algorithm.

Developing and analyzing strong encryption software is extremely difficult.
Many nuances exist, many standards govern encryption algorithms, and a back-
ground in mathematics is requisite. Also, unless an algorithm has undergone
public scrutiny for a significant period of time, it is generally not considered
secure; it is often impossible to know that an algorithm is completely secure but
possible to know that one is not secure. Ultimately time is the best test of any
algorithm. Also, a solid algorithm does not guarantee an effective encryption
mechanism because the fallibility of an encryption scheme frequently arises from
problems with its implementation and distribution.

An encryption algorithm uses a key that is a certain number of bits long. Each bit
added to the length of a key effectively doubles the key space (the number of combi-
nations allowed by the number of bits in the key—2 to the power of the length of
the key in bits1) and means it will take twice as long for an attacker to decrypt a
message (assuming the scheme lacks any inherent weaknesses or vulnerabilities to

Other sources of system security information

security Depending on how important system security is to you, you may want to purchase one or more
books dedicated to system security, visit some of the Internet sites that are dedicated to security,
or hire someone who is an expert in the field.

Do not rely on this appendix as your sole source of information on system security.

1. A 2-bit key would have a key space of 4 (22), a 3-bit key would have a key space of 8 (23), and so on.

ptg

Encryption 1111

exploit). However, it is a mistake to compare algorithms based only on the number
of bits used. In some cases an algorithm that uses a 64-bit key can be more secure
than an algorithm that uses a 128-bit key.

The two primary classifications of encryption schemes are public key encryption
and symmetric key encryption. Public key encryption, also called asymmetric
encryption, uses two keys: a public key and a private key. These keys are uniquely
associated with a specific user. Public key encryption schemes are used mostly to
exchange keys and signatures. Symmetric key encryption, also called symmetric
encryption or secret key encryption, uses one key that you and the person you are
communicating with (hereafter referred to as your friend) share as a secret. Sym-
metric key encryption is typically used to encrypt large amounts of data. Public key
algorithm keys typically have a length of 512 bits to 2,048 bits, whereas symmetric
key algorithms use keys in the range of 64 bits to 512 bits.

When you are choosing an encryption scheme, realize that security comes at a price.
There is usually a tradeoff between resilience of the cryptosystem and ease of
administration.

The practicality of a security solution is a far greater factor in encryption, and in
security in general, than most people realize. With enough time and effort, nearly
every algorithm can be broken. In fact, you can often unearth the mathematical
instructions for a widely used algorithm by flipping through a cryptography book,
reviewing a vendor’s product specifications, or performing a quick search on the
Internet. The challenge is to ensure the effort required to follow the twists and turns
taken by an encryption algorithm and its resulting encryption solution outweighs
the worth of the information it is protecting.

Public Key Encryption

To use public key encryption, you must generate two keys: a public key and a pri-
vate key. You keep the private key for yourself and give the public key to the world.
In a similar manner, each of your friends will generate a pair of keys and give you
their public keys. Public key encryption is marked by two distinct features:

1. When you encrypt data with someone’s public key, only that person’s pri-
vate key can decrypt it.

2. When you encrypt data with your private key, anyone can decrypt it with
your public key.

You may wonder why the second point is useful: Why would you want everyone
else to be able to decrypt something you just encrypted? The answer lies in the pur-
pose of the encryption. Although encryption changes the original message into
unreadable ciphertext, its purpose is to provide a digital signature. If the message

How much time and money should you spend on encryption?

tip When the cost of obtaining the information exceeds the value realized by its possession, the solu-
tion is an effective one.

ptg

1112 Appendix C Security

can be properly decrypted with your public key, only you could have encrypted it
with your private key, proving the message is authentic. Combining these two
modes of operation yields privacy and authenticity. You can sign a message with
your private key so it can be verified as authentic, and then you can encrypt it with
your friend’s public key so that only your friend can decrypt it.

Public key encryption has three major shortcomings:

1. Public key encryption algorithms are generally much slower than symmet-
ric key algorithms and usually require a much larger key size and a way to
generate large prime numbers to use as components of the key, making
them more resource intensive.

2. The private key must be stored securely and its integrity safeguarded. If a
person’s private key is obtained by another party, that party can encrypt,
decrypt, and sign messages while impersonating the original owner of the
key. If the private key is lost or becomes corrupted, any messages previ-
ously encrypted with it are also lost, and a new keypair must be generated.

3. It is difficult to authenticate the origin of a key—that is, to prove whom it
originally came from. This so-called key-distribution problem is the raison
d’être for such companies as VeriSign (www.verisign.com).

Algorithms such as RSA, Diffie-Hellman, and El-Gamal implement public key encryp-
tion methodology. Today a 512-bit key is considered barely adequate for RSA encryption
and offers marginal protection; 1,024-bit keys are expected to hold off determined
attackers for several more years. Keys that are 2,048 bits long are now becoming com-
monplace and are rated as espionage strength. A mathematical paper published in late
2001 and reexamined in spring 2002 describes how a machine can be built—for a very
large sum of money—that could break 1,024-bit RSA encryption in seconds to minutes
(this point is debated in an article at www.schneier.com/crypto-gram-0203.html#6).
Although the cost of such a machine exceeds the resources available to most individ-
uals and smaller corporations, it is well within the reach of large corporations and
governments.

Symmetric Key Encryption

Symmetric key encryption is generally fast and simple to deploy. First you and your
friend agree on which algorithm to use and a key that you will share. Then either of
you can decrypt or encrypt a file with the same key. Behind the scenes, symmetric key
encryption algorithms are most often implemented as a network of black boxes,
which can involve hardware components, software, or a combination of the two.
Each box imposes a reversible transformation on the plaintext and passes it to the
next box, where another reversible transformation further alters the data. The secu-
rity of a symmetric key algorithm relies on the difficulty of determining which boxes
were used and the number of times the data was fed through the set of boxes. A good
algorithm will cycle the plaintext through a given set of boxes many times before
yielding the result, and there will be no obvious mapping from plaintext to ciphertext.

www.verisign.com
www.schneier.com/crypto-gram-0203.html#6

ptg

Encryption 1113

The disadvantage of symmetric key encryption is that it depends heavily on the
availability of a secure channel through which to send the key to your friend. For
example, you would not use email to send your key; if your email is intercepted, a
third party is in possession of your secret key, and your encryption is useless. You
could relay the key over the phone, but your call could be intercepted if your phone
were tapped or someone overheard your conversation.

Common implementations of symmetric key algorithms include DES (Data Encryp-
tion Standard), 3-DES (triple DES), IDEA, RC5, Blowfish, and AES (Advanced
Encryption Standard). AES is the new Federal Information Processing Standard
(FIPS-197) algorithm endorsed for governmental use and has been selected to
replace DES as the de facto encryption algorithm. AES uses the Rijndael algorithm,
chosen after a thorough evaluation of 15 candidate algorithms by the cryptographic
research community.

None of the aforementioned algorithms has undergone more scrutiny than DES,
which has been in use since the late 1970s. However, the use of DES has drawbacks
and it is no longer considered secure because the weakness of its 56-bit key makes it
unreasonably easy to break. Given the advances in computing power and speed
since DES was developed, the small size of this algorithm’s key renders it inadequate
for operations requiring more than basic security for a relatively short period of
time. For a few thousand dollars, you can link off-the-shelf computer systems so
they can crack DES keys in a few hours.

The 3-DES application of DES is intended to combat its degenerating resilience by
running the encryption three times; it is projected to be secure for years to come.
DES is probably sufficient for such tasks as sending email to a friend when you need
it to be confidential or secure for only a few days (for example, to send a notice of a
meeting that will take place in a few hours). It is unlikely anyone is sufficiently inter-
ested in your email to invest the time and money to decrypt it. Because of 3-DES’s
wide availability and ease of use, it is advisable to use it instead of DES.

Encryption Implementation

Most of today’s commercial software packages use both public and symmetric key
encryption algorithms, taking advantage of the strengths of each and avoiding their
weaknesses. The public key algorithm is used first, as a means of negotiating a ran-
domly generated secret key and providing for message authenticity. Then a secret key
algorithm, such as 3-DES, IDEA, AES, or Blowfish, encrypts and decrypts the data
on both ends for speed. Finally a hash algorithm, such as DSA (Digital Signature
Algorithm), generates a message digest that provides a signature that can alert you to
tampering. The digest is digitally signed with the sender’s private key.

GnuPG/PGP

The most popular personal encryption packages available today are GnuPG (GNU
Privacy Guard, also called GPG; www.gnupg.org) and PGP (Pretty Good Privacy;
www.pgp.com). GNU Privacy Guard was designed as a free replacement for PGP, a

www.gnupg.org
www.pgp.com

ptg

1114 Appendix C Security

security tool that made its debut during the early 1990s. Phil Zimmerman devel-
oped PGP as a Public Key Infrastructure (PKI), featuring a convenient interface,
ease of use and management, and the security of digital certificates. One critical
characteristic set PGP apart from the majority of cryptosystems then available: PGP
functions entirely without certification authorities (CAs). Until the introduction of
PGP, PKI implementations were built around the concept of CAs and centralized
key management controls.

Both PGP and GnuPG rely on the notion of a web of trust:2 If you trust someone
and that person trusts someone else, the person you trust can provide an introduc-
tion to the third party. When you trust someone, you perform an operation called
key signing. By signing someone else’s key, you verify that the person’s public key is
authentic and safe for you to use to send email. When you sign a key, you are asked
whether you trust this person to introduce other keys to you. It is common practice
to assign this trust based on several criteria, including your knowledge of a person’s
character or a lasting professional relationship with the person. The best practice is
to sign someone’s key only after you have met face to face to avert any chance of a
man-in-the-middle3 scenario. The disadvantage of this scheme is the lack of a cen-
tral registry for associating with people you do not already know.

PGP is available without cost for personal use but its deployment in a commercial
environment requires the purchase of a license. This was not always the case: Soon
after its introduction, PGP was available on many bulletin board systems, and users
could implement it in any manner they chose. PGP rapidly gained popularity in the
networking community, which capitalized on its encryption and key management
capabilities for secure transmission of email.

After a time, attention turned to RSA and IDEA, the two robust cryptographic algo-
rithms that form an integral part of PGP’s code. These algorithms are privately
owned. The wide distribution of and growing user base for PGP sparked battles
over patent violation and licenses, resulting in the eventual restriction of PGP’s use.

Enter GnuPG, which supports most of the features and implementations made
available by PGP and complies with the OpenPGP Message Format standard.
Because GnuPG does not use the patented IDEA algorithm but rather relies on
BUGS (Big and Useful Great Security; www.gnu.org/directory/bugs.html), you can
use it almost without restriction: It is released under the GNU GPL (refer to “The
Code Is Free” on page 5). PGP and GnuPG are considered to be interchangeable

2. For more information, see the section of The GNU Privacy Handbook (www.gnupg.org/documenta-
tion) titled “Validating Other Keys on Your Public Keyring.”

3. Man-in-the-middle: If Max and Zach try to carry on a secure email exchange over a network, Max first
sends Zach his public key. However, suppose Mr. X sits between Max and Zach on the network and inter-
cepts Max’s public key. Mr. X then sends his public key to Zach. Zach then sends his public key to Max,
but once again Mr. X intercepts it and substitutes his public key and sends that to Max. Without some
kind of active protection (a piece of shared information), Mr. X, the man-in-the-middle, can decrypt all
traffic between Max and Zach, reencrypt it, and send it on to the other party.

www.gnu.org/directory/bugs.html
www.gnupg.org/documentation
www.gnupg.org/documentation

ptg

Email Security 1115

and interoperable. The command sequences for and internal workings of these two
tools are very similar.

GNU offers a good introduction to privacy, The GNU Privacy Handbook, which is
available in several languages and listed at www.gnupg.org (click Documentation
Guides). Click Documentation HOWTOs on the same Web page to view the
GNU Privacy Guard (GnuPG) Mini Howto, which steps through the setup and use
of gpg. And, of course, there is a gpg info page.

In addition to providing encryption, gpg is useful for authentication. For example,
you can use it to verify that the person who signed a piece of email is the person
who sent it.

File Security

From an end user’s perspective, file security is one of the most critical areas of secu-
rity. Some file security is built into Linux: chmod (page 216) gives you basic security
control. ACLs (Access Control Lists) allow more fine-grained control of file access
permissions. ACLs are part of Solaris, Windows NT/2000/XP, VAX/VMS, and
mainframe operating systems. Ubuntu Linux supports ACLs (page 221). Even these
tools are insufficient, however, when your account is compromised (for example, by
someone watching your fingers on the keyboard as you type your password). To
provide maximum file security, you must encrypt your files. Then even someone
who knows your password cannot read your files. (Of course, if someone knows
your key, that person can decrypt your files if she can get to them.)

Email Security

Email security overlaps file security and, as discussed later, network security.
GnuPG is the tool most frequently used for email security, although you can also
use PGP. PEM (Privacy Enhanced Mail) is a standard rather than an algorithm and
is used less frequently.

MTAs (Mail Transfer Agents)

An increasingly commonplace MTA is STARTTLS (Start Transport Layer Security;
www.sendmail.org/~ca/email/starttls.html). TLS itself usually refers to SSL (Secure
Sockets Layer) and has become the de facto method for encrypting TCP/IP traffic on the
Internet. The sendmail and exim4 daemons can be built to support STARTTLS, and

The GnuPG system includes the gpg program
tip GnuPG is frequently referred to as gpg, but gpg is actually the main program for the GnuPG

system.

www.gnupg.org
www.sendmail.org/~ca/email/starttls.html

ptg

1116 Appendix C Security

much documentation exists on how to do so. STARTTLS enhancements are also avail-
able for Qmail (page 715) and Postfix (page 715) and other popular MTAs. It is impor-
tant to recognize that this capability provides encryption between two mail servers but
not necessarily between your machine and the mail server. Also, the advantages of using
TLS are negated if the email must pass through a relay that does not support TLS.

MUAs (Mail User Agents)

Many popular mail user agents, such as mutt, elm, Thunderbird, and emacs, include
the ability to use PGP or GnuPG for encryption. Evolution, the default Ubuntu
Linux MUA, has built-in GnuPG support. This approach has become the default
way to exchange email securely.

Network Security

Network security is a vital component for ensuring the security of a computing site.
However, without the right infrastructure, providing network security is difficult, if
not impossible. For example, if you run a shared network topology,4 such as Ether-
net, and have in public locations jacks that allow anyone to plug in to the network
at will, how can you prevent someone from plugging in a machine and capturing all
the packets (page 1164) that traverse the network?5 You cannot—so you have a
potential security hole. Another common security hole relates to the use of telnet for
logins. Because telnet sends and receives cleartext, anyone “listening in” on the line
can easily capture usernames and passwords, compromising security.

Do not allow any unauthenticated PC (any PC that does not require users to supply
a local name and password) on a network. With a Windows 9x PC, any user on the
network is effectively working with root privileges for the following reasons:

• A PC does not recognize the concept of root privileges. All users, by
default, have access to and can watch the network, capture packets, and
send packets.

• On UNIX/Linux, only a user working with root privileges can put the net-
work interface in promiscuous mode and collect packets. On UNIX and
Linux, ports numbered less than 10246 are privileged—that is, normal
user protocols cannot bind to these ports. This is an important but regret-
table means of security for some protocols, such as NIS, NFS, RSH, and

4. Shared network topology: A network in which each packet may be seen by machines other than its des-
tination. “Shared” means that the 100 megabits per second bandwidth is shared by all users.

5. Do not make the mistake of assuming that you have security just because you have a switch. Switches
are designed to allocate bandwidth, not to guarantee security.

6. The term port has many meanings; here it is a number assigned to a program. This number links incom-
ing data with a specific service. For example, port 21 is used by FTP traffic, and port 23 is used by TELNET.

ptg

Network Security 1117

LPD. Normally a data switch on a LAN automatically protects machines
from people snooping on the network for data. In high-load situations,
switches have been known to behave unpredictably, directing packets to
the wrong ports. Certain programs can overload the switch tables that
hold information about which machine is on which port. When these
tables are overloaded, the switch becomes a repeater and broadcasts all
packets to all ports. The attacker on the same switch as you can poten-
tially see the traffic your system sends and receives.

Network Security Solutions

One solution to shared-network problems is to encrypt messages that travel
between machines. IPSec (Internet Protocol Security Protocol) provides an appro-
priate technology. IPSec is commonly used to establish a secure point-to-point vir-
tual network (VPN, page 1180) that allows two hosts to communicate securely
over an unsecure channel, such as the Internet. This protocol provides integrity,
confidentiality, authenticity, and flexibility of implementation that supports multi-
ple vendors.

IPSec is an amalgamation of protocols (IPSec = AH + ESP + IPComp + IKE):

• Authentication Header (AH)—A cryptographically secure, irreversible
checksum (page 1140) for an entire packet. AH guarantees that the packet
is authentic.

• Encapsulating Security Payload (ESP)—Encrypts a packet to make the
data unreadable.

• IP Payload Compression (IPComp)—Compresses a packet. Encryption
can increase the size of a packet, and IPComp counteracts this increase
in size.

• Internet Key Exchange (IKE)—Provides a way for the endpoints to negoti-
ate a common key securely. For AH to work, both ends of the exchange
must use the same key to prevent a “man-in-the-middle” (see footnote 3
on page 1114) from spoofing the connection.

While IPSec is an optional part of IPv4, IPv6 (page 387) mandates its use. It may be
quite some time before IPv6 is widely implemented, however.

Network Security Guidelines

Some general guidelines for establishing and maintaining a secure system follow.
This list is not complete but rather is meant as a guide.

• Fiberoptic cable is more secure than copper cable. Copper is subject to
both active and passive eavesdropping. With access to copper cable, all a
data thief needs to monitor your network traffic is a passive device for
measuring magnetic fields. In contrast, it is much more difficult to tap a

ptg

1118 Appendix C Security

fiberoptic cable without interrupting the signal. Sites requiring top security
keep fiberoptic cable in pressurized conduits, where a change in pressure
signals that the physical security of the cable has been breached.

• Avoid leaving unused ports available in public areas. If a malicious user
can plug a laptop into the network without being detected, you are at risk
of a serious security problem. Network drops that will remain unused for
extended periods should be disabled at the switch, preventing them from
accepting or passing network traffic.

• Many network switches have provisions for binding a hardware address to
a port for enhanced security. If someone unplugs one machine and plugs in
another machine to capture traffic, chances are that the second machine
will have a different hardware address. When it detects a device with a dif-
ferent hardware address, the switch can disable the port. Even this solu-
tion is no guarantee, however, as some programs enable you to change or
mask the hardware address of a network interface.

• Do not allow NFS or NIS access outside the local network. Otherwise, it is
a simple matter for a malicious user to steal the password map. Default
NFS security is marginal to nonexistent (a common joke is that NFS
stands for No File Security or Nightmare File System) so such access
should not be allowed outside your network to machines that you do not
trust. Experimental versions of NFS for Linux that support much better
authentication algorithms are now becoming available. Use IPSec, NFSv4
(which includes improved authentication), or firewalls to provide access
outside of your domain.

• Support for VPN configuration is often built into new firewalls or pro-
vided as a separate product, enabling your system to join securely with the
systems of your customers or partners. If you must allow business part-
ners, contractors, or other outside parties to access local files, consider
using a secure filesystem, such as NFS with Kerberos (page 1156), secure
NFS (encrypts authentication, not traffic), NFS over a VPN such as IPSec,
or cfs (cryptographic filesystem).

• Specify /usr as readonly (ro) in /etc/fstab. Following is an example of such
a configuration:

/dev/sda6 /usr ext2 ro 0 0

This approach may make your machine difficult to update, so use this tac-
tic with care.

Install a small kernel and run only the programs you need

security Linux systems contain a huge number of programs that, although useful, significantly reduce the
security of the host. Install the smallest operating system kernel that meets your needs. For Web
and FTP servers, install only the needed components and do not install a graphical interface. Users
may require additional packages.

ptg

Host Security 1119

• Mount filesystems other than / and /usr nosuid to prevent setuid programs
from executing on this filesystem. For example:

/dev/sda4 /var ext4 nosuid 0 0
/dev/sda5 /usr/local ext4 nosuid 0 0

• Use a barrier or firewall product between the local network and the Inter-
net. Several valuable mailing lists cover firewalls, including the comp.secu-
rity.firewalls newsgroup and the free firewalls Web site (www.freefire.org).
Ubuntu Linux includes firestarter (page 864), gufw (page 876), and iptables
(page 880), which allow you to implement a firewall.

Host Security

Your host must be secure. Simple security steps include preventing remote logins and
leaving the /etc/hosts.equiv and individual users’ ~/.rhosts files empty (or not having
them at all). Complex security steps include installing IPSec for VPNs between hosts.
Many other security measures, some of which are discussed in this section, fall some-
where between these extremes. See Table C-1 on page 1124 for relevant URLs.

• Although potentially tricky to implement and manage, intrusion detection
systems (IDSs) are an excellent way to keep an eye on the integrity of a
device. An IDS can warn of possible attempts to subvert security on the
host on which it runs. The great-granddaddy of intrusion detection sys-
tems is tripwire. This host-based system checks modification times and
integrity of files by using strong algorithms (cryptographic checksums or
signatures) that can detect even the most minor modifications. A commer-
cial version of tripwire is also available. Another commercial IDS is Drag-
onSquire. Other free, popular, and flexible IDSs include samhain and
AIDE. The last two IDSs offer even more features and means of remaining
invisible to users than tripwire does. Commercial IDSs that are popular in
enterprise environments include Cisco Secure IDS (formerly NetRanger),
Enterasys Dragon, and ISS RealSecure.

• Keep Ubuntu systems up-to-date by downloading and installing the
latest updates. Use the Update Notifier to update the system regularly
(page 112). You can set the system up to automatically install security
updates using the Software Sources window, Updates tab (page 131).

• Complementing host-based IDSs are network-based IDSs. The latter pro-
grams monitor the network and nodes on the network and report suspi-
cious occurrences (attack signatures) via user-defined alerts. These
signatures can be matched based on known worms, overflow attacks
against programs, or unauthorized scans of network ports. Such programs
as snort, klaxon, and NFR are used in this capacity. Commercial programs,
such as DragonSentry, also fill this role.

www.freefire.org
Admin
Text Box
Download form www.eBookTM.com

ptg

1120 Appendix C Security

• Provided with Ubuntu Linux is PAM, which allows you to set up different
methods and levels of authentication in many ways (page 478).

• Process accounting—a good supplement to system security—can provide a
continuous record of user actions on your system. See the accton man page
(part of the acct package) for more information.

• Emerging standards for such things as Role-Based Access Control (RBAC)
allow tighter delegation of privileges along defined organizational bound-
aries. You can delegate a role or roles to each user as appropriate to the
access required.

• General mailing lists and archives are useful repositories of security infor-
mation, statistics, and papers. The most useful are the bugtraq mailing list
and CERT.7 The bugtraq site and email service offer immediate notifica-
tions about specific vulnerabilities, whereas CERT provides notice of
widespread vulnerabilities and useful techniques to fix them, plus links to
vendor patches.

• The syslogd facility can direct messages from system daemons to specific
files such as those in /var/log. On larger groups of systems, you can send
all important syslogd information to a secure host, where that host’s only
function is to store syslogd data so it cannot be tampered with. See
page 404 and the syslogd man page for more information.

Login Security

Without a secure host, good login security cannot add much protection. Table C-1
on page 1124 lists some of the best login security tools, including replacement dae-
mons for telnetd, rlogind, and rshd. Many sites use ssh, which comes as both free-
ware and a commercially supported package that works on UNIX/Linux, Windows,
and Macintosh platforms.

The PAM facility (page 478) allows you to set up multiple authentication methods
for users in series or in parallel. In-series PAM requires multiple methods of authen-
tication for a user. In-parallel PAM uses any one of a number of methods for
authentication.

Although not the most popular choice, you can configure a system to take advan-
tage of one-time passwords. S/Key is the original implementation of one-time pass-
words by Bellcore. OPIE (one-time passwords in everything), which was developed
by the U.S. Naval Research Labs, is an improvement over the original Bellcore sys-
tem. In one permutation of one-time passwords, the user gets a piece of paper listing
a set of one-time passwords. Each time a user logs in, she enters a password from
the piece of paper. Once used, a password becomes obsolete, and the next password

7. CERT is slow but useful as a medium for coordination between sites. It acts as a tracking agency to
document the spread of security problems.

ptg

Host Security 1121

in the list is the only one that will work. Even if a malicious user compromises the
network and sees your password, this information will be of no use because the
password can be used only once. This setup makes it very difficult for someone to
log in as you but does nothing to protect the data you type at the keyboard. One-
time passwords is a good solution if you are at a site where no encrypted login is
available. A truly secure (or paranoid) site will combine one-time passwords and
encrypted logins.

Another type of secure login that is becoming more common is facilitated by a token
or a smartcard. Smartcards are credit-card-like devices that use a challenge–response
method of authentication. Smartcard and token authentication rely on something
you have (the card) and something you know (a pass phrase, user ID, or PIN). For
example, you might enter your username in response to the login prompt and get a
password prompt. You would then enter your PIN and the number displayed on the
access token. The token has a unique serial number that is stored in a database on
the authentication server. The token and the authentication server use this serial
number as a means of computing a challenge every 30 to 60 seconds. If the PIN and
token number you enter match what they should be as computed by the access
server, you are granted access to the system.

Remote Access Security

Issues and solutions surrounding remote access security overlap with those pertain-
ing to login and host security. Local logins may be secure with simply a username
and password, whereas remote logins (and all remote access) should be made more
secure. Many break-ins can be traced back to reusable passwords. It is a good idea
to use an encrypted authentication client, such as ssh or kerberos. You can also use
smartcards for remote access authentication.

Modem pools can also be an entry point into a system. Most people are aware of
how easy it is to monitor a network line but they may take for granted the security
of the public switched telephone network (PSTN, also known as POTS—plain old
telephone service). You may want to set up an encrypted channel after dialing in to
a modem pool. One way to do so is by running ssh over PPP.

There are ways to implement stringent modem authentication policies so unautho-
rized users cannot use local modems. The most common techniques are PAP (Pass-
word Authentication Protocol), CHAP (Challenge Handshake Authentication
Protocol), and Radius. PAP and CHAP are relatively weak as compared to Radius,
so the latter has rapidly gained in popularity. Cisco also provides a method of
authentication called TACACS/TACACS+ (Terminal Access Controller Access Con-
trol System).

One or more of these authentication techniques are available in a RAS (remote
access server—in a network, a computer that provides network access to remote
users via modem). Before purchasing a RAS, check what kind of security it provides
and decide whether that level of security meets your needs.

ptg

1122 Appendix C Security

Two other techniques for remote access security can be built into a modem (or RAS
if it has integrated modems). One is callback: After you dial in, you get a password
prompt. Once you type your password, the modem hangs up and calls you back at
a phone number it has stored internally. Unfortunately this technique is not fool-
proof. Some modems have a built-in callback table that holds about ten entries, so
this strategy works for small sites with only a few modems. If you use more
modems, the RAS software must provide the callback.

The second technique is to use CLID (caller line ID) or ANI (automatic number identi-
fication) to decide whether to answer the call. Depending on your wiring and the local
phone company, you may or may not be able to use ANI. ANI information is provided
before the call, whereas CLID information is provided in tandem with the call.

Viruses and Worms

Examples of UNIX/Linux viruses include the Bliss virus/worm released in 1997 and
the RST.b virus discovered in December 2001. Both are discussed in detail in arti-
cles on the Web. Viruses spread through systems by infecting executable files. In the
cases of Bliss and RST.b, the Linux native executable format, ELF, was used as a
propagation vector.

Just after 5 PM on November 2, 1988, Robert T. Morris, Jr., a graduate student at
Cornell University, released the first big virus onto the Internet. Called an Internet
worm, this virus was designed to propagate copies of itself over many machines on
the Internet. The worm was a piece of code that exploited four vulnerabilities,
including one in finger, to force a buffer to overflow on a system. Once the buffer
overflowed, the code was able to get a shell and then recompile itself on the remote
machine. The worm spread around the Internet very quickly and was not disabled,
despite many people’s efforts, for 36 hours.

The chief characteristic of any worm is propagation over a public network, such as
the Internet. A virus propagates by infecting executables on the machine, whereas a
worm tends to prefer exploiting known security holes in network servers to gain
root access and then tries to infect other machines in the same way.

UNIX/Linux file permissions help to inoculate systems against many viruses. Win-
dows NT is resistant for similar reasons. You can easily protect the local system
against many viruses and worms by keeping its system patches up-to-date, not exe-
cuting untrusted binaries from the Internet, limiting PATH (page 319) to include
only necessary system directories, and doing as little as possible while working with
root privileges. You can prevent a disaster in case a virus strikes by backing up your
system frequently.

Physical Security

Often overlooked as a defense against intrusion, physical security covers access to
the computer itself and to the console or terminal attached to the machine. If the

ptg

Host Security 1123

machine is unprotected in an unlocked room, there is very little hope for physical
security. (A simple example of physical vulnerability is someone walking into the
room where the computer is, removing the hard drive from the computer, taking it
home, and analyzing it.) You can take certain steps to improve the physical security
of a computer.

• Keep servers in a locked room with limited access. A key, a combination,
or a swipe card should be required to gain access. Protect windows as well
as doors. Maintain a single point of entry. (Safety codes may require multi-
ple exits, but only one must be an entry.)

• For public machines, use a security system, such as a fiberoptic security
system, that can secure a lab full of machines. With such a system, you run
a fiberoptic cable through each machine such that the machine cannot be
removed (or opened) without cutting the cable. When the cable is cut, an
alarm goes off. Some machines—for example, PCs with plastic cases—are
much more difficult to secure than others. Although it is not a perfect solu-
tion, a fiberoptic security system may improve local security enough to
persuade a would-be thief to go somewhere else.

• Most modern PCs have a BIOS password. You can set the order in which a
PC searches for a boot device, preventing the PC from being booted from a
floppy disk or CD/DVD. Some BIOSs can prevent the machine from boot-
ing altogether without a proper password. The password protects the
BIOS from unauthorized modification. Beware, however: Many BIOSs
have well-known back doors (page 1136). Research this issue if the BIOS
password is an important feature for you. In addition, you can blank the
BIOS password by setting the clear-CMOS jumper on a PC motherboard;
if you are relying on a BIOS password, lock the case.

• Run only fiberoptic cable between buildings. This strategy is not only
more secure but also safer in the event of lightning strikes and is required
by many commercial building codes.

• Maintain logs of who goes in and out of secure areas. Sign-in/out sheets
are useful only if everyone uses them. Sometimes a guard is warranted.
Often a simple proximity badge or smartcard can tell when anyone has
entered or left an area and keep logs of these events, although these can be
expensive to procure and install.

• Anyone who has access to the physical hardware has the keys to the pal-
ace. Someone with direct access to a computer system can do such things
as swap components and insert boot media, all of which are security
threats.

• Avoid having activated, unused network jacks in public places. Such jacks
provide unnecessary risk.

ptg

1124 Appendix C Security

• Many modern switches can lock a particular switch port so it accepts only
traffic from an NIC (network interface card) with a particular hardware
address and shuts down the port if another address is seen. However, com-
monly available programs can enable someone to reset this address.

• Make periodic security sweeps. Check doors for proper locking. If you
must have windows, make sure they are locked or are permanently sealed.

• Waste receptacles are often a source of information for intruders. Have
policies for containment and disposal of sensitive documents.

• Use a UPS (uninterruptable power supply). Without a clean source of
power, your system is vulnerable to corruption.

Security Resources

Many free and commercial programs can enhance system security. Some of these are
listed in Table C-1. Many of these sites have links to other, interesting sites that are
worth looking at.

Table C-1 Security resources

Tool What it does Where to get it

AIDE Advanced Intrusion Detection
Environment. Similar to trip-
wire with extensible verification
algorithms.

sourceforge.net/projects/aide

bugtraq A moderated mailing list for the
announcement and detailed dis-
cussion of all aspects of com-
puter security vulnerabilities.

www.securityfocus.com/archive/1

CERT Computer Emergency
Response Team. A repository of
papers and data about major
security events and a list of
security tools.

www.cert.org

chkrootkit Checks for signs of a rootkit
indicating that the machine has
been compromised.

www.chkrootkit.org

dsniff Sniffing and network audit tool
suite. Free.

monkey.org/~dugsong/dsniff

freefire Supplies free security solutions
and supports developers of free
security solutions.

www.freefire.org

www.securityfocus.com/archive/1
www.cert.org
www.chkrootkit.org
www.freefire.org

ptg

Security Resources 1125

Tool What it does Where to get it

fwtk Firewall toolkit. A set of proxies
that can be used to construct a
firewall.

www.fwtk.org

GIAC A security certification and
training Web site.

www.giac.org

hping Multipurpose network auditing
and packet analysis tool. Free.

www.hping.org

ISC2 Educates and certifies industry
professionals and practitioners
under an international standard.

www.isc2.org

John John the Ripper: a fast, flexible,
weak password detector.

www.openwall.com/john

Kerberos Complete, secure network
authentication system.

web.mit.edu/kerberos/www

L6 Verifies file integrity; similar to
tripwire (French and English).

www.pgci.ca/l6.html

Launchpad Tracks Ubuntu Linux bugs. bugs.launchpad.net/ubuntu

LIDS Intrusion detection and active
defense system.

www.lids.org

LinuxSecurity.com A solid news site dedicated to
Linux security issues.

www.linuxsecurity.com

LWN.net Security alert database for all
major Linux distributions.

lwn.net/Alerts

Microsoft Security Microsoft security information. www.microsoft.com/security

nessus A plugin-based remote security
scanner that can perform more
than 370 security checks. Free.

www.nessus.org

netcat Explores, tests, and diagnoses
networks.

freshmeat.net/projects/netcat

nmap Scans hosts to see which ports
are available. It can perform
stealth scans, determine operat-
ing system type, find open
ports, and more.

nmap.org

Table C-1 Security resources (continued)

www.fwtk.org
www.giac.org
www.hping.org
www.isc2.org
www.openwall.com/john
www.pgci.ca/l6.html
www.lids.org
www.linuxsecurity.com
www.microsoft.com/security
www.nessus.org

ptg

1126 Appendix C Security

Tool What it does Where to get it

RBAC Role-Based Access Control.
Assigns roles and privileges
associated with the roles.

csrc.nist.gov/rbac

SAINT Security Administrator’s Inte-
grated Network Tool. Assesses
and analyzes network vulnera-
bilities. This tool follows satan.

www.saintcorporation.com

samhain A file integrity checker. Has a
GUI configurator, client/server
capability, and real-time report-
ing capability.

www.la-samhna.de

SANS Security training and
certification.

www.sans.org

SARA The Security Auditor’s Research
Assistant security analysis tool.

www-arc.com/sara

Schneier, Bruce Security visionary. www.schneier.com

Secunia Monitors a broad spectrum of
vulnerabilities.

secunia.com

SecurityFocus Home for security tools, mail
lists, libraries, and cogent
analysis.

www.securityfocus.com

snort A flexible IDS. www.snort.org

srp Secure Remote Password.
Upgrades common protocols,
such as TELNET and FTP, to use
secure password exchange.

srp.stanford.edu

ssh A secure rsh, ftp, and rlogin
replacement with encrypted
sessions and other options.
Supplied with Ubuntu Linux.

openssh.org

www.ssh.com

swatch A Perl-based log parser and
analyzer.

swatch.sourceforge.net

Treachery A collection of tools for security
and auditing.

www.treachery.net/tools

tripwire Checks for possible signs of
intruder activity. Supplied with
Ubuntu Linux.

www.tripwire.com

wireshark Network protocol analyzer. Free. www.wireshark.org

Table C-1 Security resources (continued)

www.saintcorporation.com
www.la-samhna.de
www.sans.org
www-arc.com/sara
www.schneier.com
www.securityfocus.com
www.snort.org
www.ssh.com
www.treachery.net/tools
www.tripwire.com
www.wireshark.org

ptg

Appendix Summary 1127

Appendix Summary

Security is inversely proportional to usability. There must be a balance between
users’ requirements to get their work done and the amount of security that is imple-
mented. It is often unnecessary to provide top security for a small business with
only a few employees. By contrast, if you work for a government military contrac-
tor, you are bound to have extreme security constraints and an official audit policy
to determine whether security policies are being implemented correctly.

Review your own security requirements periodically. Several of the tools mentioned
in this appendix can help you monitor a system’s security measures. Tools such as
nessus, samhain, and SAINT, for example, provide auditing mechanisms.

Some companies specialize in security and auditing. Hiring one of them to examine
your site can be costly but may yield specific recommendations for areas you may
have overlooked in your initial setup. When you hire someone to audit your security,
recognize you may be providing both physical and root access to local systems.
Make sure the company that you hire has a good history, has been in business for
several years, and has impeccable references. Check up on the company periodically:
Things change over time. Avoid the temptation to hire former system crackers as
consultants. Security consultants should have an irreproachable ethical background
or you will always have doubts about their intentions.

Your total security package is based on your risk assessment of local vulnerabilities.
Strengthen those areas that are most important for your business. For example,
many sites rely on a firewall to protect them from the Internet, whereas internal
hosts may receive little or no security attention. Crackers refer to this setup as “the
crunchy outside surrounding the soft chewy middle.” Yet this setup is entirely suffi-
cient to protect some sites. Perform your own risk assessment and address your
needs accordingly. If need be, hire a full-time security administrator whose job it is
to design and audit local security policies.

ptg

This page intentionally left blank

ptg

11291129

DAppendixDThe Free Software Definition
1

We maintain this free software definition to show clearly what
must be true about a particular software program for it to be
considered free software.

