Professional LINUX Programming

Professional LINUX Programming

Table of Contents

ProfessionallinUX ProgramMing...............eeeeeeceeieieeeeeeeeeeeeee e e eee e e e e e e e et e aeaaaaeaaaaaaaaaaaens 1
10T [o (o o SRR
LAV = [0 4T PSR PSORSRRR
WO S THIS BOOKTOI 2. ..ttt e e e e e e sttt e e e e e e e nn bt e e e e e e e e e s annsrneeeeeeeeeaanes 9
What'sCoveredin ThiSBOOK?.......c.uii ittt e e e e s e e e e e e s et e e e e e e e e nnnnareeeaeas 9
WhatYou Needto USEThIS BOOKiiiiiiiiiiiee ettt e e e e e e e e e e e e e e nnneees 12
Y010 o= @ o [~ PP PERRRPR 1
(O] 0177 1110 13 PP PERRT PR 1
Chapter 1: Application DESIQN.........cooiiiiiiii e, 14
(@Y= 1= YRR UPPUPRRRR 1
DeVvelopmMENIIOUELS.........coo o ——————— 15
TheWaterfallMOAEL.........oooi e e e e e e e e e e e e e e e e e e e annnes 15
LT AVL=To (A= ToT o =] | PRSP USURURR 15
Bt S I = (o1 S D=3V (o] o g 1 T=Y) PP 16
LI S T VA =T (@ 1 (=Y o F PP 16
QLI ALST B AV B 2S-SR 1
T TLiF= T oo (U1 (=T g =T o] £ PP 18
Analyzingthe USErREQUIFEMENLES.........ccooviiiiiiiiiiiee e, 18
StatEMENDT REQUITEIMENIS. ... uuiiiiiiiiiiiiiiiiiiiiieieerere e eeeeeeeeee e e e e eeeeeeereeeeee et eeteeeeeteeaeeataaataaaaaaaaaaaaaaaaaaaaans 23
(0L O 1 ST PP P PP PPPRPP 2!
APPICAtION AICNITECIUIE. ..coeeeiieeeeeee e, 26
DetailEdDESIGN... ..o 27
DAtAACCESTFUNCLIONSeeiiieeeiiiiitei et e e e e e ettt e e e e e e e sttt e e e e e e e s e b et e e e e e e s e nnaeeeeaeeeeesannssnneeeeaeeeaans 28
1T] o= T o 1o R RRPPPRRPR 29
QLI L= U Tt 1 o P EEP PR 3(
[1S 2 0 T 1o PP POPRPPP 31
RENTAIFUNCHIONS. ...t e e e e e e st e e e e e e e et e et e e e e e e e annnsnneeeeeeeenanns 32
Referencdmplementation.............oooiiiiiiiii e 33
R SOUICES. ... ittt oottt oo e oottt ettt oo e e e ettt eebaaa oo e e e et e e ee bbbt e e e e et eeeebaa e e eaeeeenne 3
R L 1= Y P 3
LO{ T o] =1 g AV £ TSP PPPPPPR 3
(@Y= 1= YRR PPPRRRR 3
L1010 5 {0 I 3 U RRP S SOPPPRRRP 3t
L= 0T T0] oo Y PP 3
LY R T=T 0T TS (o] AP PPPPPPPP 3¢
SINGIEUSEICV S PrOJECIS....cciiiiiiiiieeeeeee e 37
CVS COMMANTFEOIMIAL ...cetteeiiiiiteeie e e ettt e e e e e e et e e e e e e e s s et e e e e e e e s e snbaeeeeaeeeeeannssaneeeeeeeaaanns 37
ENVIrONMENIVANADIES.coiiiiiiiie et e e e e et e e e e e s s reeeeeeeeeaans 38
TeaT oY a i aTe F= WA L=V = (o] =Tox AP PPPPPPPP 39
StartingWork 0N OUI PIOJECL........cooi i r b eanrenneenreanees 40
CheckingOur ChangeAgainSttE REPOSITONY.uuuuuriiiiieeiieiirerieerreerreereeereeeeeerrerrrrrrererrrerreeeees 41
Updatingthe Repositorywith OurChanges............cccc i, 42
REIEASINGNE PIOJECLuiuiiiiiiiiti bbb e e e e e s bessbessesssssssssssssssssssssssessssnssnssenssensenns 43
ReVIEWINGCNANGESooiiiiie 44
Adding andRemoVvingFilesSTrom @aPrOjECL.........ccccoiiiiiiiic e 44

Professional LINUX Programming

Table of Contents

Chapter 2: CVS

KeyWOord SUBSHIULION.coiiiiiiiieeee 44
ReVisions,TagsandBranCRES. e e s e s et s eessessesssssseaesereraeeeeees 45
=Y (o] o LSRR 4
L= 10 1 4
2 = o] =PSRRI :
1L B R O A USSP 5:
WOTKING COllabDOIatiVEIYeuuiiiiiiiiiiiiiiiiieiieeiieeieeeieeeeeeeeeeeeeeeeeeseeeseerseeeseererereeereereeeterrteeeeaeeeaeeeeeees 53
WOTKINGWIth WaLCHES......eeiiiiiiiiieeeeeeeeeeeeeeeee e 55
MOPE FUNWILN CVS. ... it e ettt e e e e e e st e e e e e e e e nbe e e e e e e e e e e annnabteeeaeeeeesannrees 55
= LY 1= P Bt
CorreCtingBad ANNOTATIONS.uuiiiiiiieiieeiieeeeee e e e e e e e e e e e e e e e e e e et e e e e e e e e e e e e e e aeaeaaaaaaaaaaaaaaaaaaaaans 55
ACCESSINGCTV S ACTOSSANEIWOIKcvveiiiiiiiiiiiiieeeee ettt e e e e 55
(10 L O S O 1= o £ PP 57
RESOUICES. ...ttt ettt e oo e ettt ettt bt oot e e ettt eebaaa oo e e e et eeee bbb e e e e e et eerebnan e e e e aeeeenne 5
R L 011 = Y P 5
Chapter 3: DAtAbaSsES.......ccooo e ———————————————— 6.
(@Y= 1= YRR PPPRRRR 6
(O gToTo L] (g e = D= 1= o= 1 =T 61
10 15T | SR PPPPRRPP 6
Y251 R RPP PP 6.
LTS 0 (=T N 6:
Whichis RIightfor ME72... ..o 62
[1S 0 =T | 6.
InstallationandComMMISSIONING............oiiiiiiiiiii e, 63
DatabasSEUNGAMENTAISoiiii it e e e s e e e e e e s s e e e e e e e e e e anbbrneeeeeeeeaanes 68
(16510 NN (o g F= 1 o] o o SRR UUPPPRRPR 68
ST=Toto] g To NN o] 4 aF= 11 o o o 1R SRS PPSRRR 69
QLI B\ Lo . = U o 1 o U SPOSSPRR 69
(D= e o] g = 11 172= 14 [1o RSP PERRP 69
A SIMPIEDAtADASE.........ceiieiieee 69
USING PSSO e, 7
ComMANAIO PSOL.. .o —— 73
DataDefinitioN COMMEANASuiiiiiiieeieiiiee e e e e e e e e e e e e e e s s seb e e e e e e e e asssraeeeeeeeeaaas 74
DataManipulatioNCOmMMAaNGS.........cooooiiiii e 79
JLILLC2 L0172 Uod 11 K PP PERRT 8t
Dz 1z Lo Tz LY D LT [[1 T RS PPPPPPPPRPP 86
RESOUICES. ... ittt ettt oo e oottt e et b oo e e e e ettt e baba oo e e e et eeee bbb e e e e e e e e eeeebnanaaeeaeeennne 8
R L 01 = Y P 8
Chapter 4: PostgreSQLINTEITACING.t e e eabeeesessesssssssssssssssssssssssssssesssnsssnssnns 89
AccesSINGPOSIYrESQUIOM COUE........eeiiiiiiieeieeeeeee e 89
] o o o PP 8
O = R SUPPRRPR 10
WhICh METhOAIO USE2...... ettt e e e e e e e e e e e e e st raeeeeeeeeeanes 114
B I =YY o] o] 1= 4o o PR 11¢
R L 1] Y 12

Professional LINUX Programming

Table of Contents

(O T o] C=T AT Y/ 1Y/ PP 12
InstallationandCOMMISSIONING.uuuuuuuuuiiurieitirurirrerrrrrrrrrrr——————————————————————————rerrrr. 121
Pre—Compile@Packages.........ccvviiiiiiiiiiiiieeeeeee e, 121
BUIIAING FrOM SOUICE...coiiiiieeiieeeeeeee e, 122
Post=installConfiguration............cccccciiiii e, 123
YA @]I g T TE= 1= 1o PP 124
(@] 10110 =T T < PR PPTSPPRRRP 12
CreatingUsers,andGiving ThemPermiSSIiONS........ccocciiiiiiiiiieiiiiieneaneenneanees 127
PASSWOITS ...t eeeeeee ettt ettt e e e e e ettt e e e e e e s ettt ettt e e e e e e e n s R bttt e e e e e e e e R nbeeeeeeeeeeannnrrneeeeaeeeaans 12¢
CreatiNga DatabasE.vuveiiiiiiiiiieeieeeee et a e e e e e e e e e e e e e e aaaaaaas 129
SQL Supportin PostgreSQLAaNAMYSQL.........uuiiiiiiiiiiiiiiiiiiiiiiiieireerrereeeeeeereeereerrrrrrrrrererrrrrrerereeeseees 130
AccesSINGVIYSQL DAtaffOmM C.......uuuuiiiiiiiiiiiiiiiiiiiiiiiirsieesresressressreessseereeererreeereeeeerreerrererrerererrerreeee 132
(00]] a=Tod 10 0 = Lo U1 1] 1= EEPOR PRI 132
[l ol =T aTo |11 BT 13E
o T U1 1] o ST @] IS v 10T 1= PP 136
MiSCEIANEOUSTUNCLIONSiii i e ittt ee ettt e e e e e e e e e s et e e e e e e e s ssnnbsa e e e e e e e e e aannnseneeeaens 147
RS OUICES. ... ittt ettt oo e e ettt et bt e e e et ettt e e b oo e e e e e et et e bbb e e e e e et e e eebb e e e eeaaas 14
BT L 1] Y 14
(O{ g T o] (=T g ST 1= Tod ([T Vo 51U o 1= PRSP PPRRSPRPR 14¢
(@Y= 1= SRRSO PPRRRRN 14
0] O = TS OO SRR OSPRR 14
=T oTo g u] g e =l (o] £ PRI 14¢
(D Tt i o T AT = L =] A o €O 152
B TSR0 ST e) 10T = 1= =t o 152
(DT o1 [0 5] t= L0=] 1 41T 4 €SP 158
ST Y= 41T 1RSSR 15¢
VMV NEIEATE Y OU 2.ttt ettt e ettt e e e oo ettt e e e e e e et bttt e e e e e e s annat e b e e e e e e e e e annnsbeneeaeeeeesannsseneeeeaeeaans 15¢
2 7 Tt LA = (o = PO ESRET 16t
PreparinGO DEDUG ————— 162
USINGthEDEBUGQET ... 163
SIMPIEGDB COMMANASo e 164
OtherGDB FEAIUINES iieeiiiii ettt e e e e e ettt e e e e e e s s st et e e e e e e s aannnbaeeeaaeeeeeannseenes 166
RESOUICES. ...ttt oottt oo et e e ettt ettt e e e e e e eeeee bbb e e e eeeeeesn bbb e e e eeaeaeeenes 16
R L 111 Y 16
Chapter 7: LDAP DIr€CIONY SEIVICES......ccco i s 169
Whatis aDir€CtOrY SEIVICE ... 169
DR ST 00 =T o To | PO 169
SHIUCTUIEOT @ DI CIONY SV et b bt b e s eea ettt st esbesebssssssssssssesssassnnsnnnsnnns 170
TheNaMINGOT PartS......ccviiiiiiiieeeeeeeeeee e, 171
(o LT AN F= T 1T TP 17:
(@] o T=Te (@fe] 1] o To] 11=] 1] £ PSPPSR 172
LDAP DIFECIONY TIEE....cceeeeieeeeeeeeeee e, 174
LDIF FlBS..ceeeieeee ittt ettt e e e e e ettt e e e e e e e e n b bt et e e e e e e e e R nbae e e e e e e e e e annrraneeeeeeeaans 17t
InstallingandConfiguringanLDAP SEIVEL.........ccoiiiii i eerrrarees 176
Stepsn INStallingOPENLDAPR...........oooii 176
ConfigurinQOPENLDAR.o ——— 177

Professional LINUX Programming

Table of Contents
Chapter 7: LDAP Directory Services

RUNNINGINE SEIVEL. 17¢
ACCESSINGLDAP frOM €.t ———————— 180
Initialize the LDAP LIDIary.........coooo ot 181
BiNd tO tNELDAP SEIVEL..... ... iiieiiieee ettt ettt e e e e e et e e e e e s s eeeeeeessnnnseneeeeeeeeaanes 181
LDAP ErrorHandIiNgG...........oooi i ——— 182
A FirstLDAP CleNtProgram.........cooooi i 183
SEAICHING.....iiiiiieeeeeee e, 18:
(O{aF=TaTo[ale 1g1=Y B T- - P 192
PN (o LT To I WA oAV g1 Y PP 192
MOdiIfYiNG ANENINY ..o 195
(D Lo i To = T a1 =1 o (PP RPPP RPN 197
B I =YY o] o] 1= 4o o PPN 19¢
RS OUICES. ... ittt oo oot ettt et oo e e e et ettt e b b e e e e e e e ettt e bbbt e e e e e e e e en b e e e e eeaaas 19
R L 1] Y 19
Chapter 8: GUI programming With GNOME/GTK+ccoooiiiiiiiiii e 200
(@Y= 1= YRS PPRRRR 20
The GTK+H/GNOME IDIAIIES.iieeieeiie ettt e et et e e e e e st e e e e e e e sannereeeeeeeeeaane 200
0| o PP OPPPRPPR 2C
I G PR 20
1 L EEPP PSPPSR 20
] o PSR 20
(@1 {2 | S PP OPPSRRRN 20
01 o 5 o - PP RSRRRS 20
0|1 o RO PPESURR 2(
1077 == 20
= Tod (o L= PP PT PP PPUPPPPPPPIN 20
SINGTUNCHONS. ..coeeiiiiiieeeeeee 205
MeMOIYANIOCALION.......ccoiiiiiiee 206
[TP PP PP PPPPTPTTRR 20
I G PP 2
ATAY T o= P PPPPPPPPPPP 20
(oL G aT =g o [o 11 1 1= 11 TR PP PPPPPPPP 214
EXampleGTK+ APPlICAtiON..........oooo s 214
GINOME BASICS.....ciiiiitteeieeee e e e e ettt ettt e e e e e sttt e e e e e e s sttt e e e e e e e e nstaeeeeeeeeaaaannsbeeeeaeeeeeeansssnneaeeeeeaannnes 21¢
ONOME NI 21
L] L0 g1 Y o] o PP 21
V1T o TUEST= Vgl I oo | o F= 1 SEPR PP 216
DHAIOGS . et 21
Creatinga GNOMEDIAIOG.uuiiiiiiieiieeeeee ettt e e e e e e et e 220
EXampleGNOME APPIICALION. e e e eebaeesbessssssessssesssesseessens 225
THE GINOME SOUICETTEE.eeeiiieeeeeeiittteeeee e e e e ast et et e e e e e e aaseaeeeeaeee e e s sabbaeeeeaeeesaastaaneeeeaessaannsseeeeeens 227
(o700 1T VT 1= o 22
Y= TS 1 L= T o SRR 22¢
(%o ol o Ul =11 o]0 IS T= 1Yi] o o TR PP PPTPPPPPP 230
) (o]] g o o =1 - 23
Readingthe StoredData............cooovviiiiiiiii 231

Professional LINUX Programming

Table of Contents
Chapter 8: GUI programming with GNOME/GTK+

YIS [0 1Y, = T F= To 1T 4 1T 4| PN 232
CommandLing ParsSingUSING POPL.cooiiiiiiiiieii e ae bbb e bbeesbeeseeseesesseessessees 234
GNOME/GTKH RESOUICES ... iiiiieiiieeee e e eeiiiieete e e e e e e atteeeaaeeessassbeaaeeeeeessannssaaeeeeeeeeaanssrneeeaaens 237
R L 111 Y 23
Chapter 9: GUI Building with Glade and GTK+H/GNOME...........ccccccciiiiiiii 238
(@Y= 1= RSO PPERRR 23
(@Y= V1 Vo)] = o =S PPPP 23¢€
AWOrdonGUI DESIgN......ccoiiiiiiiiee e, 239
E N ©1 = o L= U (o] = | PRSPPI 23¢
= T N4V T T [0 1P ERPP PR 24(
LI L 2= 1L 1= T 24
The Properti@8NINAOW.........coooiiiiii i e e aae b aneennannrernnes 244
The Glade—DUISOUICETTEE.coi it e e e e e e s e e e e e e e e nnnneees 248
[oTo] (0 o TR/ T [1] AP 24C¢
AdAING COUR....coiiieeee 25(
T 0o | =T =S 25
TheDVD StOr€GNOME GUILL.....coiiiiiiiiiiiee ettt e e e e e e e e e e et e e e e e e s e snnnnneeeeeas 254
1T o | TR RSP SRUSPRPPRPPPRR 25
CompilingandRuUNNINGAVASIONE..........ccooi i, 255
Y (0 o1 (0 = PP UUPPPTPPPTTTRR 26
L To = PP PSERRR 26
R L 1110 Y 28
Chapter 10: FIEX aNA BiSON.........ccoooiiiiii et aaanb e arraanrrare 286
(@Y= 1= YU PPPRRRR 28
L 10 1Y {1 Tod (1 = 28
S Yor= gl Lo T o | L= SEPOR PR 288
HOW GENEIAIOIENOTK. eeeeiieie ettt ettt e e e e ettt e e e e e e e ettt e e e e e e e e nnnn bt eeeeaeeeesannneees 288
ST or= L] [T ST PPPPPPPTTPTRPPPPPP 28
F NS 114 o1 L=ESTor= T g o =Y 289
SCaANNEISPECITICALIONS. ... ——————— 290
LONGESIMAtCN PIINCIPIE. e bbbt b b e e b b ss s essssssssesssassasssasssenseeesenes 294
REGUIAIEXPIESSIONSo 295
Yo 1o o =PRI 29
RedirectingScannetnput aNAOULPULeiviiiiiiiiiieeeeeeeeeeeeeeeee et 297
REtUMINGTOKENS ... 298
CONtEXISENSIIVESCANNEES ...ttt ettt e e e e e e et e e e e e e s st eeeeeeesaanssanaeeeeeeeaannsnrneeeaeens 299
(@ 01110 153 (0 [N 30C
e £ =] 4 S PP P PP PPPPPPTPTR 3C
GENEIALINIPAISEIS.o ———————————— 301
Creatinga SYNIAXTESIELo —————— 306
TOKEN T Y PO e —— 30¢
ACHONSIN RUIBS. ...ttt ettt e e e e e e s ettt e e e e e e s b b eeeaeeeeeaansbanneaeeeeeeannnes 310
OPLONSIO DISON.....coiiiiiiiiiiieceeee 316
(00] 111 To1 6] [I €T =T 4 4= 1T PO PR 317
ANthMELIC EXPreSSIONS.......cciiiiieiieeeeeee e, 318

Professional LINUX Programming

Table of Contents

Chapter 10: Flex and Bison

RS OUICES. ... ittt oo oo ettt et b o oo e e et et e et bbb oo e e e e et e et e bbb e e e e e e e e e enbr e e e eaaaas 31
R L 111 Y 31
(O T o] =1 gt I =Y 1 To T I To] PSPPSR 32C
(@Y= =Y USSR 32
TestiNgREQUIrEMENTTYPES......ooi i 320
F Y o] o] [Tz o] g W AN (o] a1 =Tt (U (=PRSS SRURPR 320
] (5] 625 32
GENEIAITESHING. ..eeiieeiieeieee e 321
R T | (1S (o] 4 =T 11T PP PPPPPPPPPN 322
N TS 1 o 0T | - o o 324
Testingthe dvAStOrePTIOgIam...........coo i e 328
Yol 0 (T T I= = RS 32¢
2= ot 32
[L= g aToT YA = o] o] [=1 43I P 331
TaTSy =11 T To T aq] o= £ PP 337
L LS T o] 0] 7= L1 (o RS 33¢
LI 11 [OX0 Y= = Vo L= PSP 342
PerformanCa @StiNG. ..o —————————— 349
R L 1] Y 35
Chapter 12: SECUIrEPTOgIaMIMING........cccviiiiiiiiiiiiiiiei ettt ettt e aaaaaaaaaas 352
WhatisS SECUIEPTOGIAMMUING2. uuuutueetiirireitretreerrrerreerrrrereereee——————————————rerrrrrerrrerrrrtrr 352
Why SecureProgrammings HArd............uuuiiiiiiiiiiiiieiieeeeeeieeeeeeeeeee e eeee e e e e e e e e e e e e e e e eeeeeeeeeeeereaeeeeeeaeeees 352
Y (== 11101, =0 T T PPPPPPPPPP 3572
THE Virtue Of PAr@NOIa..........cocuieeiiiiie ettt e e e e e e e e e e e e e e e nnnbneeeeeeaeeeanns 353
FIESYSIEIMSECUNLY......coiiiiiiieeeeee e 354
AULNENTICALINGUSEIScoeieeieeeeeeeeeeeeee e, 357
UsIiNg CryptographySECUIEIY......covvieiieei e 369
A ShortIntroductionto CryptOgrapRy..........ueuuueiiiiiiiiiiieiiieieeee e e e eeeaeeaaeeaeeees 369
0o [T (= VA O Y o] (o PP 369
Y=ol = o Fo TS g VAN o o] 11 o 3 PP 370
OnWriting Custom/ProprietanAlgorithms............. 370
SecuraNetworkProgramming...........ccuviiiiiiiiiiiiiceeeeeeeeee e, 374
RTAY 1T TN (o Yo o] = 374
StandardNetwork CryptographyTooIS. ..., 378
30 I SRR 37
LSS o PR PP 37
ProblemsNVith the ENVIFONMENT...........eiiiiiiiie et e e e e e e e e nnnes 379
Y7110] s RSP US PR PURPPPPR 38
L o PSR PPPRSRRR 38
RS OUICES. ... ittt oo e e ettt et b e e e e et e et et b b e e e e e e e et et e bbb e e e e e et e e en b b e e e eeaas 38
T 1C=Tq a1) (o] g 4 F= 4o o PP PRR P 386
R L 1] Y 38

Vi

Professional LINUX Programming

Table of Contents

Chapter 13: GUI Programming With KDE/QL.............uuuuiiuiiiiiiiiiiiiiiiiiiiisiirsrrsserresrerreerseeereeee——————————. 388
1 0o [o 1 o] o PRSPPI 38
P o0 10| A R 38
Y 010 1U 1 S PRSP 38¢
TaTS =11 T o 1 PP 38
INSTAIINGKDEceiiiiieieeeeeeeeee e 39(
[o] = 14 TSRO POPPRRPR 39
ProgrammingApplicatioNSUSING QL.uuuuiiiiiiiiieiiiiiieeiieeeieeereeseeeeeeeeeeeerereerrreereerreeerereeeeeaeeereeaaeeeeeess 390
GettingStartedHEelloOWOTI.............ooooi s 391
Simplifying Makefile ManagemenWith tmake..............cccc 392
Y T[Tz 155z TaTo K] (o] £ PRPPPPP 393
HEllO WO REVISIEEMeeeeiieeeee ittt e et e e e e e e e st e e e e e e e s b e e e e e e e e e anneeeees 395
Dernving FromBaSECIASSES.........cooo e 396
LAY T o= PP PPPPPPPP 39
= Y0 11 | = 39
ProgrammingApplicatioNSUSINGKDE.............coviiiiiiiiiiiieeeeeeeeee e, 403
A SIMPIETEXLEAITON. ... e 403
RS OUICES. ... ittt e oo e ettt et b e e e e et e et et b oo e e e e et e et e bbb e e e e e et e e en b b e e e e aaas 40
R L 111 Y 41
Chapter 14: Writing the DVD Store GUI USINgKDE/QL..........oooiiiiiiiii s 411
(@Y= 1= PRSP PPRRRRN 41
APPHCAtIONDESIGN....ccciiiiiiiieeeee e, 411
= T N4V T3 T [0 1P EPPR PRI 41z
[T agl LT =1 (oo RSP PUSSRRURRR 418
RENIDIAIOG. ..o ————— 42:
R a1e= 1 =d=T oo i BT oo TR PP 423
Y= T (od 117/ To [0 PSPPSR 423
LS L= uil o TS 1Y F= T = o = PPN 428
AdjuStINGTNE COUELO KDuiiiiiiiiiiiii e bbb e eee b eeesseessssseessesssessaeesessesesseerseeeeeeesaeeeeees 430
KConfig andSettingSMAaNAQEL..........couvviiiiiiiiee e, 435
RS OUICES. ... ittt ettt e oo e ettt et bt e e e e et e ettt b b e e e e e e e et et e bbb e e e e e et e e enbb e e e eeaas 43
R L 111 Y 43
(O T o] L= I =Y/ 7] o PP 43
1 0o [o 1 o] o O EEER PP 43
B ALUIES. ..o ettt e e ettt e e e e et e an bbb e e e e e eeerr s 43
Python:The Right Tool for theJoh.............oooo i 441
LDUENOt BVEIY 0D .. ——— 441
T TS =11 T T Y T TP PPPPPPP 441
R0 aTTaTe 12311 o] o ISP PP 44
RN Ll T = T Y= T a1 (=T 6 0T] (T PP PP 443
(OT0] g aTapF=TaTo 2 o U T 41T o PN 444
Yol 010 o [U] 1=) R 444
StaNAalONEEXECULADIE. ..o e e e e e e e e e e e e eeaeeeas 444
LI 1 =] = TSROSO PPPI 44
InterpreterandByte—Compilation..............ooooiiiiiii 445
L0000 0 0 T=T 0155V = 445

