A

CERTIFICATION
IN A NUTSHELL

A Desktop Quick Reference

P ® Adam Haeder, Stephen Addison Schneiter,
O RE I LLY Bruno Gomes Pessanba & James Stanger

LPI LINUX
CERTIFICATION

IN A NUTSHELL

Third Edition

Adam Haeder, Stephen Addison Schneiter,
Bruno Gomes Pessanha, and James Stanger

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Sebastopol - Taipei - Tokyo

LPI Linux Certification in a Nutshell, Third Edition
by Adam Haeder, Stephen Addison Schneiter, Bruno Gomes Pessanha, and James
Stanger

Copyright © 2010 Adam Haeder, Stephen Addison Schneiter, Bruno Gomes Pessanha, and
James Stanger. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://my.safaribooksonline.com). For more infor-
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editor: Andy Oram Indexer: Jay Marchand
Production Editor: Adam Zaremba Cover Designer: Karen Montgomery
Copyeditor: Genevieve d’Entremont Interior Designer: David Futato
Proofreader: Jennifer Knight lllustrator: Robert Romano
Printing History:

May 2001: First Edition.

July 2006: Second Edition.

June 2010: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trade-
marks of O’Reilly Media, Inc. LPI Linux Certification in a Nutshell, the image of a bull, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media,
Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and
authors assume no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

RepKover.

A — This book uses RepKover™, a durable and flexible lay-flat binding.
ISBN: 978-0-596-80487-9

M]

1276182761

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface .. i Xiii
L L 1 11 1
2. Exam 101 StudyGuidecooviniiiiiiii i i 5

Exam Preparation 5

3. System Architecture (Topic101.1) ..ovvniiiiiiiiiiiinininnnnnns 7
Objective 1: Determine and Configure Hardware Settings 7
BIOS ’

USB Topology 10

USB Controllers 10

USB Devices 11

USB Drivers 11

USB Hotplug 12
Reporting Your Hardware 12
Manipulating Modules 14
Device Management Definitions 20

4. (Change Runlevels and Shut Down or Reboot System (Topics 101.2 and

1 21
Objective 2: Boot the System 21
Boot-time Kernel Parameters 21
Introduction to Kernel Module Configuration 22
Objective 3: Change Runlevels and Shut Down or Reboot System 24
Single-User Mode 25
Overview of the /etc Directory Tree and the init Process 26

Setting the Default Runlevel 28

Determining Your System’s Runlevel 28

5. Linux Installation and Package Management (Topic102) 33
Objective 1: Design a Hard Disk Layout 34
System Considerations 34
Swap Space 37
General Guidelines 38
Objective 2: Install a Boot Manager 38
LILO 39
GRUB 41
Objective 3: Manage Shared Libraries 44
Shared Library Dependencies 44
Linking Shared Libraries 45
Objective 4: Use Debian Package Management 46
Debian Package Management Overview 46
Managing Debian Packages 47
Objective 5: Use Red Hat Package Manager (RPM) 52
RPM Overview 52
Running rpm 53
YUM Overview 58

6. GNU and Unix Commands (Topic103)covvnieiennennennennns 63
Objective 1: Work on the Command Line 64
The Interactive Shell 65
Command History and Editing 71
Manpages 75
Objective 2: Process Text Streams Using Filters 77
Objective 3: Perform Basic File Management 91
Filesystem Objects 91
File-Naming Wildcards (File Globbing) 100
Objective 4: Use Streams, Pipes, and Redirects 102
Standard I/O and Default File Descriptors 102
Pipes 103
Redirection 104
Using the tee Command 106
The xargs Command 106
Objective 5: Create, Monitor, and Kill Processes 107
Processes 107
Process Monitoring 108
Signaling Active Processes 115
Terminating Processes 117
Shell Job Control 118
Objective 6: Modify Process Execution Priorities 120
nice 120
Objective 7: Search Text Files Using Regular Expressions 123

vi | Table of Contents

Regular Expression Syntax 123
Using grep 125
Using sed 127
Examples 130
Objective 8: Perform Basic File Editing Operations Using vi 135
Invoking vi 135
vi Basics 135
Devices, Linux Filesystems, and the Filesystem Hierarchy
Standard (Topic104)coviiriiririiii i iiiereeeneenens 139
Objective 1: Create Partitions and Filesystems 140
Disk Drives Under Linux 140
Objective 2: Maintain the Integrity of Filesystems 151
Monitoring Free Disk Space and Inodes 151
Monitoring Disk Usage 153
Modifying a Filesystem 154
Checking and Repairing Filesystems 157
Objective 3: Control Filesystem Mounting and Unmounting 161
Managing the Filesystem Table 161
Mounting Filesystems 163
Unmounting Filesystems 166
Objective 4: Set and View Disk Quotas 167
Quota Limits 168
Quota Commands 169
Enabling Quotas 175
Objective 5: Manage File Permissions and Ownership 176
Linux Access Control 176
Setting Access Modes 181
Setting Up a Workgroup Directory 186
Objective 6: Create and Change Hard and Symbolic Links 187
Why Links? 188
Objective 7: Find System Files and Place Files in the Correct Location 192
Datatypes 193
The root Filesystem 194
Locating Files 200
Exam 101 Review Questions and Exercises 205
System Architecture (Topic 101) 205
Review Questions 205
Exercises 206
Linux Installation and Package Management (Topic 102) 206
Review Questions 206
Exercises 207
GNU and Unix Commands (Topic 103) 208
Review Questions 208
Exercises 208
Table of Contents | vii

Devices, Linux Filesystems, and the Filesystem Hierarchy Standard

(Topic 104) 211
Review Questions 211
Exercises 212

9. Exam 1071 PracticeTestcoiiiiiiiiiiiiiiiiiiiiiiiinn 215
Questions 215
Answers 226

10. Exam 101 Highlighter'sindexcccoviiiiiiiiiiiiniaa.. 229

System Architecture 229
Objective 101.1: Determine and Configure Hardware Settings 229
Objective 101.2: Boot the System 230
Objective 101.3: Change Runlevels and Shut Down or
Reboot System 230

Linux Installation and Package Management 230
Objective 102.1: Design Hard Disk Layout 230
Objective 102.2: Install a Boot Manager 231
Objective 102.3: Manage Shared Libraries 231
Objective 102.4: Use Debian Package Management 232
Objective 102.5: Use Red Hat Package Manager (RPM) 232

GNU and Unix Commands 232
Objective 103.1: Work on the Command Line 232
Objective 103.2: Process Text Streams Using Filters 233
Objective 103.3: Perform Basic File Management 235
Objective 103.4: Use Streams, Pipes, and Redirects 237
Objective 103.5: Create, Monitor, and Kill Processes 238
Objective 103.6: Modify Process Execution Priorities 239
Objective 103.7: Search Text Files Using Regular Expressions 239
Objective 103.8: Perform Basic File Editing Operations Using vi 241

Devices, Linux Filesystems, and the Filesystem Hierarchy Standard 243
Objective 104.1: Create Partitions and Filesystems 243
Objective 104.2: Maintain the Integrity of Filesystems 244
Objective 104.3: Control Filesystem Mounting and Unmounting 244
Objective 104.4: Set and View Disk Quotas 246
Objective 104.5: Manage File Permissions and Ownership 246

Objective 104.6: Create and Change Hard and Symbolic Links 248
Objective 104.7: Find System Files and Place Files in the Correct

Location 248

1. Exam 102 0Verviewoviiiiiiiiiiiiiin i iiiiiieeeeenns 251
12. Exam 102 Study Guideccovviniiiiiiiiiiiiiiiiiii 253
Exam Preparation 253

viii | Table of Contents

13.

14.

15.

16.

Shells, Scripting, and Data Management (Topic 105)

Objective 1: Customize and Use the Shell Environment
An Overview of Shells
The Bash Shell
Objective 2: Customize or Write Simple Scripts
Script Files
Basic Bash Scripts
Objective 3: SQL Data Management
Accessing a MySQL Server
Database Overview
Aggregate Functions
Multitable Queries

The X Window System (Topic106)ccovvvniiiniiinnnenn.

An Overview of X
Objective 1: Install and Configure X11
Selecting and Configuring an X Server
X Fonts
Controlling X Applications with .Xresources
Objective 2: Set Up a Display Manager
Configuring xdm
X Terminals
Configuring KDM
Configuring GDM
Objective 3: Accessibility

Administrative Tasks (Topic107)covviiriiiiiiinennnnnnns

Objective 1: Manage User and Group Accounts and Related System
Files

User Accounts and the Password File

Groups and the Group File

The Shadow Password and Shadow Group Systems

User and Group Management Commands
Objective 2: Automate System Administration Tasks by Scheduling
Jobs

Using cron

Using at

Controlling User Access to cron and at
Objective 3: Localization and Internationalization

Essential System Services (Topics 108.1and 108.2)

Objective 1: Maintain System Time
NTP Concepts
The NTP Software Package Components
The Hardware Clock

256
256
257
267
267
272
285
285
287
292
293

297
298
298
299
306
308
308
308
311
311
314
316

319

319
320
321
322
323

326
326
329
330
330

333
333
334
334
339

Table of Contents | ix

Time Zones 340

Objective 2: System Logging 341
Configuring syslogd 341
Client/Server Logging 343
Logfile Rotation 343
Examining Logfiles 344

17. Mail Transfer Agent (MTA) Basics (Topic 108.3)ccovvnennenn. 347

Objective 3: Mail Transfer Agent (MTA) Basics 347
Configuration of Sendmail 348
Configuration of Postfix 351
Configuration of Qmail 353
Configuration of Exim 354

18. Manage Printers and Printing (Topic108.4)ccovvvvnnnn. 355

Objective 4: Manage Printers and Printing 355

An Overview of Printing 355
BSD and System V Interfaces 356
LPRng 356
CUPS 357

Troubleshooting General Printing Problems 365
The Error Logfile 365
The Page Logfile 366
The Access Logfile 366
Using the cups-config Utility for Debugging 366

19. Networking Fundamentals (Topic109.1)ccovvvvvnnnnn..n. 369

Objective 1: Fundamentals of Internet Protocols 369
Network Addressing 370
Masks 372
Protocols 374
Services 376
Utilities 377

20. Basic Network Configuration (Topics 109.2and 109.4) 383

Objective 2: Basic Network Configuration and Objective 4:

Configuring Client Side DNS 383
Network Interfaces 384
DHCP 390
A Standard Linux Network Configuration 393

21. Basic Network Troubleshooting (Topic109.3)cccvvnennen.n. 395

Objective 3: Basic Network Troubleshooting 395

x | Table of Contents

22,

23.

24,

25.

Security (Topic110.1) ..ovvviiniiiiininnennnnn,

Objective 1: Perform Security Administration Tasks
The (In)Security of SUID
User IDs and Passwords
Shadow Passwords
Setting Limits on Users
Querying System Services

Set Up Host Security (Topic110.2)ovvnvenn

Objective 2: Set Up Host Security
The Super-Server
Security with TCP_WRAPPERS

Securing Data with Encryption (Topic110.3)

Objective 3: Securing Data With Encryption
Using Secure Shell (SSH)
Installation and Configuration
DSA and RSA Overview
Generating and Using Keys
The Server Public and Private Key
ssh-agent
Other SSH Tricks
SSH Port Forwarding
Configuring OpenSSH
Configuring and Using GNU Privacy Guard (GPG)
Generating a Key Pair
Importing a Public Key to a GPG Keyring
Signing Keys
Listing Keys
Export both a Public and Private Key
Encrypting a File
Troubleshooting Files in the ~/.gnupg/ Directory

Exam 102 Review Questions and Exercises

Shells, Scripting, and Data Management (Topic 105)
Review Questions
Exercises

The X Window System (Topic 106)
Review questions
Exercises

Administrative Tasks (Topic 107)
Review questions
Exercises

Essential System Services (Topic 108)
Review Questions

405
406
411
414
418
422

............. 431

431
431
437

.............. LTy

442
442
443
444
444
447
447
449
450
450
451
451
453
453
453
454
454
454

457
457
458
458
458
458
459
459
459
460
460

Table of Contents | xi

Exercises 460

Networking Fundamentals (Topic 109) 461
Review Questions 461
Exercises 462

Security (Topic 110) 462
Review Questions 462
Exercises 463

26. Exam 102 PracticeTestcoviiiiiiiiiiiiiiiiiiininnn, 465
Questions 465
Answers 473

27. Exam 102 Highlighter'sindexcoovviiiiiiiininnnnnne. 475

Shells, Scripting, and Data Management 475
Objective 105.1: Customize and Use the Shell Environment 475
Objective 105.2: Customize or Write Simple Scripts 476
Objective 105.3: SQL Data Management 476

The X Window System 477
Objective 106.1: Install and Configure X11 477
Objective 106.2: Set Up a Display Manager 477
Objective 106.3: Accessibility 477

Administrative Tasks 477
Objective 107.1: Manage User and Group Accounts and Related
System Files 477
Objective 107.2: Automate System Administration Tasks by
Scheduling Jobs 478
Objective 107.3: Localization and Internationalization 479

Essential System Services 480
Objective 108.1: Maintain System Time 480
Objective 108.2: System Logging 480
Objective 108.3: Mail Transfer Agent (MTA) Basics 481
Objective 108.4: Manage Printers and Printing 481

Networking Fundamentals 482
Objective 109.1: Fundamentals of Internet Protocols 482
Objective 109.2: Basic Network Configuration 483
Objective 109.3: Basic Network Troubleshooting 484
Objective 109.4: Configuring Client Side DNS 484

Security 484
Objective 110.1: Perform Security Administration Tasks 484
Objective 110.2: Set Up Host Security 485
Objective 110.3: Securing Data with Encryption 485

IndeX ..o 487

xii | Table of Contents

Preface

Certification of professionals is a time-honored tradition in many fields, including
medicine and law. As small computer systems and networks proliferated over the
last decade, Novell and Microsoft produced extremely popular technical certifica-
tion products for their respective operating system and network technologies. These
two programs are often cited as having popularized a certification market for prod-
ucts that had previously been highly specialized and relatively rare. These programs
have become so popular that a huge training and preparation industry has formed
to service a constant stream of new certification candidates.

Certification programs, offered by vendors such as Sun and Hewlett-Packard, have
existed in the Unix world for some time. However, since Solaris and HP-UX aren’t
commodity products, those programs don’t draw the crowds that the PC platform
does. Linux, however, is different. Linux is both a commodity operating system and
is PC-based, and its popularity continues to grow at a rapid pace. As Linux deploy-
ment increases, so too does the demand for qualified and certified Linux system
administrators.

A number of programs such as the Linux Professional Institute (LPI), the Red Hat
Certified Engineer (RHCE) program, and CompTIA’s Linux+ have formed to service
this new market. Each of these programs seeks to provide objective measurements
of a Linux administrator’s skills, but they approach the problem in different ways.

The RHCE program requires that candidates pass multiple exam modules, including
two hands-on and one written, whose goals are to certify individuals to use their
brand of products. The Linux+ program requires a single exam and is focused at
entry-level candidates with six months’ experience. LPI’s program is a job-based
certification and currently consists of three levels; this book focuses on the most
basic level.

xXiii

The Linux Professional Institute

The Linux Professional Institute is a nonprofit organization formed with the single
goal of providing a standard for vendor-neutral certification. This goal is being ach-
ieved by certifying Linux administrators through a modified open source develop-
ment process. LPI seeks input from the public for its exam Objectives and questions,
and anyone is welcome to participate. It has both paid and volunteer staff and re-
ceives funding from some major names in the computer industry. The result is a
vendor-neutral, publicly developed program that is offered at a reasonable price.

LPI currently organizes its most popular Linux Professional Institute Certification
(LPIC) series in three levels. This book covers the LPIC Level 1 Exams 101 and 102.

Level 1 is aimed at junior to midlevel Linux administrators with about two years of
practical system administration experience. The Level 1 candidate should be com-
fortable with Linux at the command line as well as capable of performing simple
tasks, including system installation and troubleshooting. Level 1 certification is re-
quired prior to obtaining Level 2 certification status.

All of LPI’s exams are based on a published set of technical Objectives. These tech-
nical Objectives are posted on LPI’s website and for your convenience printed at the
beginning of each chapter within this book. Each Objective set forth by LPI is
assigned a numeric weight, which acts as an indicator of the importance of the Ob-
jective. Weights run between 1 and 8, with higher numbers indicating more impor-
tance. An Objective carrying a weight of 1 can be considered relatively unimportant
and isn’t likely to be covered in much depth on the exam. Objectives with larger
weights are sure to be covered on the exam, so you should study these closely. The
weights of the Objectives are provided at the beginning of each chapter.

LPI offers its exams through Pearson VUE, Thomson Prometric, and at on-site lo-
cations at special Linux events, such as trade shows. Before registering for any of
these testing methods, you need to obtain an LPI ID number by registering directly
with LPI. To obtain your LPLID, visit http://www.lpi.org/register.html. Once you’ve
received your LPIID, you may continue your registration by registering with a testing
center or special event. You can link to any of these registration options through
LPI’s website.

In Vue and Prometric testing centers, the exams are delivered using a PC-based
automated examination program. As of this writing, the exams are available in
English, Japanese, Chinese (both Traditional and Simplified), German, Spanish,
Portuguese, and French. Exam questions are presented in three different styles:
multiple-choice single-answer, multiple-choice multiple-answer, and fill-in-the-
blank. However, the majority of the questions on the exams are multiple-choice
single-answer. Also, with the multiple-choice questions, the candidate is told exactly
how many answers are correct.

For security purposes, multiple forms of each exam are available at testing centers
to help minimize memorization and brain dumps of exams if candidates take them
multiple times. Due to this, actual question numbers may vary slightly. LPI’s psy-
chometric team develops these forms and adjusts the scoring appropriately so all

xiv | Preface

http://www.lpi.org
http://www.vue.com
http://www.prometric.com
http://www.lpi.org/register.html
http://www.lpi.org/eng/certification/faq/procedure_for_taking_exams

forms are equally difficult. The scores are between 200 and 800, and passing score
is 500.

Audience for This Book

The primary audience for this book is, of course, candidates seeking the LPIC cer-
tification. These may range from administrators of other operating systems looking
for a Linux certification to complement an MSCE certification to Unix administra-
tors wary of a growing pool of Linux-certified job applicants. In any case, this book
will help you with the specific information you require to be successful with the
Level 1 Exams. Don’t be fooled, however, as book study will not be enough to pass
your exams. Remember, practice makes perfect!

Due to the breadth of knowledge required by the LPI Objectives and the book’s one-
to-one coverage, it also makes an excellent reference for skills and methods required
for the day-to-day use of Linux. If you have a basic working understanding of Linux
administration, the material in this book will help fill gaps in your knowledge while
at the same time preparing you for the LPI Exams, should you choose to take them.

This book should also prove to be a valuable introduction for new Linux users and
administrators looking for a broad, detailed introduction to Linux. Part of the LPI
exam-creation process includes a survey of Linux professionals in the field. The
survey results drive much of the content found on the exams. Therefore, unlike
general-purpose introductory Linux books, all of the information in this book ap-
plies directly to running Linux in the real world.

Organization

This book is designed to exactly follow the Topics and Objectives established by LPI
for Level 1. That means that the presentation doesn’t look like any other Linux book
you’ve read. Instead, you can directly track the LPI Objectives and easily measure
your progress as you prepare.

The book is presented in two parts, one for Exam 101 and the other for Exam 102.
Each part contains chapters dedicated to the LPI Topics, and each of those sections
contains information on all of the Objectives set forth for the Topic. In addition,
each part contains a practice exam (with answers), review questions and exercises,
and a handy highlighter’s index that can help you review important details.

Book Chapters

Each part of this book contains some combination of the following materials:

Exam overview
Here you find an introduction to the exam along with details about the format
of the questions.

Preface | xv

Study guide
This chapter offers a few tips to prepare for the LPI Exams and introduces the
Objectives contained in the Topic chapters that follow.

Topic chapters
A separate chapter covers each of the Topic areas on the exam. These chapters
provide background information and in-depth coverage for each Objective,
with “On the Exam” (see bottom of this page) tips dispersed throughout.

Review questions and exercises
This chapter reinforces important study areas with review questions. The pur-
pose of this section is to provide you with a series of exercises that can be used
on a running Linux system to give you valuable hands-on experience before you
take the exams.

Practice test
The practice test is designed to be similar in format and content to the actual
LPI Exams. You should be able to attain at least an 80 percent score on the
sample test before attempting the live exam.

Highlighter’s index
This unique chapter contains highlights and important facts culled from the
Topic chapters. You can use this as review and reference material prior to taking
the actual exams.

Conventions Used in This Book

This book follows certain typographical conventions:

Italic
Italic is used to indicate URLs, filenames, directories, commands, options, sys-
tem components (such as usernames), and to highlight comments in examples.
Constant Width
Used to show the contents of files or the output from commands.
Constant Width Bold
Used in examples and tables to show commands or other text that should be
typed literally by the user.
Constant Width Italic
Used to show arguments and variables that should be replaced with user-
supplied values.
#, $
Used in some examples as the root shell prompt (#) and as the user prompt
($) under the Bourne or Bash shell.

On the Exam

Provides information about areas you should focus on when studying for the exam.

xvi | Preface

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

A final word about syntax: in many cases, the space between an option and its ar-
gument can be omitted. In other cases, the spacing (or lack of spacing) must be
followed strictly. For example, -wn (no intervening space) might be interpreted dif-
ferently from -w n. It’s important to notice the spacing used in option syntax.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code
in this book in your programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion of the code. For ex-
ample, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “LPI Linux Certification in a Nut-
shell, Third Edition, by Adam Haeder et al. Copyright 2010 Adam Haeder, Stephen
Addison Schneiter, Bruno Gomes Pessanha, and James Stanger. ISBN:
9780596804879.”

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

How to Contact Us

We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mistakes!).
As a reader of this book and as an LPI examinee, you can help us to improve future
editions. Please let us know about any errors you find, as well as your suggestions
for future editions, by writing to:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

Preface | xvii

mailto:permissions@oreilly.com

707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9780596804879
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

If you have taken one or all of the LPIC Exams after preparing with this book and
find that parts of this book could better address your exam experience, we’d like to
hear about it. Of course, you are under obligation to LPI not to disclose specific
exam details, but comments regarding the coverage of the LPI Objectives, level of
detail, and relevance to the exam will be most helpful. We take your comments
seriously and will do whatever we can to make this book as useful as it can be.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easil
S f g y y y
a 590[' search over 7,500 technology and creative reference books and videos

to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library
online. Read books on your cell phone and mobile devices. Access new titles before
they are available for print, and get exclusive access to manuscripts in development
and post feedback for the authors. Copy and paste code samples, organize your
favorites, download chapters, bookmark key sections, create notes, print out pages,
and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have
full digital access to this book and others on similar topics from O’Reilly and other
publishers, sign up for free at http://my.safaribooksonline.com.

Acknowledgments

For the third edition, we thank reviewers Don Corbet, Jon Larsen, Gregor Purdy,
Rick Rezinas, G. Matt Rice, and Craig Wollf.

Adam Haeder dedicates his work to Tina, Erin, Ethan, Stanley, and Stefon: the rea-
son I work so late into the night.

Bruno dedicates his work to his grandfather, Oswaldo Cabral Pessanha, in
memoriam.

xviii | Preface

http://oreilly.com/catalog/9780596804879
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

LPI Exams

LPI Exam 101 is one of two exams required for the LPIC Level 1 (officially referred
to as LPIC 1) certification. In total, ten major Topic areas are specified for Level 1;
this exam tests your knowledge on four of them.

Exam Topics are numbered using the topic.objective notation (e.g., 101.1, 101.2,
102.1). The 100 series topics represent LPI Level 1 certification topics, which are
unique to alllevels of LPI exams (e.g., 101, 102,201,202, etc.). The objective number
represents the Objectives that are associated with the Topic area (e.g., 1, 2, 3, 4, and
so on).

The Level 1 Topics are distributed between the two exams to create tests of similar
length and difficulty without subject matter overlap. As a result, there’s no require-
ment for or advantage to taking them in sequence, the only caveat being that you
cannot be awarded an LPIC 2 or higher certifications until you pass the requirements
for the lower-level certification.

Each Topic contains a series of Objectives covering specific areas of expertise. Each
of these Objectives is assigned a numeric weight, which acts as an indicator of the
importance of the Objective. Weights typically run between 1 and 8, with higher
numbers indicating more importance. An Objective carrying a weight of 1 can be
considered relatively unimportant and isn’t likely to be covered in much depth on
the exam. Objectives with larger weights are sure to be covered more heavily on the
exam, so you should study these Topics closely. The weights of the Objectives are
provided at the beginning of each Topic section. In the current version of LPI exams,
all of the weighting totals for each exam add up to 60. With 60 questions per exam,
this means that the weighting is exactly equivalent to how many questions the Ob-
jective will have in the exam.

The Topics for Exam 101 are listed in Table 1-1.