‘‘Free software’’ is a matter of liberty, not price. To understand
the concept, you should think of ‘‘free’’ as in ‘‘free speech,’’ not
as in ‘‘free beer.’’

Free software is a matter of the users’ freedom to run, copy, dis-
tribute, study, change and improve the software. More pre-
cisely, it refers to four kinds of freedom, for the users of the
software:

• The freedom to run the program, for any purpose
(freedom 0).

1. This material is at www.gnu.org/philosophy/free-sw.html on the GNU Web
site. Because GNU requests a verbatim copy, links remain in place (underlined).
View the document on the Web to ensure you are reading the latest copy and to
follow the links.

D

The Free Software

Definition
1

www.gnu.org/philosophy/free-sw.html

ptg

1130 Appendix D The Free Software Definition

• The freedom to study how the program works, and adapt it to your needs
(freedom 1). Access to the source code is a precondition for this.

• The freedom to redistribute copies so you can help your neighbor (free-
dom 2).

• The freedom to improve the program, and release your improvements to
the public, so that the whole community benefits (freedom 3). Access to
the source code is a precondition for this.

A program is free software if users have all of these freedoms. Thus, you should be
free to redistribute copies, either with or without modifications, either gratis or
charging a fee for distribution, to anyone anywhere. Being free to do these things
means (among other things) that you do not have to ask or pay for permission.

You should also have the freedom to make modifications and use them privately in
your own work or play, without even mentioning that they exist. If you do publish
your changes, you should not be required to notify anyone in particular, or in any
particular way.

The freedom to use a program means the freedom for any kind of person or organi-
zation to use it on any kind of computer system, for any kind of overall job, and
without being required to communicate subsequently with the developer or any
other specific entity.

The freedom to redistribute copies must include binary or executable forms of the
program, as well as source code, for both modified and unmodified versions. (Dis-
tributing programs in runnable form is necessary for conveniently installable free
operating systems.) It is ok if there is no way to produce a binary or executable
form for a certain program (since some languages don’t support that feature), but
you must have the freedom to redistribute such forms should you find or develop a
way to make them.

In order for the freedoms to make changes, and to publish improved versions, to be
meaningful, you must have access to the source code of the program. Therefore,
accessibility of source code is a necessary condition for free software.

One important way to modify a program is by merging in available free subroutines
and modules. If the program’s license says that you cannot merge in an existing
module, such as if it requires you to be the copyright holder of any code you add,
then the license is too restrictive to qualify as free.

In order for these freedoms to be real, they must be irrevocable as long as you do
nothing wrong; if the developer of the software has the power to revoke the license,
without your doing anything to give cause, the software is not free.

However, certain kinds of rules about the manner of distributing free software are
acceptable, when they don’t conflict with the central freedoms. For example, copy-
left (very simply stated) is the rule that when redistributing the program, you cannot
add restrictions to deny other people the central freedoms. This rule does not con-
flict with the central freedoms; rather it protects them.

ptg

The Free Software Definition 1131

You may have paid money to get copies of free software, or you may have obtained
copies at no charge. But regardless of how you got your copies, you always have the
freedom to copy and change the software, even to sell copies.

‘‘Free software’’ does not mean ‘‘non-commercial’’. A free program must be avail-
able for commercial use, commercial development, and commercial distribution.
Commercial development of free software is no longer unusual; such free commer-
cial software is very important.

Rules about how to package a modified version are acceptable, if they don’t sub-
stantively block your freedom to release modified versions, or your freedom to
make and use modified versions privately. Rules that ‘‘if you make your version
available in this way, you must make it available in that way also’’ can be acceptable
too, on the same condition. (Note that such a rule still leaves you the choice of
whether to publish your version at all.) Rules that require release of source code to
the users for versions that you put into public use are also acceptable. It is also
acceptable for the license to require that, if you have distributed a modified version
and a previous developer asks for a copy of it, you must send one, or that you iden-
tify yourself on your modifications.

In the GNU project, we use ‘‘copyleft’’ to protect these freedoms legally for every-
one. But non-copylefted free software also exists. We believe there are important
reasons why it is better to use copyleft, but if your program is non-copylefted free
software, we can still use it.

See Categories of Free Software for a description of how ‘‘free software,’’ ‘‘copy-
lefted software’’ and other categories of software relate to each other.

Sometimes government export control regulations and trade sanctions can con-
strain your freedom to distribute copies of programs internationally. Software
developers do not have the power to eliminate or override these restrictions, but
what they can and must do is refuse to impose them as conditions of use of the pro-
gram. In this way, the restrictions will not affect activities and people outside the
jurisdictions of these governments.

Most free software licenses are based on copyright, and there are limits on what
kinds of requirements can be imposed through copyright. If a copyright-based
license respects freedom in the ways described above, it is unlikely to have some
other sort of problem that we never anticipated (though this does happen occasion-
ally). However, some free software licenses are based on contracts, and contracts
can impose a much larger range of possible restrictions. That means there are many
possible ways such a license could be unacceptably restrictive and non-free.

We can’t possibly list all the ways that might happen. If a contract-based license
restricts the user in an unusual way that copyright-based licenses cannot, and which
isn’t mentioned here as legitimate, we will have to think about it, and we will prob-
ably conclude it is non-free.

When talking about free software, it is best to avoid using terms like ‘‘give away’’ or
‘‘for free’’, because those terms imply that the issue is about price, not freedom. Some
common terms such as ‘‘piracy’’ embody opinions we hope you won’t endorse. See
Confusing Words and Phrases that are Worth Avoiding for a discussion of these
terms. We also have a list of translations of “free software” into various languages.

ptg

1132 Appendix D The Free Software Definition

Finally, note that criteria such as those stated in this free software definition require
careful thought for their interpretation. To decide whether a specific software
license qualifies as a free software license, we judge it based on these criteria to
determine whether it fits their spirit as well as the precise words. If a license includes
unconscionable restrictions, we reject it, even if we did not anticipate the issue in
these criteria. Sometimes a license requirement raises an issue that calls for extensive
thought, including discussions with a lawyer, before we can decide if the require-
ment is acceptable. When we reach a conclusion about a new issue, we often update
these criteria to make it easier to see why certain licenses do or don’t qualify.

If you are interested in whether a specific license qualifies as a free software license,
see our list of licenses. If the license you are concerned with is not listed there, you
can ask us about it by sending us email at licensing@gnu.org.

If you are contemplating writing a new license, please contact the FSF by writing to
that address. The proliferation of different free software licenses means increased
work for users in understanding the licenses; we may be able to help you find an
existing Free Software license that meets your needs.

If that isn’t possible, if you really need a new license, with our help you can ensure
that the license really is a Free Software license and avoid various practical problems.
__

Another group has started using the term “open source” to mean something close
(but not identical) to “free software”. We prefer the term “free software” because,
once you have heard it refers to freedom rather than price, it calls to mind freedom.
The word “open” never does that.
__

Other Texts to Read

Translations of this page:

[Català | Chinese (Simplified) | Chinese (Traditional) | Czech | Dansk | Deutsch |
English | Español | Persian/Farsi | Français | Galego | Hebrew | Hrvatski | Bahasa
Indonesia | Italiano | Japanese | Korean | Magyar | Nederlands | Norsk | Polski | Por-
tuguês | Româna | Russian | Slovinsko | Serbian | Tagalog | Türkçe]

Return to the GNU Project home page.

Please send FSF & GNU inquiries to gnu@gnu.org. There are also other ways to
contact the FSF.

Please send broken links and other corrections (or suggestions) to
webmasters@gnu.org

Please see the Translations README for information on coordinating and submit-
ting translations of this article.

Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Soft-
ware Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110, USA

Verbatim copying and distribution of this entire article is permitted in any medium
without royalty provided this notice is preserved.

• Updated: $Date: 2005/11/26 13:16:40 $ $Author: rms $

ptg

11331133

GGlossaryAll entries marked with FOLDOC are based on definitions in the Free
On-Line Dictionary of Computing (www.foldoc.org), Denis
Howe, editor. Used with permission.

Glossary

Glossary

www.foldoc.org

ptg

1134 Glossary

10.0.0.0 See private address space on page 1166.

172.16.0.0 See private address space on page 1166.

192.168.0.0 See private address space on page 1166.

802.11 A family of specifications developed by IEEE for wireless LAN technology, includ-
ing 802.11 (1–2 megabits per second), 802.11a (54 megabits per second), 802.11b
(11 megabits per second), and 802.11g (54 megabits per second).

absolute
pathname

A pathname that starts with the root directory (represented by /). An absolute path-
name locates a file without regard to the working directory.

access In computer jargon, a verb meaning to use, read from, or write to. To access a file
means to read from or write to the file.

Access Control
List

See ACL.

access
permissions

Permission to read from, write to, or execute a file. If you have write access permis-
sion to a file (usually just called write permission), you can write to the file. Also
access privilege.

ACL Access Control List. A system that performs a function similar to file permissions
but with much finer-grain control.

active window On a desktop, the window that receives the characters you type on the keyboard.
Same as focus, desktop (page 1149).

address mask See subnet mask on page 1175.

alias A mechanism of a shell that enables you to define new commands.

alphanumeric
character

One of the characters, either uppercase or lowercase, from A to Z and 0 to 9, inclusive.

ambiguous file
reference

A reference to a file that does not necessarily specify any one file but can be used to
specify a group of files. The shell expands an ambiguous file reference into a list of
filenames. Special characters represent single characters (?), strings of zero or more
characters (*), and character classes ([]) within ambiguous file references. An
ambiguous file reference is a type of regular expression (page 1168).

angle bracket A left angle bracket (<) and a right angle bracket (>). The shell uses < to redirect a
command’s standard input to come from a file and > to redirect the standard out-
put. The shell uses the characters << to signify the start of a Here document and >>
to append output to a file.

animate When referring to a window action, means that the action is slowed down so the
user can view it. For example, when you minimize a window, it can disappear all at
once (not animated) or it can slowly telescope into the panel so you can get a visual
feel for what is happening (animated).

ptg

Glossary 1135

anti-aliasing Adding gray pixels at the edge of a diagonal line to get rid of the jagged appearance
and thereby make the line look smoother. Anti-aliasing sometimes makes type on a
screen look better and sometimes worse; it works best on small and large fonts and
is less effective on fonts from 8 to 15 points. See also subpixel hinting (page 1175).

API Application program interface. The interface (calling conventions) by which an
application program accesses an operating system and other services. An API is
defined at the source code level and provides a level of abstraction between the
application and the kernel (or other privileged utilities) to ensure the portability of
the code.FOLDOC

append To add something to the end of something else. To append text to a file means to
add the text to the end of the file. The shell uses >> to append a command’s output
to a file.

applet A small program that runs within a larger program. Examples are Java applets that
run in a browser and panel applets that run from a desktop panel.

archive A file that contains a group of smaller, typically related, files. Also, to create such a
file. The tar and cpio utilities can create and read archives.

argument A number, letter, filename, or another string that gives some information to a com-
mand and is passed to the command when it is called. A command-line argument is
anything on a command line following the command name that is passed to the
command. An option is a kind of argument.

arithmetic
expression

A group of numbers, operators, and parentheses that can be evaluated. When you
evaluate an arithmetic expression, you end up with a number. The Bourne Again
Shell uses the expr command to evaluate arithmetic expressions; the TC Shell uses
@, and the Z Shell uses let.

array An arrangement of elements (numbers or strings of characters) in one or more
dimensions. The Bourne Again, TC, and Z Shells and awk/mawk/gawk can store and
process arrays.

ASCII American Standard Code for Information Interchange. A code that uses seven bits
to represent both graphic (letters, numbers, and punctuation) and CONTROL characters.
You can represent textual information, including program source code and English
text, in ASCII code. Because ASCII is a standard, it is frequently used when
exchanging information between computers. See the file /usr/pub/ascii or give the
command man ascii to see a list of ASCII codes.

Extensions of the ASCII character set use eight bits. The seven-bit set is common;
the eight-bit extensions are still coming into popular use. The eighth bit is some-
times referred to as the metabit.

ASCII terminal A textual terminal. Contrast with graphical display (page 1150).

ASP Application service provider. A company that provides applications over the Internet.

ptg

1136 Glossary

asynchronous
event

An event that does not occur regularly or synchronously with another event. Linux
system signals are asynchronous; they can occur at any time because they can be ini-
tiated by any number of nonregular events.

attachment A file that is attached to, but is not part of, a piece of email. Attachments are fre-
quently opened by programs (including your Internet browser) that are called by
your mail program so you may not be aware that they are not an integral part of an
email message.

authentication The verification of the identity of a person or process. In a communication system,
authentication verifies that a message comes from its stated source. Methods of
authentication on a Linux system include the /etc/passwd and /etc/shadow files,
LDAP, Kerberos 5, and SMB authentication.FOLDOC

automatic
mounting

A way of demand mounting directories from remote hosts without having them
hard configured into /etc/fstab. Also called automounting.

avoided An object, such as a panel, that should not normally be covered by another object,
such as a window.

back door A security hole deliberately left in place by the designers or maintainers of a system.
The motivation for creating such holes is not always sinister; some operating sys-
tems, for example, come out of the box with privileged accounts intended for use by
field service technicians or the vendor’s maintenance programmers.

Ken Thompson’s 1983 Turing Award lecture to the ACM revealed the existence, in
early UNIX versions, of a back door that may be the most fiendishly clever security
hack of all time. The C compiler contained code that would recognize when the
login command was being recompiled and would insert some code recognizing a
password chosen by Thompson, giving him entry to the system whether or not an
account had been created for him.

Normally such a back door could be removed by removing it from the source code
for the compiler and recompiling the compiler. But to recompile the compiler, you
have to use the compiler, so Thompson arranged that the compiler would recognize
when it was compiling a version of itself. It would insert into the recompiled com-
piler the code to insert into the recompiled login the code to allow Thompson entry,
and, of course, the code to recognize itself and do the whole thing again the next
time around. Having done this once, he was then able to recompile the compiler
from the original sources; the hack perpetuated itself invisibly, leaving the back
door in place and active but with no trace in the sources.

Sometimes called a wormhole. Also trap door.FOLDOC

background
process

A process that is not run in the foreground. Also called a detached process, a back-
ground process is initiated by a command line that ends with an ampersand (&).
You do not have to wait for a background process to run to completion before giv-
ing the shell additional commands. If you have job control, you can move back-
ground processes to the foreground, and vice versa.

ptg

Glossary 1137

basename The name of a file that, in contrast with a pathname, does not mention any of the
directories containing the file (and therefore does not contain any slashes [/]). For
example, hosts is the basename of /etc/hosts.FOLDOC

baud The maximum information-carrying capacity of a communication channel in sym-
bols (state transitions or level transitions) per second. It coincides with bits per sec-
ond only for two-level modulation with no framing or stop bits. A symbol is a
unique state of the communication channel, distinguishable by the receiver from all
other possible states. For example, it may be one of two voltage levels on a wire for
a direct digital connection, or it might be the phase or frequency of a carrier.FOLDOC

Baud is often mistakenly used as a synonym for bits per second.

baud rate Transmission speed. Usually used to measure terminal or modem speed. Common
baud rates range from 110 to 38,400 baud. See baud.

Berkeley
UNIX

One of the two major versions of the UNIX operating system. Berkeley UNIX was
developed at the University of California at Berkeley by the Computer Systems
Research Group and is often referred to as BSD (Berkeley Software Distribution).

BIND Berkeley Internet Name Domain. An implementation of a DNS (page 1145) server
developed and distributed by the University of California at Berkeley.

BIOS Basic Input/Output System. On PCs, EEPROM-based (page 1147) system software
that provides the lowest-level interface to peripheral devices and controls the first
stage of the bootstrap (page 1138) process, which loads the operating system. The
BIOS can be stored in different types of memory. The memory must be nonvolatile
so that it remembers the system settings even when the system is turned off. Also
BIOS ROM. Refer to page 28 for instructions on how to open the BIOS screens for
maintenance.

bit The smallest piece of information a computer can handle. A bit is a binary digit:
either 1 or 0 (on or off).

bit depth Same as color depth (page 1141).

bit-mapped
display

A graphical display device in which each pixel on the screen is controlled by an
underlying representation of zeros and ones.

blank
character

Either a SPACE or a TAB character, also called whitespace (page 1180). In some con-
texts, NEWLINEs are considered blank characters.

block A section of a disk or tape (usually 1,024 bytes long but shorter or longer on some
systems) that is written at one time.

block device A disk or tape drive. A block device stores information in blocks of characters. A
block device is represented by a block device (block special) file. Contrast with
character device (page 1140).

block number Disk and tape blocks are numbered so that Linux can keep track of the data on the
device.

ptg

1138 Glossary

blocking
factor

The number of logical blocks that make up a physical block on a tape or disk.
When you write 1K logical blocks to a tape with a physical block size of 30K, the
blocking factor is 30.

Boolean The type of an expression with two possible values: true and false. Also, a variable
of Boolean type or a function with Boolean arguments or result. The most common
Boolean functions are AND, OR, and NOT.FOLDOC

boot See bootstrap.

boot loader A very small program that takes its place in the bootstrap process that brings a
computer from off or reset to a fully functional state. See “GRUB: The Linux Boot
Loader” on page 583.

bootstrap Derived from “Pull oneself up by one’s own bootstraps,” the incremental process of
loading an operating system kernel into memory and starting it running without
any outside assistance. Frequently shortened to boot.

Bourne Again
Shell

bash. GNU’s command interpreter for UNIX, bash is a POSIX-compliant shell with
full Bourne Shell syntax and some C Shell commands built in. The Bourne Again
Shell supports emacs-style command-line editing, job control, functions, and online
help.FOLDOC

Bourne Shell sh. This UNIX command processor was developed by Steve Bourne at AT&T Bell
Laboratories.

brace A left brace ({) and a right brace (}). Braces have special meanings to the shell.

bracket A square bracket (page 1174) or an angle bracket (page 1134).

branch In a tree structure, a branch connects nodes, leaves, and the root. The Linux file-
system hierarchy is often conceptualized as an upside-down tree. The branches con-
nect files and directories. In a source code control system, such as SCCS or RCS, a
branch occurs when a revision is made to a file and is not included in subsequent
revisions to the file.

bridge Typically a two-port device originally used for extending networks at layer 2 (data
link) of the Internet Protocol model.

broadcast A transmission to multiple, unspecified recipients. On Ethernet a broadcast packet
is a special type of multicast packet that has a special address indicating that all
devices that receive it should process it. Broadcast traffic exists at several layers of
the network stack, including Ethernet and IP. Broadcast traffic has one source but
indeterminate destinations (all hosts on the local network).

broadcast
address

The last address on a subnet (usually 255), reserved as shorthand to mean all hosts.

broadcast
network

A type of network, such as Ethernet, in which any system can transmit information
at any time, and all systems receive every message.

ptg

Glossary 1139

BSD See Berkeley UNIX on page 1137.

buffer An area of memory that stores data until it can be used. When you write informa-
tion to a file on a disk, Linux stores the information in a disk buffer until there is
enough to write to the disk or until the disk is ready to receive the information.

bug An unwanted and unintended program property, especially one that causes the pro-
gram to malfunction.FOLDOC

builtin
(command)

A command that is built into a shell. Each of the three major shells—the Bourne
Again, TC, and Z Shells—has its own set of builtins. Refer to “Builtins” on page 261.

byte A component in the machine data hierarchy, usually larger than a bit and smaller
than a word; now most often eight bits and the smallest addressable unit of storage.
A byte typically holds one character.FOLDOC

C
programming
language

A modern systems language that has high-level features for efficient, modular pro-
gramming as well as lower-level features that make it suitable for use as a systems
programming language. It is machine independent so that carefully written C pro-
grams can be easily transported to run on different machines. Most of the Linux
operating system is written in C, and Linux provides an ideal environment for pro-
gramming in C.

C Shell csh. The C Shell command processor was developed by Bill Joy for BSD UNIX. It
was named for the C programming language because its programming constructs
are similar to those of C. See shell on page 1171.

cable modem A type of modem that allows you to access the Internet by using your cable televi-
sion connection.

cache Holding recently accessed data, a small, fast memory designed to speed up subse-
quent access to the same data. Most often applied to processor-memory access but
also used for a local copy of data accessible over a network, from a hard disk, and
so on.FOLDOC

calling
environment

A list of variables and their values that is made available to a called program. Refer
to “Executing a Command” on page 330.

cascading
stylesheet

See CSS on page 1143.

cascading
windows

An arrangement of windows such that they overlap, generally with at least part of
the title bar visible. Opposite of tiled windows (page 1177).

case sensitive Able to distinguish between uppercase and lowercase characters. Unless you set the
ignorecase parameter, vim performs case-sensitive searches. The grep utility per-
forms case-sensitive searches unless you use the –i option.

catenate To join sequentially, or end to end. The Linux cat utility catenates files: It displays
them one after the other. Also concatenate.

ptg

1140 Glossary

chain loading The technique used by a boot loader to load unsupported operating systems. Used
for loading such operating systems as DOS or Windows, it works by loading
another boot loader.

character-
based

A program, utility, or interface that works only with ASCII (page 1135) characters.
This set of characters includes some simple graphics, such as lines and corners, and
can display colored characters. It cannot display true graphics. Contrast with GUI
(page 1150).

character-
based terminal

A terminal that displays only characters and very limited graphics. See character-based.

character class In a regular expression, a group of characters that defines which characters can
occupy a single character position. A character-class definition is usually sur-
rounded by square brackets. The character class defined by [abcr] represents a char-
acter position that can be occupied by a, b, c, or r. Also list operator.

In POSIX, used to refer to sets of characters with a common characteristic, denoted
by the notation [:class:]; for example, [:upper:] denotes the set of uppercase letters.

This book uses the term character class as explained under “Brackets” on page 1091.

character
device

A terminal, printer, or modem. A character device stores or displays characters one
at a time. A character device is represented by a character device (character special)
file. Contrast with block device (page 1137).

check box A GUI widget, usually the outline of a square box with an adjacent caption, that a
user can click to display or remove a tick (page 1177). When the box holds a tick,
the option described by the caption is on or true. Also tick box.

checksum A computed value that depends on the contents of a block of data and is transmit-
ted or stored along with the data to detect corruption of the data. The receiving sys-
tem recomputes the checksum based on the received data and compares this value
with the one sent with the data. If the two values are the same, the receiver has
some confidence that the data was received correctly.

The checksum may be 8, 16, or 32 bits, or some other size. It is computed by sum-
ming the bytes or words of the data block, ignoring overflow. The checksum may be
negated so that the total of the data words plus the checksum is zero.

Internet packets use a 32-bit checksum.FOLDOC

child process A process that is created by another process, the parent process. Every process is a
child process except for the first process, which is started when Linux begins execu-
tion. When you run a command from the shell, the shell spawns a child process to
run the command. See process on page 1166.

CIDR Classless Inter-Domain Routing. A scheme that allocates blocks of Internet
addresses in a way that allows summarization into a smaller number of routing
table entries. A CIDR block is a block of Internet addresses assigned to an ISP by
the Internic. Refer to “CIDR: Classless Inter-Domain Routing” on page 386.FOLDOC

ptg

Glossary 1141

CIFS Common Internet File System. An Internet filesystem protocol based on SMB
(page 1172). CIFS runs on top of TCP/IP, uses DNS, and is optimized to support
slower dial-up Internet connections. SMB and CIFS are used interchangeably.FOLDOC

CIPE Crypto IP Encapsulation (page 1147). This protocol (page 1166) tunnels (page 1178)
IP packets within encrypted UDP (page 1178) packets, is lightweight and simple, and
works over dynamic addresses, NAT (page 1161), and SOCKS (page 1173) proxies
(page 1166).

cipher (cypher) A cryptographic system that uses a key to transpose/substitute characters within a
message, the key itself, or the message.

ciphertext Text that is encrypted. Contrast with plaintext (page 1165). See also “Encryption”
on page 1110.

Classless
Inter-Domain
Routing

See CIDR on page 1140.

cleartext Text that is not encrypted. Also plaintext. Contrast with ciphertext. See also
“Encryption” on page 1110.

CLI Command-line interface. See also character-based (page 1140). Also textual interface.

client A computer or program that requests one or more services from a server.

CODEC Coder/decoder or compressor/decompressor. A hardware and/or software technol-
ogy that codes and decodes data. MPEG is a popular CODEC for computer video.

color depth The number of bits used to generate a pixel—usually 8, 16, 24, or 32. The color
depth is directly related to the number of colors that can be generated. The number
of colors that can be generated is 2 raised to the color-depth power. Thus a 24-bit
video adapter can generate about 16.7 million colors.

color quality See color depth.

combo box A combination of a drop-down list (page 1146) and text box (page 1176). You can
enter text in a combo box. Or, you can click a combo box, cause it to expand and
display a static list of selections for you to choose from.

command What you give the shell in response to a prompt. When you give the shell a com-
mand, it executes a utility, another program, a builtin command, or a shell script.
Utilities are often referred to as commands. When you are using an interactive util-
ity, such as vim or mail, you use commands that are appropriate to that utility.

command line A line containing instructions and arguments that executes a command. This term
usually refers to a line that you enter in response to a shell prompt on a character-
based terminal or terminal emulator (page 125).

command
substitution

Replacing a command with its output. The shells perform command substitution
when you enclose a command between $(and) or between a pair of back ticks
(‘‘), also called grave accent marks.

ptg

1142 Glossary

component
architecture

A notion in object-oriented programming where “components” of a program are com-
pletely generic. Instead of having a specialized set of methods and fields, they have
generic methods through which the component can advertise the functionality it sup-
ports to the system into which it is loaded. This strategy enables completely dynamic
loading of objects. JavaBeans is an example of a component architecture.FOLDOC

concatenate See catenate on page 1139.

condition code See exit status on page 1147.

connection-
oriented
protocol

A type of transport layer data communication service that allows a host to send
data in a continuous stream to another host. The transport service guarantees that
all data will be delivered to the other end in the same order as sent and without
duplication. Communication proceeds through three well-defined phases: connec-
tion establishment, data transfer, and connection release. The most common exam-
ple is TCP (page 1176).

Also called connection-based protocol and stream-oriented protocol. Contrast with
connectionless protocol and datagram (page 1144).FOLDOC

connectionless
protocol

The data communication method in which communication occurs between hosts
with no previous setup. Packets sent between two hosts may take different routes.
There is no guarantee that packets will arrive as transmitted or even that they will
arrive at the destination at all. UDP (page 1178) is a connectionless protocol. Also
called packet switching. Contrast with circuit switching and connection-oriented
protocol.FOLDOC

console The main system terminal, usually directly connected to the computer and the one
that receives system error messages. Also system console and console terminal.

console
terminal

See console.

control
character

A character that is not a graphic character, such as a letter, number, or punctuation
mark. Such characters are called control characters because they frequently act to
control a peripheral device. RETURN and FORMFEED are control characters that control a
terminal or printer.

The word CONTROL is shown in this book in THIS FONT because it is a key that appears on
most terminal keyboards. Control characters are represented by ASCII codes less
than 32 (decimal). See also nonprinting character on page 1162.

control
structure

A statement used to change the order of execution of commands in a shell script or
other program. Each shell provides control structures (for example, if and while) as
well as other commands that alter the order of execution (for example, exec). Also
control flow commands.

cookie Data stored on a client system by a server. The client system browser sends the
cookie back to the server each time it accesses that server. For example, a catalog
shopping service may store a cookie on your system when you place your first

ptg

Glossary 1143

order. When you return to the site, it knows who you are and can supply your
name and address for subsequent orders. You may consider cookies to be an inva-
sion of privacy.

CPU Central processing unit. The part of a computer that controls all the other parts.
The CPU includes the control unit and the arithmetic and logic unit (ALU). The
control unit fetches instructions from memory and decodes them to produce signals
that control the other parts of the computer. These signals can cause data to be
transferred between memory and ALU or peripherals to perform input or output. A
CPU that is housed on a single chip is called a microprocessor. Also processor and
central processor.

cracker An individual who attempts to gain unauthorized access to a computer system.
These individuals are often malicious and have many means at their disposal for
breaking into a system. Contrast with hacker (page 1150).FOLDOC

crash The system suddenly and unexpectedly stops or fails. Derived from the action of
the hard disk heads on the surface of the disk when the air gap between the two
collapses.

cryptography The practice and study of encryption and decryption—encoding data so that only a
specific individual or machine can decode it. A system for encrypting and decrypt-
ing data is a cryptosystem. Such systems usually rely on an algorithm for combining
the original data (plaintext) with one or more keys—numbers or strings of charac-
ters known only to the sender and/or recipient. The resulting output is called cipher-
text (page 1141).

The security of a cryptosystem usually depends on the secrecy of keys rather than
on the supposed secrecy of an algorithm. Because a strong cryptosystem has a large
range of keys, it is not possible to try all of them. Ciphertext appears random to
standard statistical tests and resists known methods for breaking codes.FOLDOC

.cshrc file In your home directory, a file that the TC Shell executes each time you invoke a new
TC Shell. You can use this file to establish variables and aliases.

CSS Cascading stylesheet. Describes how documents are presented on screen and in
print. Attaching a stylesheet to a structured document can affect the way it looks
without adding new HTML (or other) tags and without giving up device indepen-
dence. Also stylesheet.

current
(process, line,
character,
directory,
event, etc.)

The item that is immediately available, working, or being used. The current process
is the program you are running, the current line or character is the one the cursor is
on, and the current directory is the working directory.

cursor A small lighted rectangle, underscore, or vertical bar that appears on a terminal
screen and indicates where the next character will appear. Differs from the mouse
pointer (page 1160).

ptg

1144 Glossary

daemon A program that is not invoked explicitly but lies dormant, waiting for some condi-
tion(s) to occur. The perpetrator of the condition need not be aware that a daemon
is lurking (although often a program will commit an action only because it knows
that it will implicitly invoke a daemon). From the mythological meaning, later ratio-
nalized as the acronym Disk And Execution MONitor. See Table 10-4 on page 402
for a list of daemons.FOLDOC

data structure A particular format for storing, organizing, working with, and retrieving data. Fre-
quently, data structures are designed to work with specific algorithms that facilitate
these tasks. Common data structures include trees, files, records, tables, arrays, etc.

datagram A self-contained, independent entity of data carrying sufficient information to be
routed from the source to the destination computer without reliance on earlier
exchanges between this source and destination computer and the transporting net-
work. UDP (page 1178) uses datagrams; IP (page 1154) uses packets (page 1164).
Packets are indivisible at the network layer; datagrams are not.FOLDOC See also frame
(page 1149).

dataless A computer, usually a workstation, that uses a local disk to boot a copy of the oper-
ating system and access system files but does not use a local disk to store user files.

dbm A standard, simple database manager. Implemented as gdbm (GNU database man-
ager), it uses hashes to speed searching. The most common versions of the dbm
database are dbm, ndbm, and gdbm.

DDoS attack Distributed denial of service attack. A DoS attack (page 1146) from many systems
that do not belong to the perpetrator of the attack.

debug To correct a program by removing its bugs (that is, errors).

default Something that is selected without being explicitly specified. For example, when
used without an argument, ls displays a list of the files in the working directory by
default.

delta A set of changes made to a file that has been encoded by the Source Code Control
System (SCCS).

denial of
service

See DoS attack on page 1146.

dereference When speaking of symbolic links, follow the link rather than working with the refer-
ence to the link. For example, the –L or ––dereference option causes ls to list the
entry that a symbolic link points to rather than the symbolic link (the reference) itself.

desktop A collection of windows, toolbars, icons, and buttons, some or all of which appear
on your display. A desktop comprises one or more workspaces (page 1181). Refer
to “A Tour of the Ubuntu Desktop” on page 99.

desktop
manager

An icon- and menu-based user interface to system services that allows you to run appli-
cations and use the filesystem without using the system’s command-line interface.

ptg

Glossary 1145

detached
process

See background process on page 1136.

device A disk drive, printer, terminal, plotter, or other input/output unit that can be
attached to the computer. Short for peripheral device.

device driver Part of the Linux kernel that controls a device, such as a terminal, disk drive, or printer.

device file A file that represents a device. Also special file.

device
filename

The pathname of a device file. All Linux systems have two kinds of device files:
block and character device files. Linux also has FIFOs (named pipes) and sockets.
Device files are traditionally located in the /dev directory.

device number See major device number (page 1158) and minor device number (page 1160).

DHCP Dynamic Host Configuration Protocol. A protocol that dynamically allocates IP
addresses to computers on a LAN. Refer to “DHCP: Configures Network Inter-
faces” on page 470.FOLDOC

dialog box In a GUI, a special window, usually without a titlebar, that displays information.
Some dialog boxes accept a response from the user

directory Short for directory file. A file that contains a list of other files.

directory
hierarchy

A directory, called the root of the directory hierarchy, and all the directory and ordi-
nary files below it (its children).

directory
service

A structured repository of information on people and resources within an organiza-
tion, facilitating management and communication.FOLDOC

disk partition See partition on page 1164.

diskless A computer, usually a workstation, that has no disk and must contact another com-
puter (a server) to boot a copy of the operating system and access the necessary sys-
tem files.

distributed
computing

A style of computing in which tasks or services are performed by a network of
cooperating systems, some of which may be specialized.

DMZ Demilitarized zone. A host or small network that is a neutral zone between a LAN
and the Internet. It can serve Web pages and other data to the Internet and allow
local systems access to the Internet while preventing LAN access to unauthorized
Internet users. Even if a DMZ is compromised, it holds no data that is private and
none that cannot be easily reproduced.

DNS Domain Name Service. A distributed service that manages the correspondence of
full hostnames (those that include a domain name) to IP addresses and other system
characteristics.

DNS domain
name

See domain name on page 1146.

ptg

1146 Glossary

document
object model

See DOM.

DOM Document Object Model. A platform-/language-independent interface that enables
a program to update the content, structure, and style of a document dynamically.
The changes can then be made part of the displayed document. Go to
www.w3.org/DOM for more information.

domain name A name associated with an organization, or part of an organization, to help identify
systems uniquely. Technically, the part of the FQDN (page 1149) to the right of the
leftmost period. Domain names are assigned hierarchically. The domain
berkeley.edu refers to the University of California at Berkeley, for example; it is part
of the top-level edu (education) domain. Also DNS domain name. Different than
NIS domain name (page 1162).

Domain Name
Service

See DNS.

door An evolving filesystem-based RPC (page 1170) mechanism.

DoS attack Denial of service attack. An attack that attempts to make the target host or network
unusable by flooding it with spurious traffic.

DPMS Display Power Management Signaling. A standard that can extend the life of CRT
monitors and conserve energy. DPMS supports four modes for a monitor: Normal,
Standby (power supply on, monitor ready to come to display images almost
instantly), Suspend (power supply off, monitor takes up to ten seconds to display an
image), and Off.

drag The motion part of drag-and-drop.

drag-and-drop To move an object from one position or application to another within a GUI. To
drag an object, the user clicks a mouse button (typically the left one) while the
mouse pointer hovers (page 1152) over the object. Then, without releasing the
mouse button, the user drags the object, which stays attached to the mouse pointer,
to a different location. The user can then drop the object at the new location by
releasing the mouse button.

drop-down list A widget (page 1180) that displays a static list for a user to choose from. When the
list is not active, it appears as text in a box, displaying the single selected entry.
When a user clicks the box, a list appears; the user can move the mouse cursor to
select an entry from the list. Different from a list box (page 1157).

druid In role-playing games, a character that represents a magical user. Red Hat uses the
term druid at the ends of names of programs that guide you through a task-driven
chain of steps. Other operating systems call these types of programs wizards.

DSA Digital Signature Algorithm. A public key cipher used to generate digital signatures.

www.w3.org/DOM

ptg

Glossary 1147

DSL Digital Subscriber Line/Loop. Provides high-speed digital communication over a
specialized, conditioned telephone line. See also xDSL (page 1182).

Dynamic Host
Configuration
Protocol

See DHCP on page 1145.

editor A utility, such as vim or emacs, that creates and modifies text files.

EEPROM Electrically erasable, programmable, readonly memory. A PROM (page 1166) that
can be written to.

effective user
ID

The user ID that a process appears to have; usually the same as the user ID. For
example, while you are running a setuid program, the effective user ID of the pro-
cess running the program is that of the owner of the program.

element One thing; usually a basic part of a group of things. An element of a numeric array
is one of the numbers stored in the array.

emoticon See smiley on page 1172.

encapsulation See tunneling on page 1178.

environment See calling environment on page 1139.

EOF End of file.

EPROM Erasable programmable readonly memory. A PROM (page 1166) that can be writ-
ten to by applying a higher than normal voltage.

escape See quote on page 1167.

Ethernet A type of LAN (page 1156) capable of transfer rates as high as 1,000 megabits per
second. Refer to “Ethernet” on page 375.

event An occurrence, or happening, of significance to a task or program—for example,
the completion of an asynchronous input/output operation, such as a keypress or
mouse click.FOLDOC

exabyte 260 bytes or about 1018 bytes. See also large number (page 1156).

exit status The status returned by a process; either successful (usually 0) or unsuccessful (usu-
ally 1).

exploit A security hole or an instance of taking advantage of a security hole.FOLDOC

expression See logical expression (page 1158) and arithmetic expression (page 1135).

extranet A network extension for a subset of users (such as students at a particular school or
engineers working for the same company). An extranet limits access to private
information even though it travels on the public Internet.

ptg

1148 Glossary

failsafe session A session that allows you to log in on a minimal desktop in case your standard login
does not work well enough to allow you to log in to fix a login problem.