Vii

Professional LINUX Programming

Table of Contents

Chapter 15: Python

CASESENSIIVILY. ..eeiiiiiieiiieeeeee e, 44¢€
Built=In DataTypeSanUOPEIALOrS.uuuuuuuuuuuuuruuuiurtiurruurirarerrrrrrrrrrerrrrr—————————————————————————————————. 446
RV Z= L= o] 1= PRSP 45!
2] (o Tod S (U o (=] V] = P 455
Y == 0 1T 80 1 r= 456
U1 1o o L= PSSR 46.
2T 1 T 0 T 1o ORI 463
I =T 151 = T =S 46/
Lo 01 =T sT= T o | = Tt = Vo [T P 464
SomeModulesFromThe StandarMistriDULION...........cooiiiiiiiieie e 464
(01T ISY =T T o (@] o] =T od (T PRSP PPSPRR 465
EXtENdINGPYLNON. ... —— 467
An ExampleProgramPennyPinChing..........co 467
(@111 a1y o =TT o U o RPN SSPPR 472
R L 1] Y 47
Chapter 16: Creating Web Interfaceswith PHP.............ccccoo 474
(@Y= =Y RSP PPERRRN 47
PHPandServer—SideSCripting........ccouuiiiiiiiiiiieiieeee e 474
Y V=] et T Yot 1) 1] T N 474
[oz Vo Tz 1 o111 1= PP 476
InstallingandConfiguringPHRP...........o o ————— 476
Building andInstalling PHPaSa CGl INtEIPIELEL..........uuvveeiieiiieiiieeieeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeeeeeeees 477
Building andInstalling PHPwith ApacheasanApachemodule.....................cccol 478
Installing PHPTfrOM anRPM..........ooooiii, 479
ConfigUNING P HRP. ... —————————————————— 479
TaLugeTe [UToTTqTe| = o | =BV o] PP 481
Variables,Constant@nNdDatatyPes........ccooooviiiiiiii i 481
(@01 =T (o] =T md o | PP 482
Y 2 1] 1 1] 01 ST PPPTRTR 48:
U1 1o o L= PSSR 48:
L = 1Y T 48
USINgPHPWIth theDVD PrOJECL....ceiiiiiieeiieeeeee e, 485
HTTP,HTML @NAPHRP......c ettt e e e e e e r e e e e e e e e nnbrreeeeeeeeeannnes 486
F Y o] o] 1o o] PP 48
0o 11 PP PPPPPPPP 48
RESEIVALIOMBLALUS.eiee ittt e e e ettt e e e e e ettt e e e e e e et e e e e e e e s s nsba e e e e e e e e e e annnsnaneeaaeeeeeannnrnees 488
S T=T Vol o {0 111 =S O EPT R USPPPPSPRR 48¢
RESEIVETILIES. ...t eiie ettt e e e e e e ettt e e e e e e e e sttt e e e e e e s e nabe e e e e e e e e eaannnnneeneeaeeas 48¢
(@7 T [o]| = 1o) PP PERRR 48¢
dvdstorefunClioNS. PRooiiiiiee 489
[0}V 0[S (o] g=ToTo] alaaTo] o T8 o] a1 o HN PP PPPPPPPPP 494
(0 LY7o 1S3 (o] =1 (0o [T o]] o SRS SURURPPUR 497
(0 LYo 1S (o] £ TSToT T o o T o] o o P PPPPPPPPP 498
AVASIOrESIAtUS. PR . ——————————— 500
(0 LY7o [(o] =Tor= T g Tot=T 1Y o] oo T PPPPPPPPP 500
(0 1Yo 1S3 (0] 1= (=TT AV o 10T o NSRS PPPPUPRR 501

Professional LINUX Programming

Table of Contents
Chapter 16: Creating Web Interfaces with PHP

R L 111 Y 50
RS OUICES. ... ittt e oo oo ettt et bt e e e et ettt e b ba oo e e e e e ettt e bbbt e e e e et e e eeb b e e eeaas 50
Chapter 17: Embedding and Extending Python with C/C++............cccoc . 503
(@Y= 1= Y RSP PPRRRRN 50
ExtendingPythonwith a C/C++eXtensiomMOdUle................eveveeiiiiiiieiiieiicieeeeeeeeeeeeeeee e 503
EmbeddingPythonin @ HOStPIrOgram.............eeviiiiiiiiiiiiiiiieeceeee e, 504
DevelopingEXtENSIONMOAUIESIN C/CH .. uuuiiiiiiiiiiiiieiieeeiieeeee eeeaeeeeeeaaeees 504
LR T [0 TT =T SYo) 11V7= T (= e o] L= PP 504
ExtendingPythONUSINGSWIG.........coviiiiiiiiieeeeeeeeeeeeee ettt 505
EXtendingPythONUSINGTNE C APL......eeiieieeeeeeeeeeeeeeeeeeee ettt 529
Y1 0[] 0[O o TT=To Y o 1= PP 529
ReferencaCountingandOWNEISNI..uuuuuiiiiiiiiiiiiiiie e resrrreerrerrerrsrerreeee.. 530
Overviewof DevelopingC EXtensioNMOAUIES...........ccoevviveiiiiiiiiiiiiieeeeeee 531
[0 0 1= U T T 1] =P 533
A Slightly More CompleXFUNCLON.coiiiiiiiiiiiiiieceeeeeeee e 534
The GloDal INTEIPIELEILOCK. it e bbb esssesssessssesssssessseessresseereeeeeeeeeeees 535
CreatingNew PythonO D ECt TYPES ... oo i i e bbb ab e b b eeseeebeeeeesesseeseessees 535
EncapsulatingC++ ObjectsUsiNgthe C—APL..........ccooiiiiiii s 542
EmbeddingPythonin C/C++Programs...........c.eeeiieiiiiiiiiiiieiieeeeeeeeeee e 544
The EmbeddingDevelopmenEnviroNmMeENt...........coooviiiiiiiii 545
EmbeddingPythonUsing High—leVEIFUNCLONS..............uuiiiiiiiiiiiiiiiiieeiieeveeeeeeeeeeeeeee e eee e 545
StaticallyLinking aHostProgramto an EXtensionModule.................uvuviviiiiiieriiniieeereeeeeeeeeeeee. 547
EmbeddingPythonUsingLower—levelCalls.................ccooo i 548
GENEIAISUGOESHIONS.o ———— 558
RS OUICES. ... ittt oo oo ettt et bt e e e et e ettt b e et e e e e e et et e bbb e e e e e et e e enbb e e e eaaas 55
T L 1] Y 55
Chapter 18: RemOoteProCedUIECallS......... ... bbb eebbresraeeresesssssasssssssssssesseesrreeeeeseees 560
(@Y= 1= USSP PRRRR 56
A SimpleNetworkedDVD StOreDatabaSE..........uuuuuuuriiiiiiiiiiiiiiiiirerirerrrerreerreerree———————————————————.. 561
BSD SOCKELS.....ceiiiietitiiee ettt e e e e e ettt e e e e e e e — et et e e e e e e b r e et e e e e e nannrrrreeeaeeeans 56
CodinglssuedJsingthe BSD SocketiNterface........couvvvieeiieiiieiiiiiiiiiiieeee 565
ONC RPCATrchitectureandCONCEPLS.....ccvviiiiiiiiiiieeeeeeeeeee e, 566
Why UseRPCin the DVD StoreAPPlICALION?.........uuuuiiiuiiiiiiiriiiiiiriiiiieuiirrerrrrerrrrerrerre——————————————" 567
RPCTOOISANAULITIES. ... teeeeeee e ettt et e e e e e e st e e e e e e e st eeeeeeeeeannaneeeeeeeeaans 568
rpcgen the RPCPIrOtOCOICOMPIIE.........uuuiiiiiiiiiiiiiiiiiiiti bbb eereseeeesesesssssesssesseessees 568
APPIYING RPCStO tNEDVD SEOIE.......uuuuuiiiiiiiiiiitiiiiiittriateraeearreaererrerrreerreerresrrerseerreerrerrrrrrrrrrrrrrereree 570
FunctionsWithout Argumentsor RETUINTYPES.cooiieiiiiii i 570
Functionswith Simple Argumentsand SIMpPIEREtUINTYPES.......uuvvririiriiiriiriirriirrereerrrerrerreeee. 578
[ToT =X @] 0] o] L St T a] o] (= E= PP 579
RETUININGAITAYS. .. vtttteteieeieeeeeeeeeee et e eeeee e e e e ee et e e eeeeeeeeeeeeee e e et e e e et e et eeeeeee e e e e e e e eaaeaeaaaeeeaaaeaaaaaaaaaaaaaaaaas 582
(@3 17=T) A T =0T £ PRSP 585
F U 11 =T o1 o= 11 [o OO RSRR S OTPRRRR 58t
AUTH NONE. ...ttt e ettt e e e e e s sttt ettt e e e e e e s nabeeeeeaeeeeaansstaneeeeeeeeannnnes 58¢€
O I O 1 PRSP 58¢
(O 1T o1t [0 (= AU 11 g 1T a (o= a0 0 ST U] o] o To] P 586

Professional LINUX Programming

Table of Contents

Chapter 18: RemoteProcedure Calls

Server—SideAUtheNtiCAtiONSUPPOLL........uuuiiiiiiiiiiiiiiieieieereererrreer e e eerreerererreereaer—errerrrrrrreeree. 587
UsingRPCServerswith /etc/iNetd.CONT..........oovvviiiiii 589
OtherMethodsto Simplify NetworkProgramming..............oooooiiii e 590
RS OUICES. ... ittt oo e e ettt et b et e e e et ettt e b b oo e e e e e et e e e bbb e e e e e et e e enbb e e e eaaas 59
R L 11 Y 59

Chapter 19: MUltiMedia @Nd LINUXuuuuuuuiiuiiiuiiiuiiuriiuuiesrerererereeres s e..——..———————————————————.——.——ee————.—.—. 592
(@Y= 1= RSO PPERRR 59
The CUrrentStateOf AFfAIIS.uii i e e e e s et e e e e e e s e nnaaeeeeeas 592
(g To = Ta 0 [a1(=To =110] o 593
050 T PSRRI 5¢

[T EPPR PRSI 59.

HandlingStandardAudio FOrMALS...........covvviiiiiiiiii 595

[0 R | e 0 10 Y= PRSP 597
[oXZ T aTo o od (T =P PPPPPPPPP 61:

SOfWAIEPIAYEIS.o ———————— 611

HardWarePIaYEIS.......ooo o ——— 612

174 0] T RS 61
Political andLegalISSUESc.ooeiiiiiieeeeeee 614
RETEIENCES. ..o 61
R L 111 Y 61

Chapter 20: CORBA ..., 61
(@Y= 1= SRRSO PPPRRRRN 61
InterfaceDefinitioN LANQUAGEIDL)...........uuuuuuiiiiiiiiiiiiiiiiiiirerieesreesreereesreeereeeeeeeeereereeerrrerrrrrere 616
ObjectRequesBIroker(ORB).........ooo i, 616
InteroperabledbjectReferenCEIOR)..........coooii i ——— 617
(@] o T=Te 1Yo F= T o] (T PSP RSURU RPN 61
YT AT A T TP TTRRR PP 61
NamingandTradiNgSEIVICES........coviiiiiiiiee e, 618
V= LU= (] o (@@ = 618
CORBAGNARPC.......ceeeieeee ettt e e e e e sttt et e e e e s s b e et eeaeeaasanssbaeeeaeeeessansasneeeeeeeeaannes 61¢
(610 2] == TaTo BT o o] (= S EEP 620
SysteMSSIMIlAr TO CORBAL ... e e e e b e e b e seesssssssssssssssssssssssssssssssnssensssesenes 621

DCOM OF COM-. ittt ettt e e e et ettt e e e e e e e b bbe e e e e e e e e e s nsteeeeeeeeeeaaannsnaaeeaaeeeeeannnnenes 621

JavaRemoteMethodINvocatioN(RMI)...........ooviiiiiiiiii 622

ENtErPriSEJAVABEANS..uuiuiiiiiiiiiiiiiiiiiii et aesbeeseeseseesesssseessesssessassseesseesseesseesaeeraeeaeerareeeeees 622

13 Y (@ Y =T = 6272

1] @ A RSP 62
IDL: DefiNING INTEITACES......cciiiiiieeiieeeeeeeeee e, 623

1T o 111 PRSPPI 62

1T = o PP 62

2 Fe Ry (o] D= = W Y/ 01 TP RRPPPRR 625

T EMIPIALETYPES. .. vvvvtiiiiiitiiteiite ettt e e e e et e e e e e e e e e e e e e et e e et et et e e e e et e et e e e e e e et e e e e e e e e e e e e e e e aaaaaaaeaaaaaaaaaaaaaens 625

[1] 0] (= AV B RN o] o] [Tot= 1[0] o S 630
(T aTo (U= To L. =T o] o111 o L= 633

LanguageMappingCOMPONENLS.........cooiiiiiiii e, 634

Professional LINUX Programming

Table of Contents

Chapter 20: CORBA
(O, F=T o] o1 o 1= RPN 63"
An IntroductoryExample:A SimpleMessagingSyStem...........ooovvviii 640
SIMPIEMESSAGING. ... —————————— 640
USINGORBIEWIth TREIDL.......eeiiiiiieiiiiiiiii ittt e e e e e e s e e e e e e s s snnbaneeeeeeeeeannnes 641
TREMESSAGECIIENL.......eeiii et b e b e e aa e et e e et s ebes st s ssss st essssesssssssssssnssnnsnnnsnnnenes 641
TREMESSAGESEIVEL......ceeiieiiieeieee ettt ettt ettt e e e et e aaa e 643
Compilingthe ORBIt APPHCALION........ . bbb e baesbesssessssesssessessseeeeees 644
RunningThe MessageApPliCAtION............ooooiiiiiiiii e 645
RS OUICES. ...ttt e e e e ettt et b oo e e e et ettt e bbb e e e e e e e et et e bbbt e e e e e e e e eebr e e e eaaas 64
R L 1] Y 64
Chapter 21: Implementing CORBA With ORBIL..........coooiiiiiiiii 647
(@Y= 1= RSO PPERRR 64
Using CORBA for the DVD StoreAppliCation..............ooooeiiiiiiii e 647
LT AV 5 2K 1= o OO EERP SR 648
TREDVD SEIVEL....ceiiiieiiiiiee ettt ettt e e e e e e ettt e e e e e e s s sttt e et e e e e e e eannsbe e et e e eeeeeannsnbaeeeaaeeeeannnseneees 648
F N 0T o o 1= V7= 648
RV 2= UTo Fo 0] B T A =T SO PERRR 648
(O3 17=7 1 O o o [PSPPSR 64¢
[0 0 TS Y= 64
DVD SEIVEL. ..ottt e oottt e oo e e e ettt et bb e e e e et et e e e bbb a e e et et et bana e as 65(
LU ui o LA | o T =Y i =T P 663
L0 LS To] [1oTo | o] ¢ o - VP 66¢
ConfiguringORBIt fOr MUII—HOSTUSE.........uviiiiiiiiiiiiiieeeeeeeeeeeeeeee ettt 664
GOAD — GNOME ObjeCtACHVAtiON DIFECIONY.uuuuuiriiiiiiiiieiiieiireirrereeereeereeereerreeerrrrererrrrrrereeeeee 665
TheUseof CORBAIN GNOME ...ttt e e e e et e e e e e e e s nnnareeeeas 665
AdvancedCORBAFUNCHONAIILY...........ooooi i 666
DynamicInterfaCelNVOCALION..........cvvvviiiiiiieiieee e, 667
CORBASEIVICES. ..t i e ettt e e e ettt et e e e e e ettt et e e e e e aa et ta et eaeeee s e ssbeeeeeeeeeeaaannsseseeaaaeeesannnseneees 667
CORBARFACIILIES. ...ttt ettt e e e et e e e e e e s sttt e e e e e e e e nsbbaeeeeaeeeeannnnsnneeeaeeeaans 671
DesigningandRunningScalableECORBA SEIVICES.........ccoooiiiiiiiii . 671
RS OUICES. ... ittt oo e ettt ettt et e e e et e ettt bbb oot e e e e et et e bbb e e e e e et e e enbb e e e aeaas 67
T L 1] Y 67
(O g FT o] =Y A B LS [T T Sy VLSS =1 o PP 676
(@Y= 1= YU PPERRRN 67
F N 1 LI 1] (o] Y USSR RPURUUURURPR 67¢
VAV g = o N (o B I 1] /TR 67’
WHY GO DISKIESS?...ccceieeeieeeeeeeeeee e, 67¢
HOW DOBSIT WOTK ...ttt ettt e e e e e e ettt e e e e e e e s abb et e e e e e e e e e nnbsnneeeeeeeaannns 678
Startinga DISKIESSSYSIEML.......coo o 679
Networkldentificationfor DiSKIESSSYSIEMS..........uviiiiiiiiiiiiiiieeeeeeeeeee e 680
RUNNINGaN OPEratiNgSYSIEIML.....ccciiiiiiiiiieeeeeeeee e 681
YAV =1 (@] a1 To [V T = 11 o] o FOR PP 682
2 ToTo1 A [g F= o 1@ £=T= L1T0] o F SRR 684
DISKIESSLINUX KEINEL.....tteiiieeeie ittt e e e e e e et e e e e e e e e s st e e e e e e e sansbseeeaeeeeeaanns 685
1oL 1 LIRSV (=] 1 PP 68¢

Xi

Professional LINUX Programming

Table of Contents

Chapter 22: DisklessSystems

L (0 1= 0 0RO PPPSRRRN 69
CHENtAPPIICALIONS. ... 691
R L 1] Y 69
Chapter 23: XML and XMu e ssesssssseesseeseseseseseeeeereseereeeeseeeeeeeeeeeeeees 694
(@Y= 1= RSO PPERRR 69
XML DOCUMENISIIUCTUIE...... ettt ettt e e e e et e et e ea b e e e e e e eeeeeaebb e e eeeeeeeennnnes 695
D) 1] = S 69"
LY=o =0 D RPN 696
RV 2= 11T 5 PR 69¢
KIMIL PAISING. . uutititiiiiiiitiieiitstseeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeee ettt eetteeteteateaaetaateeeteeataeeaaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaens 70
51 1Y PRSP 70
S AN PRSP SSPRR 70
10D W =W [T 4T T ¥4 1] PP 704
ThE COMPIELEPAISEL. ... e 716
0T 1]) PP PPPPPPPPP 71
LS =i e (o o104 1T o] (P 718
=T Lo [0 (o ToTU T 4 1=T o | TP 718
LS =] (S 41T 0L TSRS PPR PR 71¢
LT Lo [=T [T 0 4 1=T o L TSRS SRR UPRPRPPR 71¢
(o3 0 F= 1T {010 o /8 TP 71¢
(oL =RV T oL o] (-T2 =T T PP 720
LS LTSN VZ=T 0 LA 0 0= o3 T =Y (RS 721
RS OUICES. ... ittt ettt oo e ettt ettt et e e e et ettt e b oo e e e e e e e et e bbb e e e e e et e e en b b e e e eaaas 72
R L 1] Y 72
(O g FT o] = g S T=To LU O U1 =T = PP 723
(@Y= =Y USSP PPRRRRN 72
[F= L0 YT 0= Y= 1] o J P 72:
SOftWAr€CONTIQUIALION.ceiiiiiiiiieeeeeee e, 724
Programminga BEOWUIF CIUSTEL..........uuuiiiiiiiiiiiiiiiiiiii bbb ae bbb eeeeesseessesssesssssssssssessssnssnnsees 724
ProgrammingJSINGMPL......cooooiiiiii 724
TheBasicFunctionalityof anMPI Program...........ccccceeiiiiiii 726
CompilingandExecutinga SIMpleMPI Program..........ccccccccviiiiiii 727
A DiIStrIDULEAMP 3 ENCOUEE........cii ittt ettt e e e e e e st e e e e e e e s b e e e e e e e s e nnnsreeees 728
CommunicatiorPerformancef aBeowUlf CIUSEE.............cooiiiiiiiiiiie e 730
A Reviewof Advancedreature®f MPL...........ooiiiiiiiie e 733
SomeMPI ProgrammingEXamPIES:........uuuuuuuiuuiiiiiiiiiieiiurierierrererersrresrrrrrre——.——————————————————————————. 739
ProgrammingUit PV M it eeeseeeeesseesseessssssssssssssssssasssessasssssssessseessseseeeeeees 748
CompariSOMVITN IMPl......c.ooiiiiii 748
ObtainingandInstalliNngPVM..........oooiiiiii 749
A Reviewof PVM Library ROULINES...........cooooi it 749
A SAMPIEPVIM PrOQIaAIML....uviiiiiiiieiieiiieiieeeeeeeeeee e e e ee e et et e ettt et e e e et e e e e et e e e e e et eaaaa e et e e e aaaaaaaaaaaaaaaaaaaaaens 751
RS OUICES. ... ittt e e e e ettt et b e e e e e et ettt e b b oo e e e e et e et e bbb e e e e e et e e ee b e e e e eeaaas 75
R L 111 Y 75
SOMEUSETUIBEOWUIFLINKS........iiiiiiiiiiee ettt e e e e e e e e e e s eeeeeeeas 753

Xii

Professional LINUX Programming

Table of Contents

Chapter 25: DOCUMENTALION.uuuuuitiiiiiiitiieiieerreeereerree e e e r—r——rerrrrerrtrtrtettttttttrtatttattettatataaaeaaaeaaaaaaeeees 754
(@Y= 1= YRS PPRRRRN 75
DefiNiNgthE AUdIENCE.o 754
ENdUserDocumMentatiONGUIS...........ooiiiiiiiiiieie sttt e e e e e e e e e e s s eeeeeeeeannns 755
PowerUser/SystenAdministratorDOCUMENTAtiON.............veiiveeieiiiieiieeeceeeeeeeeee e ee e 758
It's All About StructureFromSingleProgramto DistributedSystems..........cccoeeeeeeieiiiciiicnnns 768
DOCUMENTALIONMOOIS.ci ittt e e e e e et e e e e e e e et e e e e e e e sanateneeeeeeeeaannnes 768
DevelopeDocumentatiOn............coovviiiiiiiii e, 775
R L 1110 Y 78
Chapter 26: DEVICEDIIVELS.......ccoco o ittt aaaa e aneaaneannrnanernnes 783
(@Y= 1= YRR PPSRRRN 78
e C=Tol W) 0] 0 O 0] o] 1) PO EPRR PP 785
ModuleandInNitialiZAtiON COUE.ccii e e e e e e e s e e e e e e e e e nnnseeees 784
g1 =T ST =T o 1o o USSR 78t
[1] 0] (211, 0T [0 1T @ 0T =P 785
P CIDEVICESANUDIIVEIS.....cci ittt e ettt e e e e e e et e e e e e e e s s bb et eeeaeeaaanssaeeeeeeeeeaaansbeseeeaeeeeennnssnees 786
LS U o3 { oot I [USRS UR PR PP PRPR 78¢€
FINAINGP CIDEVICES.uuuuuiiitiiitiiitiiitittieeuerueaeereeaassseeeeeesreesssssraessessaeesaesrarrreetrerrrrrrrrrrtrerrrrarereeees 787
O 1Y =PSRN 78¢
P I ACCESTFUNCHIONS. ...t ttiieteeieeee e e e e e ettt e e e e e e e ettt e e e e e s s s see e eeeaee e e e nsabeseeaeeeeesansssnneeeeaeesannnnes 789
Yo 1U] £t Y {0 Tox= L1 o] o R EEPRPPR 790
T LCT 0T 014 =TT 1= PP 791
ACCESTO USEISPACHVIEIMONY. ... i eieiti e eeeei e et ettt e et e e e et e e e et e e e eea e e e e eaa e e e eata s eeeeaeneaeenennnas 793
THe KIODUF AFCNITECIUIE......co e e e e e e e e s e e e e e e e e e aas 795
LOCKING PrIMITIVES. ... utttiitiiiiiiiiiitiieetieeeteeeeeeseeeseesseessesssssssessssssessssesseesseeessesseeseeeeereaaeeaeeaaeeeaeeeaeees 798
SchedulingaNdWalit QUEUES..........coooi it 800
MOAUIEUSECOUNES ...ttt e e et e e e e e e ettt e e e e e e e s st ae e e e e aeeeaannnnbseeaaeeeeesnnnnrees 805
MaKiNG It BUIl..........ooo e 806
Whatto DO WIth YOUF NEW DEIVEL........oiiiiiiiiiieie ettt e e e e e e e e e e e st eeeeeeeeannes 808
SUDMItINGANEW DIIVEL...... ittt b e e eeeeees e ssssssssssssssssssssssssesssesseeeseeeereeeeees 809
R L 111 Y 81
Chapter 27: Distributing the APPendiX ICALION...........uuuuuiiiiiiiiiiiiiiiii e e ... 811
(@Y= 1= YRS PPERRRN 81
RPMPACKAQES......coo o ——— 81
TRERPMUSEL.....eeeeiiee ettt ettt e e e e e et e et e e e e e e s e st e e e e e e e e e e s anssbeeeeaaeeeeennnseenees 812
WhatDo | HAVEINSIAIIEA?..........eeeiiieeeee ettt e e e e e e e e s e eeeeeeeans 813
THERPM DAtADASE. ... ieieeiiiie ettt e e et e e e e e e s et e e e e e e e e anab e e e e e e e e e e e anneeeeees 814
Anatomyof anRPMPaCKagEe. ... ————— 822
SOUICEPACKAGES. .. .o it ————————— 823
configure,autoconfandautomake.............ooviiiiiiiiiiiii 824
SOUrCERPMPACKAQES.......coiiiiiiiiiieeeeeee 827
BUIIAING ANRPM PACKAGE uuuuiuiiiiiiitiiiittii bbb aaeeae e e e eeeeessssssssssssssssssssssssssssssssssensssnssnes 828
L[TSRS ERPR 83
MaKINGAPAICK.......eeiiiiiiiieeeeeeeeeeeeeee e, 832
APPIYING APAICK......co o 834
L1 RS PESRT 83