Table 1-1. LPI Topics for Exam 101

Name Numberof Description
objectives
System Architecture 3 These Objectives cover all the fundamentals of configuring common types of

hardware on the system, managing the boot process, and modifying the run-
levels of the system and the shut down or reboot process from the

command line.
Linux Installation 5 Objectives for this Topic include the basics of getting any LSB-compliant Linux
and Package distribution installed and installing applications. Some of the basics include
Management partitioning hard drives, installing your choice of boot managers, managing

shared libraries, and using Debian’s dpkg and apt family of commands and RPM
and Yellowdog Updater Modified (YUM) package management systems.

GNU and Unix 8 This heavily weighted Topic addresses the most utilized command-line tools

Commands used on standard Linux systems as well as most commercial Unix systems. The
Objectives detail working on a command line, processing text streams using
command-linetools, managingfiles, manipulating textwith pipesandredirects,
monitoring system processes, managing task priorities, using regular expres-
sions, and editing files with vi, /ilo, syslog, and runlevels.

Devices, Linux 8 Objectives for this Topic include the creation of partitions and filesystems, file-
Filesystems, and the system integrity, mounting, quotas, permissions, ownership, links, and file
FilesystemHierarchy location tasks.

Standard

As you can see from Table 1-1, the Topic numbers assigned by the LPI are not
necessarily sequential. This is due to various modifications made by the LPI to its
exam program as it developed. The Topic numbers serve only as reference and are
not used on the exam.

Exam 101 lasts a maximum of 90 minutes and contains exactly 60 questions. The
exam is administered using a custom application on a PC in a private room with no
notes or other reference material. The majority of the exam is made up of multiple-
choice single-answer questions. These questions have only one correct answer and
are answered using radio buttons. Some of them present a scenario needing admin-
istrative action. Others seek appropriate commands for a particular task or proof of
understanding of a particular concept. Some people may get an exam with an ad-
ditional 20 items. These items are used to test new questions and don’t count as part
of the score. An additional 30 minutes is provided in this case, and there is no indi-
cation which items are unscored.

About 10 percent of the exam questions are multiple-choice multiple-answer ques-
tions, which are answered using checkboxes. These questions specify that they have
multiple correct responses, each of which must be checked to get the item correct.
There is no partial credit for partially answered items. This is probably the most
difficult question style because the possibility of multiple answers increases the like-
lihood of forgetting to include an answer, even though the candidate is told in the
question exactly how many answers to select. But they also are a good test of your
knowledge of Unix commands, since an incorrect response on any one of the pos-
sible answers causes you to miss the entire question.

2 | Chapter1: LPIExams

The exam also has fill-in-the-blank questions. These questions provide a one-line
text area input box for you to fill in your answer. These questions check your knowl-
edge of concepts such as important files and commands, plus common facts that
you are expected to be aware of. Don’t let this scare you, however, since most of
these items accept a variety of answers. Unless specified otherwise, they are not case-
sensitive and do not require full paths in your answers.

—
=
m
=<
Y
3
wv

LPIExams | 3

Exam 101 Study Guide

The first part of this book contains a section for each of the four Topics found on
LPI Exam 101. Each section details certain Objectives, which are described here and
on the LPI website.

Exam Preparation

LPI Exam 101 is thorough, but you should find it fairly straightforward if you have
a solid foundation in Linux concepts. You won’t come across questions intended to
trick you, and you’re unlikely to find ambiguous questions.

Exam 101 mainly tests your knowledge of facts, including commands and their
common options, important file locations, configuration syntax, and common pro-
cedures. Your recollection of these details, regardless of your level of Linux admin-
istration experience, will directly influence your results.

For clarity, the material in the following sections is presented in the same order as
the LPI Topics and Objectives. However, you may choose to study the Topics in any
order you wish. To assist you with your preparation, Table 2-1 through Table 2-4
list the Topics and Objectives found on Exam 101. Objectives within each Topic
occupy rows of the corresponding table, including the Objective’s number, descrip-
tion, and weight. The LPI assigns a weight for each Objective to indicate the relative
importance of that Objective on the exam on a scale of 1 to 8. We recommend that
you use the weights to prioritize what you decide to study in preparation for the
exams. After you complete your study of each Objective, simply check it off here to
measure and organize your progress.

Table 2-1. System architecture (Topic 101)

Objective ~ Weight Description

1 2 Determine and Configure Hardware settings
2 3 Boot the System
3 3 Change Runlevels and Shut Down or Reboot System

http://www.lpi.org/eng/certification/the_lpic_program/lpic_1/exam_101_detailed_objectives

Table 2-2. Linux installation and package management (Topic 102)

Objective ~ Weight Description

1 2 Design Hard Disk Layout

2 2 Install a Boot Manager

3 1 Manage Shared Libraries

4 3 Use Debian Package Management

5 3 Use RPM and YUM Package Management

Table 2-3. GNU and Unix commands (Topic 103)

Objective ~ Weight Description
1 Work on the Command Line
Process Text Streams Using Filters
Perform Basic File Management
Use Streams, Pipes, and Redirects
Create, Monitor, and Kill Processes
Modify Process Execution Priorities

Search Text Files Using Regular Expressions

N o U A~ W N
w NN e W

Perform Basic File Editing Operations Using vi or vim

Table 2-4. Devices, Linux filesystems, and the Filesystem Hierarchy Standard (Topic 104)

Objective ~ Weight Description

1 2 Create Partitions and Filesystems

2 2 Maintain the Integrity of Filesystems

3 3 Control Filesystem Mounting and Unmounting

4 1 Set and View Disk Quotas

5 3 Manage File Permissions and Ownership

6 2 Create and Change Hard and Symbolic Links

7 2 Find System Files and Place Files in the Correct Location

6 | Chapter2: Exam 101 Study Guide

System Architecture (Topic 101.1)

This Topic requires general knowledge of fundamental PC architecture facts that
you must know before attempting any operating system installation. It includes this
Objective:

Objective 1: Determine and Configure Hardware Settings
Candidates should be able to determine and configure fundamental system
hardware. Weight: 2.

Objective 1: Determine and Configure Hardware Settings

Setting up a PC for Linux (or any other operating system) requires some familiarity
with the devices installed in the system and their configuration. Items to be aware
of include modems, serial and parallel ports, network adapters, SCSI adapters, hard
drives, USB controllers, and sound cards. Many of these devices, particularly older
ones, require manual configuration of some kind to avoid conflicting resources. The
rest of the configuration for the system hardware is done in the PC’s firmware, or
Basic Input/Output System (BIOS).

BIOS

The firmware located in a PC, commonly called the BIOS, is responsible for bringing
all of the system hardware to a state at which it is ready to boot an operating system.
Systems vary, but this process usually includes system initialization, the testing of
memory and other devices, and ultimately locating an operating system from among
several storage devices. In addition, the BIOS provides a low-level system configu-
ration interface, allowing the user to choose such things as boot devices and resource
assignments. Quite a few BIOS firmware vendors provide customized versions of
their products for various PC system architectures. Exams do require an under-
standing of the basics. For example, a laptop BIOS may differ significantly from a
desktop system of similar capability from the same manufacturer. Due to these
variations, it’s impossible to test specifics, but the LPIC Level 1 exams do require
an understanding of the basics.

At boot time, most PCs display a method of entering the BIOS configuration utility,
usually by entering a specific keystroke during startup. Once the utility is started, a
menu-based screen in which system settings can be configured appears. Depending
on the BIOS vendor, these will include settings for disks, memory behavior, on-board
ports (such as serial and parallel ports), and the clock, as well as many others.

Date and time

One of the basic functions of the BIOS is to manage the on-board hardware clock.
This clock is initially set in the BIOS configuration by entering the date and time in
the appropriate fields. Once set, the internal clock keeps track of time and makes
the time available to the operating system. The operating system can also set the
hardware clock, which is often useful if an accurate external time reference, such as
an NTPD server (see Chapter 16), is available on the network while the system is
running.

Disks and boot devices

Another fundamental configuration item required in BIOS settings is the selection
of storage devices. Newer systems are able to detect and properly configure much
of this hardware automatically. However, older BIOS versions require manual con-
figuration. This may include the selection of floppy disk sizes and disk drive
parameters.

Most PCs have at least three bootable media types: an internal hard disk (IDE or
SCSI, or perhaps both), a CD-ROM drive (again IDE or SCSI), and a floppy disk.
After initialization, the BIOS seeks an operating system (or an operating system
loader, such as the Linux Loader [LILO]) on one or more of these media. By default,
many BIOS configurations enable booting from the floppy or CD-ROM first, then
the hard disk, but the order is configurable in the BIOS settings.

In addition to these default media types, many server motherboard BIOS (as well as
high-end system motherboards) support booting from a network device such as a
NIC with a bootable ROM. This is often used when booting diskless workstations
such as Linux-based terminals.

On the Exam

You should be familiar with the general configuration requirements and layout of
the BIOS configuration screens for a typical PC.

Using the /proc filesystem

When adding new hardware to an existing Linux system, you may wish to verify
which resources the existing devices are using. The /proc filesystem, the kernel’s
status repository, contains this information. The proc files, interrupts, dma, and
ioports, show how system resources are currently utilized. (These files may not show
devices unless their device files/drivers are open/active. This may make the problem
harder to find if you’re experiencing resource conflicts.) The following is an example

8 | Chapter3: System Architecture (Topic101.1)

of /proc/interrupts from a dual-CPU system with an Adaptec dual-AIC7895 SCSI

controller:

cat /proc/interrupts

CPUO CPU1

0 98663989 0

1 34698 34858

2: 0 0

5: 7141 7908

6: 6 7

8 18098274 18140354

10: 3234867 3237313

11: 36 35

12: 233140 216205

13: 1 0

15: 44118 43935
NMI: 0
ERR: 0

In this example, you can see that interrupt 5 is used for the sound system, so it isn’t
available for a second parallel port. The two SCSI controllers are using interrupts 10

XT-PIC
I0-APIC-edge
XT-PIC
I0-APIC-edge
I0-APIC-edge
I0-APIC-edge
I0-APIC-level
I0-APIC-level
I0-APIC-edge
XT-PIC
I0-APIC-edge

timer
keyboard
cascade

MS Sound System
floppy

rtc

aic7xxx, etho
aic7xxx

PS/2 Mouse
fpu

ide1

wo)shs

=
=
a
=
=3
D
=
=
=
)

and 11, respectively, while the Ethernet controller shares interrupt 10. You may also
notice that only one of the two standard IDE interfaces is enabled in the system

BIOS, freeing interrupt 14 use for another device.

Here are the /proc/dma and /proc/ioports files from the same system:

cat /proc/dma

0: MS Sound System

1: MS Sound System

2: floppy

4: cascade

cat /proc/ioports
0000-001f : dmai
0020-003f : pici
0040-005f : timer
0060-006T : keyboard
0070-007f : rtc
0080-008f : dma page reg
00a0-00bf : pic2
00c0-00df : dma2
00fo-o00ff : fpu
0170-0177 : ide1
02f8-02ff : serial(auto)
0370-0371 : OPL3-SAx
0376-0376 : ide1
0388-0389 : mpu4o01
03c0-03df : vga+
03f0-03f5 : floppy
03f7-03f7 : floppy DIR
03f8-03ff : serial(auto)
0530-0533 : WSS config
0534-0537 : MS Sound System
e800-e8be : aic7xxx
ec00-ecbe : aic7xxx
ef00-ef3f : etho

Objective 1: Determine and Configure Hardware Settings | 9

ffao-ffa7 : ideo
ffag-ffaf : ide1

On the Exam

You should know how to examine a running Linux system’s resource assignments
using the /proc filesystem.

Universal Serial Bus (USB) is a type of interface used to connect various types of
peripherals, ranging from keyboards and mice to hard drives, scanners, digital cam-
eras, and printers. The USB Objective covers the general architecture of USB, USB
modules, and configuring USB devices.

USB Topology

USB devices are attached to a host in a tree through some number of hub devices.
The Isusb command can be used to see how devices are physically attached to a Linux
system.

1lsusb -t

Bus# 4

'-Dev# 1 Vendor 0x0000 Product 0x0000

Bus# 3

'-Dev# 1 Vendor 0x0000 Product 0x0000
|-Dev# 2 Vendor 0x046d Product 0xc501
'-Dev# 3 Vendor 0x0781 Product 0x0002

Bus# 2

'-Dev# 1 Vendor 0x0000 Product 0x0000
|-Dev# 2 Vendor 0x0451 Product 0x2036
| |-Dev# 5 Vendor 0x04b8 Product 0x0005
| '-Dev# 6 Vendor 0x04b8 Product 0x0602
'-Dev# 3 Vendor 0x0451 Product 0x2046

'-Dev# 4 Vendor 0x056a Product 0x0011
Bus# 1
'-Dev# 1 Vendor 0x0000 Product 0x0000

USB Controllers

There are three types of USB host controllers:

* Open Host Controller Interface (OHCI)
¢ Universal Host Controller Interface (UHCI)
¢ Enhanced Host Controller Interface (EHCI)

OHCI and UHCI controllers are both USB 1.1 controllers, which are capable of a
maximum of 12 Mbps. EHCI controllers are USB 2.0 controllers, which are capable
of a theoretical maximum of 480 Mbps. To get greater than USB 1.1 speeds, you
must have a USB 2.0 controller, as well as USB 2.0 devices, hubs, and cables. A USB
2.0 device attached to a USB 1.1 hub will only be able to run at USB 1.1 speeds.

10 | Chapter3: System Architecture (Topic 101.1)

USB Devices

There are several classes of USB devices, including the following:

Human Interface Device (HID)
Input devices (mice, keyboards, etc.)

Communications device
Modems
Mass storage device
Disk devices, flash readers, etc.
Audio
Sound devices
IrDA
Infrared devices

Printer
Printers and USB-to-parallel cables

USB Drivers

USB support was added to the Linux kernel in the 2.3.x development kernel series,
then back-ported to 2.2.x, minus support for USB mass storage devices (due to SCSI
changes in 2.3.x). The back-port was included in the 2.2.18 kernel release.

N
- There is no kernel USB support in 2.0.x and earlier.

The Linux kernel USB drivers fall into three categories:

Host controller drivers
The USB host controller drivers include usb-ohci.o (OHCI driver), usb-uhci.o
(UHCI driver), uhci.o (old “alternate” UHCI driver), and ehci-hcd.o (EHCI
driver).

Class drivers
The USB class drivers include hid.o, usb-storage.o (mass storage driver),
acm.o (Automated Control Model [ACM] communications class driver, which
deals with modems that emulate the standard serial modem AT command in-
terface), printer.o, and audio.o.

Other device drivers
There are many drivers for devices that either don’t fit into one of the standard
USB classes or don’t work with one of the standard class drivers. Examples
include 7i0500.0 (the driver for the Diamond Rio 500 MP3 player) and pwc.o
(the driver for various Philips webcams).

The Linux drivers implement USB support in layers. At the bottom is usbcore.o,
which provides all of the generic USB support for the higher-level drivers as well as

Objective 1: Determine and Configure Hardware Settings | 11

=
=
a
=
=3
D
=
=
=
)

USB hub support. The host controller drivers load in the middle of the stack. On
top are the device and class drivers and any modules they require.

The following is an example of what you might see in /proc/modules (or from the
output of Ismod) on a system with several USB devices:

Module Size Used by

usb-storage 68628 0

scsi mod 106168 2 [usb-storage]

evdev 5696 0 (unused)

printer 8832 0

wacom 7896 0 (unused)

keybdev 2912 0 (unused)

mousedev 5428 1

hid 21700 0 (unused)

input 5824 0 [evdev wacom keybdev mousedev hid]

ehci-hcd 19432 0 (unused)

usb-uhci 25964 0 (unused)

usbcore 77760 1 [usb-storage printer wacom hid ehci-hcd \
usb-uhci]

USB Hotplug

Modularized USB drivers are loaded by the generic /sbin/hotplug support in the ker-
nel, which is also used for other hotplug devices such as CardBus cards.

N

Although not covered on the LPI exams, the Linux IEEE 1394
(also known as FireWire or i.Link) drivers have a similar design.
s If you understand how to set up USB devices, setting up IEEE
© 1394 devices should be easy.

Configuring specialized hardware has become easier and easier, even since the de-
velopment of LPI’s Level 2 Exams. Items such as LCD panels and serial UPS devices
used to not be as common in our homes and offices, but today they are considered
standard equipment.

When you prepared for Level 1, you became familiar with a number of the tools you
must utilize when adding new hardware to your systems. For the Level 2 exams, you
must be prepared to understand when to use them and the most efficient methods
for installing your new devices.

Reporting Your Hardware

Before you tackle adding any new hardware devices to your system, it’s useful to
obtain information about the hardware you have installed. Some useful tools to
report this information include Ismod, Isdev, and Ispci.

12 | Chapter3: System Architecture (Topic 101.1)

Isdev

Ismod

Syntax

1smod [options]

Description

The Ismod command displays all the information available about currently loaded modules.
Reviewing your loaded modules is often the first step in identifying possible problems, such as
driver conflicts (quite frequently found with USB device drivers). This information can also be
found in /proc/modules. Ismod has only two options, neither of them affecting its operation.

Options

-h, --help
Display help information.

wo)shs

=
=
a
=
=3
D
=
=
=
)

-V, --version
Display the version.

The output of Ismod is a series of columns identifying the module name, its size, its use number,
and its status. A sample of Ismod output looks like this:

Module Size Used by Not tainted
vfat 12844 0 (autoclean)
fat 38328 0 (autoclean) [vfat]
nfs 79960 0 (autoclean)
ide-scsi 11984 0 (autoclean)
ide-cd 35196 0 (autoclean)
cdrom 33440 0 (autoclean) [ide-cd]
tuner 11680 1 (autoclean)
tvaudio 14940 0 (autoclean) (unused)
bttv 73568 0 (autoclean)
videodev 8192 2 (autoclean) [bttv]
radeon 114244 28
agpgart 46752 3
parport_pc 18756 1 (autoclean)
1p 8868 0 (autoclean)
parport 36480 1 (autoclean) [parport_pc 1lp]
Isdev
Syntax
1sdev
Description

The Isdev command displays information about your system’s hardware, such as interrupt ad-
dresses and I/O ports. The command is useful for obtaining information prior to installing
devices that may have hardware addressing conflicts, such as ISA devices. This command uses
DMA files in /proc to also report I/O addresses and IRQ and DMA channel information. There
are no options for Isdev.

Chapter 3: System Architecture (Topic101.1) | 13

Ispci

The output of Isdev is very simple, similar to Ismod. It lists information in four columns: device
name, DMA address, IRQ address, and 1/O ports. The following is some sample output from
Isdev:

Device DMA IRQ I/O Ports
ATI c800-c8ff
bttv 10
Creative €800-e81f ec00-ec07
dma 0080-008f
dmal 0000-001F
dma2 00c0-00df
€100 €000-e03f
EMU10K1 11 e800-e81f
fpu 00fo-00ff
ideo 14 01f0-01f7 03f6-03f6 fco0-fco7
ide1 15 0170-0177 0376-0376 fc08-fcof
Intel €000-e03f
keyboard 1 0060-006f
ohci1394 12
PCI 0cf8-0cff c000-cfff
Ispci
Syntax

1spci [options]

Description

The Ispci command displays information about your system’s PCI buses and your installed PCI
devices. This information is found primarily within /proc.

Options

-t
Show a treelike diagram containing all buses, bridges, devices, and connections between
them.

-V
Very verbose mode.

Manipulating Modules

A module is dynamically linked into the running kernel when it is loaded. Much of
Linux kernel module handling is done automatically. However, there may be times
when it is necessary for you to manipulate the modules yourself, and you may come
across the manipulation commands in scripts. For example, if you’re having diffi-
culty with a particular driver, you may need to get the source code for a newer version
of the driver, compile it, and insert the new module in the running kernel. The
commands listed in this section can be used to list, insert, remove, and query
modules.

14 | Chapter3: System Architecture (Topic 101.1)

insmod

Ismod

Syntax

1smod

Description

For each kernel module loaded, display its name, size, use count, and a list of other referring
modules. This command yields the same information as is available in /proc/modules.

Example

Here, Ismod shows that quite a few kernel modules are loaded, including filesystem (vfat, fat),
networking (3¢59x), and sound (soundcore, mpu401, etc.) modules, among others:

lsmod =
Module Size Used by ERS
radeon 112996 24 2 g
agpgart 45824 3 E
parport_pc 18756 1 (autoclean)
1p 8868 0 (autoclean)
parport 36480 1 (autoclean) [parport pc 1lp]
€100 59428 1
ohci1394 19976 0 (unused)
ieee1394 48300 0 [ohci1394]
scsi_mod 106168 0
evdev 5696 0 (unused)
printer 8832 0
wacom 7896 0 (unused)
emu10k1 68104 1
ac97_codec 13512 0 [emu10k1]
sound 73044 0 [emu10k1]
soundcore 6276 7 [emu10kl sound]
keybdev 2912 0 (unused)
mousedev 5428 1
hid 21700 0 (unused)
input 5824 0 [evdev wacom keybdev mousedev hid]
ehci-hed 19432 0 (unused)
usb-uhci 25964 0 (unused)
usbcore 77760 1 [printer wacom hid ehci-hcd usb-uhci]
ext3 87240 3
jbd 51156 3 [ext3]
insmod
Syntax

insmod [options] module

Description

Insert a module into the running kernel. The module is located automatically and inserted. You
must be logged in as the superuser to insert modules.

Chapter 3: System Architecture (Topic101.1) | 15

rmmod

Frequently used options

-s
Direct output to syslog instead of stdout.

Set verbose mode.

Example

The msdos filesystem module is installed into the running kernel. In this example, the kernel
was compiled with modular support for the msdos filesystem type, a typical configuration for
a Linux distribution for i386 hardware. To verify that you have this module, check for the
existence of /lib/modules/kernel-version/fs/msdos.o:

insmod msdos

/1lib/modules/2.2.5-15smp/fs/msdos.o: unresolved symbol \
fat_add cluster Rsmp eb84f594

/1lib/modules/2.2.5-15smp/fs/msdos.o: unresolved symbol \
fat_cache_inval inode Rsmp 6da1654e

/1lib/modules/2.2.5-15smp/fs/msdos.o: unresolved symbol \
fat_scan Rsmp_d61c58c7

(... additional errors omitted ...)

/1lib/modules/2.2.5-15smp/fs/msdos.o: unresolved symbol \
fat_date_unix2dos Rsmp 83fb36a1

echo $?

This insmod msdos command yields a series of unresolved symbol messages and an exit status
of 1, indicating an error. This is the same sort of message that might be seen when attempting
to link a program that referenced variables or functions unavailable to the linker. In the context
of a module insertion, such messages indicate that the functions are not available in the kernel.
From the names of the missing symbols, you can see that the fat module is required to support
the msdos module, so it is inserted first:

insmod fat
Now the msdos module can be loaded:

insmod msdos

Use the modprobe command to automatically determine these dependencies and install pre-
requisite modules first.

rmmod

Syntax

rmmod [options] modules

Description

The rmmod command is used to remove modules from the running kernel. You must be logged
in as the superuser to remove modules, and the command will fail if the module is in use or
being referred to by another module.

16 | Chapter3: System Architecture (Topic 101.1)

modinfo

Frequently used options
-a
Remove all unused modules.
-s
Direct output to syslog instead of stdout.
Example

Starting with both the fat and msdos modules loaded, remove the fat module (which is used by
the msdos module):

1smod

Module Size Used by
msdos 8348 0 (unused)
fat 25856 0 [msdos]
rmmod fat

rmmod: fat is in use

wo)shs

=
=
a
=
=3
D
=
=
=
)

In this example, the Ismod command fails because the msdos module is dependent on the fat
module. So, to unload the fat module, the msdos module must be unloaded first:

rmmod msdos
rmmod fat

The modprobe -r command can be used to automatically determine these dependencies and
remove modules and their prerequisites.

modinfo

Syntax
modinfo [options] module object file

Description

Display information about a module from its module_object_file. Some modules contain no
information at all, some have a short one-line description, and others have a fairly descriptive
message.

Options

-a
Display the module’s author.

-d

Display the module’s description.
P

Display the typed parameters that a module supports.
Examples

In these examples, modinfo is run using modules compiled for a multiprocessing (SMP) kernel
Version 2.2.5. Your kernel version, and thus the directory hierarchy containing modules, will

be different.

Chapter 3: System Architecture (Topic 101.1) | 17

modprobe

modinfo -d /lib/modules/2.2.5-15smp/misc/zftape.o

zftape for ftape v3.04d 25/11/97 - VFS interface for the
Linux floppy tape driver. Support for QIC-113
compatible volume table and builtin compression
(1zrw3 algorithm)

modinfo -a /lib/modules/2.2.5-15smp/misc/zftape.o

(c) 1996, 1997 Claus-Justus Heine
(claus@momo.math.rwth-aachen.de)

modinfo -p /lib/modules/2.2.5-15smp/misc/ftape.o

ft_fdc_base int, description "Base address of FDC
controller."

Ft_fdc_irq int, description "IRQ (interrupt channel)
to use."

ft_fdc_dma int, description "DMA channel to use."”

ft_fdc_threshold int, description "Threshold of the FDC
Fifo."