FDDI Fiber Distributed Data Interface. A type of LAN (page 1156) designed to transport
data at the rate of 100 million bits per second over fiberoptic cable.

file A collection of related information referred to with a filename and frequently stored
on a disk. Text files typically contain memos, reports, messages, program source
code, lists, or manuscripts. Binary or executable files contain utilities or programs
that you can run. Refer to “Directory Files and Ordinary Files” on page 200.

filename The name of a file. A filename refers to a file.

filename
completion

Automatic completion of a filename after you specify a unique prefix.

filename
extension

The part of a filename following a period.

filename
generation

What occurs when the shell expands ambiguous file references. See ambiguous file
reference on page 1134.

filesystem A data structure (page 1144) that usually resides on part of a disk. All Linux sys-
tems have a root filesystem, and many have other filesystems. Each filesystem is
composed of some number of blocks, depending on the size of the disk partition
that has been assigned to the filesystem. Each filesystem has a control block, named
the superblock, that contains information about the filesystem. The other blocks in
a filesystem are inodes, which contain control information about individual files,
and data blocks, which contain the information in the files.

filling A variant of maximizing in which window edges are pushed out as far as they can
go without overlapping another window.

filter A command that can take its input from standard input and send its output to stan-
dard output. A filter transforms the input stream of data and sends it to standard
output. A pipe usually connects a filter’s input to standard output of one command,
and a second pipe connects the filter’s output to standard input of another com-
mand. The grep and sort utilities are commonly used as filters.

firewall A device for policy-based traffic management used to keep a network secure. A fire-
wall can be implemented in a single router that filters out unwanted packets, or it
can rely on a combination of routers, proxy servers, and other devices. Firewalls are
widely used to give users access to the Internet in a secure fashion and to separate a
company’s public WWW server from its internal network. They are also employed
to keep internal network segments more secure.

Recently the term has come to be defined more loosely to include a simple packet
filter running on an endpoint machine.

See also proxy server on page 1167.

ptg

Glossary 1149

firmware Software built into a computer, often in ROM (page 1169). May be used as part of
the bootstrap (page 1138) procedure.

focus, desktop On a desktop, the window that is active. The window with the desktop focus receives
the characters you type on the keyboard. Same as active window (page 1134).

footer The part of a format that goes at the bottom (or foot) of a page. Contrast with
header (page 1151).

foreground
process

When you run a command in the foreground, the shell waits for the command to
finish before giving you another prompt. You must wait for a foreground process to
run to completion before you can give the shell another command. If you have job
control, you can move background processes to the foreground, and vice versa. See
job control on page 1155. Contrast with background process (page 1136).

fork To create a process. When one process creates another process, it forks a process.
Also spawn.

FQDN Fully qualified domain name. The full name of a system, consisting of its hostname
and its domain name, including the top-level domain. Technically the name that
gethostbyname(2) returns for the host named by gethostname(2). For example,
speedy is a hostname and speedy.example.com is an FQDN. An FQDN is sufficient
to determine a unique Internet address for a machine on the Internet.FOLDOC

frame A data link layer packet that contains, in addition to data, the header and trailer
information required by the physical medium. Network layer packets are encap-
sulated to become frames.FOLDOC See also datagram (page 1144) and packet
(page 1164).

free list In a filesystem, the list of blocks that are available for use. Information about the
free list is kept in the superblock of the filesystem.

free software Refer to Appendix D, “The Free Software Definition.”

free space The portion of a hard disk that is not within a partition. A new hard disk has no
partitions and contains all free space.

full duplex The ability to receive and transmit data simultaneously. A network switch
(page 1162) is typically a full-duplex device. Contrast with half-duplex
(page 1150).

fully qualified
domain name

See FQDN.

function See shell function on page 1171.

gateway A generic term for a computer or a special device connected to more than one dis-
similar type of network to pass data between them. Unlike a router, a gateway often
must convert the information into a different format before passing it on. The his-
torical usage of gateway to designate a router is deprecated.

ptg

1150 Glossary

GCOS See GECOS.

GECOS General Electric Comprehensive Operating System. For historical reasons, the user
information field in the /etc/passwd file is called the GECOS field. Also GCOS.

gibibyte Giga binary byte. A unit of storage equal to 230 bytes = 1,073,741,824 bytes = 1024
mebibytes (page 1159). Abbreviated as GiB. Contrast with gigabyte.

gigabyte A unit of storage equal to 109 bytes. Sometimes used in place of gibibyte. Abbrevi-
ated as GB. See also large number on page 1156.

glyph A symbol that communicates a specific piece of information nonverbally. A smiley
(page 1172) is a glyph.

GMT Greenwich Mean Time. See UTC on page 1179.

graphical
display

A bitmapped monitor that can display graphical images. Contrast with ASCII ter-
minal (page 1135).

graphical user
interface

See GUI.

group (of
users)

A collection of users. Groups are used as a basis for determining file access permis-
sions. If you are not the owner of a file and you belong to the group the file is
assigned to, you are subject to the group access permissions for the file. A user can
simultaneously belong to several groups.

group (of
windows)

A way to identify similar windows so they can be displayed and acted on similarly.
Typically windows started by a given application belong to the same group.

group ID A unique number that identifies a set of users. It is stored in the password and
group databases (/etc/passwd and /etc/group files or their NIS equivalents). The
group database associates group IDs with group names. Also GID.

GUI Graphical user interface. A GUI provides a way to interact with a computer system
by choosing items from menus or manipulating pictures drawn on a display screen
instead of by typing command lines. Under Linux, the X Window System provides a
graphical display and mouse/keyboard input. GNOME and KDE are two popular
desktop managers that run under X. Contrast with character-based (page 1140).

hacker A person who enjoys exploring the details of programmable systems and learning
how to stretch their capabilities, as opposed to users, who prefer to learn only the
minimum necessary. One who programs enthusiastically (even obsessively) or who
enjoys programming rather than just theorizing about programming.FOLDOC Contrast
with cracker (page 1143).

half-duplex A half-duplex device can only receive or transmit at a given moment; it cannot do
both. A hub (page 1152) is typically a half-duplex device. Contrast with full duplex
(page 1149).

ptg

Glossary 1151

hard link A directory entry that contains the filename and inode number for a file. The inode
number identifies the location of control information for the file on the disk, which
in turn identifies the location of the file’s contents on the disk. Every file has at least
one hard link, which locates the file in a directory. When you remove the last hard
link to a file, you can no longer access the file. See link (page 1157) and symbolic
link (page 1176).

hash A string that is generated from another string. See one-way hash function on
page 1163. When used for security, a hash can prove, almost to a certainty, that a
message has not been tampered with during transmission: The sender generates a
hash of a message, encrypts the message and hash, and sends the encrypted message
and hash to the recipient. The recipient decrypts the message and hash, generates a
second hash from the message, and compares the hash that the sender generated to
the new hash. When they are the same, the message has probably not been tam-
pered with. Hashed versions of passwords can be used to authenticate users. A hash
can also be used to create an index called a hash table. Also hash value.

hash table An index created from hashes of the items to be indexed. The hash function makes
it highly unlikely that two items will create the same hash. To look up an item in the
index, create a hash of the item and search for the hash. Because the hash is typi-
cally shorter than the item, the search is more efficient.

header When you are formatting a document, the header goes at the top, or head, of a
page. In electronic mail the header identifies who sent the message, when it was
sent, what the subject of the message is, and so forth.

Here
document

A shell script that takes its input from the file that contains the script.

hesiod The nameserver of project Athena. Hesiod is a name service library that is derived
from BIND (page 1137) and leverages a DNS infrastructure.

heterogeneous Consisting of different parts. A heterogeneous network includes systems produced
by different manufacturers and/or running different operating systems.

hexadecimal
number

A base 16 number. Hexadecimal (or hex) numbers are composed of the hexadeci-
mal digits 0–9 and A–F. See Table G-1, next page.

hidden
filename

A filename that starts with a period. These filenames are called hidden because the
ls utility does not normally list them. Use the –a option of ls to list all files, including
those with hidden filenames. The shell does not expand a leading asterisk (*) in an
ambiguous file reference to match files with hidden filenames. Also hidden file,
invisible file.

hierarchy An organization with a few things, or thing—one at the top—and with several
things below each other thing. An inverted tree structure. Examples in computing
include a file tree where each directory may contain files or other directories, a hier-
archical network, and a class hierarchy in object-oriented programming.FOLDOC Refer
to “The Hierarchical Filesystem” on page 200.

ptg

1152 Glossary

history A shell mechanism that enables you to modify and reexecute recent commands.

home
directory

The directory that is the working directory when you first log in. The pathname of
this directory is stored in the HOME shell variable.

hover To leave the mouse pointer stationary for a moment over an object. In many cases
hovering displays a tooltip (page 1177).

HTML Hypertext Markup Language. A hypertext document format used on the World
Wide Web. Tags, which are embedded in the text, consist of a less than sign (<), a
directive, zero or more parameters, and a greater than sign (>). Matched pairs of
directives, such as <TITLE> and </TITLE>, delimit text that is to appear in a special
place or style.FOLDOC For more information on HTML, go to www.htmlhelp.com/faq/
html/all.html.

HTTP Hypertext Transfer Protocol. The client/server TCP/IP protocol used on the World
Wide Web for the exchange of HTML documents.

hub A multiport repeater. A hub rebroadcasts all packets it receives on all ports. This
term is frequently used to refer to small hubs and switches, regardless of the device’s
intelligence. It is a generic term for a layer 2 shared-media networking device.
Today the term hub is sometimes used to refer to small intelligent devices, although
that was not its original meaning. Contrast with network switch (page 1162).

Table G-1 Decimal, octal, and hexadecimal numbers

Decimal Octal Hex Decimal Octal Hex

1 1 1 17 21 11

2 2 2 18 22 12

3 3 3 19 23 13

4 4 4 20 24 14

5 5 5 21 25 15

6 6 6 31 37 1F

7 7 7 32 40 20

8 10 8 33 41 21

9 11 9 64 100 40

10 12 A 96 140 60

11 13 B 100 144 64

12 14 C 128 200 80

13 15 D 254 376 FE

14 16 E 255 377 FF

15 17 F 256 400 100

16 20 10 257 401 101

www.htmlhelp.com/faq/html/all.html
www.htmlhelp.com/faq/html/all.html

ptg

Glossary 1153

hypertext A collection of documents/nodes containing (usually highlighted or underlined)
cross-references or links, which, with the aid of an interactive browser program,
allow the reader to move easily from one document to another.FOLDOC

Hypertext
Markup
Language

See HTML.

Hypertext
Transfer
Protocol

See HTTP.

i/o device Input/output device. See device on page 1145.

IANA Internet Assigned Numbers Authority. A group that maintains a database of all per-
manent, registered system services (www.iana.org).

ICMP Internet Control Message Protocol. A type of network packet that carries only mes-
sages, no data.

icon In a GUI, a small picture representing a file, directory, action, program, and so on.
When you click an icon, an action, such as opening a window and starting a pro-
gram or displaying a directory or Web site, takes place. From miniature religious
statues.FOLDOC

iconify To change a window into an icon. Contrast with restore (page 1169).

ignored
window

A state in which a window has no decoration and therefore no buttons or titlebar to
control it with.

indentation See indention.

indention The blank space between the margin and the beginning of a line that is set in from
the margin.

inode A data structure (page 1144) that contains information about a file. An inode for a
file contains the file’s length, the times the file was last accessed and modified, the
time the inode was last modified, owner and group IDs, access privileges, number of
links, and pointers to the data blocks that contain the file itself. Each directory entry
associates a filename with an inode. Although a single file may have several file-
names (one for each link), it has only one inode.

input Information that is fed to a program from a terminal or other file. See standard
input on page 1174.

installation A computer at a specific location. Some aspects of the Linux system are installation
dependent. Also site.

interactive A program that allows ongoing dialog with the user. When you give commands in
response to shell prompts, you are using the shell interactively. Also, when you give
commands to utilities, such as vim and mail, you are using the utilities interactively.

www.iana.org

ptg

1154 Glossary

interface The meeting point of two subsystems. When two programs work together, their
interface includes every aspect of either program that the other deals with. The user
interface (page 1179) of a program includes every program aspect the user comes
into contact with: the syntax and semantics involved in invoking the program, the
input and output of the program, and its error and informational messages. The
shell and each of the utilities and built-in commands have a user interface.

International
Organization
for
Standardization

See ISO on page 1155.

internet A large network that encompasses other, smaller networks.

Internet The largest internet in the world. The Internet (uppercase “I”) is a multilevel hierar-
chy composed of backbone networks (ARPANET, NSFNET, MILNET, and others),
midlevel networks, and stub networks. These include commercial (.com or .co), uni-
versity (.ac or .edu), research (.org or .net), and military (.mil) networks and span
many different physical networks around the world with various protocols, includ-
ing the Internet Protocol (IP). Outside the United States, country code domains are
popular (.us, .es, .mx, .de, and so forth), although you will see them used within the
United States as well.

Internet
Protocol

See IP.

Internet
service
provider

See ISP.

intranet An inhouse network designed to serve a group of people such as a corporation or
school. The general public on the Internet does not have access to the intranet. See
page 372.

invisible file See hidden filename on page 1151.

IP Internet Protocol. The network layer for TCP/IP. IP is a best-effort, packet-switch-
ing, connectionless protocol (page 1142) that provides packet routing, fragmenta-
tion, and reassembly through the data link layer. IPv4 is slowly giving way to
IPv6.FOLDOC

IP address Internet Protocol address. A four-part address associated with a particular network
connection for a system using the Internet Protocol (IP). A system that is attached to
multiple networks that use the IP will have a different IP address for each network
interface.

IP multicast See multicast on page 1161.

IP spoofing A technique used to gain unauthorized access to a computer. The would-be intruder
sends messages to the target machine. These messages contain an IP address indicat-

ptg

Glossary 1155

ing that the messages are coming from a trusted host (page 391). The target machine
responds to the messages, giving the intruder (privileged) access to the target.

IPC Interprocess communication. A method to communicate specific information
between programs.

IPv4 IP version 4. See IP and IPv6.

IPv6 IP version 6. The next generation of Internet Protocol, which provides a much
larger address space (2128 bits versus 232 bits for IPv4) that is designed to accommo-
date the rapidly growing number of Internet addressable devices. IPv6 also has
built-in autoconfiguration, enhanced security, better multicast support, and many
other features.

iSCSI Internet Small Computer System Interface. A network storage protocol that encap-
sulates SCSI data into TCP packets. You can use this protocol to connect a system
to a storage array using an Ethernet connection.

ISDN Integrated Services Digital Network. A set of communications standards that allows
a single pair of digital or standard telephone wires to carry voice, data, and video at
a rate of 64 kilobits per second.

ISO International Organization for Standardization. A voluntary, nontreaty organiza-
tion founded in 1946. It is responsible for creating international standards in many
areas, including computers and communications. Its members are the national stan-
dards organizations of 89 countries, including the American National Standards
Institute.FOLDOC

ISO9660 The ISO standard defining a filesystem for CD-ROMs.

ISP Internet service provider. Provides Internet access to its customers.

job control A facility that enables you to move commands from the foreground to the back-
ground and vice versa. Job control enables you to stop commands temporarily.

journaling
filesystem

A filesystem that maintains a noncached log file, or journal, which records all trans-
actions involving the filesystem. When a transaction is complete, it is marked as
complete in the log file.

The log file results in greatly reduced time spent recovering a filesystem after a
crash, making it particularly valuable in systems where high availability is an
issue.

JPEG Joint Photographic Experts Group. This committee designed the standard image-
compression algorithm. JPEG is intended for compressing either full-color or gray-scale
digital images of natural, real-world scenes and does not work as well on nonrealis-
tic images, such as cartoons or line drawings. Filename extensions: .jpg, .jpeg.FOLDOC

justify To expand a line of type in the process of formatting text. A justified line has even
margins. A line is justified by increasing the space between words and sometimes
between letters on the line.

ptg

1156 Glossary

Kerberos An MIT-developed security system that authenticates users and machines. It does
not provide authorization to services or databases; it establishes identity at logon,
which is used throughout the session. Once you are authenticated, you can open as
many terminals, windows, services, or other network accesses as you like until your
session expires.

kernel The part of the operating system that allocates machine resources, including mem-
ory, disk space, and CPU (page 1143) cycles, to all other programs that run on a
computer. The kernel includes the low-level hardware interfaces (drivers) and man-
ages processes (page 1166), the means by which Linux executes programs. The ker-
nel is the part of the Linux system that Linus Torvalds originally wrote (see the
beginning of Chapter 1).

kernelspace The part of memory (RAM) where the kernel resides. Code running in kernelspace
has full access to hardware and all other processes in memory. See the
KernelAnalysis-HOWTO.

key binding A keyboard key is said to be bound to the action that results from pressing it. Typi-
cally keys are bound to the letters that appear on the keycaps: When you press A, an
A appears on the screen. Key binding usually refers to what happens when you
press a combination of keys, one of which is CONTROL, ALT, META, or SHIFT, or when you
press a series of keys, the first of which is typically ESCAPE.

keyboard A hardware input device consisting of a number of mechanical buttons (keys) that
the user presses to input characters to a computer. By default a keyboard is con-
nected to standard input of a shell.FOLDOC

kilo- In the binary system, the prefix kilo- multiplies by 210 (i.e., 1,024). Kilobit and kilo-
byte are common uses of this prefix. Abbreviated as k.

Korn Shell ksh. A command processor, developed by David Korn at AT&T Bell Laboratories,
that is compatible with the Bourne Shell but includes many extensions. See also
shell on page 1171.

LAN Local area network. A network that connects computers within a localized area
(such as a single site, building, or department).

large number Visit mathworld.wolfram.com/LargeNumber.html for a comprehensive list.

LDAP Lightweight Directory Access Protocol. A simple protocol for accessing online
directory services. LDAP is a lightweight alternative to the X.500 Directory Access
Protocol (DAP). It can be used to access information about people, system users,
network devices, email directories, and systems. In some cases, it can be used as an
alternative for services such as NIS. Given a name, many mail clients can use LDAP
to discover the corresponding email address. See directory service on page 1145.

leaf In a tree structure, the end of a branch that cannot support other branches. When
the Linux filesystem hierarchy is conceptualized as a tree, files that are not directo-
ries are leaves. See node on page 1162.

ptg

Glossary 1157

least privilege,
concept of

Mistakes made by a user working with root privileges can be much more devastat-
ing than those made by an ordinary user. When you are working on the computer,
especially when you are working as the system administrator, always perform any
task using the least privilege possible. If you can perform a task logged in as an ordi-
nary user, do so. If you must work with root privileges, do as much as you can as an
ordinary user, log in as root or give an su or sudo command so you are working
with root privileges, do as much of the task that has to be done with root privileges,
and revert to being an ordinary user as soon as you can.

Because you are more likely to make a mistake when you are rushing, this concept
becomes more important when you have less time to apply it.

Lightweight
Directory
Access
Protocol

See LDAP.

link A pointer to a file. Two kinds of links exist: hard links (page 1151) and symbolic
links (page 1176) also called soft links. A hard link associates a filename with a
place on the disk where the contents of the file is located. A symbolic link associates
a filename with the pathname of a hard link to a file.

Linux-PAM See PAM on page 1164.

Linux-
Pluggable
Authentication
Modules

See PAM on page 1164.

list box A widget (page 1180) that displays a static list for a user to choose from. The list
appears as multiple lines with a scrollbar (page 1171) if needed. The user can scroll
the list and select an entry. Different from a drop-down list (page 1146).

loadable
kernel module

See loadable module.

loadable
module

A portion of the operating system that controls a special device and that can be
loaded automatically into a running kernel as needed to access that device. See
“Using Loadable Kernel Modules” on page 580.

local area
network

See LAN on page 1156.

locale The language; date, time, and currency formats; character sets; and so forth that
pertain to a geopolitical place or area. For example, en_US specifies English as spo-
ken in the United States and dollars; en_UK specifies English as spoken in the
United Kingdom and pounds. See the locale man page in section 5 of the system
manual for more information. Also the locale utility.

ptg

1158 Glossary

log in To gain access to a computer system by responding correctly to the login: and Pass-
word: prompts. Also log on, login.

log out To end your session by exiting from your login shell. Also log off.

logical
expression

A collection of strings separated by logical operators (>, >=, =, !=, <=, and <) that
can be evaluated as true or false. Also Boolean (page 1138) expression.

.login file A file in a user’s home directory that the TC Shell executes when you log in. You
can use this file to set environment variables and to run commands that you want
executed at the beginning of each session.

login name See username on page 1179.

login shell The shell that you are using when you log in. The login shell can fork other pro-
cesses that can run other shells, utilities, and programs.

.logout file A file in a user’s home directory that the TC Shell executes when you log out,
assuming that the TC Shell is your login shell. You can put in the .logout file com-
mands that you want run each time you log out.

MAC address Media Access Control address. The unique hardware address of a device connected
to a shared network medium. Each network adapter has a globally unique MAC
address that it stores in ROM. MAC addresses are 6 bytes long, enabling 2566

(about 300 trillion) possible addresses or 65,536 addresses for each possible IPv4
address.

A MAC address performs the same role for Ethernet that an IP address performs for
TCP/IP: It provides a unique way to identify a host.

machine
collating
sequence

The sequence in which the computer orders characters. The machine collating
sequence affects the outcome of sorts and other procedures that put lists in alpha-
betical order. Many computers use ASCII codes so their machine collating
sequences correspond to the ordering of the ASCII codes for characters.

macro A single instruction that a program replaces by several (usually more complex)
instructions. The C compiler recognizes macros, which are defined using a #define
instruction to the preprocessor.

magic number A magic number, which occurs in the first 512 bytes of a binary file, is a 1-, 2-, or 4-
byte numeric value or character string that uniquely identifies the type of file (much
like a DOS 3-character filename extension). See /usr/share/magic and the magic
man page for more information.

main memory Random access memory (RAM), an integral part of the computer. Although disk
storage is sometimes referred to as memory, it is never referred to as main memory.

major device
number

A number assigned to a class of devices, such as terminals, printers, or disk drives.
Using the ls utility with the –l option to list the contents of the /dev directory dis-
plays the major and minor device numbers of many devices (as major, minor).

ptg

Glossary 1159

MAN Metropolitan area network. A network that connects computers and LANs
(page 1156) at multiple sites in a small regional area, such as a city.

masquerade To appear to come from one domain or IP address when actually coming from
another. Said of a packet (iptables) or message (exim4). See also NAT on page 1161.

MD5 Message Digest 5. A one-way hash function (page 1163). The SHA1 (page 1171)
algorithm has supplanted MD5 in many applications.

MDA Mail delivery agent. One of the three components of a mail system; the other two
are the MTA (page 1160) and MUA (page 1160). An MDA accepts inbound mail
from an MTA and delivers it to a local user.

mebibyte Mega binary byte. A unit of storage equal to 220 bytes = 1,048,576 bytes = 1,024
kibibytes. Abbreviated as MiB. Contrast with megabyte.

megabyte A unit of storage equal to 106 bytes. Sometimes used in place of mebibyte. Abbrevi-
ated as MB.

memory See RAM on page 1167.

menu A list from which the user may select an operation to be performed. This selection is
often made with a mouse or other pointing device under a GUI but may also be con-
trolled from the keyboard. Very convenient for beginners, menus show which com-
mands are available and facilitate experimenting with a new program, often reducing
the need for user documentation. Experienced users usually prefer keyboard com-
mands, especially for frequently used operations, because they are faster to use.FOLDOC

merge To combine two ordered lists so that the resulting list is still in order. The sort utility
can merge files.

META key On the keyboard, a key that is labeled META or ALT. Use this key as you would the SHIFT

key. While holding it down, press another key. The emacs editor makes extensive
use of the META key.

metacharacter A character that has a special meaning to the shell or another program in a particu-
lar context. Metacharacters are used in the ambiguous file references recognized by
the shell and in the regular expressions recognized by several utilities. You must
quote a metacharacter if you want to use it without invoking its special meaning.
See regular character (page 1168) and special character (page 1173).

metadata Data about data. In data processing, metadata is definitional data that provides
information about, or documentation of, other data managed within an application
or environment.

For example, metadata can document data about data elements or attributes (name,
size, data type, and so on), records or data structures (page 1144) (length, fields,
columns, and so on), and data itself (where it is located, how it is associated, who
owns it, and so on). Metadata can include descriptive information about the con-
text, quality and condition, or characteristics of the data.FOLDOC

ptg

1160 Glossary

metropolitan
area network

See MAN on page 1159.

MIME Multipurpose Internet Mail Extension. Originally used to describe how specific
types of files that were attached to email were to be handled. Today MIME types
describe how a file is to be opened or worked with, based on its contents, deter-
mined by its magic number (page 1158), and filename extension. An example of a
MIME type is image/jpeg: The MIME group is image and the MIME subtype is
jpeg. Many MIME groups exist, including application, audio, image, inode, mes-
sage, text, and video.

minimize See iconify on page 1153.

minor device
number

A number assigned to a specific device within a class of devices. See major device
number on page 1158.

modem Modulator/demodulator. A peripheral device that modulates digital data into ana-
log data for transmission over a voice-grade telephone line. Another modem
demodulates the data at the other end.

module See loadable module on page 1157.

mount To make a filesystem accessible to system users. When a filesystem is not mounted,
you cannot read from or write to files it contains.

mount point A directory that you mount a local or remote filesystem on. See page 35.

mouse A device you use to point to a particular location on a display screen, typically so
you can choose a menu item, draw a line, or highlight some text. You control a
pointer on the screen by sliding a mouse around on a flat surface; the position of the
pointer moves relative to the movement of the mouse. You select items by pressing
one or more buttons on the mouse.

mouse pointer In a GUI, a marker that moves in correspondence with the mouse. It is usually a
small black x with a white border or an arrow. Differs from the cursor (page 1143).

mouseover The action of passing the mouse pointer over an object on the screen.

MTA Mail transfer agent. One of the three components of a mail system; the other two
are the MDA and MUA. An MTA accepts mail from users and MTAs.

MUA Mail user agent. One of the three components of a mail system; the other two are
the MDA (page 1159) and MTA. An MUA is an end-user mail program such as
KMail, mutt, or Outlook.

multiboot
specification

Specifies an interface between a boot loader and an operating system. With compli-
ant boot loaders and operating systems, any boot loader should be able to load any
operating system. The object of this specification is to ensure that different operat-
ing systems will work on a single machine. For more information, go to
odin-os.sourceforge.net/guides/multiboot.html.

ptg

Glossary 1161

multicast A multicast packet has one source and multiple destinations. In multicast, source
hosts register at a special address to transmit data. Destination hosts register at the
same address to receive data. In contrast to broadcast (page 1138), which is LAN-
based, multicast traffic is designed to work across routed networks on a subscrip-
tion basis. Multicast reduces network traffic by transmitting a packet one time, with
the router at the end of the path breaking it apart as needed for multiple recipients.

multitasking A computer system that allows a user to run more than one job at a time. A multi-
tasking system, such as Linux, allows you to run a job in the background while run-
ning a job in the foreground.

multiuser
system

A computer system that can be used by more than one person at a time. Linux is a
multiuser operating system. Contrast with single-user system (page 1172).

namespace A set of names (identifiers) in which all names are unique.FOLDOC

NAT Network Address Translation. A scheme that enables a LAN to use one set of IP
addresses internally and a different set externally. The internal set is for LAN (pri-
vate) use. The external set is typically used on the Internet and is Internet unique.
NAT provides some privacy by hiding internal IP addresses and allows multiple
internal addresses to connect to the Internet through a single external IP address.
See also masquerade on page 1159.

NBT NetBIOS over TCP/IP. A protocol that supports NetBIOS services in a TCP/IP envi-
ronment. Also NetBT.

negative
caching

Storing the knowledge that something does not exist. A cache normally stores infor-
mation about something that exists. A negative cache stores the information that
something, such as a record, does not exist.

NetBIOS Network Basic Input/Output System. An API (page 1135) for writing network-
aware applications.

netboot To boot a computer over the network (as opposed to booting from a local disk).

netiquette The conventions of etiquette—that is, polite behavior—recognized on Usenet and in
mailing lists, such as not (cross-)posting to inappropriate groups and refraining
from commercial advertising outside the business groups.

The most important rule of netiquette is “Think before you post.” If what you
intend to post will not make a positive contribution to the newsgroup and be of
interest to several readers, do not post it. Personal messages to one or two individu-
als should not be posted to newsgroups; use private email instead.FOLDOC

netmask A 32-bit mask (for IPv4), that shows how an Internet address is to be divided into
network, subnet, and host parts. The netmask has ones in the bit positions in the
32-bit address that are to be used for the network and subnet parts and zeros for the
host part. The mask should contain at least the standard network portion (as deter-
mined by the address class). The subnet field should be contiguous with the net-
work portion.FOLDOC

ptg

1162 Glossary

network
address

The network portion (netid) of an IP address. For a class A network, it is the first
byte, or segment, of the IP address; for a class B network, it is the first two bytes; and
for a class C network, it is the first three bytes. In each case the balance of the IP
address is the host address (hostid). Assigned network addresses are globally unique
within the Internet. Also network number. See also “Host Address” on page 381.

Network
Filesystem

See NFS.

Network
Information
Service

See NIS.

network
number

See network address.

network
segment

A part of an Ethernet or other network on which all message traffic is common to
all nodes; that is, it is broadcast from one node on the segment and received by all
others. This commonality normally occurs because the segment is a single continu-
ous conductor. Communication between nodes on different segments is via one or
more routers.FOLDOC

network
switch

A connecting device in networks. Switches are increasingly replacing shared media
hubs in an effort to increase bandwidth. For example, a 16-port 10BaseT hub
shares the total 10 megabits per second bandwidth with all 16 attached nodes. By
replacing the hub with a switch, both sender and receiver can take advantage of the
full 10 megabits per second capacity. Each port on the switch can give full band-
width to a single server or client station or to a hub with several stations. Network
switch refers to a device with intelligence. Contrast with hub (page 1152).

Network Time
Protocol

See NTP on page 1163.

NFS Network Filesystem. A remote filesystem designed by Sun Microsystems, available
on computers from most UNIX system vendors.

NIC Network interface card (or controller). An adapter circuit board installed in a com-
puter to provide a physical connection to a network.FOLDOC

NIS Network Information Service. A distributed service built on a shared database to
manage system-independent information (such as usernames and passwords).

NIS domain
name

A name that describes a group of systems that share a set of NIS files. Different
from domain name (page 1146).

NNTP Network News Transfer Protocol. Refer to “Usenet” on page 407.

node In a tree structure, the end of a branch that can support other branches. When the
Linux filesystem hierarchy is conceptualized as a tree, directories are nodes. See leaf
on page 1156.

nonprinting
character

See control character on page 1142. Also nonprintable character.

ptg

Glossary 1163

nonvolatile
storage

A storage device whose contents are preserved when its power is off. Also NVS and
persistent storage. Some examples are CD-ROM, paper punch tape, hard disk,
ROM (page 1169), PROM (page 1166), EPROM (page 1147), and EEPROM
(page 1147). Contrast with RAM (page 1167).

NTP Network Time Protocol. Built on top of TCP/IP, NTP maintains accurate local time
by referring to known accurate clocks on the Internet.

null string A string that could contain characters but does not. A string of zero length.

octal number A base 8 number. Octal numbers are composed of the digits 0–7, inclusive. Refer to
Table G-1 on page 1152.

one-way hash
function

A one-way function that takes a variable-length message and produces a fixed-
length hash. Given the hash, it is computationally infeasible to find a message with
that hash; in fact, you cannot determine any usable information about a message
with that hash. Also message digest function. See also hash (page 1151).

open source A method and philosophy for software licensing and distribution designed to
encourage use and improvement of software written by volunteers by ensuring that
anyone can copy the source code and modify it freely.

The term open source is now more widely used than the earlier term free software
(promoted by the Free Software Foundation; www.fsf.org) but has broadly the same
meaning—free of distribution restrictions, not necessarily free of charge.

OpenSSH A free version of the SSH (secure shell) protocol suite that replaces TELNET, rlogin,
and more with secure programs that encrypt all communication—even pass-
words—over a network. Refer to “OpenSSH: Secure Network Communication” on
page 663.

operating
system

A control program for a computer that allocates computer resources, schedules
tasks, and provides the user with a way to access resources.

option A command-line argument that modifies the effects of a command. Options are
usually preceded by hyphens on the command line and traditionally have single-
character names (such as –h or –n). Some commands allow you to group options
following a single hyphen (for example, –hn). GNU utilities frequently have two
arguments that do the same thing: a single-character argument and a longer, more
descriptive argument that is preceded by two hyphens (such as ––show-all and
––invert-match).

ordinary file A file that is used to store a program, text, or other user data. See directory
(page 1145) and device file (page 1145).

output Information that a program sends to the terminal or another file. See standard out-
put on page 1174.

P2P Peer-to-Peer. A network that does not divide nodes into clients and servers. Each
computer on a P2P network can fulfill the roles of client and server. In the context
of a file-sharing network, this ability means that once a node has downloaded (part
of) a file, it can act as a server. BitTorrent implements a P2P network.

www.fsf.org

ptg

1164 Glossary

packet A unit of data sent across a network. Packet is a generic term used to describe a unit
of data at any layer of the OSI protocol stack, but it is most correctly used to
describe network or application layer (page 380) data units (“application protocol
data unit,” APDU).FOLDOC See also frame (page 1149) and datagram (page 1144).

packet filtering A technique used to block network traffic based on specified criteria, such as the
origin, destination, or type of each packet. See also firewall (page 1148).

packet sniffer A program or device that monitors packets on a network. See sniff on page 1173.

pager A utility that allows you to view a file one screen at a time (for example, less and more).

paging The process by which virtual memory is maintained by the operating system. The
contents of process memory is moved (paged out) to the swap space (page 1175) as
needed to make room for other processes.

PAM Linux-PAM or Linux-Pluggable Authentication Modules. These modules allow a
system administrator to determine how various applications authenticate users.
Refer to “PAM” on page 478.

parent process A process that forks other processes. See process (page 1166) and child process
(page 1140).

partition A section of a (hard) disk that has a name so you can address it separately from
other sections. A disk partition can hold a filesystem or another structure, such as
the swap area. Under DOS and Windows, partitions (and sometimes whole disks)
are labeled C:, D:, and so on. Also disk partition and slice.

passive FTP Allows FTP to work through a firewall by allowing the flow of data to be initiated
and controlled by the client FTP program instead of the server. Also called PASV
FTP because it uses the FTP PASV command.

passphrase A string of words and characters that you type in to authenticate yourself. A pass-
phrase differs from a password only in length. A password is usually short—6 to 10
characters. A passphrase is usually much longer—up to 100 characters or more.
The greater length makes a passphrase harder to guess or reproduce than a pass-
word and therefore more secure.FOLDOC

password To prevent unauthorized access to a user’s account, an arbitrary string of characters
chosen by the user or system administrator and used to authenticate the user when
attempting to log in.FOLDOC See also passphrase.

PASV FTP See passive FTP.

pathname A list of directories separated by slashes (/) and ending with the name of a file,
which can be a directory. A pathname is used to trace a path through the file struc-
ture to locate or identify a file.

pathname, last
element of a

The part of a pathname following the final /, or the whole filename if there is no /.
A simple filename. Also basename.

pathname
element

One of the filenames that forms a pathname.

ptg

Glossary 1165

peripheral
device

See device on page 1145.

persistent Data that is stored on nonvolatile media, such as a hard disk.

phish An attempt to trick users into revealing or sharing private information, especially
passwords or financial information. The most common form is email purporting to
be from a bank or vendor that requests that a user fill out a form to “update” an
account on a phoney Web site disguised to appear legitimate. Generally sent as
spam (page 1173).

physical device A tangible device, such as a disk drive, that is physically separate from other, similar
devices.

PID Process identification, usually followed by the word number. Linux assigns a unique
PID number as each process is initiated.

pipe A connection between programs such that standard output of one program is con-
nected to standard input of the next. Also pipeline.

pixel The smallest element of a picture, typically a single dot on a display screen.

plaintext Text that is not encrypted. Also cleartext. Contrast with ciphertext (page 1141). See
also “Encryption” on page 1110.

Pluggable
Authentication
Modules

See PAM on page 1164.

point-to-point
link

A connection limited to two endpoints, such as the connection between a pair of
modems.

port A logical channel or channel endpoint in a communications system. The TCP
(page 1176) and UDP (page 1178) transport layer protocols used on Ethernet use
port numbers to distinguish between different logical channels on the same network
interface on the same computer.