Professional LINUX Programming

Table of Contents

Chapter 27: Distributing the Appendix lication

R L 111 Y 83
Chapter 28: InternationaliZation...............ooooi i —— 836
(@Y= 1= RSP PPERRRN 83
0 AN B =T 0T o] (o o Y2 PPRS 837
[SN'TUNICOAEINE ANSWET ...ttt ettt e e e e e ettt e e e e e s s a b ae et eeeeeeeaannbbeeeeaaeeeeannnnees 838
L] T 0T [PPSR 83
The CharacteENCOINGPIODIEM. bbb e b e e b b eeeeesersstsssssessesssesssenseees 843
ISO 2022:ExtensionTechniquegor CodedCharacteSets...........cccccvvvvviiiiiiiiiiiiie 843
Programmingvith UNICOE..........coooviiiiiiii 844
118N Modelsandthe SyStEMENVIFONMENL.uuuiiiiiiiiiiiiiiiireiireirerererrrer ... 849
ThePOSIXLOCAIEMOUEL........co e e e e e e e e e eeeeeeeas 850
(@] 1= o o RPN 85
(O =T 7= Toa =1 1Y RS 852
= TST 7= T == 85.
0T 1] =V 85.
AN LB =T o EPP PP 85
B I 01T PP P PP PPPUUPPPPPPPPIN: 85
The X/OpenPortability GUIE(XPG)......ooovviii 853
OutputFormattingandINPUL ProCESSING........coiiviiiiiiiiiice e 855
TheX WINAOW SYSTEITL......ccci i a e e ane e anesanennnsnnrennne 855
PracticalConsideration®f 18N Programming................ueeuuuuuuuururerurrrimrsrrsrssrrrerreersr ... 860
118N andINternalTeXt PrOCESSING........ccooeii it 861
Programminguith LOCAIES...........uuuiiiiiiiiiiiiiiiiiiitiiiiiieetreseeeseeessessesssssssseessesssessssessesreeeereeereeeeeeeees 862
(OF- (=T [o] g VA 1 1 41T 4 TS1 o] 1 13PTSR 862
(O8> (=T [o] g A OLo] 1)Y= T ¢ To] o -SSR 863
(@21 (=T 0] 2 1 PP 862
Category StringformMatting..........ooooiiiiii 863
Category Characteclassification..............oooov . 863
(081 (=T [o] g A OLo] 1)Y= T £ To] o =R PUSSPUESRRUPRR 863
Category Stringcopyingandfilling...............cc o, 864
(O (=T [o] gVAS (¢ aTo FT=T=Tod o11 o To TRS PP PPPPPPPPP 864
(@1 =T (o] VA @01 F=1 1o 1PN 864
Category REQUIAIEXPIESSIONS.uuuuuiuuiiuuriuutiutiuurtrrerrrrerreerrrerrerrree——e———.———.—————————rrr 864
Category Localemanipulation...............oovvviiiiiiii 864
Category Messag@atalOgs.oooeii i i —————— 864
RSIAN A= T To 1 o T = oo | =0 0Ty 11 o PP 870
[L8N ANALINUX GUIS......iiiieiieie ettt ettt e e e e e et e e e e e e e s s st b e e e e e e e e ennneneees 876
Statusof 118N for Linux SoftwareDeVelOPMENL...........uuiiiiiiiiiieeiieeeieeeeeeeeee e 878
18N in RealSoftwareDevelopmenProjectS.......ccccvvviiiiiiiii 878
ObjectOrientedProgramminNGANAIL8N...........coviiiiiiiiiiiiiiiieeeeeeeee e, 879
PaY o] o] [Tor=iTo] g STUT1 Lo [=TcT= T To |1] N S 880
WhereNeXtfOr LINUX L8N 2. ...ueeiiiii ettt e e st e e e e e e s e e e e e e e e e nnnbeneeeeeeeeeanns 882
Appendix A: GTK+ & GNOME ODjJECt REFEIENCE......uuuiiiiiiiiiiiiiiiiiiiieiiierirerrrerreerreereereeererrrrrrrrrer e 884
(@Y= 1= YRS USPPRRRR 88
GTK+WidgetsandFUNCHONS.........coooiiii . 884

Xiv

Professional LINUX Programming

Table of Contents
Appendix A: GTK+ & GNOME Object Reference

(€1 (10 (o] TR 88:
(€] 1 (O T=Tod (=TT 1o T TR 884
(€] 1 (O T =3 S 88
(€] 1 (@0 1] o 1o YT 88!
L1 11 89
L] 1 =1 1 1= 89!
L] 1 |20 T 89!
(€] 1 [ST (0]] =T)T 891
(€1 I T=T 0T T 7= 1o) RS 892
(€] 1 (=1 o 1 89.
(1 LY =T L1 89
(1 Y TR0 F= T T 89/
L] 1 Y LT LU 1= 3 o T 894
L] 1 (AN (0] (=] 0T T 89~
GEKOPUHONMENLL..c...ceiiiiiieiieeeeeee e, 897
GtKPIXMAPMENUILEINL.utiiiiiiiiitiieiieeieeeieeeeeeeeeseeesssessaeeseeseeeseeeeeeeeseeereeseeeseeererteereaaeereeeaeeaaeeeeeees 898
(€71 Yo (o] [=To AVATAT o [0V TN 898
L1765 0111 =11 (o RS 89¢
(] 1 = o] 1= 90
(] 1 IS AN 90
L1 A=) T 90:
L1 AT 4T Lo Lo TR 90:
GNOMEWIdQetS& FUNCHIONS.ottt ab e beeseeeaeesssessessbesssssssssssssssassnnssenssnns 903
L g T0] 0 g1=Y A o T LU 903
L] 0] 412 o o 90:
L] L0] g1 N o] 0] == o 904
(] gl0] 0 gT=Y B =1 1=] o | ST 905
GNOMEDIAIOG.....coiiiiiiiii 90¢
(] gT0] 1 4110 o1 TR 90¢
(] al0] 0 g1=T B o]0 4] (=] o o I 907
L] L0 g1 =t Y 90¢
L] aT0] 0 gToT o] 01T 4/ = 1o 908
LR (ST =] 10T 90
Appendix B: The DVD Store RPC Protocol Definition............cccocuuuiiiuiiiiiiiiiiiiiiiiiiiiiriissiissesesrsessseeseesee... 910
Appendix C: OpeN SOUICELICENSEScooviiiiiie 916
TheGNU GENEIaPUDIICLICENSE........ueiiiieete ettt e e e e e e e s e et e e e s e e eaees 916
GNU GENERALPUBLIC LICENSE.... ..ot 916
TheLeSSEIGNU PUBICLICENSE.c.cev ettt e e e e s e e e s s e eeeeabaaeeees 921
VL Y o] P 1 [L= K e TP 921
A L=T= 1 0] 0] T 92
TERMSAND CONDITIONSFORCOPYING,DISTRIBUTION AND MODIFICATION.....922
END OF TERMSAND CONDITIONSt e e e et e e e e e e eaaas 927
How to Apply TheseTermsto Your New Libraries..........ccccccviii, 927
The GNU FreeDoCUMENTALIONLICENSE.oiiieie ettt e e et e e e st e e s e e s e s s eaaa e eseees 928
VErsioN1.1,MaArCR2000........c.ue oottt ettt e e et e e e e e e e e e e e e e e e eennas 928

XV

Professional LINUX Programming

Table of Contents

Appendix C: Open SourcelLicenses

0. PREAMBLE......ci ittt e e e e ettt e e e e e e e e bttt e e e e e e e e st b e e e e e e e e e e e nnnneneeaeeeans 92¢
1. APPLICABILITY AND DEFINITIONS.....cottiiiiiiiiiiitee et e e e e e e e s snnrraeeeeeeeeaans 929
2. VERBATIM COPYING ... ottiiiiieeiiiiitieiitee ettt e e e e e e st a e e e e e s aannsasseeeeaeeeaannnnbseeeaaeeessnnnsenes 929
3. COPYINGIN QUANTITY ¢.ittiiitee e ettt sttt e e e e e e sttt e e e e e e e s bt e e e e e e e e e annnsnnneeeaeeas 930
4. MODIFICATIONS. ... eeeeeteee ettt e e e e e e ettt e e e e e e e s a st ee et e e e e e e s aansaaeeeeeeeeeaannsnsneeeeaeeens 930
5. COMBINING DOCUMENTS....ciiiiiiiiiitiiiite e ettt e e e e st e e e e e e s st eaeaeeessnnnesaeeeeeeeeaanes 931
6. COLLECTIONSOF DOCUMENTS.....uttiiitiieiiiiiiiieieee e e e s st eea e e e e s snnnteeereeeeesssnnnseseeeeeeessnnns 932
7. AGGREGATIONWITH INDEPENDENTWORKS.......cootiiiiiiiiiiiiiiee e 932
8. TRANSLATION ...ttt ettt e e e e e s ettt e e e e e e s s b be et e eeeeesannsbseeeeeeeeeaaannsnnneeeaeeeas 932
Q. TERMINATION. ...ttt ettt ettt e e e e e ettt e e e e e e s st bt e e e e e e s e nssseeeeeeeeeaannnnnnreeeaeeeas 932
10. FUTUREREVISIONSOF THIS LICENSE........cctiiiiiiiiiiiiiee e 932
How to usethis Licensefor YOUr OCUMENES.........uuuiuiiiiiiiiiiieiiiesreeseeereeeeeeeeeeeeereeeereerereeereeseeeeeess 933

N (ST O N U] o] Tod o =1 o F=] =T 933
THE Q PUBLIC LICENSEVEISIONL.O....cuiiiiiiieeiiiiiiiiie ettt e e e e siieeeee e e e e e s snnssneeeeeeeeannnes 933
LT =T 1 (=T o | o] £ RS 934
LimitationS Of LIabilityceeeiiiiiiiieieeieeeee 934
I L0 AT = 1 = 1P 93¢
(03 g o] (o1 =T o] I SRR 93¢

Appendix D: Customer Support and FEEADACK...........uiviiiiiiiiiiiiiiiieeeeeeeeee e 936

OLVESY (o] 0[S W o] Lol gr=TaTo L =r=T=To] o= Tor e PR 936
Yo W] (el= @daTo [cT=TaTo (W oo b= 1=T NP 936
T - | PP TPRPPPPP 93
L{0] 0 g IST= T 0 €T o o] o PP 936
)Y 0T £ AN TU T 4] 1= PN 937
PR POSTPRRPR 93
2 SRR 93
PP 93
5 PP 9/
B ettt r et e e e e e e a— e e— et ee e e e e R L E e et eeeeeeean R R abeeeeeeeeaaannhaaeeaaeeeeennnrrreees 94
PRSPPI 94
PP 9/
PP of
PSR PPP ot
TS SPRRRPR 9¢
SRR ot
PRSPPI 9¢
PSP PUPRRPPR 9€
PP ot
O P EPP P ot
PSR PPP 97
PP SPPPP 97
PP 97
TSP PSRRR 97
LTSS PRRRPR 97
PP 97
PR POOPPRRPR 9t

XVi

Professional LINUX Programming

Table of Contents
Appendix D: Customer Support and Feedback

L PP UUPPPPTTTTTTR 98

D TSP TP 9¢

| APPSR PP PR TTPURPPN 98
10 = TP P PP PP PPPPRP 9
10 = TP P PP PP PPPPRP 9
10 = T PP P PP PP PPPPPRP 9
10 = TP P PP PP PPPPRP 9
10 = TSP PP PP PPPPPRR 9
10 = TP P PP PP PPPPRP 9
10 = TP P PP OPPPPPPPTPPP 10
10 = TP P PP OPPPPPPPTPPP 10
10 = TP P PP OPPPPPPPTPPP 10
10 = TP P PP OPPPPPPPTPPP 10
10 = OO TP P PP OPUPPPPPTPPP 10
10 = OO TP P PP OPUPPPPPTPPP 10
10 = T TP PPPPPPPPPUPPP 10
10 = T TP PPPPPPPPPUPPP 10
10 = T TP PPPPPPPPPUPPP 10
10 = PP P PP PPUPPPPPTPPP 10
10 = PP P PP PPUPPPPPTPPP 10
10 = PO PP U PP OPPPPPPPTPPP 10
10 = TP PPOPPPPPPPTPPP 10
10 = PO PP U PP OPPPPPPPTPPP 10
10 = PO PP U PP OPPPPPPPTPPP 10

XVii

Professional LINUX Programming

Table of Contents

10 = PO PP U PP OPPPPPPPTPPP 10
10 = T TP PPPPPPPPPUPPP 10
10 = OO TP P PP OPUPPPPPTPPP 10
10 = TP P PP OPPPPPPPTPPP 10
10 = OO TP P OPPPPPPPUPRP 10

XViii

Professional Linux Programming

Neil Matthew, Richard Stones

Christopher Browne
Brad Clements
Andrew Froggatt
David J. Goodger
Ivan Griffin

Jeff Licquia

Ronald van Loon
Harish Rawat
Udaya A. Ranawake
Marius Sundbakken
Deepak Thomas
Stephen J. Turnbull
David Woodhouse

Copyright © 2004 by Apress
(This book was originally published by Wrox Press in 2000.)

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1861003013

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence c
trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner
with no intention of infringement of the trademark.

Distributed to the book trade in the United States by Springer—Verlag New York, Inc., 175 Fifth Avenue, Nev
York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG, Tiergartenstr. 17,
69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, email orders@springer—ny.com, or visit
http://www.springer—ny.com. Outside the United States: fax +49 6221 345229, email orders@springer.de, o

visit_http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, email info@apress.com,_or visit http://www.apress.com.

The information in this book is distributed on an "as is" basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to an
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by t
information contained in this work.

Professional Linux Programming 1

Professional LINUX Programming

The source code for this book is available to readers at http://www.apress.com in the Downloads section.

Credits
Authors Technical Reviewers
Neil Matthew Chris Tregenza
Richard Stones Ronald van Loon

Bruce Varney
Contributing Authors Paul Warren
Christopher Browne Mark Wilcox
Brad Clements Peter Wright
Andrew Froggatt Category Manager
David J. Goodger
Ivan Griffin Viv Emery
Jeff Licquia
Ronald van Loon Author Agent
Udaya Ranawake Lynne Basset
Harish Rawat
Marius Sundbakken Proof Readers
Deepak Thomas Lisa Rutter
Stephen J. Turnbull Christopher Smith
David Woodhouse Keith Westmoreland
Technical Architect Production Manager
Louay Fatoohi Laurent Lafon
Technical Editors Project Administrator
David Mercer Nicola Phillips
Dan Squier

Production Coordinator
Technical Reviewers Tom Bartlett
Robert Applebaum Design/Layout

Jason Bennett

Jonathon Blank Tom Bartlett

Michael Boerner

Wankyu Choi lllustrations

Brad Clements Shabnam Hussain
Andrew Froggatt

Chris Harshman Chapter Divider Artwork
Dave Hudson Fidget

Dave Jewel

Giles Lean Cover

Marty Leisner Chris Morris

Professional Linux Programming 2

Professional LINUX Programming

Bill Moss Shelley Frazier
Mike Olson

Jonathon Pinnock Index

Gavin Smyth Alessandro Ansa

Paul Spencer
About the Authors

Neil Matthew

Neil has been programming computers of one sort or another since 1974, but doesn't feel that old. Keen on
programming languages and the ways they can be used to solve different problems he has written his fair
share of emulators, interpreters, and translators, including ones for Basic, BCPL, FP (Functional
Programming), Lisp, Prolog, and the 6502 microprocessor hardware at the heart of the BBC Microcomputer
He graduated from the University of Nottingham, England with a degree in Mathematics, but got stuck into
computers straight away.

He has used UNIX since 1978, including most academic and commercial variants, some now long forgotten
Highlights include UNIX versions 6 and 7 on PDP 11/34 and 11/70, Xenix on PDP 11/23 and Intel 286 and
386, BSD 4.2 on DEC VAX 11/750, UNIX System V on MicroVAX and Intel 386, Sun SunOS4 on Sparc,
and Solaris on Sparc and Intel. He now collects Linux distributions to run on his home network of six PCs.

Neil's first Linux was a 0.99.11 kernel based SLS system that was shipped across the Atlantic in boxes and
boxes of floppy disks in August 1993. He has been using Linux ever since, both at home and at work,
programming mainly in C, C++, Icon, and Tcl. He uses and recommends Linux for Internet connections,
usually as a proxy caching server for Windows LANs and also as a file and print server to Windows 9x/NT
using SAMBA. He's sold a number of Internet firewall systems to UK companies (including to Wrox in their
early days!).

Neil says that Linux is a great development environment, as it offers all of the flexibility and power of
traditional UNIX systems, but it manages to combine the strengths of just about all of the disparate UNIX
variants (such as System V and BSD). Programs written for just about any UNIX will port to Linux with little
or no effort. You can also "get under the hood" with Linux as the source code is freely available.

As Head of Software and Principal Engineer at Camtec Electronics in the 1980s Neil programmed in C and
C++ for real-time embedded systems. Since then he's worked on software development techniques and
guality assurance both as a consultant in communications software development with Scientific Generics an
as a software QA specialist with GEHE UK. Linux has played an increasing role in the work that he has
undertaken over the years, from file servers, through Internet gateways to forming the platform for a
distributed radio communications system.

Neil is married to Christine and has two children, Alexandra and Adrian. He lives in a converted barn in
Northamptonshire, England. His interests include computers, music, science fiction, chess, motor sport, and
not doing it yourself.

Richard Stones

Richard started programming in the early days, when a BBC with 32k on RAM was a serious home compute

He graduated from Nottingham University, England with an Electronics degree, but decided that software wi
more fun.

Professional Linux Programming 3

Professional LINUX Programming

He has worked for a variety of companies over the years, from the very small with just two dozen employee:
to the American multinational EDS. Along the way he has worked on a wide variety of interesting projects.
These have ranged from communications network management systems, embedded real time systems, anc
multi-gigabyte help desk and user management systems, through to more mundane accountancy systems.
has always done his best to get Linux running as part of his projects, and usually finds a niche for Linux
somewhere. In many projects, especially those requiring embedded software, Linux has been used as the n
development platform. He has also installed Linux as file and print servers and Internet gateways.

He first met UNIX style operating systems on a PDP 11/23+, after which BSD 4.2 on a VAX seemed like a
big leap forward. He has used many of the various commercial UNIX offerings, and bemoans the unnecess:
differences between them. He first discovered Linux when Slackware CDs of the 0.99 kernel became
available, and was amazed at how much quicker it ran than the commercial versions of UNIX he had
previously worked on, without compromising functionality. He hopes that Linux distributions never fragment
in the way the commercial offerings did.

He programs mainly in C or Java, but has also worked in C++, SQL, PHP, Perl, various assembly language
and some proprietary real time languages, and under duress will admit that he's quite familiar with Visual
Basic, but claims he only used it because it was a lesser evil than the alternatives available at the time.

He is currently employed as a systems architect for GEHE, who are the UK's largest pharmaceutical
wholesaler and retailer, as well as the largest pharmaceutical wholesaler in both France and Germany, and
active in many other European countries.

Rick lives in a Leicestershire village, in England, with his wife Ann, children Jenny and Andrew, and two
cats. Outside computers his passion is for classical music, especially early church music. He tries to find tim
to practice the piano, but it always seems to be last on the list of things to do.

Rick and Neil co—authored Instant UNIX, and Beginning Linux Programming and have contributed chapters
to one or two other books. They also spoke at the first Bang!inux conference in Bangalore in February 2000

AUTHORS' ACKNOWLEDGMENTS
We, Richard and Neil, would like to thank our families:

Neil's wife Christine for her unfailing support and understanding, and his children Alexandra and Adrian for
thinking that it's cool to have a Dad who can write books.

Rick's wife Ann, and children, Jenny and Andrew, for their patience during the many evenings and weekend
while the book was written. He would also like to thank them for being so understanding about the decision:
do more writing.

We would also like to thank the many people who made this book possible.

Firstly the people who enjoyed Beginning Lihux Programming, making it the success it has been, providing
useful feedback and spurring us on to write a sequel. We have taken their suggestions for ways to extend a
improve BLP, and this is the result a book that we hope takes Linux application development to the next
level. We have tried to introduce some more advanced topics and show how programs can be made robust,
flexible, secure, and extensible, ready to be distributed and maintained in a professional manner.

We would like to thank the team at Wrox for their hard work on the book, especially Louay, David M, Dan S,
Richard, James, Nicola, Lynne, Rob, Dan M, Andrew P, and last, but not least, John for buying the pizza, as

Professional Linux Programming 4

Professional LINUX Programming

well as the others who worked behind the scenes.

We would also like to thank the people who have contributed additional material to the book; they provided
some excellent material.

Special thanks are also due to the team of reviewers who worked on our chapters. They provided comment:
and suggestions of the highest quality, and went to efforts above and beyond the call of duty to improve the
book. Thank you very much one and all. Any errors that have slipped through are, of course, entirely our ow
fault.

We, Neil and Rick, would also like to thank our employers, GEHE, for their support while we were writing
this book.

We would also like to pay homage to Linus for the Linux platform, RMS for the excellent set of GNU tools
and the GPL, and the ever expanding throng of unsung heroes who choose to make their software freely
available.

Christopher Browne

Christopher is a consultant with Sabre Inc., in the Human Resources and Payroll Systems organization
supporting these systems for AMR (American Airlines). He has been involved since 1996 with conversions ¢
AMR to use SAP R/3 for financial accounting and for HR and payroll systems. He was previously a Systems
Engineer with SHL Systemhouse (now EDS) in their SAP R/3 practice. He is also the treasurer of the North
Texas Linux Users Group (NTLUG).

Chris holds a Bachelor of Mathematics degree from the University of Waterloo, Joint Honors Co-op
Chartered Accountancy and Computer Science, and a Master of Science degree in Systems Science from t
University of Ottawa, Canada.

Brad Clements

Brad Clements is the president of MurkWorks, Inc., a software consulting company based in Potsdam, New
York, USA. He has over two decades experience developing software for a wide variety of operating systen
handheld gauges, and embedded devices. A firm believer of "use the best tool for the job", he has found
Python to be an elegant, powerful solution for an increasing number of projects.

While attending Clarkson University as a Physics major, he caught the entrepreneurial spirit and ran off to
join a startup firm developing an airport bomb detection device. Later, he worked as a Sr. Network Engineer
for five years before forming his own consulting business.

Although he spends much of his time managing the company, he still finds time to develop new software,
study emerging technologies, and collaborate with other open source developers.

An avid horseman, dog lover, and pilot, he enjoys show jumping and flying. He has recently begun building

his own airplane a Sonex. Brad lives in the Adirondack mountain region of northern New York with his wife,
Marsha and two lovely daughters Rachael and Rhiannon. You can reach him on the Internet at

bkc+plip@MurkWorks.com

Andrew Froggatt

Professional Linux Programming 5

Professional LINUX Programming

Andrew is a student at Cambridge University, England, reading Experimental and Theoretical physics. His
first encounter with computers was with a trusty BBC Micro at the age of six, with which he first programmec
with BBC BASIC (the best language ever). He also learned the important life skill of how to adjust the
cassette player volume level to load games such as Elite or Stryker's Run first time.

Andrew discovered Linux around ten years later, and immediately took to it because he thought it was really
cool to enter a password to use your own computer. Now he can say he's written dozens of large and small
programs with C, Java, ML, Perl, and even Fortran, all on various platforms.

Having gone to Cambridge and studied a little Computer Science, he found himself one summer working fot
Wrox Press, and they've pestered him several times to write and technically review for them since somethir
that he's very happy to do. Despite all this, Andrew does not know what to do after he graduates.

David J. Goodger

David is a programmer, systems administrator, and consultant. He collects programming languages but love
Python best. He has worked in education (teaching English in Japan), government (two years as an embass
employee in Tokyo), and industry.

His hobbies include Go, puzzles, bicycling, reading (and aspiring to writing), good science fiction, and poker
He helped his wife produce two beautiful children, and they all live happily in Kitchener, Ontario, Canada.
This is his first professionally published work.

Ivan Griffin

Ivan works for Parthus Technologies plc, on some really crazy bleeding edge technology. His most recent
project has been embedded development on Bluetooth, the 2.4 GHz short range wireless radio system whe

lower power, low MIPs and low RAM requirements are essential.

Previously, he worked on a research project for the University of Limerick, Ireland. This project involved
dynamically reconfigurable telecomms systems through the use of migratable CORBA/Java agents.

Ivan has developed on many different platforms from various flavors of UNIX to Windows to Z80 and
ARM7 embedded systems. He stumbled across Linux 0.99 sometime in '92/93 as an undergraduate, and he
been hooked on the environment ever since.

Aside from computers, Ivan has keen interests in swimming, skiing, and mountain—biking.

Jeff Licquia

Jeff has been working in the information industry for over 10 years in many diverse roles. He discovered
Linux in its early days (before it could boot multi-user), and has professionally deployed Linux since 1993.
Currently, he is the network administrator for Springfield Clinic, a health clinic in his home town of

Springfield, lllinois, USA.

Outside of work, he enjoys being active in the Debian project, as well as spending time with his wife and twc
children.

Ronald van Loon

Professional Linux Programming 6

Professional LINUX Programming

Ronald is currently working as an IT Architect for IBM Global Services in Amsterdam, The Netherlands. A
neighbor (who had built a computer for himself) first introduced him, at the age of 12, to computers. Soon
after that he owned his first computer (a Commodore 64) and started to experiment with it. He now has a
Masters degree in Computer Science and has about 12 years of work experience in several fields, ranging
from medical imaging to video—on—-demand applications.

Ronald has broad interests with a weak spot for multimedia and route planning. He was the developer of the
TMF (a Dutch commercial broadcasting channel) Cyberchoice program, a standalone interactive play—out
video system that works without human intervention.

In his leisure time he sings in a choir, goes to the theatre, looks after Bas (a little teddy bear), and lives and
loves together with his girlfriend Marjolijn in their combined apartments in Amersfoort. You can reach him

by email,_mail@rvl.nu
Udaya A. Ranawake

Udaya is a research scientist at Goddard Earth Sciences and Technology (GEST) Center at NASA GSFC,
USA. He has more than ten years of experience developing software for parallel computers.

Currently, he is working on the Hive project at NASA GSFC the goal of which is to build a low cost high
performance parallel computer using commodity hardware and freely available software packages.

Udaya holds a BSc degree in Electrical Engineering from University of Moratuwa, Sri Lanka, and MSc and
PhD degrees in Electrical & Computer Engineering from Oregon State University, USA.

Harish Rawat

Harish is a Software Developer at the Oracle Corporation, USA. He has eight years of experience in system
programming. His technical areas of interest include XML, Java, and Network Protocols.

Marius Sundbakken

Marius received a Software Engineering degree from the college of Buskerud in Kongsberg, Norway. After ¢
year of study at Washington State University, USA, he received a Bachelor of Computer Science degree. Hi
plans to get his Masters in Computer Science, in the near future.

His main interest in computing is object-oriented software design, especially using Qt. C++ is his favorite
language, although he uses C and Java if he has to. He bought his first computer, an Amiga, at the age of
sixteen, and learned a wide variety of languages, ranging from C, AREXX, 680x0 assembly, to C++.

Marius first noticed Qt in 1996, and has been programming Linux applications using Qt in his spare time. He
made QtVu, an image viewer based on_Qt (www.gtvu.org), and is currently writing an email client called
Mailliam (www.mailliam.org) , which is also Qt based.

Thanks to Jan Borsodi at eZ Systems for technical assistance.

Deepak Thomas

Deepak Thomas works for Oracle corporation at Redwood Shores, CA, USA. His areas of interest include

PHP, Linux, and several Java related technologies. He co—authored Professional PHP Programming.

Professional Linux Programming 7

Professional LINUX Programming

Stephen J. Turnbull

Stephen daylights as an economist. He moved to Japan in 1990, and discovered that the Japanese have fo
different ways to encode ASCII, let alone the multiple ways they encode the three native character sets. The
left him no alternative to learning about internationalization of software in detail.

Steve was dual booting Linux and DESQview/X in the months before January 1995; he started leaving Linu:
running 24x7 on January 17, and for the next four days his web page was the Internet's main broadband
window on the Kobe earthquake disaster.

Now he lives a quieter life, occasionally working on multilingual features of Xemacs, and advocating better
internationalization for Linux.

David Woodhouse

David is a Linux kernel hacker, working for Red Hat on embedded Linux technology. He is responsible for
the Memory Technology Device drivers in the Linux kernel, which handle solid state storage devices such a
Flash chips. He encountered Linux while studying Computer Science at the University of Cambridge,
England, and hasn't done any "real work" since then.

He is often suspected of being schizophrenic long periods of languishing in front of a computer in the dark
are punctuated with a violent desire to get outside and climb mountains.

David lives near Cambridge, which is a shame because there are ho mountains there.