Ft_fdc_rate limit int, description "Maximal data rate
for FDC."

ft_probe_fc10 int, description "If non-zero, probe for a
Colorado FC-10/FC-20 controller."

ft_mach2 int, description "If non-zero, probe for a
Mountain MACH-2 controller."”

ft_tracing int, description "Amount of debugging output,
0 <= tracing <= 8, default 3."

modprobe

Syntax

modprobe [options] module [symbol=value ...]

Description

Like insmod, modprobe is used to insert modules. In fact, modprobe is a wrapper around
insmod and provides additional functionality. In addition to loading single modules,
modprobe has the ability to load modules along with their prerequisites or all modules stored
in a specific directory. The modprobe command can also remove modules when combined with
the -r option.

A module is inserted with optional symbol=value parameters. If the module is dependent upon
other modules, they will be loaded first. The modprobe command determines prerequisite re-
lationships between modules by reading modules.dep at the top of the module directory hier-
archy (i.e., /lib/modules/2.2.5-15smp/modules.dep).

You must be logged in as the superuser to insert modules.

Frequently used options

-a
Load all modules. When used with the -t moduletype, all is restricted to modules in the
moduletype directory. This action probes hardware by successive module-insertion at-
tempts for a single type of hardware, such as a network adapter (in which case the
moduletype would be net, representing /lib/modules/kernel-version/kernel/net). This may
be necessary, for example, to probe for more than one kind of network interface.

18 | Chapter3: System Architecture (Topic 101.1)

modprobe

-c
Display a complete module configuration, including defaults and directives found in /etc/
modules.conf (or /etc/conf.modules on older systems). The -c option is not used with any
other options.

-l
List modules. When used with the -t moduletype, list only modules in directory module
type. For example, if moduletype is net, then modules in /lib/modules/kernel-version/net
are displayed.

-7
Remove module, similar to rmmod. Multiple modules may be specified.

-s
Direct output to syslog instead of stdout.

-t moduletype =
Attempt to load multiple modules found in the directory moduletype until a module suc- 2RSS
ceeds or all modules in moduletype are exhausted. This action “probes” hardware by suc- [Efles
cessive module-insertion attempts for a single type of hardware, such as a network adapter % 3
(in which case moduletype would be net, representing /lib/modules/kernel-version/kernel/ |
net).

-v
Set verbose mode.

Example 1

Install the msdos filesystem module into the running kernel:

modprobe msdos

Module msdos and its dependency, fat, will be loaded. modprobe determines that fat is needed
by msdos when it looks through modules.dep. You can see the dependency listing using grep:

grep /msdos.o: /lib/modules/2.2.5-15smp/modules.dep
/1lib/modules/2.2.5-15smp/fs/msdos.o:
/1lib/modules/2.2.5-15smp/fs/fat.o

Example 2
Remove fat and msdos modules from the running kernel, assuming msdos is not in use:

modprobe -r fat msdos

Example 3
Attempt to load available network modules until one succeeds:

modprobe -t net

Example 4
Attempt to load all available network modules:

modprobe -at net

Chapter 3: System Architecture (Topic 101.1) | 19

modprobe

Example 5
List all modules available for use:

modprobe -1
/lib/modules/2.2.5-15smp/fs/vfat.o
/1lib/modules/2.2.5-15smp/fs/umsdos.o
/1lib/modules/2.2.5-15smp/fs/ufs.o

Example 6
List all modules in the net directory for 3Com network interfaces:

modprobe -1t net | grep 3c

/1lib/modules/2.2.5-15smp/net/3c59x.0
/1lib/modules/2.2.5-15smp/net/3c515.0
/1lib/modules/2.2.5-15smp/net/3c509.0
/1lib/modules/2.2.5-15smp/net/3c507.0
/1lib/modules/2.2.5-15smp/net/3c505.0
/1lib/modules/2.2.5-15smp/net/3c503.0

2 0o

/1lib/modules/2.2.5-15smp/net/3c501.

Device Management Definitions

Hotplugging is often taken to mean the opposite of coldplugging—in other words,
the ability of a computer system to add or remove hardware without powering the
system down. Examples of devices that are coldpluggable include PCI (some PCI
chipsets have hotplug support, but these are very expensive and almost exclusively
used in server systems), ISA devices, and PATA devices.

In most computer systems, CPUs and memory are coldpluggable, but it is common
for high-end servers and mainframes to feature hotplug capability of these
components.

sysfsisa RAM-based filesystem initially based on ramfs. It provides a means to export
kernel data structures, their attributes, and the linkages between them to the user
space. sysfs contains several directory hierarchies showing the available hardware
devices and attributes of the modules/drivers. It can be accessed by running:

mount -t sysfs sysfs /sys

The udev process uses sysfs to get the information it needs about the hardware and
creates dynamic device files as kernel modules are loaded. The directory /etc/
udev.d holds all the rules to be applied when adding or removing a device.

D-Bus is an application that uses sysfs to implement a message bus daemon. It is
used for broadcasting system events such as “new hardware device added” or
“printer queue changed” and is normally launched by an init script called
messagebus.

The hald process is the daemon that maintains a database of the devices connected
to the system in real time. The daemon connects to the D-Bus system message bus
to provide an API that applications can use to discover, monitor, and invoke oper-
ations on devices.

20 | Chapter3: System Architecture (Topic 101.1)

Change Runlevels and Shut Down
or Reboot System (Topics 101.2
and 101.3)

This Topic continues the subject of general knowledge of fundamental PC archi-
tecture. It includes these Objectives:

Objective 2: Boot the System
Candidates should be able to guide the system through the booting process.
Weight: 3.

Objective 3: Change Runlevels and Shut Down or Reboot System
Candidates should be able to manage the runlevel of the system. This objective
includes changing to single-user mode, shutdown, or rebooting the system.
Candidates should be able to alert users before switching runlevel and properly

terminate processes. This objective also includes setting the default runlevel.
Weight: 3.

Objective 2: Boot the System

It is the job of a boot loader, such as LILO or GRUB, to launch the Linux kernel at
boot time. In some cases, the boot loader has to deliver information to the Linux
kernel that may be required to configure peripherals or control other behavior. This
information is called a kernel parameter.

Boot-time Kernel Parameters

By default, your system’s kernel parameters are set in your boot loader’s configura-
tion file (fetc/lilo.conf or /boot/grub/menu.lst, and boot/grub/grub.conf on Red Hat
and some other distributions). However, the Linux kernel also has the capability to
accept information at boot time from a kernel command-line interface. You access
the kernel command line through your installed boot loader. When your system

21

boots, you can interrupt the “default” boot process when the boot loader displays
and specify your desired kernel parameters. The kernel parameters on the command
line look similar to giving arguments or options to a program during command-line
execution.

For an example, let’s say you wanted to boot with a root partition other than your
default, /dev/hdal. Using LILO, you could enter the following at the LILO prompt:
LILO: linux root=/dev/hda9

This command boots the kernel whose label is 1inux and overrides the default value
of /dev/hdal to /dev/hda9 for the root filesystem.

On the Exam

There are far too many kernel parameters to list in this book. Consequently, you
must familiarize yourself with them in general terms so that you can answer ques-
tions on their form. Remember that they are specified to your boot loader as either
a single item, such as ro, or name=value options such as root=/dev/hda2. Multiple
parameters are always separated by a space.

Introduction to Kernel Module Configuration

Modern Linux kernels are modular, in that modules of code traditionally compiled
into the kernel (say, a sound driver) are loaded as needed. The modules are separate
from the kernel and can be inserted and removed by the superuser if necessary.
Although parameters in the boot loader’s configuration file and the kernel command
line affect the kernel, they do not control kernel modules.

To send parameters to a kernel module, they are inserted into the file /etc/mod-
ules.conf as text (in the past this configuration file was /etc/conf.modules). Common
module options you may find in your module configuration file are I/O address,
interrupt, and DMA channel settings for your sound device. This file will also prob-
ably carry PCMCIA driver information when installed on laptops. Module config-
uration will probably be handled by your distribution’s installation procedure but
may require modifications if hardware is added or changed later. Example 4-1 shows
a typical /etc/modules.conf file.

Example 4-1. A typical /etc/modules.conf file

alias parport_lowlevel parport pc

alias etho 8139too

alias sound-slot-0 via82cxxx_audio

post-install sound-slot-0 /bin/aumix-minimal \
-f /etc/.aumixrc -L >/dev/null 2>81 || :

pre-remove sound-slot-0 /bin/aumix-minimal \
-f /etc/.aumixrc -S >/dev/null 2>81 || :

alias usb-controller usb-uhci

22 | Chapter4: Change Runlevels and Shut Down or Reboot System (Topics 101.2 and 101.3)

On the Exam

Read questions that ask about kernel or module parameters carefully. Kernel op-
tions can be passed on the kernel command line; module options are specified in
modules.conf.

In this example, note that an alias named sound-slot-0is created for the audio driver
via82cxxx_audio. Mostdevices won’t need any additional configuration, but systems
with older ISA cards may still need to pass options for I/O port, IRQ, and DMA
channel settings. In addition, some drivers may need options to specify nonstandard
settings. For example, an ISDN board used in North America will need to specify
NI1 signaling to the driver:

options hisax protocol=4 type=40

Kernel boot-time messages

Asthe Linux kernel boots, it gives detailed status of its progress in the form of console
messages. Modules that are loaded also yield status messages. These messages con-
tain important information regarding the health and configuration of your hardware.
Generally, the kinds of messages you will see are:

* Kernel identification

* Memory and CPU information

* Information on detected hardware, such as pointers (mice), serial ports, and

disks
* Partition information and checks
¢ Network initialization
* Kernel module output for modules that load at boot time
These messages are displayed on the system console at boot time but often scroll off
the screen too quickly to be read. The messages are also logged to disk and can easily
be viewed using the dmesg command, which displays messages logged at the last

system boot. For example, to view messages from the last boot sequence, simply
pipe the output of dmesg to less:

dmesg | less

It is also common to use dmesg to dump boot messages to a file for later inspection
or archive, by simply redirecting the output:

dmesg > bootmsg.txt

W
A The kernel buffer used for log messages that dmesg displays is a
"‘:‘ fixed size, so it may lose some (or all) of the boot-time messages
Ny . i
* Uae as the kernel writes runtime messages.

Objective 2: Boot the System | 23

wv
=
=
=3
(=3
g
=
=
=
m
o
o
[=]
—

n
=
&
=
=1
m
=
=
=
)
<=
o
wv
S~

Reviewing system logs

In addition to kernel messages, many other boot-time messages will be logged using
the syslog system. Such messages will be found in the system logfiles such as /var/
log/messages. For example, dmesg displays information on your network adapter
when it was initialized. However, the configuration and status of that adapter is
logged in /var/log/messages as a result of the network startup. When examining and
debugging boot activity on your system, you need to review both kinds of informa-
tion. syslogd, its configuration, and logfile examination are covered in Chapter 16.

Objective 3: Change Runlevels and Shut Down or Reboot
System

Linux has the same concept of runlevels that most Unix systems offer. This concept
specifies different ways to use a system by controlling which services are running.
For example, a system that operates as a web server is configured to boot and initiate
processing in a runlevel designated for sharing data, at which point the web server
is started. However, the same system could be booted into another runlevel used for
emergency administration, when all but the most basic services are shut down, so
the web server would not run.

One common use of runlevels is to distinguish between a system that offers only a
text console and a system that offers a graphical user interface through the X Win-
dow System. Most end-user systems run the graphical user interface, but a server
(such as the web server just discussed) is more secure and performs better without it.

Runlevels are specified by the integers O through 6. Runlevels 0 and 6 are unusual
in that they specify the transitional states of shutdown and reboot, respectively.
When an administrator tells Linux to enter runlevel 0, the operating system begins
a clean shutdown procedure. Similarly, the use of runlevel 6 begins a reboot. The
remaining runlevels differ in meaning slightly among Linux distributions and other
Unix systems.

When a Linux system boots, the first process it begins is the init process, which starts
all other processes. The init process is responsible for placing the system in the de-
fault runlevel, which is usually 2, 3, or 5 depending on the distribution and the use
for the machine. Typical runlevel meanings are listed in Table 4-1.

Table 4-1. Typical runlevels

Runlevel Description

0 Halt the system. Runlevel 0 is a special transitional state used by administrators to shut down the system
quickly. This, of course, shouldn’t be a default runlevel, because the system would never come up; it would
shut down immediately when the kernel launches the init process. See also runlevel 6.

1,5, Single-user mode, sometimes called maintenance mode. In this mode, system services such as network
interfaces, web servers, and file sharing are not started. This mode is usually used for interactive filesystem
maintenance. The three choices 1, s, and S all mean the same thing.

2 Multiuser. On Debian-based systems, this s the default runlevel. On Red Hat—based systems, thisis multiuser
mode without NFS file sharing or the X Window System (the graphical user interface).

24 | Chapter4: Change Runlevels and Shut Down or Reboot System (Topics 101.2 and 101.3)

Runlevel Description

3 On Red Hat—based systems, this is the default multiuser mode, which runs everything except the X Window
System. This and levels 4 and 5 usually are not used on Debian-based systems.

4 Typically unused.

5 On Red Hat—based systems, full multiuser mode with GUI login. Runlevel 5 is like runlevel 3, but X11is

started and a GUI login is available. If your X11 cannot start for some reason, you should avoid this runlevel.

6 Reboot the system. Just like runlevel 0, this is a transitional device for administrators. It should not be the
default runlevel, because the system would eternally reboot.

It is important to note that runlevels, like most things in Linux, are completely con-
figurable by the end user. For the purposes of the LPIC test, it’s important to know
the standard meanings of each runlevel on Red Hat-based and Debian-based sys-
tems and how the runlevels work. However, in a production environment, runlevels
can be modified to do whatever the system administrator desires.

Single-User Mode

Runlevel 1, the single-user runlevel, is a bare-bones operating environment intended
for system maintenance. In single-user mode, remote logins are disabled, networking
is disabled, and most daemons are not started. Single-user mode is used for system
configuration tasks that must be performed with no user activity. One common
reason you might be forced to use single-user mode is to correct problems with a
corrupt filesystem that the system cannot handle automatically.

=)
> =
23
=3
[= =1
ge‘b
s Z
= =
™ ™
o <
S @
S &

If you wish to boot directly into single-user mode, you may specify it at boot time
with the kernel’s command line through your boot loader. For instance, the GRUB
boot loader allows you to pass arbitrary parameters to a kernel at boot time. In order
to change the default runlevel, edit the line that boots your kernel in the GRUB
interactive menu, adding a 1 or the word single to the end of the line to indicate
single-user mode. These arguments are not interpreted as kernel arguments but are
instead passed along to the init process. For example, if your default GRUB kernel
boot line looks like this:

kernel /vmlinuz-2.6.27.21-170.2.56.fc10.1686 ro root=/dev/hda1l rhgb quiet

you can force the system to boot to runlevel 1 by changing this to:

kernel /vmlinuz-2.6.27.21-170.2.56.fc10.i686 ro root=/dev/hda5 rhgb quiet 1

or:

kernel /vmlinuz-2.6.27.21-170.2.56.fc10.1686 ro root=/dev/hda5 rhgb \

quiet single

To switch into single-user mode from another runlevel, you can simply issue a run-
level change command with init:

init 1
This is not the preferred way of taking a currently running system to runlevel 1,
mostly because it gives no warning to the existing logged-in users. See the

Objective 3: Change Runlevels and Shut Down or Reboot System | 25

explanation of the shutdown command later in this chapter to learn the preferred
way of handling system shutdown.

Overview of the /etc Directory Tree and the init Process

By themselves, the runlevels listed in Table 4-1 don’t mean much. It’s what the
init process does as a result of a runlevel specification or change that affects the
system. The actions of init for each runlevel are derived from the style of initialization
in Unix System V and are specified in a series of directories and script files under
the /etc directory.

When a Linux system starts, it runs a number of scripts in /etc to initially configure
the system and switch among runlevels. System initialization techniques differ
among Linux distributions. The examples in this section are typical of a Red Hat—
based system. Any distribution compliant with the Linux Standards Base (LSB)
should look similar. The following describe these files:

letclrc.sysinit or letc/init.d/rcS
On Red Hat—based systems, rc.sysinit is a monolithic system initialization
script. The Debian r¢S script does the same job by running several small scripts
placed in two different directories. In each case, the script is launched by init at
boot time. It handles some essential chores to prepare the system for use, such
as mounting filesystems. This script is designed to run before any system dae-
mons are started.

Jetc/re.local
Not used on Debian-based systems. On Red Hat—based systems, this file is a
script that is called after all other init scripts (after all system daemons are
started). It contains local customizations affecting system startup and provides
an alternative to modifying the other init scripts. Many administrators prefer to
avoid changing rc.sysint because those changes will be lost during a system
upgrade. The contents of rc.local are not lost in an upgrade.

letclrc
This file is a script that is used to change between runlevels. It is not provided
on Debian.

The job of starting and stopping system services (also known as daemons, which are
intended to always run in the background, such as web servers) is handled by the
files and symbolic links in /etc/init.d and by a series of runlevel-specific directories
named /etc/rc0.d through /etc/rc6.d. These are used as follows:

letc/init.d
This directory contains individual startup/shutdown scripts for each service on
the system. For example, the script /etc/init.d/httpd is a Bourne shell script that
performs some sanity checks before starting or stopping the Apache web server.

These scripts have a standard basic form and take a single argument. Valid
arguments include at least the words start and stop. Additional arguments are
sometimes accepted by the script; examples are restart, status, and sometimes
reload (to ask the service to reread its configuration file without exiting).

26 | Chapter4: Change Runlevels and Shut Down or Reboot System (Topics 101.2 and 101.3)

Administrators can use these scripts directly to start and stop services. For ex-
ample, to restart Apache, an administrator could issue commands like these:

/etc/init.d/httpd stop
/etc/init.d/httpd start

or simply:
/etc/init.d/httpd restart

Either form would completely shut down and start up the web server. To ask
Apache to remain running but reread its configuration file, you might enter:

/etc/init.d/httpd reload

This has the effect of sending the SIGHUP signal to the running httpd process,
instructing it to initialize. Signals such as SIGHUP are covered in Chapter 6.

If you add a new service through a package management tool such as rpm or
dpkg, one of these initialization files may be installed automatically for you. In
other cases, you may need to create one yourself or, as a last resort, place startup
commands in the rc.local file.

It’s important to remember that these files are simply shell scripts that wrap the
various options accepted by the different daemons on Linux. Not all Linux
daemons recognize the command-line arguments stop, start, etc., but the
scripts in /etc/init.d make it easy to manage your running daemons by
standardizing the commands that you use to control them.

The directories /etc/rc0.d through /fetc/rc6.d

The initialization scripts in /etc/init.d are not directly executed by the init
process. Instead, each of the directories /etc/rc0.d through /etc/rc6.d contains
symbolic (soft) links to the scripts in the /etc/init.d directory. (These symbolic
links could also be files, but using script files in each of the directories would
be an administrative headache, because changes to any of the startup scripts
would mean identical edits to multiple files.) When the init process enters run-
level N, it examines all of the links in the associated rcN.d directory. These links
are given special names in the forms of KNNname and SNNname, described as
follows:

=)
> =
23
=3
[= =1
ge‘b
s Z
= =
™ ™
o <
S @
S &

K and S prefixes
These letters stand for kill and start, respectively. Each runlevel defines a
state in which certain services are running and all others are not. The S
prefix is used to mark files for all services that are to be running (started)
for the runlevel. The K prefix is used for all other services, which should
not be running.

NN
Sequence number. This part of the link name is a two-digit integer (with a
leading zero, if necessary). It specifies the relative order for services to be
started or stopped. The lowest number represents the first script executed
by init, and the largest number is the last. There are no hard-and-fast rules
for choosing these numbers, but it is important when adding a new service
to be sure that it starts after any other required services are already running.

Objective 3: Change Runlevels and Shut Down or Reboot System | 27

If two services have an identical start order number, the order is indeter-
minate but probably alphabetical.

name
By convention, the name of the script being linked to. init does not use this
name, but including it makes maintenance easier for human readers.

As an example, when init enters the default runlevel (3 for the sake of this ex-
ample) at boot time, all of the links with the K and S prefixes in /etc/rc3.d will
be executed in the order given by their sequence number (S10network,
S12syslog, and so on). Links that start with S will be run with the single argument
start to launch their respective services, and links that start with K will be run
with the single argument stop to stop the respective service. Since K comes
before S alphabetically, the K services are stopped before the S services are
started. After the last of the scripts is executed, the requirements for runlevel 3
are satisfied.

Setting the Default Runlevel

To determine the default runlevel at boot time, init reads the configuration file /etc/
inittab looking for a line containing the word initdefault, which will look like this:

id:N:initdefault:

In the preceding, N is a valid runlevel number, such as 3. This number is used as the
default runlevel by init. The S scripts in the corresponding /etc/rcN.d directory are
executed to start their respective services. If you change the default runlevel for your
system, it will most likely be in order to switch between the standard text login
runlevel and the GUI login runlevel. In any case, never change the default runlevel
to 0 or 6, or your system will not boot to a usable state.

Determining Your System'’s Runlevel

From time to time, you might be unsure just what runlevel your system is in. For
example, you may have logged into a Linux system from a remote location and not
know how it was booted or maintained. You may also need to know what runlevel
your system was in prior to its current runlevel—perhaps wondering if the system
was last in single-user mode for maintenance.

To determine this information, use the runlevel command. It displays the previous
and current runlevel as integers, separated by a space, on standard output. If no
runlevel change has occurred since the system was booted, the previous runlevel is
displayed as the letter N. For a system that was in runlevel 3 and is now in runlevel
5, the output is:

runlevel
35

For a system with a default runlevel of 5 that has just completed booting, the output
would be:

runlevel
N5

28 | Chapter4: Change Runlevels and Shut Down or Reboot System (Topics 101.2 and 101.3)

init
runlevel does not alter the system runlevel. To do this, use the init command (or the
historical alias telinit).
Changing runlevels with init and telinit

The init or telinit command sends signals to the executing init process, instructing
it to change to a specified runlevel. You must be logged in as the superuser to use
the init command.

Generally, you will use a runlevel change for the following reasons:
* To shut down the system using runlevel O

* To go to single-user mode using runlevel 1

* To reboot the system using runlevel 6

init
Syntax
init n

Description

The command puts the system into the specified runlevel, n, which can be an integer from 1
through 6. init also supports S and s, which are equivalent to runlevel 1, and q, which tells
init to reread its configuration file, /etc/inittab.

Examples

Shut down immediately:
init 0

Reboot immediately:
init 6

Go to single-user mode immediately:

init 1
or:

init s
telinit

The telinit command may be used in place of init. telinit is simply a link to init, and the two may
be used interchangeably.

System shutdown with shutdown

When shutdown is initiated, all users who are logged into terminal sessions are notified that
the system is going down. In addition, further logins are blocked to prevent new users from
entering the system as it is being shut down.

Chapter 4: Change Runlevels and Shut Down or Reboot System (Topics 101.2and 101.3) | 29

wv
=
=
=3
(=3
g
=
=
=
m
o
o
[=]
—

n
=
&
=
=1
m
=
=
=
)
<=
o
wv
S~

init

Syntax

shutdown [options] time [warning_message]

Description

The shutdown command brings the system down in a secure, planned manner. By default, it
takes the system to single-user mode. Options can be used to halt or reboot the system instead.
The command internally uses init with an appropriate runlevel argument to affect the system
change.

The mandatory time argument tells the shutdown command when to initiate the shutdown
procedure. It can be a time of day in the form hh:m, or it can take the form +n, where n is a
number of minutes to wait. time can also be the word now, in which case the shutdown proceeds
immediately.

warning_message is sent to the terminals of all users to alert them that the shutdown will take
place. If the time specified is more than 15 minutes away, the command waits until 15 minutes
remain before shutdown to make its first announcement. No quoting is necessary in
warning_message unless the message includes special characters such as * or '.

Frequently used options
-f

Fast boot; this skips the filesystem checks on the next boot.

-h
Halt after shutdown.
-k
Don’t really shut down, but send the warning messages anyway.
-r
Reboot after shutdown.
-F
Force filesystem checks on the next boot.
Examples

To reboot immediately (not recommended on a system with human users, because they will
have no chance to save their work):

shutdown -r now
To reboot in five minutes with a maintenance message:

shutdown -r +5 System maintenance is required
To halt the system just before midnight tonight:

shutdown -h 23:59

Following are the two most common uses of shutdown by people who are on single-user
systems:

shutdown -h now
and:

shutdown -r now

30 | Chapter4: Change Runlevels and Shut Down or Reboot System (Topics 101.2 and 101.3)

init

These cause an immediate halt or reboots, respectively.

Although it’s not really a bug, the shutdown manpage notes that omission of the required
time argument yields unusual results. If you forget the time argument, the command will prob-
ably exit without an error message. This might lead you to believe that a shutdown is starting,
so it’s important to use the correct syntax.

On the Exam

You need to be familiar with the default runlevels and the steps that the init process
goes through in switching between them.

=)
> =
=2
=3
[= N1
%t‘b
s Z
= =
™ ™
o <
S @
S &

Chapter 4: Change Runlevels and Shut Down or Reboot System (Topics 101.2and 101.3) | 31

Linux Installation and Package
Management (Topic 102)

Many resources, such as the book Running Linux (O’Reilly), describe Linux instal-
lation. This section of the test does not cover the installation of any particular Linux
distribution; rather, its Objectives focus on four installation Topics and packaging
tools.