The /etc/services file (see the beginning of this file for more information) or the NIS
(page 1162) services database specifies a unique port number for each application
program. The number links incoming data to the correct service (program). Standard,
well-known ports are used by everyone: Port 80 is used for HTTP (Web) traffic. Some
protocols, such as TELNET and HTTP (which is a special form of TELNET), have
default ports specified as mentioned earlier but can use other ports as well.FOLDOC

port
forwarding

The process by which a network port on one computer is transparently connected to
a port on another computer. If port X is forwarded from system A to system B, any
data sent to port X on system A is sent to system B automatically. The connection
can be between different ports on the two systems. See also tunneling (page 1178).

portmapper A server that converts TCP/IP port numbers into RPC (page 1170) program num-
bers. See “RPC Network Services” on page 406.

ptg

1166 Glossary

printable
character

One of the graphic characters: a letter, number, or punctuation mark. Contrast with
a nonprintable, or CONTROL, character. Also printing character.

private address
space

IANA (page 1153) has reserved three blocks of IP addresses for private internets or
LANs:

10.0.0.0 - 10.255.255.255
172.16.0.0 - 172.31.255.255
192.168.0.0 - 192.168.255.255

You can use these addresses without coordinating with anyone outside of your LAN
(you do not have to register the system name or address). Systems using these IP
addresses cannot communicate directly with hosts using the global address space
but must go through a gateway. Because private addresses have no global meaning,
routing information is not stored by DNSs and most ISPs reject privately addressed
packets. Make sure that your router is set up not to forward these packets onto the
Internet.

privileged port A port (page 1165) with a number less than 1024. On Linux and other UNIX-like
systems, only a process running with root privileges can bind to a privileged port.
Any user on Windows 98 and earlier Windows systems can bind to any port. Also
reserved port.

procedure A sequence of instructions for performing a particular task. Most programming lan-
guages, including machine languages, enable a programmer to define procedures that
allow the procedure code to be called from multiple places. Also subroutine.FOLDOC

process The execution of a command by Linux. See “Processes” on page 328.

.profile file A startup file in a user’s home directory that the Bourne Again or Z Shell executes
when you log in. The TC Shell executes .login instead. You can use the .profile file
to run commands, set variables, and define functions.

program A sequence of executable computer instructions contained in a file. Linux utilities,
applications, and shell scripts are all programs. Whenever you run a command that
is not built into a shell, you are executing a program.

PROM Programmable readonly memory. A kind of nonvolatile storage. ROM (page 1169)
that can be written to using a PROM programmer.

prompt A cue from a program, usually displayed on the screen, indicating that it is waiting
for input. The shell displays a prompt, as do some of the interactive utilities, such as
mail. By default the Bourne Again and Z Shells use a dollar sign ($) as a prompt, and
the TC Shell uses a percent sign (%).

protocol A set of formal rules describing how to transmit data, especially across a network.
Low-level protocols define the electrical and physical standards, bit and byte
ordering, and transmission, error detection, and correction of the bit stream. High-
level protocols deal with data formatting, including message syntax, terminal-to-
computer dialog, character sets, and sequencing of messages.FOLDOC

proxy A service that is authorized to act for a system while not being part of that system.
See also proxy gateway and proxy server.

ptg

Glossary 1167

proxy gateway A computer that separates clients (such as browsers) from the Internet, working as a
trusted agent that accesses the Internet on their behalf. A proxy gateway passes a
request for data from an Internet service, such as HTTP from a browser/client, to a
remote server. The data that the server returns goes back through the proxy gate-
way to the requesting service. A proxy gateway should be transparent to the user.

A proxy gateway often runs on a firewall (page 1148) system and acts as a barrier
to malicious users. It hides the IP addresses of the local computers inside the firewall
from Internet users outside the firewall.

You can configure browsers, such as Mozilla/Firefox and Netscape, to use a differ-
ent proxy gateway or to use no proxy for each URL access method including FTP,
netnews, SNMP, HTTPS, and HTTP. See also proxy.

proxy server A proxy gateway that usually includes a cache (page 1139) that holds frequently
used Web pages so that the next request for that page is available locally (and there-
fore more quickly). The terms proxy server and proxy gateway are frequently inter-
changed so that the use of cache does not rest exclusively with the proxy server. See
also proxy.

Python A simple, high-level, interpreted, object-oriented, interactive language that bridges
the gap between C and shell programming. Suitable for rapid prototyping or as an
extension language for C applications, Python supports packages, modules, classes,
user-defined exceptions, a good C interface, and dynamic loading of C modules. It
has no arbitrary restrictions. For more information, see www.python.org.FOLDOC

quote When you quote a character, you take away any special meaning that it has in the
current context. You can quote a character by preceding it with a backslash. When
you are interacting with the shell, you can also quote a character by surrounding it
with single quotation marks. For example, the command echo * or echo '*' dis-
plays *. The command echo * displays a list of the files in the working directory. See
ambiguous file reference (page 1134), metacharacter (page 1159), regular character
(page 1168), regular expression (page 1168), and special character (page 1173). See
also escape on page 1147.

radio button In a GUI, one of a group of buttons similar to those used to select the station on a
car radio. Radio buttons within a group are mutually exclusive; only one button
can be selected at a time.

RAID Redundant array of inexpensive/independent disks. Two or more (hard) disk drives
used in combination to improve fault tolerance and performance. RAID can be
implemented in hardware or software.

RAM Random access memory. A kind of volatile storage. A data storage device for which
the order of access to different locations does not affect the speed of access. Con-
trast with a hard disk or tape drive, which provides quicker access to sequential
data because accessing a nonsequential location requires physical movement of the
storage medium and/or read/write head rather than just electronic switching. Con-
trast with nonvolatile storage (page 1163). Also memory.FOLDOC

www.python.org

ptg

1168 Glossary

RAM disk RAM that is made to look like a floppy diskette or hard disk. A RAM disk is fre-
quently used as part of the boot (page 1138) process.

RAS Remote access server. In a network, a computer that provides access to remote users
via analog modem or ISDN connections. RAS includes the dial-up protocols and
access control (authentication). It may be a regular fileserver with remote access
software or a proprietary system, such as Shiva’s LANRover. The modems may be
internal or external to the device.

RDF Resource Description Framework. Being developed by W3C (the main standards
body for the World Wide Web), a standard that specifies a mechanism for encod-
ing and transferring metadata (page 1159). RDF does not specify what the meta-
data should or can be. It can integrate many kinds of applications and data, using
XML as an interchange syntax. Examples of the data that can be integrated
include library catalogs and worldwide directories; syndication and aggregation
of news, software, and content; and collections of music and photographs. Go to
www.w3.org/RDF for more information.

redirection The process of directing standard input for a program to come from a file rather
than from the keyboard. Also, directing standard output or standard error to go to
a file rather than to the screen.

reentrant Code that can have multiple simultaneous, interleaved, or nested invocations that
do not interfere with one another. Noninterference is important for parallel process-
ing, recursive programming, and interrupt handling.

It is usually easy to arrange for multiple invocations (that is, calls to a subroutine)
to share one copy of the code and any readonly data. For the code to be reentrant,
however, each invocation must use its own copy of any modifiable data (or synchro-
nized access to shared data). This goal is most often achieved by using a stack and
allocating local variables in a new stack frame for each invocation. Alternatively,
the caller may pass in a pointer to a block of memory that that invocation can use
(usually for output), or the code may allocate some memory on a heap, especially if
the data must survive after the routine returns.

Reentrant code is often found in system software, such as operating systems and
teleprocessing monitors. It is also a crucial component of multithreaded programs,
where the term thread-safe is often used instead of reentrant.FOLDOC

regular
character

A character that always represents itself in an ambiguous file reference or another
type of regular expression. Contrast with special character.

regular
expression

A string—composed of letters, numbers, and special symbols—that defines one or
more strings. See Appendix A.

relative
pathname

A pathname that starts from the working directory. Contrast with absolute path-
name (page 1134).

www.w3.org/RDF

ptg

Glossary 1169

remote access
server

See RAS on page 1168.

remote
filesystem

A filesystem on a remote computer that has been set up so that you can access (usu-
ally over a network) its files as though they were stored on your local computer’s
disks. An example of a remote filesystem is NFS.

remote
procedure call

See RPC on page 1170.

resolver The TCP/IP library software that formats requests to be sent to the DNS
(page 1145) for hostname-to-Internet address conversion.FOLDOC

Resource
Description
Framework

See RDF on page 1168.

restore The process of turning an icon into a window. Contrast with iconify (page 1153)

return code See exit status on page 1147.

RFC Request for comments. Begun in 1969, one of a series of numbered Internet infor-
mational documents and standards widely followed by commercial software and
freeware in the Internet and UNIX/Linux communities. Few RFCs are standards
but all Internet standards are recorded in RFCs. Perhaps the single most influential
RFC has been RFC 822, the Internet electronic mail format standard.

The RFCs are unusual in that they are floated by technical experts acting on their
own initiative and reviewed by the Internet at large rather than being formally pro-
mulgated through an institution such as ANSI. For this reason they remain known as
RFCs, even after they are adopted as standards. The RFC tradition of pragmatic,
experience-driven, after-the-fact standard writing done by individuals or small work-
ing groups has important advantages over the more formal, committee-driven process
typical of ANSI or ISO. For a complete list of RFCs, go to www.rfc-editor.org.FOLDOC

roam To move a computer between wireless access points (page 1181) on a wireless net-
work without the user or applications being aware of the transition. Moving
between access points typically results in some packet loss, although this loss is
transparent to programs that use TCP.

ROM Readonly memory. A kind of nonvolatile storage. A data storage device that is man-
ufactured with fixed contents. In general, ROM describes any storage system whose
contents cannot be altered, such as a phonograph record or printed book. When
used in reference to electronics and computers, ROM describes semiconductor inte-
grated circuit memories, of which several types exist, and CD-ROM.

ROM is nonvolatile storage—it retains its contents even after power has been
removed. ROM is often used to hold programs for embedded systems, as these usu-
ally have a fixed purpose. ROM is also used for storage of the BIOS (page 1137) in
a computer. Contrast with RAM (page 1167).FOLDOC

www.rfc-editor.org

ptg

1170 Glossary

root directory The ancestor of all directories and the start of all absolute pathnames. The root
directory has no name and is represented by / standing alone or at the left end of a
pathname.

root filesystem The filesystem that is available when the system is brought up in recovery mode.
This filesystem is always represented by /. You cannot unmount or mount the root
filesystem. You can remount root to change its mount options.

root login Usually the username of Superuser (page 1175).

root (user) Another name for Superuser (page 1175).

root window Any place on the desktop not covered by a window, object, or panel.

rotate When a file, such as a log file, gets indefinitely larger, you must keep it from taking
up too much space on the disk. Because you may need to refer to the information
in the log files in the near future, it is generally not a good idea to delete the con-
tents of the file until it has aged. Instead you can periodically save the current log
file under a new name and create a new, empty file as the current log file. You can
keep a series of these files, renaming each as a new one is saved. You will then
rotate the files. For example, you might remove xyzlog.4, xyzlog.3→xyzlog.4,
xyzlog.2→xyzlog.3, xyzlog.1→xyzlog.2, xyzlog→xyzlog.1, and create a new
xyzlog file. By the time you remove xyzlog.4, it will not contain any information
more recent than you want to remove.

router A device (often a computer) that is connected to more than one similar type of net-
work to pass data between them. See gateway on page 1149.

RPC Remote procedure call. A call to a procedure (page 1166) that acts transparently
across a network. The procedure itself is responsible for accessing and using the net-
work. The RPC libraries make sure that network access is transparent to the appli-
cation. RPC runs on top of TCP/IP or UDP/IP.

RSA A public key encryption (page 1111) technology that is based on the lack of an effi-
cient way to factor very large numbers. Because of this lack, it takes an extraordi-
nary amount of computer processing time and power to deduce an RSA key. The
RSA algorithm is the de facto standard for data sent over the Internet.

run To execute a program.

runlevel Before the introduction of Upstart daemon, runlevels specified the state of the sys-
tem, including recovery (single-user) and multiuser. For more information refer to
“Runlevel emulation” on page 434.

Samba A free suite of programs that implement the Server Message Block (SMB) protocol.
See SMB (page 1172).

schema Within a GUI, a pattern that helps you see and interpret the information that is
presented in a window, making it easier to understand new information that is pre-
sented using the same schema.

ptg

Glossary 1171

scroll To move lines on a terminal or window up and down or left and right.

scrollbar A widget (page 1180) found in graphical user interfaces that controls (scrolls)
which part of a document is visible in the window. A window can have a horizontal
scrollbar, a vertical scrollbar (more common), or both.FOLDOC

server A powerful centralized computer (or program) designed to provide information to
clients (smaller computers or programs) on request.

session The lifetime of a process. For a desktop, it is the desktop session manager. For a
character-based terminal, it is the user’s login shell process. In KDE, it is launched
by kdeinit. A session may also be the sequence of events between when you start
using a program, such as an editor, and when you finish.

setgid When you execute a file that has setgid (set group ID) permission, the process exe-
cuting the file takes on the privileges of the group the file belongs to. The ls utility
shows setgid permission as an s in the group’s executable position. See also setuid.

setuid When you execute a file that has setuid (set user ID) permission, the process execut-
ing the file takes on the privileges of the owner of the file. As an example, if you run
a setuid program that removes all the files in a directory, you can remove files in any
of the file owner’s directories, even if you do not normally have permission to do so.
When the program is owned by root, you can remove files in any directory that a
user working with root privileges can remove files from. The ls utility shows setuid
permission as an s in the owner’s executable position. See also setgid.

sexillion In the British system, 1036. In the American system, this number is named undecil-
lion. See also large number (page 1156).

SHA1 Secure Hash Algorithm 1. The SHA family is a set of cryptographic hash
(page 1151) algorithms that were designed by the National Security Agency (NSA).
The second member of this family is SHA1, a successor to MD5 (page 1159). See
also cryptography on page 1143.

share A filesystem hierarchy that is shared with another system using SMB (page 1172).
Also Windows share (page 1181).

shared
network
topology

A network, such as Ethernet, in which each packet may be seen by systems other
than its destination system. Shared means that the network bandwidth is shared by
all users.

shell A Linux system command processor. The three major shells are the Bourne Again
Shell (page 1138), the TC Shell (page 1176), and the Z Shell (page 1182).

shell function A series of commands that the shell stores for execution at a later time. Shell func-
tions are like shell scripts but run more quickly because they are stored in the com-
puter’s main memory rather than in files. Also, a shell function is run in the
environment of the shell that calls it (unlike a shell script, which is typically run in a
subshell).

ptg

1172 Glossary

shell script An ASCII file containing shell commands. Also shell program.

signal A very brief message that the UNIX system can send to a process, apart from the
process’s standard input. Refer to “trap: Catches a Signal” on page 1009.

simple
filename

A single filename containing no slashes (/). A simple filename is the simplest form
of pathname. Also the last element of a pathname. Also basename (page 1137).

single-user
system

A computer system that only one person can use at a time. Contrast with multiuser
system (page 1161).

slider A widget (page 1180) that allows a user to set a value by dragging an indicator
along a line. Many sliders allow the user also to click on the line to move the indica-
tor. Differs from a scrollbar (page 1171) in that moving the indicator does not
change other parts of the display.

SMB Server Message Block. Developed in the early 1980s by Intel, Microsoft, and IBM,
SMB is a client/server protocol that is the native method of file and printer sharing
for Windows. In addition, SMB can share serial ports and communications abstrac-
tions, such as named pipes and mail slots. SMB is similar to a remote procedure call
(RPC, page 1170) that has been customized for filesystem access. Also Microsoft
Networking.FOLDOC

SMP Symmetric multiprocessing. Two or more similar processors connected via a high-
bandwidth link and managed by one operating system, where each processor has
equal access to I/O devices. The processors are treated more or less equally, with
application programs able to run on any or all processors interchangeably, at the
discretion of the operating system.FOLDOC

smiley A character-based glyph (page 1150), typically used in email, that conveys an emo-
tion. The characters :-) in a message portray a smiley face (look at it sideways).
Because it can be difficult to tell when the writer of an electronic message is saying
something in jest or in seriousness, email users often use :-) to indicate humor. The
two original smileys, designed by Scott Fahlman, were :-) and :-(. Also emoticon,
smileys, and smilies. For more information search on smiley on the Internet.

smilies See smiley.

SMTP Simple Mail Transfer Protocol. A protocol used to transfer electronic mail between
computers. It is a server-to-server protocol, so other protocols are used to access the
messages. The SMTP dialog usually happens in the background under the control of
a message transport system such as exim4.FOLDOC

snap
(windows)

As you drag a window toward another window or edge of the workspace, it can
move suddenly so that it is adjacent to the other window/edge. Thus the window
snaps into position.

sneakernet Using hand-carried magnetic media to transfer files between machines.

ptg

Glossary 1173

sniff To monitor packets on a network. A system administrator can legitimately sniff
packets and a malicious user can sniff packets to obtain information such as user-
names and passwords. See also packet sniffer (page 1164).

SOCKS A networking proxy protocol embodied in a SOCKS server, which performs the
same functions as a proxy gateway (page 1167) or proxy server (page 1167).
SOCKS works at the application level, requiring that an application be modified to
work with the SOCKS protocol, whereas a proxy (page 1166) makes no demands
on the application.

SOCKSv4 does not support authentication or UDP proxy. SOCKSv5 supports a
variety of authentication methods and UDP proxy.

sort To put in a specified order, usually alphabetic or numeric.

SPACE character A character that appears as the absence of a visible character. Even though you
cannot see it, a SPACE is a printable character. It is represented by the ASCII code 32
(decimal). A SPACE character is considered a blank or whitespace (page 1180).

spam Posting irrelevant or inappropriate messages to one or more Usenet newsgroups or
mailing lists in deliberate or accidental violation of netiquette (page 1161). Also,
sending large amounts of unsolicited email indiscriminately. This email usually pro-
motes a product or service. Another common purpose of spam is to phish
(page 1165). Spam is the electronic equivalent of junk mail. From the Monty
Python “Spam” song.FOLDOC

sparse file A file that is large but takes up little disk space. The data in a sparse file is not dense
(thus its name). Examples of sparse files are core files and dbm files.

spawn See fork on page 1149.

special
character

A character that has a special meaning when it occurs in an ambiguous file reference
or another type of regular expression, unless it is quoted. The special characters
most commonly used with the shell are * and ?. Also metacharacter (page 1159)
and wildcard.

special file See device file on page 1145.

spin box In a GUI, a type of text box (page 1176) that holds a number you can change by
typing over it or using the up and down arrows at the end of the box. Also spinner.

spinner See spin box.

spoofing See IP spoofing on page 1154.

spool To place items in a queue, each waiting its turn for some action. Often used when
speaking about printers. Also used to describe the queue.

SQL Structured Query Language. A language that provides a user interface to relational
database management systems (RDBMS). SQL, the de facto standard, is also an ISO
and ANSI standard and is often embedded in other programming languages.FOLDOC

ptg

1174 Glossary

square bracket A left square bracket ([) or a right square bracket (]). These special characters
define character classes in ambiguous file references and other regular expressions.

SSH
Communica-
tions Security

The company that created the original SSH (secure shell) protocol suite
(www.ssh.com). Linux uses OpenSSH (page 1163).

standard error A file to which a program can send output. Usually only error messages are sent to
this file. Unless you instruct the shell otherwise, it directs this output to the screen
(that is, to the device file that represents the screen).

standard input A file from which a program can receive input. Unless you instruct the shell other-
wise, it directs this input so that it comes from the keyboard (that is, from the device
file that represents the keyboard).

standard
output

A file to which a program can send output. Unless you instruct the shell otherwise, it
directs this output to the screen (that is, to the device file that represents the screen).

startup file A file that the login shell runs when you log in. The Bourne Again and Z Shells run
.profile, and the TC Shell runs .login. The TC Shell also runs .cshrc whenever a new
TC Shell or a subshell is invoked. The Z Shell runs an analogous file whose name is
identified by the ENV variable.

status line The bottom (usually the twenty-fourth) line of the terminal. The vim editor uses the
status line to display information about what is happening during an editing session.

sticky bit Originally, an access permission bit that caused an executable program to remain
on the swap area of the disk. Today, Linux kernels do not use the sticky bit for this
purpose but rather use it to control who can remove files from a directory. In this
new capacity, the sticky bit is called the restricted deletion flag. If this bit is set on a
directory, a file in the directory can be removed or renamed only by a user who is
working with root privileges or by a user who has write permission for the directory
and who owns the file or the directory.

streaming tape A tape that moves at a constant speed past the read/write heads rather than speed-
ing up and slowing down, which can slow the process of writing to or reading from
the tape. A proper blocking factor helps ensure that the tape device will be kept
streaming.

streams See connection-oriented protocol on page 1142.

string A sequence of characters.

stylesheet See CSS on page 1143.

subdirectory A directory that is located within another directory. Every directory except the root
directory is a subdirectory.

subnet Subnetwork. A portion of a network, which may be a physically independent net-
work segment, that shares a network address with other portions of the network

www.ssh.com

ptg

Glossary 1175

and is distinguished by a subnet number. A subnet is to a network as a network is to
an internet.FOLDOC

subnet address The subnet portion of an IP address. In a subnetted network, the host portion of an
IP address is split into a subnet portion and a host portion using a subnet mask (also
address mask). See also subnet number.

subnet mask A bit mask used to identify which bits in an IP address correspond to the network
address and subnet portions of the address. Called a subnet mask because the net-
work portion of the address is determined by the number of bits that are set in the
mask. The subnet mask has ones in positions corresponding to the network and
subnet numbers and zeros in the host number positions. Also address mask.

subnet number The subnet portion of an IP address. In a subnetted network, the host portion of an
IP address is split into a subnet portion and a host portion using a subnet mask.
Also address mask. See also subnet address.

subpixel
hinting

Similar to anti-aliasing (page 1135) but takes advantage of colors to do the anti-
aliasing. Particularly useful on LCD screens.

subroutine See procedure on page 1166.

subshell A shell that is forked as a duplicate of its parent shell. When you run an executable
file that contains a shell script by using its filename on the command line, the shell
forks a subshell to run the script. Also, commands surrounded with parentheses are
run in a subshell.

superblock A block that contains control information for a filesystem. The superblock contains
housekeeping information, such as the number of inodes in the filesystem and free
list information.

superserver The extended Internet services daemon. Refer to xinetd on page 405.

Superuser A user working with root privileges. This user has access to anything any other sys-
tem user has access to and more. The system administrator must be able to become
Superuser (work with root privileges) to establish new accounts, change passwords,
and perform other administrative tasks. The username of Superuser is usually root.
Also root or root user.

swap The operating system moving a process from main memory to a disk, or vice versa.
Swapping a process to the disk allows another process to begin or continue execu-
tion. Refer to “swap” on page 498.

swap space An area of a disk (that is, a swap file) used to store the portion of a process’s mem-
ory that has been paged out. Under a virtual memory system, the amount of swap
space—rather than the amount of physical memory—determines the maximum size
of a single process and the maximum total size of all active processes. Also swap
area or swapping area.FOLDOC

switch See network switch on page 1162.

ptg

1176 Glossary

symbolic link A directory entry that points to the pathname of another file. In most cases a sym-
bolic link to a file can be used in the same ways a hard link can be used. Unlike a
hard link, a symbolic link can span filesystems and can connect to a directory.

system
administrator

The person responsible for the upkeep of the system. The system administrator has the
ability to log in as root or use sudo to work with root privileges. See also Superuser.

system console See console on page 1142.

system mode The designation for the state of the system while it is doing system work. Some
examples are making system calls, running NFS and autofs, processing network
traffic, and performing kernel operations on behalf of the system. Contrast with
user mode (page 1179).

System V One of the two major versions of the UNIX system.

TC Shell tcsh. An enhanced but completely compatible version of the BSD UNIX C shell, csh.

TCP Transmission Control Protocol. The most common transport layer protocol used on
the Internet. This connection-oriented protocol is built on top of IP (page 1154)
and is nearly always seen in the combination TCP/IP (TCP over IP). TCP adds reli-
able communication, sequencing, and flow control and provides full-duplex, pro-
cess-to-process connections. UDP (page 1178), although connectionless, is the
other protocol that runs on top of IP.FOLDOC

tera- In the binary system, the prefix tera- multiplies by 240 (1,099,511,627,776). Tera-
byte is a common use of this prefix. Abbreviated as T. See also large number on
page 1156.

termcap Terminal capability. On older systems, the /etc/termcap file contained a list of vari-
ous types of terminals and their characteristics. System V replaced the function of
this file with the terminfo system.

terminal Differentiated from a workstation (page 1181) by its lack of intelligence, a terminal
connects to a computer that runs Linux. A workstation runs Linux on itself.

terminfo Terminal information. The /usr/lib/terminfo directory contains many subdirecto-
ries, each containing several files. Each of those files is named for and holds a sum-
mary of the functional characteristics of a particular terminal. Visually oriented
textual programs, such as vim, use these files. An alternative to the termcap file.

text box A GUI widget (page 1180) that allows a user to enter text.

theme Defined as an implicit or recurrent idea, theme is used in a GUI to describe a look that
is consistent for all elements of a desktop. Go to themes.freshmeat.net for examples.

thicknet A type of coaxial cable (thick) used for an Ethernet network. Devices are attached
to thicknet by tapping the cable at fixed points.

thinnet A type of coaxial cable (thin) used for an Ethernet network. Thinnet cable is smaller
in diameter and more flexible than thicknet cable. Each device is typically attached

ptg

Glossary 1177

to two separate cable segments by using a T-shaped connector; one segment leads to
the device ahead of it on the network and one to the device that follows it.

thread-safe See reentrant on page 1168.

thumb The movable button in the scrollbar (page 1171) that positions the image in the
window. The size of the thumb reflects the amount of information in the buffer.
Also bubble.

tick A mark, usually in a check box (page 1140), that indicates a positive response. The
mark can be a check mark (✔) or an x. Also check mark or check.

TIFF Tagged Image File Format. A file format used for still-image bitmaps, stored in
tagged fields. Application programs can use the tags to accept or ignore fields,
depending on their capabilities.FOLDOC

tiled windows An arrangement of windows such that no window overlaps another. The opposite
of cascading windows (page 1139).

time to live See TTL.

toggle To switch between one of two positions. For example, the ftp glob command toggles
the glob feature: Give the command once, and it turns the feature on or off; give the
command again, and it sets the feature back to its original state.

token A basic, grammatically indivisible unit of a language, such as a keyword, operator,
or identifier.FOLDOC

token ring A type of LAN (page 1156) in which computers are attached to a ring of cable. A
token packet circulates continuously around the ring. A computer can transmit
information only when it holds the token.

tooltip A minicontext help system that a user activates by allowing the mouse pointer to
hover (page 1152) over an object (such as those on a panel).

transient
window

A dialog or other window that is displayed for only a short time.

Transmission
Control
Protocol

See TCP on page 1176.

Trojan horse A program that does something destructive or disruptive to your system. Its action
is not documented, and the system administrator would not approve of it if she
were aware of it. See “Avoiding a Trojan Horse” on page 453.

The term Trojan horse was coined by MIT-hacker-turned-NSA-spook Dan
Edwards. It refers to a malicious security-breaking program that is disguised as
something benign, such as a directory lister, archive utility, game, or (in one notori-
ous 1990 case on the Mac) a program to find and destroy viruses. Similar to back
door (page 1136).FOLDOC

ptg

1178 Glossary

TTL Time to live.

1. All DNS records specify how long they are good for—usually up to a week
at most. This time is called the record’s time to live. When a DNS server or
an application stores this record in cache (page 1139), it decrements the
TTL value and removes the record from cache when the value reaches
zero. A DNS server passes a cached record to another server with the cur-
rent (decremented) TTL guaranteeing the proper TTL, no matter how
many servers the record passes through.

2. In the IP header, a field that indicates how many more hops the packet
should be allowed to make before being discarded or returned.

TTY Teletypewriter. The terminal device that UNIX was first run from. Today TTY
refers to the screen (or window, in the case of a terminal emulator), keyboard, and
mouse that are connected to a computer. This term appears in UNIX, and Linux has
kept the term for the sake of consistency and tradition.

tunneling Encapsulation of protocol A within packets carried by protocol B, such that A
treats B as though it were a data link layer. Tunneling is used to transfer data
between administrative domains that use a protocol not supported by the internet
connecting those domains. It can also be used to encrypt data sent over a public
internet, as when you use ssh to tunnel a protocol over the Internet.FOLDOC See also
VPN (page 1180) and port forwarding (page 1165).

UDP User Datagram Protocol. The Internet standard transport layer protocol that pro-
vides simple but unreliable datagram services. UDP is a connectionless protocol
(page 1142) that, like TCP (page 1176), is layered on top of IP (page 1154).

Unlike TCP, UDP neither guarantees delivery nor requires a connection. As a result
it is lightweight and efficient, but the application program must handle all error
processing and retransmission. UDP is often used for sending time-sensitive data
that is not particularly sensitive to minor loss, such as audio and video data.FOLDOC

UID User ID. A number that the passwd database associates with a username.

undecillion In the American system, 1036. In the British system, this number is named sexillion.
See also large number (page 1156).

unicast A packet sent from one host to another host. Unicast means one source and one
destination.

Unicode A character encoding standard that was designed to cover all major modern written
languages with each character having exactly one encoding and being represented
by a fixed number of bits.

unmanaged
window

See ignored window on page 1153.

ptg

Glossary 1179

URI Universal Resource Identifier. The generic set of all names and addresses that are
short strings referring to objects (typically on the Internet). The most common kinds
of URIs are URLs.FOLDOC

URL Uniform (was Universal) Resource Locator. A standard way of specifying the loca-
tion of an object, typically a Web page, on the Internet. URLs are a subset of URIs.

usage message A message displayed by a command when you call the command using incorrect
command-line arguments.

User
Datagram
Protocol

See UDP.

User ID See UID.

user interface See interface on page 1154.

user mode The designation for the state of the system while it is doing user work, such as run-
ning a user program (but not the system calls made by the program). Contrast with
system mode (page 1176).

username The name you enter in response to the login: prompt. Other users use your user-
name when they send you mail or write to you. Each username has a corresponding
user ID, which is the numeric identifier for the user. Both the username and the user
ID are stored in the passwd database (/etc/passwd or the NIS equivalent). Also
login name.

userspace The part of memory (RAM) where applications reside. Code running in userspace
cannot access hardware directly and cannot access memory allocated to other appli-
cations. Also userland. See the KernelAnalysis-HOWTO.

UTC Coordinated Universal Time. UTC is the equivalent to the mean solar time at the
prime meridian (0 degrees longitude). Also called Zulu time (Z stands for longitude
zero) and GMT (Greenwich Mean Time).

UTF-8 An encoding that allows Unicode (page 1178) characters to be represented using
sequences of 8-bit bytes.

utility A program included as a standard part of Linux. You typically invoke a utility
either by giving a command in response to a shell prompt or by calling it from
within a shell script. Utilities are often referred to as commands. Contrast with
builtin (command) (page 1139).

UUID Universally Unique Identifier. A 128-bit number that uniquely identifies an object
on the Internet. Frequently used on Linux systems to identify an ext2, ext3, or ext4
disk partition.

ptg

1180 Glossary

variable A name and an associated value. The shell allows you to create variables and use
them in shell scripts. Also, the shell inherits several variables when it is invoked, and
it maintains those and other variables while it is running. Some shell variables
establish characteristics of the shell environment; others have values that reflect dif-
ferent aspects of your ongoing interaction with the shell.

viewport Same as workspace (page 1181).

virtual console Additional consoles, or displays, that you can view on the system, or physical, con-
sole. See page 149 for more information.

virus A cracker (page 1143) program that searches out other programs and “infects”
them by embedding a copy of itself in them, so that they become Trojan horses
(page 1177). When these programs are executed, the embedded virus is executed as
well, propagating the “infection,” usually without the user’s knowledge. By analogy
with biological viruses.FOLDOC

VLAN Virtual LAN. A logical grouping of two or more nodes that are not necessarily on
the same physical network segment but that share the same network number. A
VLAN is often associated with switched Ethernet.FOLDOC

VPN Virtual private network. A private network that exists on a public network, such as
the Internet. A VPN is a less expensive substitute for company-owned/leased lines
and uses encryption (page 1110) to ensure privacy. A nice side effect is that you can
send non-Internet protocols, such as AppleTalk, IPX, or NetBIOS (page 1161), over
the VPN connection by tunneling (page 1178) them through the VPN IP stream.

W2K Windows 2000 Professional or Server.

W3C World Wide Web Consortium (www.w3.org).

WAN Wide area network. A network that interconnects LANs (page 1156) and MANs
(page 1159), spanning a large geographic area (typically states or countries).

WAP Wireless access point. A bridge or router between wired and wireless networks.
WAPs typically support some form of access control to prevent unauthorized clients
from connecting to the network.

Web ring A collection of Web sites that provide information on a single topic or group of
related topics. Each home page that is part of the Web ring has a series of links that
let you go from site to site.

whitespace A collective name for SPACEs and/or TABs and occasionally NEWLINEs. Also white space.

wide area
network

See WAN.

widget The basic objects of a graphical user interface. A button, combo box (page 1141),
and scrollbar (page 1171) are examples of widgets.

wildcard See metacharacter on page 1159.

www.w3.org

ptg

Glossary 1181

Wi-Fi Wireless Fidelity. A generic term that refers to any type of 802.11 (page 1134) wire-
less network.

window On a display screen, a region that runs or is controlled by a particular program.

window
manager

A program that controls how windows appear on a display screen and how you
manipulate them.

Windows
share

See share on page 1171.

WINS Windows Internet Naming Service. The service responsible for mapping NetBIOS
names to IP addresses. WINS has the same relationship to NetBIOS names that
DNS has to Internet domain names.

WINS server The program responsible for handling WINS requests. This program caches name
information about hosts on a local network and resolves them to IP addresses.

wireless access
point

See WAP.

word A sequence of one or more nonblank characters separated from other words by TABs,
SPACEs, or NEWLINEs. Used to refer to individual command-line arguments. In vim, a
word is similar to a word in the English language—a string of one or more charac-
ters bounded by a punctuation mark, a numeral, a TAB, a SPACE, or a NEWLINE.

Work buffer A location where vim stores text while it is being edited. The information in the
Work buffer is not written to the file on the disk until you give the editor a com-
mand to write it.

working
directory

The directory that you are associated with at any given time. The relative path-
names you use are relative to the working directory. Also current directory.

workspace A subdivision of a desktop (page 1144) that occupies the entire display. See page 118.

workstation A small computer, typically designed to fit in an office and be used by one person
and usually equipped with a bit-mapped graphical display, keyboard, and mouse.
Differentiated from a terminal (page 1176) by its intelligence. A workstation runs
Linux on itself while a terminal connects to a computer that runs Linux.

worm A program that propagates itself over a network, reproducing itself as it goes.
Today the term has negative connotations, as it is assumed that only crackers
(page 1143) write worms. Compare to virus (page 1180) and Trojan horse
(page 1177). From Tapeworm in John Brunner’s novel, The Shockwave Rider, Bal-
lantine Books, 1990 (via XEROX PARC).FOLDOC

WYSIWYG What You See Is What You Get. A graphical application, such as a word processor,
whose display is similar to its printed output.

X server The X server is the part of the X Window System that runs the mouse, keyboard,
and display. (The application program is the client.)

ptg

1182 Glossary

X terminal A graphics terminal designed to run the X Window System.

X Window
System

A design and set of tools for writing flexible, portable windowing applications, cre-
ated jointly by researchers at MIT and several leading computer manufacturers.

XDMCP X Display Manager Control Protocol. XDMCP allows the login server to accept
requests from network displays. XDMCP is built into many X terminals.

xDSL Different types of DSL (page 1147) are identified by a prefix, for example, ADSL,
HDSL, SDSL, and VDSL.

Xinerama An extension to X.org. Xinerama allows window managers and applications to
use the two or more physical displays as one large virtual display. Refer to the
Xinerama-HOWTO.

XML Extensible Markup Language. A universal format for structured documents and
data on the Web. Developed by W3C (page 1180), XML is a pared-down version of
SGML. See www.w3.org/XML and www.w3.org/XML/1999/XML-in-10-points.

XSM X Session Manager. This program allows you to create a session that includes cer-
tain applications. While the session is running, you can perform a checkpoint (saves
the application state) or a shutdown (saves the state and exits from the session).
When you log back in, you can load your session so that everything in your session
is running just as it was when you logged off.

Z Shell zsh. A shell (page 1171) that incorporates many of the features of the Bourne Again
Shell (page 1138), Korn Shell (page 1156), and TC Shell (page 1176), as well as
many original features.

Zulu time See UTC on page 1179.

www.w3.org/XML
www.w3.org/XML/1999/XML-in-10-points

ptg

11831183

JumpStart Index

A
Apache: Getting Apache Up and Running 903
APT: Installing and Removing Packages Using

aptitude 519

C
CUPS: Configuring a Local Printer 549
CUPS: Setting Up a Local or Remote Printer Using

the CUPS Web Interface 555

D
DNS: Setting Up a DNS Cache 834

F
firestarter: Configuring a Firewall Using the Firewall

Wizard 867
FTP: Downloading Files using ftp 690
FTP: Starting a vsftpd FTP Server 700

M
Mail: Configuring exim4 to Send and Receive

Mail 718
Mail: Configuring exim4 to Use a Smarthost 716
MySQL: Setting Up MySQL 629

N
NFS: Configuring an NFS Server Using

shares-admin 783–785
NFS: Mounting a Remote Directory

Hierarchy 777–780

O
OpenSSH: Starting an OpenSSH Server 677
OpenSSH: Using ssh and scp to Connect to an

OpenSSH Server 667

S
Samba: Configuring a Samba Server Using

system-config-samba 800

ptg

This page intentionally left blank

ptg

11851185

File Tree Index

A light page number such as 456 indicates a brief mention.