Professional Linux Programming 8

Introduction

Welcome
Welcome to the exciting world of Linux Programming.

If you are one of the many readers of our authoritative book Beginning Linux Programming then be prepare
for another enjoyable and informative journey into the world of Linux. If this is your first encounter with our
Linux programming book series, then you'll shortly be convinced that you have got the right book.

Who is This Book for?

This book is for experienced Linux programmers and those aspiring to become developers for one of the mc
exciting Operating Systems around. This book covers topics that have been carefully chosen, based on the
knowledge of what professional developers usually encounter during their careers. This includes practical
information on libraries, techniques, tools and applications for Linux programmers.

Versatility, and breadth of choice, ensure that you are more than likely to find something that is of particular
interest to you. Depth of coverage is what professional developers can expect to find when consulting this
book, and we have made every effort to strike the right balance between the type of topics that we cover an
the depth of our coverage.

Whether an experienced Linux programmer or on your way to be so, this book is for you.

What's Covered in This Book?

In both editions of our first Linux programming bogk. Beginning Linux Programming (ISBN 1861002971),
we covered many tools, libraries and techniques that every Linux programmer should be familiar with. In thi:
book, we tackle new, more advanced topics that professional Linux programmers are bound to deal with.
Professional Linux Programming is the natural sequel to Beginning Linux Programming.

Maintaining the style that we followed_in Beqginning Linux Programming, this book takes a practical
approach. Whenever necessary, examples are called upon to support and explain theory. Again, following ir
the path of Beginning Linux Programming, this book adopts a central application example that is developed
the book progresses. To be precise, we use a DVD rental store application to introduce the various tools,
libraries and techniques.

We have divided the chapters into two categories: theme chapters, which discuss topics that progress the D
store application theme, and take—a—break chapters. The latter are standalone chapters that tackle a variety
topics of interest to professional developers. Rather than having a continuous flow of 17 theme chapters
followed by 11 non—-theme chapters, we have used the take—a—-break chapters as "stopping stations" betwe
the theme chapters.

The distinction between the two types of chapter does not imply that the topics covered by one group of
chapters are more important. Additionally, the theme chapters differ to an extent in how much they revolve
around the DVD store application theme. Both kinds of chapter are practical tutorials that use examples to p
the theory into practice. So, what are those chapters about?

Introduction 9

Professional LINUX Programming

We start off Chapter 1 with an overview of issues involved in application design. Next, we discuss the DVD
store application that is developed and used in the theme chapters. We explain how to determine and
formalize the requirements of our application. The objective of the chapter is achieved when we translate
those requirements into APlIs.

When working with a project of any size, there is always a need to track changes to our code. While it is
possible to do this manually when we work on our own and when our project is small, we certainly need a
better and more efficient way of doing this when managing large projects and/or working within a team.
Chapter 2 introduces us to a powerful source control system: the Concurrent Versions System (CVS). We
show how to install and use CVS, and we investigate one of the most powerful advantages that CVS has ov
its competitors: its ability to operate across networks, including the Internet.

Having already decided to use a relational database for our DVD _store, Chapter 3 takes a very brief look at
mSQL, MySQL and PostgreSQL, and compares them with each other. After picking PostgreSQL, we take a
look at installing and commissioning the database, as well as basic commands. We then explore data
normalization in relational databases and take a peek at some data management commands.

Chapter 3 showed you how to access PostgreSQL using a command line tool called psqgl. and Chapter 4,
teaches you how to access PostgreSQL from C code. The chapter covers both ways of doing this: using the
library libpg and embedded SQL. Now, we can design the backend of the database for the DVD store.

Chapter 5 is the first of our take—a—break chapters. Although we made the decision that PostgreSQL is the
database for our DVD store application, MySQL is an equally powerful database that would be ideal to use i
many applications. In this chapter we learn about installing, configuring, and administering MySQL. Finally,
we see how we an access MySQL from C.

When writing an application, it is inevitable that errors begin to creep into our code. Chapter 6 introduces
some tools and techniques that we can use to clean our code. Efficient reporting of errors is a great help in
tackling bugs. There is a discussion of the various ways to include debug statements in code followed by a
section on using assertions. We then learn how to add tracing functionality to our program to follow the path
that it takes. The last part of the chapter introduces the GNU debugger, GDB, showing some of its comman

There are situations where it is more appropriate to use an LDAP directory server than a database. Our sec
take—a—break introduces various concepts and conventions used with LDAP servers, and then focuses on &
open source LDAP directory server called OpenLDAP. We take a peek at installing, configuring and running
the server, and see how data is structured inside a directory server. Then we look in detail into how to acces
OpenLDAP using code, including manipulating and searching data.

Chapter 8 talks us through a powerful set of GUI libraries: GTK+ and GNOME. We learn first about glib
which provides the GTK+ and GNOME libraries with their underlying data management functionality. The
chapter then takes us on a journey into GTK+ and GNOME showing us how to build simple as well as
sophisticated GUIs using these powerful libraries. There is also a description of the GNOME source tree an
session management.

The _previous chapter paved the road to another theme chapter in which we build a GUI front end for our DV
store application using GTK+/GNOME. We first introduce Glade, a powerful interface builder for
GTK+/GNOME, before embarking on a detailed description of a GUI that we have developed for our
application using Glade.

Now it is the time for another break, this time with Flex and Bison. Flex is an open source generator of lexic:
analyzers or scanners. Bison is the GNU writer of parsers. In Chapter 10 we learn how to use these two

Introduction 10

Professional LINUX Programming

utilities and see the power they offer.

Using the DVD store application, the next chapter investigates various techniques and tools that can be use
for testing the applications we write. Issues covered in this chapter include memory and performance testing
and the installation and use of the mpatrol library.

In another take—a—break chapter, we investigate aspects of secure programming in Linux. We take a look a
filesystem security, user authentication, Pluggable Authentication Modules (PAM), cryptography, and secure
network programming. We also explore_in Chapter 12 some of the security issues concerning C/C++, Perl,
Python, and PHP.

GTK+ and GNOME are not the only sets of libraries that can be used for developing GUIs on Linux. The C+
based Qt and KDE are very powerful and popular GUI libraries. In Chapter 13, we learn how to install and
use Qt and KDE.

Having introduced Qt/KDE in the previous chapter, we can now proceed to use these libraries to develop
another GUI for the DVD store application, along the same lines as the one that we developed earlier using
GTK+/GNOME.

Then we take a break with Python. Python is a popular, high-level, interpreted, object-oriented language. V
show how to install Python and its various running modes. Then we take a look at the built-in data types an
operators of this language and its syntax.

Chapter 16 explores one of the most popular server—side scripting languages, PHP. The chapter covers
installing and configuring PHP, as well as its syntax. We then use PHP to develop an interface for our DVD
store application.

The following take—a—break chapter extends the Python knowledge that we acquired from Chapter 15,
showing us how to embed and extend Python with C/C++. We use the Simplified Wrapper Interface
Generator (SWIG) and the Python C API to extend Python.

Chapter 18 shows us first how applications can communicate across the network through the use of sockets
then moves to its main topic, Remote Procedures Calls (RPC). Assuming that we wanted to open another
branch of our DVD store but use a single centralized database, this chapter shows us how to accomplish thi
using RPC.

In_Chapter 19 we take another break to have a look at multi media programming in Linux. This is one area
where Linux is lagging behind other OSs. The main reason for this is the lack of device drivers. We see how
to handle audio devices and take a quick look at Linux support for video and animation.

While RPC is useful, CORBA is much better at constructing distributed object—based applications. Chapter
20 is an introduction to CORBA. We learn about the various component and layers of CORBA and how they
interact with each other.

In the_next chapter we apply our newly acquired CORBA knowledge to our DVD store application using the
GNOME ORB, ORBit. The chapter also covers CORBAServices.

In_Chapter 22, we put aside our DVD store application to learn about diskless systems and how to implemet
them using Linux.

Introduction 11

Professional LINUX Programming

Chapter 23 tackles one of the most exciting topics in computing today: XML. There is an introduction to the
structure and syntax of XML documents using an XML catalog of our DVD store. XML is ideal for importing
catalogs to our DVD database. The concept of valid XML is defined and DTD is explained. We then
investigate how to parse XML documents using the Simple API for XML (SAX).

Our next break is with Beowulf clusters, where we learn about their architecture and software configuration.
We then explore programming of Beowulf clusters using two popular message—passing libraries, the Messa
Passing Interface (MPI) and the Parallel Virtual Machine (PVM).

Documentation is an essential aspect of software development. Chapter 25 explains the types of
documentation required by different users. There is coverage of a wide range of the different types and
formats of documentation including manpages, HTML, XML, TeX, DocBook, Plain Old Document (POD)
and PDF. The chapter also covers literary programming.

Chapter 26 talks about an important topic in kernel programming, device drivers. The chapter also explains
how the Linux kernel handles PCI devices.

Preparing an application for distribution is something of interest to every developer. Chapter 27 explores the
RedHat Package Manager (RPM), including installing, upgrading and uninstalling RPM packages. We also
show how to build an RPM package that distributes our DVD store application. There is also coverage of the
use of configure, autoconf and automake to create a standard source code directory ready for distribution, a
well as creating patches.

A worthy topic to end our journey through the world of Linux programming is Internationalization. Chapter
28 tackles various models, techniques and issues involved in making any application portable to other
languages.

What You Need to Use This Book

You need a Linux box with the set of packages that are required by the different chapters of the book. These
include GTK+, GNOME, Glade, Qt, KDE, PostgreSQL, MySQL, LDAP, Flex, Bison, Python, SWIG,
ORBIt-Python, MPICH and many others. Although the vast majority of required packages are bundled with
the common Linux distributions, where a package is not present, or you wish to install the very latest versior
the relevant information for obtaining these packages and installing them is given in the appropriate places i
the book.

You'll also need to have an Internet connection to download the source code for the book if you want to see
the full source code behind all of the chapters, or avoid typing in the many self-contained example code
examples

You are presumed to have knowledge of programming in C and Linux. If you find that you need some help i

familiarizing yourself with programming in Linux, then you might find our hook Beginning Linux
Programming (ISBN 1861002971) very helpful. Certain chapters presume a limited knowledge of C++.

Source Code

We have tried to provide example programs and code snippets that best illustrate the concepts being discus
in the text. The complete source code from the book is available for download from:

http://www.apress.com

What You Need to Use This Book 12

Professional LINUX Programming

It's available under the terms of the GNU Public License. We suggest you get hold of a copy to save yourse
a lot of typing, although almost all the code you need is listed in the book.

Conventions

To help you get the most from the text and keep track of what's happening, we've used a number of
conventions throughout the book.

Note This style is used for asides to the current discussion.
We use several different fonts in the text of this book:
« File names, and words you might use at a command prompt, in code or type into a configuration file
are shown like this: struct pci_driver, main.c, or rpcinfo p localhost.
* URLs are written like this: www.gnome.org
We show commands typed at the command line like this:
$ gcc —l/usr/include/xml sax1.c —Ixml —lz —o sax1
Commands which must be executed as root are shown with a # prompt like this:
make install

And when we list the contents of files, we'll use the following convention:

Lines which show concepts directly related to the surrounding text are shown on a
grey background

But lines which do not introduce anything new, or which we have seen before, are
shown on a white background.

Conventions 13

Chapter 1. Application Design

Overview

The development of professional quality applications is best achieved through a reasonably balanced and
planned approach, understanding your aims, and understanding your tools. Nobody likes getting things wrol
unexpectedly and being forced to start over. Taking care with planning your application before you start
coding can save a great deal of grief.

Linux is a great platform to develop applications on. It's open architecture and the availability of its source
code has made writing applications for Linux truly attractive.

This book is not intended as an academic textbook on systems development. We are not going to spend tirr
teaching project management or much time on any particular software methodology. There are many other
good books that can do that. Some ideas for further reading can be found in the Resources section at the el
of this chapter.

As software developers, the authors have come to appreciate that we can save time and effort by applying
some simple techniques and tools to our work. In this chapter we will consider how to avoid some of the
pitfalls that can trap the unwary when developing real applications (but are also useful for applications writte
just for fun). We will cover requirements capture, use cases, application architecture, and interface
specification. Later in the book we will cover source code control, debugging, testing, documentation, as we
as implementation topics such as databases and graphical user interfaces.

Throughout the book we will be using an application to demonstrate the tools, techniques, and libraries we
will be covering. The development of a single application will provide us with a useful thread linking many of
the chapters together. It will begin as a loosely defined set of requirements, progressing through a more
rigorous design and ultimately blossoming into a professionally developed, robust, and potentially deployabl
basis for a software system.

The application we are going to develop over the course of this book is not intended to be a complete
commercial product. In some ways the example is contrived, and many system designers are likely to disag
with the decisions we have made for its implementation, quite possibly with good reasons.

The application we have chosen is one for helping to manage a DVD or video rental store. We will begin in
the early stages with a simple application for storing details of DVDs available to rent. We will then add
functionality such as a graphical user interface with searching facilities. We will see how we might add the
ability to implement business rules, for example to enable charging different rates depending on different
factors (such as allowing a discount for Mondays through Thursdays). Eventually we will add a Web-based
interface to allow customers to pre—book their rentals.

We will start with a couple of implementation choices already made.

We have elected to develop the application in C. Despite the advent and rise in popularity of newer and mor
exotic languages such as C++, Java and Perl, C remains more than capable of supporting most of the
programming tasks we are likely to undertake, especially in a Linux environment. After all, C is the language
of UNIX, and the Linux kernel is written in it there are interfaces from C to just about every feature of the
system. The Linux application interface is effectively designed for use in C programs. You can access
databases from C and even program graphical user interfaces in C using GNOME and GTK+.

Chapter 1: Application Design 14

Professional LINUX Programming

We have also taken the decision to implement the application using a full-strength database, even though t
scope of the example system is not really wide enough to fully warrant it. This is a little contrived, but allows
us to demonstrate database and GUI interfaces late in the book.

The detail of the application is also a compromise. When discussing its requirements and design we will ski
over some issues that would need to be resolved in the real world. For example, some choices have been n
to use fixed length fields where variable length might be more appropriate. Some of the detailed design is a
little inflexible.

This chapter is in three parts. In the first part we talk briefly about methodologies, and how they are evolving
to meet ever—changing challenges. In the next section, we describe how a real world exercise in requiremer
capture and analysis might proceed, showing how we would convert user requirements into more formal
statements that could be used as a basis for creating a system design. Finally we will present a basic
application architecture and API (Application Programming Interface) designed to meet those requirements,
which will act as our theme application for this book. Later chapters will use these APIs to illustrate topics
covered earlier in this chapter.

Development Models

The Waterfall model

One classical approach to development is the 'waterfall' model. Each activity in the waterfall should be
complete before moving on to the next. The diagram below illustrates this approach:

=3

Disadvantages to the waterfall method include an inability to react to changes in requirements, except by
breaking from the model. Another is the risk associated with leaving testing until near the end. If you discove
that you have made a mistake in some interface or other, the consequences could be disastrous.

Some variations on the waterfall model allow re-visiting of earlier stages, swimming upstream, but these are
not usually planned activities and their inclusion simply shows that the pure model does not fit well with
reality.

Iterative development

Iterative development is a more modern style of software development, challenging the 'waterfall' model anc
its strict boundaries between stages.

Iterative development plans for a situation where the requirements change as the project proceeds. A small
number of iterations are planned from the start, to allow the end product to be refined. This embodies the
realization that the customers will change their minds, even if they were sure what they wanted in the first

Development Models 15

Professional LINUX Programming

place. Flexible software, such as GUI's or sophisticated decision—making processes support, will often find
themselves subject to loose requirements or feature creep. We have to find a way of countering the all too
frequent cry 'I'll know what | want when | see it', or worse 'I've just thought of another use, can we make it dc
this?' The iterative model allows the requirements to be re-visited, provides the user with early sight of a
version of the software and allows the developer to 'pipe clean' his development environment.

The general plan is to schedule the highest priority mandatory requirements into eatrlier iterations (release
1.0). The methodology promotes a modular construction, with shallow GUIs and replaceable data access
methods.

> (> >

R
I I = N =

We can see from this diagram that in the iterations of our development we are performing tasks taken from
phases in the waterfall model. Typically you would plan for a small number of iterations, implementing a
defined subset of requirements in each iteration. Larger projects in a changing environment may need some
re—implementation, but this is always planned before the start of each iteration.

It is worth emphasizing that design (and requirements refining) is an ongoing process throughout the
development process, while testing starts about a third of the way through the project and not right at the en

'Fast Track' Development

To overcome the 'I'll know what | want when | see it' problem, it is often useful to start designing and
implementing a minimal application as soon as a basic requirement set is known. This will result in a basic
application that may not function terribly well and will certainly be missing major areas of functionality but
it does provide feedback to the requirements capture effort.

Note Note that this is not quite the same as a disposable prototype. We are not developing a mock-up
application that we will throw away (although that might happen if the requirements were way off). It is
intended to be real code, but only enough to verify that we are on the right track. Our project plan will

show two or three such subset implementations being refined as we go, not thrown away and re—writte
An exception might be made for fake screens, laid out just to get agreement on look—and-feel.

Test Early, Test Often

Once we have an initial design we can begin our test processes. The way that we intend to handle all of the
types of testing that will be necessary can usefully be documented in a written test plan. We can validate the
design by performing a review of what we have against the requirements as they stand at that stage.

Furthermore, we can formulate a test strategy for the application. We can decide how we are going to test,
what tools we will need, and what support in the application itself will make testing more productive.

We will need to cover testing of:

» Code components (unit testing)

'Fast Track' Development 16

Professional LINUX Programming

« Interfaces between components (integration testing)
» The complete system (system testing)

As changes are made we will need to retest to ensure that new problems have not been introduced. This is
known as regression testing.

Finally we will need to show the customer that the finished system does indeed meet the agreed requiremer
This is acceptance testing.

Before we start on an initial implementation we can test our development environment, making sure our
compilers and libraries are present and working correctly.

Once we have an initial implementation we can test it, making sure that our testing strategy works and that
the tools we need to test with are available and functioning properly.

Basically, the idea is to test everything, and to reduce risk by doing so as early as possible. The waterfall
model can be vulnerable if all of the testing activities take place at the end. By then it's too late to decide tha
implementation in an exotic language was a mistake because the debugger you thought you could use does
work on your hardware, or the interpreter you are using cannot run fast enough to meet the performance
targets!

We will have more to say about testing in Chapter 11.

The DVD Store

To provide an example system development, let's imagine a local DVD rental store, that's almost entirely
paper based, and that the owner decides he wants a system to help manage his day—-to—day operations. Th
will probably be a number of problems that he faces, and he would like them taken away.

Note The owner of the DVD store is not a real person. We will be putting words into his mouth;
especially regarding the cost limits (which do not include our labor), and the desire to use
Open Source software. We will also assume that he at least understands that 'Operating
System' does not automatically mean Windows.

Given that this is a book about application development using Linux, it would be rather
unfortunate if the example application ended up being closed-source, using a proprietary
database on Windows NT. However, there is of course no inherent restriction when it comes
to programming for Linux. You are always free to develop proprietary solutions using
commercial products.

We need to ask the store manager to tell us about how the store works, so as to get a basic understanding
the problem. It will be valuable to observe the store in operation, and talk to customers too. We need a gooc
understanding of the context in which the system will be developed its users and its environment.

At this point in requirements capture, you will almost always discover that the user wants to tell you how the
do things at present, not what they do. It's very important to try and talk about what is being done, or you wil
end up designing a computer system that simply computerizes the existing problems, instead of developing
computer system to solve the existing problems.

The DVD Store 17

Professional LINUX Programming

Initial Requirements

Talking to the storeowner, we can get some initial user requirements. Notice that we record each requireme
with a unique reference. For user requirements we prefix a requirement number with the letters 'UR":

UR1 People leave returned DVDs in my mail box first thing in the morning before the store
is opened; when there are several copies of the same film out | have no idea which copy has
been returned.

UR2 | can't find which DVDs are out on rental without looking in the back of the shop to

check, and it annoys people when they have to put the box back on the shelf because the
video is out.

UR3 It must be friendly.
UR4 | want to keep the cash drawer | already have, because | only just purchased it.

UR5 I've heard about this thing where developers let people have the code for computer
systems; | want the code for any system you sell to me.

URG6 | can't justify spending more than $1000, we'll do a separate deal for your labor.
Notice that the requirements are pretty vague and could be fulfilled in many different ways. The principle tas
in the requirements capture phase is to clarify and refine the requirements, possibly splitting complex ones
into a number of simpler ones. We have also numbered the requirements to make them easier to track later
We should not be too focused on the design of the eventual system at this stage, although we might be able
determine that some requirements will ultimately be impractical or too costly.
This is not a bad list as a starting point, but there is one obvious omission that we need to find out about: jus
how many DVDs and members does the store application need to support? We can get an idea from the
current situation.
This gives us our seventh and eighth user requirements:

UR7 | have 5000 different titles, and 7000 actual disks.

URS8 | just gave out membership card 9000, though | suppose a few of those must have
moved away and never got round to canceling their membership.

Analyzing the User Requirements

Now we have some user requirements as a starting point, we can leave the store owner to get on with his jc
while we try and understand these requirements, and express them in a more exact way.

We will start with UR1, and UR7:
UR1 People leave returned DVDs in my mail box first thing in the morning before the store

is opened, and when there are several copies of the same film out | have no idea which copy
has been returned.

Initial Requirements 18

Professional LINUX Programming

UR7 | have 5000 different titles, and 7000 actual disks.

There is a very important fact lurking in these two statements: the DVD store has multiple copies of many
movies, and it's very important to be able to tell which member returned a particular disk, just knowing whict
title was returned is not enough. If we had missed the subtle point that a DVD title (the film "2001") needs to
be handled differently to a DVD disc (copy number 3 of the film "2001") we could have been in for a lot of
reworking later on.

We can state these more formally, expanding them into more succinct requirement statements, and allowing
some room for growth:

R1: The store must support more than 5000 different titles.

R2: The store must support more than 7000 different disks.

R3: We need to support at least 5 different physical copies of each title.

R4: We need to be able to tell from a returned disk which member rented it.
Let's move on to UR2:

UR2 | can't find which DVDs are out on rental without looking in the back of the shop to
check, and it annoys people when they have to put the box back on the shelf because the
DVD is out.

This is a tricky one. There are several ways this problem could be solved, not all of them involving a
computer. The problem is that members are selecting a DVD case off the shelf, then getting to the counter,
having to wait while the person behind the counter checks in the back of the store, then being told there are
copies available and having to put the case back. We can also deduce from the little we have seen of the
existing paper based system, that it's almost impossible for the person behind the counter to know if any of 1
copies are due back in soon.

A solution that didn't involve the computer might be to put a tag on each case of rented DVD, saying that it
was out on loan. This would certainly help, but might be rather labor intensive.

We could add a facility to our proposed computer system, to tell the user that all copies are out and perhaps
when the first one is due back in. This should be pretty easy, since it's difficult to see how any sensible syste
would not know which disks are currently rented out. The only drawback is that people are still getting to the
counter with a DVD case, only to be told it's not available. At least now the rejection of the rental is quicker,
providing there is no queue at the counter. Based on personal experience we (unfortunately!) know this isn't
always the case.

If we think a bit more radically, we could take this a step further. Suppose we put a customer terminal in the
store, one that allows members to check for themselves if a DVD was available? This would shorten the
gueue at the counter, and reduce the workload and perhaps the number of staff in the store. Hey, we could
take this idea a lot further they could search for new releases or DVDs with their favorite star in? The ownel
might like this approach, if we can do it cheaply enough but we need to keep an eye on the dreaded feature
creep.

We will avoid going much further with this idea, we need to talk to the storeowner again and see how he
reacts to this suggestion. For now we will keep the requirements open:

Initial Requirements 19

Professional LINUX Programming

R5: There needs to be an efficient way of discovering that all copies of a title are
currently unavailable, and where they are.

R6: There should be a way of searching the database for titles available.
We can come back to clarify (and perhaps prioritize) these requirements later.
Let's move on to UR3:

UR3 It must be friendly.

This is not an easy one to pin down. We cannot really justify ignoring it either. Does it mean that it is intuitive
to use so no training is required? Does it mean that the system takes you through the steps needed to perfo
different actions in an intuitive fashion? There are probably some assumptions about performance of the
system lurking in this statement as well — slow systems are not friendly! Perhaps the best thing would be to
consider a design using graphical user interface that makes the common functions as obvious as possible
Then, when we have an initial implementation we can seek the owner's agreement that the structure of the
application will satisfy the requirement.

The next requirement is UR4:
UR4 | want to keep the cash drawer | already have, because | only just purchased it.

We need to clarify what the storeowner means, does he mean that the system needs to integrate with his
existing cash drawer, or does he just mean he doesn't want us to replace it and charge him more? It is
important, not only to avoid missing requirements, but also to avoid implementing non—existent requirement

After talking to the owner we discover that what the owner means is that he expects the new rental
management system to be separate from the cash drawer all it needs to do is display on the screen the am
to be collected. This is a big win for us as it involves less work, and gives us:

R7: The system only needs to display the amount of money to be collected, not to
interface to a cash drawer.

Think how much work we could have done if we had assumed that this requirement meant that we needed t
interface to a cash drawer in some way.

The next requirement is UR5:

UR5 I've heard about this thing where developers let people have the code for computer
systems; | want the code for any system you sell to me. That way if anything goes wrong or |
need changes | can hire anyone | like to do the work.

We assume here that he is referring to some form of Open Source, though clearly that has a number of
different meanings. That's not a problem for the code we were going to write, the customer can stipulate any
reasonable condition, but it might pose a problem for some other parts of the system. For now we will assun
that it's going to be sufficient to give him the source to all the new code we write, but other components migt
not have their source code available. At this stage we don't want to rule too much out, though a Linux based
solution is looking interesting, as the entire system could potentially be Open Source.

R8: We must make the source code of the application available to the storeowner.

Initial Requirements 20

Professional LINUX Programming

R9: The source for other components should be available.
Here we are setting a mandatory requirement R8, and an optional requirement R9. The mandatory
requirements must be achieved before the storeowner will accept delivery. We would prefer the system to
have the complete source code available, but can live without it if we have to. The use of the word 'must' an
'should' differentiates the requirement types.
Moving onwards to URG6:

UR6 | can't justify spending more than $1000.

Well we didn't expect to be able to retire rich on one job did we? This is a reasonably tight budget, and is
probably going to rule out many commercial packages we might have considered.

R10: The total cost of the system must be less than $1000 on hardware and software
licenses.

We take the next pair of user requirements, UR7 and URS8 together, since they are both to do with sizing:
UR7 | have 5000 different titles, and 7000 actual disks.

URS8 | just gave out membership card 9000, though | suppose a few of those must have
moved away and never got round to canceling their membership.

In fact, we have already captured the first requirement in R1, R2 and R3. We just need to add a membershi
number requirement, and some growth requirement:

R11: The system must support at least 9000 members, be able to add further new
members and delete members that move away.