Objective 1: Design Hard Disk Layout
This Objective covers the ability to design a disk partitioning scheme for a Linux
system. The Objective includes allocating filesystems or swap space to separate
partitions or disks and tailoring the design to the intended use of the system. It
also includes placing /boot on a partition that conforms with the BIOS’s re-
quirements for booting. Weight: 2.

Objective 2: Install a Boot Manager
An LPIC 1 candidate should be able to select, install, and configure a boot
manager. This Objective includes providing alternative boot locations and
backup boot options using either LILO or GRUB. Weight: 2.

Objective 3: Manage Shared Libraries
This Objective includes being able to determine the shared libraries that exe-
cutable programs depend on and install them when necessary. The Objective
also includes stating where system libraries are kept. Weight: 1.

Objective 4: Use Debian Package Management
This Objective indicates that candidates should be able to perform package
management on Debian-based systems. This indication includes using both
command-line and interactive tools to install, upgrade, or uninstall packages,
as well as find packages containing specific files or software. Also included is
obtaining package information such as version, content, dependencies, package
integrity, and installation status. Weight: 3.

33

http://oreilly.com/catalog/9780596007607

Objective 5: Use Red Hat Package Manager (RPM)
An LPIC 1 candidate should be able to use package management systems based
on RPM. This Objective includes being able to install, reinstall, upgrade, and
remove packages as well as obtain status and version information on packages.
Also included is obtaining package version, status, dependencies, integrity, and
signatures. Candidates should be able to determine what files a package pro-
vides as well as find which package a specific file comes from. Weight: 3.

Objective 1: Design a Hard Disk Layout

Part of the installation process for Linux is designing the hard disk partitioning
scheme. If you’re used to systems that reside on a single partition, this step may seem
to complicate the installation. However, there are advantages to splitting the file-
system into multiple partitions and even onto multiple disks.

You can find more details about disks, partitions, and Linux filesystem top-level
directories in Chapter 7. This Topic covers considerations for implementing Linux
disk layouts.

System Considerations
A variety of factors influence the choice of a disk layout plan for Linux, including:

* The amount of disk space
* The size of the system
* What the system will be used for

* How and where backups will be performed

Limited disk space

Filesystems and partitions holding user data should be maintained with a maximum
amount of free space to accommodate user activity. When considering the physical
amount of disk space available, the system administrator may be forced to make a
trade-off between the number of partitions in use and the availability of free disk
space. Finding the right configuration depends on system requirements and available
filesystem resources.

When disk space is limited, you may opt to reduce the number of partitions, thereby
combining free space into a single contiguous pool. For example, installing Linux
on a PC with only 1 GB of available disk space might best be implemented using
only a few partitions:

/boot
50 MB. A small /boot filesystem in the first partition ensures that all kernels are
below the 1024-cylinder limit for older kernels and BIOS.

850 MB. A large root partition holds everything on the system that’s not in /boot.

34 | Chapter5: Linux Installation and Package Management (Topic 102)

swap
100 MB.

Larger systems

On larger platforms, functional issues such as backup strategies and required file-
system sizes can dictate disk layout. For example, suppose a file server is to be con-
structed serving 100 GB of executable data files to end users via NFS. Such a system
will need enough resources to compartmentalize various parts of the directory tree
into separate filesystems and might look like this:

/boot
100 MB. Keep kernels under the 1024-cylinder limit.
swap
1 GB, depending on RAM.
/
500 MB (minimum).
lusr
4 GB. All of the executables in /usr are shared to workstations via read-only NFS.
lvar
2 GB. Since log files are in their own partition, they won’t threaten system sta-
bility if the filesystem is full.
/tmp
500 MB. Since temporary files are in their own partition, they won’t threaten
system stability if the filesystem is full.
/home

90 GB. This big partition takes up the vast bulk of available space, offered to
users for their home directories and data.

On production servers, much of the system is often placed on redundant media,
such as mirrored disks. Large filesystems, such as /home, may be stored on some
form of disk array using a hardware controller.

Mount points

Before you may access the various filesystem partitions created on the storage
devices, you first must list them in a filesystem table. This process is referred to as
mounting, and the directory you are mounting is called a mount point. You must
create the directories that you will use for mount points if they do not already exist.
During system startup, these directories and mount points may be managed through
the /etc/fstab file, which contains the information about filesystems to mount when
the system boots and the directories that are to be mounted.

Superblock

A superblock is a block on each filesystem that contains metadata information about
the filesystem layout. The information contained in the block includes the type, size,
and status of the mounted filesystem. The superblock is the Linux/Unix equivalent

Objective 1: Design a Hard Disk Layout | 35

o

a
o
=
&
=
o

=)
I
3
)
=
—

=3
(7
-
=2
I3
=
=]
=]
=
-
o
o
:Ir

to Microsoft systems’ file allocation table (FAT), which contains the information
about the blocks holding the top-level directory. Since the information about the
filesystems is important, Linux filesystems keep redundant copies of the superblock
that may be used to restore the filesystem should it become corrupt.

MBR

The master boot record (MBR) is a very small program that contains information
about your hard disk partitions and loads the operating system. This program is
located in the first sector of the hard disk and is 512 bytes. If this file becomes
damaged, the operating system cannot boot. Therefore, it is important to back up
the MBR so that you can replace a damaged copy if needed. To make a backup of
the MBR from the hard drive and store a copy to your /home directory, use the dd
command. An example of such a backup command is:

dd if=/dev/hda of=~/mbr.txt count=1 bs=512

The preceding example assumes that your hard drive is /dev/hda. With this com-
mand you are taking one copy (count=1) consisting of 512 bytes (bs=512) from /dev/
hda (if=/dev/hda) and copying it to a file named mbr.txt in /home (of="/mbr.txt).

If you need to restore the MBR, you may use the following command:

dd if=~/mbr.txt of=/dev/hda count=1 bs=512

Booting from a USB device

Linux may be booted from a Live USB, similar to booting from a Live CD. One
difference between booting to the USB opposed to the CD is that the data on the
USB device may be modified and stored back onto the USB device. When using a
Live USB distribution of Linux, you can take your operating system, favorite appli-
cations, and data files with you wherever you go. This is also useful if you have
problems and are not able to boot your computer for some reason. You may be able
to boot the system using the Live USB and access the hard drive and troubleshoot
the boot issue.

In order to boot from the USB device, you will need to make the USB device bootable.
This requires setting up at least one partition on the USB with the bootable flag set
to the primary partition. An MBR must also write to the primary partition on the
USB. There are many applications that can be used to create live USB distributions
of Linux, including Fedora Live USB Creator and Ubuntu Live USB Creator. The
computer may also need the BIOS to be configured to boot from USB.

Some older computers may not have support in the BIOS to boot from a USB device.
In this case it is possible to redirect the computer to load the operating system from
the USB device by using an initial bootable CD. The bootable CD boots the
computer, loads the necessary USB drivers into memory, and then locates and loads
the filesystem from the USB device.

36 | Chapter5: Linux Installation and Package Management (Topic 102)

System role

The role of the system should also dictate the optimal disk layout. In a traditional
Unix-style network with NFS file servers, most of the workstations won’t necessarily
need all of their own executable files. In the days when disk space was at a premium,
this represented a significant savings in disk space. Although space on workstation
disks isn’t the problem it once was, keeping executables on a server still eliminates
the administrative headache of distributing updates to workstations.

Backup

Some backup schemes use disk partitions as the basic unit of system backup. In such
a scenario, each of the filesystems listed in /etc/fstab is backed up separately, and
they are arranged so that each filesystem fits within the size of the backup media.
For this reason, the available backup device capabilities can play a role in determin-
ing the ultimate size of partitions.

Using the dd command as discussed earlier, you can back up each of the individual
partitions. The command may also be used to back up the entire hard drive. To back
up a hard drive to another hard drive, you would issue the following command,
where if=/dev/hdx represents the hard drive you want to back up and of=/dev/hyd
represents the target or destination drive of the backup:

dd if=/dev/hdx of=/dev/hyd

If you are just interested in making a backup of the partition layout, you can also
use the sfdisk command to create a copy of the partition table:

sfdisk -d /dev/hda > partition backup.txt

Then, if you need to restore the partition table, you can use the sfdisk command
again:

sfdisk /dev/hda < partition backup.txt

Swap Space

When you install Linux, you’re asked to configure a swap, or virtual memory, par-
tition. This special disk space is used to temporarily store portions of main memory
containing programs or program data that are not needed constantly, allowing more
processes to execute concurrently. An old rule of thumb for Linux is to set the size
of the system’s swap space to be double the amount of physical RAM in the machine.
For example, if your system has 512 MB of RAM, it would be reasonable to set your
swap size to at least 1 GB. These are just guidelines, of course. A system’s utilization
of virtual memory depends on what the system does and the number and size of
processes it runs. As hard disk and memory gets cheaper and Linux application
footprints grow, the guidelines for determining swap sizes become more and more
about personal preference. However, when in doubt, using twice the amount of main
memory is a good starting point.

Objective 1: Design a Hard Disk Layout | 37

-
(=]
m
=
Y
=
=Y
[¥=]
m
3
m
=
-

=3
(7
-
=2
I3
=
=]
=]
=
-
o
o
:Ir

General Guidelines
Here are some guidelines for partitioning a Linux system:

* Keep the root filesystem (/) simple by distributing larger portions of the direc-
tory tree to other partitions. A simplified root filesystem is less likely to be
corrupted.

 Separate a small /boot partition below cylinder 1024 for installed kernels used
by the system boot loader. This does not apply to newer BIOS and kernels (e.g.,
2.6.20).

* Separate /var. Make certain it is big enough to handle your logs, spools, and
mail, taking their rotation and eventual deletion into account.

* Separate /tmp. Its size depends on the demands of the applications you run. It
should be large enough to handle temporary files for all of your users
simultaneously.

* Separate /usr and make it big enough to accommodate kernel building. Making
it standalone allows you to share it read-only via NFS.

 Separate /home for machines with multiple users or any machine where you
don’t want to affect data during distribution software upgrades. For even better
performance (for multiuser environments), put /home on a disk array and use
Logical Volume manager (LVM).

* Set swap space to at least the same size (twice the size is recommended) as the
main memory.

On the Exam

Since a disk layout is the product of both system requirements and available
resources, no single example can represent the best configuration. Factors to re-
member include placing the old 2.2.x kernel below cylinder 1024, effectively uti-
lizing multiple disks, sizing partitions to hold various directories such as /var
and /usr, and the importance of the root filesystem and swap space size.

Objective 2: Install a Boot Manager

Although it is possible to boot Linux from a floppy disk, most Linux installations
boot from the computer’s hard disk. This is a two-step process that begins after the
system BIOS is initialized and ready to run an operating system. Starting Linux con-
sists of the following two basic phases:

Run the boot loader from the boot device
It is the boot manager’s job to find the selected kernel and get it loaded into
memory, including any user-supplied options.

Launch the Linux kernel and start processes
Your boot loader starts the specified kernel. The boot loader’s job at this point
is complete and the hardware is placed under the control of the running kernel,
which sets up shop and begins running processes.

38 | Chapter5: Linux Installation and Package Management (Topic 102)

All Linux systems require some sort of boot loader, whether it’s simply bootstrap
code on a floppy disk or an application such as LILO or GRUB. Because the popu-
larity of GRUB has grown, LPI has added it to the second release of the 101 exams.

LILO

The LILO is a small utility designed to load the Linux kernel (or the boot sector of
another operating system) into memory and start it. A program that performs this
function is commonly called a boot loader. LILO consists of two parts:

The boot loader

This is a two-stage program intended to find and load a kernel. It’s a two-stage
operation because the boot sector of the disk is too small to hold the entire boot
loader program. The code located in the boot sector is compact because its only
function is to launch the second stage, which is the interactive portion. The first
stage resides in the MBR or first boot partition of the hard disk. This is the code
that is started at boot time by the system BIOS. It locates and launches a second,
larger stage of the boot loader that resides elsewhere on disk. The second stage
offers a user prompt to allow boot-time and kernel image selection options,
finds the kernel, loads it into memory, and launches it.

The lilo command
Also called the map installer, the lilo command is used to install and configure
the LILO boot loader. The command reads a configuration file that describes
where to find kernel images, video information, the default boot disk, and so
on. It encodes this information along with physical disk information and writes
it in files for use by the boot loader.

The boot loader

When the system BIOS launches, LILO presents you with the following prompt:
LILO:

The LILO prompt is designed to allow you to select from multiple kernels or operating
systems installed on the computer and to pass parameters to the kernel when it is
loaded. Pressing the Tab key at the LILO prompt yields a list of available kernel
images. One of the listed images will be the default as designated by an asterisk next
to the name:

LILO: <TAB>
linux* linux 586 smp experimental

Under many circumstances, you won’t need to select a kernel at boot time because
LILO will boot the kernel configured as the default during the install process. How-
ever, if you later create a new kernel, have special hardware issues, or are operating
your system in a dual-boot configuration, you may need to use some of LILO’s
options to load the kernel or operating system you desire.

Objective 2: Install a Boot Manager | 39

o

a
o
=
&
=
o

=)
I
3
)
=
—

=3
(7
-
=2
I3
=
=]
=]
=
-
o
o
:Ir

lilo

The LILO map installer and its configuration file

Before any boot sequence can complete from your hard disk, the boot loader and
associated information must be installed by the LILO map installer utility. The lilo
command writes the portion of LILO that resides to the MBR, customized for your
particular system. Your installation program creates a correct MBR, but you’ll have
to repeat the command manually if you build a new kernel yourself.

lilo

Syntax
lilo [options]

The lilo map installer reads a configuration file and writes a map file, which contains information
needed by the boot loader to locate and launch Linux kernels or other operating systems.

Frequently used options

-C config _ file
Read the config _ file file instead of the default /etc/lilo.conf.

-mmap _file
Write map _ file in place of the default as specified in the configuration file.

q
Query the current configuration.

Increase verbosity.

LILO’s configuration file contains options and kernel image information. An array of options
is available. Some are global, affecting LILO overall, whereas others are specific to a particular
listed kernel image. Most basic Linux installations use only a few of the configuration options.
Example 5-1 shows a simple LILO configuration file.

Example 5-1. Sample /etc/lilo.conf file

boot = /dev/hda
timeout = 50

prompt

read-only

map = /boot/map
install = /boot/boot.b

image=/boot/bzImage-2.6.0
label=test-2.6.0
root=/dev/hda1

Each line in the example is described in the following list:

boot

Sets the name of the hard disk partition device that contains the boot sector. For PCs with
IDE disk drives, the devices will be /dev/hda, /dev/hdb, and so on.

40 | Chapter5: Linux Installation and Package Management (Topic 102)

lilo

timeout
Sets the timeout in tenths of a second (deciseconds) for any user input from the keyboard.
To enable an unattended reboot, this parameter is required if the prompt directive is used.

prompt
Sets the boot loader to prompt the user. This behavior can be stimulated without the
prompt directive if the user holds down the Shift, Ctrl, or Alt key when LILO starts.

read-only
Sets the root filesystem to initially be mounted read-only. Typically, the system startup
procedure will remount it later as read/write.

map
Sets the location of the map file, which defaults to /boot/map.

install
Sets the file to install as the new boot sector, which defaults to /boot/boot.b.

image
Sets the kernel image to offer for boot. It points to a specific kernel file. Multiple image
lines may be used to configure LILO to boot multiple kernels and operating systems.

label
Sets the optional label parameter to be used after an image line and offers a label for that
image. This label can be anything you choose and generally describes the kernel image.
Examples include linux and smp for a multiprocessing kernel.

root
Sets the devices to be mounted as root for the specified image (used after each image line).

There is more to configuring and setting up LILO, but a detailed knowledge of LILO is not
required for this LPI Objective. It is important to review one or two sample LILO configurations
to make sense of the boot process.

LILO locations

During installation, LILO can be placed either in the boot sector of the disk or in
your root partition. If the system is intended as a Linux-only system, you won’t need
to worry about other boot loaders, and LILO can safely be placed into the boot
sector. However, if you’re running another operating system you should place its
boot loader in the boot sector. Multiple-boot and multiple-OS configurations are
beyond the scope of the LPIC Level 1 exams.

On the Exam
It is important to understand the distinction between lilo, the map installer utility
run interactively by the system administrator, and the boot loader, which is
launched by the system BIOS at boot time. Both are parts of the LILO package.

GRUB

GRUB is a multistage boot loader, much like LILO. It is much more flexible than
LILO, asitincludes support for booting arbitrary kernels on various filesystem types
and for booting several different operating systems. Changes take effect at once,
without the need for a command execution.

Chapter 5: Linux Installation and Package Management (Topic102) | 41

o

a
o
=
&
=
o

=)
I
E
)
=
—

=3
(7
-
=2
I3
=
=]
=]
=
-
o
o
:Ir

lilo

GRUB device naming

GRUB refers to disk devices as follows:
(xdn[,m])

The xd in this example will be either fd or hd—floppy disk or hard disk, respectively.
The n refers to the number of the disk as seen by the BIOS, starting at 0. The op-
tional ,m denotes the partition number, also starting at 0.

The following are examples of valid GRUB device names:
(fdo)
The first floppy disk
(hdo)
The first hard disk
(hdo, 1)
The second partition on the first hard disk

Note that GRUB does not distinguish between IDE and SCSI/SATA disks. It refers
only to the order of the disks as seen by the BIOS, which means that the device
number that GRUB uses for a given disk will change on a system with both IDE and
SCSI/SATA if the boot order is changed in the BIOS.

Installing GRUB
The simplest way to install GRUB is to use the grub-install script.

For example, to install GRUB on the master boot record of the first hard drive in a
system, invoke grub-install as follows:

grub-install '(hdo)’

grub-install looks for a device map file (/boot/grub/device.map by default) to deter-
mine the mapping from BIOS drives to Linux devices. If this file does not exist, it
will attempt to guess what devices exist on the system and how they should be
mapped to BIOS drives. If grub-install guesses incorrectly, just edit /boot/grub/de-
vice.map and rerun grub-install.

The device map file contains any number of lines in this format:

(disk) /dev/device
So, for example, on a system with a floppy and a single SCSI disk, the file would
look like this:

(fdo) /dev/fdo

(hdo) /dev/sda

GRUB can also be installed using the grub command. The grub-install example
shown earlier could also have been done as follows, assuming /boot is on the first
partition of the first hard disk:

grub

grub> root (hdo,0)

grub> setup (hdo)

42 | Chapter5: Linux Installation and Package Management (Topic 102)

lilo

Booting GRUB

If there is no configuration file (or the configuration file does not specify a kernel to
load), when GRUB loads it will display a prompt that looks like this:

grub>

GRUB expects a certain sequence of commands to boot a Linux kernel. They are as
follows:

1. root device

2. kernel filename [options]

3. initrd filename — optional, only present if an initial ramdisk is required

4. boot
For example, the following sequence would boot a stock Red Hat 8.0 system
with /boot on /dev/hdal and / on /dev/hda2:

grub> root (hdo,0)

grub> kernel /vmlinuz-2.4.18-14 ro root=/dev/hda2
grub> initrd /initrd-2.4.18-14.img

grub> boot

The GRUB configuration file

GRUB can be configured to boot into a graphical menu, allowing the user to bypass
the GRUB shell entirely. To display this menu, GRUB needs a specific configuration
file, /boot/grub/menu.lst.

L)
o)

The location of this file may be different on your system. For
example, on Red Hat systems the default configuration file
W is /boot/grublgrub.conf.

The configuration file defines various menu options along with the commands re-
quired to boot each option. The earlier example of booting a stock Red Hat Fedora
8.0 system could have been accomplished with the following configuration file:

default=0

timeout=3

title Red Hat Linux (2.4.18-14)
root (hdo,0)
kernel /vmlinuz-2.4.18-14 ro root=/dev/hda2
initrd /initrd-2.4.18-14.img

GRUB has many more features, including serial console sup-
port, support for booting other operating systems, and so on.
s For more information about GRUB, see the info documentation
(info grub or pinfo grub) or the online documentation.

Chapter 5: Linux Installation and Package Management (Topic 102) | 43

o

a
o
=
&
=
o

=)
I
3
)
=
—

=3
(7
-
=2
I3
=
=]
=]
=
-
o
o
:Ir

http://www.gnu.org/software/grub

Objective 3: Manage Shared Libraries

When a program is compiled under Linux, many of the functions required by the
program are linked from system libraries that handle disks, memory, and other
functions. For example, when the standard C-language printf() function is used in
a program, the programmer doesn’t provide the printf() source code, but instead
expects that the system already has a library containing such functions. When the
compiler needs to link the code for printf(), it can be found in a system library and
copied into the executable. A program that contains executable code from these
libraries is said to be statically linked because it stands alone, requiring no additional
code at runtime.

Statically linked programs can have a few liabilities. First, they tend to get large
because they include executable files for all of the library functions linked into them.
Also, memory is wasted when many different programs running concurrently con-
tain the same library functions. To avoid these problems, many programs are dy-
namically linked. Such programs utilize the same routines but don’t contain the
library code. Instead, they are linked into the executable at runtime. This dynamic
linking process allows multiple programs to use the same library code in memory
and makes executable files smaller. Dynamically linked libraries are shared among
many applications and are thus called shared libraries. A full discussion of libraries
is beyond the scope of the LPIC Level 1 exams. However, a general understanding
of some configuration techniques is required.

Shared Library Dependencies

Any program that is dynamically linked will require at least a few shared libraries.
If the required libraries don’t exist or can’t be found, the program will fail to run.
This could happen, for example, if you attempt to run an application written for the
GNOME graphical environment but haven’t installed the required GTK+ libraries.
Simply installing the correct libraries should eliminate such problems. The Idd utility
can be used to determine which libraries are necessary for a particular executable.

Idd

Syntax
ldd programs

Description

Display shared libraries required by each of the programs listed on the command line. The results
indicate the name of the library and where the library is expected to be in the filesystem.

Example
The bash shell requires three shared libraries:

1dd /bin/bash
/bin/bash:

44 | Chapter5: Linux Installation and Package Management (Topic 102)

Idconfig

libtermcap.so.2 => /lib/libtermcap.so.2 (0x40018000)
libc.so.6 => /1ib/libc.so0.6 (0x4001c000)
/1ib/1d-1linux.so.2 => /1ib/1d-1linux.so.2 (0x40000000)

Linking Shared Libraries

Dynamically linked executables are examined at runtime by the shared object dy-
namic linker, Id.so. This program looks for dependencies in the executable being
loaded and attempts to satisfy any unresolved links to system-shared libraries. If
ld.so can’t find a specified library, it fails, and the executable won’t run.

To find a new library, Id.so must be instructed to look in /usr/local/lib. There are a
few ways to do this. One simple way is to add a colon-separated list of directories
to the shell environment variable LD_LIBRARY_PATH, which will prompt Id.so to look
in any directories it finds there. However, this method may not be appropriate for
system libraries, because users might not set their LD_LIBRARY_PATH correctly.

To make the search of /usr/local/lib part of the default behavior for Id.so, files in the
new directory must be included in an index of library names and locations. This
index is /etc/ld.so.cache. 1t’s a binary file, which means it can be read quickly by
ld.so. To add the new library entry to the cache, first add its directory to the
ld.so.conf file, which contains directories to be indexed by the ldconfig utility.

Idconfig

Syntax
ldconfig [options] 1lib_dirs

Description

Update the ld.so cache file with shared libraries specified on the command line in lib_dirs, in
trusted directories /ust/lib and /lib, and in the directories found in /etc/ld.so.conf.

Frequently used options

ya
Display the contents of the current cache instead of recreating it.

Verbose mode. Display progress during execution.

Example 1
Examine the contents of the Id.so library cache:

ldconfig -p

144 1libs found in cache '/etc/ld.so.cache'
libz.so.1 (1libc6) => /usr/1lib/libz.so.1
libuuid.so.1 (libc6) => /1lib/libuuid.so.1
libutil.so.1 (libc6, 0S ABI: Linux 2.2.5) => /lib/libutil.so.1
libutil.so (libc6, 0S ABI: Linux 2.2.5) => /usr/lib/libutil.so \
libthread db.so.1 (libc6, 0S ABI: Linux 2.2.5) => /lib/libthread db.so.1
libthread_db.so (1ibc6, 0S ABI: Linux 2.2.5) => /usr/lib/libthread db.so

Chapter 5: Linux Installation and Package Management (Topic 102) | 45

o

a
o
=
&
=
o

=)
I
3
)
=
—

=3
(7
-
=2
I3
=
=]
=]
=
-
o
o
:Ir

Example 2
Look for a specific library entry in the cache:

ldconfig -p | grep ncurses
libncurses.so.5 (libc6) => /usr/lib/libncurses.so.5

Example 3
Rebuild the cache:
ldconfig

After /usr/local/lib is added, ld.so.conf might look like this:

Jusr/lib
/usr/i486-1inux-1ibc5/1ib
Jusr/X11R6/1ib
Jusr/local/lib

Next, Idconfig is run to include libraries found in /usr/local/lib in /etc/ld.so.cache. It is important
to run ldconfig after any changes in system libraries to be sure that the cache is up-to-date.