/bin 213
echo 995
false 495

/boot 38, 213, 582, 583, 613
grub

grub.cfg 447, 587
menu.lst 584

/dev 213, 244, 488, 502
disk

by-path 489
by-uuid 489

fdn 488
hdn 489
null 250, 489, 622, 973
pts 490
random 490
sdn 489
tty 1008
urandom 490
zero 491

/etc 214
aliases 619, 722
alternatives 491
anacrontab 402, 607
apache2

apache2.conf 906, 932–934
conf.d 908

/etc, continued
envvars 908
httpd.conf 908
mods-available 905, 907
mods-available/alias.conf 907
mods-enabled 905, 908
ports.conf 908
sites-available 906, 908
sites-available/default 934
sites-enabled 906, 908

apt
apt.conf 524
apt.conf.d 524
sources.list 523

at.allow 491
at.deny 491
auto.master 793
bash.bashrc 492
bashrc 294
bind 836, 841

db.127 844
db.local 843
db.root 841
named.conf 836, 839–841, 851, 856
named.conf.options 841

ptg

1186 File Tree Index

/etc, continued
cacti

apache.conf 651
debian.php 651

cron.allow 491
cron.d 403, 606, 607
cron.daily 607
cron.deny 491
cron.monthly 607
cron.weekly 607
crontab 403, 606
cups

cupsd.conf 565
ppd 563

default
default 492

autofs 794
bind9 834
dhcp3-server 473
exim4 724
grub 584–586
nis 746, 751, 757
snmpd 655

defaultdomain 745, 746
dhcp3

dhclient.conf 472
dhcpd.conf 473, 474

dovecot
dovecot.conf 735

dumpdates 492, 603
event.d/tty1 439
exim4 724

exim.crt 736
exim.key 736
exim4.conf.localmacros 737
update-exim4.conf.conf 724

exports 783, 786–789
firestarter 866
fstab 507, 510, 778, 781
ftpusers 711

custom.conf 271
PreSession 449

group 492, 598, 1082
grub.d 586
hostname 493
hosts 386, 493
hosts.allow 463, 465–466
hosts.deny 463, 465–466
hosts.equiv 391, 1119
init 434, 438

/etc, continued
init.d 440

anacron 607
apache2 901

init
control-alt-delete 451
rc.conf 438, 445
rcS.conf 445
rc-sysinit.conf 439

inittab 439, 493
issue 147
ldap

schema 758
slapd.d/cn=config 761

lftp.conf 674
login.defs 494, 597
logrotate.conf 622–624
logrotate.d 622, 624
magic 500
mailman

mm_cfg.py 735
mailname 718
motd 494, 615
mtab 494
nologin 495
nologin.txt 481
nsswitch.conf 475–477, 742
ntp.conf 404
opt 214
pam.d 478
passwd 448, 494–495
printcap 495
profile 294, 495
protocols 495, 888
rc.local 441
rcn.d 440–443
resolv.conf 496, 834, 835
rpc 496
rsyslog.conf 626–627
samba

smb.conf 804, 807–814
smbusers 799

securetty 421
security

access.conf 421
services 402, 497
shadow 448, 497
shells 457
skel 597
ssh 665

ptg

File Tree Index 1187

/etc, continued
ssh

ssh_config 674
ssh_known_hosts 668–670
sshd_config 679

ssl
sslvsftpd.pem 710
sudoers 426–431
termcap 1176
ufw

applications.d 874
vsftpd.banned_emails 703
vsftpd.conf 701
vsftpd.user_list 702, 711
X11 214
yp.conf 747
ypserv.conf 751

/home 39, 214
ftp 700, 703, 705

/lib 214
modules 214, 580
security 478

/lost+found 488
/mnt 214
/opt 39, 214, 541
/proc 214, 497

mounts 494, 790
sys 572

/root 214
/sbin 214
/srv

ftp 700, 703, 705
/sys 214, 499
/target 36, 84
/tmp 214, 983
/usr 39, 214

bin 214
htpasswd 907
test 956

games 214
include 214
lib 214

cgi-bin 908
terminfo 1176

local 39, 214, 542
pub

ascii 1135
sbin 214

apache2 907
apache2ctl 907
nologin 495
rotatelogs 907

/usr, continued
share 214
shareerror 908
shareicons 908

doc 143, 215, 408, 616, 1100
shareapache2-doc/manual
shareapache2-docindex.html.* 908

file
sharemagic 500

info 215
magic 1158
man 215
ppd

sharecustom 563
recovery-mode 447

src 215
linux 575

srcDocumentation 143
/var 38, 215

cache
apt

cachearchives 524, 533
exim4

mainlog 720
lib

apt
liblists 524

dhcp3 472
dpkg

libavailable 533, 534
libstatus 533

exim4
libconfig.autogenerated 724
libDB_CONFIG 760

named 847
libetc
lib bind 836

nfs
libetab 789
librmtab 790
log 39, 215, 500, 626, 1100

apache2 908
logaccess_log 908
logerror_log 908

aptitude 526
auth.log 500, 1100
messages 500, 617, 1100
syslog 849
vsftpd.log 708, 711
wtmp 623

ptg

1188 File Tree Index

/var, continued
mail 720

name 321
spool 215, 1100

cron
spoolcrontabs 403, 606
www 902, 905, 909
yp

Makefile 753
nicknames 743
nisdomainname 743
securenets 753

~/ (a user’s home directory)
.bash_history 330
.bash_login 294
.bash_logout 294
.bash_profile 294, 331, 351, 488

~/ (a user’s home directory), continued
.bashrc 294, 488
.cshrc 1143
.dmrc 449
.forward 723
.inputrc 343
.login 1158
.logout 1158
.netrc 694
.pgpkey 182
.plan 182
.profile 294, 1166
.project 182
.rhosts 391
.ssh/config 674
.ssh/known_hosts 668–670
.toprc 610

ptg

11891189

Utility Index

A light page number such as 456 indicates a brief mention. Page numbers followed by the letter t
refer to tables.

Symbols
. (dot) 296, 1007
: (null) 1002, 1011
[[...]] 1018

A
a2dismod 905
a2dissite 906
a2enmod 905
a2ensite 906
accton 1120
adduser 597
AIDE 1119
alias 346
amanda 600
anacron 607
anacrontab 402
apache2ctl 903, 940
apropos 139, 437
apt-cache 530
apt-file 521
apt-get see aptitude

aptitude 519–520, 526–529, 573

ash see dash shell
aspell 971
at 403, 491, 608
awk see mawk

B
basename 982
bash see bash in the Main Index (page 1195)
bg 255, 309
bind 344
btdownloadcurses 540
btshowmetainfo 541
builtins 1015t
bunzip2 175
bzcat 175
bzip2 174, 602
bzip2recover 175

C
cancel 559
cat 162, 245, 247, 960
cd 209, 231, 324
chkrootkit 1124

ptg

1190 Utility Index

chmod 216, 218t, 218, 301
chroot 466–470
chsh 293, 457
clear 458
compress 176, 203
cp 163, 212
cpio 602, 602
crack 620
crontab 403, 491
cupsaccept 564
cupsdisable 565
cupsenable 565
cupsreject 564
cut 361

D
dash 15, 292
date 172, 999
dd 490
declare 317–318, 991
depmod 582
df 774
dhclient 471, 472
diff 168
dig 396, 832–833, 835
dirs 310
dmesg 444, 589
dpkg 534, 535t, 536–539
dpkg-reconfigure 726
DragonSquire 1119
dump 492, 511, 603–605

E
e2label 458
echo 171, 980, 995
echo builtin 980t
ed 166
edquota 625
egrep 1096
empathy 117
env 351
eval 351
exec 987, 1006–1009
eximon 724
eximstats 724
exit 117, 958, 996
export 318, 992
exportfs 785, 791

F
false 495, 1022
fc 332–335
fdformat 509
fg 255
file 170, 500, 622
find 454, 622, 966
finger 181, 183t, 389, 403
firestarter 864
fromdos 173
fsck 504, 512
ftp 688, 695–698
fuser 510
fwtk 1125

G
gawk see mawk

getfacl 222–226
getopts 1012–1015
getty 328, 448
git 574
gksudo 423
gnome-search-tool 286
gnome-terminal 287
gopher 409
gparted 64–66
grep 166, 973, 985, 1042
groupadd 598
groupdel 598
groupmod 598
groups 493
grub-install 589
grub-mkconfig 587
gufw 876–880
gunzip 175
gzip 175

H
halt 450, 452
head 166
history 330, 331
host 396, 833
hostname 163, 388
hping 1125

ptg

Utility Index 1191

I
id 424, 432
ifconfig 474
info 139–142
init 328
initctl 434
insmod 582
ipchains 880
iptables-restore 891
iptables-save 891
ispell seeaspell

J
jobs 152, 256, 307, 308
John the Ripper 1125

K
kdesudo 423
kerberos 1121
kill 152, 255, 455–457, 618, 1009, 1010, 1012
killall 457

L
ldapadd 765
ldapmodify 764
ldd 465
less 138, 162, 960
let 361, 1016
lftp 674
links 411
ln 228, 230, 501
login 328, 448
logresolve 921
logrotate 622–624
lp 559
lpadmin 562–564
lpinfo 561
lpq 165, 559
lpr 165, 252, 559
lprm 165, 559
lpstat 165, 559
ls 161, 215, 502
lsb_release 585
lshal 641
lshw 640
lsmod 582

lsof 618
lspci 640
lsusb 641
lynx 411

M
m-a 581
mailq 723
make 1080
makedbm 753
man 136–138
mandb 139
mawk 970, 1096
memtest86+ 587
mesg 185
mingetty 328
mkdir 208–209
mkfifo 503
mkfs 458, 488, 509
mklost+found 488
mkswap 499
mlocate 180
modinfo 582
modprobe 582
module-assistant 581
more 162
mount 494, 506–509, 777, 778–780, 816
mt 605
mv 164, 212, 501
mysql_secure_installation 629

N
nano 425, 426
nessus 1125
net 798
net use (Windows) 818
net view (Windows) 818
netcat 1125
netstat 384
newaliases 723
newlist 734
nisdomainname 746
nmap 1125
nmblookup 818
nm-connection-editor 642–643
nn 407
nologin 495

ptg

1192 Utility Index

O
od 491
OPIE 1120

P
palimpsest 66–70
parted 611–614
passwd 749
pdbedit 798
perldoc 1043
pidof 457
pinfo 141
ping 393, 458
ping6 394
popd 312
portmap 776, 782, 792
ps 255, 302, 328, 456, 995
pstree 329
pushd 311
pwd 204, 231
pwgen 149

Q
Qmail 1116
quota 625
quotaon 625

R
read 974, 1003–1006
read builtin 1005t
readnews 407
readonly 317, 318
reboot 450
reload 435
reset 458
resolvconf 496, 834, 835
restore 603–605
rexec 404
rm 162, 232, 501
rmdir 210
rmmod 582
rn 407
rpcinfo 462–464, 748
runlevel 444, 451
run-parts 607

S
S/Key 1120
samhain 1119
scp 667, 672–674
scp see also OpenSSH in the Main Index (page 1195)
script 172
sed 622
service 441
set 353, 963, 965, 998
setfacl 222–226
setserial 459
sftp 674
sh 292, 1138
sha1sum 47
shares-admin 783–785, 786
shift 959, 998
shopt 353
showmount 790
shutdown 437, 450
slapcat 763
sleep 996
smbclient 815, 819
smbpasswd 798, 803
smbstatus 798
smbtar 798
smbtree 815
snort 1126
software-properties-gtk 524
sort 168, 252, 365, 989
source 296
SpamAssassin 727–731
spamc 727
squirrelmail-configure 732
srp 1126
ssh 664, 667, 670–672, 1121
ssh see also OpenSSH in the Main Index (page 1195)
ssh-keygen 668–670, 677
start 435
startx 270
stat 459
status 435, 436
stty 151, 488
su 421, 431
sudo 98, 421–431
sudoedit 425
swapon 499
swat 804, 807
synaptic 133–136

ptg

Utility Index 1193

sysctl 572
system-config-printer 550–554
system-config-samba 800
sysv-rc-conf 441, 443

T
tail 167
talk 405
tar 176–178, 307, 600, 601t, 602
tee 254, 425, 905
telinit 437, 438, 444, 448, 451
telnet 391–393, 941, 1116
test 955–957, 957, 961, 964, 965, 968, 970, 976
test builtin 957t
testparm 817
tftp 774
tin 407
todos 173
top 610, 610t
touch 211
tput 975
tr 173, 251, 298
traceroute 394
traceroute6 395
trap 975, 1009–1012
tripwire 1119, 1126
true 1011, 1022
tset 458
tune2fs 512–514
type 1003
typeset 317–318, 994

U
ubiquity 57–63, 70–74
udev 502
ufw 874–876
umask 459
umount 494, 509
unalias 346, 349
uname 460, 588
uncompress 203
uniq 168, 522
unset 316
updatedb 180
update-exim4.conf 724
update-grub 84, 587–588
uptime 183

useradd 597
userdel 598
usermod 573, 598
users-admin 594–597
uucp 407

V
vim 186–193
vimtutor 186
visudo 426
vmstat 609

W
w 183, 183t
wall 615
wc 170, 361
webalizer 948
wget 543
whatis 139, 437
whereis 179
which 178
who 180, 183t
whois 396
wireshark 1126
write 184, 615

X
X 268
xargs 622
xev 270
xhost 271
xmodmap 274
xrn 407
xvnews 407

Y
ypcat 744
ypinit 755
ypmatch 744
yppasswd 748–750
ypwhich 747
ypxfr 755

Z
zcat 175

ptg

This page intentionally left blank

ptg

11951195

Main Index

An italic page number such as 123 indicates a definition. A light page number such as 456 indicates a
brief mention. Page numbers followed by the letter t refer to tables. Only variables that must always
appear with a leading dollar sign are indexed with a leading dollar sign. Other variables are indexed
without a leading dollar sign.

Symbols

! (NOT) Boolean operator 1024
!! reexecutes the previous event 335
comment symbol 303, 964
prompt 420
#! specifies a script shell 302, 963
$ bash parameters 994–999
$ in regular expressions 1092
$ in variable names 314
$! parameter 996
$# parameter 997
$$ parameter 983, 995
$((...)) see arithmetic, expansion
$(...) see command, substitution
$* parameter 999
$? parameter 996
$@ parameter 969, 970, 1000
${} expands variables 1001
$0 parameter 997
$n parameters 997
& (AND) bitwise operator 1023

& background process 254, 330, 1136
& command separator 305
& in replacement strings (regular expressions) 1095
&& (AND) Boolean operator 1017, 1022–1023,

1024
((...)) see arithmetic, evaluation
() command grouping 306

* in regular expressions 1092

* special character 257
+ in extended regular expressions 1096
, (comma) operator 1021
. (dot) builtin 296, 1007
. directory 210, 501
. in regular expressions 1091
./ executes a file in the working directory 301, 320
.. directory 210, 501
.jpg filename extension 1155
/ (root) directory 35, 37, 205, 213
/ within pathnames 35
: (null) builtin 1002, 1011
:– substitutes default values for a variable 1001
:= assigns default values for a variable 1001

ptg

1196 Main Index

:? displays an error message for a variable 1002
; command separator 304
< redirects input 247, 1134
<< Here document 985–987, 1134
> redirects output 246, 1134
>& duplicates output file descriptor 298, 299, 958
>> appends output 249, 1134
>| redirects output without clobber 248
>1 redirects standard output 297
? in extended regular expressions 1096
? special character 256
@ in a network address 388
[] character class (regular expressions) 1091, 1140
[] special characters 259
[...] see test utility
[[...]] builtin 1018
\ escape character 160, 304, 314
\(in regular expressions 1094
\) in regular expressions 1094
^ in regular expressions 1092
^ quick substitution character 338
| (OR) bitwise operator 1024
| (OR) Boolean operator 1096
| command separator 305
| in extended regular expressions 1096
| see pipe
|| (OR) Boolean operator 1017, 1022–1023, 1024
~– synonym for OLDPWD 360
~ (tilde) expansion 206, 359
~ expansion 319, 359
~ in directory stack manipulation 360
~ see also home directory
~+ synonym for PWD 360
‘ ...‘ see command, substitution

Numerics

0< redirects standard input 297
10.0.0.0 (IP address) 1134
10Base2 cable 375
10BaseT cable 375
100BaseT cable 375
127.0.0.1 (IP address) 387, 493
127.0.1.1 (IP address) 493
172.16.0.0 (IP address) 1134
192.168.0.0 (IP address) 1134
2> redirects standard error 297
32-bit versus 64-bit Ubuntu 29
3-DES encryption 1113

64-bit PC processor architecture 30
64-bit versus 32-bit Ubuntu 29
802.11 wireless specification 1134

A

A 1158
–a (AND) Boolean operator 961, 1017
a2dismod utility 905
a2dissite utility 906
a2enmod utility 905
a2ensite utility 906
aborting execution 151
absolute pathnames 205, 242, 1134
access 1134
Access Control Lists see ACLs
access permissions 215–226, 1134

change using chmod 216–218
directory 220–221
display using ls 216
execute 300–302
Nautilus 129
setgid see setgid
setuid see setuid

access.conf file 421
accton utility 1120
ACLs 221–226, 1134

access rules 222–226
default rules 225
effective rights mask 224
enabling 222
getfacl utility 222–226
setfacl utility 222–226

acpi boot parameter 82
acpid daemon 402
active window 153, 1134
ad hoc mode, wireless 640
addbanner shell script 1011
addition operators 1020
address mask see subnet, mask
address see the type of address you are looking for

(e.g., MAC address, IP address) or see the
specific address (e.g., 127.0.0.1)

adduser utility 597
Adept package manager 525
adfs filesystem 505
admin group and sudo 428
Administration submenu 122
AES (Advanced Encryption Standard) 1113

ptg

Main Index 1197

affs filesystem 505
AIDE utility 454, 1119
algorithm 1025
alias 346–349, 1134

examples 348–349
mail 722
quotation marks in 347
recursion 346
recursive plunge 349
substitution 356

alias builtin 346
alias.conf file 907
aliases file 619, 722
Almquist Shell see Debian Almquist Shell
alphanumeric character 1134
Alternate CD see installation, CD/DVD
alternatives directory 491
amanda utility 600
ambiguous file references 256, 1134
AMD64 processor architecture 30
anacron daemon 402
anacron file 607
anacron init script 605
anacron utility 607
anacrontab file 402, 607
anacrontab utility 402
AND bitwise operator 1023
AND Boolean operator 961, 1017
Andreessen, Marc 409
angle bracket 1134
ANI 1122
animate 1134
anonymous FTP 694
ANSI 11
ansi terminal name 1106
antialiasing 1135
Apache 899–901

see also Apache containers; Apache directives
a2dismod utility 905
a2dissite utility 906
a2enmod utility 905
a2ensite utility 906
adding content 905
alias.conf file 907
apache2 daemon 902
apache2 file 901
apache2 init script 902
apache2.conf file 906, 932–934
apache2ctl utility 903, 940

authentication modules 945
CGI (Common Gateway Interface) 942, 946
configuring (Cacti) 651
content negotiation 935
contexts 915
default file 934
directory context 915
directory listings 937
document root 902
DSOs (dynamic shared objects) 900, 941
error codes 948
filename extensions 914
filesystem layout 905
.htaccess context 915
.htaccess file 909, 945
.htpasswd file 946
HTTPS protocol 943
indexing 937
JumpStart: getting Apache up and running 903
logresolve utility 921
logs 908
modifying content 902
mods-available directory 905
mods-enabled directory 905
modules 900, 905, 941
MPMs (multiprocessing modules) 947
MRTG (Multi Router Traffic Grapher) 948
MultiViews option 936
Perl code 946
PHP code 946
prerequisites 902
privileged port 901
process 901
public_html directory 913
Python code 946
redirects 935
reverse name resolution 921
role alias 912
root privileges 901
scripting modules 946
self-signed certificate 943–945
server 901
server config context 915
sites-available directory 906
sites-enabled directory 906
Software Foundation 899
SSL 943–945
telnet utility 941
terminology 901

ptg

1198 Main Index

Apache, continued
testing 904
troubleshooting 940
type maps 935
user content, publishing 913
.var filename extension 935
virtual host context 915
virtual hosts 906, 937, 937–940
webalizer utility 948
www directory 902, 905, 909
www-data group 901

Apache containers 915–919
<Directory> 915, 934
<Files> 916
<IfModule> 916, 933
<Limit> 917
<LimitExcept> 917
<Location> 918
<LocationMatch> 918
<VirtualHost> 918

Apache directives 909, 909–932
AddHandler 923, 935
Alias 923
Allow 930
AllowOverride 930
Deny 931
DirectoryIndex 914
DocumentRoot 913, 934
ErrorDocument 924
ErrorLog 922
Group 927
HostnameLookups 921
Include 906, 927
IndexOptions 924
Listen 910
LoadModule 928, 934
LogLevel 922
MaxClients 919
MaxRequestsPerChild 919
MaxSpareServers 920
MinSpareServers 920
NameVirtualHost 920
Options 928
Order 931
Redirect 911
RedirectMatch 911
ScriptAlias 929
security 930
ServerAdmin 904, 912, 934

ServerName 903, 912, 934
ServerRoot 926, 932
ServerSignature 927
ServerTokens 926
special 915–919
StartServers 920
Timeout 921
UseCanonicalName 922, 935
User 929
UserDir 913

apache.conf file (Cacti) 651
apache2 daemon 902
apache2 file 901
apache2 init script 902
apache2.conf file 906, 932–934
apache2ctl utility 903, 940
API 1135
apic boot parameter 82
apm boot parameter 82
apmd daemon 403
Appearance Preferences window 113
append 1135
append standard output using >> 249
applet 121, 1135

clock 105
Window List 121
Workspace Switcher 104

Application, Run window 286
application, terminating 107
Applications menu 122
applications.d directory 874
apropos utility 139, 437
APT 518, 522

see also aptitude; software packages
apt cron script 524
apt.conf file 524
apt.conf.d file 524
apt-cache utility 530
apt-file utility 521
apt-get utility see aptitude

cache 524
configuration files 524
dependencies see software packages, dependencies
local package indexes 524
repositories see repositories
software-properties-gtk utility 524
source code, download using apt-get 532
sources.list file 523
update-notifier 525

ptg

Main Index 1199

apt cron script 524
apt.conf file 524
apt.conf.d file 524
apt-cache utility 530
apt-file utility 521
apt-get utility see aptitude

aptitude 519–520, 526–529
commands, list of 526
dependencies 520
full-upgrade command 529
install error 522
JumpStart: installing and removing packages using

aptitude 519
kernel, downloading source code for 573
log file, aptitude 526
options 527
packages, suggested 520
purge command 520
remove command 520
safe-upgrade command 528
search command 529
show command 529
update command 528
updating the index 528

aptitude file 526
archive 1135
archive, shell 986
archives file (APT) 524, 533
archiving files 174–178
arguments 238, 1135

command line 999
testing 956, 964

arithmetic
evaluation (bash) 360, 971, 994, 1016–1017
expansion (bash) 360–362, 1021
expression 1135

ARM processor architecture 30
Armel processor architecture 30
array 1045, 1135
ASCII 1135
ascii file 1135
ASCII terminal 1135
ash see dash shell
ASLR (Address Space Layout Randomization) 29
ASP 1135
aspell utility 971
assembly language 11
assignment operators 1021
asterisk special character 257, 1092

asymmetric encryption see encryption, public key
asynchronous communication 503
asynchronous event 1136
at utility 403, 491, 608
AT&T Bell Laboratories 3, 292
at.allow file 491
at.deny file 491
atd daemon 403
Athena, Project 268
ATM link 374
attachments 1136
attribute, LDAP 758
auth.log file 500, 1100
authenticated relaying, mail 736
authentication 1136

Apache 945
OpenSSH 664, 668

auto.master file 793
autofs directory hierarchy 793
autofs file 794
autofs init script 793
automatic mounting 1136
automount 792–794

auto.master file 793
autofs file 794
autofs init script 793
home directory 792

available file (dpkg) 533, 534
avoided 1136
awk utility see gawk utility

B

B language 11
back door 1136
back ticks see command, substitution
background

command, running in the 254
foreground versus 254
jobs 254–256
processes 330, 1136

backports software package category 522
BACKSLASH escape character 160, 304, 314
BACKSLASH in replacement strings 1095
BACKSPACE key (erase character) 151
backup 599–605

amanda utility 600
cpio utility 602, 602
dump/restore utilities 603–605

ptg

1200 Main Index

backup, continued
dumpdates file 603
full 599
incremental 599
media 600
mt utility 605
partition planning and 39
simple 602
tar utility 600, 601t, 602
utilities 600

base operators 1023
basename 205, 1137
basename utility 982
bash 292, 1138

see also alias; bash history; bash variables;
command; command line; commands;
operators; shell scripts

alias see alias
archive 986
arguments 999
arithmetic evaluation 360, 971, 994, 1016–1017
arrays see bash variables, array
background process 330
builtins see builtins
calling program, name of 997
command line see command line
command not found error message 242, 301, 319
command substitution 965, 982
commands see command
conditional expressions 1017
control structures see control structures
debugging prompt 323, 966
directory stack 310–312
expressions 1016–1024
features 352–353, 354t
file descriptors 987, 987–990
functions 349–352, 988, 993–994
globbing 363
history see bash history
logical evaluation 1017
menu 983
operators see operators
options, command line 352
pathname expansion 315
Permission denied error message 242, 300, 319
prompt (PS1) 321
prompt (PS2) 322
prompt (PS3) 323, 984
prompt (PS4) 323, 966

quiz shell script 1032
quotation mark removal 357
recursion 1025
redirection operators 299t
set, turns features on and off 353
shopt, turns features on and off 353
special characters 160, 326, 326t
standard error see standard error
standard input see standard input
standard output see standard output
startup files 293–296
string operators 1018t
variables see bash variables
word splitting 323
–x option 966, 1026

bash history 330, 330–346
bind builtin 344
C Shell mechanism, classic 335–339
commands

editing 334–335, 340–346
reexecuting 332–339
viewing 332–333

event 330
designators 336t
modifiers 339t
numbers 331, 335
reference using ! 335–339

expansion 356
history builtin 330, 331
INPUTRC variable 343
quick substitution 338
Readline Library 340–346
Readline variables 344t
substitute modifier 338
variables 330, 331t
word designators 336, 338t

bash parameters 312, 312–325
see also bash variables
$! 996
$# 997
$$ 983, 995
$* 999
$? 996
$@ 969, 970, 1000
$0 997
$n 997
parameter null or not set error message 1002
positional 996, 996–999
special 994–996
substitution 314

ptg

Main Index 1201

bash variables 312, 312–325
see also bash parameters

* subscript 991
@ subscript 991
array 990
assigning values to 313
attributes 317, 317t, 317–318
attributes, listing 318
BASH_ENV 294
braces around 316
call by value 992
CDPATH 324
COLUMNS 984
completion 343
default values, assigning 1001
default values, substituting 1001
DEFAULT_RUNLEVEL 440, 445
DISPLAY 272
EDITOR 425, 426
ENV 294
environment 312
error messages, displaying 1002
expansion 360
FCEDIT 334
global 992
HISTFILE 331
HISTFILESIZE 331
history 330, 331t
HISTSIZE 330
HOME 319
IFS 323–324
INPUTRC 343
keyword 313, 318–325, 325t
LANG 1107
LINES 984
local 992
MAIL 321
MAILCHECK 321
MAILPATH 321
naming 312
noclobber 248–250
null, expanding 1001
OLDPWD 360
OPTARG 1013
OPTIND 1013
parameter substitution 314
PATH 295, 319–321, 453, 982
PREVLEVEL 438
PS1 321, 322t

PS2 322
PS3 323, 984
PS4 323, 966
PWD 360
quoting 314
RANDOM 1031
Readline 344t
readonly 317
removing 316
REPLY 984, 1004
RUNLEVEL 438
SUDO_EDITOR 425, 426
syntax 316
TERM 147
unset using unset 316
unset, expanding 1001
user created 312, 314–316
VISUAL 425, 426

bash.bashrc file 492
BASH_ENV variable 294
.bash_history file 330
.bash_login file 294
.bash_logout file 294
.bash_profile file 294–295, 331, 351, 488
.bashrc file 294–295, 488
bashrc file 294
baud 1137
baud rate 1137
Bazaar version control 518
BCPL language 11
BDB 758
Bell Laboratories 3, 292
Berkeley DB 758
Berkeley Internet Name Domain see DNS
Berkeley UNIX 3, 1137
Berners-Lee, Tim 409
bg builtin 255, 309
/bin directory 213
bin directory 214
bind builtin 344
bind directory 836, 841
BIND see DNS
bind9 file 834
binding, key 1156
BIOS 583, 1137

CD/DVD, set to boot from 28
security 620

birthday shell script 985

ptg

1202 Main Index

bit 1137
bucket 250, 489
depth see color depth

bit-mapped display 1137
BitTornado 540
BitTorrent 539–541
BitTorrent, download Ubuntu using 44, 46
bitwise operators 1020, 1023
blank characters 315, 1137, 1173
blanks 160
block

device 504, 1137
disk 1137
number 1137
Perl 1045
special file 1137

blocking factor 1138
Blowfish encryption 1113
.bmp filename extension 203
Boolean operators 1138

! (NOT) 1024
&& (AND) 1017, 1022–1023, 1024
| 1096
|| (OR) 1017, 1022–1023, 1024
–a (AND) 961, 1017
–o (OR) 1017
short-circuiting 1022

boot 53, 1138
failure 453
flag 90
loader 1138, see also GRUB
netboot 1161
options 57, 82
parameters 57, 82
system 53, 444

/boot directory 38, 213, 582, 583, 613
bootable flag 90
bootstrap 1138
Bourne, Steve 292, 1138
Bourne Again Shell see bash

Bourne Shell (original) 292, 1138
brace 1138
brace expansion 358
braces, variables and 316
bracket 1138
bracket, character class 1091
branch 1138
break control structure 976
bridge, network 1138

broadcast 1138
address 1138
network 374, 1138
packets 381

Browse/Save window 110
browsers 409, 410

file see Nautilus
Firefox 117
Mosaic 409
Mozilla 410

BSD see Berkeley UNIX
btdownloadcurses utility 540
btshowmetainfo utility 541
buffer 1139

copy 124
disk 450
primary 124
selection 124

bug 1139
bugtraq mailing list 1120
defect tracking systems 518
Launchpad 518

builtins 261, 1002–1015, 1015t, 1139
. 1007
. (dot) 296
: (null) 1002, 1011
[[...]] 1018
alias 346
bg 255, 309
bind 344
cd 209, 231, 324
commands that are symbols 297t
declare 317–318, 991
dirs 310
echo 171, 980, 980t, 995
env 351
eval 351
exec 987, 1006–1009
executing 330
exit 117, 958, 996
export 318, 992
fc 332–335
fg 255, 308
getopts 1012–1015
history 330, 331
jobs 152, 256
kill 152, 255, 455–457, 1009, 1010, 1012
let 361, 1016
list using info 261

ptg

Main Index 1203

popd 312
pushd 311
pwd 204
read 974, 1003–1005, 1005t, 1005–1006
readonly 317, 318
set 353, 963, 965, 998
shift 998
shopt 353
source 296
symbols as commands 297t
test 955–957, 957t, 957, 961, 964, 965, 968, 970,

976
tput 975
trap 975, 1009–1012
type 1003
typeset 317–318, 994
umask 459
unalias 346, 349
unset 316
utilities versus 956

bundle shell script 986
bunzip2 utility 175
Busybox 84
button, Session Indicator 117
buttons 121
by-path file 489
byte 1139
by-uuid file 489
.bz2 filename extension 174, 203
bzcat utility 175
bzip2 utility 174, 602
bzip2recover utility 175

C

.c filename extension 203
C programming language 10, 11, 1139
C++ programming language 12
C89 programming language 11
cable modems 1139
cables 375
cache 1139
cache, DNS see DNS, cache; DNS servers, cache
Cacti 647–658

apache.conf file 651
configuring 652
debian.php file 651
remote data source 654
SNMP 654

calling environment 1139
cancel utility 559
Canonical 31
caret in regular expressions 1092
cascading stylesheet see CSS
cascading windows 1139
case control structure 977–979, 979t, 979–983
case-sensitive 1139
cat utility 162, 245, 247, 960
categories, software package 131, 522
category n cables 375
catenate 162, 246, 1139
cd builtin 209, 231, 324
CD see installation, CD/DVD
CDPATH variable 324
CERN 409
CERT 1120
.cgi filename extension 914
CGI scripts (Apache) 942
chain loading 1140
character

alphanumeric 1134
blank 160, 315, 1137, 1173
classes 259, 1097t, 1140
control 1142
device 504, 1140
escaping 160, 304
list see character, classes
meta 1159, see also special characters
nonprinting 1162
printable 1166
quoting 160, 304
regular 1168
special see special characters
special file 1140
typeface conventions 20

character based 1140
character-based interface see command line; textual,

interface
character-based terminal 1140
check see tick
check box 1140
check mark see tick
checksum 1140
child directories 201, 202
child processes 328, 1140
chkargs shell script 956, 958
chkrootkit utility 1124
chmod utility 216–218, 218t, 301

ptg

1204 Main Index

chroot jail 466–470
BIND 847
DNS 847
FTP 703
named daemon 847
uchroot.c program 469

chsh utility 293, 457
CIDR 386, 1140
CIFS 1141
CIPE 1141
cipher 1141
ciphertext 1110, 1141
Clark, Jim 409
class, character 1140
Classless Inter-Domain Routing see CIDR
clean install 32
clear utility 458
cleartext 1141
CLI 1141, see also command line; textual, interface
click and right-click 101
click object 102
click-to-focus 153
CLID 1122
client 1141
client, specifying 461t
client/server model 398
clipboard 125
clock applet 105
CMOS setup 28
CN, LDAP 759
cn=config directory 761
coaxial cable 375
coda filesystem 505
code, reentrant 1168
CODEC 1141
collating sequence, machine 1158
color, Pick a Color window 285
color depth 273, 1141
color quality see color depth
column 628
COLUMNS variable 984
combo box 1141
Comer, Doug 6
comma operator 1021
command 238, 1141, see also builtins; command

line
argument 238
completion 342–343
continuing 304

control flow see control structures
editing/repeating 152
execute using exec 1006–1009
executing 330
grouping 306
–h option 240
––help option 241
human-readable option 240
interpreter, shell 126
line see command line
names 238
network extension 388
run remotely using ssh 671
separating 303–306
substitution 362, 362–363, 585, 965, 982, 1141

command line 150, 238, 238–243, 1141
see also command; shell
arguments 238, 997
arguments, initialize using set 998
arguments, promote using shift 998
editing 152, 340–346
executing 243
expansion 357–365
interface 1141, see also textual, interface
mistakes, correcting 150
options 239, 239–240, 352, 352t
parse 240, 356
print utilities 559t
printing from 558
processing 240–242, 356
syntax 238
tokens 238, 356
whitespace on the 304
words 238, 356

command not found error message 242, 301, 319
command_menu shell script 979
comments, shell scripts 303, 964
Common Name, LDAP 759
Common UNIX Printing System see CUPS
communication, asynchronous 503
communication, interprocess 170, 503
comparison operators 1020
Compiz window manager 115, 155
completion

command 342–343
filename 1148
pathname 342
Readline 342
Readline commands 342–343
variable 343

ptg

Main Index 1205

component architecture 1142
compressing files 174–178

bunzip2 utility 175
bzcat utility 175
bzip2 utility 174, 602
bzip2recover utility 175
compress utility 176, 203
gunzip utility 175
gzip utility 175
OpenSSH 684
uncompress utility 203
utilities 194t
zcat utility 175

computer, diskless 1145
computing, distributed 1145
concatenate see catenate
concentrator see hub
condition code see exit status
conditional evaluation operators 1021
conditional expressions 1017
.conf filename extension 460
.config file (kernel) 575–579
config file (OpenSSH) 674
config.autogenerated file (exim4) 724
configuration file rules 460
Configure and Build System, GNU 542
configure shell script 542
connectionless protocol 1142
connection-oriented protocols 380, 1142
console 1142

recovery mode 445
security 420
virtual 83, 149, 1180

context menu 104
context menu, Object 104, 126, 127t
continue control structure 976
control bars, Nautilus 278
control character 1142
control flow see control structures
CONTROL key 20
control structures 954–987, 1142

break 976
case 977–979, 979t, 979–983
continue 976
for 968–970
for...in 967–968
Here document 985–987
if...then 954–958
if...then...elif 961–966

if...then...else 958–960
select 983–985
until 974–976
while 970–973

CONTROL-\ key (quit) 152
control-alt-delete event 451
control-alt-delete file 451
CONTROL-C key (copy) 124
CONTROL-C key (interrupt) 152
CONTROL-D key (EOF) 245
CONTROL-D key (exit) 117
CONTROL-H key (erase character) 151, 240
CONTROL-Q key (Xoff) 147
CONTROL-U key (line kill) 151, 240
CONTROL-V key (paste) 124
CONTROL-V key (quote CONTROL keys) 160
CONTROL-W key (delete word) 151
CONTROL-W key (erase word) 240
CONTROL-X key (cut) 124
CONTROL-X key (line kill) 151
CONTROL-Z key (suspend) 151, 255
convention, end line key 20
conventions, in this book 19–21
cookie 1142
Coordinated Universal Time see UTC
copy buffer 124
copyleft 6
core file 622
correcting typing mistakes 150
count shell script 971
count_down function 994
country code domain name designation 399
cp utility 163, 212
cp versus ln 229
CPAN 1079
cpdir shell script 307
cpio utility 602, 602
CPU 1143

installation requirements 28
intensive processes, report on using top 610

crack utility 620
cracker 1143
crash 452, 1143
creation date of files, display using ls 216
cron daemon 403, 605, 606
cron daemon, run-parts utility 607
cron.allow file 491
cron.d directory 403, 606, 607
cron.deny file 491

ptg

1206 Main Index

crontab 606
crontab file 403, 606
crontab files 606
crontab utility 403, 491
crontabs directory 403
crontabs file 606
cryptography 1143, see also encryption
csh Shell 1139
.cshrc file 1143
CSRG (Computer Systems Research Group) 3
CSS 1143
CUPS 548

see also printer; printing
command-line interface 561–565
configuring a printer 560–561
cups init script 549
cupsd.conf file 565
cupsdisable utility 565
cupsenable utility 565
cupsys init script 549
custom directory 563
drivers, display using lpinfo 561
firewall setup 549
IPP protocol 548
JumpStart: configuring a local printer 549
JumpStart: setting up a local or remote printer

using the CUPS Web interface 555
more information 549
ppd directory 563
PPD files 561
prerequisites 548
print queue, managing 551, 564
URIs 552, 562
Web interface 555–558, 560–561

cups init script 549
cupsaccept utility 564
cupsd.conf file 565
cupsdisable utility 565
cupsenable utility 565
cupsreject utility 564
cupsys init script 549
current 1143
current directory see working directory
cursor 1143
custom directory (CUPS) 563
custom.conf file 271
cut and paste 124, 403
cut utility 361
cycling, window 124
cypher 1141