R12: The system must be capable of growing to at least twice the size of the initially
installed system.

At this point we might want to suggest some requirements of our own, things that the owner didn't mention,
but that we think are important for one reason or another; perhaps adding flexibility, or making it more usefu
to other stores. Examples might include some non—functional requirement types such as performance (how
fast must it run when the database is fully populated), and quality (it must not crash regardless of whatever
keys the user presses).

Although best placed in the 'wish list' category, there are a few other potential requirements that could crop
in the future. First, Web access:

R13: The system must be expandable to incorporate a web interface that could be
accessible from the Internet.

Next, XML is growing rapidly as a format for many types of structured data.

R14: The system must be extendable to import data from XML data sources, as the
DVD supplier is planning to make an XML feed available.

Initial Requirements 21

Professional LINUX Programming

The other interesting trend is LDAP. Maybe in the future there could be online directory servers with local
residents' data in, or maybe up and coming DVD titles?

R15: The system must be extendable to access data from LDAP directory servers.
We will see how these technologies can be integrated into our applications in Chapters 7, 16 and 23.

So far we have said almost nothing about the people that use the system, but until we have clarified UR2, al
how R5 and R6 might solve it, we don't know if members should ever be allowed to interact with the system
directly. Even if the user likes the idea, it will require a second computer system in the store for members to
use, which is going to be difficult in the budget available.

Now we have thought about the requirements, we can go back to the store owner, and see if we can be mol
precise about R5 and R6, check to see who will use the system, and ask about the format of the disk numbe
and membership numbers. Since it seems unlikely the owner will want to re—code all their disks, and re—issl
9000 membership cards, the system had better cope with the existing numbering scheme.

We also need to see if there are any requirements we have missed that can now be uncovered, since the e:
we fully discover our requirements the better.

Back in the store, we notice that the price of film rental has been changed. It seems that disk rental is chear
on some days of the week, and over the summer holidays, when it's quiet; the owner often does discounts f
multiple rentals. Better add that as a requirement:

R16: The system shall be able to cope with discounts for multi-rentals, and different
rental prices for different days of the week.

After talking again to the storeowner about our understanding of the requirements, we find he was very keer
on the idea of some simple user interface that people could use in the store to check if a title is available or
had been reserved. This is interesting, since we had not considered the idea of reserving disks in advance.
Unfortunately the owner didn't want to pay much more for a member kiosk in store. They thought it might be
worth another $200 at most. That's going to be a problem. The only way we could see to build a kiosk for th:
sort of money would be to re-use a 'scrap' PC, perhaps a diskless one that could be booted across the netv

We also discovered that the owner did not see any particular reason to differentiate between himself using t
system and staff using the system, and that any web or kiosk access would just be the same, but with fewer
functions available. This makes things easier for us, it means we probably don't need to worry about securit
beyond any login security, and the application does not need to cater in any complex way for different types
of user of the main system.

We also asked him about the possibility of adding barcode labels to the disk cases, and adding a scanner tc
system to avoid typing. This idea went down well, until the price of the hardware was mentioned. We won't
add barcode labels and a scanner as a requirement for now. Maybe that's a future project.

We can now re-write R5 and R6, and also add R17, to cope with reservations:

R5: The system must indicate that all copies of a disk are rented out if a member tries to
rent a disk that is not available.

R6: The system should, if possible for less than $200, be capable of having a publicly
available terminal added to it that could be used for searching and checking availability

Initial Requirements 22

Professional LINUX Programming

of titles.

R17: The system must cater for reserving titles; each member can reserve at most one

title, one week in advance. There is no charge for reservations, but the title must be

collected before 4pm on the day for which it is reserved, or it becomes available again.
The answer to the question (in relation to R11) about the format of disk and membership numbers was simp
disks have a 5-digit number, as does each member. We also checked what happened if a member forgot tf
membership card. It turns out that happens all the time, and then the staff in the shop ask them for their pos
code and name, and look them up. If the member's details check out they are allowed to rent a disk even
without the card. That's three more requirements:

R18: The system must support 5 digit numeric disk numbers.

R19: The system must support the existing 5 digit numeric membership numbers.

R20: The system must have a way of determining a membership number from
information a member would know, even if they have forgotten their membership card.

Statement of Requirements

We think we have now teased out most requirements so let's restate them in a precise manner, being carefi
use 'must' and 'shall' as appropriate. We would normally expect to incorporate these into a formal document
and ask the customer to sign it:

R1: The system must support more than 5000 different titles.

R2: The system must support more than 7000 different disks.

R3: The system must support at least 5 different physical copies of each title.

R4: The system must be able to tell from a returned disk number which member rented it.

R5: The system must indicate that all copies of a disk are rented out if a member tries to rent
a disk that is not available.

R6: The system shall be capable of having a publicly available terminal added to it that could
be used for searching and checking availability of titles, the cost of this additional terminal
must not exceed $200.

R7: The system must display the amount of money to be collected, but does not need to
interface to a cash drawer.

R8: We must make the source code of the application available to the client.
R9: The source for other components shall be available.
R10: The total cost of the system must be less than $1000.

R11: The system must support more than 9000 members.

Statement of Requirements 23

Professional LINUX Programming

R12: The system must be capable of growing to at least twice the size of the initially installed
system.

R13: The system must be expandable to incorporate a Web interface that could be accessible
from the Internet.

R14: The system shall be extendable to import data from XML data sources.
R15: The system shall be extendable to access data from LDAP directory servers.

R16: The system must be able to cope with discounts for multi-rentals, and different rental
prices for different days of the week.

R17: The system must cater for reserving titles; each member can reserve at most one title,
one week in advance. There is no charge for reservations, but the title must be collected
before 4pm on the day for which it is reserved, or it becomes available again.

R18: The system must support 5 digit numeric disk numbers.

R19: The system must support 5 digit numeric membership numbers.

R20: The system must have a way of determining a membership number from information a
member can remember while in the store.

The first thing we must check is that all the original user requirements appear in our more formal list. At this
point we discover a big hole we have omitted anything about:

UR3 It must be friendly.
At the very least we should add something about a graphical user interface, and performance:

R21: The system shall have a GUI

R22: The system shall respond to all user actions in less than 2 seconds.
Requirement R21 is still too vague. In a real-world application we would probably try to make this testable il
some way perhaps by creating some storyboards, drawings that show interactions with the graphical
interface. When the customer is happy with the look—and-feel and the screen layouts we can keep the
drawings and check that the final system does indeed confirm to our initial ideas.
There are many other possible requirements we have omitted here to keep the application simple. Let's just
say that barcode scanners, more flexible rental arrangements, wide screen variants of DVDs, and so on hav

been left for phase 2!

Notice that for the requirements we have made the wording more formal, and there are representatives of tf
different types of requirement we mentioned earlier. We have:

« functionality it caters for reservations

 performance responding to user action in less than 2 seconds
* usability a GUI

» compatibility caters for existing number formats

Statement of Requirements 24

Professional LINUX Programming

* price a maximum delivered cost
Most lists of requirements that you capture will have this type of mix. If you ever generate a list of
requirements that has no entry relating to one of these main categories you should be concerned that you
have missed some important aspects during your requirement capture.

At this point we need to identify the people who interact with our proposed system; either 'real' people or
external interfaces.

Use Cases

In system design parlance, the people who interact with the system are called actors. The ways in which the
interact with the system are called Use Cases. These were first used by Ivar Jacobson, and are now
incorporated into the unified modeling language, UML.

We also need to uncover the next layer of functionality. For example, how do new titles get into the store?

Let's try for a first cut of ideas, which we can then show to the storeowner to validate our understanding. He
is an example of a Use Case diagram that can be used to communicate the basic functionality of the systen

There are three actors: the Store Staff or Owner, a store customer using the Kiosk and a customer connecti
via the Web. These last two are combined in the diagram as they have the same Use Cases.

The Store Owner can perform the following functions:

» add a new member, and issue a membership card

» amend member details

* lookup member by number

* lookup member by name and address

* lookup DVD title by name, disk number or title number

* record a rental

* make a reservation, recording DVD title against date and member number

The in—store Customer (using the kiosk terminal) can:

* browse DVD titles

Use Cases 25

Professional LINUX Programming

« search by title
« search by category (Thriller, Comedy, etc)
« create an advance rental booking

The Web Customer is just the same as the in—store Customer, only accessing the system via an internet Wi
browser.

The functions that we have allocated to the different users are incomplete, but serve as an example. We cat
use Use Cases to discuss the system behavior with the customer and the end users. They are quite expres:
and easy to understand. As a result we might gain a better understanding of the requirements and refine the
further.

From the Use Cases we will derive a functional specification of the application, a description of all of the
things the system has to do, and from that we can begin to see how we might structure the application and
create its architecture.

Application Architecture

Now we have some basic requirements nailed, we can think how we might build this system.

We will use the information gleaned from the requirements capture and Use Case analysis to think about hc
the system might decompose into components that co—operate to perform the required functions. The
architecture of the system needs to be documented so that it provides a guide for detailed design, and be of
help for maintaining the system after it is delivered.

Many factors will influence the precise architecture choice. In our example there is logical division between :
graphical front end and records of DVDs and members. By splitting the application we can run the two parts
on separate machines to create a multi-user or web—enabled system. We also have some quite severe
restraints in terms of cost.

The tight price and requirement for providing the source certainly suggest a Linux solution. Its ability to run
on budget hardware will also keep costs down. Then the in—store kiosk part of the project has a very tight
budget. About the only way we can think of doing this is a free web browser on some very cut down, and
perhaps even second-hand, hardware. As we said earlier, a diskless workstation that boots across a netwo
would be cheap and would also have the advantage that we could remove the floppy disk drive, which woul
stop members 'playing’ with the kiosk.

A database of some sort will clearly be required. There are a number of choices that run on Linux, both
commercial and free, ranging from flat files through simple index files to industrial strength products.

We have chosen to use PostgreSQL, since it is a fully featured SQL-capable database that just happens to

free as well. Choosing a standard like SQL leaves open the possibility of moving to another database shoul
the need arise. Some of the factors that influence the choice of data storage mechanisms are discussed in

Chapter 3.

The architecture of the application will look like this:

Application Architecture 26

Professional LINUX Programming

We shall need to consider data integrity issues if we have more than one user of the application at the same
time. What will happen if a web user makes a reservation for a DVD at the same time as the in—store systen
tries to do the same? As far as we are concerned we don't mind which 'wins', perhaps as long as at the end
the day the correct number of people have rented or reserved the correct number of disks.

At this point we need to think about dividing our application up a little.

Let's imagine that several different people, who live in geographically diverse locations, will write the
application. Ideally we would like to make the base functionality as separate as possible from the GUI, so th
in the future other people could write totally different GUI interfaces to the same basic system if they wished
to customize it in different ways. We will see how this pays off when we see multiple implementations of the
GUI and database functions in later chapters. We will also see ways of dealing with many developers workir
on the same system when we look at a source code control system in Chapter 2.

What we need to do here is separate the programming interface needed for the GUI from the underlying
business rules and database implementation. We need to define a set of APIs.

Detailed Design

We will construct our application by creating functionality that meets our requirements R1 through R22 by
writing software that implements our Use Cases. In a complete example, we would have expanded our Use
Cases further and made more detailed descriptions of the functions needed.

At this point we will leap forward slightly, and present the API that will act as an interface between the User
Interface and our backend processing. It should be reasonably clear how the API, once implemented, woulc
enable a GUI component to meet the requirements of our application. The APlIs are directly related to the
low-level functions that are needed by the Use Cases we developed earlier. As we have chosen to impleme
in C, the APIs are defined in terms of C function calls.

To keep the application manageable we have used a simplistic approach to API design, including some fixe
structures. We can imagine that this API forms part of a first iteration implementation, used to check that the
API set is sufficient to support all of the system's functions.

We can now proceed with the development of the database, GUI and Web interfaces independently. We wil
discuss the physical layout of the database into tahles in Chapter 4.

These notes describe how to use the DVD database functions. All structures, constants and functions
described here are made available by including the file dvd.h and linking with an implementation of the

Detailed Design 27

Professional LINUX Programming

interface.

Note that we are not trying to create a library of functions for the general public with this API. Its purpose is
to provide the definition of an interface that a small number of developers need to conform to in order to writ
the components of our application.

A reference implementation or the core API can be found in flatfile.c. It is a simplistic flat file approach that i
not optimized at all. For large collections of disks and members (in the thousands) it will rapidly become ven
slow as it contains linear searches. However, it will allow development and testing of a GUI and a database
backend to proceed independently.

The main implementation of the APIs using a real database will be covered in Chapter 4.
Unless otherwise stated, the functions return an error status and pass outputs via parameter pointers. Error
status will be DVD_SUCCESS if everything is OK, or DVD_ERR_NOT_FOUND if a lookup fails, for

example if a DVD disk has been retired or the relevant membership has lapsed.

Note that search functions may create an empty list of matches and still return DVD_SUCCESS.

Data Access Functions

Before calling the functions described here you must initialize the connection to the data store. This is done
with a call to dvd_open_db:

int dvd_open_db()

which opens the database connection. It returns DVD_SUCCESS if everything is OK, otherwise an error
code, DVD_ERR_*.

Alternatively, you can specify a user name and password if the connection to the database is to be made wi
particular user identity rather than the default (namely, the user running the application). To do this, call
dvd_open_db_login instead:

int dvd_open_db_login(const char *user, const char *password)
To decode an error value from a database function you can use dvd_err_text:
int dvd_err_text(const int error, char **message)

Given a DVD error number, dvd_err_text re-writes the given pointer to point to a static string containing a
human readable error description. This returns DVD_SUCCESS.

The application must call dvd_close_db before it terminates, to allow the backend processing to perform any
tidying up that may be required:

int dvd_close_db()

This returns DVD_SUCCESS if everything is OK.

Data Access Functions 28

Professional LINUX Programming

Member Functions

The DVD store rents disks to members only. Members have a card that includes a unigue membership num
on it. This is allocated automatically by the system when the member record is created. The system uses ar
internal, integer, membership ID to access member details.

All the character arrays are NULL terminated, as this will make the application code easier to write.

The member structure, dvd_store_member, is:

typedef struct {
int member_id,; [*internal id [1..] */
char member_no[MEMBER_KNOWN_ID_LEN]; /* number the member knows */
char titte[PERSON_TITLE_LEN]; [* Mr Mrs Ms Dr Sir */
char fname[NAME_LEN]; [* first name */
char Iname[NAME_LEN]; /* last name */
char house_flat_ref[NAME_LEN]; [*i.e. 5, or 'The EIms' etc. */
char address1[ADDRESS_LEN]; /* Address line 1 */
char address2[ADDRESS_LEN]; /* Address line 2 */
char town[ADDRESS_LEN]; [* Town/City */
char state[STATE_LEN]; /* needed in US only */
char phone[PHONE_NO_LEN]; /* +44(0)123 456789 */
char zipcode[ZIP_CODE_LEN]; /* LE1 1AA or whatever */

} dvd_store_member;
A new member is created with dvd_member_create :
int dvd_member_create(dvd_store_member *member, int *member_id);

The application must create a proto—member by assigning all fields of a dvd_store_member except
member_id and member_no. A call to dvd_member_create will add the member to the database and return
the output parameter a newly allocated member_id. This will be used to fetch member details from the
database. A new membership number will be created and added to the member details in the database. No
that the passed dvd_store_member structure is not updated. To retrieve the new membership number a call
dvd_member_get is required.

int dvd_member_get(const int member_id, dvd_store_member *member);
Updates the member structure with details of the record that matches the given member ID.

To recap, the sequence needed to add a member is:

collect details into a dvd_store_member

call dvd_member_create

call dvd_member_get

add membership number to member's card and issue it

dvd_member_get_id_from_number retrieves an internal member ID from a membership number on the
member's card:

int dvd_member_get_id_from_number(const char *member_no, int *member_id);

This extracts the membership number from a character array pointed to by member_no (five characters plus

Member Functions 29

Professional LINUX Programming

trailing NULL) and writes the corresponding member ID into the integer pointed to by member_id.

To alter an existing member's details use a call to dvd_member_set:

int dvd_member_set(const dvd_store_member *member);

This updates the database record to match exactly the member structure provided. To ensure that the recor
contains correct internal fields it must be initialized via a call to dvd_member_get.

So, to update a member's details:

* Read the membership number from the member's card.
 Call dvd_member_get_id_from_number.

 Call dvd_member_get.

« Change the relevant details.

* Call dvd_member_set.

To find a member's details without a membership number, use dvd_member_search:

int dvd_member_search(const char *name, int *ids[], int *count);

This function takes part of a surname, the string name, and searches for all members that have surnames (t
Iname field in the member structure) that contain the given string. The number of matches found (including
zero) is written to the integer pointed to by count. The result, an array of member IDs, is allocated and the
pointer ids re—written to point at it. The ids pointer must be passed to free to deallocate the memory it
occupies.

To identify a member:
* Ask the member his name.
 Call dvd_member_search.

* For each result, call dvd_member_get.
« Verify the member's details.

A member can be deleted with a call to dvd_member_delete:
int dvd_member_delete(const int member_id);

The member ID may or may not be retired that is, made available for reallocation (it is not in the reference
implementation). However, in general, reusing IDs is not a good idea if it can be easily avoided. Old IDs can
occasionally carry accidental 'baggage’ such as outstanding rentals, and using a new ID each time is a simf
if rather brute force way of avoiding such problems. Phase 2 of the application might include functions to
‘time out’ member numbers or scan for rentals outstanding for a long time.

Title Functions
Each disk that the DVD store rents is a copy of a title. We may have several, or no copies of each title. A se

of APIs allows the system to maintain a database of DVD titles, recording details of its production (director,
actors, etc.) The title structure is public:

typedef struct {

Title Functions 30

Professional LINUX Programming

int title_id; /*internal ID [1..] */
char title_text(DVD_TITLE_LEN]; /* 'The silence of the lambs' */
char asin[ASIN_LEN]; /* 10 digit reference number */
char director[NAME_LEN]; /* restricted to a single name */
char genre[GENRE_LEN]; /* 'Horror', ‘comedy’, etc. */

/* API for standard list later */
char classification[CLASS_LEN]; /* API for standard list later */
char actor [NAME_LEN]; [*'Jeremy Irons' */
char actor2[NAME_LEN]; /*'Ingmar Bergman' */
char release_date[DAY_DATE_LEN]; /* YYYYMMDD plus the null */
char rental_cost[COST_LEN]; /* rental cost for this title $$$.cc */

} dvd_title;

The title handling APIs work in exactly the same manner as the member APIs, using an internal title_id as a
key.

int dvd_title_set(const dvd_title *title_record_to_update);

int dvd_title_get(const int title_id, dvd_title *title_record_to_complete);
int dvd_title_create(dvd_title *title_record_to_add, int *title_id);

int dvd_title_delete(const int title_id);

The genre and classification fields of a title must be set to one of a limited set of standard strings used for fil
type and rating. These can be obtained from the utility functions dvd_get_genre_list and
dvd_get classification_list:

int dvd_get_genre_list(char **genre_list[], int *count);
int dvd_get_classification_list(char **class_list[], int *count);

The search function is slightly different as it allows searching on the name of the film and people involved in
it separately:

int dvd_title_search(const char *title, const char *name, int *result_ids[],
int *count);

This function returns a list of matching title IDs. The title string is sub—string matches against the file title. If
it is NULL it will match no titles, if " (the empty string) it will match all titles. The name string is substring
matched against the director and actor names. If either finds any matches they are included in the results.

Disk Functions

We deal with DVD titles and physical DVD disks separately because while we rent a specific physical disk,
we will only wish to reserve a DVD title for a future date and we do not care which physical disk we are
given. The system for renting disks will allocate a physical disk when we ask for a title.

Each physical DVD disk has a unique identifier. The idea is that each copy will be labeled with this number.
For each physical disk the database records which DVD title it is a copy of. This must be setup by the
storeowner when disks are obtained.

The disk record structure is public:

typedef struct {
int disk_id; [*internal ID [1..] (not related to title_id) */
inttitle_id; /* the title_id of which this is an instance */
} dvd_disk;

Disk Functions 31

Professional LINUX Programming

The disk handling APIs work in exactly the same way as those for titles. The identifier is allocated internally.
The search function returns a list of disk IDs for a given title ID:

int dvd_disk_set(const dvd_disk *disk_record_to_update);

int dvd_disk_get(const int disk_id, dvd_disk *disk_record_to_complete);
int dvd_disk_create(dvd_disk *disk_record_to_add, int *disk_id);

int dvd_disk_delete(const int disk_id);

int dvd_disk_search(const int title_id, int *result_ids][], int *count);

Rental Functions

Each member is allowed to rent as many DVD disks as he desires. Each rental is recorded along with the d
the rental was made. Each member may make one reservation, for one title, for a particular date.

Date format used in the system is YYYYMMDD and the current date may be obtained from the utility
function dvd_today. This function re—-writes a passed string pointer to point at a static location containing the
current date in the correct form:

int dvd_today(char **date);

To check if a particular title will be available on a given date call dvd_title_available. The date must be in the
form YYYYMMDD.

int dvd_title_available(const int title_id, const char *date, int *count);

The count is updated to indicate the number of copies of the DVD title expected to be available on the given
date (including zero).

A DVD title can be rented, and a physical disk allocated by a call to dvd_rent_title.

int dvd_rent_title(const int member_id, const int title_id, int *disk_id);

A physical disk copy of the given title ID (if available) is allocated and returned in disk_id. A record of the
rental to the member whose member ID is given is made. DVD_ERR_NOT_FOUND will be returned if no

disks are available.

A DVD disk on loan can be queried and returned with calls to dvd_disk_rental_info and dvd_disk_return.

int dvd_rented_disk_info(const int disk_id, int *member_id, char *date_rented);
int dvd_disk_return(const int disk_id, int *member_id, char *date_rented);

Given a disk ID these functions return the member ID of the member who rented it, and the date that the rer
began. In the case of dvd_disk_return the rental record is cleared.

A title is reserved with a call to dvd_reserve_title and a reservation cancelled with a call to
dvd_reserve_title_cancel:

int dvd_reserve_title(
const char *date, const int title_id, const int member_id);
int dvd_reserve_title_cancel(const int member_id);

Making a second reservation for any member will cancel any previous reservation for that member.

Rental Functions 32

Professional LINUX Programming

A member's last reservation request may be retrieved by a call to dvd_reserve_title_query_by member:
int dvd_reserve_title_query_by member(const int member_id, int *title_id);
Additional functions not implemented in the reference implementation and still under consideration include:

int dvd_reserve_title_query_by _titledate(
const int title_id, const char *date, int *member_ids[])

Return a list of members who have reserved this title on this date. A NULL date means any date:

int dvd_overdue_disks(
const char *datel, const char *date2, int *disk_ids[], int *count)

Scan the rental table for disks whose rented date is after datel and before date2. NULL dates for these mes
beginning of time (actually®lJanuary 1970, the start of the UNIX epoch) and tomorrow respectively.

Reference Implementation

For applications that are divided into a number of co—operating components, like our DVD store, it can be
extremely worthwhile producing a reference implementation for the defined interface. In this case an almost
complete, if inefficient, implementation was created so that the GUI implementers could work independently
of the database and create a working application that returned meaningful results for searches and so on.

For the DVD store we created an implementation of all of the APIs using simple flat files rather than a
fully-fledged database. The code is very simple, the idea being to test that the APIs would be sufficient to
support a full implementation. The code is similarly not optimized, and would be too slow for anything other
than very small numbers of DVDs. It needed to be correct, not quick, so it was easy to follow and debug.
However, it is pretty much fully functional and allowed the graphical user interface to be developed against
working code while the database work was still under way. It also allowed the database implementation to b
checked against a known working implementation.

A reference implementation may impose a number of restrictions such as database size. In our case in the
reference implementation all searches are case sensitive, so it is recommended that the application force te
input to have each word capitalized, or all upper case, and that match strings be suitably specified.

A command line test program was also developed to check out the flat file implementation. Once done, it we
also used to test the database version. We will see more of the test program in Chapter 11.

Resources

Here are some suggestions for further reading on systems development and design:
Rapid Development, by Steve McConnell, Microsoft Press (ISBN 1-55615-900-5)
eXtreme Programming Explained, by Kent Beck, Addison Wesley (ISBN 0-201-61641-6)
Clouds to Code, by Jesse Liberty, (ISBN 1-861000952)

The Cathedral and The Bazaar, by Eric S. Raymond, O'Reilly & Associates (ISBN
1-56592-724-9) http://www.tuxedo.org/~esr/writings/cathedral-bazaar

Reference Implementation 33

Professional LINUX Programming

Instant UML, by Pierre—Alain Muller, (ISBN 1-861000871)

Object-Oriented Systems Analysis and Design, by Bennet, McRobb & Farmer, McGraw Hill
(ISBN 0-07-709497-2)

Summary

In this chapter we have very quickly followed through the first steps in producing an application in a
structured way. Using the DVD store example that we shall see a lot more of in the course of this book we
have seen how to set about specifying and designing the bones of a usable system.

We have considered requirements of different types and problems associated with them. We took a quick lo
at how to plan an implementation in an iterative way.

We established an architecture for the system that separates the user interface from the main body of the
application. Finally we defined in detail the interface that binds the two parts of the system together.

We are now just about ready to start cutting some code.

Summary 34

Chapter 2: CVS

Overview

One of the things you should do at an early phase in your project is to set up a way of tracking changes to y
project. This might just be the source code, or you might have some documents you wish to track as well. Y
should be tracking these items for two reasons: firstly so that you can discover what a build or document
looked liked at some point in time, and secondly so that you can identify changes over time.

Of course you could just copy items to duplicated directories, with names corresponding to the date, but suc
a simple solution quickly becomes unmanageable where multiple developers are involved, and the timescal
is longer than a few weeks.

If you are a developer working on your own, you may be tempted to think that source code control doesn't
offer you much; after all, no one else is going to change the code, so you have full control. However, even tt
best developers make mistakes occasionally and need to go back to previous versions. Users may report a
introduced in a minor revision, and rather than just track it down in the traditional way, it might be much mor
productive to have a look at how the code has changed in the affected area since the last release before the
appeared. A source code control system can be an invaluable aid in these circumstances, allowing the track
of exactly when, and how, code was changed.

Where there are multiple developers, the case is even stronger. Not only are there all the reasons that exist
single developers, but new and important reasons relating to peoples' ability to see who has changed what :
when it's then much easier to wind back changes in the event that another developer has 'got it wrong'.
Providing people properly comment their changes, it's also possible to discover why they changed things,
which can sometimes be very enlightening.

In short, there are many very good reasons to use a source code control system, and very few excuses for
doing so, given the choice of quality free tools available on Linux.

In this chapter we will:

e setup CVS
 explore using CVS to manage a project
» network CVS to enable true collaborative projects

Tools for Linux

Initially there was only one mainstream choice for source code control on Linux, which was RCS (the
Revision Control System) from the GNU software tool set. Whilst RCS was, and still is, a very good and
reliable revision control system, a lot of people (particularly on projects with several developers or with
distributed development environments) have moved to use a newer tool CVS, the Concurrent Versions
System.