Objective 4: Use Debian Package Management

The Debian package management system is a versatile and automated suite of tools
used to acquire and manage software packages for Debian Linux. The system au-
tomatically handles many of the management details associated with interdependent
software running on your system.

Debian Package Management Overview

Each Debian package contains program and configuration files, documentation, and
noted dependencies on other packages. The names of Debian packages have three
common elements, including:

Package name
A Debian package name is short and descriptive. When multiple words are used
in the name, they are separated by hyphens. Typical names include binutils,
kernel-source, and telnet.

Version number
Each package has a version. Most package versions are the same as that of the
software they contain. The format of package versions varies from package to
package, but most are numeric (major.minor.patchlevel).

A file extension
By default, all Debian packages end with the .deb file extension.

Figure 5-1 illustrates a Debian package name.

46 | Chapter5: Linux Installation and Package Management (Topic 102)

dpkg

Version Architecture

foo, VWV-RRR, 'AAA. deb
= L__T__}-

Name Revision

Figure 5-1. The structure of a Debian GNU/Linux package name

Managing Debian Packages

The original Debian package management tool is dpkg, which operates directly
on .deb package files and can be used to automate the installation and maintenance
of software packages. The alternative apt-get tool operates using package names,
obtaining them from a predefined source (such as CD-ROMs, FTP sites, etc.). Both
tools work from the command line.

The dselect command offers an interactive menu that allows the administrator to
select from a list of available packages and mark them for subsequent installation.
The alien command allows the use of non-Debian packages, such as the Red Hat
RPM format.

For complete information on Debian package management commands, see details
in their respective manpages.

dpkg

Syntax
dpkg [options] action

Description

The Debian package manager command, dpkg, consists of an action that specifies a major mode
of operation as well as zero or more options, which modify the action’s behavior.

The dpkg command maintains package information in /var/lib/dpkg. There are two files that are
of particular interest:

available
The list of all available packages.

status
Contains package attributes, such as whether it is installed or marked for removal.

These files are modified by dpkg, dselect, and apt-get, and it is unlikely that they will ever need
to be edited.
Frequently used options

-E
Do not overwrite a previously installed package of the same version.
-G
Do not overwrite a previously installed package with an older version of that same package.

Chapter 5: Linux Installation and Package Management (Topic 102) | 47

o

a
o
=
&
=
o

=)
I
3
)
=
—

=3
(7
-
=2
I3
=
=]
=]
=
-
o
o
:Ir

dpkg

-R (also --recursive)
Recursively process package files in specified subdirectories. Works with -i, --install,
--unpack, and so on.

Frequently used options

--configure package
Configure an unpacked package. This involves setup of configuration files.

-i package_file (also --install package file)
Install the package contained in package_file. This involves backing up old files, unpack-
ing and installation of new files, and configuration.

-l [pattern] (also --list [pattern])
Display information for installed package names that match pattern.

-L package (also --listfiles package)
List files installed from package.

--print-avail package
Display details found in /var/lib/dpkg/available about package.

--purge package
Remove everything for package.

-r package (also --remove package)
Remove everything except configuration files for package.

-s package (also --status package)
Report the status of package.

-S search_pattern (also --search search_pattern)
Search for a filename matching search_pattern from installed packages.

--unpack package_file
Unpack package_file, but don’t install the package it contains.

Example 1
Install a package using dpkg -i with the name of an available package file:

dpkg -i ./hdparm_3.3-3.deb

(Reading database ... 54816 files and directories
currently installed.)

Preparing to replace hdparm 3.3-3 (using hdparm_3.3-3.deb)

Unpacking replacement hdparm ...

Setting up hdparm (3.3-3) ...

Alternatively, use apt-get install with the name of the package. In this case, the package comes
from the location or locations configured in /etc/apt/sources.list. For this example, the location
is http://http.us.debian.org:

apt-get install elvis

Reading Package Lists... Done

Building Dependency Tree... Done

The following extra packages will be installed:
libncurses4 x1ibég

The following NEW packages will be installed:
elvis

48 | Chapter5: Linux Installation and Package Management (Topic 102)

http://http.us.debian.org

dpkg

2 packages upgraded, 1 newly installed, 0 to remove
and 376 not upgraded.

Need to get 1678kB of archives. After unpacking 2544kB
will be used.

Do you want to continue? [Y/n] y

Get:1 http://http.us.debian.org stable/main
libncurses4 4.2-9 [180kB]

Get:2 http://http.us.debian.org stable/main
x1ib6g 3.3.6-11 [993kB]

Get:3 http://http.us.debian.org stable/main
elvis 2.1.4-1 [505kB]

Fetched 1678kB in 4miis (6663B/s)

(Reading database ... 54730 files and directories
currently installed.)

Preparing to replace libncurses4 4.2-3 (using
.../libncurses4 4.2-9 i386.deb) ...

Unpacking replacement libncurses4 ...

(installation continues...)

Example 2

Upgrading a package is no different from installing one. However, you should use the -G option
when upgrading with dpkg to ensure that the installation won’t proceed if a newer version of
the same package is already installed.

Example 3
Use dpkg -r or dpkg --purge to remove a package:

dpkg --purge elvis

(Reading database ... 54816 files and directories
currently installed.)

Removing elvis ...

(purge continues...)

> =
S
[r=]
8
= =
I
s
Y o
=}
g g
23
=f\
-

Example 4

Use the dpkg -S command to find a package containing specific files. In this example, apt-get is
contained in the apt package:

dpkg -S apt-get
apt: /usr/share/man/man8/apt-get.8.gz
apt: /usr/bin/apt-get

Example 5

Obtain package status information, such as version, content, dependencies, integrity, and in-
stallation status, using dpkg -s:

dpkg -s apt

Package: apt

Status: install ok installed
Priority: optional

Section: admin
Installed-Size: 1388
(listing continues...)

Chapter 5: Linux Installation and Package Management (Topic 102) | 49

apt-get

Example 6
List the files in a package using dpkg -L and process the output using grep or less:

dpkg -L apt | grep '~/usr/bin'
Jusr/bin

/usr/bin/apt-cache
/usr/bin/apt-cdrom
/usr/bin/apt-config
/usr/bin/apt-get

Example 7

List the installed packages using dpkg -1; if you don’t specify a pattern, all packages will be listed:
dpkg -1 xdm
il xdm 3.3.2.3a-11 X display manager

Example 8

Use dpkg -S to determine the package from which a particular file was installed with the
filename:

dpkg -S /usr/bin/nl
textutils: /usr/bin/nl

apt-get

Syntax

apt-get [options] [command] [package name ...]

Description

The apt-get command is part of the Advanced Package Tool (APT) management system. It does
not work directly with .deb files like dpkg, but uses package names instead. apt-get maintains a
database of package information that enables the tool to automatically upgrade packages and
their dependencies as new package releases become available.

Frequently used options
-d

Download files, but do not install. This is useful when you wish to get a large number of
package files but delay their installation to prevent installation errors from stopping the
download process.

Simulate the steps in a package change, but do not actually change the system.

Automatically respond “yes” to all prompts, instead of prompting you for a response dur-
ing package installation/removal.

Frequently used commands

dist-upgrade
Upgrade automatically to new versions of Debian Linux.

50 | Chapter5: Linux Installation and Package Management (Topic 102)

dselect

install
Install or upgrade one or more packages by name.

remove
Remove specified packages.

update
Fetch a list of currently available packages. This is typically done before any changes are
made to existing packages.

upgrade
Upgrade a system’s complete set of packages to current versions safely. This command is
conservative and will not process upgrades that could cause a conflict or break an existing
configuration; it also will not remove packages.

Additional commands and options are available. See the apt-get manpage for more information.

apt-get uses /etc/apt/sources.list to determine where packages should be obtained. The file
should contain one or more lines that look something like this:

deb http://http.us.debian.org/debian stable main contrib non-free

Example
Remove the elvis package using apt-get:

apt-get remove elvis

Reading Package Lists... Done

Building Dependency Tree... Done

The following packages will be REMOVED:
elvis

0 packages upgraded, 0 newly installed, 1 to remove
and 376 not upgraded.

Need to get OB of archives. After unpacking 1363kB
will be freed.

Do you want to continue? [Y/n] y

(Reading database ... 54816 files and directories
currently installed.)

Removing elvis ...

(removal continues...)

In this example, the user is required to respond with y when prompted to continue. Using the
-y option to apt-get would eliminate this interaction.

dselect

Syntax

dselect

Description

dselect is an interactive, menu-driven, frontend tool for dpkg and is usually invoked without
parameters. The dselect command lets you interactively manage packages by selecting them for
installation, removal, configuration, and so forth. Selections are made from a locally stored list
of available packages, which may be updated while running dselect. Package actions initiated
by dselect are carried out using dpkg.

Chapter 5: Linux Installation and Package Management (Topic 102) | 51

o

a
o
=
&
=
o

=)
I
3
)
=
—

=3
(7
-
=2
I3
=
=]
=]
=
-
o
o
:Ir

alien

alien

Syntax
alien [--to-deb] [--patch=patchfile] [options] file

Description

Convert to or install a non-Debian (or “alien”) package. Supported package types include Red
Hat .rpm, Stampede .slp, Slackware .tgz, and generic .tar.gz files. rpm must also be installed on
the system to convert an RPM package into a .deb package. The alien command produces an
output package in Debian format by default after conversion.

Frequently used options

-i
Automatically install the output package and remove the converted package file.

-r
Convert package to RPM format.

Convert package to a gzip tar archive.

Example
Install a non-Debian package on a Debian system using alien with the -i option:

alien -i package.rpm

On the Exam

dselect, apt-get, and alien are important parts of Debian package management, but
detailed knowledge of dpkg is of primary importance for Exam 101.

Objective 5: Use Red Hat Package Manager (RPM)

The Red Hat Package Manager is among the most popular methods for the distri-
bution of software for Linux and is installed by default on most distributions. It
automatically handles many of the management details associated with interde-
pendent software running on your system.

RPM Overview

RPM automates the installation and maintenance of software packages. Built into
each package are program files, configuration files, documentation, and dependen-
cies on other packages. Package files are manipulated using the rpm command,
which maintains a database of all installed packages and their files. Information from
new packages is added to this database, and the database is consulted on a file-by-
file basis for dependencies when packages are removed, queried, and installed. As
with Debian packages, RPM packages have four common elements:

52 | Chapter5: Linux Installation and Package Management (Topic 102)

Name
An RPM package name is short and descriptive. If multiple words are used, they
are separated by hyphens (not underscores, as you might expect). Typical
names include binutils, caching-nameserver, cvs, gmc, kernel-source, and telnet.

Version
Each package has a version. Most package versions are the same as that of the
software they contain. The format of package versions varies from package to
package, but most are numeric (major.minor.patchlevel).

Revision
Therevision tagis simply a release number for the package. It has no significance
except to determine whether one package is newer than another when the ver-
sion number does not change.

Architecture
Packages containing binary (compiled) files are by their nature specific to a
particular type of system. For PCs, the RPM architecture designation is i386,
meaning the Intel 80386 and subsequent line of microprocessors and
compatibles.

Packages optimized for later x86 CPUs will have an architecture tag appropriate
for the specific CPU the code is compiled for, such as i586 for Intel Pentium
(and compatible) processors, i686 for Intel Pentium Pro and later processors
(Pentium II, Celeron, Pentium III, and Pentium 4), or athlon for AMD Athlon.

Other possible architecture tags include alpha, ia64, ppc, and sparc (for the
Alpha, Itanium, PowerPC, and SPARC architectures, respectively). Another
arch tag, noarch, is used to indicate packages that can install on any architecture.

While the filename of an RPM package is not significant, Red Hat does have a
standard naming scheme for its packages that most of the other RPM-based distri-
butions also follow. It is constructed by tying these elements together in one long
string.

Running rpm

The rpm command provides for the installation, removal, upgrade, verification, and
other management of RPM packages. rpm has a bewildering array of options, in-
cluding the traditional single-letter style (-i) and the double-dash full word style
(--install). In most cases, both styles exist and are interchangeable.

Although configuring rpm may appear to be a bit daunting, its operation is simplified
by being segmented into modes. rpm modes are enabled using one (and only one) of
the mode options. Within a mode, additional mode-specific options become
available to modify the behavior of rpm. The major modes of rpm and some of the
most frequently used mode-specific options follow. For complete information on
how to use and manage RPM packages, see the rpm manpage or the synopsis offered
by rpm --help.

Objective 5: Use Red Hat Package Manager (RPM) | 53

o

a
o
=
&
=
o

=)
I
3
)
=
—

=3
(7
-
=2
I3
=
=]
=]
=
-
o
o
:Ir

rpm

rpm

Syntax

rpm -i [options]

(also rpm --install)

rpm -U [options] (also rpm --upgrade)
rpm -e [options] (also rpm --uninstall)
rpm -q [options] (also rpm --query)
rpm -V [options] (also rpm --verify)

Install/upgrade mode

The install mode (rpm -i) is used to install new packages. A variant of install mode is the upgrade
mode (rpm -U), where an installed package is upgraded to a more recent version. Another variant
is the freshen mode (rpm -F), which upgrades only packages that have an older version already
installed on the system. But rpm’s -F option has limited value, since it doesn’t handle
dependency changes at all. In other words, if a new version of a package requires that another
package be installed, -F won’t automatically install the new package, even if it is listed on the
command line.

Frequently used install and upgrade options

--force
Allows the replacement of existing packages and of files from previously installed pack-
ages; for upgrades, it allows the replacement of a newer package with an older one. (Lit-
erally, it is equivalent to setting all of the options --replacepkgs, --replacefiles, and
--oldpackage.) Use this option with caution.

-h (also --hash)
Prints a string of 50 hash marks (#) during installation as a progress indicator.

--nodeps
Allows you to install a package without checking for dependencies. This command should
be avoided because it makes the dependency database inconsistent.

--lest
Runs through all the motions except for actually writing files; it’s useful to verify that a
package will install correctly prior to making the attempt. Note that verbose and hash
options cannot be used with --test, but -vv can.

Sets verbose mode. (Package names are displayed as the packages are being installed.)

v
Sets really verbose mode. The manpage describes this as “print lots of ugly debugging
information.”

Example 1

To install a new package, simply use the rpm -i command with the name of a package file. If
the new package depends upon another package, the install fails, like this:

rpm -1 gcc-2.96-113.1386.rpm
error: failed dependencies:
binutils >= 2.11.93.0.2-6 is needed by gcc-2.96-113

54 | Chapter5: Linux Installation and Package Management (Topic 102)

rpm

cpp = 2.96-113 is needed by gcc-2.96-113
glibc-devel is needed by gcc-2.96-113

To correct the problem, the dependency must first be satisfied. In this example, gcc is dependent
on binutils, cpp, and glibc-devel, which all must be installed first (or at the same time, as in this
example):

rpm -i binutils-2.11.93.0.2-11.i386.rpm cpp-2.96-113.i386.rpm \
glibc-devel-2.2.5-44.1386.rpm gcc-2.96-113.1386.rpm

Example 2

Upgrading an existing package to a newer version can be done with the -U option. Upgrade
mode is really a special case of the install mode, where existing packages can be superseded by
newer versions. Using -U, a package can be installed even if it doesn’t already exist, in which
case it behaves just like -i:

rpm -U gcc-2.96-113.1386.rpm

Uninstall mode

This mode is used to remove installed packages from the system. By default, rpm uninstalls a
package only if no other packages depend on it.

Frequently used uninstall options

--nodeps
rpm skips dependency checking with this option enabled. This command should be avoided
because it makes the dependency database inconsistent.

--test
This option runs through all the motions except for actually uninstalling things; it’s useful
to verify that a package can be uninstalled correctly without breaking other dependencies
prior to making the attempt. Note that verbose and hash options cannot be used with
--test, but -vv can.

Example
Package removal is the opposite of installation and has the same dependency constraints:

rpm -e glibc-devel
error: removing these packages would break dependencies:
glibc-devel is needed by gcc-2.96-113

Query mode

Installed packages and raw package files can be queried using the rpm -qg command. Query
mode options exist for package and information selection.

Frequently used query package selection options

-a (also --all)
Display a list of all packages installed on the system. This is particularly useful when piped
to grep if you’re not sure of the name of a package or when you want to look for packages
that share a common attribute.

-f filename (also --file)
Display the package that contains a particular file.

Chapter 5: Linux Installation and Package Management (Topic 102) | 55

o

a
o
=
&
=
o

=)
I
3
)
=
—

=3
(7
-
=2
I3
=
=]
=]
=
-
o
o
:Ir

pm

-p package_filename
Query a package file (most useful with -i, described next).

Frequently used query information selection options

-¢ (also --configfiles)

List only configuration files.

-d (also --docfiles)
List only documentation files.

-i package
Not to be confused with the install mode. Display information about an installed package,
or when combined with -p, about a package file. In the latter case, package is a filename.

-l package (also --list)
List all of the files contained in package. When used with -p, the package is a filename.

-R (also --requires)
List packages on which this package depends.

Example 1

To determine the version of the software contained in an RPM file, use the query and package
information options:

rpm -qpi openssh-3.4p1-2.i386.rpm | grep Version

Version D 3.4p1 Vendor: Red Hat, Inc.

For installed packages, omit the -p option and specify a package name instead of a package
filename. Notice if you have multiple versions of the same package installed, you will get output
for all of the packages:

rpm -qi kernel-source | grep Version

Version 1 2.4.9 Vendor: Red Hat, Inc.

Version 1 2.4.18 Vendor: Red Hat, Inc.

Version 1 2.4.18 Vendor: Red Hat, Inc.
Example 2

List the files contained in a package:

rpm -qlp gnucash-1.3.0-1.i386.rpm
/usr/bin/gnc-prices
/usr/bin/gnucash
/usr/bin/gnucash.gnome
/usr/doc/gnucash
/usr/doc/gnucash/CHANGES

(...output continues ...)

For an installed package, enter query mode and use the -/ option along with the package name:

rpm -ql kernel-source

Jusr/src/linux-2.4.18-14
Jusr/src/linux-2.4.18-14/COPYING
Jusr/src/linux-2.4.18-14/CREDITS
Jusr/src/linux-2.4.18-14/Documentation
Jusr/src/linux-2.4.18-14/Documentation/00-INDEX
Jusr/src/linux-2.4.18-14/Documentation/BUG-HUNTING

56 | Chapter5: Linux Installation and Package Management (Topic 102)

rpm

/usr/src/linux-2.4.18-14/Documentation/Changes
(...output continues ...)

Example 3
List the documentation files in a package:

rpm -qd at
/usr/doc/at-3.
/usr/doc/at-3.
/usr/doc/at-3.1.7/Problems
Jusr/doc/at-3.1.7/README
/usr/doc/at-3.1.7/timespec
/usr/man/mani/at.1
/usr/man/man1/atq.1
/usr/man/mani/atrm.1
/usr/man/mani/batch.1
/usr/man/man8/atd.8
/usr/man/man8/atrun.8

.7/Changelog

1
1.7/Copyright
1
1

Use -p for package filenames.

Example 4
List configuration files or scripts in a package:

rpm -qc at
/etc/at.deny
/etc/rc.d/init.d/atd

Example 5

Determine what package a particular file was installed from. Of course, not all files originate
from packages:

rpm -qf /etc/fstab
file /etc/fstab is not owned by any package
Those that are package members look like this:

rpm -qf /etc/aliases
sendmail-8.11.6-15

Example 6
List the packages that have been installed on the system:

rpm -qa
(... hundreds of packages are listed ...)

To search for a subset with kernel in the name, pipe the previous command to grep:

rpm -qa | grep kernel
kernel-source-2.4.18-24.7.x
kernel-pcmcia-cs-3.1.27-18
kernel-utils-2.4-7.4
kernel-doc-2.4.18-24.7.x
kernel-2.4.18-24.7.x

Chapter 5: Linux Installation and Package Management (Topic 102) | 57

o

a
o
=
&
=
o

=)
I
3
)
=
—

=3
(7
-
=2
I3
=
=]
=]
=
-
o
o
:Ir

rpm

Verify mode
Files from installed packages can be compared against their expected configuration from the

RPM database by using rpm -V.

Frequently used verify options

--nofiles
Ignores missing files.

--nomd5
Ignores MDS5 checksum errors.

--nopgp
Ignores PGP checking errors.

On the Exam

Make certain that you are aware of rpm’s major operational modes and their
commonly used mode-specific options. Knowledge of specific options will be
necessary. Read through the rpm manpage at least once.

YUM Overview

YUM (Yellowdog Updater Modified) is a package manager offering a fast way for
installing, updating, and removing packages. The yum command has a very simple
interface and functions similar to rpm, but yum additionally manages all of the de-
pendencies for you. Yum will detect if dependencies are required for the installation
of an application and, if need be, fetch the required dependency and install it. Yum
has the ability to support multiple repositories for packages and has a simple
configuration.

YUM is configured through the /etc/yum.conf configuration file. A sample of the
configuration file follows. Repositories may be added and modified through
the /etc/yum.repos.d directory:

cat /etc/yum.conf
[main]
cachedir=/var/cache/yum
keepcache=0
debuglevel=2
logfile=/var/log/yum.log
exactarch=1

obsoletes=1

gpgcheck=1

plugins=1

installonly limit=3

This is the default. If you make this bigger yum won't see if the metadata
is newer on the remote and so you'll "gain" the bandwidth of not having to
download the new metadata and "pay" for it by yum not having correct

information.

It is especially important, to have correct metadata, for distributions

like Fedora that don't keep old packages around. If you don't like this

58 | Chapter5: Linux Installation and Package Management (Topic 102)

rpm

checking interrupting your command line usage, it's much better to have
something manually check the metadata once an hour (yum-updatesd will do this).
metadata_expire=90m

PUT YOUR REPOS HERE OR IN separate files named file.repo
in /etc/yum.repos.d

The most common commands used with yum are:
install
Install a package or packages on your system.

erase

Remove a package or packages from your system.
update

Update a package or packages on your system.
list

List a package or group of packages on your system.
search

Search package details for the given string.

Checking installed packages
Check installed packages with list:
yum list

This command will show all of the packages that are currently installed on your
computer. It will also list available packages. In the following example the partial
output is filtered through |more to display content one page at a time. Here you can
see that some of the packages are installed (marked installed) and others are avail-
able through update (@update):

> =
S
[r=]
8
= =
I
s
Y o
=}
g g
23
=f\
-

yum list |more
Loaded plugins: refresh-packagekit
Installed Packages

Canna-1ibs.i586 3.7p3-27.fc11 installed
ConsoleKit.i586 0.3.0-8.fc11 installed
ConsoleKit-1ibs.i586 0.3.0-8.fc11 installed
ConsoleKit-x11.1586 0.3.0-8.fc11 installed
DeviceKit.i586 003-1 installed
DeviceKit-disks.i586 004-4.fc11 @updates
DeviceKit-power.i586 009-1.fc11 @updates
GConf2.1586 2.26.2-1.fc11 installed
GConf2-gtk.i586 2.26.2-1.fc11 installed
ImageMagick.i586 6.5.1.2-1.fcl11 installed
MAKEDEV.1586 3.24-3 installed
NetworkManager.i586 1:0.7.1-8.git20090708.fc11 @updates
1:0.7.1-8.git20090708.fc11 @updates

NetworkManager-glib.i586

You can also check to see if a particular package is installed or available for install
using the list command. The following example checks to see whether Samba is

Chapter 5: Linux Installation and Package Management (Topic 102) | 59

pm

installed. From the output you see that the samba package is not installed but avail-
able for installation through the repository:

yum list samba

Loaded plugins: refresh-packagekit

Available Packages

samba.i586 3.3.2-0.33.fcl1 fedora

If you need to collect information about a particular package, use the info command.
In this situation we ask for information about the hitpd service:
yum info httpd

Loaded plugins: refresh-packagekit
Installed Packages

Name . httpd
Arch : 1586
Version 1 2.2.11
Release : 8
Size 2.6 M
Repo : installed
Summary : Apache HTTP Server
URL : http://httpd.apache.org/
License : ASL 2.0
Description: The Apache HTTP Server is a powerful, efficient, and extensible
1 web server.
Checking for updates

yum may be used to check for available updates for packages running on the com-
puter. You can run the check-updates command to perform a check for any available
package or specify a particular package you want to update. This example checks
for any available updates:

yum check-update
Loaded plugins: refresh-packagekit

gtk2.i586 2.16.5-1.fc11 updates
mysql-1ibs.i586 5.1.36-1.fc11 updates
selinux-policy.noarch 3.6.12-69.fc11 updates
selinux-policy-targeted.noarch 3.6.12-69.fc11 updates

Installing packages

Installing packages using yum is really quite straightforward. To install a package,
you specify its name with the install command and the package name, along with
any dependencies that will be downloaded and installed. This example installs the
samba package:

yum install samba

Loaded plugins: refresh-packagekit

Setting up Install Process

Resolving Dependencies

--> Running transaction check

---> Package samba.i586 0:3.3.2-0.33.fc11 set to be updated
--> Finished Dependency Resolution

Dependencies Resolved

60 | Chapter5: Linux Installation and Package Management (Topic 102)

rpm

Package Arch Version Repository Size
Installing:
samba 1586 3.3.2-0.33.fcl1 fedora 4.4 M

Transaction Summary

Install 1 Package(s)
Update 0 Package(s)
Remove 0 Package(s)

Total download size: 4.4 M
Is this ok [y/N]:
Downloading Packages:
samba-3.3.2-0.33.fc11.i586.rpm
Running rpm_check_debug
Running Transaction Test
Finished Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : samba-3.3.2-0.33.fc11.1586

Installed:
samba.i586 0:3.3.2-0.33.fc11

Complete!