D

daemons 402t, 1144
in. prefix 402
messages 500
network 372, 402
NetworkManager 642
rpc. prefix 402
start and stop using sysv-rc-conf 441–443
superserver see inetd daemon; xinetd daemon

daily file 607
dash shell 15, 292
data link layer, IP model protocol 380
data sink 250
data structure 1144
database 628

Berkeley 758
dbm 1144
gdbm 1144
ndbm 1144
NIS 1162
printcap 495
Sleepycat 758
SQL 1173
whatis 139

datagram, network 373, 1144
datagram-oriented protocol 381
dataless system 774, 1144
date utility 172, 999
db.127 file (DNS) 844
db.local file (DNS) 843
db.root file (DNS) 841
DB_CONFIG file 760
dbm database 1144
DC, LDAP 758
dd utility 490
DDoS attack 1144
.deb filename extension 533
deb files 533
Debian Almquist Shell 15, 292
Debian package management system see dpkg
debian.php file (Cacti) 651
debian-installer 85–91
debug 1144

bash prompt 323, 966
FTP 697
NIS 748, 756
nmblookup 818
OpenSSH using –e 681

ptg

Main Index 1207

OpenSSH using –v 681
scp using –v 674
server using telnet 393
shell scripts 966
shell scripts using xtrace 1026
ssh using –v 672
sshd using –d 678

DEBUG signal 1009
declare builtin 317–318, 991
decorations, window 155
decrement operators 1021
default 1144
default directory 492
default file (Apache) 934
DEFAULT_RUNLEVEL variable 440, 445
defaultdomain file (NIS) 745, 746
defect tracking systems 518
DEL key (erase character) 151
delete character using BACKSPACE 151
delete line using CONTROL-U 151
delete word using CONTROL-W 151
delimiter, regular expression 1090
delta, SCCS 1144
demand mounting, filesystem 793
denial of service see DoS attack; DDoS attack
dependencies see software packages, dependencies
depmod utility 582
dereference 1144
DES (Data Encryption Standard) 1113
descriptors, file 297
desktop 17, 99–117, 117, 1144

see also installation, CD/DVD
appearance 113
focus 1149
font preferences 284
manager 17, 1144
panel see panel
resolution, changing the 154
terminology 117
theme 113
visual effects 115
window see window
workspace 101
Xfce 2

Desktop CD see installation, CD/DVD
Desktop directory 108–111
detached process see background, process
/dev directory 213, 244, 488–491, 502
devfs filesystem 502

device 1145
block 504, 1137
character 504, 1140
drivers 501, 504, 1145
filename 1145
files 244, 501, 1145, see also special files and /dev

in the File Tree Index (page 1185)
files, exporting 785
floppy diskette 488
hotplug 502
IDE disk 489
independence 16
major number 1158
MD 92
multidisk 92
names, dynamic (udev) 502
non-IDE disk 489
nonrewinding 605
null 250, 489
number, major 503, 1158
number, minor 503, 1160
physical 1165
pseudoterminal 490
raw 504
raw mode 504
special files see device, files; special files
terminal 1008
UUID numbers 489

devpts filesystem 505
df utility 774
dhclient utility 471, 472
dhclient.conf file 472
dhclient.interface.leases file 472
DHCP 470–474, 1145

dhclient utility 471, 472
dhclient.conf file 472
dhclient.interface.leases file 472
dhcp3 file 472
dhcp3-server file 473
dhcpd daemon 471, 473
dhcpd.conf file 473, 474
dhcpd3-server init script 473
MAC addresses 474
more information 471
prerequisites, client 472
prerequisites, server 472
running from firestarter 867
static IP addresses 474

dhcp3 file 472

ptg

1208 Main Index

dhcp3-server file 473
dhcpd daemon 471, 473
dhcpd.conf file 473, 474
dialog box 1145
dial-up connection 147
die, process 330
diff utility 168
Diffie-Hellman encryption 1112
dig utility 396, 832–833, 835
digital signature 1111
Direct Rendering Infrastructure (DRI) 589
Direct Rendering Module (DRM) 590
directory 13, 161, 201, 500, 1145, see also the File

Tree Index (page 1195)
. 210, 501
.. 210, 501
/ (root) 205, 213
~ (home) see home directory
access permissions 220–221
access, speed up using tune2fs 514
change using cd 209
child 201, 202
compacting 624
create using mkdir 208–209
current see working directory
delete using rmdir 210
encrypted home 90
file 201, 1145
folder and 107
hierarchy 35, 1145
home see home directory
important 488
LDAP 758, 758
links to 226–232
list using ls 161
make using mkdir 208–209
mount remote using NFS 777–780
move using mv 212
moving (inodes) 501
parent 201, 202
pathname 201
remove using rmdir 210
rename using mv 212
root 200, 213, 1170
root (/) 35, 37, 205
service 1145
stack 310, 310–312, 360
standard 213–215
tree see directory, hierarchy
working see working directory

dirs builtin 310
disk

block 1137
buffer 450
filesystem 34
floppy see floppy diskette
formatting, low-level 33
fragmentation 621
free space 33, 621, 1149
IDE, device name 489
LBA addressing mode 583
monitor using SMART 69
non-IDE, device name 489
partition see partition
quotas 625
RAM 43
space, installation requirements 28
usage, monitoring 620
utility, gparted 64–66
utility, palimpsest 66–70
utility, ubiquity 70–74
volume label 458

diskette, floppy see floppy diskette
diskless 1145
diskless system 774
display

bit-mapped 1137
color depth 273, 1141
graphical 1150
number, X Window System 272
problems when booting 82
resolution, changing 154

–display option, X Window System 273
DISPLAY variable 272
displaying

see also displaying a file
date using date 172
GID using id 432
hidden filenames 258
kernel messages using dmesg 444, 589
machine name 163
PID using pidof 457
text using echo 171
UID using id 432

displaying a file
beginning of, using head 166
end of, using tail 167
group, using ls 216
hidden, using ls 258

ptg

Main Index 1209

links, number of using ls 216
owner of, using ls 216
size of, using ls 216
sorted, using sort 168
type of, using ls 216
using cat 162
using less 162
using more 162

distributed computing 397, 1145
distribution, Linux 6
distribution, Perl 1045
division operator 1020
dmesg utility 444, 589
dmraid boot parameter 82
.dmrc file 449
DMZ 1145
DN, LDAP 758
DNS 399–401, 821–833, 1145

see also DNS records; DNS servers; DNS zones
address, look up using host 396
authority 824
BIND 400
bind directory 836, 841
bind9 init script 834
cache 830
cache, setting up 839–844
chroot jail 847
configuring 836–839
database 827
db.127 file 844
db.local file 843
db.root file 841
delegation 825
dig utility 396, 832–833, 835
domain 822
domain name see domain, name
domain qualification 839
firewall setup 833
FQDN 823
host utility 396, 833
in-addr.arpa domain 831
inverse mapping see DNS, reverse name resolution
ip6.int domain 831
iterative queries 825
JumpStart: setting up a DNS cache 834
log 849, 852, 854
more information 833
name, look up using host 396
named daemon 833

named directory 847
named.conf file 836, 839–841, 851, 856
named.conf.options file 841
node 822
notify statement 854
nsswitch.conf file 833
origin see DNS zones, name
prerequisites 834
queries 825, 830
resolv.conf file 834, 835
resolvconf utility 496, 834, 835
RESOLVCONF variable 834
resolver 824
reverse mapping see DNS, reverse name resolution
reverse name resolution 831–833
root domain 823, 824
security 822
subdomain 824
time format 839
troubleshooting 849
TSIGs (transaction signatures) 845–847, 850
TTL value 829
view clauses 855

DNS records
A (address) 828
AAAA (address, IPv6) 828
CNAME 828
glue 844
MX 828
NS 828
PTR 828
resource 827–830
SOA 829
TXT 830

DNS servers
cache 827, 834
full-functioned nameserver 850–854
primary master 826
secondary 827
slave 827, 854
split horizon 855–859
types of 826

DNS zones 824
clause, named.conf 838
files 838, 841
hints 841
name 838, 839
root 842

doc directory 143, 215, 616, 1100

ptg

1210 Main Index

doc file 408
Document Object Model see DOM
Documentation file (kernel) 143
documentation see help
dollar sign in regular expressions 1092
DOM 1146
domain

see also DNS
in-addr.arpa 831
ip6.int 831
name 1146

country code 399
not case-sensitive 400

NIS 742
root 824

Domain Name Service see DNS
door 1146
DoS attack 1146
DOS files, convert from/to Linux format 173
DOS, mounting filesystems 508
double quotation marks see quotation marks
double-click timeout, mouse 106
Dove processor architecture 30
Dovecot IMAP and POP servers 735
downloading Ubuntu 27, 43–46
dpkg 518, 532–539

deb files 533
dpkg utility 534, 535t, 536–539
postinst script 533
preinst script 533
source files 534

dpkg utility 534, 536–539, see also dpkg
dpkg-reconfigure utility 726
DPMS 1146
drag 1146
drag-and-drop 1146
dragging an object 106
DragonSquire IDS utility 1119
drawers 121
DRI (Direct Rendering Infrastructure) 589
drivers, device 501, 1145
drivers, NTFS 1105
DRM (Direct Rendering Module) 590
drop-down list 1146
druid 1146
DSA (Digital Signature Algorithm) 1113, 1146
DSA, LDAP 758
DSE, LDAP 758
DSL 374, 1147

dsniff utility 1124
DSO, Apache 900
dual-boot system 76
dump utility 492, 511, 603–605
dumpdates file 492, 603
duplex network 375
DVD, live/install see installation, CD/DVD
Dynamic Host Configuration Protocol see DHCP
dynamic IP address 382
dynamic shared objects, Apache 900

E

e2label utility 458
echo builtin 171, 980, 980t, 995
echo utility 995
ed utility 166
edd boot parameter 82
editions, Ubuntu 32
EDITOR variable 425, 426
editors 1147

command line 340–346
ed 166
EDITOR variable 425, 426
gparted 64–66
palimpsest 66–70
parted 611–614
Readline Library 340–346
SUDO_EDITOR variable 425, 426
ubiquity 70–74
vi see vim

vim see vim

VISUAL variable 425, 426
edquota utility 625
Edubuntu 2
Edwards, Dan 1177
EEPROM 1147
effective user ID 1147
egrep utility 1096
element 1147
El-Gamal encryption 1112
email see mail; exim4

emblems, Nautilus 129, 278
emoticon 1147
Empathy IM client 117
empty regular expressions 1094
emulator, operating system 8
emulator, terminal 125, 147, 287
encapsulation see tunneling

ptg

Main Index 1211

encryption 1110, 1110–1115
3-DES 1113
AES 1113
algorithm 1110
asymmetric see encryption, public key
Blowfish 1113
DES 1113
Diffie-Hellman 1112
digital signature 1111
DSA 1113
El-Gamal 1112
GnuPG 1113
home directory 90
IDEA 1113
implementation 1113
key 1110
OpenSSH 664
PEM 1115
PGP 1113
private key 1111
public key 664, 1111, 1111
RC5 1113
RSA 1112, 1170
secret key see encryption, symmetric key
symmetric key 1111, 1112
web of trust 1114

end line key 20
end of file see EOF
Enquire program 409
ENTER key 20
enter-exit focus 154
enter-only input focus 153
Entry, LDAP 758
env builtin 351
ENV variable 294
environment see calling environment
environment, variables 312
EOF 1147
EOF signal, send using CONTROL-D 245
EPROM 1147
–eq relational operator 1018
equality operators 1020
erase key (CONTROL-H) 151, 240
erase word key (CONTROL-W) 240
erasing a file completely 490
ERR signal 1009
error messages

see also messages; usage messages
404 Not Found (Apache) 948

Apache 948
command not found 242, 301, 319
display for a variable using :? 1002
Login incorrect 448
mount: RPC: Program not registered 777
NFS server xxx not responding 776, 779
parameter null or not set 1002
Permission denied 242, 300, 319
redirecting to standard error 299, 958
rlimit_max 817
RPC: Program not registered 790
Stale NFS file handle 791
standard error see standard error
system 500

error, standard see standard error
errors, correcting typing mistakes 150
escape a character 160, see also quotation marks;

quoting
etab file 789
/etc directory 214, 491–497
Ethernet network 374, 375, 1147
eval builtin 351
event 437, 1147

asynchronous 1136
bash history see bash history
control-alt-delete 451
firestarter 870
Upstart 433
X Window System 269

Evolution LDAP client 767
exabyte 1147
exec builtin 987, 1006–1009
exec() system call 303
execute

access permission 215, 300–302
commands 243, 330
files in the working directory 301
shell scripts 303

exim.crt file 736
exim.key file 736
exim4 714–727

see also mail
aliases 722
config.autogenerated file 724
configuration type 717, 719
configuration variables 725
configuring 724–727
dpkg-reconfigure utility 726
exim.crt file 736

ptg

1212 Main Index

exim4, continued
exim.key file 736
exim4 directory 724
exim4 file (default) 724
exim4.conf.localmacros file 724, 737
eximon utility 724
eximstats utility 724
firewall setup 716
.forward file 723
frozen messages 720, 722
functionality 720
init script 716
JumpStart: configuring exim4 to send and receive

mail 718
JumpStart: configuring exim4 to use a

smarthost 716
local and nonlocal systems 716
logs 716, 720
mail file 720
mailname file 718
mailq utility 723
masquerade 1159
message ID 720
messages, removing 722
options 721
prerequisites 715
self-signed certificates 736
sendmail and 716
smarthost 714, 717
split configuration 725
SSL 736
testing 718
update-exim4.conf utility 724
update-exim4.conf.conf file 724

exim4 directory 724
exim4 file (default) 724
exim4.conf.localmacros file 724, 737
eximon utility 724
eximstats utility 724
exit builtin 117, 958, 996
EXIT signal 1009
exit status 362, 956, 958, 996, 1147
expansion

arithmetic (bash) 360–362, 1021
command line 357–365
pathname 256
tilde 206

explicit focus 153
exploit 1147

exponentiation operator 1020
export builtin 318, 992
export, device files 785
export, links 785
exportfs utility 785, 791
exports file 783, 786–789
expressions 1147

arithmetic 1135
logical 1158
regular see regular expression

ext2/ext3/ext4 filesystem 505, 512
extended regular expressions see regular

expressions, extended
Extensible Markup Language see XML
extensions, filename see filename, extensions
extranet 1147

F

Fahlman, Scott 1172
failsafe login 146
failsafe session 1148
failsafe terminal 146
fake RAID 41
false utility 495, 1022
fc builtin 332–335
FCEDIT variable 334
FDDI network 1148
fdformat utility 509
fdisk utility see parted utility
fdn file 488
fg builtin 255, 308
FHS (Linux Filesystem Hierarchy Standard) 14, 213
Fiber Distributed Data Interface see FDDI
FIFO special file 503
fifth layer, IP model protocol 380
file 13, 1148

see also displaying a file; filename
access permissions see access permissions
ambiguous references 256
archiving 174–178
backup see backup
block special 1137
browser see Nautilus
character special 1140
compare using diff 168
compress see compressing files
configuration, rules 460
contents, identify using file 170

ptg

Main Index 1213

convert from/to Linux/Windows format 173
copy using cp 163, 212
create using cat 246
creation date, display using ls 216
creation mask, specify using umask 459
crontab 606
deb 533
descriptors 297, 987, 987–990
device see /dev directory; device files; special files
directory see directory
display see display file
download using wget 543
duplicate lines in, remove using uniq 168
edit using vim 186–193
erasing completely 490
file utility 170, 500, 622
group assignment 493
group, display using ls 216
growing quickly 621
hidden 204, 1151
important 488
inode see inodes
invisible see filename, hidden
ISO image 43
job definition (Upstart) 434
links to 226–232
links, display number of using ls 216
log, checking 620
manager see Nautilus
map 794
move using mv 212
moving (inodes) 501
names see filename
open using Nautilus 118
open, locate using lsof 618
order using sort 168
ordinary 201, 500, 1163
owner, display using ls 216
pathname 201
permissions see access permissions
PPD 561
print using lpr 165
reference, ambiguous 1134
remove using rm 162
rename using mv 212
rotate 1170
search for using mlocate 180
search for using Search for Files window 286
security 1115

sharing model 398
size, display using ls 216
size, displaying easily readable 240
software package containing, search for 521, 538
sort using sort 168
sparse 1173
special see /dev directory; device, files
standard 213–215
startup 204, 293–296, 1174
tar 176
temporary 983
terminal 244
trash, moving to 111
truncating 621
type of, display using ls 216
utilities 194t
wiping 490

File Browser versus Spatial windows, Nautilus 108
File Browser window 107
file utility 170, 500, 622
filename 205, 1148

/ (root) 205
ambiguous references 256
basename 205, 1137
case-sensitivity 20, 202
change using mv 164
characters allowed in 202
completion 1148
conventions 20
device 1145
extensions 203, 203t, 1148
extensions, remove using an event modifier 339
generation 15, 256–260, 363, 1148
hidden 204, 1151
length 201, 202, 459, 983
root directory (/) 205
simple 205, 242, 1172
temporary 983
typeface 20
unique 983, 995
Windows 202

filesystem 34, 199, 505t, 1148
access, speed up using tune2fs 514
autofs 793
bootable flag 90
create using mkfs 458
demand mounting 793
devfs 502
ext2/ext3/ext4 505, 512

ptg

1214 Main Index

filesystem, continued
filename length 459
free list 501, 1149
hierarchy 200
independence 36
integrity check 512
journaling 505, 514, 1155
mount

automatically 793
on demand 793
point 36, 89, 507, 793, 1160
remote 777–780
table 510
using mount 506–509

naming 36
proc 497
RAID see RAID
remote 1169
repair 452
Standard, Linux (FSSTND) 213
structure 13
superblock 1175
swap 37, 498
sys 499
tune using tune2fs 512–514
unmount using umount 509

Filesystem, Standard, Linux (FSSTND) 14
Filesystems Hierarchy Standard, Linux (FHS) 14
filling 1148
filters 16, 253, 1148
find utility 454, 622, 966
finger utility 181, 183t, 389, 403
fingerd daemon 389, 403
Firefox 117
firestarter 864

see also gufw; iptables; ufw

configure using Firewall Wizard 867–868
default policy 865
DHCP, running from 867
firestarter directory 866
Internet connection sharing 868
iptables compared to 866
JumpStart: configuring a firewall using the

firestarter Firewall Wizard 867
NAT, running from 868
policy (editing rules) 872–874
prerequisites 866
window (GUI) 868–874

firestarter directory 866

firewall 379, 1148, see also firestarter; gufw; iptables;
ufw; “firewall setup” under the protocol you
are running (e.g., NFS, firewall setup)

firewall terminology 864
Firewall toolkit 1125
firmware 1149
floppy diskette, device name 488
floppy diskette, format using fdformat 509
floppy diskette, mounting 508
focus, desktop 1149
focus, input 124, 153
focus-strictly-under-mouse 154
focus-under-mouse 153
folder 107, see also directory
font preferences, GNOME 284
font, antialiasing 1135
font, Pick a Font window 284
footer 1149
for control structure 968–970
for...in control structure 967–968
foreground 254, 1149
foreground, background versus 254
fork 328, 1149
fork() system call 303, 328, 330, 947
.forward file 723
FQDN 387, 400, 823, 1149
fragmentation, disk 621
frame, network 373, 1149
framebuffer boot parameter 82
free list, filesystem 501, 1149
free software definition 1129
free space, disk 33, 621, 1149
Free Standards Group (FSG) 213
freedesktop.org group 276
fromdos utility 173
fsck utility 504, 512
FSG (Free Standards Group) 213
FSSTND (Linux Filesystem Standard) 14, 213
fstab file 507, 510, 778, 781
FTP

see also FTP clients; vsftpd
ASCII transfer mode 694
binary transfer mode 694
debugging 697
ftp directory 700
ftp utility 688, 695–698
ftpd daemon 403
ftpusers file 711
JumpStart: downloading files using ftp 690

ptg

Main Index 1215

JumpStart: starting a vsftpd FTP server 700
lftp client 674
more information 689
PASV (passive) connection 689, 1164
PORT (active) connections 689
prerequisites 690, 699
pub directory 694
security 688, 695, 699, 705
sftp client 674

FTP clients
anonymous login 694
automatic login 694
basic commands 690
list of 689
prerequisites 690
tutorial 690–693
using 694–698

ftp directory 700, 703, 705
ftp file 700, 703, 705
ftp utility 688, 695–698
ftpd daemon 403
ftpusers file 711
full backup 599
full duplex 1149
full regular expressions see regular expressions,

extended
full-duplex network 375
fully qualified domain name see FQDN
function keys, initial install screen 79
functions 1149

bash 349–352, 988, 993–994
count_down 994
makepath 1026
mycp 988
shell 1171

fuser utility 510
fwtk utility 1125

G

Gaim see Empathy IM client
games directory 214
gateway 1149
gateway, network 376
gateway, proxy 405
gawk see mawk

gcc see C programming language
GCOS see GECOS
gdbm database 1144

–ge relational operator 1018
GECOS 757, 1150
generic operating system 10
getfacl utility 222–226
gethostbyname() system call 833
getopts builtin 1012–1015
getpwnam() function 743
getpwuid() function 743
getty utility 328, 448
GFS filesystem 505
gibibyte 37, 1150
GID 492, 1150
GID in passwd file 494
GID, display using id 432
.gif filename extension 203
gigabyte 37, 1150
git utility 574
gksudo utility 423
globbing 256, 363
glyph 1150
GMT see UTC
GNOME 99, 275

desktop see desktop
font preferences 284
GTK 275
Nautilus see Nautilus
object see object
panel see panel
terminal emulator 287
terminology 117
window see window
workspace see workspace

gnome-search-tool utility 286
gnome-terminal utility 287
GNU

Configure and Build System 542
General Public License (GPL) 6
GNUStep window manager 276
manuals 1101

GnuPG encryption 1113
gopher utility 409
gparted utility 64–66
GPG 1113
GPL (GNU General Public License) 6
gpm daemon 403
Grand Unified Boot Loader see GRUB
graphical display 1150

ptg

1216 Main Index

graphical installation
see also installation; installation CD/DVD;

installation disk
documents and settings, migrating 60
guided partitioning 70
installer 57–63
installer language 58
keyboard layout 59
keyboard, using 58
mouse, using 58
partitioning 60, 70–74
partitioning, guided 60
partitioning, manual 72
Ready to install screen 62
system 57–63
time zone 59
ubiquity utility 57–63, 70–74
user, first 61

graphical user interface see GUI
grave accent see command, substitution
grep utility 166, 973, 985, 1042
group 492

access permission 215
admin and sudo 428
display name using ls 216
file assigned to 493
ID see GID
password 492
user private 493
users 1150
wheel 482
windows 1150
www-data (Apache) 901

group file 492, 598, 1082
groupadd utility 598
groupdel utility 598
groupmod utility 598
groups utility 493
GRUB 583–589

grub.cfg file 587
GRUB_CMDLINE_LINUX_DEFAULT

variable 571
grub-install utility 589
grub-mkconfig utility 587
hidden timeout 585
MBR (master boot record) 84, 91, 583, 589
menu 445–448
menu.lst file 584
quiet boot parameter 57

splash boot parameter 57
update-grub utility 84, 587–588

GRUB 2 see GRUB
grub file 584–586
grub.cfg file 447, 587
grub.d directory 586
grub-install utility 589
grub-mkconfig utility 587
gssd daemon 777
–gt relational operator 1018
GTK 275
guest (virtual machine) 8
gufw utility 876–880
GUI 30, 30, 1150

check box 1140
check mark see GUI, tick
check see GUI, tick
combo box 1141
dialog box 1145
drag 1146
drag-and-drop 1146
drop-down list 1146
list box see GUI, drop-down list
radio button 1167
root privileges and 423
scrollbar 1171
slider 1172
spin box 1173
spinner see GUI, spin box
text box 1176
thumb 1177
tick 1177
tick box see GUI, check box
tooltip 1177
WYSIWYG 1181
X Window System 17

guided partitioning 36, 60, 60, 70
gunzip utility 175
.gz filename extension 175, 203
gzip utility 175

H

–h option 142, 240
hacker 1150
HAL (hardware abstraction layer) 641
half duplex 1150
half-duplex network 375
halt utility 450, 452

ptg

Main Index 1217

hang up signal 1009
hard disk see disk
hard links see links, hard
hardware

installation requirements 27
list using lshal 641
list using lshw 640
PCI devices, list using lspci 640
USB devices, list using lsusb 641
visual effects, required for 28

hash 1151
one-way 1163
SHA1 algorithm 1171
table 1151

hdn file 489
head utility 166
header, document 1151
help

documentation 136–144, 1101t
error messages 143
GNU manuals 144
–h option 142
–help option 142
––help option 142, 241
HOWTOs 142
info utility 139–142
Internet 143
Linux Documentation Project 144
Linux sites, helpful 1102t
local 143
log files 1100
mailing lists 1103t
man pages 136–138
newsgroups 1103
obtaining 136–144, 408, 454, 1101–1106
office suites and word processors 1106t
problem solving 1100
security 1124
software, downloading 1104t
system manuals 136–142
Ubuntu Help Center 136
Ubuntu Web site 144
words, looking up 1104t

Help Center window, Ubuntu 116, 136
–help option 142
––help option 142, 241
Here document control structure 985–987, 1151
hesiod 1151
heterogeneous 1151

hexadecimal number 1151
hfs filesystem 505
hidden file 1151
hidden filenames 204
hidden filenames, display using ls 258
hidden timeout 585
hierarchy 1151
hierarchy, filesystem 200
hinting, subpixal 1175
HISTFILE variable 331
HISTFILESIZE variable 331
history 1152, see also bash history
history builtin 330, 331
HISTSIZE variable 330
/home directory 39, 214
home directory 161, 204, 319, 1152

~, shorthand for 206, 319
automount 792
passwd file and 494
.ssh 666
startup files 204
working directory versus 210

home directory 90
HOME variable 319
host

address 381
based trust 391
key, OpenSSH 664
nickname 387
security 1119–1124
specifying 461t
trusted 391
virtual machine 8

host utility 396, 833
hostname 386–388, 493

changing 493
characters allowed in 824
symbolic 401

hostname file 493
hostname utility 163, 388, 493
hosts file 386, 493
hosts.allow file 463, 465–466
hosts.deny file 463, 465–466
hosts.equiv file 391
hotplug system 502
hover 102, 1152
HOWTOs 142
hpfs filesystem 505
hping utility 1125

ptg

1218 Main Index

.htaccess file 909, 945

.htm filename extension 914
HTML 409, 1152
.html filename extension 914
.htpasswd file 946
HTTP protocol 1152
HTTPS protocol 943
hub 375, 1152
human-readable option 240
humor 6, 1118, 1172
hunks (diff) 169
HUP signal 1009
hypermedia 410
hypertext 409, 1153
Hypertext Markup Language see HTML
Hypertext Transfer Protocol see HTTP
hypervisor 8

I

I/O device see device
IANA (Internet Assigned Numbers Authority) 402,

1153
ICANN (Internet Corporation for Assigned Names

and Numbers) 382
ICMP packet 394, 1153
icmp_seq 394
icon 1153
iconify 1153
ID string, X Window System 272
id utility 424, 432
IDEA encryption 1113
idmapd daemon 777
IDSs 1119, 1126
if...then control structure 954–958
if...then...elif control structure 961–966
if...then...else control structure 958–960
ifconfig utility 474
IFS variable 323–324
ignored window 1153
IM client (Empathy) 117
IMAP server (Dovecot) 735
imap-login daemon 735
in.fingerd daemon 389, 403
in-addr.arpa domain 831
include directory 214
increment operators 1021
incremental backup 599
indentation see indention

indention 1153
inequality operator 1020
inetd daemon 464
info directory 215
info utility 139–142
infrastructure mode, wireless 640
init daemon see Upstart
init directory 434, 438
init scripts 440
init utility 328
init.d directory 440
initctl utility 434
initng daemon 432
inittab file 439, 493
inodes 501, 1153

alter using mv 501
create reference using ln 501
delete reference using rm 501
display using ls 229
locate using find 966

input 1153
input focus 124, 153
input, standard see standard input
input/output device see device
.inputrc file 343
INPUTRC variable 343
insmod utility 582
installation 25–48

see also graphical installation; installation
CD/DVD; installation disk

basic 53–63
BIOS, set to boot from CD/DVD 28
boot parameters 57, 82
clean install 32
clean install versus upgrade 32
CMOS setup 28
computer 1153
CPU requirements 28
Desktop CD/DVD menus 78
dual-boot system 76
Expert mode 82
function keys 79
gparted partition editor 64–66
hardware requirements 27
interface 31
KDE 75
Kubuntu 75
live session 52
palimpsest partition editor 66–70

ptg

Main Index 1219

planning 27
processor architecture 29
RAID 40, 91
RAM (memory) requirements 28
RAM (memory), test using memtest86+ 79
SHA1SUMS file 46
steps 42
textual installer 77, 85–91
textual system 80
ubiquity partition editor 57–63, 70–74
upgrade 33
virtual consoles 83

installation CD/DVD 32
Alternate 32, 77
basic installation 53
BIOS, set to boot from 28
burning 47
checking for defects 79
Desktop 26, 32
F4 menu selections 81t
function keys 79
ISO image, downloading 43–46
ISO image, verifying 46
live/install 26, 32, 55, 77
menu 54
menu selections 78t
Minimal 32
Server 32, 77
software, installing from 131

installation disk
formatting 33
free space 33
guided partitioning 36
partition

create using ubiquity 70
delete using gparted 66
delete using palimpsest 69
display using palimpsest 67
resize using gparted 65
set up 33
set up using gparted 64–66
set up using palimpsest 66–70
set up using ubiquity 70–74
setup, guided 36

setup 60
space requirements 28

INT signal 1009
Integrated Services Digital Network see ISDN
interactive 1153

interface 1154
character-based see command line; textual,

interface
command line see command line; textual, interface
graphical user see GUI
pseudographical 30, 150
textual see command line; textual, interface
user 1179

internal field separator see IFS variable
International Organization for Standardization see

ISO
Internet 372, 1154

Assigned Numbers Authority see IANA
browsers 410
connection sharing 868, 892–896
Control Message Protocol see ICMP
look up site information using jwhois 396
multiple clients on a single connection 893
multiple servers on a single connection 896
netiquette 1161
netnews see netnews; newsgroup
Printing Protocol see IPP
Protocol Security see IPSec
Protocol see IP; TCP/IP
search engines 411
service provider see ISP
services 407–409
URI 1179
URLs 410, 1179

internet (lowercase “i”) 1154
internetwork 372
InterNIC 396
interprocess communication 16, 170, 503, 503
interrupt key 151, 152
intranet 372, 1154
intrusion detection system see IDS
invisible files see hidden filenames
IP 1154

see also IP address; IPv6
classes 382, 383t, 383–386
dynamic address 382
IPng 387
IPv6 387
masquerading 881, 890, 893
multicast see multicast
protocol model 380
spoofing 1154
static address 382
TTL header field 395
version 6 see IP, IPv6

ptg

1220 Main Index

IP address 1154
client, specifying 461t
computations 384t
loopback service 493
representation 382
static 474

ip6.int domain 831
IPC 1155
ipchains utility 880
IPP protocol 548
IPSec 1117
iptables 880–883

see also firestarter; gufw; iptables rules; ufw
chain 880
chain policy 886
classifiers 880
command line 884–885
commands 885
connection tracking 882, 889
conntrack module 882
display criteria 887
DNAT targets 881, 890
Filter table 881
firestarter compared to 866
Internet connection sharing 892–896
IP masquerading 893
ipchains utility 880
iptables-restore utility 891
iptables-save utility 891
jumps 885
Mangle table 881
masquerade 1159
MASQUERADE targets 881, 890
match criteria 884
match extensions 887–890
matches 880
more information 883
NAT table 881
NAT, running from 892–896
netfilter 880
network packets 882
packet match criteria 884, 887
policy command 886
prerequisites 883
protocols file 888
resetting rules 883
router 892, 896
SNAT targets 881, 891
state machine 882, 889
targets 880, 881, 885, 890–891

iptables rules 880
building a set of 885
example 880
match criteria 884
number 884
saving 891
specification 884

iptables-restore utility 891
iptables-save utility 891
IPv6 387, 1155

see also IP
address records, DNS 828
ping6 394
traceroute6 395

IRC, Ubuntu channels 144
irqpoll boot parameter 82
is_regfile shell script 957
ISDN 374, 1155
ISO 1155
ISO image file 43
ISO protocol model 380
ISO9660 filesystem 505, 1155
ISP 1155
issue file 147

J

JeOS 80
jffs2 filesystem 505
job 254, 307

control 16, 254, 307–310, 1155
jobs builtin 256
number 254
number, determining using jobs 256
suspend using CONTROL-Z 255
Upstart 433, 434, 435–436

jobs builtin 152
John the Ripper utility 1125
journaling filesystem 505, 514, 1155
Joy, Bill 1139
JPEG 1155
.jpeg filename extension 203, 1155
.jpg filename extension 203, 1155
justify 1155

K

K&R 12
KDE 99, 275

Adept package manager 525
desktop 17

ptg

Main Index 1221

installing 75
Kubuntu 2
portability 275
Qt toolkit 275

kdesudo utility 423
Kerberos 1156
kerberos utility 1121
kernel 6, 1156

see also Linux
booting 444
compiling 579
.config file 575–579
configuring 575–579
depmod utility 582
insmod utility 582
installing compiled 582
loadable module 580, 1157
lsmod utility 582
m-a utility 581
messages, display using dmesg 444, 589
messages, saving 444
modinfo utility 582
modprobe utility 582
module 580, 1157
module-assistant utility 581
modules file 580
modules, tools for working with 582t
packages, list installed using dpkg 588
packages, remove using aptitude 588
packet filtering see firestarter; gufw; iptables; ufw

parameters, modify using sysctl 572
proc pseudofilesystem 497
programming interface 12
rebuilding prerequisites 572
rmmod utility 582
source code, download using aptitude 573
source code, download using git 574
space 1156
version, display using uname 588

kernelspace 1156
Kernighan & Ritchie 12
key binding 1156
key, META 1159
keyboard 1156
keyboard as standard input 244
keyboard layout, graphical installation 59
keys

BACKSPACE (erase character) 151
CONTROL 20

CONTROL-\ (quit) 152
CONTROL-C (copy) 124
CONTROL-C (interrupts) 152
CONTROL-D (EOF) 245
CONTROL-D (exit) 117
CONTROL-H (erase character) 151, 240
CONTROL-Q (Xoff) 147
CONTROL-U (line kill) 151, 240
CONTROL-V (paste) 124
CONTROL-W (delete word) 151
CONTROL-W (erase word) 240
CONTROL-X (cut) 124
CONTROL-X (line kill) 151
CONTROL-Z (suspend) 151, 152, 255
DEL (erase character) 151
encryption 1110
end line 20
ENTER 20
erase 151
interrupt 152
kill (line) 151
line kill 151
NEWLINE 20
RETURN 20, 240
typeface 20

keyword variables 313
keywords, search for using apropos 139
kill builtin 152, 255, 455–457, 1009, 1010, 1012
kill line key (CONTROL-U) 151, 240
kill process 455–457
KILL signal 1009
kill utility 618
killall utility 457
kilo- 1156
known_hosts file 668–670
Konqueror as an LDAP client 770
Korn, David 293, 1156
Korn Shell 293, 1156
ksh shell 293, 1156
Kubuntu 2, 75, 99
KVM 9