CVS originated as a number of shell scripts in 1986. Today's CVS code is mostly based on the work of Briat
Berliner since 1989. There are three principal features that have allowed CVS to displace RCS as the tool o
choice for managing changes to source code:

« Its ability to be configured easily to operate across networks, including the internet.

Chapter 2: CVS 35

Professional LINUX Programming

« Its ability to allow multiple developers to work on the same source file simultaneously, in many cases
being able to merge changes made to a project by many different developers automatically.
« Its significant improvements, over RCS, in handling of collections of files.

Add to this the fact that CVS is completely free, and you have a winning tool that you should probably
consider learning how to use. In the course of this chapter, we're going to have a look at:

« setting up and using CVS for a single user on a local machine
« setting up and using CVS for multiple-users across a network
« useful features and extensions to CVS, including network configuration and graphical clients

CVS is a rather complex system, and we will not have the space in a single chapter to cover every last detal
of its use. However, we hope to show sufficient details that 95% of your needs will be met. You should then
be well placed to investigate some of the more obscure features of CVS, should your needs be more exactir
than those we've had space to cover.

In this chapter we will be concentrating on using CVS to manage source code. However you should rememt
that it's just as effective at managing changes to test data, configuration files or the utility scripts that your
project is using. Indeed all aspects of your project can be stored in CVS.

CVS can also store your specifications, which are often even more valuable than the source code. However
any of these are written in binary format, then you must tell CVS that the file is binary, and CVS will not be
able to automatically report differences between versions. We will talk more about managing binary files late
in the chapter.

Terminology
Before we get started, it's worth just briefly covering some CVS terminology:

» Check Out to take a copy of one or more files from the master source with the intention of changing
them.

« Commit to integrate locally made changes to a source file into the master copy of the source.

* Project a collection of files that together comprise an application.

» Repository the place where CVS keeps its master copy of the source code.

» Revision each change to a file is a revision. This term is often used to mean different versions of a
final released executable, but in this chapter we will use it in the specific CVS meaning, of an
identifiable change to a single source file.

Later on, we will need some more terms, but for now that's enough terminology to be going on with.

The Repository
CVS comes with all main Linux distributions, so in this chapter we will concentrate on configuring CVS. In
the very unlikely event that your distribution is missing CVS, the Resources section at the end of the chapte

lists some starting points where you can locate a downloadable copy.

The first thing you must do before you can start using CVS is to create a repository, which CVS can use bot
for holding its master copy of your source files, and also the internal administrative files that it needs.

Terminology 36

Professional LINUX Programming

Where you put the repository is largely a matter of personal choice. However, since it holds the master copy
of your source code, putting it somewhere safe that will be backed up regularly would be a good idea! It's
perfectly feasible to have multiple repositories on the same machine, and each repository can hold source tr
for multiple projects. Each of these could have many sub—directories, so there is plenty of scope for
flexibility.

In this chapter we are going to use a CVS repository in /usr/local/cvsrep. If you are hosting a large CVS
project you may wish to devote a disk partition, and mount point, specifically for your CVS repository. To
keep control of access to CVS, which is mostly governed by permissions to write to the CVS repository, we
will create a new group especially for users of the CVS system.

To keep it memorable we will use the group cvs—user, which we have created specifically for this purpose.
Any users that we wish to have access to our CVS repository must belong to the group cvs—user. Before we
add users to this group, we need to set up our repository. Firstly, as root, we create the group:

groupadd cvs-user
and then the directory:
mkdir /usr/local/cvsrep

Now we have made a directory for CVS to use, we tell it to create the administration files that it will use in th
repository. We do this as root, with the cvs init command:

cvs —d /usr/local/cvsrep init

CVS will silently create a CVSROOQOT directory under /usr/local/cvsrep, and populate it with the various
administration files it needs.

Now we change into the directory, and change the owning group to cvs—user for the CVS repaository directol
and all the files in it:

cd /usr/local/cvsrep
chmod g+w .
chgrp —R cvs-user .

Now all users on the system who are members of the group cvs—user should be able to make full use of the
repository. For those who are UNIX users of old, remember that Linux is like most modern UNIX flavors and

allows users to be members of multiple groups, so having to be a member of the group cvs—user is not too
restrictive.

Single User CVS projects

We will now look at working with a CVS repository as the only user of that repository. Along the way we will
see how CVS manages our source code for us.

CVS Command Format

CVS is a command line tool, and that is the interface we will concentrate on in this chapter. Later in the
chapter we show some of the various GUIs that have been developed that sit on top of CVS.

Single User CVS projects 37

Professional LINUX Programming

All CVS commands are in a standard format, which is:

cvs [standard options] command [command specific options] [filenames]

As you can see, they take an argument that specifies the actual operation required. This opens up a whole
namespace for CVS, and thus helps to keep the command names simple. The standard options are availab
almost all CVS commands, and we list the principal ones here:

—d <repository> Specifies the repository to use. As we will see in_the next section, unless|you
are working with a number of repositories it's often more convenient to set an
environment variable. The —d option will override the environment variable
CVSROOT (explained shortly), and so provides a convenient way of acce¢ssing
repositories that are infrequently used.

—e <editor> Specifies an editor to use when CVS needs to prompt for input, for example for
log entries.

——help, H Provide help on a specific command.

-n No action. Lets you see what CVS would do, without actually doing it.

-q, Q Run quietly (—q) or very quietly (—Q). Suppresses some informative outpyt
from CVS.

-t Trace execution.

-V, version Print the CVS version.

-z <level> Used across a network, it compresses the data being transferred. A level|of 1 is

least compression, 9 is maximum. Generally 4 is a good compromise between
CPU use and network bandwidth.

Environment Variables

Before we see CVS in action, we should take a quick look at a small number of rather useful environment
variables that CVS commands recognize. (CVS actually knows a few more, but only three are generally
useful.) These are:

3CVSROOT controls the repository that CVS commands should use
CVSEDITOR sets the editor that CVS will invoke if it needs you to type in some text
CVSIGNORE defines a list of filenames and patterns to ignore when performing CVS commarnds

The environment variable CVSROOT can always be overridden with —d option as we saw in the previous
section. We will set these before we go any further. The following commands assume you are using a
BASH-like shell; csh users need to use setenv instead.

$ export CVSROOT=/usr/local/cvsrep
$ export CVSEDITOR=emacs
$ export CVSIGNORE="foo bar *.class"

From now on, we will default to using /usr/local/cvsrep as the repository, emacs as our editor when using
CVS commands, and CVS commands will always ignore files called foo, bar or ending in .class.

In practice, CVS already knows about many types of intermediate file, including those ending in .0, .a and ~
as well as files called core, and ignores them automatically.

Environment Variables 38

Professional LINUX Programming

Importing a New Project

Let's start at a very early stage in our project, when we just have three files, each of which contain SQL.:

create_tables.sql
drop_tables.sql
insert_data.sql

It's not much of a project so far, but it's good to start use of CVS early in a project. The first thing we need ta
decide is a name for our project. CVS will use this name as a directory, so we must pick a name that is also
valid directory name. We will call our project plip—app, and since it is for Wrox, we will also classify it under
a directory name wrox.

We import our rather minimal initial set of files with the cvs import command. The only option we generally
need to use with this is m, which specifies a log message; although if you don't specify a message, CVS will
prompt for it anyway. People familiar with RCS often find the import —b option useful, which allows you to
specify a starting number sequence.

Note For the curious reader, other less frequently used options can be found in the man and info pag
for CVS, and further CVS resources which are given at the end of the chapter.

The parameters to the import command are the name of the project, a vendor tag, and a release tag. The
vendor tag is not often used; it's most common use is to specify the original source for external software.
Since it is a mandatory parameter, you must always think of a tag name to use, even if you don't actually ne
to use it. The release tag allows us to group sets of changes together, for example where a group of files ha
been changed to add a feature, we could use the release tag to identify points in their history where that
feature was added. It's common simply to use start as the release tag when importing a project for the first
time. We will learn more about tags and how useful they can be, later on in the chapter.

To summarize, the syntax of cvs import is:
cvs import [options] project—-name vendor—tag release—tag

The cvs import command looks at all the files in the current directory, and imports them one at a time. For o
import we will use the —m option to specify a log message, use a vendor tag of stixen, and a release tag of
start:

$ cvs import —-m"Initial version of demonstration application for PLiP"
wrox/plip—app stixen start

CVS responds with something like:

N wrox/plip—app/create_tables.sql
N wrox/plip—app/drop_tables.sql
N wrox/plip—app/insert_data.sql
| wrox/plip—app/create_tables.sql~
No conflicts created by this import

This command has several types of response, generally the first letter tells you the type, and this is followed
by a file name. Often there is additional informative text at the end. The response types that various
commands (not just import) can give you are:

Importing a New Project 39

Professional LINUX Programming

C conflict the file already existed in the repository, but was different from the local file so needs
manually merging

ignored the file was ignored
link the file is a symbolic link and was therefore ignored (CVS does not handle symbolic links
modified the file was modified in the repository

new a new file was added to the repository

removed the file was removed

updated the file was updated

? query a file was found locally that is not in the repository, nor marked to be ignored
In our case, you can see that three new files were added to the repository, and an emacs editor backup file

(create_tables.sql~) was ignored, because the pattern *~ is automatically recognized by CVS as being a
pattern indicating files to ignore.

~—

clom|Z2|IZ(T |~

If, later on in the project we add additional files (as seems quite likely, given our starting point), then there at
two ways these can be added to an existing project. If the project is checked out and being worked on, we ¢
use the cvs add command which we will meet later. If the project is not being currently worked on, then cvs
import can add additional files. Suppose when we imported our sources we immediately noticed that we hac
forgotten to write a README file. We can create it in the current directory and immediately add it with the
cvs import command, like this:

$ cvs import -m"Added README" wrox/plip—app stixen start
U wrox/plip—app/create_tables.sql

U wrox/plip—app/drop_tables.sql

U wrox/plip—app/insert_data.sql

N wrox/plip—app/README

| wrox/plip—app/create_tables.sql~

No conflicts created by this import

CVS notices the existing files, but only adds the new README file to the repository.

Starting Work on Our Project

Now we have created our project, we should move to a clean directory, and check out a copy to work on. In
theory we could now delete the directory and all the files we just imported into CVS, however the authors
usually like to leave it around, usually renamed, at least till they are sure all is well in the CVS repository, an
they haven't forgotten to check any files in.

Note In reality CVS has not lost a file for the authors yet, but we tend to err on the side of caution.

To get files back out of the repository we use the cvs checkout command. This takes several options; only tt
generally useful ones are shown here.

-D <date> Check out the project as it was at a certain date. Normally the date is specified gither in
the 1SO form "1999-09-24 16:05", which is the format we would recommend, off you
can also use "24 Sep 1999 16:05" or even some special phrases, such as "yesterday”
and "last Monday".

—d <dir> Check the project out into a named directory. By default, as we said earlier, the project
name is used as a directory.
-p Write the file to standard output, rather than saving it in the directory, which is the

Starting Work on Our Project 40

Professional LINUX Programming

default. |

-r <tag> Check out the project as it was when tagged with the specified tag name. We will come
back to tags shortly.

In addition, you must specify the project you want checked out, and you can optionally specify one or more
files to check out. By default all the files in the project are checked out.

After moving to a clean directory, we can check out our project out again, ready to start work:

$ cvs checkout wrox/plip—app

cvs checkout: Updating wrox/plip—app
U wrox/plip—app/README

U wrox/plip—app/create_tables.sq|l

U wrox/plip—app/drop_tables.sql

U wrox/plip—app/insert_data.sql

A directory wrox/plip—app is created and the most recent version of each file is created in that directory, rea
for us to work on. You will notice that an extra directory, CVS (note the capitals), has also been created
alongside the project files in this directory. This is CVS's own working directory; you should never need to
edit files or delete files in the directory, though some documentation tells you how to take short cuts by doin
s0. We strongly suggest you stick to the official commands, even if it occasionally involves more typing.

Checking Our Changes Against the Repository

Once we have a checked out copy of our project, we can continue to work on it. Suppose some hours later \
have been working away, and have reached another stable point, where we have completed making and
testing a set of changes, and wish to save them back to the repository. Before we do this it's always a good
idea to double—check what changes have been made; it's always sensible to take one last look before savin
changes.

We can look at the changes we have made using the cvs diff command. This takes several options:

-C Do a context diff, where surrounding lines are shown, making it easier to identify
visually the lines that have changed.

-b Ignore whitespace differences inside a particular line.

-B Ignore the insertion or deletion of blank lines.

-D <date> Look for differences against the version in the repository at the specified date.

-r <tag> Compare against a numbered version for a particular file, or against a tag name|for all
the files in a project.
You can specify two —r tag options, in which case cvs diff tells you about changes
internal to the repository between two different versions, and ignores the local files.

You can also optionally provide a list of file names. If you do provide a list, cvs diff will show differences for
the listed files. If you don't provide a list it will show differences between all files in the project and in the
current directory.

Be aware that if you have created a new file in the directory that is not in the repository, cvs diff will ignore it
since it only checks files it knows are in the project. While this might at first appear a poor default behavior,
in practice it is the right default, since it avoids cluttering the output with complaints about temporary project
files that are not in the repository.

Checking Our Changes Against the Repository 41

Professional LINUX Programming

After editing two of our files, we run cvs diff and can see the changes we have made, comparing the current
working copies with those in the CVS repository:

$ cvs diff -B
cvs diff: Diffing .
Index: create_tables.sql

RCS file: /usr/local/cvsrep/wrox/plip—app/create_tables.sql,v
retrieving revision 1.1.1.1

diff -B -r1.1.1.1 create_tables.sql

47a50,55

>);

>

> create table genre (

> genre_id INT NOT NULL,

> genre_name CHAR(21),

> CONSTRAINT genre_id_unig UNIQUE(genre_id)
Index: drop_tables.sql

RCS file: /usr/local/cvsrep/wrox/plip—app/drop_tables.sql,v
retrieving revision 1.1.1.1

diff -B -r1.1.1.1 drop_tables.sql

10all

> drop table genre;

As you can see, each file that has changed has been listed, along with the actual changes. You will notice
there is a reference to RCS in the output. Older versions of CVS relied on RCS 'under the hood', and CVS s
uses many of the same ideas and file names.

Another way of looking at the changes in the local copy is to use cvs status, which provides a list of files tha
have been changed. For a complete breakdown of the status, use cvs status —v, which provides more verbc
output.

At this point you may decide that you are not keen on the changes you have made, and want to abandon th

The easiest way to do this is simply to delete the local copy of the file, and use the cvs update command,
which we'll see more of later, to refresh the local directory with a clean copy of the file from the repository.

Updating the Repository with Our Changes

Assuming we are happy with the changes we have made, we can then put our files back in the repository.
This is called committing a change, and not surprisingly there is a cvs commit command to perform the
action.

The cvs commit command has only two commonly needed options:

—-m <message> Attach a message to the check in. If you don't specify a message, CVS willlinvoke
the editor that is specified with the environment variable CVSEDITOR, or failing
that, EDITOR, or a system default editor (usually vi) to prompt you for a
message.

-r <rev> Commit changes to a specific revision. This is only relevant where the project has
branches, which we will come back to later in the chapter.

When you run cvs commit, it tells you what files it is changing in the repository:

$ cvs commit

Updating the Repository with Our Changes 42

Professional LINUX Programming

At this point, since we failed to specify a log message on the command line, but set CVSEDITOR to emacs,
emacs is started automatically by CVS, and is asking for a log message:

Cvs:
CVS: Enter Log. Lines beginning with 'CVS:' are removed automatically
CVsS:

CVS: Committing in .

Cvs:

CVS: Modified Files:

CVS: create_tables.sql drop_tables.sql

CvVs:

Once we provide a message and exit emacs (after saving the file of course), the cvs commit command
resumes and the commit proceeds:

Checking in create_tables.sql;
lusr/local/cvsrep/wrox/plip—app/create_tables.sql,v <—- create_tables.sql
new revision: 1.2; previous revision: 1.1

done

Checking in drop_tables.sq;
lusr/local/cvsrep/wrox/plip—app/drop_tables.sql,v <—- drop_tables.sql
new revision: 1.2; previous revision: 1.1

As you can see, CVS can determine automatically what files need processing.
Releasing the Project

If we have stopped working on the project, we should release it so that CVS knows it is no longer being
worked on. In practice this doesn't matter for single user, or simple multi—user projects, but it's a good habit
get into. We do this simply by changing up one level of directory, so we are no longer in the plip—app
directory, and running cvs release. This has only one commonly used option:

—-d Delete the released directory automatically.

The cvs release command will warn you if you have changes in the directory that have not been put back in
the repository, and allow you to abandon the release if you wish.

If you ever want to look back and list the changes in a project, you can use the cvs history command. This
gives an overview of the project history, in perhaps not the most user—friendly form.

Here is a brief example of our project so far:

$ cvs history —e —a

O 04/15 17:23 +0000 rick wrox/plip—app =wrox/plip—app= ~/wrox/plip—app

M 04/15 21:15 +0000 rick 1.2 create_tables.sqgl wrox/plip—app == ~/wrox/plip—app
M 04/15 21:15 +0000 rick 1.2 drop_tables.sgl wrox/plip—app == ~/wrox/plip—app
F 04/15 21:20 +0000 rick =plip—app= ~/wrox/*

As you can see, it's not difficult to guess the general history of the project from the output. The principal
options to CVS history are:

-a Show history for all users.
-D <date> Show changes since date.
-e Show everything (by default only checkouts are shown).

Releasing the Project 43

Professional LINUX Programming

—r <rev> Show changes since a named revision.
—-u <user> Show changes made by a particular user.
Reviewing Changes

Now we have a set of changes in the repository, we can review what was changed, using the cvs log
command. We need to change back into the project directory first, so CVS can tell which project we are
working on. The output can be rather long—winded, so we will just show a brief extract here:

$ cd plip—-app
$ cvs log create_tables.sql

revision 1.2
date: 2000/04/15 21:15:08; author: rick; state: Exp; lines: +8 -0
Added the genre table.

revision 1.1

date: 2000/04/15 15:57:22; author: rick; state: Exp;
branches: 1.1.1;

Initial revision

If you omit the filename argument, CVS log will show you the log for all files in the project. The CVS log
command has a couple of useful options:

-D <date> Show changes since date.
-h Show only the header information for each file.
Adding and Removing Files from a Project

As a project progresses, it almost invariably acquires additional files. These need to be added to the project
the CVS repository. As you might guess, there is a cvs add command to do this, which takes the name of th
file as a parameter. It has three useful options:

—kb The file is binary.
-ko Don't expand keyword strings (see below).
—m <message> Add a reason message to the CVS log.

When you add a new file to the project, this does not immediately add the file to the repository. What it does
is add the file to the list of files that need to be checked next time the cvs commit command is run.

In a similar fashion there is cvs remove. This removes a file from the project. If the file still exists in the local
directory, cvs remove will fail unless you use the —f option, when cvs remove deletes the local copy of the
file. Like cvs add, the repository is not actually changed until a cvs commit command is run.

If you delete a file, and commit the change, then decide you want the file back again, CVS has not quite

deleted all traces of the file, it's remnants can still be found in the Attic subdirectory of the CVS repository.
You will however, have to copy it to a new location and perform some edits to recreate your original file.

Keyword Substitution
One very useful feature of CVS is its ability to perform keyword substitution in a file that is being checked

out. This feature was inherited from RCS, and CVS behaves in a very similar manner. The following 'magic’
strings are processed when files are checked out or committed to the repository:

Reviewing Changes 44

Professional LINUX Programming

$Author$ Expand to login name.

$Date$ Expand to date of last commit.

$Header$ Expand to some standard header information.

$1d$ Expand to some standard header information, without pathnames.
Log Expand to an ever increasing set of log messages.

$Name$ Expand to any tag name used to check out this file.

$Revision$ Expand to the revision number.

$State$ Not generally used.

The easiest way of explaining these is simply to see what happens when they are expanded:

$Author: rick $

$Date: 2000/04/16 17:38:08 $

$Header: /usr/local/cvsrep/wrox/plip—app/README,v 1.4 2000/04/16 17:38:08 rick Exp $
$ld: README,v 1.4 2000/04/16 17:38:08 rick Exp $

$Log: README,v $

Revision 1.4 2000/04/16 17:38:08 rick

Added keyword strings

$Name: $

$Revision: 1.4 $

$State: Exp $

CVS will automatically re—expand these strings each time the file is checked out from CVS, so you never
need to modify them.

Generally it is useful to have at least one of the strings visible in the final compiled version of the application
and assigning the string to a static variable can help to ensure that the string appears in the final executable
though optimizing compilers will often try and remove it again, unless the string is actually used. The author:
often find it useful to allow the string to appear when the version of a program is displayed, and usually find
the $1d$ string is the most useful to use. Even if you don't want any of the strings to appear in your final
program, it's often handy to have at least some of them appearing as comments in the source files. Have a |
at the man pages for the ident command (from RCS) that can search for strings of this format in executable
files.

Revisions, Tags and Branches

Up until now, although we have briefly mentioned revisions and branches, and have seen that some
commands can refer to a tag, we haven't specified too precisely what we mean by all this. Let's put that righ
now.

Revisions

Each time we commit a change to a file in CVS we create a new revision of that file. These are generally
numbered 1.1, 1.2, 1.3 etc. Although it's possible to change the first number, this is in many ways a bit of a
hang over from RCS, and in CVS there is generally no need. Where revision numbers would have been use
in RCS, we can use atag in CVS, a much more flexible approach, as we are about to see.

You will have noticed in the output above, that CVS sometimes refers to branch numbers, with several
numbers separated by dots, and also revision numbers, which are generally just two numerals separated by
dot. This looks rather confusing, but, unless you are using branches, which we will cover shortly, you only
need to take notice of the revision numbers, such as 1.1, 1.2 etc.

Revisions, Tags and Branches 45

Professional LINUX Programming
Tags

Normally when we release a version of a project it will consist of many files, each file at various revision
levels. It is very important that we have some way not only of capturing the version of each source file that
went into making a released version of the project, but also to be able to retrieve all the files at exactly the
right revision. We can do this by adding a tag name to a project across the whole set of files in that project,
regardless of the actual version of the file.

Suppose we wish to do a release of our plip—app project now. Admittedly it's not in much of a state yet, but
we might want to release to someone our database creation SQL, so they can create their own copy to worl
on. Of course, since the project is far from finished, there is a risk that we will need to change our tables, so
it's important we have a record of what we released to people, so we can warn them if we need to make
changes.

Currently we have just 4 files, but they are not all at the same revision number. The files create_tables.sql a
drop_tables.sql are at revision 1.2, while the rest are only at 1.1. Of course with only 4 files the problem is
quite easy, but in a large project with dozens of files, each file potentially at a different revision, it is a real
headache.

What we can do is add a tag to the project, which is effectively like a textual revision mark that sits alongside
the default numeric revision number that CVS assigns automatically. We create a tag on a project with the c
tag command, which has quite a few useful options.

-b Create a branch. We will come back to branches in the next section.

—-C Check that all changes have been committed to the repository. If they haven't, the tag
command will fail.

-D <date> Tag revisions, providing they are no later than a given date.

—-d Delete a tag. Beware there is no revision history on tags, once they are deleted there is
no trace of them.

-F Force a rename of an existing tag if there is a clash of tag names.

-r <rev> Tag by revision (which could be a tag itself, though that wouldn't seem to be very
useful).

Let's tag the current state of our project, ready to provide a first rush of the schema to our customer.

$ cvs tag —c release-schema-to-wrox-01
cvs tag: Tagging .

T README

T create_tables.sql

T drop_tables.sql

T insert_data.sql

This simply adds a tag to each file in the project. Notice we used the —c option, to check that all changes ha
been committed. This is a good habit to get into.

We can see the tag by looking at part of the log history for one of the files:

$ cvs log —h create_tables.sql

RCS file: /usr/local/cvsrep/wrox/plip—app/create_tables.sql,v
Working file: create_tables.sql

head: 1.2

branch:

Tags 46

Professional LINUX Programming

locks: strict

access list:

symbolic names:
release-schema-to—-wrox—01: 1.2
start: 1.1.1.1
stixen: 1.1.1

keyword substitution: kv

total revisions: 3

Now we can give a copy to our sponsors, and continue working on the files.

By way of demonstration, we change some CHAR field definitions to VARCHAR types, committing our
changes to the repository. Later on, Wrox ask if there have been any updates since the version we sent thel
We can get at the changes in several ways. Generally the most useful is to have a look at the output of cvs |
to check the name of the tag we used, then use cvs diff to tell us the changes. Since cvs diff works across tl
whole project, we don't even need to specify which files we are interested in:

$ cvs diff —r release—-schema-to—wrox—01
cvs diff: Diffing .
Index: create_tables.sql

RCS file: /usr/local/cvsrep/wrox/plip—app/create_tables.sql,v
retrieving revision 1.2
retrieving revision 1.3

diff -r1.2 -r1.3

8,10c8,10

< fname CHAR(26),

< Iname CHAR(26) NOT NULL,

< house_flat_ref CHAR(26) NOT NULL,

> fname VARCHAR(26),

> Iname VARCHAR(26) NOT NULL,
> house_flat_ref VARCHAR(26) NOT NULL,
60c60

< err_text CHAR(50)

> err_text VARCHAR(50)

As you can see, CVS not only identifies the file (or files) that have changed, it also shows us the changes w
made, in standard diff format output.

The other thing we might want to do is to allow a different user to get a copy of the project as it was at the
time a tag was created. This is very easy; as we can just use —r <tagname> with the cvs checkout commanc
Unfortunately CVS doesn't always seem to get file permissions quite right, and you may need to double che
that the files in the CVS repository have the correct group of cvs-user.

If they do not, you may need to manually correct it, as the CVS administrator, using chgrp —R cvs—user in
/usr/local/cvs—rep. You may also notice when you check files out, that permissions are sometimes not
identical to those in place when a file was checked in. Hopefully these minor quirks will be fixed in later
versions of CVS.

Here is a second user, neil, checking out a copy of our project, in the same state as when it was given to Wi
Be careful to do this in an empty directory, or you may accidentally overwrite some existing files:

$ cvs checkout —r release—schema-to—wrox—01 wrox/plip—app

Tags 47

Professional LINUX Programming

cvs checkout: Updating wrox/plip—app
U wrox/plip—app/README

U wrox/plip—app/create_tables.sql

U wrox/plip—app/drop_tables.sql

U wrox/plip—app/insert_data.sql

If we check the file create_tables.sql, we do indeed find that our later changes to VARCHAR types are not
present.

Note We gave the user neil a CVSROOT environment variable that specified our repository. Alternatively we
could have used the —d option on the CVS command line.

That's essentially all there is to basic tags in CVS. However don't let the simplicity of tags make you think
they are not important, they are a very useful way of identifying islands of stability in the lifetime of your
project.