Removing packages

Removing a package from your system is similar to the installation process. Two
options remove packages: remove and erase. They perform the same function, but
remove should be used with caution because it also can uninstall dependent
packages:

yum remove httpd

Loaded plugins: refresh-packagekit
Setting up Remove Process
Resolving Dependencies

--> Running transaction check

---> Package httpd.i586 0:2.2.11-8 set to be erased

| 4.4 mB 00:06

1/1

> =
S
[r=]
8
= =
I
s
Y o
=}
g g
23
=f\
-

--> Processing Dependency: httpd >= 2.2.0 for package: \
gnome-user-share-2.26.0-2.fc11.1586

--> Running transaction check

---> Package gnome-user-share.i586 0:2.26.0-2.fc11 set to be erased

--> Finished Dependency Resolution

Dependencies Resolved

Package Arch Version Repository Size
Removing:

httpd i586 2.2.11-8 installed 2.6 M
Removing for dependencies:

gnome-user-share 1586 2.26.0-2.fc11 installed 809 k

Chapter 5: Linux Installation and Package Management (Topic 102) | 61

rpm

Transaction Summary

Install 0 Package(s)
Update 0 Package(s)
Remove 2 Package(s)

Is this ok [y/N]: Y

62 | Chapter5: Linux Installation and Package Management (Topic 102)

GNU and Unix Commands
(Topic 103)

This Topic covers the essential skill of working interactively with Linux command-
line utilities. Although it’s true that GUI tools are available to manage just about
everything on a Linux system, a firm understanding of command-line utilities is
required to better prepare you to work on any LSB-compliant Linux distribution.

The family of commands that are part of Linux and Unix systems have a long history.
Individuals or groups that needed specific tools contributed many of the commands
in the early days of Unix development. Those that were popular became part of the
system and were accepted as default tools under the Unix umbrella. Today, Linux
systems carry new and often more powerful GNU versions of these historical com-
mands, which are covered in LPI Topic 103.1.

This LPI Topic has eight Objectives:

Objective 1: Work on the Command Line
This Objective states that a candidate should be able to interact with shells and
commands using the command line. This includes using single shell commands
and one-line command sequences to perform basic tasks on the command line,
using and modifying the shell environment, including defining, referencing, and
exporting environment variables, using and editing command history, and in-
voking commands inside and outside the defined path. Weight: 4.

Objective 2: Process Text Streams Using Filters
This Objective states that a candidate should be able to apply filters to text
streams. Tasks include sending text files and output streams through text utility
filters to modify the output, and using standard Unix commands found in the
GNU coreutils package. Weight: 3.

Objective 3: Perform Basic File Management
This Objective states that candidates should be able to use the basic Linux
commands to copy, move, and remove files and directories. Tasks include ad-
vanced file management operations such as copying multiple files recursively,

63

removing directories recursively, and moving files that meet a wildcard pattern.
The latter task includes using simple and advanced wildcard specifications to
refer to files, as well as using find to locate and act on files based on type, size,
or time. This also includes usage of the commands tar, cpio, and dd for archival
purposes. Weight: 4.

Objective 4: Use Streams, Pipes, and Redirects
This Objective states that a candidate should be able to redirect streams and
connect them to efficiently process textual data. Tasks include redirecting
standard input, standard output, and standard error, piping the output of one
command to the input of another command, using the output of one command
as arguments to another command, and sending output to both stdout and a
file. Weight: 4.

Objective 5: Create, Monitor, and Kill Processes

This Objective states that a candidate should be able to manage processes. This
includes knowing how to run jobs in the foreground and background, bring a
job from the background to the foreground and vice versa, start a process that
will run without being connected to a terminal, and signal a program to con-
tinue running after logout. Tasks also include monitoring active processes,
selecting and sorting processes for display, sending signals to processes, and
killing processes. Weight: 4.

Objective 6: Modify Process Execution Priorities
This Objective states that a candidate should be able to manage process exe-
cution priorities. The tasks include running a program with higher or lower
priority, determining the priority of a process, and changing the priority of a
running process. Weight: 2.

Objective 7: Search Text Files Using Regular Expressions
This Objective states that a candidate should be able to manipulate files and
text data using regular expressions. This includes creating simple regular ex-
pressions containing several notational elements, as well as using regular
expression tools to perform searches through a filesystem or file content.
Weight: 2.

Objective 8: Perform Basic File Editing Operations Using vi
This Objective states a candidate should be able to edit files using vi. This in-
cludes vi navigation, basic vi modes, and inserting, editing, deleting, copying,
and finding text. Weight: 3.

The tools and concepts discussed here represent important and fundamental aspects
of working with Linux and are essential for your success on Exam 101.

Objective 1: Work on the Command Line

Every computer system requires a human interface component. For Linux system
administration, a text interface is typically used. The system presents the adminis-
trator with a prompt, which at its simplest is a single character such as $ or #. The
prompt signifies that the system is ready to accept typed commands, which usually

64 | Chapter6: GNU and Unix Commands (Topic 103)

occupy one or more lines of text. This interface is generically called the command
line.

It is the job of a program called a shell to provide the command prompt and to
interpret commands. The shell provides an interface layer between the Linux kernel
and the end user, which is how it gets its name. The original shell for Unix systems
was written by Stephen Bourne and was called simply sh. The default Linux shell is
bash, the Bourne-Again Shell, which is a GNU variant of sh. This chapter will not
cover all aspects of the bash shell. At this point, we are primarily concerned with our
interaction with bash and the effective use of commands.

The Interactive Shell

The shell is a powerful programming environment, capable of automating nearly
anything you can imagine on your Linux system. The shell is also your interactive
interface to your system. When you first start a shell, it does some automated house-
keeping to get ready for your use, and then presents a command prompt. The com-
mand prompt tells you that the shell is ready to accept commands from its standard
input device, which is usually the keyboard. Shells can run standalone, as on a phys-
ical terminal, or within a window in a GUI environment. Whichever the case, their
use is the same.

Shell variable basics

During execution, bash maintains a set of shell variables that contain information
important to the execution of the shell. Most of these variables are set when bash
starts, but they can be set manually at any time.

The first shell variable of interest in this topic is called PS1, which simply stands for
Prompt String 1. This special variable holds the contents of the command prompt
that are displayed when bash is ready to accept commands (there is also a PS2 var-
iable, used when bash needs multiple-line input to complete a command). You can
easily display the contents of PS1, or any other shell variable, by using the echo
command with the variable name preceded by the $ symbol:

$ echo $PS1
\$

The \$ output tells us that PS1 contains the two characters \ and $. The backslash
character tells the shell not to interpret the dollar symbol in any special way (that is,
as a metacharacter, described later in this section). A simple dollar sign was the
default prompt for sh, but bash offers options to make the prompt much more in-
formative. On your system, the default prompt stored in PS1 is probably something
like:
[\u@\h \WJ\$

Each of the characters preceded by backslashes has a special meaning to bash,
whereas those without backslashes are interpreted literally. In this example, \u is

replaced by the username, \h is replaced by the system’s hostname, \W is replaced
by the unqualified path (or basename) of the current working directory, and \$ is

Objective 1: Work on the Command Line | 65

)
)
3
3
o
>
o
wv

Xun/nNg

replaced by a $ character (unless you are root, in which case \$ is replaced by #). This
yields a prompt of the form:

[adam@linuxpc adam]$

How your prompt is formulated is really just a convenience and does not affect how
the shell interprets your commands. However, adding information to the prompt,
particularly regarding system, user, and directory location, can make life easier when
hopping from system to system and logging in as multiple users (as yourself and
root, for example). See the online documentation on bash for more information on
customizing prompts, including many more options you can use to display system
information in your prompt.

Another shell variable that is extremely important during interactive use is PATH,
which contains a list of all the directories that hold commands or other programs
you are likely to execute. A default path is set up for you when bash starts. You may
wish to modify the default to add other directories that hold programs you need to
run.

Every file in the Linux filesystem can be specified in terms of its
location. The less program, for example, is located in the direc-
W tory /usr/bin. Placing /usr/bin in your PATH enables you to execute
less by simply typing less rather than the explicit /usr/bin/1ess.

Also be aware that "." (the current directory) is not included in

the PATH either implicitly (as it is in DOS) or explicitly for se-
curity reasons. To execute a program named foo in the current
directory, simply run ./foo.

For bash to find and execute the command you enter at the prompt, the command
must be one of the following;:

* A bash built-in command that is part of bash itself
* An executable program located in a directory listed in the PATH variable

* An executable program whose filename you specify explicitly

The shell holds PATHand other variables for its own use. However, many of the shell’s
variables are needed during the execution of programs launched from the shell (in-
cluding other shells). For these variables to be available, they must be exported, at
which time they become environment variables. Environment variables are passed
on to programs and other shells, and together they are said to form the environ-
ment in which the programs execute. PATH is always made into an environment var-
iable. Exporting a shell variable to turn it into an environment variable is done using
the export command:

$ export MYVAR
Do not include a preceding dollar sign when defining or exporting a variable (be-

cause in this command, you don’t want the shell to expand the variable to its value).
When a variable is exported to the environment, it is passed into the environment

66 | Chapter6: GNU and Unix Commands (Topic 103)

http://www.gnu.org/software/bash/manual/

of all child processes. That is, it will be available to all programs run by your shell.
Here is an example that displays the difference between a shell variable and an en-
vironment variable:

$ echo $MYVAR

No output is returned, because the variable has not been defined. We give it a value,
and then echo its value:
$ MYVAR="hello"

$ echo $MYVAR
hello

We’ve verified that the variable MYVAR contains the value “hello”. Now we spawn a
subshell (or child process) and check the value of this variable:

$ bash
$ echo $MYVAR

Typing bash spawned another copy of the bash shell. This child process is now our
current environment, and as you can see from the blank line that ends the example,
the variable MYVAR is not defined here. If we return to our parent process and export
the variable, it becomes an environment variable that can be accessed in all child
processes:

$ exit

$ export MYVAR

$ bash

$ echo $MYVAR
hello

Typing the export command without any arguments will display all of the exported
environment variables available to your shell. The env command will accomplish
the same thing, just with slightly different output.

Along the same lines are the bash built-in commands set and unset. The command
set with no arguments will display of list of currently set environment variables. The
command unset will allow you to clear the value of an environment variable (as-
suming it is not read-only). The set command also gives you the ability to change
the way bash behaves. The following are some examples of using set to modify your
interactive shell.

To change to vi-style editing mode:

$ set -o vi

This example automatically marks variables that are modified or created for export
to the environment of subsequent commands:

$ set -o allexport

To view the current settings for the variables that set can modify, run set —o.

Objective 1: Work on the Command Line | 67

)
)
3
3
o
>
o
wv

Xun/nNg

Entering commands at the command prompt

Commands issued to the shell on a Linux system generally consist of four
components:

* A valid command (a shell built-in, program, or script found among directories
listed in the PATH, or an explicitly defined program)

* Command options, usually preceded by a dash

* Arguments

* Lineacceptance (i.e., pressing the Enter key), which we assume in the examples

Each command has its own unique syntax, although most follow a fairly standard
form. At minimum, a command is necessary:

$ 1s

This simple command lists the contents of the current working directory. It requires
neither options nor arguments. Generally, options are letters or words preceded by
a single or double dash and are added after the command and separated from it by
a space:

$1s -1

The -1 option modifies the behavior of Is by listing files in a longer, more detailed
format. In most cases, single-dash options can be either combined or specified sep-
arately. To illustrate this, consider these two equivalent commands:

$1s -1 -a

$ 1s -la

By adding the -a option, Is displays files beginning with a dot (which it hides by
default). Adding that option by specifying -la yields the same result. Some com-
mands offer alternative forms for the same option. In the preceding example, the
-a option can be replaced with --all:

$ 1s -1 --all
These double-dash, full-word options are frequently found in programs from the
GNU project. They cannot be combined like the single-dash options can. Both types
of options can be freely intermixed. Although the longer GNU-style options require
more typing, they are easier to remember and easier to read in scripts than the single-
letter options.
Adding an argument further refines the command’s behavior:

$1s -1 *.c
Now the command will give a detailed listing only of C program source files, if any
exist in the current working directory.

W N
)

Using the asterisk in *c¢ allows any file to match as long as it
ends with a .c extension. This is known as file globbing. More
%s information on file globbing and using wildcards can be found
* later in this chapter.

68 | Chapter6: GNU and Unix Commands (Topic 103)

Sometimes, options and arguments can be mixed in any order:
$ 1s --all *.c -1

In this case, Is was able to determine that -/ is an option and not another file
descriptor.

Some commands, such as tar and ps, don’t require the dash preceding an option
because at least one option is expected or required. To be specific, ps doesn’t require
a dash when it is working like BSD’s version of ps. Since the Linux version of ps is
designed to be as compatible as possible with various other versions of ps, it some-
times does need a dash to distinguish between conflicting options. As an example,
try ps -e and ps e. The first version invokes a Linux-specific option that shows ev-
eryone’s processes, not just your own. The second version invokes the original BSD
option that shows the environment variables available to each of your commands.

Also, an option often instructs the command that the subsequent item on the com-
mand line is a specific argument. For example:

$ sort name_list

$ sort -k 2 name_list

These commands invoke the sort command to sort the lines in the file name_list.
The first command just sorts beginning with the first character of each line, whereas
the second version adds the options -k 2. The -k option tells the command to break
each line into fields (based on whitespace) and to sort the lines on a particular field.
This option requires a following option to indicate which field to sort on. In this
case, we have told sort to sort on the second field, which is useful if name_list contains
people’s names in a “Joe Smith” format.

Just as any natural language contains exceptions and variations, so does the syntax
used for GNU and Unix commands. You should have no trouble learning the
essential syntax for the commands you need to use often. The capabilities of the
command set offered on Linux are extensive, making it highly unlikely that you’ll
memorize all of the command syntax you’ll ever need. Most system administrators
are constantly learning about features they’ve never used in commands they use
regularly. It is standard practice to regularly refer to the documentation on com-
mands you’re using, so feel free to explore and learn as you go.

Entering commands not in the PATH

Occasionally, you will need to execute a command that is not in your path and not
built into your shell. If this need arises often, it may be best to simply add the di-
rectory that contains the command to your path. However, there’s nothing wrong
with explicitly specifying a command’s location and name completely. For example,
the Is command is located in /bin. This directory is most certainly in your PATH
variable (if not, it should be!), which allows you to enter the Is command by itself
on the command line:

$ 1s

Objective 1: Work on the Command Line | 69

)
)
3
3
o
>
o
wv

Xun/nNg

The shell looks for an executable file named Is in each successive directory listed in
your PATH variable and will execute the first one it finds. Specifying the literal path-
name for the command eliminates the directory search and yields identical results:

$ /bin/ls

Any executable file on your system may be started in this way. However, it is im-
portant to remember that some programs may have requirements during execution
about what is listed in your PATH. A program can be launched normally but may fail
if it is unable to find a required resource due to an incomplete PATH.

Entering multiple-line commands interactively

In addition to its interactive capabilities, the shell also has a complete programming
language of its own. Many programming features can be very handy at the interactive
command line as well. Looping constructs, including for, until, and while, are often
used this way. (Shell syntax is covered in more detail in Chapter 13.) When you
begin a command such as these, which normally spans multiple lines, bash prompts
you for the subsequent lines until a valid command has been completed. The prompt
you receive in this case is stored in shell variable PS2, which by default is >. For
example, if you wanted to repetitively execute a series of commands each time with
a different argument from a known series, you could enter the following:

$ vari=1

$ var2=2

$ var3=3

$ echo $vari

1

$ echo $var2

2

$ echo $var2

3

Rather than entering each command manually, you can interactively use bash’s
for loop construct to do the work for you. Note that indented style, such as what
you might use in traditional programming, isn’t necessary when working interac-
tively with the shell:

$ for var in $vari $var2 $var3
> do

> echo $var

> done

1

2
3
You can also write this command on one line:

$ for var in $varl $var2 $var3; do echo $var; done
1
2
3

The semicolons are necessary to separate the variables from the built-in bash
functions.

70 | Chapter6: GNU and Unix Commands (Topic 103)

Entering command sequences

There may be times when it is convenient to place multiple commands on a single
line. Normally, bash assumes you have reached the end of a command (or the end
of the first line of a multiple-line command) when you press Enter. To add more
than one command to a single line, separate the commands and enter them sequen-
tially with the command separator, a semicolon. Using this syntax, the following
commands:

$ 1s
$ ps

are, in essence, identical to and will yield the same result as the following single-line
command that employs the command separator:

$1s ; ps

On the Exam

Command syntax and the use of the command line are very important topics. Pay
special attention to the use of options and arguments and how they are differen-
tiated. Also be aware that some commands expect options to be preceded by a
dash, whereas other commands do not. The LPI exams do not concentrate on
command options, so don’t feel like you need to memorize every obscure option
for every command before taking the exams.

Command History and Editing

If you consider interaction with the shell as a kind of conversation, it’s a natural
extension to refer back to things “mentioned” previously. You may type a long and
complex command that you want to repeat, or perhaps you need to execute a com-
mand multiple times with slight variation.

If you work interactively with the original Bourne shell, maintaining such a “con-
versation” can be a bit difficult. Each repetitive command must be entered explicitly,
each mistake mustbe retyped, and if your commands scroll off the top of your screen,
you have to recall them from memory. Modern shells such as bash include a signif-
icant feature set called command history, expansion, and editing. Using these capa-
bilities, referring back to previous commands is painless, and your interactive shell
session becomes much simpler and more effective.

The first part of this feature set is command history. When bash is run interactively,
it provides access to a list of commands previously typed. The commands are stored
in the history list prior to any interpretation by the shell. That is, they are stored
before wildcards are expanded or command substitutions are made. The history list
is controlled by the HISTSIZE shell variable. By default, HISTSIZE is set to 1,000 lines,
but you can control that number by simply adjusting HISTSIZE’s value. In addition
to commands entered in your current bash session, commands from previous bash
sessions are stored by default in a file called ~/.bash_history (or the file named in the
shell variable HISTFILE).

Objective 1: Work on the Command Line | 71

)
)
3
3
o
>
o
wv

Xun/nNg

If you use multiple shells in a windowed environment (as just
about everyone does), the last shell to exit will write its history

4 to ~/.bash_history. For this reason you may wish to use one shell
invocation for most of your work.

To view your command history, use the bash built-in history command. A line num-
ber will precede each command. This line number may be used in subsequent history
expansion. History expansion uses either a line number from the history or a portion
of a previous command to re-execute that command. History expansion also allows
a fair degree of command editing using syntax you’ll find in the bash documentation.
Table 6-1 lists the basic history expansion designators. In each case, using the des-
ignator as a command causes a command from the history to be executed again.

Table 6-1. Command history expansion designators

Designator Description

11 Spoken as bang-bang, this command refers to the most recent command. The exclamation
point is often called bang on Linux and Unix systems.

In Refer to command n from the history. Use the history command to display these numbers.
I-n Refer to the current command minus n from the history.

Istring Refer to the most recent command starting with string.

1?string Refer to the most recent command containing string.

Astring1”string2 Quicksubstitution. Repeat the last command, replacing the first occurrence of string1 with
string2.

While using history substitution can be useful for executing repetitive commands,
command history editing is much more interactive. To envision the concept of com-
mand history editing, think of your entire bash history (including that obtained from
your ~/.bash_history file) as the contents of an editor’s buffer. In this scenario, the
current command prompt is the last line in an editing buffer, and all of the previous
commands in your history lie above it. All of the typical editing features are available
with command history editing, including movement within the “buffer,” searching,
cutting, pasting, and so on. Once you’re used to using the command history in an
editing style, everything you’ve done on the command line becomes available as
retrievable, reusable text for subsequent commands. The more familiar you become
with this concept, the more useful it can be.

By default, bash uses key bindings like those found in the Emacs editor for command
history editing. (An editing style similar to the vi editor is also available.) If you’re
familiar with Emacs, moving around in the command history will be familiar and
very similar to working in an Emacs buffer. For example, the key command Ctrl-p
(depicted as C-p) will move up one line in your command history, displaying your
previous command and placing the cursor at the end of it. This same function is also
bound to the up-arrow key. The opposite function is bound to C-n (and the down
arrow). Together, these two key bindings allow you to examine your history line by
line. You may re-execute any of the commands shown simply by pressing Enter when

72 | Chapter6: GNU and Unix Commands (Topic 103)

it is displayed. For the purposes of Exam 101, you’ll need to be familiar with this
editing capability, but detailed knowledge is not required. Table 6-2 lists some of
the common Emacs key bindings you may find useful in bash. Note that C- indicates
the Ctrl key, and M- indicates the Meta key, which is usually Alt on PC keyboards
(since PC keyboards do not actually have a Meta key).

W
oo In circumstances where the Alt key is not available, such as on
a terminal, using the Meta key means pressing the Escape (Esc)
s key, releasing it, and then pressing the defined key. The Esc key
* is not a modifier, but applications will accept the Esc key se-
quence as equivalent to the Meta key.

Table 6-2. Basic command history editing Emacs key bindings

Key Description

Cp Previous line (also up arrow)

Cn Next line (also down arrow)

Cb Back one character (also left arrow)

f Forward one character (also right arrow)

Ca Beginning of line

C-e End of line

€ (lear the screen, leaving the current line at the top of the screen

M-< Top of history

M-> Bottom of history

(d Delete character from right

Ck Delete (kill) text from cursor to end of line
Cy Paste (yank) text previously cut (killed)
M-d Delete (kill) word

C-rtext Reverse search for text

Xun/nNg

)
)
3
3
o
>
o
wv

C-stext Forward search for text

Command substitution

bash offers a handy ability to do command substitution. This feature allows you to
replace the result of a command with a script. For example, wherever $(command) is
found, its output will be substituted. This output could be assigned to a variable, as
in the system information returned by the command uname —a:

$ SYSTEMSTRING=$(uname -a)

$ echo $SYSTEMSTRING

Linux linuxpc.oreilly.com 2.6.24.7-92.fc8 #1 SMP Wed May 7 16:50:09 \
EDT 2008 1686 athlon i386 GNU/Linux

Another form of command substitution is *command” . The result is the same, except
that the back quote (or backtick) syntax has some special rules regarding

Objective 1: Work on the Command Line | 73

metacharacters that the $(command) syntax avoids. Refer to the bash manual at hitp:
/www.gnu.org/software/bash/manual/ for more information.

Applying commands recursively through a directory tree

There are many times when it is necessary to execute commands recursively. That
is, you may need to repeat a command throughout all the branches of a directory
tree. Recursive execution is very useful but also can be dangerous. It gives a single
interactive command the power to operate over a much broader range of your system
than your current directory, and the appropriate caution is necessary. Think twice
before using these capabilities, particularly when operating as the superuser.

Some of the GNU commands on Linux systems have built-in recursive capabilities
as an option. For example, chmod modifies permissions on files in the current
directory:

$ chmod g+w *.c

In this example, all files with the .c extension in the current directory are given the
group-write permission. However, there may be a number of directories and files in
hierarchies that require this change. chmod contains the -R option (note the upper-
case option letter; you may also use --recursive), which instructs the command to
operate not only on files and directories specified on the command line, but also on
all files and directories contained beneath the specified directories. For example, this
command gives the group-write permission to all files in a source-code tree
named /home/adam/src:

$ chmod -R g+w /home/adam/src

Provided you have the correct privileges, this command will descend into each sub-
directory in the src directory and add the requested permission to each file and
directory it finds. Other example commands with this ability include cp (copy), Is
(list files), and rm (remove files).

A more general approach to recursive execution through a directory is available by
using the find command. find is inherently recursive and is intended to descend
through directories executing commands or looking for files with certain attributes.
Atits simplest, find displays an entire directory hierarchy when you simply enter the
command and provide a single argument of the target directory. If no options are
given to find, it prints each file it finds, as if the option -print were specified:

$ find /home/adam/src
...files and directories are listed recursively...

As an example of a more specific use, add the -name option to search the same
directories for C files (this can be done recursively with the Is command as well):

$ find /home/adam/src -name "*.c"
....C files are listed recursively...

find also can be used to execute commands against specific files by using the -exec
option. The arguments following -exec are taken as a command to run on each
find match. They must be terminated with a semicolon (;), which needs to be

74 | Chapter6: GNU and Unix Commands (Topic 103)

http://www.gnu.org/software/bash/manual/
http://www.gnu.org/software/bash/manual/

man

escaped (\;, for example) because it is a shell metacharacter. The string {} is replaced
with the filename of the current match anywhere it is found in the command.