L

LAMP 32, 79, 648
LAN 375, 1156

configuring 637
more information 658
setting up 638–641

ptg

1222 Main Index

LANG variable 1107
language, used by the system 145
lapic boot parameter 82
large number 1156
launchd daemon 432
launchers 121, 122
Launchpad 518, 1125
LBA addressing mode, disk 583
LBX 381
LCD monitor, subpixel smoothing 284
LDAP 758–770, 1156

back end 761
DB_CONFIG file 760
directory 758
Evolution client 767
front end 762
Konqueror client 770
LDIF 759
objectClass 759
schema directory 758
setting up a server 760
slapcat utility 763

ldapadd utility 765
ldapmodify utility 764
ldd utility 465
.ldif filename extension 759
LDIF, LDAP 759
–le relational operator 1018
leaf 1156
least privilege 420, 1157
left-click 101
left-handed mouse 105, 274
less utility 138, 162, 960
let builtin 361, 1016
lexical variable 1045
lftp utility 674
lftp.conf file 674
/lib directory 214
lib directory 214
libraries called by executable, list using ldd 465
library, libwrap 465
libwrap library 465
Lightweight Directory Access Protocol see LDAP
line kill key (CONTROL-U) 151, 240
Line Printer Daemon see lpd daemon
LINES variable 984
links 14, 226, 226–232, 1157

alternatives directory 491
delete using rm 232, 501

display using ls 229
exporting 785
find using lnks 962
hard 228–230, 1151, 1157
hard versus symbolic 227, 230
hard, create using ln 228, 501
hypertext 409
inode 501
number of, display using ls 216
point-to-point 1165
remove using rm 232
soft see links, symbolic
symbolic 230, 501, 1157, 1176

cd and 231
create using ln 230
dereference 1144
versus hard 227, 230

symlinks see links, symbolic
utility names 491

links utility 411
Linux

see also kernel
benefits 6–9
distribution 6
documentation 136–144
Documentation Project 144
FHS (Filesystem Hierarchy Standard) 14, 213
file namespace 35
Foundation 213
FSSTND (Filesystem Standard) 14, 213
history 1–6
LSB (Linux Standard Base) 213
manual sections 138
newsgroups 454, 1103
overview 12–19
PAM see PAM
Pluggable Authentication Modules see PAM
Software Map database 1105
standards 7
Terminal Server Project 774
UNIX heritage 3

linux directory 575
linux terminal name 1106
linux-gate.so.1 file 467
list box see drop-down list
list operator see character, class
list, Perl 1045
lists file (APT) 524
listserv 390

ptg

Main Index 1223

live session 52
live/install CD/DVD see installation CD/DVD
ln utility 228, 230, 501
ln utility versus cp 229
lnks shell script 962
load average, display using w 183
loadable modules 580, 1157
loader, boot see GRUB
local area network see LAN
/local directory 39
local directory 214, 542
local variables 330
locale 1157
localhost 387
location bar, Nautilus 279
lockd daemon 404, 777
locktty shell script 975
log

analyze using swatch 1126
DNS 849, 852, 854
files, checking 620
files, obtain help using 1100
files, rotate using logrotate 622–624
FTP 708
in see login
log directory 500, 626
machine 618, 619t
OpenSSH 680
out 450, 1158

log directory 215, 1100
logical

evaluation 1017
expressions 1158
operators see Boolean operators
volumes (LV) 41

Logical Volume Manager (LVM) 41
login 448, 1158

automatic using OpenSSH 677–678
failsafe GNOME 146
failsafe terminal 146
GUI 145
name see username
options 100
problems 146, 616
prompt 448
remote 147
root 1170
screen 100, 145

security 1120
shell 328, 1158

.login file 1158
Login incorrect error message 448
login utility 328, 448
login.defs file 494, 597
.logout file 1158
logresolve utility 921
logrotate utility 622–624
logrotate.conf file 622–624
logrotate.d directory 622–624
logvsftpd.log file 711
loopback service 493
lost+found directory 452, 488
lp utility 559
lpadmin utility 562–564
lpd daemon 403, 548
lpinfo utility 561
lpq utility 165, 559
LPR line printer system 548
lpr utility 165, 252, 559
lprm utility 165, 559
lpstat utility 165, 559
ls utility 161, 215, 502
LSB (Linux Standard Base) 213
lsb_release utility 585
lshal utility 641
lshw utility 640
lsmod utility 582
lsof utility 618
lspci utility 640
lsusb utility 641
–lt relational operator 1018
LTS release 31
LVM 41
lynx utility 411

M

m-a utility 581
MAC address 474, 1158
Mac processor architecture 30
machine collating sequence 1158
machine log 618, 619t
machine name, display using hostname 163
macro 1158
magic file 500, 1158
magic number 500, 1158

ptg

1224 Main Index

mail
see also exim4
aliases 491, 722
authenticated relaying 736
checking root’s 620
communicating with users 615
Dovecot 735
IMAP server (Dovecot) 735
JumpStart: configuring exim4 to send and receive

mail 718
JumpStart: configuring exim4 to use a

smarthost 716
list server 390
mail file 720
MAIL variable 321
mailbox 321
MAILCHECK variable 321
maildir format 720
mailing list 733
Mailman 734–735
MAILPATH variable 321
mailq utility 723
mbox format 720
MDA 713, 1159
more information 715
MTA 713, 1115, 1160
MUA 713, 1116, 1160
network addresses 186
newaliases utility 723
POP3 server (Dovecot) 735
Postfix 715
postmaster 620
Qmail 715
security 1115
self-signed certificates 736
sending to a remote user 390
sendmail daemon 404
SMTP 714
spam see spam
SpamAssassin see SpamAssassin
SquirrelMail 731
SSL 736
utilities 186
Webmail 731–733

mail file 720
MAIL variable 321
mailbox 321
MAILCHECK variable 321
maildir format 720

mailing list 733
Mailman 734–735
mailname file (exim4) 718
MAILPATH variable 321
mailq utility 723
main memory 1158
Main menu 102, 122
main software package category 522
Main toolbar, Nautilus 279
mainframe computer 10
mainframe model 398
mainlog directory (exim4) 720
major device number 503, 1158
make utility 1080
makedbm utility 753
makepath function 1026
MAN 376, 1159
man directory 215
man utility 136–138
manager, file see Nautilus
manager, session 116
manager, window 155
mandb utility 139
man-in-the-middle 1114, 1114
manuals see help
map files 794
Marvell 30
masquerading, IP 881, 890, 893, 1159
Massachusetts Institute of Technology see MIT
mawk utility 970, 1096
mbox format 720
MBR (master boot record) 84, 91, 583, 589
MD device 92
MD5 encryption 1159
MDA 713, 1159
mebibyte 37, 1159
megabyte 1159
memory

see also RAM
main 1158
paging 499
testing 79
virtual and swap space 498
virtual, report on using vmstat 609

memtest86+ utility 79, 587
menu 1159

Administration 122
bash 983
context 104, 126, 127t

ptg

Main Index 1225

Main 122
Object context 104, 126, 127t
objects 121
Panel (context) 119
Panel Object context 121
panel see panel
Preferences 122
shell script 979
System 122
Window Operations 124

menu.lst file 584
menubar, Nautilus 279
merge 1159
mesg utility 185
message

see also error messages; usage messages
daemon 500, 625–627
deny using mesg 185
messages directory 500
messages file 617
of the day see motd file
rsyslog.conf file 626–627
rsyslogd daemon 625–627
security 500
send using motd 615
send using wall 615
send using write 184, 615
system 500
usage see usage message

Message Digest 5 see MD5
messages file 1100
META key 1159
metabit 1135
metacharacters 1159, see also special characters
Metacity window manager 115, 155
metadata 1159
metapackages see software packages, virtual
metropolitan area network 376, 1159
microprocessor 11
Microsoft Windows see Windows
middle mouse button 124
MIME 130, 1160
mingetty utility 328
minicomputer 10
mini-HOWTOs 142
minimal install CD 32
minimal system 80

minimize window 1160
MINIX 6
minix filesystem 505
minor device number 503, 1160
mirrors, Ubuntu 45
mistakes, correct typing 150
MIT 17
MIT, Project Athena 268
MIT, X Consortium 268
MITM see man-in-the-middle
mkdir utility 208–209
mkfifo utility 503
mkfs utility 458, 488, 509
mklost+found utility 488
mkswap utility 499
mlocate utility 180
mm_cfg.py file (Mailman) 735
/mnt directory 214
modem 1160
modem, cable 1139
modinfo utility 582
modprobe utility 582
mods-available directory 905
mods-enabled directory 905
module, kernel 580
module, Perl 1045
module-assistant utility 581
modules directory 214
modules file 580
monitor, LCD, subpixel smoothing 284
monthly file 607
more utility 162
Morris, Robert T., Jr. 1122
Mosaic Web browser 409
motd file 494, 615
mount 1160

automatic 793, 1136
DOS filesystem 508
filesystem using mount 506–509
floppy diskette 508
point 36, 89, 507, 793, 1160
remote filesystems 777–780
table 494, 510

mount utility 494, 506–509, 777, 778–780, 816
mount: RPC: Program not registered error

message 777
mountd daemon 404
mounts file 494, 790

ptg

1226 Main Index

mouse 1160
click 101, 102
double-click timeout 106
focus-strictly-under 154
focus-under 153
left-handed 105, 274
middle button 124
mouseover 1160
pointer 1160
pointer, hover 102, 1152
preferences, setting 105
remapping buttons 274
right-click 104
right-handed 274
wheel 274

mouseover 1160
Mozilla 410
Mozilla, netnews 407
msdos filesystem 506
mt utility 605
MTA 713, 1115, 1160
mtab file 494
MUA 713, 1116, 1160
multiboot specification 1160
multicast 1161
multidisk device 92
multiplication operator 1020
Multipurpose Internet Mail Extension see MIME
multitasking 13, 1161
multiuser 13, 1161
multiuser mode 448
multiverse software package category 522
mv utility 164, 212, 501
MX records, DNS 828
my 630
.my.cnf file 630
mycp function 988
MySQL 628–635

.my.cnf file 630
column 628
configuring 650
database 628
Jumpstart: Setting Up MySQL 629
row 628
table 628

mysql_secure_installation utility 629

N

name
command 238
daemon 402
domain see domain, name
login see username
servers 399, 400
space 1161

named daemon 833
named directory 847
named pipe 503
named.conf file 836, 839–841, 851, 856
named.conf.options file 841
namespace 35, 1161
nano utility 425, 426
NAT 1161

rounters and 638
running from firestarter 868
running from iptables 892–896
table, iptables 881

National Center for Supercomputer
Applications 409

Nautilus 107–112, 282–283
access permissions 129
control bars 278
emblems 129, 278
File Browser versus Spatial windows 108
File Browser window 107, 276–282
file, open with 118
hidden files, displaying 282
history 278
location bar 279
Main toolbar 279
menubar 279
Open With selection 130
places 278
Side pane 277
spatial view 282
status bar 279
trash 282
View pane 277

NBT 1161
ncpfs filesystem 506
ndbm database 1144
–ne relational operator 1018
negation operator 1020
nessus utility 1125
net use utility (Windows) 818

ptg

Main Index 1227

net utility 798
net view utility (Windows) 818
NetBIOS 1161
netboot 774, 1161
netcat utility 1125
netiquette 1161
netmask 1161
netnews 407, see also newsgroups
.netrc file 694
Netscape 407, 409
netstat utility 384
network

see also IP address; protocols; wireless network
address 1162

@ in 388
mail 186
mask 385
space, private 1166

analyze using wireshark 1126
boot 1161
bottleneck, find using traceroute 395
broadcast 374, 1138

address 1138
packet 381
unicast, compared 381

cables see cables
client/server model 398
concentrator see network, hub
configure using NetworkManager 642–645
connection, test using ping 393
daemons 372, 402
datagram 373, 1144
diagnose using netcat 1125
DNS see DNS
duplex 375
Ethernet 374, 375, 1147
extranet 1147
FDDI 1148
file sharing model 398
firewall see firewall
frame 373, 1149
full-duplex 375
gateway 376, 1149
half-duplex 375
hops 394
host address 381
hostname, FQDN see FQDN
hosts file 386
hub 375, 1152

ICMP packet 1153
interface card see network, NIC
internet (lowercase “i”) 1154
Internet see Internet
internetwork 372
intranet 372
layer, IP model protocol 380
local area see LAN
mainframe model 398
metropolitan area 376, 1159
monitor with Cacti 647–658
multicast 1161
nameservers 399, 400
netmask 1161
netnews see netnews; newsgroups
NIC 639
nm-connection-editor utility 643
node 638
number see network, address
packet filtering 1164, see also firestarter; gufw;

iptables; ufw

packet sniffer 1164
packets 373, 882, 1164
point-to-point link 374
port forwarding 1165
private address space 642, 642t, 1166
privileged port 1166
PTP (peer-to-peer) model 399
resolver 400
route, display using traceroute 394
router 376, 377, 638, 1170
security 1116–1119
security guidelines 1117
segment 375, 1162
services 372, 402
setting up 638–641
sniff 1173
sockets 503
specifications 373t
subnet 385, 385, 1174

addresses 1175
masks 385, 1175
numbers 1175
specifying 462, 462t

switch 374, 375, 1162
token ring 1177
topology, shared 1171
trusted hosts 391
tunneling 1178

ptg

1228 Main Index

network, continued
UDP 1178
unicast 1178
unicast versus broadcast packets 381
VPN 1180
WAN see WAN
wide area see WAN
Wi-Fi 1181, see also wireless
wireless see wireless

Network Address Translation see NAT
Network File System see NFS
Network Information Service see NIS
Network Time Protocol see NTP
NetworkManager applet 642–645
NetworkManager daemon 642
newaliases utility 723
NEWLINE (command separator) 304
NEWLINE key 20
NEWLINE, quote using a backslash 304
newlist utility 734
news, Internet see netnews; newsgroups
newsgroups 408, 1103, 1119, see also netnews
NFS 773–776, 1162

all_squash option 789
attribute caching options 778
block size 780
data flow 775
df utility 774
error handling options 779
error messages 776, 777, 779, 790, 791
etab file 789
exportfs utility 785, 791
exporting device files 785
exporting directory hierarchies 785–789
exporting links 785
exports file 783, 786–789
filesystem 506
firewall setup 782
fstab file 778, 781
gssd daemon 777
idmapd daemon 777
JumpStart: configuring an NFS server using shares-

admin 783–785
JumpStart: mounting a remote directory

hierarchy 777–780
line speed, testing 780
lockd daemon 404, 777
more information 776
mount utility 777, 778–780

mountd daemon 404
mounting remote directory hierarchies 777–780
mounts file 790
nfs-common init script 776
nfsd daemon 404
nfs-kernel-server init script 782
NIS and 788
options 786–789

all_squash 789
attribute caching 778
error handling 779
miscellaneous 780
root_squash 788

performance, improving 780
portmap utility 776, 782, 792
prerequisites 776, 782
rmtab file 790
rpc.gssd daemon 777
rpc.idmapd daemon 777
rpc.lockd daemon 776
rpc.statd daemon 776
rquotad daemon 404
running clients 776
security 776, 783, 788
server xxx not responding error message 779
server–server dependency 793
setuid 777
shares-admin utility 783–785, 786
showmount utility 790
statd daemon 404, 776
testing 792
timeout 779, 780
version 4 776

nfsd daemon 404
NIC 639, 1162
nickname, host 387
nicknames file (NIS) 743
NIS 742–744, 1162

client, setting up 744–750
debugging 748, 756
defaultdomain file 745, 746
domain 742
domain name 746, 1162
firewall setup 751
GECOS 757
makedbm utility 753
Makefile file 753
maps 743
master servers 742

ptg

Main Index 1229

more information 744
NFS and 788
nicknames file 743
nis file (default) 746, 751, 757
nis init script 745, 750
nisdomainname utility 746
nsswitch.conf file 742
passwd utility 749
prerequisites 745, 750
rpcinfo utility 748
securenets file 753
server, setting up 750–756
server, specifying 747
slave servers 742
source files 742
testing 747, 756
users, adding and removing 750
Yellow Pages 742
yp.conf file 747
ypbind daemon 748
ypinit utility 755
yppasswd utility 748–750
yppasswdd init script 757
ypserv.conf file 751
ypwhich utility 747
ypxfr utility 755
ypxfrd daemon 755

nis file (default) 746, 751, 757
nmap utility 1125
nmbd daemon 798, 818
nmblookup utility 818
nm-connection-editor utility 643
nn utility 407
NNTP (Network News Transfer Protocol) 407,

1162
noacpi boot parameter 82
noapic boot parameter 82
noapm boot parameter 82
noclobber variable 248–250
node 638, 1162
nodmraid boot parameter 82
noirqpoll boot parameter 82
nolapic boot parameter 82
–nolisten tcp option (X Window System) 271
nologin file 495
nologin utility 495
nologin.txt file 481
nonprinting character 1162
nonvolatile storage 1163

NOT Boolean operator 1024
nsswitch.conf file 475–477
NTFS driver 1105
ntfs filesystem 506
NTP 1163
ntp.conf file 404
ntpd daemon 404
null device 250
null file 250, 489, 622, 973
null string 1163
number

block 1137
gibibyte 1150
gigabyte 1150
hexadecimal 1151
kilo- 1156
large 1156
magic 500, 1158
mebibyte 1159
megabyte 1159
octal 1163
sexillion 1171
tera- 1176
undecillion 1178

O

–o (OR) Boolean operator 1017
.o filename extension 203
object 101

click 102
Clock 105
copying 111, 124
cut and paste 124
dragging 106
moving on a panel 121
panel see panel
preferences, setting 104
right-click 104
selecting 111
trash, moving to 111

Object context menu 104, 126, 127t
Object Properties window 128–130
objectClass, LDAP 759
octal number 1163
od utility 491
OLDPWD variable 360
one-time passwords 1120
one-way hash 1163

ptg

1230 Main Index

Open Group 268
open source 1163
OpenLDAP 758
OpenOffice.org 109, 116
OpenPGP Message Format 1114
OpenSSH 664–665, 1163

authentication 664, 668
authorized keys 677–678
automatic login 677–678
client, setting up 668–670
clients 667–676
compression 684
configuration files 665–666, 674, 679
debugging 672, 674, 678, 681
encryption 664
firewall setup 683
JumpStart: starting an OpenSSH server 677
JumpStart: using ssh and scp to connect to an

OpenSSH server 667
keys 664
known_hosts file 668–670
log file 680
more information 666
opening a remote shell 670
port forwarding 681–683
prerequisites 667, 676
protocol versions (1 and 2) 664
public key encryption 664
recommended settings 668, 677
rhost authentication 665
running commands remotely 671
security 663
server, setting up 676–680
ssh_known_hosts file 668–670
sshd daemon 676–680
ssh-keygen utility 668–670, 677
troubleshooting 680
tunneling 681–683
X11 forwarding 668, 675, 680, 681

operating system 1163
operating system, generic/proprietary 10
Operations menu, Window 124
operators 1019–1024

bash 1019t
Boolean see Boolean operators
list see character, class
logical see Boolean operators
redirection (bash) 299, 299t
relational 1018

remainder 1022
short-circuiting 1022
string 1018t
ternary 1023

OPIE utility 1120
/opt directory 39, 214
opt directory 214, 541
OPTARG variable 1013
OPTIND variable 1013
options 239, 1163

boot 57, 82
command line 239–240, 352

OR bitwise operator 1024
OR Boolean operator 1017
ordinary file 201, 500, 1163
OSDL (Open Source Development Labs) 213
other access permission 215
out shell script 959
output 1163
output, standard see standard output
owner access permission 215
owner of file, display using ls 216

P

P2P 1163
package variable, Perl 1045
package see software packages
package, Perl 1045
packets 1164

broadcast 381
filtering 1164, see also firestarter; gufw; iptables; ufw

network 373
sequence number (icmp_seq) 394
sniffer 1164
unicast 381

page breaks 193
pagers 138, 162, 1164
paging 499, 1164
palimpsest partition editor 66–70
PAM 478–482, 1164

control flag keywords 480t
features 449
login security 1120
module type indicators 480t
more information 479
pam.d file 478
security file 478
stack 481

ptg

Main Index 1231

pam.d file 478
panel 101, 117

moving objects on a 121
objects 118, 120
objects, adding 119
orientation 120

Panel (context) menu 119
Panel Object context menus 121
Panel Properties window 119
parameter expansion 360
parameter null or not set error message 1002
parameters 312, see also bash parameters
parameters, boot 57, 82
parent directories 201, 202
parent process 328, 1164
parentheses, group commands using 306
parse 240, 356
parted utility 611–614
partition 33, 1164

see also name of partition (e.g., /var [indexed under
var directory])

create manually (graphical) 60, 72
create manually (textual) 87
create using parted 611–614
create, guided 36, 60, 60, 70
creating, about 36
delete using gparted 66
delete using palimpsest 69
display using palimpsest 67
extended 34
filesystem 34
logical 34
naming 36
primary 34
RAID see RAID
resize using gparted 65
sizes, minimum 39t
sizes, suggested 37
swap 37
table 33
type 88
UUID number 510
work with using gparted 64–66
work with using palimpsest 66–70
work with using ubiquity 70–74

partner software package category 522
PASC (Portable Application Standards

Committee) 293
passive FTP see FTP, PASV

passphrase 1164
passwd file 448, 494–495
passwd utility 749
passwords 1164

break using crack 620
changing 148
choosing 619
generating using pwgen 149
group 492
hashed 497
John the Ripper utility 1125
one-time 1120
passwd file 448, 494–495
root account 422
root account and sudo 430
root account, assigning to 431
Samba 799, 803
secure remote using srp 1126

PASV FTP see FTP, PASV
path, search 178
PATH variable 295, 319–321, 453, 982
pathnames 201, 205, 211, 1164

/ within 35
~ (tilde) in a 206
absolute 205, 242, 1134
completion 342
elements 1164
expansion 256, 256–260, 315, 363
last element of 1164
relative 206, 242, 1168

PC processor architecture 30
PC, root privileges from a 1116
PCI devices, list using lspci 640
pdbedit utility 798
.pdf filename extension 203
PDF printer, setting up a virtual 549
peer, BitTorrent 539
period special character 1091
peripheral device see device
Perl 1041–1084

$! variable 1068
$#array variable 1054
$. variable 1065
$_ variable 1065
. (dot) operator 1054
.. (range) operator 1055
::, use of 1045, 1079
@_ array 1072
Apache, scripts called from 946

ptg

1232 Main Index

Perl, continued
array 1045
block 1045
CGI script 942
chomp function 1059, 1067
chop function 1067
closedir function 1083
comparison operators 1058, 1059t
compound statement 1045
CPAN 1079
defined function 1051
die function 1059, 1068
distribution 1045
–e option 1074
error checking 1068
file handle, magic 1066
file test operators 1057
for control structure 1061–1064
foreach control structure 1061–1064
foreach statement, postfix syntax 1062
greedy matching 1076
handle 1066
if control structure 1057
if statement, postfix syntax 1058, 1074
if...else control structure 1059
if...elsif...else control structure 1060
keys function 1056
–l option 1074
last statement 1062
lexical variable 1045
list 1045
magic file handle 1066
metacharacters 1076t
module 1045, 1079
my function 1071
namespace 1045, 1079
next statement 1062
nongreedy matching 1076
numeric operators 1059t
opendir function 1083
operators

comparison 1058, 1059t
numeric 1059t
string 1059t

options, combining 1074
package 1045
package variable 1045
parsimonious matching 1076
perldoc utility 1043

pop function 1055
postfix syntax 1058, 1062
push function 1055
readdir function 1083
regular expression metacharacters 1076t
regular expressions 1073–1079
replacement string 1075
reverse function 1069
say function 1047
shift function 1055, 1073, 1082
slice, array 1055
sort function 1069
special characters 1049t
splice function 1055
split function 1083
statement, compound 1045
statements 1047
string operators 1059t
subroutines 1071–1073
substr function 1081
syntax 1047
uc function 1062
unless control structure 1057
until control structure 1064
use feature 'say' 1047
use function 1047
use strict statement 1043
use warnings statement 1043, 1051
values function 1056
–w option 1051
while control structure 1064

perldoc utility 1043
Permission denied error message 242, 300, 319
permissions see access permissions
persistent 1165
PGP encryption 1113
.pgpkey file 182
philosophy, UNIX 388
phish 1165
.php filename extension 914
physical

device 1165
layer, IP model protocol 380
security 1122
volumes (LVM) 42

Pick a Color window 285
Pick a Font window 284
PID 1165

$! variable 996
$$ variable 995

ptg

Main Index 1233

background process 254
fg 291
number 1 328, 445
numbers 328
process, display using ps 255

Pidgin see Empathy IM client
pidof utility 457
pinfo utility 141
ping utility 393, 458
ping6 utility 394
pipelines see pipes
pipes 16, 170, 251, 251–254, 1165

| symbol and noclobber 248
| symbol in extended regular expressions 1096
at the end of line 970
create using mkfifo 503
filters 253
named 503

pixel 1165
.pl filename extension 914
Places menu 122
plaintext 1110, 1165
.plan file 182
Pluggable Authentication Module see PAM
plus sign in extended regular expressions 1096
point-to-point link 374, 1165
Point-to-Point Protocol see PPP protocol
POP3 server (Dovecot) 735
pop3-login daemon 735
popd builtin 312
portable 10
portmap daemon 406, 462–464
portmap utility 776, 782, 792
portmapper 406, 1165
ports 401, 1165

connect to using telnet 392
forwarding 1165
forwarding using OpenSSH 681–683
privileged 401, 1116
scan for open using nmap 1125
setting serial information 459
stealth 871

positional parameters 996, 996–999
POSIX 7, 293
Postfix daemon 715, 1116
postinst script (dpkg) 533
postmaster 620
PostScript Printer Definition see PPD
power management 402, 403

power, turning off 452
poweroff utility 450
PowerPC processor architecture 30
ppd directory (CUPS) 563
PPD files 561
PPID see parent process
PPP (point-to-point) protocol 381
pppd daemon 404
Preboot Execution Environment 774
Preferences submenu 122
preferences, setting 104
preinst script (dpkg) 533
PreSession directory 449
Pretty Good Privacy see PGP
PREVLEVEL variable 438
primary buffer 124
printable character 1166
printer

see also CUPS; printing
accepting/rejecting jobs 551t
capability database 495
classes 561
configure using lpadmin 562–564
configure using system-config-printer 550–554
disable using cupdisable 565
disable using cupsreject 564
enable using cupsaccept 564
enable using cupsenable 565
enable/disable 551t
IPP protocol 548
page breaks 193
PDF, virtual 549
print files using lpr 165
print queue 548
printcap file 495
queue, managing 551, 564
remote, configuring 552–554
sharing 565
status 551t

printing
see also CUPS; printer
command line, from the 558
command-line utilities 559t
quotas 564
system 547
UNIX traditional 558
Windows, from using CUPS 566
Windows, from using Samba 567
Windows, to using CUPS 568

ptg

1234 Main Index

Privacy Enhanced Mail see PEM encryption
private address space 642, 642t, 1166
private key 1111
privilege, least 420, 1157
privileged ports 401, 1116, 1166
privileges, root see root privileges
problem solving 1100
/proc directory 214, 497, 506
procedure 1166
process 243, 328, 328–330, 1166

background 330, 1136
child 328, 1140
die 330
files held open by, locate using lsof 618
first 445
foreground 1149
fork 328
ID see PID
identification see PID
init 445
kill 455–457
numbers, display using pidof 457
parent 328, 1164
parent of all 445
search for using ps and grep 456
sleep 330
spawn see process, fork
spontaneous 328
structure 328
substitution 365
wake up 330

processor architecture 29
procmail daemon 730
.profile file 294, 1166
profile file 294, 495
program 1166

see also builtins; Utilities Index (page 1189)
name of calling 997
running 102–103
terminating 107, 151

.project file 182
Project Athena 268
PROM 1166
prompts 1166

420
$ 20
bash 321–323
login 448
representation 20

root account 420
shell 20

proprietary operating systems 10
protocols 379, 379–381, 1166

connectionless 1142
connection-oriented 380, 1142
datagram-oriented 381
DHCP 470–474
HTTPS 943
ICMP 394
IP model 380
IPP 548
IPSec 1117
ISO model 380
LBX 381
NNTP 407
PPP 381
protocols file 495
SLIP 381
stream-based 380
TCP 380
TCP/IP 379
UDP 379, 381
Xremote 381

protocols file 888
proxy 405, 1166
proxy gateway 405, 1167
proxy server 405, 1167
.ps filename extension 203
ps utility 255, 302, 328, 456, 995
PS1 variable 321, 322t
PS2 variable 322
PS3 variable 323, 984
PS4 variable 323, 966
pseudographical interface 30, 150
pseudoterminal 490
pstree utility 329
PTP (peer-to-peer) model 399
pts directory 244, 490
pub directory (FTP) 694
public key encryption see encryption, public key
public_html directory 913
pushd builtin 311
pwd builtin 204
pwd utility 231
PWD variable 360
pwgen utility 149
PXE 774
Python 1167

ptg

Main Index 1235

Q

Qemu 9
Qmail 715, 1116
qnx4 filesystem 506
qrunner daemon 735
Qt toolkit 275
question mark in extended regular expressions 1096
quiescent 445
quiet boot parameter 57
QUIT signal 152, 1009
quota utility 625
quotaon utility 625
quotation marks

see also quoting
around variables 314
around whitespace 315
double 955
in aliases 347
in pathname expansion 364
in Perl 1048
removal of 357
single 160

quoting 1167
see also quotation marks
characters 160
let arguments 362
NEWLINE characters using \ 304
parentheses in regular expressions 1094
shell variables using \ 314
special characters in regular expressions 1093,

1093t
trap, arguments to 1010

R

radio button 1167
RAID 40, 91, 514, 1167

backups, does not replace 599
fake 41

RAM 1167
disk 43, 1168
installation requirements 28
swap and 38, 498
testing 79

random access memory see RAM
random file 490
random number generator 490
RANDOM variable 1031

RAS 1121, 1168
raw devices 504
raw mode, device 504
rc script see init script
rc.conf file 438, 445
rc.local file 441
RC5 encryption 1113
rcn.d directory 440–443
rcS.conf file 445
rc-sysinit task 439
rc-sysinit.conf file 439
RDF 1168
read access permission 215
read builtin 974, 1003–1005, 1005t, 1005–1006
Readline completion commands 342–343
Readline Library command editor 340–346
Readline variables 344t
readnews utility 407
readonly builtin 317, 318
readonly memory see ROM
reboot system 451
reboot utility 450
recovery mode 445, 445–448

Alternate CD, from 83
from multiuser mode 451
rescue mode, versus 83
root password 444
root privileges 420

recovery-mode directory 447
recursion, infinite (aliases) 349
redirect

see also redirection
and append standard output using >> 249
output of sudo using > 424
output of sudo using tee 425
output using a pipe (|) 170
standard input using < 247–248
standard input/output/error using exec 1007
standard output using > 246–247
standard output using tee 254

redirection 15, 245, 1168, see also redirect
redirection operators (bash) 299t
redundant array of inexpensive disks see RAID
reentrant code 1168
regular character 1168
regular expression 1089, 1168

\(...\) brackets expressions 1094
ampersand in replacement strings 1095
anchors 1092

ptg

1236 Main Index

regular expression, continued
asterisks 1092, 1092t
brackets 1091, 1091t, 1094
carets 1092
carets and dollar signs 1092t
character class 1140
character classes and bracketed 1097t
characters 1090
delimiters 1090
dollar signs 1092
empty 1094
extended 1095, 1096t, 1097t

pipes 1096
plus signs 1096
question marks 1096
summary 1097

full 1095, 1096t
list operator see character, class
longest match 1093
periods 1091, 1091t
Perl 1073–1079
quoted digits 1095
quoted parentheses 1094
quoting special characters 1093, 1093t
replacement strings 1094, 1098t
rules 1093
simple strings 1090, 1090t
special characters 1090, 1090, 1093, 1097t
summary 1097

reiserfs filesystem 506
relational operators 1018
relative pathnames 206, 242, 1168
relaying, authenticated mail 736
release, upgrading 74
releases, Ubuntu 31
religious statue, miniature see icon
reload utility 435
remainder operators 1020, 1022
remapping mouse buttons 274
remote

access security 1121
computing and local displays 270
filesystem 1169
login 147
procedure call see RPC

replacement strings in regular expressions 1094
REPLY variable 984, 1004
reports, system 608, 621
repositories 131, 522, 522–524

request for comments see RFC
rescue mode versus recovery mode 83
rescue versus recovery mode 446
reserved ports see privileged ports
reset utility 458
resolution of display, changing 154
resolv.conf file 496, 834, 835
resolvconf utility 496, 834, 835
RESOLVCONF variable 834
resolver 400, 496, 824, 1169
Resource Description Framework 1168
resource records, DNS 827–830
restore 1169
restore utility 603–605
restricted deletion flag see sticky bit
restricted software package category 522
return code see exit, status
RETURN key 20, 160, 240
reverse name resolution, DNS 831–833
rexec utility 404
rexecd daemon 404
RFC 1169
rhost authentication, OpenSSH 665
.rhosts file 391, 1119
right-click, mouse 104
right-handed mouse 274
Ritchie, Dennis 11
rm utility 162, 232, 501
rmdir utility 210
rmmod utility 582
rmtab file 790
rn utility 407
roam 1169
role alias (Apache) 912
ROM 1169
romfs filesystem 506
root

see also root account; root privileges
directory (/) 35, 37, 200, 205, 213, 466, 1170
domain, DNS 824
filesystem (/) 1170
login 1170
window 118, 125, 1170

root account
see also root privileges
locked 98, 422
password and recovery mode 444
password and sudo 430
prompt 420
unlocking 431

ptg

Main Index 1237

/root directory 214
root privileges 98, 419–432

see also root account
admin group and 428
gain using gksudo 423
gain using kdesudo 423
gain using su 421, 431
gain using sudo 421–431
gain using various methods 420
graphical programs and 423
PATH and security 432
PC, from a 1116
recovery mode 420
setuid see setuid
shell with 424

root user see root account
rotate files 1170
router 638, 1170

network 376, 377
set up using iptables 892–896

row 628
RPC 406, 1170

display information about portmap using
rpcinfo 462–464

portmap daemon 406
rpc file 496
rpc.gssd daemon 777
rpc.idmapd daemon 777
rpc.lockd daemon 776
rpc.statd daemon 776
RPC: Program not registered error message 790
rpcinfo utility 462–464, 748
rquotad daemon 404
RSA encryption 1112, 1170
rsyslog.conf file 626–627
rsyslogd daemon 625–627
run 1170
Run Application window 103, 286
run command scripts 440
runlevel 443, 443t, 1170

DEFAULT_RUNLEVEL variable 440, 445
emulation in Upstart 434
event 438
initdefault, and 439
PREVLEVEL variable 438
RUNLEVEL variable 438

runlevel utility 444
RUNLEVEL variable 438
runlevels utility 451
run-parts utility 607

S

S/Key utility 1120
safedit shell script 981
Samba 797, 799, 1170

see also Samba parameters
configure using swat 804–807
configure using system-config-samba 800–803
debug nmblookup 818
firewall setup 799
home directories, sharing 814
[homes] share 814
JumpStart: configuring a Samba server using

system-config-samba 800
Linux shares, setting up 802
Linux shares, working with from Windows 814
manual configuration 807–814
more information 799
mount utility 816
NBT 1161
net use utility (Windows) 818
net utility 798
net view utility (Windows) 818
NetBIOS 1161
nmbd daemon 798, 818
nmblookup utility 818
parameters see Samba parameters
passwords 799, 803
pdbedit utility 798
ping utility 818
prerequisites 800
printing from Windows 567
share 799, 1171
shared directory 647
SMB 1172
smb.conf file 804, 807–814
smbclient utility 815, 819
smbd daemon 798
smbd init script 800
smbpasswd utility 798, 803
smbstatus utility 798
smbtar utility 798
smbtree utility 815
smbusers file 799
swat utility 804–807
system-config-samba utility 800
testparm utility 817
troubleshooting 817

ptg

1238 Main Index

Samba, continued
user

adding 801
nobody 802

user map 799
username 799
utilities 798
Web administration tool 804–807
Windows shares 815–817, 1171
WINS 1181

Samba parameters
communication 813
domain master browser 812
global 808
logging 811
security 808
share 813

samhain IDS utility 1119
sandbox 9
Save window 110
/sbin directory 214
sbin directory 214
schema 1170
schema directory 758
Schneier, Bruce 1126
scp utility 667, 672–674, see also OpenSSH
screen 243

as standard output 244
number, X Window System 272

screen, login 145
script utility 172
scripts, shell see shell scripts
scroll 1171
scrollbar 1171
sdn file 489
search

engines 411
for files held open by a process using lsof 618
for files using gnome-search-tool 286
for files using mlocate 180
for files using Search for Files window 286
for inodes using find 966
for keywords using apropos 139
for open files using lsof 618
for process using ps and grep 456
for setuid files using find 454
for software package containing a file 521, 538
for software package containing a file using

dpkg 538

for software package using aptitude 529
for strings using grep 166
for utilities using whereis 178
for utilities using which 178
path 178