Branches

Occasionally we wish to split the development stream into two or even more versions that can be worked or
independently. An example is when a release of a project is made to which bug fixes and patches must be
created, without getting in the way of new feature development for the next release of the project. This allow
both old and new versions of the project to be worked on independently.

This could be solved simply by having a pair of projects, one for the old release and one for the new one,
except for one very important consideration we need to be absolutely sure that bugs fixed in the old release
stay fixed in the next release. This means we need to merge bug fix changes from the older release into the
new release, automatically if possible. CVS can help us achieve this.

Suppose that we had found a need to change the SQL commands we have given to Wrox, independently of
our mainstream changes. Rather than simply take a complete copy of the source, just in case we ever need
it, we could have planned ahead and created a branch when we did the cvs tag command, by adding the -k
(branch) option to the cvs tag command. Then, when a user checks out a working copy based on the tag na
they are working on a branch, rather than the mainstream copy.

Consider the changes a file in our application goes through as it is being developed. If we are using CVS is
probably has nice simple incremented version numbers, like this:

What must happen if people are to continue working on the release 1 code while others work on the code fo
release 2, is to have a branch, like this:

Release 1 T g Release 2
L e S S I >
1.1 1.2 1.3 1.4 1.5 1.6

Here we have branch versions 1.2.1, 1.2.2 etc. that develop independently of our mainstream development
path, which is 1.2, 1.3 etc.

Branches 48

Professional LINUX Programming

However, all is not lost. We can retrospectively decide that our tag should have been a branch, and not just
simple tag. Suppose the user neil wants to start with a clean copy of the project, as released to Wrox. The
simplest way of doing this is to use cvs release to discard the existing copy, and then do cvs checkout -r
release—schema-to—wrox—01 wrox/plip—app again, to ensure we have a pristine copy of the project.

Now we can tag the version we have as branch, using the cvs tag command.

$ cvs tag —b release-schema-to-wrox-01-branch
cvs tag: Tagging .

T README

T create_tables.sql

T drop_tables.sql

T insert_data.sql

At this point you need to be very careful. What we've done here is mark in the repository that all files at the
version we've checked out in this directory (release—schema-to—-wrox—01) belong to a branch off the main
development. We haven't actually made the current working copy a branch this is a bit of a catch for the
unwary.

So how do we update the local copy? We need to check out the current copy again, so that our local copy o
the project knows it is part of the branch. First, release the existing files:

$ cvs release —d wrox/plip—app

Now we can make the local copy a copy of the branch we tagged:

$ cvs checkout -r release-schema—-to—wrox-01-branch wrox/plip—app
cvs checkout: Updating wrox/plip—app

U wrox/plip—app/README

U wrox/plip—app/create_tables.sql

U wrox/plip—app/drop_tables.sql

U wrox/plip—app/insert_data.sql

At this point, instead of the usual chatty response, you might get an error message about permissions on a
val-tags file. What may have happened is that the first user to create some tags has caused the val-tags fil
be created in the CVS repository control file area. However if that user's main group is not cvs—user, it may
well be that the file did not get created with sufficient permissions for other cvs—user's to modify it, and we
need, as CVS administrator, to apply a minor permissions update.

All that's needed is to change working directory into the CVS repository, and correct the group ownership (tc
cvs—user) and permissions on the val-tags file to match the others files in the CVSROOQOT directory.

Now we have a local copy of the project, as given to Wrox, that is a branch from the main development. Yol
can see the branch tag by using the cvs status command. If we do this first as user rick, whom you will
remember is working on the latest mainstream version. We see:

$ cvs status create_tables.sql
File: create_tables.sql Status: Up—to—date
Working revision: 1.3 Sat Apr 15 22:59:50 2000
Repository revision: 1.3 /usr/local/cvsrep/wrox/plip—app/create_tables.sql,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (nhone)

Branches 49

Professional LINUX Programming

If we do the same command for user neil, working on the Wrox branch of the project, we get:

File: create_tables.sql Status: Up—-to—date
Working revision: 1.2 Sat Apr 15 21:15:08 2000
Repository revision: 1.2 /usr/local/cvsrep/wrox/plip—app/create_tables.sql,v
Sticky Tag: release—schema-to—wrox—-01-branch (branch: 1.2.2)
Sticky Date: (none)
Sticky Options: (none)

As you can see, they are working on different versions of the same file. The 'Sticky Tag' line tells us that the
local copy is marked as being part of a tagged release. It is 'Sticky' because subsequent CVS commands wi
automatically take account of this status. We can see this if we make a simple change to the file, and doa c
diff:

$ cvs diff create_tables.sql
Index: create_tables.sql

RCS file: /usr/local/cvsrep/wrox/plip—app/create_tables.sql,v
retrieving revision 1.2
diff -r1.2 create_tables.sql

29a30

> actor3 CHAR(51),
60c61

< err_text CHAR(50)
> err_text CHAR(75)

As you can see, cvs diff automatically took account of the fact that we are working on a branch, and compar
our changes to the latest version in the repository on that branch, rather than the latest version of the main
stream of development in the repository. If we manually compare the copy of the file neil is working on, with
the copy rick is working on, there are actually rather more differences:

$ diff ~rick/wrox/plip—app/create_tables.sql create_tables.sql

8,10c8,10

< fname VARCHAR(26),

< Iname VARCHAR(26) NOT NULL,
< house_flat_ref VARCHAR(26) NOT NULL,
> fname CHAR(26),

> Iname CHAR(26) NOT NULL,

> house_flat_ref CHAR(26) NOT NULL,
29a30

> actor3 CHAR(51),

60c61

< err_text VARCHAR(50)

> err_text CHAR(75)

For the purposes of illustration, neil also makes a change to the file insert_data.sql, which is not changed by
rick. We can now commit our changes to the repository, using cvs commit. You will see CVS remembers (it
was 'Sticky') that we are working on a branch, and does something slightly different when neil checks in
changes to the Wrox version:

$ cvs commit —m"Fix minor bugs in Wrox version"

cvs commit: Examining .

Checking in create_tables.sql;
lusr/local/cvsrep/wrox/plip—app/create_tables.sql,v <-- create_tables.sql

Branches 50

Professional LINUX Programming

new revision: 1.2.2.1; previous revision: 1.2

done

Checking in insert_data.sql;
lusr/local/cvsrep/wrox/plip—app/insert_data.sql,v <—— insert_data.sql
new revision: 1.1.1.1.2.1; previous revision: 1.1.1.1

done

You can see CVS created a new version with nested version numbers. At this point it's only fair to point out
that CVS does not restrict you to a single branch. You can have several different branches off the mainstrea
and you can even have branches off branches. However, just because CVS gives you this flexibility it doesr
make it a good idea to use it. You should consider carefully before branching your code in the first place, an
you should question long and hard any suggestions for having more than a single active branch in a project
any one time.

We can now give Wrox the minor changes to their version, keeping them separate from the changes we are
making to our mainstream development version.

Now we are ready for the complex part of the operation, re-merging the branch with the mainstream, or
'trunk' as some people might prefer to call the mainstream development version. We need to re-merge the
branch, which may well have important bug fixes we need in release 2, back into our mainstream
development path.

v

v12z2

y1.23
Lamm

\ 2

>
>

1 1.3 14 15 16

v

>
1

Back as user rick, the first thing to do is take stock of where we are with the project. Using cvs status —v give
a clear picture of the status of files in our project. We need the —v option because by default cvs status does
tell us about branches. The actual output from cvs status is rather long, but here is a short extract to give the
general idea:

File: create_tables.sqgl Status: Up-to—date
Working revision: 1.3 Sat Apr 15 22:59:50 2000
Repository revision: 1.3 /usr/local/cvsrep/wrox/plip—app/create_tables.sql,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)
Existing Tags:

release-schema-to—wrox—-01-branch (branch: 1.2.2)
release-schema-to-wrox-01 (revision: 1.2)

start (revision: 1.1.1.1)

stixen (branch: 1.1.1)

We know that when we try and put things back together, there is going to be a problem. We have changed
create_tables.sqgl in both versions, and, worse, we know that some changes are incompatible. For example
from our earlier diff we saw:

60c61
< err_text VARCHAR(50)
> err_text CHAR(75)

Branches 51

Professional LINUX Programming

Which version is correct? There is no automatic way of sorting this out. However CVS can do a lot to sort ot
other changes, where they are less ambiguous. Indeed, CVS's ability to automatically merge changes is one
its great features.

We can safely allow CVS to try an automatic merge of the two development streams, because we have two
safety nets. Firstly, CVS will not automatically merge changes where there is a clear conflict, and secondly,

we can always review the changes against the master repository version. We do however suggest that you

double check that both the mainstream and branch versions have been committed into the repository before
you start merging changes.

To merge the branches we use a new CVS command, cvs update, which we will see more of when we talk
about multi-user development shortly. What we need is to join two threads of development together, which
requires the —j (join) flag, which takes a tag parameter to tell it which branch in the repository to merge with
the current project directory.

As user rick (who you will remember has the latest mainstream sources checked out), we use CVS update t
join the branch back to the current version:

$ cvs update —j release—-schema-to—wrox—01-branch

cvs update: Updating .

RCS file: /usr/local/cvsrep/wrox/plip—app/create_tables.sql,v
retrieving revision 1.2

retrieving revision 1.2.2.1

Merging differences between 1.2 and 1.2.2.1 into create_tables.sql
rcsmerge: warning: conflicts during merge

RCS file: /usr/local/cvsrep/wrox/plip—app/insert_data.sql,v
retrieving revision 1.1.1.1

retrieving revision 1.1.1.1.2.1

Merging differences between 1.1.1.1 and 1.1.1.1.2.1 into insert_data.sql

As you can see, CVS warned us about a conflict in the create_tables.sql file. This is not unexpected, we knc
both parties made several changes, and at least one of the changes had a conflict between versions.

If we have a look at the result of the merging, by opening create_tables.sql in an editor, we only see one
section that clearly hasn't worked:

create table errtext (
err_code INT,
<<<<<<< create_tables.sql
err_text VARCHAR(50)

err_text CHAR(75)
>>>>>>>1.2.2.1

);

Apart from that, CVS appears to have merged changes with an uncanny accuracy. We need to edit
create_tables.sql and resolve the conflict, so the file is how we want it to appear on the mainstream. Since
both versions are in the source file, clearly identified, this is very easy. As a double check that we are happy
with the automatic merging, we can then run cvs diff, to check that we are indeed sure, before we finally
commit the merge to the repository:

$ cvs commit -m"Merge changes from release—schema-to—wrox—01-branch to mainstream"
Checking in create_tables.sql;

lusr/local/cvsrep/wrox/plip—app/create_tables.sql,v <—- create_tables.sql

new revision: 1.4; previous revision: 1.3

Branches 52

Professional LINUX Programming

done

Checking in insert_data.sql;
lusr/local/cvsrep/wrox/plip—app/insert_data.sql,v <—- insert_data.sql
new revision: 1.2; previous revision: 1.1

done

It's always a good idea to ensure that the merger of a branch goes into the repository as a single identifiable
change. Don't ever be tempted to 'slip in' an extra change on the side. You may also find it helpful to add a t
to both the branch and the mainstream versions at this point, to allow tracing of the merge easier in the futu

Now our branch changes are re—integrated with the mainstream, and we can develop with a single set of
source code files again.

Multi—user CVS

In our examination of branches we touched on the multi user aspects of CVS, but they deserve a more deta
look.

Most source code control tools assume that only one developer is working on a source file at any one time,
and lock other users from changing files that are being edited, though a few are now starting to provide the
option of allowing concurrent development as an alternative. CVS starts from the opposite premise it assun
you may have multiple developers working on a project at once, and that in practice they will sometimes nee
to alter the same source file.

The problems with multi—user changes are a bit like those of having a branch compounded by the possibility
that there are often many users, and people may want to partially merge working copies at any time.

Depending on the number of users, and the degree of communication between them, there are two ways to
work in a multi—user mode with CVS. If you have a smallish number of users sharing the files, and they are
all collaborating closely, then you don't need CVS to do much work for you, you can just work in a
collaborative mode. If there are many developers, or they do not work in a particularly collaborative way,
CVS can do more work for you, to help developers watch more closely who is changing what. There are not
actually distinct CVS modes, just different ways of using CVS to achieve the same goals.

Working Collaboratively

In this way of working, users use CVS much as they would in single user mode, except they use the cvs
update command to update their local working copies with other users' changes.

The principal options to cvs update are:

-A Clear any sticky options, as though this was a fresh copy of the mainstream project.
-D <date> Update to versions of files as far as a specified date.

—-d Retrieve missing directories.

—j <rev> Joins two branches together.

-p Write files to standard output rather than to the directory.

—r <rev> Update to revisions of files up to a specified revision or tag.

Suppose our two developers, rick and neil, both check out a copy of the README file, and then both edit it.
Also rick changes create_tables.sql, and neil changes drop_tables.sql.

Multi—user CVS 53

Professional LINUX Programming

At this point neither can see changes made by the other, because neither set of changes has been committ
the repository. Suppose user neil commits his changes first. His changes are stored in the repository with nc
problems, since it is a case of first come, first served. When rick is ready to put his changes in, he checks th
no one has beaten him to updating his files, by running cvs status. What he sees is output like this:

File: README Status: Needs Merge
Working revision: 1.1.1.1 Sat Apr 15 16:13:02 2000
Repository revision: 1.2 /ust/local/cvsrep/wrox/plip—app/README,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

File: create_tables.sgl Status: Locally Modified
Working revision: 1.4 Sun Apr 16 12:21:34 2000
Repository revision: 1.4 /ust/local/cvsrep/wrox/plip—app/create_tables.sql,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

File: drop_tables.sgl Status: Needs Patch
Working revision: 1.2 Sat Apr 15 21:15:08 2000
Repository revision: 1.3 /usr/local/cvsrep/wrox/plip—app/drop_tables.sql,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

File: insert_data.sql Status: Up—to—date
Working revision: 1.2 Sun Apr 16 12:21:34 2000
Repository revision: 1.2 /usr/local/cvsrep/wrox/plip—app/insert_data.sql,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

This tells him that:

« README has been modified both by himself and someone else

* create_tables.sqgl has been modified by himself, but no one else
 drop_tables.sql has been modified by someone else, but not by him

* insert_data.sql has not been locally modified nor changed in the repository.

It's all looking a bit of a mess. However, as we have already seen, CVS is good at automatically sorting out
incompatible changes. The first step is to allow CVS to do a local merge of as many of the changes as it car

$ cvs update

cvs update: Updating .

RCS file: /usr/local/cvsrep/wrox/plip—app/README,v
retrieving revision 1.1.1.1

retrieving revision 1.2

Merging differences between 1.1.1.1 and 1.2 into README
rcsmerge: warning: conflicts during merge

cvs update: conflicts found in README

C README

M create_tables.sql

U drop_tables.sql

What CVS is telling us is that README needs some hand editing to resolve a conflict, create_tables.sqgl wa:
automatically merged, and the copy of drop_tables.sgl was updated with the later version found in the

Multi—user CVS 54

Professional LINUX Programming

repository.

Once we have edited by hand the README, which has incompatible changes marked (just like we saw whe
we merged a branch back to the mainstream), rick can then run cvs diff to check that he is happy with all the
changes, and then use cvs commit to put them back in the repository. In practice some testing to ensure tha

the changes where truly compatible would be wise, CVS is good, but it can't understand the logic of your
application code, just watch for obvious conflicting changes.

Working with Watches
There is an advanced set of CVS commands, the ‘watch' commands, which allow developers to be registere
to be notified (usually via email) as files in a CVS repository are edited and modified. This mode of working

is very much an advanced topic that is rarely needed, and we don't have the space to cover in detail here.
Consult the information sources at the end of the chapter for more information on this topic.

More Fun with CVS

There are still many CVS commands and features that we've not had a chance to look at. Here are some th
we really should cover before moving on.

Binary Files

CVS is very good, but nothing is perfect, and binary files are one area where CVS is currently not as strong
it might be. CVS is quite happy to store binary files, but you are responsible for telling CVS the file is actuall
a binary.

There are two ways of telling CVS a file is binary. You can use —kb with the cvs add command, as we saw
earlier, or you can use cvs admin —kb filename. Unfortunately this only affects files in the repository, not loc:

copies, so it's best to start again with a clean local copy after fixing binary files problems.

Currently CVS is also unable to sensibly diff binary files.

Correcting Bad Annotations
People, being people, sometimes put the wrong, or just inappropriate, message in a log file when they make

changes to the repository. This is such a common mistake that CVS has a way to correct it. To change the |
message on a revision of a file you simply use:

$ cvs admin —mrev:"New message”

However this is not logged, and the old log message is gone forever, so use it with care.

Accessing CVS Across a Network

One of the most useful things about CVS is its ability to operate across a network. There are several ways ©
doing this, but by far the most common is pserver, which is short for password authenticating server.

The CVS service is normally run on port 2401. You can change the port number if you need to, but that's
unlikely. Since starting the CVS service is not normally a major performance concern, each time a remote

Working with Watches 55

Professional LINUX Programming

CVS command is issued, the inetd daemon provides the best way to run the service, and will monitor the po
and start the service for you as and when required.

Firstly you need to check that the service is correctly defined, and is using the standard port. Check that yoL
letc/services file has an entry:

Cvspserver 2401/tcp

If it doesn't, add an entry like the one shown. You may also find an entry for UDP, but TCP is the normal
method of access. If there is already a line for cvspserver on UDP, there is no need to remove it.

Next we need to update inetd's configuration file, to tell it what to do when it encounters a request on the C\
service port start the server.

In /etc/inetd.conf add a line (it must be all on one line) like this:

cvspserver stream tcp nowait root /usr/bin/cvs cvs ——allow-root=/usr/local/cvsrep pserver

Remember to check the path to your CVS binary, and insert the appropriate path to the repository you wish
allow access to across the network. The allow-root option tells the CVS server that remote users are allowe
to access a particular repository. You can specify multiple allow-root options if you need to.

Now you need to tell inetd to re—read its configuration file.

killall -HUP inetd

At this point we can check the service is running, by using telnet to connect to the port. We are not going to
able to access CVS this way, but it is an interim check that all is well.

$ telnet localhost 2401
When you press Return a couple of times, you should see something like:

Trying 127.0.0.1...

Connected to localhost.

Escape character is "\]'.

cvs [pserver aborted]: bad auth protocol start:
Connection closed by foreign host.

We now have the cvs pserver service accessible on port 2401.

To access a remote repository, we use a special form of the repository specifier, in the following format:
pserver:username@remote—machine:path—-to-repository command

Let's try a network login as rick to the machine gw1.:

$ cvs —d :pserver:rick@gwl:/usr/local/cvsrep login
(Logging in to rick@gw1)

CVS password:

$

Working with Watches 56

Professional LINUX Programming

From now on, we can do CVS commands across the network accessing the remote repository. CVS has
actually stored the users password away in ~/.cvspass, so we will not need it again until we logout. Easy
wasn't it? However there are a couple of drawbacks. The most obvious one is that we have significantly
loosened security on our server. People are accessing our server across the network using their normal
passwords, and the method pserver uses for transmitting passwords, although not plain text, is far from seci
We can improve security by separating CVS user hames from real usernames, and also by explicitly listing
users allowed to read and/or write the repository.

Suppose we want to allow user rick to access the repository, but using a separate username and password.
What we need to do is create a file in /usr/local/cvsrep/CVSROOT called passwd.

Each entry in here gives a CVS login name, an encrypted password, and the real login ID to use. Currently
there doesn't seem to be any easy way of generating encrypted passwords from the command line on Linux
you may have to resort to changing your password temporarily to the one you want to use for CVS, then
copying it from /etc/shadow (assuming that's where passwords live on your system) back into the
CVSROOT/passwd file.

To create a CVS-only login for a user rick—cvs, the file would look something like:
rick—cvs:HhyGFguuGuyiuhgiuGiuiuUhh:rick

Now the user rick can remotely login to the CVS server using the login ID rick—cvs, with a different passwort
from his normal login. If you simply want to configure alternate passwords for remote users, but leave the
login name the same, simply omit the final ‘real user ID' and CVS will default to using the one used to login t
CVs.

This method is the same one we use to enable anonymous login to the CVS server we create a real login Il
on the system, then map the CVS login anonymous to this real ID in the CYVSROOT/passwd file.

Of course, what we actually don't normally want is anonymous CVS users having write access to our
repository. What we need is to specify a list of users actually allowed to read and write the repository
remotely. This is very easy, we create two new files in CVSROOT, one called readers and one called writers
All CVS logins listed in readers only have read only access to the system, and only CVS logins listed in the
writers file will have write access. Since the very existence of a CVS writers file automatically disables write
access for users not listed in it, you should always create a writers file. Both files are a simple one CVS logir
per line format. So, for example, to restrict both neil and anonymous to read only access, but rick both read
and write access, we create a readers file like this:

neil
anonymous

and a writers file like this:

rick

GUI CVS Clients

Up to now we have restricted ourselves to local and network command line clients. However several GUI
clients are now becoming available. Here, for example is a Tk interface to CVS, which can be found at

http://tkcvs.sourceforge.net/

GUI CVS Clients 57

Professional LINUX Programming

[WTRCYS =0
[0 Boports Qptions User Dufied Go L
Qerent Dirvectory [Momamickjush2iveanpip- aps
Module Location wrxphp - app
Directory Tag Mo dienctory tag

[<gwectory CVE» A
ldieectory CVS>
FEADME Locally Madted (madn)
croate_tables sql Up-t0- date |(mainy
[drop_tables sql Up~0-dale (mak=)
intent_data sq! Up-%0-date [(mdis)
4
Show: |* Hdar: 20 "= O [‘hu'-‘yo
Blo|o|w|X[Ole|=|ajo|e|X|&]| on |
|

Since CVS operates across a network, you don't have to be on a UNIX, or Linux, machine to access it. Here
WinCVS from_http://www.wincvs.org/

1@ Yoo Cupww Culpu Cnigom Sthowy M

9 il civiw] @ le] w1 @) o) 4l Zigfels Diads 51007 =)

JoTC P
-— = — - =
p- L b ol () Y PRSI
.J L8] F- T nge 84 18 097 00

hv-‘" Lat | 2

W KD IMATEDEL B WaergiNp-app (VR BATectery CilRonel Riokt ows- Feott weost pl1p-ae)

Fo Mo g F1 El

For ultimate portability, there is even a Java client, which you can find at http://www.jcvs.org/

patmoc aivares
CMMCnE BIRIBrY © FOrLeTT VL
I

| Pev | Medres
TE AR T8 200185 KK
[e Ll SarAge 14 2011 95 2000
8 sp_taves gl 3 Gunipe ! 2001453000
B rer_oan sy 3 MNANTE 216198 AXE

tv. T4ne LESItrg v aviply 00

L) oTOapi e appi-b ALV,
L ety app) e ate ebies 53
e LYY A T
L wroepi applezer_ceta o

TrG eawwmind complanid B aidesstaly

The other, rather interesting possibility, is to use a web—-only client, which you can find at
http://stud.fh—heilbronn.de/~zeller/cgi/cvsweb.cgi/

GUI CVS Clients 58

Professional LINUX Programming

Resources

There are a large number of CVS resources on the Internet, as well as a few probably already installed on y
Linux machine.

For a start, try the manual pages with man cvs, or the info pages with info cvs. If that fails, have a look in
/usr/doc/cvs—<version number> where you'll probably find more documents.

A good starting point on the Web can be found in the GNU project pages, at
http://www.gnu.org/software/cvs/cvs.html.

http://www.cyclic.com is another good starting point. In particular, look out for an excellent document known
as the 'Cederqvist' (after it's author, Per Cedergvist). Also on the Web at
http://www.sourcegear.com/CVS/Devl/interface is a list of user interfaces you can use with CVS.

There is an interesting paper on managing third—party source code with CVS by Luke Mewburn at
http://goanna.cs.rmit.edu.au/~lukem/papers/3rdparty—and—cvs.html.

One book on CVS that's well worth looking out faor is Open Source Development with CVS by Karl Fogel

(Coriolis, ISBN 1-57610-490-7). Parts of this book are also available on the Web have a look at the
Coriolis web site at www.coriolis.com.

Summary

In this chapter, we've seen how to use CVS the Concurrent Versions System a powerful, free tool for
tracking code changes during software development. Its support for multiple users and network configuratio
has made it the version management tool of choice for many programmers.

We've seen what's involved in setting up and using CVS with a single user on a local machine, and also witt
multiple users across a network.

We've also looked briefly at some of the graphical clients that are available for CVS.

Since CVS has such a large range of commands, here is a quick summary of the main ones you'll need to u

add add a new file/directory to the repository

admin administration front end for rcs

checkout check out sources for editing

commit check files into the repository

diff show differences between revisions

history show repository access history

init create a CVS repository if it doesn't exist

log print out history information for files

release indicate that a module is no longer in use
remove remove an entry from the repository

status display status information on checked out files
tag add a symbolic tag to checked out version of files
Resources 59

Professional LINUX Programming

update bring work tree in sync with repository

You can always get more help on any of these commands with cvs —H <command>.
CVS commands are always in the format:
cvs general-option command command-specific-option [file names]

The general options, available in most CVS commands, are:

—d <repository> specify the repository to use

—e <editor> specify an editor to use

——help, -H provide help on a specific command

-n no action

-q, Q quiet

-t trace execution

-V, ——version print the CVS version

-z <level> compression level when used across a network

Resources

Chapter 3: Databases

Overview

Almost all applications have a need to store data. This can range from quite basic requirements such as sto
a small number of startup options, to huge complex databases like those needed for managing census data
an entire country. Equally importantly, the storage requirements can vary between the need to store basic
fixed length text, and large binary objects.

It's important to choose an appropriate solution to your problem. There is no point in using a large complex
database server to store the background image used on your Linux desktop. Equally it would not be sensibl
to try and store all the data needed for tracking stock in a large warehouse in a single text file.

The appropriate choice depends on both the volume and type of data. Where data contains a large amount
essentially 'single objects' (using the object word in it's general sense) to be stored, a flat file, or an indexed
flat file, might be the more appropriate solution. If the data is very hierarchical, a tree type structure like that
used in an LDAP server might be more appropriate(we will meet LDAP servers later on).

Where data consists of several different types of objects, related to each other by virtue of their properties,
then a relational database is probably a good choice. Relational databases are very flexible, and you can st
most types of data structures, including trees, in them if that is appropriate.

On Linux, we are lucky in that we have a wide range of ways to manage our data, so we can pick a solution
that is appropriate to our needs. At the simplest level we can just use flat files, either using the low level API
or perhaps if it is a Ghome application using the gnome_config API which simplifies access. If our needs are
simple, but we require rapid access to indexed data, we might consider using the ndbm routines. These allo
the storage of reasonably arbitrary data, but provide retrieval via an index so we can access data very
efficiently. These routines are described in Beginning Linux Programming. However such solutions are not
suitable for more complex needs, and we won't be considering them further.