To take the previous example a little further, rather than execute chmod recursively
againstall files in the src directory, find can execute it against the Cfiles only, like this:

$ find /home/adam/src -name "*.c" -exec chmod g+w {} \;

The find command is capable of much more than this simple example and can locate
files with particular attributes such as dates, protections, file types, access times, and
others. Although the syntax can be confusing, the results are worth some study of

find.

Manpages

Traditional computer manuals covered everything from physical maintenance to
programming libraries. Although the books were convenient, many users didn’t al-
ways want to dig through printed documentation or carry it around. So, as space
became available, the man (manual) command was created to put the books on the
system, giving users immediate access to the information they needed in a
searchable, quick-reference format.

There is a manpage for most commands on your system. There are also manpages
for important files, library functions, shells, languages, devices, and other features.
man is to your system what a dictionary is to your written language. That is, nearly
everything is defined in detail, but you probably need to know in advance just what
you’re looking for.

man

Syntax

man [options] [section] name

Description

Formatand display system manual pages from section on the topic of name. If section is omitted,
the first manpage found is displayed.

Frequently used options

-a
Normally, man exits after displaying a single manpage. The -a option instructs man to
display all manpages that match name, in a sequential fashion.

-d

Display debugging information.
-k

Search for manpages containing a given string.
-w

Print the locations of manpages instead of displaying them.

Chapter 6: GNU and Unix Commands (Topic 103) | 75

)
)
3
3
o
>
o
wv

Xun/nNg

man

Example 1
View a manpage for mkfifo:

$ man mkfifo

Results for the first manpage found are scrolled on the screen.

Example 2
Determine what manpages are available for mkfifo:

$ man -wa mkfifo
/usr/share/man/man1/mkfifo.1
/usr/share/man/man3/mkfifo.3

This shows that two manpages are available, one in section 1 (mkfifo.1) of the manual and
another in section 3 (mkfifo.3). See the next section for a description of manpage sections.

Example 3
Display the mkfifo manpage from manual section 3:

$ man 3 mkfifo

Manual sections

Manpages are grouped into sections, and there are times when you should know the appropriate
section in which to search for an item. For example, if you were interested in the mkfifo
C-language function rather than the command, you must tell the man program to search the
section on library functions (in this case, section 3, Linux Programmer’s Manual):

$ man 3 mkfifo

An alternative would be to have the man program search all manual sections:

$ man -a mkfifo

The first example returns the mkfifo(3) manpage regarding the library function. The second
returns pages for both the command and the function. In this case, the pages are delivered
separately; terminating the pager on the first manpage with Ctrl-C causes the second to be
displayed.

Manual sections are detailed in Table 6-3.

Table 6-3. Man sections

Section Description

1 User programs

System calls

Library calls

Spedial files (usually found in /dev)
File formats

Games

Miscellaneous

© N o U A~ W N

System administration

76 | Chapter6: GNU and Unix Commands (Topic 103)

Some systems might also have sections 9, n, and others, but only
sections 1 through 8 are defined by the FHS.

The order in which man searches the sections for manpages is controlled by the MANSECT envi-
ronment variable. MANSECT contains a colon-separated list of section numbers. If it is not set,
man (as of version 1.5k) behaves as if it were set to 1:8:2:3:4:5:6:7:9:tcl:n:1:p:o.

Manpage format

Most manpages are presented in a concise format with information grouped under well-known
standard headings such as those shown in Table 6-4. Other manpage headings depend on the
context of the individual manpage.

Table 6-4. Standard manpage headings

Heading Description

Name The name of the item, along with a description

Synopsis A complete description of syntax or usage

Description A brief description of the item

Options Detailed information on each command-line option (for commands)
Return values Information on function return values (for programming references)
See also Alist of related items that may be helpful

Bugs Descriptions of unusual program behavior or known defects

Files Alist of important files related to the item, such as configuration files

Copying or copyright A description of how the item is to be distributed or protected

Authors Alist of those who are responsible for the item

man mechanics

System manpages are stored mostly in /usr/share/man, but may exist in other places as well. At
any time, the manual pages available to the man command are contained within directories
configured in your man configuration file, /etc/man.config. This file contains directives to the
man, telling it where to search for pages (the MANPATH directive), the paging program to use
(PAGER), and many others. This file essentially controls how man works on your system. To
observe this, use the debug (-d) option to man to watch as it constructs a manpath (a directory
search list) and prepares to display your selection:

$ man -d mkfifo

Objective 2: Process Text Streams Using Filters

Many of the commands on Linux systems are intended to be used as filters, meaning
that multiple commands can be piped together to perform complex operations on
text. Text fed into the command’s standard input or read from files is modified in
some useful way and sent to standard output or to a new file, leaving the original
source file unmodified. Multiple commands can be combined to produce text

Objective 2: Process Text Streams Using Filters | 77

)
)
3
3
o
>
o
wv

Xun/nNg

cat

streams, which modify text at each step. This section describes basic use and syntax
for the filtering commands important for Exam 101. Refer to a Linux command
reference for full details on each command and the many other available commands.

cat

Syntax
cut options [files]

Description

Concatenate files and print on the standard output. Cat is often used as the first command in
a text stream, as it simply sends the contents of a file (or multiple files) to the standard output.

Frequently used options

-$
Never output more than one single blank line.

-v
Display nonprinting characters (these usually are not displayed).

-A
Display nonprinting characters, display $ at the end of each line, and display Tab characters
as *L.

Example

Send the contents of the file /etc/passwd to the file /tmp/passwd:

$ cat /etc/passwd > /tmp/passwd

cut

Syntax
cut options [files]

Description

Cut out (that is, print) selected columns or fields from one or more files. The source file is not
changed. This is useful if you need quick access to a vertical slice of a file. By default, the slices
are delimited by a Tab character.

Frequently used options

-blist
Print bytes in Iist positions.

-clist
Print characters in 1ist columns.

-ddelim
Set field delimiter (default is ;).

78 | Chapter6: GNU and Unix Commands (Topic 103)

head

-flist
Print list fields.

Example
Show usernames (in the first colon-delimited field) from /etc/passwd:

$ cut -d: -f1 /etc/passwd

expand

Syntax
expand [options] [files]

Description

Convert Tabs to spaces. Sometimes the use of Tab characters can make output that is attractive
on one output device look bad on another. This command eliminates Tabs and replaces them
with the equivalent number of spaces. By default, Tabs are assumed to be eight spaces apart.

Frequently used options

-tnumber

Specify Tab stops in place of the default 8.
-1

Initial; convert only at start of lines.

fmt

Syntax
fmt [options] [files]

Description

Format text to a specified width by filling lines and removing newline characters. Multiple
files from the command line are concatenated.
Frequently used options

-u
Use uniform spacing: one space between words and two spaces between sentences.

-w width
Set line width to width. The default is 75 characters.

head

Syntax
head [options] [files]

Chapter 6: GNU and Unix Commands (Topic 103) | 79

)
)
3
3
o
>
o
wv

Xun/nNg

join

Description

Print the first few lines of one or more files (the “head” of the file or files). When more than one
file is specified, a header is printed at the beginning of each file, and each is listed in succession.

Frequently used options

-cn
Print the first n bytes, or if n is followed by k or m, print the first n kilobytes or megabytes,
respectively.

-nn
Print the first n lines. The default is 10.

join

Syntax
join [options] file1 file2

Description

Print a line for each pair of input lines, one each from file1 and file2, that have identical join
fields. This function could be thought of as a very simple database table join, where the two
files share a common index just as two tables in a database would.

Frequently used options
jlfield
Join on field of file1.
-j2field
Join on field of file2.
ifield
Join on field of both file1 and file2.
Example
Suppose filel contains the following:

1 one
2 two
3 three

and file2 contains:

111
2 22
3 33

Issuing the command:
$ join -j 1 file1 file2

yields the following output:

80 | Chapter6: GNU and Unix Commands (Topic 103)

nl

1 one 11
2 two 22
3 three 33

nl

Syntax
nl [options] [files]

Description

Number the lines of files, which are concatenated in the output. This command is used for
numbering lines in the body of text, including special header and footer options normally ex-
cluded from the line numbering. The numbering is done for each logical page, which is defined
as having a header, a body, and a footer. These are delimited by the special strings \:\:\:, \:
\:, and \:, respectively.

Frequently used options

-b style

Set body numbering style to style, which is t by default (styles are described next).
-f style

Set footer number style to style (n by default).

-h style
Set header numbering style to style, (n by default).

Styles can be in these forms:

A
Number all lines.

Number only nonempty lines.

Do not number lines.

DREGEXP
Number only lines that contain a match for regular expression REGEXP.

Example
Suppose file filel contains the following text:

\:\:\:
header
\:\:
line1
line2
line3
\:
footer
\:\:\:

header

Chapter 6: GNU and Unix Commands (Topic 103) | 81

)
)
3
3
o
>
o
wv

Xun/nNg

od
\:\:

line1
line2
line3
\:

footer
If the following command is given:

$ nl -h a file1

the output would yield numbered headers and body lines but no numbering on footer lines.
Each new header represents the beginning of a new logical page and thus a restart of the num-
bering sequence

1 header
2 line1
3 line2
4 line3
footer
1 header
2 line1
3 line2
4 line3
footer
od
Syntax
od [options] [files]
Description

Dump files in octal and other formats. This program prints a listing of a file’s contents in a
variety of formats. It is often used to examine the byte codes of binary files but can be used on
any file or input stream. Each line of output consists of an octal byte offset from the start of the
file followed by a series of tokens indicating the contents of the file. Depending on the options
specified, these tokens can be ASCII, decimal, hexadecimal, or octal representations of the
contents.

Frequently used options

-t type
Specify the type of output.

Typical types include:

A
Named character

ASCII character or backslash escape

O
Octal (the default)

82 | Chapter6: GNU and Unix Commands (Topic 103)

paste

Hexadecimal

Example
If filel contains:

a1\n
A1\n

where \n stands for the newline character, the od command specifying named characters yields
the following output:

$ od -t a file1
00000000 a 1 nl A 1 nl
00000006

A slight nuance is the ASCII character mode. This od command specifying named characters
yields the following output with backslash-escaped characters rather than named characters:

$ od -t c file1
00000000 a 1 \n A 1 \n
00000006

With numeric output formats, you can instruct od on how many bytes to use in interpreting
each number in the data. To do this, follow the type specification by a decimal integer. This
od command specifying single-byte hex results yields the following output:

$ od -t x1 file1
00000000 61 31 Oa 41 31 Oa
00000006

Doing the same thing in octal notation yields:

$ od -t 01 file1
00000000 141 061 012 101 061 012
00000006

If you examine an ASCII chart with hex and octal representations, you’ll see that these results
match those tables.

paste

Syntax
paste [options] [files]

Description

Paste together corresponding lines of one or more files into vertical columns. Similar in func-
tion to the join command, but simpler in scope.

Frequently used options

-dn

Separate columns with character n in place of the default Tab.

Chapter 6: GNU and Unix Commands (Topic 103) | 83

)
)
3
3
o
>
o
wv

Xun/nNg

pr

Merge lines from one file into a single line. When multiple files are specified, their contents
are placed on individual lines of output, one per file.
For the following three examples, filel contains:

1
2
3

and file2 contains:

A
B
@

Example 1
A simple paste creates columns from each file in standard output:

$ paste file1 file2

1 A
2 B
3 C

Example 2

The column separator option yields columns separated by the specified character:

$ paste -d'@' file1 file2
1@A
2@B
3@C

Example 3
The single-line option (-s) yields a line for each file:

$ paste -s file1 file2

1 2 3
A B C
pr
Syntax
pr [options] [file]
Description

Convert a text file into a paginated, columnar version, with headers and page fills. This com-
mand is convenient for yielding nice output, such as for a line printer from raw, uninteresting
text files. The header will consist of the date and time, the filename, and a page number.

Frequently used options
d

Double space.

84 | Chapter6: GNU and Unix Commands (Topic 103)

sort
-hheader
Use header in place of the filename in the header.

-I1ines
Set page length to lines. The default is 66.

-owidth
Set the left margin to width.

sort

Syntax
sort [options] [files]

Description

Write input to stdout (standard out), sorted alphabetically.

Frequently used options
f
Case-insensitive sort.
-kP0S1/[,P0S2]
Sort on the key starting at P0S1 and (optionally) ending at POS2.
-n
Sort numerically.
-r
Sort in reverse order.
-tSEP
Use SEP as the key separator. The default is to use whitespace as the key separator.
m
Example g 2
Sort all processes on the system by resident size (RSS in ps): g §
$ ps aux | sort -k 6 -n g%
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 2 0.0 0.0 0 0 ? SW Febo8 0:00 [keventd]
root 3 0.0 0.0 0 0 ? SWN Febo8 0:00 [ksoftirqd CPUO]
root 4 0.0 0.0 © 0 ? SW Febo8 0:01 [kswapd]
root 5 0.0 0.0 © 0 ? SW Febo8 0:00 [bdflush]
root 6 0.0 0.0 © 0 ? SW Febo8 0:00 [kupdated]
root 7 0.0 0.0 © 0 ? SW Febo8 0:00 [kjournald]
root 520 0.0 0.3 1340 392 ttyo S Febo8 0:00 /sbin/mingetty tt
root 335 0.0 0.3 1360 436 ? S Febo8 0:00 klogd -x
root 1 0.0 0.3 1372 480 ? S Febo8 0:18 init
daemon 468 0.0 0.3 1404 492 ? S Febo8 0:00 /usr/sbin/atd
root 330 0.0 0.4 1424 560 ? S Febo8 0:01 syslogd -m O
root 454 0.0 0.4 1540 600 ? S Febo8 0:01 crond
root 3130 0.0 0.5 2584 664 pts/o R 13:24 0:00 ps aux
root 402 0.0 0.6 2096 856 ? S Febo8 0:00 xinetd -stayalive
root 385 0.0 0.9 2624 1244 ? S Febo8 0:00 /usr/sbin/sshd

Chapter 6: GNU and Unix Commands (Topic 103) | 85

split

root 530 0.0
root 3131 0.0
root 420 0.0
root 529 0.0

2248 1244 pts/0 S Febo8 0:01 -bash

2248 1244 pts/0 R 13:24 0:00 -bash

4620 1648 ? S Febo8 0:51 sendmail: accepti
3624 1976 ? S Febo8 0:06 /usr/sbin/sshd

B B OO
(V2 VN e Vo)

split

Syntax
split [option] [infile] [outfile]

Description

Split infile into a specified number of line groups, with output going into a succession of files,
outfileaa, outfileab, and so on (the default is xaa, xab, etc.). The infile remains unchanged.
This command is handy if you have a very long text file that needs to be reduced to a succession
of smaller files. This was often done to email large files in smaller chunks, because at one time
it was considered bad practice to a send a single large email message.

Frequently used option

-n
Split the infile into n-line segments. The default is 1,000.

Example
Suppose filel contains:

1 one
two
three
four
five
six

oV b WN

Then the command:

$ split -2 file1l splitout_
yields as output three new files, splitout_aa, splitout_ab, and splitout_ac.
The file splitout_aa contains:

1 one
2 two

splitout_ab contains:

3 three
4 four

and splitout_ac contains:

5 five
6 six

86 | Chapter6: GNU and Unix Commands (Topic 103)

tail

tac

Syntax
tac [file]

Description

This command is named as an opposite for the cat command, which simply prints text files to
standard output. In this case, tac prints the text files to standard output with lines in reverse
order.

Example
Suppose filel contains:

1 one

2 two

3 three
Then the command:

$ tac filea

yields as output:

3 three
2 two
1 one

tail

Syntax
tail [options] [files]

Description

Print the last few lines of one or more files (the “tail” of the file or files). When more than one
file is specified, a header is printed at the beginning of each file, and each is listed in succession.

Xun/nNg

)
)
3
3
o
>
o
wv

Frequently used options

-cn
This option prints the last n bytes, or if n is followed by k or m, the last n kilobytes or
megabytes, respectively.

-nm
Prints the last m lines. The default is 10.

f

Continuously display a file as it is actively written by another process (“follow” the file).
This is useful for watching logfiles as the system runs.

Chapter 6: GNU and Unix Commands (Topic 103) | 87

tr

tr

Syntax
tr [options] [string1 [string2]]

Description

Translate characters from string1 to the corresponding characters in string2. tr does not have
file arguments and therefore must use standard input and output.

Note that string1 and string2 should contain the same number of characters since the first
character in string1 will be replaced with the first character in string2 and so on.

Either string1 or string2 can contain several types of special characters. Some examples follow,
although a full list can be found in the tr manpage.

a-z

All characters from a to z.
\\

A backslash (\) character.
\nnn

The ASCII character with the octal value nnn.
\x

Various control characters:

\a bell

\b backspace

\f form feed

\n newline

\r carriage return

\t horizontal tab

\v vertical tab
Frequently used options
-c

Use the complement of (or all characters not in) string1.
-d

Delete characters in string1 from the output.
-s

Squeeze out repeated output characters in stringi.
Example 1

To change all lowercase characters in filel to uppercase, use:
$ cat file1 | tr a-z A-Z
or:

$ cat file1 | tr '[:lower:]' '[:upper:]’

88 | Chapter6: GNU and Unix Commands (Topic 103)

uniq

Example 2
To suppress repeated whitespace characters from filel:

$ cat file1 | tr -s '[:blank:]’

Example 3

To remove all non-printable characters from filel (except the newline character):

$ cat file1 | tr -dc '[:print:]\n’

unexpand

Syntax
unexpand [options] [files

Description

Convert spaces to Tabs. This command performs the opposite action of expand. By default,
Tab stops are assumed to be every eight spaces.

Frequently used options

-a
Convert all spaces, not just leading spaces. Normally unexpand will work only on spaces
at the beginning of each line of input. Using the -a option causes it to replace spaces
anywhere in the input.

W

- This behavior of unexpand differs from expand. By default,
expand converts all Tabs to spaces. It requires the -i option
% to convert only leading spaces.

-t number
Specify Tab stops in place of the default 8.

uniq

Syntax
uniq [options] [input [output]]

Description
Writes input (or stdin) to output (or stdout), eliminating adjacent duplicate lines.

Since unig works only on adjacent lines of its input, it is most often used in conjunction with sort.

Frequently used options

-d

Print only nonunique (repeating) lines.

Chapter 6: GNU and Unix Commands (Topic 103) | 89

)
)
3
3
o
>
o
wv

Xun/nNg

w(c

Print only unique (nonrepeating) lines.

Examples
Suppose file contains the following:

b

Nn an v v o

Issuing the command uniq with no options:
$ uniq file

yields the following output:

Nn an v o

Notice that the line with c is repeated, since the duplicate lines were not adjacent in the input
file. To eliminate duplicate lines regardless of where they appear in the input, use sort on the
input first:

sort file | uniq

$
a
b
c
d

To print only lines that never repeat in the input, use the -u option:

$ sort file | uniq -u
d

To print only lines that do repeat in the input, use the -d option:

$ sort file | uniq -d
a
b
C

w(C

Syntax
wc [options] [files]

Description

Print counts of characters, words, and lines for files. When multiple files are listed, statistics
for each file output on a separate line with a cumulative total output last.

90 | Chapter6: GNU and Unix Commands (Topic 103)

Frequently used options

-c
Print the character count only.

Print the line count only.

Print the word count only.

Example 1
Show all counts and totals for filel, file2, and file3:
$ we file[123]

Example 2
Count the number of lines in fileI:

$ we -1 file1

Objective 3: Perform Basic File Management

This section covers basic file and directory management, including filesystems, files
and directories, standard file management commands, their recursive capabilities
(where applicable), and wildcard patterns (also known as file globbing).

Filesystem Objects

Nearly every operating system in history structures its collection of stored objects
in a hierarchy, which is a tree of objects containing other objects. This hierarchy
allows a sane organization of objects and allows identically named objects to appear
in multiple locations, an essential feature for multiuser systems such as Linux. In-
formation about each object in the filesystem is stored in a table (which itself is part
of the filesystem), and each object is numbered uniquely within that table. Although
there are a few special object types on Linux systems, the two most common are
directories and files.

Directories and files

A directory is a container intended to hold objects such as files and other directories.
A directory’s purpose is primarily for organization. A file, on the other hand, exists
within the directory, and its purpose is to store raw data. At the top of all Linux
filesystem hierarchies is a directory depicted simply by /; this is known as the root
directory. Beneath / are named directories and files in an organized and well-defined
tree. To describe these objects, you simply refer to them by name separated by
the / character. For example, the object Is is an executable program stored in a di-
rectory called /bin under the root directory; it is depicted simply as /bin/ls.

Objective 3: Perform Basic File Management | 91

)
)
3
3
o
>
o
wv

Xun/nNg

bzip2

Don’t confuse root directory with the username root, which is
separate and distinct. There’s also often a directory

4 named /root for the root user. Keeping /, /root, and the root user
straight in a conversation can be a challenge.

Inodes

The identification information for a filesystem object is known as its inode. Inodes
carry information about objects, such as where they are located on disk, their mod-
ification time, security settings, and so forth. Each Linux ext3 filesystem is created
with a finite number of inodes that is calculated based on the size of the filesystem
and other options that are given to mke2fs (the command used to create an ext2 or
ext3 filesystem on a partition). Multiple objects in the filesystem can share the same
inode; this concept is called linking.

File and directory management commands

Once a hierarchy is defined, there is a never-ending need to manage the objects in
the filesystem. Objects are constantly created, read, modified, copied, moved, and
deleted, so wisely managing the filesystem is one of the most important tasks of a
system administrator. In this section, we discuss the basic command-line utilities
used for file and directory management. There are GUI tools for this task, but the
LPI Level 1 exams only test on command-line tools, and although GUI tools are
sometimes more intuitive, a good system administrator should always be always be
able to administer his or her system from the command line.

bzip2

Syntax

bzip2 [options] [filenames ...]
bunzip2 [options] [filenames ...]

Description

Compress or uncompress files using the Burrows-Wheeler block sorting text compression
algorithm and Huffman coding. bzip2 is generally considered one of the most efficient com-
pression programs available for Linux systems. Files compressed with bzip2 usually have the
extension .bz2.

Frequently used options

-d
Decompress a file. bzip2 —d is the same as bunzip2.

-1to-9
Set the block size to 100k, 200k, 300k...900k when compressing. This essentially means
that -1 compresses faster but leaves larger compressed files, whereas -9 compresses more
slowly but results in smaller files.

92 | Chapter6: GNU and Unix Commands (Topic 103)

@

Example 1

Compress the file /etc/largefile using the highest level of compression. It will be compressed and
renamed /etc/largefile.bz2:

$ bzip2 -9 /etc/largefile

Example 2

Uncompress /etc/largefile.bz2. Tt will be uncompressed and renamed /etc/largefile:
$ bunzip2 /etc/largefile.bz2

or:

$ bzip2 -d /etc/largefile.bz2

P

Syntax

cp [options] file1 file2
cp [options] files directory

Description

In the first command form, copy file1 to file2. If file2 exists and you have appropriate priv-
ileges, it will be overwritten without warning (unless you use the -i option). Both file1 and
file2 can be any valid filename, either fully qualified or in the local directory. In the second
command form, copy files to directory. Note that the presence of multiple files implies that
you wish to copy the files to a directory. If directory doesn’t exist, an error message will be
printed. This command form can get you in trouble if you attempt to copy a single file into a
directory that doesn’t exist, as the command will be interpreted as the first form and you’ll end
up with file2 instead of directory.

Frequently used options
-f

Force an overwrite of existing files in the destination.

Prompt interactively before overwriting destination files. It is common practice (and ad-
vised) to alias the ¢p command to ¢p -i to prevent accidental overwrites. You may find that
this is already done for you for the root user on your Linux system.

p
Preserve all information, including owner, group, permissions, and timestamps. Without
this option, the copied file or files will have the present date and time, default permissions,
owner, and group.

-7, -R
Recursively copy directories. You may use either upper- or lowercase for this option. If
file1isactually a directory instead of a file and the recursive option is specified, file2 will
be a copy of the entire hierarchy under directory file1.

Display the name of each file verbosely before copying.

Chapter 6: GNU and Unix Commands (Topic 103) | 93

)
)
3
3
o
>
o
wv

Xun/nNg

cpio

Example 1
Copy the messages file to the local directory (specified by .):
$ cp /var/log/messages .

Example 2

Make an identical copy, including preservation of file attributes, of directory src in new direc-
tory src2:

$ cp -Rp src src2

Copy file1, file2, files, file6,and file7 from the local directory into your home directory
(in bash):

$ cp file1r file2 file[567] ~

On the Exam

Be sure to know the difference between a file destination and a directory destina-
tion and how to force an overwrite of existing objects.

cpio

Syntax
cpio -o [options] < [filenames ...] > [archive]
cpio -i < [archive]
cpio -p [destination-directory] < [filenames...]
Description

cpio is used to create and extract archives, or copy files from one place to another. No
compression is done natively on these archives; you must employ gzip or bzip2 if you desire
compression.

Frequently used options
-0
Copy-out mode. This mode is used to create an archive.
-1
Copy-in mode. This mode is used to copy files out of an archive.
ya
Copy-pass mode. Don’t create an archive; just copy files from one directory tree to another.
Example 1
Create an archive that contains all the files in the current working directory:
$ 1s | cpio -ov > /tmp/archive.cpio

Notice that instead of passing files to archive to cpio on the command line, we had the Is com-
mand create a list of files for us, which we then send to the ¢pio command via standard input
using the | (vertical bar) character.