Search for Files window 286
secret key encryption see encryption, symmetric key
Secure Sockets Layer see SSL
securenets file 753
securetty file 421
security

see also firewall
access permissions 215–226
accton utility 1120
ACL 1134
admin group 619
AIDE utility 454, 1119
ANI 1122
Apache directives 930
authentication 1136
back door 1136
BIOS 620
bugtraq mailing list 1120
CERT 1120
checksum 1140
chkrootkit utility 1124
chroot jail see chroot jail
cipher 1141
ciphertext 1110, 1141
cleartext 1141
CLID 1122
console 420
cookie 1142
cracker 1143
cryptography 1143
cypher 1141
DDoS attack 1144
digital signature 1111
DNS 822
DoS attack 1146
DragonSquire IDS utility 1119
dsniff utility 1124
email 1115
encryption see encryption
file 1115
finger utility 389
Firewall toolkit 1125
FTP 688, 695, 699, 705
fwtk utility 1125

ptg

Main Index 1239

host 1119–1124
host-based trust 391
hping utility 1125
IP spoofing 1154
IPng 387
IPSec 1117
IPv6 387
John the Ripper utility 1125
Kerberos 1156
kerberos utility 1121
Linux features 14
login 1120
login shell 495
login, last 148
man-in-the-middle 1114, 1114
MD5 encryption 1159
messages 500
MITM see security, man-in-the-middle
more information 1124
MTA 1115
MUA 1116
nessus utility 1125
netcat utility 1125
network 1116–1119
newsgroups 1119
NFS 776, 783, 788
NIS 753
nmap utility 1125
OpenSSH 663
OPIE utility 1120
PAM 449, 1120
passphrase 1164
password 148, 494, 1164
password, one-time 1120
PATH and root privileges 432
PATH variable 320, 453
physical 1122
plaintext 1110
privileged ports 1116
Qmail utility 1116
RAS 1121
remote access 1121
resources 1124t
.rhosts file 1119, 391
root password 619
RSA encryption 1170
S/Key utility 1120
samhain IDS utility 1119
Schneier, Bruce 1126

server, securing a 465–470
setgid files 219
setuid files 219, 620
SHA1 hash algorithm 1171
smartcards 1121
snort utility 1126
software, keeping up-to-date 518
spoofing 1154
srp utility 1126
ssh see ssh

SSL 1115
STARTTLS 1115
swatch utility 1126
syslogd daemon 1120
system 619
TCP wrappers 465–466
telnet utility 392, 1116
TLS 1115
tripwire utility 1119, 1126
Trojan horse 453, 453–454, 1177
trusted hosts 391
virus 1122, 1180
web of trust 1114
wiping a file 490
wireshark utility 1126
worm 1122, 1181
xhost 272

security file 478
sed utility 622
seed, BitTorrent 539
segment 375
segment, network 375, 1162
select control structure 983–985
selection buffer 124
self-signed certificates 736, 943–945
sendmail daemon 404, 715, 716
serial ports, setting information 459
Server CD see installation, CD/DVD
Server Message Block protocol see Samba, SMB
servers 1171

debug using telnet 393
mail list 390
name 399, 400
proxy 405
securing 465–470
setting up 460–470, 646
superserver see inetd daemon; xinetd daemon
X 269, 273, 1181

service utility 441

ptg

1240 Main Index

service, directory 1145
services

chroot jail, running in a 470
configuring 441–443
Internet 407–409
network 402
nsswitch.conf file 475–477
RPC 406
Upstart 434

services file 402, 497
session 1171

failsafe 1148
initialize 449
key, OpenSSH 664
manager 116
record using script 172

Session Indicator button 117
set builtin 353, 963, 965, 998
set group ID see setgid
set user id see setuid
set utility 965
setfacl utility 222–226
setgid 218–219, 1171
setserial utility 459
setuid 218–219, 420, 1171

files, locate using find 454
files, security 420, 620
NFS 777
nosuid option to mount 508, 777

sexillion 1171
sftp utility 674
sh Shell 292, 1138
SHA1 hash algorithm 1171
sha1sum utility 47
SHA1SUMS file 46
shadow file 448, 497
shar file 986
share 783, 1171
share directory 214
share, Samba 799
shared network topology 1171
Shares, adding Linux (Samba) 802
shares-admin utility 783–785, 786
shell 14–16, 1171

see also bash; bash parameters; bash variables;
command line; job control; shell features; shell
scripts; usage messages

~ (tilde) expansion 206
archive file 986

Bourne (original) 1138
changing default 457
command interpreter 126
csh 1139
dash 15, 292
Debian Almquist 15, 292
default, change using chsh 293
features 352–353
filename generation 256–260
functions 1171, see also bash, functions
job control see job, control
ksh 293
login 328, 1158
OpenSSH 670
options 352–353
parameters 312, 312–325
pathname expansion 256–260
prompt 20
quoting special characters 315
root privileges see root privileges
sh 292, 1138
sleep 243
subshell 306
variables see bash variables

shell scripts 300, 300–303, 1172
see also bash, functions; usage messages
addbanner 1011
arguments, testing 964
bash 1024–1034
birthday 985
bundle 986
chkargs 956, 958
chmod, using to make executable 300–302
command_menu 979
comments, begin using # 303, 964
configure 542
count 971
count_down 994
cpdir 307
debug using xtrace 1026
debugging 966
executing 303
exit status 956, 958
Here document 985–987
input, read using read 1003–1006
is_regfile 957
lnks 962
locktty 975
makepath function 1026

ptg

Main Index 1241

menu 979
out 959
positional parameters 996, 996–999
quiz 1032
recursion 1025
safedit 981
shell, specify using #! 302, 963
sortmerg 989
spell_check 972
temporary filenames 995
temporary files 983
whos 969

shells file 457
shift builtin 998
shift utility 959
shopt builtin 353
short-circuiting operators 1022
shortcut see link
showmount utility 790
shutdown utility 437, 450
Shuttleworth, Mark 2, 3
Side pane, Nautilus 277
signals 1009, 1009t, 1172, see also signal name

(e.g., KILL)
signals, display list of using kill 1012
Silicon Graphics 409
simple filenames 205, 242, 1172
single quotation marks see quotation marks
single-user mode 445
single-user mode see recovery mode
single-user system 1172
sites-available directory 906
sites-enabled directory 906
skel directory 597
sladp init script 760
slapcat utility 763
sleep, shell 243
sleep utility 996
sleep() system call 330
slice see partition
slider 1172
SLIP (Serial Line IP) 381
sloppy focus 153
SMART disk monitoring 69
smartcards 1121
smarthost (exim4) 714, 717
SMB see Samba, SMB
smb.conf file 804, 807–814
smbclient utility 815, 819

smbd daemon 798
smbfs filesystem 506
smbpasswd utility 798, 803
smbstatus utility 798
smbtar utility 798
smbtree utility 815
smbusers file 799
SMF 432
smiley 1172
smilies, plural of smiley
SmoothWall, Linux router distribution 639
SMTP 714, 1172
snap, window 1172
sneakernet 1172
sniff 1173
SNMP 654
snmpd daemon 655
snmpd file 655
snort utility 1126
SOA records, DNS 829
sockets 503
SOCKS 1173
soft links see links, symbolic
software

see also software packages
bug tracking 518
downloading 1104t
free, definition 1129
GNU Configure and Build System 542
keeping up-to-date 518
termination signal 1009
Update Manager 112
updating 112

software packages 517
see also APT; apt-cache; apt-file; aptitude; dpkg; dpkg;

software
adding/removing 131–136
categories 131, 522
contents of 533
dependencies 527, 530
display information about using aptitude 530–531
file, search for the package containing using

dpkg 538
files, listing 538
finding 521
information about 529, 535, 537
install using dpkg 536
install/remove using aptitude 519–520
installing from a CD/DVD 131

ptg

1242 Main Index

software packages, continued
metapackages see software packages, virtual
remove configuration files using aptitude 520
remove using dpkg 536
repositories see repositories
search for using aptitude 529
source code 534
source code, download using apt-get 532
suggested 520
Ubuntu Software Center window 132
update list of available using dpkg 534
virtual 526

Software Sources window 131
software-properties-gtk utility 524
sort 1173
sort utility 168, 252, 365, 989
sortmerg shell script 989
source builtin 296
source code, download kernel using aptitude 573
source code, download using apt-get 532
source code, dpkg files 534
sources.list file 523
SPACE 1173
SPACE bar 160
spam 1173, see also SpamAssassin
SpamAssassin 727

see also spam
configuring 730
prerequisites 728
running on a mail server using procmail 730
spamassassin init script 728
spamc utility 727
spamd daemon 727
testing 728

spamc utility 727
spamd daemon 727
SPARC processor architecture 30
sparse file 1173
Spatial versus File Browser windows, Nautilus 108
spawn see fork
special characters 160, 256, 1090, 1173

* 257
? 256
[] 259
bash 326t
filename generation 256–260
pathname expansion 256–260
quoting 315
regular expressions 1089, 1097t

special files 501, 1140, see also device files
spell_check shell script 972
spin box 1173
spinner see spin box
splash boot parameter 57
spontaneous process 328
spoofing, IP 1154
spool 1173
spool directory 215, 1100
SQL 1173
square brackets 1174
square brackets, using in place of test 957
SquirrelMail 731
squirrelmail-configure utility 732
src directory 215
srp utility 1126
.ssh file 666
ssh directory 665
ssh init script 676
ssh utility 664, 667, 670–672, 1121, see also

OpenSSH
ssh_config file 674
ssh_known_hosts file 668–670
sshd daemon 676–680
sshd_config file 679
ssh-keygen utility 668–670, 677
SSL

Apache 943–945
mail 736
security 1115

stack, directory 310, 310–312, 360
stack, PAM 481
Stale NFS file handle error message 791
Stallman, Richard 4
standard error 244, 297, 1174

duplicate file descriptor using 1>&2 299, 958
file descriptor 297, 987
redirect 297–299
redirect error messages to 299, 958
redirect using 2> 297
redirect using exec 1007
redirect while redirecting standard output 298

standard input 244, 1174
file descriptor 297, 987
keyboard as 244
redirect using < 247–248
redirect using 0< 297
redirect using exec 1007

ptg

Main Index 1243

standard output 243, 1174
append using >> 249
duplicate file descriptor using 2>&1 298
file descriptor 297, 987
redirect output of sudo using tee 425
redirect using > 246–247
redirect using 1> 297
redirect using exec 1007
redirect using tee 254
redirect while redirecting standard error 298
screen as 244

standards
directories and files 213–215
FHS (Linux Filesystem Hierarchy Standard) 213
FSG (Free Standards Group) 213
FSSTND (Linux Filesystem Standard) 213
Linux 7
LSB (Linux Standard Base) 213
OpenPGP Message Format 1114
option handling 1015
POSIX 7, 293

start utility 435
STARTTLS MTA 1115
startup files 204, 1174

bash 293–296
bash.bashrc 492
BASH_ENV variable 294
.bash_login 294
.bash_logout 294
.bash_profile 294–295, 351, 488
.bashrc 294–295, 488
bashrc 294
.cshrc 1143
.dmrc 449
ENV variable 294
.inputrc 343
.login 1158
.logout 1158
.netrc 694
.profile 294, 1166
profile 294, 495
rc.local 441
.toprc 610

startx utility 270
stat utility 459
statd daemon 404, 776
statements, Perl 1047
static IP address 382
status bar, Nautilus 279
status file 533

status line 1174
status utility 435, 436
status, exit 1147
stealth port 871
sticky bit 1174
stop utility 435
stopping a program 151
stream-based protocols 380
streaming tape 1174
streams see connection-oriented protocol
strings 1174

comparing 1018
null 1163
operators 1018t
pattern matching 1018
search for using grep 166
within double quotation marks 315

Stroustrup, Bjarne 12
strtok() system call 947
Structured Query Language see SQL; MySQL
stty utility 151, 488
stylesheet see CSS
su utility 421, 431
subdirectories 200, 1174
subdomain, DNS 824
subnet 385, 385, 1174

address 1175
mask 385, 1175
number 1175
specifying 462, 462t

subpixel hinting 1175
subpixel smoothing 284
subroutine see procedure
subshell 306, 1175
subtraction operator 1020
sudo utility 98, 421–431

see also root privileges
admin group 428
configuring 426–431
defaults (options) 429
edit sudoers file using visudo 426
editing a file using –e or sudoedit 425
environment 424
options 425
redirecting output 424
redirecting output using tee 425
root account password and 430
root shell, spawning 424
sudoers file 426–431
timestamps 423

ptg

1244 Main Index

SUDO_EDITOR variable 425, 426
sudoedit utility 425
suggested packages 520
Sun Microsystems 741, 773
superblock 1175
superserver see inetd daemon; xinetd daemon
Superuser 1175, see also root account; root

privileges
suspend key (CONTROL-Z) 151, 152, 255
SVID see System V Interface Definition
swap 1175

filesystem 37, 498
RAM and 38
space 499, 1175
swapon utility 499

swarm, BitTorrent 539
swat utility 804–807
swatch utility 1126
switch, network 374, 375, 1162
Switcher, Workspace 104
symbolic hostname 401
symbolic links as special files 501
symbolic links see links, symbolic
symlinks see links, symbolic
synaptic utility 133–136
/sys directory 214, 499
sys directory 572
sysctl utility 572
syslog file 849
syslogd daemon 1120
system

see also system calls
boot failure 453
booting 444
characteristics of a well-maintained 418
console see console
crash 452
dataless 774, 1144
diskless 774
initialization, customize 440
logging in 100
logs 625–627
messages 500
messages, rsyslogd daemon 625–627
minimal 80
mode 1176
powering down 452
rebooting 451
reports 608, 621

security 619
shutting down 450
single-user 1172
slow 617
upgrading 74

system calls 12
exec() 303
fork() 303, 328, 330, 947
gethostbyname() 833
sleep() 330
strtok() 947

System menu 122
System V 1176

init daemon 432
init script see init script
Interface Definition 7

system-config-printer utility 550–554
system-config-samba utility 800
sysv filesystem 506
SysVinit 432
SysVinit scripts see init script
sysv-rc-conf utility 441–443

T

T-1 line 374
T-3 line 374
TAB key 160
table 628
table, hash 1151
tail utility 167
talk utility 405
talkd daemon 405
Tanenbaum, Andrew 6, 505
tape archive see tar utility
tape, manipulate using mt 605
tape, streaming 1174
tar file 176
tar utility 176–178, 307, 600, 601t, 602
.tar.bz2 filename extension 177
.tar.gz filename extension 177, 203
.tar.Z filename extension 177
tarball 176
task, Upstart 434
.tbz filename extension 177
TC Shell 1176
TCP 1176
TCP wrappers 465–466
TCP/IP 379

Admin
Text Box
Download form www.eBookTM.com

ptg

Main Index 1245

tcsh 1176
tee utility 254, 425, 905
teletypewriter 1178
telinit utility 437, 438, 444, 448, 451
telnet utility 391–393, 941, 1116
temporary file 983
tera- 1176
TERM signal 152, 1009
TERM variable 147
Termcap 1106
termcap file 1176
terminal 1176

ASCII 1135
character-based 1140
device 1008
emulator 125, 147, 244, 287
failsafe 146
files 244
interrupt signal 1009
names 1106
pseudo 490
reset using reset 458
specifying 1106
standard input 244
standard output 244
virtual 83
X 1182

Terminal Server Project, Linux 774
terminating execution 151
Terminfo 1106
terminfo file 1176
terminology

Apache 901
desktop 117
filesystem naming 36
firewall 864
GNOME 117
partition name 36
screen 243
single-user versus recovery modes 445
Upstart daemon 433

ternary operator 1023
test builtin 955–957, 957t, 961, 964, 965, 968, 970,

976
testparm utility 817
text box 1176
textual

application, running from a GUI 103
installer 85–91

interface 30, 30
partitioning, manual 87
system, installing 80

tftp utility 774
tftpd daemon 405
.tgz filename extension 203
theme 113, 1176
thicknet 375, 1176
thinnet 375, 1176
Thompson, Ken 11, 1136
thread safe see reentrant code
three-finger salute 451
thumb 1177
tick 1177
tick box see check box
.tif filename extension 203, 1177
.tiff filename extension 203, 1177
tilde expansion 206, 319, 359
tildes in directory stack manipulation 360
tiled windows 1177
time series data 647
time to live see TTL
time zone, graphical installation 59
time, synchronize using ntpd 404
timed daemon 405
tin utility 407
titlebar 106, 123
TLS, security 1115
/tmp directory 214, 983
todos utility 173
toggle 1177
token ring network 1177
tokens 238, 356, 1177
toolbar 124
toolbar, Nautilus 279
tooltip 118, 1177
top utility 610, 610t
.toprc file 610
.torrent filename extension 539
torrent, BitTorrent 539
Torvalds, Linus 2, 5, 7, 1156
touch utility 211
tput builtin 975
tr utility 173, 251, 298
traceroute utility 394
traceroute6 utility 395
tracker, BitTorrent 539
transaction signatures, DNS see DNS, TSIG
transient window 1177

ptg

1246 Main Index

Transmission Control Protocol see TCP
Transmission Control Protocol/Internet Protocol see

TCP/IP
Transport Layer Security see TLS
transport layer, IP model protocol 380
trap builtin 975, 1009–1012
trap door see back door
trash, emptying 111
trash, Nautilus 282
tripwire utility 1119, 1126
Trojan horse 453, 453–454, 1177
Trolltech 275
true 1022
true utility 1011, 1022
trusted hosts 391
tset utility 458
TSTP signal 1009
TTL 395, 829, 1178
tty file 1008
TTY see teletypewriter
tty1 file 439
tune2fs utility 512–514
tunneling 1178
tunneling using OpenSSH 681–683
tutorial, ftp 690–693
twisted pair cable 375
.txt filename extension 203
type builtin 1003
typeface conventions 20
typescript file 172
typeset builtin 317–318, 994
.tz filename extension 177

U

ubiquity utility 57–63, 70–74
Ubuntu 29

see also graphical installation; installation;
installation CD/DVD

32-bit versus 64-bit 29
64-bit versus 32-bit 29
booting 53
Canonical 31
documentation 136–144
downloading 27, 43–46
editions 32
Edubuntu 2
governance 3
Help Center window 116, 136

history 2
installation steps 42
IRC channels 144
Kubuntu 2, 75
Launchpad 1125
LTS release 31
minimal system 80
mirrors 45
recovery mode see recovery mode
releases 31
Shuttleworth, Mark 2, 3
Software Center window 132
upgrading 74
Web site, obtaining help from 144
Xubuntu 2

UCE see spam
uchroot.c program 469
udev utility 502
UDP (User Datagram Protocol) 379, 381, 1178
ufs filesystem 506
ufw utility 874–876
UID 1178

display using id 432
effective 1147
passwd file, in 494

umask builtin 459
umount utility 494, 509
umsdos filesystem 506
unalias builtin 346, 349
uname utility 460, 588
unary operators 1020
undecillion 1178
unicast packet 381, 1178
unicode 1178
uniq utility 168, 522
universe software package category 522
University of Illinois 409
UNIX

Bourne Shell 292
Linux roots in 3
philosophy 388
printing, traditional 558
System V 3, 1176
System V Interface Definition 7

unlocking the root account 431
unmanaged window 1178
unmount a filesystem using umount 509
unset builtin 316
unshielded twisted pair see UTP

ptg

Main Index 1247

until control structure 974–976
Update Manager 112
Update Manager window 113
updatedb utility 180
update-exim4.conf utility 724
update-grub utility 84, 587–588
upgrade installation 33
upgrading Ubuntu 74
Upstart

DEFAULT_RUNLEVEL variable 440, 445
event 437
initctl utility 434
rc-sysinit task 439
reload utility 435
start utility 435
status utility 435
stop utility 435

Upstart daemon 432–440
anacron and 607
communicate with Upstart using initctl 434
event 433
job definition files 438–440
jobs 433, 435–436
rc task 438
rc-default task 439
runlevel emulation 434
runlevel event 438
runlevel utility 444
service 434
shutdown utility 437
starting 445
status utility 436
task 434
telinit utility 437, 438, 444
terminology 433
ttyn tasks 439

uptime, display using w 183
uptime utility 183
urandom file 490
URIs 1179
URLs 410, 1179
usage messages 238, 958, 959, 964, 972, 1179, see

also error messages; messages
USB devices, list using lsusb 641
Usenet 407–409
user

see also user accounts
display information about using finger 181

ID see UID
interface 1179
list using w 183
list using who 180
map, Samba 799
mode 1179
name see username
nobody, Samba 802
private groups 493
Samba 801
Superuser see root account

user accounts
see also user
add using useradd 597
graphical installation 61
manage using users-admin 594–597
modify using usermod utility 598
remove using userdel 598

User Datagram Protocol see UDP
usermod utility 573
username 494, 1179
username, Samba 799
users-admin utility 594–597
userspace 1179
/usr directory 39, 214
UTC 1179
UTF-8 1179
utilities 1179

see also commands; the Utilities index (page 1189)
alternative names 491
backup 600
builtin 261
builtins versus 956
links to 491
locate using whereis 178
locate using which 178
mail 186
names, typeface 20

UTP cable 375
uucp utility 407
UUID 1179

device 489
fstab, in 510

V

/var directory 38, 215
.var filename extension 914, 935

ptg

1248 Main Index

variable 1180
see also bash variables
completion 343
Perl lexical 1045
Perl package 1045

VeriSign 1112
version control, Bazaar 518
vfat filesystem 506
vi see vim

video card see graphics card
View pane, Nautilus 277
viewport see workspace
vim 186–193

case sensitivity 1139
Command mode 188
correcting a mistake 192
correcting text 190
deleting text 192
exit, emergency 187
help system 190
Input mode 188, 189
inserting text 192
Last Line mode 188
moving the cursor 191
Normal mode see vim, Command mode
page breaks 193
quitting 193
safedit script 981
starting 186
terminal, specifying 1106
undoing changes 192
vimtutor utility 186
Work buffer 193

virtual
consoles 83, 149, 1180
machines 8–9
memory and swap space 498
memory, report on using vmstat 609
package 526
private network see VPN
software packages 526
terminal see virtual, consoles

virtualBox 9
viruses 1122, 1180
visual effects 28, 115
VISUAL variable 425, 426
visudo utility 426
VLAN 1180

VMM (virtual machine monitor) 8
VMs (virtual machines) 8–9
vmstat utility 609
VMware 9
volume group (LVM) 42
volume label 458
VPN 1180
vsftpd

see also FTP
configuration files 701, 711
configuration parameters

connection 708
display 707
download 704
log 708
logging in 702
message 707
miscellaneous 710
stand-alone mode 701
upload 704

daemon 699
firewall, setting up 700
ftp directory 703, 705
ftp file 700, 703, 705
init script 699
logvsftpd.log file 711
more information 689
prerequisites 699
running in a chroot jail 703
setting up 699–711
stand-alone mode 699
testing 700
vsftpd.banned_emails file 703
vsftpd.chroot_list file 711
vsftpd.conf file 701
vsftpd.log file 708
vsftpd.pem file 710
vsftpd.user_list file 702, 711

vsftpd.banned_emails file 703
vsftpd.chroot_list file 711
vsftpd.log file 708
vsftpd.pem file 710
vsftpd.user_list file 702
vt100 terminal 1106
vt102 terminal 1106
vt220 terminal 1106
Vulcan death grip 451
VxFS filesystem 506

ptg

Main Index 1249

W

w utility 183, 183t
W2K 1180
W3 see World Wide Web
W3C 1180
wall utility 615
Wall, Larry 1041
WAN 376, 1180
WAP 638, 1180
wc utility 170, 361
Web

see also World Wide Web
crawler 411
ring 1180

web of trust 1114
webalizer utility 948
Webmail 731–733
weekly file 607
wget utility 543
whatis database 139
whatis utility 139, 437
wheel group 482
whereis utility 179
which utility 178
while control structure 970–973
whitespace 160, 1180

on the command line 304
quoting 315

who utility 180, 183t
whois utility 396
whois utility see jwhois utility
whos shell script 969
wide area network see WAN
widget 1180, see also GUI
Wi-Fi 1181, see also wireless
wiggly windows 115
wildcards 256, 1180, see also special characters
window 118, 123, 123–126, 1181

see also screens
active 153
Add/Ubuntu Software Center 132
Appearance Preferences 113
Browse/Save 110
cascading 1139
clipboard 125
cut and paste 124
cycling 124
decorations 155

File Browser see Nautilus
focus, input 124, 153
ignored 1153
input focus 153
manager 18, 155, 275–276, 1181

Compiz 115, 155
GNUStep 276
Metacity 115, 155
WindowMaker 276

minimize 1160
moving 106
Nautilus File Browser see Nautilus File Browser
Object Properties 128–130
Panel Properties 119
Pick a Color 285
Pick a Font 284
resizing 106
root 118, 125, 1170
Run Application 103, 286
Save 110
scrollbar 1171
Search for Files 286
slider 1172
snap 1172
Software Sources 131
thumb 1177
tiled 1177
titlebar 106, 123
toolbar 124
transient 1177
Ubuntu Help Center 116, 136
unmanaged 1178
Update Manager 113
wiggly 115
Window Preferences 154
working with 106
Workspace Switcher 104
Workspace Switcher Preferences 104

Window List applet 121
Window Operations menu 124
Window Preferences window 154
WindowMaker window manager 276
Windows

see also Samba
convert files from/to Linux format 173
dual-boot system 76
file namespace versus Linux 35
filename limitations 202
formatting 33

ptg

1250 Main Index

Windows, continued
integration see Samba
net use utility (Samba) 818
net view utility (Samba) 818
networks, browse using Samba 816
NTFS driver 1105
print from, using CUPS 566
print from, using Samba 567
print to, using CUPS 568
shares

see also Samba, share
mounting 816
working with using Samba 815

WINS 1181
wiping a file 490
wire see cable
wireless

802.11 specification 1134
access point 638, 1181
ad hoc mode 640
bridge 639
configuring 645
infrastructure mode 640
network 376

wireshark utility 1126
words 151, 238, 1181

count using wc 170
delete using CONTROL-W 151
erase key (CONTROL-W) 240
looking up 1104t
on the command line 356
splitting 323, 363

Work buffer 1181
working directory 204, 1181

change to another using cd 209
executing a file in 301, 320
relative pathnames and 206
significance of 206
versus home directory 210

workspace 118, 1181
desktop, and the 101
GNOME 18

Workspace Switcher 104
workstation 10, 1181
World Wide Web 409

browsers 409, 410
Consortium 1180
hypermedia 410
hypertext 409

Mosaic browser 409
Netscape Navigator 410
search engines 411
URLs 410
Web crawler 411

worms 1122, 1181
write access permission 215
write utility 184, 615
wtmp file 623
www directory 902, 905, 909
WWW see World Wide Web
WYSIWYG 1181

X

X Consortium 268
X server 1181
X terminal 1182
X utility 268, see also X Window System
X Window System 17, 268, 1182

client and server 269
color depth 273
display number 272
–display option 273
DISPLAY variable 272
display, access to 271
emergency exit 274
events 269
exiting from 273
freedesktop.org group 276
ID string 272
library 155
mouse see mouse
–nolisten tcp option 271
remote computing and local displays 270
screen number 272
server 269
starting 270
startx utility 270
X servers, running multiple 273
X stack 268
X terminal 1182
X11 forwarding, OpenSSH 668, 675, 680, 681
xev utility 270
XFree86 versus X.org 268
xhost utility 271
Xinerama 1182
Xlib 268
xmodmap utility 274

ptg

Main Index 1251

X11 directory 214
x86 processor architecture 30
xargs utility 622
XDMCP 1182
xDSL 1182
Xen 9
xev utility 270
Xfce desktop 2
xfs filesystem 506
xhost utility 271
.xhtml filename extension 914
Xinerama 1182
xinetd daemon 405, 464, 699
XINU 6
Xlib 268
XML 1182
xmodmap utility 274
Xremote 381
xrn utility 407
XSM 1182
xterm terminal name 1106
Xubuntu 2, 28
xvnews utility 407

Y

Yellow Pages 742
yp.conf file 747
ypbind daemon 748
ypcat utility 744
ypinit utility 755
ypmatch utility 744
yppasswd utility 748–750
yppasswdd init script 757
ypserv.conf file 751
ypwhich utility 747
ypxfr utility 755
ypxfrd daemon 755

Z

.Z filename extension 176, 203
Z Shell 1182
zcat utility 175
zero file 491
Zimmerman, Phil 1114
zones, DNS 824
zsh shell 1182
zulu time see UTC

	CONTENTS
	List of JumpStarts
	Preface
	CHAPTER 1: WELCOME TO LINUX
	Ubuntu Linux
	The History of UNIX and GNU–Linux
	The Heritage of Linux: UNIX
	Fade to 1983
	Next Scene, 1991
	The Code Is Free
	Have Fun!

	What Is So Good About Linux?
	Why Linux Is Popular with Hardware Companies and Developers
	Linux Is Portable
	The C Programming Language

	Overview of Linux
	Linux Has a Kernel Programming Interface
	Linux Can Support Many Users
	Linux Can Run Many Tasks
	Linux Provides a Secure Hierarchical Filesystem
	The Shell: Command Interpreter and Programming Language
	A Large Collection of Useful Utilities
	Interprocess Communication
	System Administration

	Additional Features of Linux
	GUIs: Graphical User Interfaces
	(Inter)Networking Utilities
	Software Development

	Conventions Used in This Book
	Chapter Summary
	Exercises

	PART I: INSTALLING UBUNTU LINUX
	CHAPTER 2: INSTALLATION OVERVIEW
	The Live/Install Desktop CD and the Live/Install DVD
	More Information
	Planning the Installation
	The Installation Process
	Downloading and Burning a CD/DVD
	Gathering Information About the System
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 3: STEP-BY-STEP INSTALLATION
	Booting from a Live/Install Desktop CD or a Live/Install DVD
	Graphical Partition Editors
	Upgrading to a New Release
	Installing KDE
	Setting Up a Dual-Boot System
	Advanced Installation
	Chapter Summary
	Exercises
	Advanced Exercises

	PART II: GETTING STARTED WITH UBUNTU LINUX
	CHAPTER 4: INTRODUCTION TO UBUNTU LINUX
	Curbing Your Power: root Privileges/sudo
	A Tour of the Ubuntu Desktop
	Getting the Most Out of the Desktop
	Updating, Installing, and Removing Software Packages
	Where to Find Documentation
	More About Logging In
	Working from the Command Line
	Controlling Windows: Advanced Operations
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 5: THE LINUX UTILITIES
	Special Characters
	Basic Utilities
	Working with Files
	| (Pipe): Communicates Between Processes
	Four More Utilities
	Compressing and Archiving Files
	Locating Commands
	Obtaining User and System Information
	Communicating with Other Users
	Email
	Tutorial: Using vim to Create and Edit a File
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 6: THE LINUX FILESYSTEM
	The Hierarchical Filesystem
	Directory Files and Ordinary Files
	Pathnames
	Working with Directories
	Access Permissions
	ACLs: Access Control Lists
	Links
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 7: THE SHELL
	The Command Line
	Standard Input and Standard Output
	Running a Command in the Background
	Filename Generation/Pathname Expansion
	Builtins
	Chapter Summary
	Exercises
	Advanced Exercises

	PART III: DIGGING INTO UBUNTU LINUX
	CHAPTER 8: LINUX GUIS: X AND GNOME
	X Window System
	The Nautilus File Browser Window
	The Nautilus Spatial View
	GNOME Utilities
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 9: THE BOURNE AGAIN SHELL
	Background
	Shell Basics
	Parameters and Variables
	Special Characters
	Processes
	History
	Aliases
	Functions
	Controlling bash: Features and Options
	Processing the Command Line
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 10: NETWORKING AND THE INTERNET
	Types of Networks and How They Work
	Communicate over a Network
	Network Utilities
	Distributed Computing
	Usenet
	WWW: World Wide Web
	Chapter Summary
	Exercises
	Advanced Exercises

	PART IV: SYSTEM ADMINISTRATION
	CHAPTER 11: SYSTEM ADMINISTRATION: CORE CONCEPTS
	Running Commands with root Privileges
	The Upstart Event-Based init Daemon
	System Operation
	Avoiding a Trojan Horse
	Getting Help
	Textual System Administration Utilities
	Setting Up a Server
	nsswitch.conf: Which Service to Look at First
	PAM
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 12: FILES, DIRECTORIES, AND FILESYSTEMS
	Important Files and Directories
	File Types
	Filesystems
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 13: DOWNLOADING AND INSTALLING SOFTWARE
	JumpStart: Installing and Removing Packages Using aptitude
	Finding the Package That Holds a File You Need
	APT: Keeps the System Up-to-Date
	dpkg: The Debian Package Management System
	BitTorrent
	Installing Non-dpkg Software
	wget: Downloads Files Noninteractively
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 14: PRINTING WITH CUPS
	Introduction
	JumpStart I: Configuring a Local Printer
	system-config-printer: Configuring a Printer
	JumpStart II: Setting Up a Local or Remote Printer Using the CUPS Web Interface
	Traditional UNIX Printing
	Configuring Printers
	Printing from Windows
	Printing to Windows
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 15: BUILDING A LINUX KERNEL
	Prerequisites
	Downloading the Kernel Source Code
	Read the Documentation
	Configuring and Compiling the Linux Kernel
	Installing the Kernel, Modules, and Associated Files
	Rebooting
	GRUB: The Linux Boot Loader
	dmesg: Displays Kernel Messages
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 16: ADMINISTRATION TASKS
	Configuring User and Group Accounts
	Backing Up Files
	Scheduling Tasks
	System Reports
	parted: Reports on and Partitions a Hard Disk
	Keeping Users Informed
	Creating Problems
	Solving Problems
	MySQL
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 17: CONFIGURING AND MONITORING A LAN
	Setting Up the Hardware
	Configuring the Systems
	NetworkManager: Configures Network Connections
	Setting Up Servers
	Introduction to Cacti
	More Information
	Chapter Summary
	Exercises
	Advanced Exercises

	PART V: USING CLIENTS AND SETTING UP SERVERS
	CHAPTER 18: OPENSSH: SECURE NETWORK COMMUNICATION
	Introduction to OpenSSH
	Running the ssh, scp, and sftp OpenSSH Clients
	Setting Up an OpenSSH Server (sshd)
	Troubleshooting
	Tunneling/Port Forwarding
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 19: FTP: TRANSFERRING FILES ACROSS A NETWORK
	Introduction to FTP
	Running the ftp and sftp FTP Clients
	Setting Up an FTP Server (vsftpd)
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 20: EXIM4: SETTING UP MAIL SERVERS, CLIENTS, AND MORE
	Introduction to exim4
	Setting Up a Mail Server (exim4)
	Working with exim4 Messages
	Configuring an exim4 Mail Server
	SpamAssassin
	Additional Email Tools
	Authenticated Relaying
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 21: NIS AND LDAP
	Introduction to NIS
	Running an NIS Client
	Setting Up an NIS Server
	LDAP
	Setting Up an LDAP Server
	Other Tools for Working with LDAP
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 22: NFS: SHARING FILESYSTEMS
	Introduction to NFS
	Running an NFS Client
	Setting Up an NFS Server
	automount: Mounts Directory Hierarchies on Demand
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 23: SAMBA: LINUX AND WINDOWS FILE AND PRINTER SHARING
	Introduction to Samba
	Setting Up a Samba Server
	Working with Linux Shares from Windows
	Working with Windows Shares from Linux
	Troubleshooting
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 24: DNS/BIND: TRACKING DOMAIN NAMES AND ADDRESSES
	Introduction to DNS
	Setting Up a DNS Server
	Setting Up Different Types of DNS Servers
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 25: FIRESTARTER, GUFW, AND IPTABLES: SETTING UP A FIREWALL
	Introduction to firestarter
	firestarter: Setting Up and Maintaining a Firewall
	ufw: The Uncomplicated Firewall
	gufw: The Graphical Interface to ufw
	Introduction to iptables
	Building a Set of Rules Using iptables
	Copying Rules to and from the Kernel
	Sharing an Internet Connection Using NAT
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 26: APACHE: SETTING UP A WEB SERVER
	Introduction
	Running a Web Server (Apache)
	Configuration Directives
	Configuration Files
	Advanced Configuration
	Troubleshooting
	Modules
	webalizer: Analyzes Web Traffic
	MRTG: Monitors Traffic Loads
	Error Codes
	Chapter Summary
	Exercises
	Advanced Exercises

	PART VI: PROGRAMMING TOOLS
	CHAPTER 27: PROGRAMMING THE BOURNE AGAIN SHELL
	Control Structures
	File Descriptors
	Parameters and Variables
	Builtin Commands
	Expressions
	Shell Programs
	Chapter Summary
	Exercises
	Advanced Exercises

	CHAPTER 28: THE PERL SCRIPTING LANGUAGE
	Introduction to Perl
	Variables
	Control Structures
	Working with Files
	Sort
	Subroutines
	Regular Expressions
	CPAN Modules
	Examples
	Chapter Summary
	Exercises
	Advanced Exercises

	PART VII: APPENDIXES
	APPENDIX A: REGULAR EXPRESSIONS
	Characters
	Delimiters
	Simple Strings
	Special Characters
	Rules
	Bracketing Expressions
	The Replacement String
	Extended Regular Expressions
	Appendix Summary

	APPENDIX B: HELP
	Solving a Problem
	Finding Linux-Related Information
	Specifying a Terminal

	APPENDIX C: SECURITY
	Encryption
	File Security
	Email Security
	Network Security
	Host Security
	Security Resources
	Appendix Summary

	APPENDIX D: THE FREE SOFTWARE DEFINITION

	GLOSSARY
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

	JUMPSTART INDEX
	A
	C
	D
	F
	M
	N
	O
	S

	FILE TREE INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W

	UTILITY INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	MAIN INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