94 | Chapter6: GNU and Unix Commands (Topic 103)

file

Example 2
Extract all the files from the archive we just created:

$ cpio -iv < /tmp/archive.cpio

dd

Syntax
dd [options]

Description

dd converts and copies files. It is one of the few commands in the Linux world that can operate
directly on block devices, rather than requiring access through the filesystem layer. This is
especially useful when performing backups of block devices, such as hard drive partitions, CD-
ROMs, or floppy disks.

Frequently used options

-if=file

Read from file instead of standard input.

-of=file

Output to file instead of standard output.

-ibs=n
Read n bytes at a time.

-obs=n
Write n bytes at a time.

-conv=list

Perform the conversions defined in 1ist.

Example 1

Create an image of the compact disc currently in the default CD drive (/dev/cdrom):

$ dd if=/dev/cdrom of=/tmp/cd.img

Example 2
Copy /tmpffile to /tmp/file2, converting all characters to lowercase:

$ dd if=/tmp/file of=/tmp/file2 conv=1case

file

Syntax
file [options] [file]

Chapter 6: GNU and Unix Commands (Topic 103) | 95

)
)
3
3
o
>
o
wv

Xun/nNg

find

Description

file is designed to determine the kind of file being queried. Because Linux (and other Unix-like
systems) don’t require filename extensions to determine the type of a file, the file command is
useful when you’re unsure what kind of file you’re dealing with. file accomplishes this by per-
forming three sets of tests on the file in question: filesystem tests, magic tests, and language
tests. Filesystem tests involved examining the output of the “stat” system call. Magic tests are
used to check for files with data in particular fixed formats. If neither of these tests results in a
conclusive answer, a language test is performed to determine whether the file is some sort of
text file.

Frequently used options

-f namefile
Read the names of the files to be examined from namefile (one per line) before the argu-
ment list.

Try to look inside compressed files.

Example 1
Determine the file type of the currently running kernel:

$ file /boot/vmlinuz-2.6.27.29-170.2.78.fc10.1686
/boot/vmlinuz-2.6.27.29-170.2.78.fc10.1686: Linux kernel x86 boot executable \
RO-rootFS, root_

0x902, swap_dev 0x2, Normal VGA

Example 2
Determine the file type of /etc/passwd:

$ file /etc/passwd
/etc/passwd: ASCII text

find

Syntax
find [options] [path...] [expression]

Description

find searches recursively through directory trees for files or directories that match certain
characteristics. find can then either print the file or directory that matches or perform other
operations on the matches.

Frequently used options

-mount
Do not recursively descend through directories on mounted filesystems. This prevents
find from doing a potentially very long search over an NFS-mounted share, for example.

96 | Chapter6: GNU and Unix Commands (Topic 103)

gzip and gunzip

-maxdepth X
Descend at most X levels of directories below the command-line arguments. -maxdepth 0
eliminates all recursion into subdirectories.

Example 1
Find all files in /tmp that end in .c and print them to standard out:
$ find /tmp -name "*.c"

The expression "*.c" means “all files that end in .c”. This is an example of file globbing and is
explained in detail later in this Objective.

Example 2

Find files (and only files) in /tmp older than seven days. Do not recurse into subdirectories
of /tmp:

$ find /tmp -maxdepth 1 -type f -daystart -ctime +7

Example 3
Find files in /usr that have the setuid permission bit set (mode 4000):

$ find /usr -perm -4000

gzip and gunzip

Syntax

gzip [options] [filenames ...]
gunzip [options] [filenames ...]

Description

Compress or uncompress files using Lempel-Ziv coding. gzip is one of the most common com-
pression formats found on Linux systems, although it is starting to be replaced by the more
efficient bzip2. Files compressed with gzip usually have the extension .gz. Command-line op-
tions for gzip are very similar to those for bzip2.

Frequently used options

-d
Decompress a file. gzip -d is the same as gunzip.

-r
Travel the directory structure recursively. If any of the filenames specified on the command
line are directories, gzip will descend into the directory and compress all the files it finds
there (or decompress them in the case of gunzip).

Example 1

Compress the file /etc/largefile. It will be compressed and renamed /etc/largefile.gz:

$ gzip /etc/largefile

Chapter 6: GNU and Unix Commands (Topic 103) | 97

)
)
3
3
o
>
o
wv

Xun/nNg

mkdir

Example 2
Uncompress /etc/largefile.gz. It will be uncompressed and renamed /etc/largefile:

$ gunzip /etc/largefile.gz

or:

$ gzip -d /etc/largefile.gz
mkdir
Syntax

mkdir [options] directories
Description

Create one or more directories. You must have write permission in the directory where direc
tories are to be created.

Frequently used options

-mmode
Set the access rights in the octal format mode for directories.

p

Create intervening parent directories if they don’t exist.
Examples
Create a read-only directory named personal:

$ mkdir -m 444 personal

Create a directory tree in your home directory, as indicated with a leading tilde (~), using a
single command:
$ mkdir -p ~/dir1/dir2/dir3

In this case, all three directories are created. This is faster than creating each directory
individually.

On the Exam

Verify your understanding of the tilde (~) shortcut for the home directory, and the
shortcuts . (for the current directory) and .. (for the parent directory).

myv

Syntax

mv [options] source target

98 | Chapter6: GNU and Unix Commands (Topic 103)

rmdir

Description

Move or rename files and directories. For targets on the same filesystem (partition), moving a
file doesn’t relocate the contents of the file itself. Rather, the directory entry for the target is
updated with the new location. For targets on different filesystems, such a change can’t be
made, so files are copied to the target location and the original sources are deleted.

If a target file or directory does not exist, source is renamed to target. If a target file already
exists, it is overwritten with source. If target is an existing directory, source is moved into that
directory. If source is one or more files and target is a directory, the files are moved into the
directory.

Frequently used options

Force the move even if target exists, suppressing warning messages.

Query interactively before moving files.

rm

Syntax

rm [options] files

Description

Delete one or more files from the filesystem. To remove a file, you must have write permission
in the directory that contains the file, but you do not need write permission on the file itself.
The rm command also removes directories when the -d, -7, or -R option is used.

Frequently used options

-d

Remove directories even if they are not empty. This option is reserved for privileged users.

f

Force removal of write-protected files without prompting.

Query interactively before removing files.

-1,-R
If the file is a directory, recursively remove the entire directory and all of its contents,
including subdirectories.

rmdir

Syntax

rmdir [option] directories

Chapter 6: GNU and Unix Commands (Topic 103) | 99

)
)
3
3
o
>
o
wv

Xun/nNg

touch

Description

Delete directories, which must be empty.
Frequently used option
p

Remove directories and any intervening parent directories that become empty as a result.
This is useful for removing subdirectory trees.

On the Exam

Remember that recursive remove using rm —R removes directories too, even if
they’re not empty. Beware the dreaded rm —Rf /, which will remove your entire
filesystem!

touch

Syntax
touch [options] files

Description

Change the access and/or modification times of files. This command is used to refresh time-
stamps on files. Doing so may be necessary, for example, to cause a program to be recompiled
using the date-dependent make utility.

Frequently used options

-a
Change only the access time.
-m
Change only the modification time.
-t timestamp

Instead of the current time, use timestamp in the form of [[CC]YY]MMDDhhmm[.ss]. For ex-
ample, the timestamp for January 12, 2001, at 6:45 p.m. is 200101121845.

File-Naming Wildcards (File Globbing)

When working with files on the command line, you’ll often run into situations in
which you need to perform operations on many files at once. For example, if you
are developing a C program, you may want to touch all of your .c files in order to be
sure to recompile them the next time you issue the make utility to build your pro-
gram. There will also be times when you need to move or delete all the files in a
directory or at least a selected group of files. At other times, filenames may be long
or difficult to type, and you’ll want to find an abbreviated alternative to typing the
filenames for each command you issue (see Table 6-5).

To make these operations simpler, all shells on Linux offer file-naming wildcards.

100 | Chapter6: GNUand Unix Commands (Topic 103)

touch

Wildcards are expanded by the shell, not by commands. When
a command is entered with wildcards included, the shell first
4 expands all the wildcards (and other types of expansion) and
° passes the full result on to the command. This process is invis-
ible to you.

Rather than explicitly specifying every file or typing long filenames, you can use
wildcard characters in place of portions of the filenames, and the shell can usually
do the work for you. For example, the shell expands *.txt to a list of all the files that
end in .txt. File wildcard constructs like this are called file globs, and their use is
awkwardly called globbing. Using file globs to specify multiple files is certainly a
convenience, and in many cases is required to get anything useful accomplished.
Wildcards for shell globbing are listed in Table 6-5.

Table 6-5. Common file-naming wildcards

Wildcard Description

* Commonly thought to “match anything,” it actually will match zero or more char-
acters (which includes “nothing”!). For example, x* matches files or directories x,
XY, Xyz, X.txt, xy.txt, xyz.¢, and so on.

? Match exactly one character. For example, x? matches files or directories xx, xy,
xz, but not x and not xyz. The specification x ? ? matches xyz, but not x and xy.

[characters] Matchanysingle characterfromamong characters listed between the brackets.
For example, x[yz] matches xy and xz.

[!characters] Match any single character other than characters listed between the brackets.
For example, x[!'yz] matches xa and x7 but does not match xy or xz.

[a-Z] Match any single character from among the range of characters listed between the
bracketsandindicated by the dash (the dash characteris not matched). Forexample,
x[0-9] matchesx0and x7, but does not match xx. Note that to match both upper-
and lowercase letters (Linux filenames are case-sensitive), you specify

[a-zA-Z]. Using x[a-zA-Z] matches xa and xA. g g
[la-z] Match any single character from among the characters not in the range listed § §
between the brackets. 2 <

{frag1,fragz2,frag3,...} (reatestrings frag1, fragz, frag3, etc. For example,
file {one,two,three} yields thestrings file one, file two,and
file three.Thisis a special operator named brace expansion that can be used
to match filenames but isn’t specifically a file wildcard operator and does not
examine directories for existing files to match. Instead, it will expand any string.

For example, it can be used with echo to yield strings totally unrelated to existing
filenames:

$ echo string_{a,b,c}
string_a string b string c

A few examples of the useful things you can do with wildcards follow:

* If youremember part of a filename but not the whole thing, use wildcards with
the portion you remember to help find the file. For example, if you’re working

Chapter 6: GNU and Unix Commands (Topic 103) | 101

in a directory with a large number of files and you know you’re looking for a
file named for Linux, you may enter a command like this:

$ 1s -1 *inux*
* When working with groups of related files, wildcards can be used to help sep-
arate the groups. For example, suppose you have a directory full of scripts
you’ve written. Some are Perl scripts, for which you’ve used an extension

of .pl, and some are Python, which have a .py extension. You may wish to sep-
arate them into new, separate directories for the two languages like this:

$ mkdir perl python

$ mv *.pl perl

$ mv *.py python

* Wildcards match directory names as well. Suppose you have a tree of directories

starting with contracting, where you've created a directory for each month (that
is, contracting/january, contracting/february, through contracting/december). In
each of these directories are stored invoices, named simply
invoice_custa_01.txt, invoice_custa_02.txt, invoice_custb_01.txt, and so on,
where custa and custb are customer names of some form. To display all of the
invoices, wildcards can be used:

$ 1s con*/*/inv*.txt

The con* matches contracting. The second * matches all directories under the
contracting directory (january through december). The last * matches all the
customers and each invoice number for each customer.

See the bash manpages or info page for additional information on how bash handles
expansions and on other expansion forms.

Objective 4: Use Streams, Pipes, and Redirects

Among the many beauties of Linux and Unix systems is the notion that everything
is a file. Things such as disk drives and their partitions, tape drives, terminals, serial
ports, the mouse, and even audio are mapped into the filesystem. This mapping
allows programs to interact with many different devices and files in the same way,
simplifying their interfaces. Each device that uses the file metaphor is given a device
file, which is a special object in the filesystem that provides an interface to the device.
The kernel associates device drivers with various device files, which is how the sys-
tem manages the illusion that devices can be accessed as if they were files. Using a
terminal as an example, a program reading from the terminal’s device file will receive
characters typed at the keyboard. Writing to the terminal causes characters to appear
on the screen. Although it may seem odd to think of your terminal as a file, the
concept provides a unifying simplicity to Linux and Linux programming.

Standard 1/0 and Default File Descriptors

Standard I/O is a capability of the shell, used with all text-based Linux utilities to
control and direct program input, output, and error information. When a program
is launched, it is automatically provided with three file descriptors. File descriptors

102 | Chapter6: GNUand Unix Commands (Topic 103)

are regularly used in programming and serve as a “handle” of sorts to another file.
We have mentioned these already in our discussion of text streams and “piping”
together programs on the command line. Standard /O creates the following file
descriptors:

Standard input (abbreviated stdin)
This file descriptor is a text input stream. By default it is attached to your key-
board. When you type characters into an interactive text program, you are
feeding them to standard input. As you’ve seen, some programs take one or
more filenames as command-line arguments and ignore standard input.
Standard input is also known as file descriptor 0.

Standard output (abbreviated stdout)
This file descriptor is a text output stream for normal program output. By de-
fault it is attached to your terminal (or terminal window). Output generated by
commands is written to standard output for display. Standard output is also
known as file descriptor 1.

Standard error (abbreviated stderr)
This file descriptor is also a text output stream, but it is used exclusively for
errors or other information unrelated to the successful results of your command.
By default, standard error is attached to your terminal just like standard output.
This means that standard output and standard error are commingled in your
display, which can be confusing. You’ll see ways to handle this later in this
section. Standard error is also known as file descriptor 2.

Standard output and standard error are separated because it is often useful to process
normal program output differently from errors.

The standard 1/O file descriptors are used in the same way as those created during
program execution to read and write disk files. They enable you to tie commands
together with files and devices, managing command input and output in exactly the
way you desire. The difference is that they are provided to the program by the shell
by default and do not need to be explicitly created.

Pipes

From a program’s point of view there is no difference between reading text data from
a file and reading it from your keyboard. Similarly, writing text to a file and writing
text to a display are equivalent operations. As an extension of this idea, it is also
possible to tie the output of one program to the input of another. This is accom-
plished using a pipe symbol (|) to join two or more commands together, which we
have seen some examples of already in this chapter. For example:

$ grep "01523" order* | less

This command searches through all files whose names begin with order to find lines
containing the word 01523. By creating this pipe, the standard output of grep is sent
to the standard input of less. The mechanics of this operation are handled by the
shell and are invisible to the user. Pipes can be used in a series of many commands.

Objective 4: Use Streams, Pipes, and Redirects | 103

)
)
3
3
o
>
o
wv

Xun/nNg

When more than two commands are put together, the resulting operation is known
as a pipeline or text stream, implying the flow of text from one command to the next.

Asyou get used to the idea, you’ll find yourself building pipelines naturally to extract
specific information from text data sources. For example, suppose you wish to view
a sorted list of inode numbers from among the files in your current directory. There
are many ways you could achieve this. One way would be to use awk in a pipeline
to extract the inode number from the output of Is, then send it on to the sort com-
mand and finally to a pager for viewing (don’t worry about the syntax or function
of these commands at this point):

$ 1s -i * | awk '{print $1}' | sort -nu | less

The pipeline concept in particular is a feature of Linux and Unix that draws on the
fact that your system contains a diverse set of tools for operating on text. Combining
their capabilities can yield quick and easy ways to extract otherwise hard-to-handle
information. This is embodied in the historical “Unix Philosophy™:

* Write programs that do one thing and do it well.
* Write programs to work together.

* Write programs to handle text streams, because that is a universal interface.

Redirection

Each pipe symbol in the previous pipeline example instructs the shell to feed output
from one command into the input of another. This action is a special form of redi-
rection, which allows you to manage the origin of input streams and the destination
of output streams. In the previous example, individual programs are unaware that
their output is being handed off to or from another program because the shell takes
care of the redirection on their behalf.

Redirection can also occur to and from files. For example, rather than sending the
output of an inode list to the pager less, it could easily be sent directly to a file with
the > redirection operator:

$ 1s -i * | awk '{print $1}' | sort -nu > in.txt

When you change the last redirection operator, the shell creates an empty file
(in.txt) and opens it for writing, and the standard output of sort places the results in
the file instead of on the screen. Note that, in this example, anything sent to standard
error is still displayed on the screen. In addition, if your specified file, in.txt, already
existed in your current directory, it would be overwritten.

Since the > redirection operator creates files, the >> redirection operator can be used
to append to existing files. For example, you could use the following command to
append a one-line footnote to in.txt:

$ echo "end of list" >> in.txt
Since in.txt already exists, the quote will be appended to the bottom of the existing

file. If the file didn’t exist, the >> operator would create the file and insert the text
“end of list” as its contents.

104 | Chapter6: GNUand Unix Commands (Topic 103)

It is important to note that when creating files, the output redirection operators are
interpreted by the shell before the commands are executed. This means that any
output files created through redirection are opened first. For this reason you cannot
modify a file in place, like this:

$ grep "stuff" file1 > file1

If file1 contains something of importance, this command would be a disaster because
an empty filel would overwrite the original. The grep command would be last to
execute, resulting in a complete data loss from the original filel file because the file
that replaced it was empty. To avoid this problem, simply use an intermediate file
and then rename it:

$ grep "stuff" file1 > file2
$ mv file2 file1

Standard input can also be redirected, using the redirection operator <. Using a
source other than the keyboard for a program’s input may seem odd at first, but
since text programs don’t care about where their standard input streams originate,
you can easily redirect input. For example, the following command will send a mail
message with the contents of the file in.txt to user jdean:

$ mail -s "inode list" jdean < in.txt
Normally, the mail program prompts the user for input at the terminal. However,
with standard input redirected from the file in.txt, no user input is needed and the

command executes silently. Table 6-6 lists the common standard 1/O redirections
for the bash shell, specified in the LPI Objectives.

Table 6-6. Standard I/O redirections for the bash shell

Redirection function Syntax for bash
Send stdout to f1le. $ cmd > file

$ cmd 1> file
Send stderrto file. $ cmd 2> file
Send both stdout and stderr to file. $ cmd > file 2>&1
Send stdout to file1 and stderrto file2. $ cmd > file1 2> file2
Receive stdin from file. $ cmd < file
Append stdout to file. $ cmd >> file

$ cmd 1>> file
Append stderr to file. $ cmd 2>> file
Append both stdout and stderr to file. $ cmd >> file 2>81
Pipe stdout from cmd1 to cmd2. $ cmd1 | cmd2

Pipe stdout and stderr from cmd1 to cmd2. ~ $ cmd1 2>&1 | cmd2

Objective 4: Use Streams, Pipes, and Redirects | 105

)
)
3
3
o
>
o
wv

Xun/nNg

tee

On the Exam

Be prepared to demonstrate the difference between filenames and command
names in commands using redirection operators. Also, check the syntax on com-
mands in redirection questions to be sure about which command or file is a data
source and which is a destination.

Using the tee Command

Sometimes you’ll want to run a program and send its output to a file while at the
same time viewing the output on the screen. The tee utility is helpful in this situation.

tee

Syntax
tee [options] files

Description

Read from standard input and write both to one or more files and to standard output (anal-
0gous to a tee junction in a pipe).

Option

-a
Append to files rather than overwriting them.

Example

Suppose you’re running a pipeline of commands ¢cmdl, cmd2, and cmd3:
$ emd1 | cmd2 | cmd3 > filei

This sequence puts the ultimate output of the pipeline into filel. However, you may also be
interested in the intermediate result of cmd1. To create a new file_cmdl containing those results,
use tee:

$ cmd1 | tee file_cmd1l | cmd2 | cmd3 > file1
The results in filel will be the same as in the original example, and the intermediate results of
cmd1 will be placed in file_cmd1.
The xargs Command

Sometimes you need to pass a list of items to a command that is longer than your
shell can handle. In these situations, the xargs command can be used to break down
the list into smaller sublists.

106 | Chapter6: GNUand Unix Commands (Topic 103)

xargs

Syntax

xargs [options] [command] [initial-arguments]

Description

Execute command followed by its optional initial-arguments and append additional arguments
found on standard input. Typically, the additional arguments are filenames in quantities too
large for a single command line. xargs runs command multiple times to exhaust all arguments on
standard input.

Frequently used options

-n maxargs
Limit the number of additional arguments to maxargs for each invocation of command.

P
Interactive mode. Prompt the user for each execution of command.

Example
Use grep to search a long list of files, one by one, for the word “linux”:
$ find / -type f | xargs -n 1 grep -H linux

find searches for normal files (-type f) starting at the root directory. xargs executes grep once for
each of them due to the -n 1 option. grep will print the matching line preceded by the filename
where the match occurred (due to the -H option).

Objective 5: Create, Monitor, and Kill Processes

This Objective looks at the management of processes. Just as file management is a
fundamental system administrator’s function, the management and control of pro-
cesses is also essential for smooth system operation. In most cases, processes will
live, execute, and die without intervention from the user because they are automat-
ically managed by the kernel. However, there are times when a process will die for
some unknown reason and need to be restarted. Or a process may “run wild” and
consume system resources, requiring that it be terminated. You will also need to
instruct running processes to perform operations, such as rereading a configuration

file.

Xun/nNg

)
)
3
3
o
>
o
wv

Processes

Every program, whether it’s a command, application, or script, that runs on your
system is a process. Your shell is a process, and every command you execute from
the shell starts one or more processes of its own (referred to as child processes).
Attributes and concepts associated with these processes include:

Lifetime
A process lifetime is defined by the length of time it takes to execute (while it
“lives”). Commands with a short lifetime such as Is will execute for a very short

Objective 5: Create, Monitor, and Kill Processes | 107

time, generate results, and terminate when complete. User programs such as
web browsers have a longer lifetime, running for unlimited periods of time until
terminated manually. Long-lifetime processes include server daemons that run
continuously from system boot to shutdown. When a process terminates, it is
said to die (which is why the program used to manually signal a process to stop
execution is called kill; succinct, though admittedly morbid).

Process ID (PID)
Every process has a number assigned to it when it starts. PIDs are integer num-
bers unique among all running processes.

User ID (UID) and Group ID (GID)
Processes must have associated privileges, and a process’s UID and GID are
associated with the user who started the process. This limits the process’s access
to objects in the filesystem.

Parent process
The first process started by the kernel at system start time is a program called
init. This process has PID 1 and is the ultimate parent of all other processes on
the system. Your shell is a descendant of init and the parent process to com-
mands started by the shell, which are its child processes, or subprocesses.

Parent process ID (PPID)
This is the PID of the process that created the process in question.

Environment
Each process holds a list of variables and their associated values. Collectively,
this list is known as the environment of the process, and the variables are called
environment variables. Child processes inherit their environment settings from
the parent process unless an alternative environment is specified when the pro-
gram is executed.

Current working directory
The default directory associated with each process. The process will read and
write files in this directory unless they are explicitly specified to be elsewhere
in the filesystem.

On the Exam

The parent/child relationship of the processes on a Linux system is important. Be
sure to understand how these relationships work and how to view them. Note that
the init process always has PID 1 and is the ultimate ancestor of all system processes
(hence the nickname “mother of all processes”). Also remember the fact that if a
parent process is killed, all its children (subprocesses) die as well.

Process Monitoring

At any time, there could be tens or even hundreds of processes running together on
your Linux system. Monitoring these processes is done using three convenient util-
ities: ps, pstree, and top.

108 | Chapter6: GNUand Unix Commands (Topic 103)

ps

ps

Syntax
ps [options]

Description

This command generates a one-time snapshot of the current processes on standard output.
Frequently used options

-a

Show processes that are owned by other users and attached to a terminal. Normally, only
the current user’s processes are shown.

“Full-format” listing. This option prints command arguments in addition to the command

itself.
-l
Long format, which includes priority, parent PID, and other information.
-u
User format, which includes usernames and the start time of processes.
-w
Wide output format, used to eliminate the default output line truncation. Specify it twice
(-ww) for unlimited width.
-x
Include processes without controlling terminals. Often needed to see daemon processes
and others not started from a terminal session.
-C cmd
Display instances of command name cmd.
-U user -~
: S a
Display processes owned by username user. 3 =
3| =
o S
3 2.
Examples & =

Simply entering the ps command with no options will yield a brief list of processes owned by
you and attached to your terminal:

$ ps

Use the -a, -u, and -x options to include processes owned by others and not attached to terminals
as well as to display them in the “user” mode. The command is valid with or without the dash:

$ ps -aux
$ ps aux

In this case, the dash is optional. However, certain ps options require the dash. (See the manpage
for details.)

If you are interested in finding process information on a particular command, use the -C option.
This command displays all web server processes:

$ ps u -C httpd

Chapter 6: GNU and Unix Commands (Topic 103) | 109

pstree

You’ll note that the -C option requires the dash, but the u option won’t work with it if a dash
is included. This confusion exists because the ps command as implemented on Linux under-
stands options in three differing forms:

Unix98 options
These may be grouped and must be preceded by a dash.

BSD options
These may be grouped and must not be used with a dash.

GNU long options
These options are preceded by two dashes.

W

The Linux ps tries