Further up the scale we have three principal choices, mSQL, MySQL, PostgreSQL, which we will discuss
further. We could also consider InterBase, which is formally a commercial product. However, at the time of
writing it was available on Linux at no cost, complete with source code. If our needs are more extreme, then
we might have to consider using a Linux port of one of the non—-open source commercial databases, such a
DB2, Sybase or Oracle. Fortunately few people have needs that are quite so demanding, and most should t
more than happy with the more common open source solutions such as MySQL or PostgreSQL for their
database needs.

Choosing a Database

Before we move on to more technical issues, it's worth briefly considering three most popular open source
'SQL based' solutions available on Linux, and which one would be an appropriate choice for meeting your
database needs. At the time of writing, source code is available for all three of these databases, and MySQL
and PostgreSQL are free of all license fees. It's possible that license restrictions may have eased, or becom
more restrictive, or even that some later versions of the sources are no longer available. You should check t
web sites for the exact current license requirements.

Chapter 3: Databases 61

Professional LINUX Programming
mSQL

David Hughes, a PhD researcher at Bond University in Australia, was working on a network management
project called Minerva, which required a database. He wanted to use the standard query language SQL, but
only 'free' database available at the time was Postgres, which used its own query language, PostQUEL.
David's solution was to write an interface program that took basic SQL statements, converted them to
PostQUEL, and passed them on to a Postgres server. This was called miniSQL, or mSQL. After a while it
became clear that the Postgres server and the translation was more complex a solution than was actually
needed, and he enhanced mSQL so that it no longer needed the Postgres backend server. This standalone
mSQL is still available today, and it can be found at http://www.hughes.com.au/.

MySQL

MySQL came about in a remarkably similar way to mSQL. A company called TcX was developing
web-based applications using an in—house database, and realized that an SQL based approach would be r
appropriate. They decided to base their APl on the mSQL one, and came up with a product called MySQL.
Over time MySQL and mSQL APIs have diverged a little as MySQL has been developed, but they still have
many similarities that makes moving code from mSQL to MySQL reasonably easy. MySQL can be found at

http://www.MySQL.com/.
PostgreSQL

PostgreSQL has its origins in Ingres (a database originally written at the University of California at Berkeley)
At the time of writing it was still available commercially from Computer Associates. Another database called
Postgres was also developed at Berkeley not long after Ingres, to experiment with object relational ideas.
Initially Postgres did not use SQL at all, but around 1995 Jolly Chen and Andrew Yu added SQL to Postgres
and released a new version called Posgres95.

In late 1996, development had moved out into the open source community, and the product was renamed
again, this time to PostgreSQL, it continues to be actively developed. Since it has no commercial ties,
PostgreSQL can be freely distributed and appears on many Linux distributions. PostgreSQL can be found a

http://www.postgresql.org/.

Which is Right for Me?

Given three midrange databases, all having source code available, which one is the right choice for your
project? As always it depends! There is no single right answer. At the time of writing, the easiest choice is
between mSQL and MySQL. MySQL has better support for the SQL standard, and its license is slightly mor
open, so it's the favorite. However by the time you read this, it's possible that mSQL will have retaken the
lead, since both databases continue to be actively developed.

Choosing between MySQL (or perhaps mSQL) and PostgreSQL depends much more on your requirements
what you need is a lightweight database with fast queries for internal or personal use, but are not too worrie
about transaction support (which we will explain later), or other more advanced features of SQL, then MySQC
is probably your best choice. Indeed it is widely used behind many web servers where transaction support is
much less of a concern than the speed of data retrieval. This is because most web servers require exclusive
read only data to be passed to clients, and updates to that data need only happen rarely.

If however, you want to distribute an application with a database, and you are concerned about transaction
support, then PostgreSQL is probably the one to go for. To decide between those two extremes, have a lool

mSQL 62

Professional LINUX Programming

the web sites, and make up your own mind. All are excellent products.

PostgreSQL

For the rest of this chapter, and the next, we are going to concentrate on PostgreSQL, for four reasons:

1.t is available under a very relaxed license, and can be used without fee. Here is a brief extract of the
license, which gives you the general idea:

Copyright (c) 1994-8 Regents of the University of California

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose, without fee, and without a written agreement is
hereby granted, provided that the above copyright notice and this paragraph
and the following two paragraphs appear in all copies.

(The rest of the paragraphs are standard disclaimers).

2.1t is already included in many Linux distributions, so chances are, if you are running Linux, you eithel
already have PostgreSQL installed, or at least have it on a CD in an installable format.

3. It also has support for transactions, which allows you to execute several data updates, then decide if
you want all or none of the updates to go ahead. For multi—user use, where data is being updated, tf
can be a very important consideration. Even in single user applications, the availability of transaction
support can be very useful.

4. Finally, it has better support for ANSI SQL than the others, so you can explore the more complex
areas of SQL with it.

Installation and Commissioning

We are not going to say much about PostgreSQL installation, because the chances are you either already h
it installed, or it came with your Linux distribution. If not then a download and install from the PostgreSQL
site_http://www.postgresgl.org may be called for. Both source and binaries are available, though we would
normally recommend a binary install, since it's easier and quicker.

When PostgreSQL is initialized for the very first time, only one database exists, templatel, and this is the
database you must connect to. The only user permitted to access the server by default is probably the datat
administrator user, postgres, which will have been created when PostgreSQL was installed.

Once you have PostgreSQL installed, you need to make sure that the server process is running, and that th
server database has been initialized. To initialize the database, first make sure you are the root user, then n
the directory /usr/local/pgsgl/data. Change the ownership of this directory to the postgres user by typing:

chown postgres /usr/local/pgsgl/data.

Change to the postgres user by typing:

su postgres

and then initialize PostgreSQL as follows:

lusr/local/pgsql/bin/initdb —D /usr/local/pgsqgl/data

PostgreSQL 63

Professional LINUX Programming

Check that there is a postmaster process running (this the server process for PostgreSQL):

ps axw""

If your postmaster process is running, then depending on your setup you will get something like this:
474 pl S 0:00 /usr/local/pgsql/ bin /postmaster D/usr/local/pgsql/data

If there is no postmaster process running, then start one:

ustr/local/pgsgl/bin/postmaster —D /usr/local/pgsqgl/data

Of course, if you have already set $PATH to include /usr/local/pgsql/bin, or the equivalent, then you need nc
type in the path, just:

postmaster D ustr/local/pgsql/data
It is a good idea to set your $PATH variable, as it will generally save you a lot of time later on.

Normally, distributions ensure that the first time the postmaster server is started, if the PostgreSQL databas
has not already been initialized, then the initdb command is automatically invoked to initialize PostgreSQL
for first time use. You may need to check the run level configuration of your system once you have installed
PostgreSQL, to check the PostgreSQL daemon is automatically started and shutdown.

Note On some older distributions, notably Red Hat 6.0, the initdb function was not automatically
invoked to create an empty database for first time use, however the manual process is
documented on the Red Hat web site, and in Professional Linux Deployment.

Once you are confident the postmaster process is running, it's time to try and connect to the server. Wheny
connect to the server, you must connect to a database. Like many other true database servers, PostgreSQL
serve many different databases from the same server process.

PostgreSQL comes with a handy command line tool for accessing databases, psql, and this is tool we will u
for experimenting with PostgreSQL, before we get on to access from a programming language.

To check that your server is running correctly, you must first become the database admin user. Login at roo
then execute:

su — postgres

Now you should be able to connect to the server, using the command:
$ psql templatel

With a bit of luck, you should get a sequence similar to this:

$ psql templatel
Welcome to psql, the PostgreSQL interactive terminal.
Type: \copyright for distribution terms
\h for help with SQL commands
\? for help with internal slash commands
\g or terminate with semicolon to execute query
\q to quit

PostgreSQL 64

Professional LINUX Programming

templatel=#

This is success! You have connected to a running PostgreSQL server. Of course by the time you read this,
there have probably been upgrades to the versions, but the general idea is unlikely to change.

Creating Users

The first thing to do is quit the psql session, because normally you should not access the server as the
administrative user, just like you should not use Linux as ‘root' any more than you have to. To exit psql entet

Templatel=#\q
and you should return to the command prompt. We will come back to the many '\' commands shortly.

Now we know that the server is well, we need to create a user of the server. It's normally convenient to mak
the username match your normal login, though you don't have to do this. Creating PostgreSQL users is don
with the createuser command. Initially we need to do this as the postgres user, since when the server is firsi
initialized, this is the only user with administration privileges on the server. It is also the only user the
PostgreSQL server knows about.

$ createuser rick

‘Shall the new user be allowed to create databases? (y/n) y™
Shall the new user be allowed to create more new users? (y/n) n"
CREATE USER

$

If we need to delete the user again, we can do this with the dropuser command.

Now we should be able to login as ourselves, and run psql templatel to connect to the server. Notice that w
allowed the user we just created to create new databases. By default only the administrative user can create
databases.

Creating Databases

It's normally convenient to allow users to create the databases they need. That way they become the
administrator of their own databases, and don't need to bother the PostgreSQL administrator (or if it's
yourself, save you swapping logins!). It also minimizes the amount of use you need to make of the postgres
administration user account.

Now we have permissions as an ordinary Linux user, we can run psgl, connect to the templatel database, ¢
create ourselves a database to use. Databases are normally created and deleted inside the psqgl command :
in the normal SQL standard way, using the following commands:

templatel=# CREATE DATABASE <Dbname>;
templatel=# DROP DATABASE <Dbname>;

Notice that the commands have semicolons at the end. All the SQL commands you issue to PostgreSQL ar
not considered complete until a';' has been entered, just pressing return is not good enough. As an alternati
you can terminate lines with \g', but ;' is a more common SQL convention. This ability to write many lines,
that are a single SQL command, is useful when you want to write longer SQL statements, such as those fou
when creating tables.

Installation and Commissioning 65

Professional LINUX Programming

If you, as the PostgreSQL administrator, want to create and delete databases outside the psql shell, this car
done from the shell command line:

$ createdb <Dbname>
$ dropdb <Dbname>

In this case you will be the database administrator for any new databases you create. You may find that son
older distributions of PosgreSQL start with no database, and you must run createdb before you can use psq
connect to the server.

If you run the psgl command and don't specify a database, then by default psqgl will try and connect you to a
database with the same name as your user name. As a result, it's often convenient to create a database wit
that name, even if you only use it for experimenting with.

Backing Up Databases

Having created databases, now is probably a sensible place to mention backing them up. The command

$ pg_dump [-a —d —s -t table] database_name

is probably the best way to do this. The main options are:

-a dump only data in a database, not it's structure

—d dump data in the form of SQL commands for re—adding it later
-S dump only the definition of the database, not it's data

—t table dump for a named table only

The online manual that comes with PostgreSQL has full details. Remember, you put your data in a database
because it was important so it's also important to have a backup of the data!

Remote Access

Before we leave the issues of installation and commissioning of PostgreSQL, it's perhaps worthwhile makin
a quick mention of remote access. PostgreSQL is a 'proper’ client server database, and can be accessed or
other Linux machines from across a network using TCP/IP. Indeed you can access it from Microsoft Window
if you like, the source of PostgreSQL comes with a version of psgl that can be built with Visual C++, and
there is also a nice GUI Interactive PostgreSQL program that can be found at http://www.zeos.dn.ua, So eve
hardened Windows GUI people can access your server:

Installation and Commissioning 66

Professional LINUX Programming

Bl Intetactrve PostgreSQOL
fle Sesch View Ewscute Heb
‘rg&ﬁnﬁ‘\&ﬂ»". BB s e =a s

cadect * 23
select *from chidrer| 5 |

14 Jerry
10 Arvdew

-

[Evecution e 010 sec [Fows cuarity 2 [Camertiow1
Local users who prefer a GUI are also catered for see pgaccess, which you can find at

http://www.flex.ro/pgaccess, or Mpsgl, which can be found at http://www.mutinybaysoftware.com. By way of
comparison to MS-Windows, here is pgaccess running on a Red Hat system:

1
Before you access PostgreSQL across a network, there is some configuration needed. PostgreSQL, by def:
does not permit remote connections, a very sensible default. To enable this you must manually edit the
configuration file /var/lib/pgsql/data/pg_hba.conf to permit remote access. Depending on your installation thi
file may sometimes be found in the /usr/local hierarchy. If it's not in any of the obvious places, the locate or
find commands should help you out. The file is well commented, and it's very easy to add an additional line
the bottom, to permit remote connections. For example we added:

host all 192.168.100.0 255.255.255.0 trust

This allows access from all machines on our local network, which is a Class C network using 192.168.100 a
the network part. Normally you will not need to restart the PostgreSQL server for this change to take effect.
Edits are immediately effective, unlike MySQL that normally requires a reload for configuration changes to
take effect.

Installation and Commissioning 67

Professional LINUX Programming
Database Fundamentals

At this point experienced database people might like to skip forward_to the next section, Using psql, becaust
we are going to have a very quick look at the fundamentals of databases.

Relational databases were born out of work Dr. E. F. Codd did in the early 1970s, when he applied set theol
to the storage and retrieval of large amounts of data. Before then databases had been mostly either hierarcl
or based on a network model. Although these databases worked, they were not very flexible, and the relatio
model was a great step forward. The new vogue, some would claim 'the way forward', are Object databases
However, currently they are not taking the world by storm, and many Object systems still use relational
databases for their persistent storage needs.

In a relational database, all data is stored in tables, which are sometimes referred to as 'relations'. Tables ar
many ways like the spreadsheet (which was in fact designed after the relational database), in that it is
composed of records (often called rows, or sometimes tuples) and fields (a single column in a row, sometim
called an attribute). A database will normally be composed of many tables, each with many rows and
columns. The real power of relational databases comes from the way the data is broken down into its smalle
elements, and the manner in which data from one table can be related to data in a different table in a very
flexible way.

When deciding how to break data down to store it in a database, you must work through a design process t«
'normalize’ your data, and design the tables, rows, and columns. There are several increasing levels, or forn
of normalization, each form being more rigorous than the last. In practice only the first three forms are
commonly used, and those are the only three we will look at here.

First Normal Form

This is reasonably easy to understand, and basically says that there must only be one value in each field, ar
that your tables must be rectangular. The reason for the first part of this is quite apparent don't try and store
persons name in the same field as their age for example. This is pretty much common sense, since intuitive
we can that see that this would be like having a 'C' structure where we didn't properly break down the data
into separate members.

The second part is also reasonably easy it stops us having repeated columns. So, if we had a table for stor
book information, it tells us that we can't have some rows with one author column, and some rows with

several author columns where a book had more than one author. Again this seems pretty sensible, after all,
how could we ever know in advance how many authors a book could have? As we are writing this, we don't
know for certain how many authors will contribute to this book, though we do have a pretty reasonable idea.

How far do you take this breakdown of data? In the course of reviewing this book one of the reviewers kindl
pointed out that in Dutch a lasthame can be preceded with an interjection. In the case of the author this wou
be "van". However this part of his name should not be used for sorting. Alphabetically he should not be foun
under the Vs. This means that for the Netherlands we should break the last name down into two separate
components, because we might need to sort data based on only the last component of the name.

Experience suggests that breaking it down just a bit more than you believe is required is often advisable, bu
it's often difficult to predict in advance the optimal breakdown of data.

Database Fundamentals 68

Professional LINUX Programming

Second Normal Form

The second rule is that all the data in a row should depend on a primary key. This means that each row in y
table should have one key piece of data (that is the information on which all the other data in the row
depends); usually it is in a single column, but can occasionally be the combination of several columns. For
example, you should not have a row containing information about authors where the key column was a first
name, as there are bound to be several authors sharing a first name. A combination of first name and last n
might do, but this is still not a great idea, because it may not be unique. Something like a passport number,
however, is guaranteed to be unique, at least for citizens of the same country, and might make a good key.
say might, because how many people know their passport number from memory? Also some people don't
have passports at all, so in practice even this would not be a good key to choose.

In circumstances where there is no obvious unique key, we often create a unique value for each row, which
has no meaning beyond that of providing a way to refer uniquely to each row of data. We will see this in a
later chapter, where we create some '_id' fields for guaranteed uniqueness.

Third Normal Form

This is the hardest one of the three to explain. It says that each column in a row must only depend on the
contents of the primary unique key column or columns, not on any other column's data. Suppose we had a
book table with information about books in it. We might reasonably choose to use the ISBN as a primary ke
since it's well known and unique, and perhaps store the book title and publisher name in the rows. Now
suppose later on we want to store the web address of the publisher. It would be tempting to simply add an
extra column to our book table to store this extra piece of information. The web address would depend on th
primary key, since it depends on the ISBN. However, this would break third normal form since in fact the we
address actually depends only on the column containing the publisher's name, which is not the primary key.

Intuitively we can see that this would not have been a great decision, since we could end up storing the wek
address of the same publisher many times, which would be wasteful. We should break the storage of the we
address out to a new separate table. We can then 'join' the data between the two tables when we require th
web address.

De—-normalization

You will sometimes hear people talking about de—normalizing the database to improve its performance. You
should only ever do this once you have fully normalized your data and decided that you do in fact have a
performance problem. Even then, it's much more likely your performance problem is due to poor application
design, not over—normalization of data. Analyze where your performance problem is, and consider very
carefully if it might not stem from a higher—level design flaw, rather than the way the data is stored. Always
beware of trying to 'improve' the design of data arranged in third normal form!

A Simple Database

Well, enough of theory, what does this mean in practice? Let us suppose we want to build a database for
books, authors and publishers. It's been done before, but it's a nice example because it's easy to understan

It's reasonably intuitive to see the first three tables author, book, and publisher, so let's start by designing
them. We will keep the data we need to store very basic, and just store names and book titles.

Second Normal Form 69

Professional LINUX Programming

Let's start with authors. As we mentioned, names are not a good unique value to use, so we will invent a
unique ID to use, which we will call author_id. This will be our primary key for the table. Here is our first
stab at the author table:

author_id Fname Lname

1 Richard Stones

2 Neil Matthew

3 Andrew Froggatt

4 Peter Wainwright
5 Simon Cozens

6 lain Banks

As you can see, we have separated the first and last names, in case we ever need to access them indepen
at some point in the future, but (sorry!) we have not catered for Dutch names specifically. We have shown tt
rows ordered by author_id, but you should remember that this is just for our convenience the database
internally is free to store them in any order it chooses. Actually some databases have a 'clustered' option, to
force the storage order, but we won't consider that here. If the order of rows extracted from a table matters t
you, you must specify the order you require when you retrieve the data.

The book table is also easy, since this time we know that books do have a unique reference, the ISBN:

ISBN Title pub_year
1874416656 Instant UNIX 1995
1861002971 Beginning Linux Programming 2e 1999
1861003021 Professional Apache 1999
0349101779 The Wasp Factory 1985

Publisher should be even easier:

publisher_name web_address
Wrox WWW.WIOX.com
Addison—-Wesley WWW.aw.com
Abacus

although this is a case where we might consider generating a unique _id column for publishers, to keep the
length of the primary key column short, which is more efficient. Since we know there are not a huge number
of publishers (at least in database terms), and to keep it simple, we decide to just use the name here.

There is one other problem. As you can see, we don't have a web address for Abacus. Now they may well
have a web address, in fact they probably do, but it's not printed on the back of the book | own, so currently
don't know what it is. This means that for the web_address column of Abacus, we need to use a NULL value
This is a special database value that means 'unknown'. It doesn't mean there isn't a web address, or that the
web address is an empty string, it just means it's unknown. We might also have to use NULL if we were
storing data from a survey, and some people had refused to state their gender we may use a NULL to indic
that we don't know the answer. It's very important to remember that two NULLs are not the same as each
other if we had had another publisher whose web address we didn't know, we would have set this to NULL
well. The two NULLs are different, since we could be fairly sure both publishers actually had different web
addresses.

As you can see, we have three nice clean tables, each is rectangular, each has only one piece of data in ea

Second Normal Form 70

Professional LINUX Programming

cell, and each has all the data in the row depending on a single key. We have kept the key in the first colum
since this makes the tables much easier to understand. Unfortunately, this doesn't tell us all we need to kno

Suppose we want to know who the publisher was for each book. We can't tell from the current data, but this
easy to correct we just need to add a publisher_name column to the book table so that each book has a
publisher. That way if we know a publisher, we can just search the book table for all the entries having that
publisher name. Alternatively if we know the book title and want a web address, we search for the book title
in the book table, then use the publishers name to locate the entry in the publisher table that will contain the
web address (or NULL if we are unlucky!).

The publisher_name column in the book table is called a foreign key, because it stores a value that appears
a different table as a primary key.

Since each book only ever has one publisher, what we have here is a many to one relationship between boc
and publishers (many books could be published by one publisher), but each book is published by exactly on
publisher. OK, in practice this might not always be true, but it's sufficient for our purposes.

This structure still doesn't tell us anything about who wrote each book. Suppose we want to find the books
Peter Wainwright contributed to. You might be tempted to add an extra column to the book table, to store
author_id. We would then have a relationship between the book table and author table, like this:

Now suppose we want to add the data for Neil Matthew. He contributed to both Instant UNIX and Beginning
Linux Programming. In this case we would have two links, because the author_id for Neil Matthew, 2, would
appear twice in the book table, once against Instant UNIX, and once against Beginning Linux Programming:

Second Normal Form 71

Professional LINUX Programming

But wait a minute; you may have noticed that in the diagram before we only put one author ID per row.
Instant UNIX had two authors, Neil Matthew and Rick Stones. How do we show they both contributed to the
book? We might be tempted to add an extra column with author_id2 to the book table, but this would be a
very bad idea. Professional Java Server Programming lists fifteen authors clearly adding an extra column f
each author is excessive, and how would we know how many columns to add? Suppose we added fifteen a
then we found a book with sixteen authors? Disaster.

What we have here is a many—-to—many relationship between books and authors, each author could contribi
to many books, and each book could have contributions from many authors. Unfortunately many to many
relationships are not directly usable in relational databases. We solve this conundrum by adding an extra tal
which we will call author_book, and will have just two columns, author_id and Isbn.

This adding of an additional table, to cater for many—-to—many links is very common in relational database
design, and the new table is often referred to as a link table. As a pair these columns are unique, since we
would only ever need to put in each author—book relationship once. This new 'link’ table will act to join the
author and book tables, and support our many-to—many relationship.

Each row in this new table describes a single relationship between an author and a book, so there will be or
entry with author_id 2 and isbn 1874416656, one entry with author_id 1 and isbn 1874416656. That way
knowing the ISBN of a book we can search the table and find both author_ids, and hence the author names
Instant UNIX, and by starting with an author name, we could find their author_id and then search the
author_isbn table for the ISBNs of books they had contributed to. The data in author_book for our sample d:
would look like this:

author_id Isbn

1874416656
1874416656
1861002971
1861002971
1861002971
1861003021

0349101779

As you can see, each combination of columns is unique, and is called a composite key, and this joining tabl
allows us to relate many books to one author, and many authors to one book.

O [OTIN|FP (N |F

Second Normal Form 72

Professional LINUX Programming

Our final database structure looks like this:

That was, of necessity, a very brief look at database design, which is a complex subject, on which many boc
have been written. If you want to know more about database design, then a good starting place is Database
Design for Mere Mortals, by Michael J. Hernandez, pub. Addison-Wesley, ISBN 0201694719.

Using psql
After that aside into database design, let us get back to PostgreSQL, and see what we can do with it.

We don't have the space in this chapter to teach SQL in any depth. If you want more detail about SQL, we
suggest a couple of books you might like to consider, Instant SQL, by Joe Cleko; The Practical SQL
Handbook, J Bowman et al., pub. Addison-Wesley; and PostgreSQL Introduction and Concepts, available
online from the PostgreSQL web site. What we will do here is work through some of the basic SQL
commands that should cover your basic needs.

There are three types of commands we can issue to psql data definition commands, data manipulation
commands, both of which affect data in the database, and '\' commands, which are commands to psql itself.
We will look at these in turn.

Commands to psql

A list of these are available by typing \? at the psgl command prompt. We will list them all here, for ease of
reference, then will look in slightly more detail at the commands you are most likely to use.

\? —— help

\a —- toggle field-alignment (currently on)

\C [<captn>] —— set htmI3 caption

\connect <dbname|-> <user> —- connect to new database

\copy table {from | to} <fname>

\d [<table>] —- list tables and indices, columns in <table>, or * for all

\da —— list aggregates

\dd [<object>]- list comment for table, field, type, function, or operator.
\df —- list functions

\di —— list only indices

\do —— list operators

\ds —— list only sequences

\dS —— list system tables and indexes

\dt —— list only tables

\dT —— list types

\e [<fname>] —— edit the current query buffer or <fname>
\E [<fname>] —— edit the current query buffer or <fname>, and execute

\f [<sep>] —- change field separator (currently '[")
\g [<fname>] [|[<cmd>] —— send query to backend [and results in <fname> or pipe]
\h [xkcmd>] -- help on syntax of sql commands, * for all commands

Using psql 73

Professional LINUX Programming

\H —- toggle htmI3 output

\i <fname> --read and execute queries from filename
\I —- list all databases

\m —— toggle monitor-like table display

\o [<fname>] [|[<cmd>] —— send all query results to stdout, <fname>, or pipe
\p —— print the current query buffer

\q —— quit

\r —- reset(clear) the query buffer

\s [<fname>] —— print history or save it in <fname>

\t —— toggle table headings and row count

\T [<htmI>] -- set htmI3.0 <table ...> options

\x —- toggle expanded output

\w <fname> —- output current buffer to a file

\z —— list current grant/revoke permissions

\l [xemd>] -- shell escape or command

The main ones you will need to know are:

\? This simply lists the list above.

\c table {from | to} Copies the data from a table to a flat file, or loads a table from a flat file. Often

<fname> the copy 'in' to the database is done using SQL insert statements, but the copy
command does provide a good way of backing up database data at the table
level.

\d <table> On it's own , \d lists the tables in your database. If you give it the optional table
name parameter, then it lists the columns in that table.

\e Edits the current buffer. When you type into psqgl, you can type in multiple lines
before you execute them. This is quite handy, but annoying when you make a
mistake early on, and don't discover it till later. The \e command lets you gdit the
buffer. You can override the default editor by exporting the environment
variable EDITOR before starting psqgl. You can also use the up and down arrows
for moving through your command history.

\h <cmd> This lists the syntax of SQL commands. If you give it a partial command, Juch
as create, it will even tell you the possible more specific commands you miay
have been interested in, such as create table, create index etc.

\i <fname> Executes commands from a file.

\| Lists all databases in the current server.

\q Quits.

\r Resets the buffer you are typing into, so you can start over quickly.

As with all of PostgreSQL, you will find more information on the web site and in the installed documentation
under /usr/doc/postgresql-version.

Data Definition Commands

These are commands that define the structure of your database, rather than the data in it. The most commo
example is creating tables to store data in. Experienced users of SQL will find most of this section gratifyingl
familiar, because PostgreSQL does follow the SQL92 standard reasonably closely (although with a few

omissions, which reduce with every release). Most of the differences are down to PostgreSQL's extensions,
which you don't have to use if you don't need them.

Experienced SQL users may still find just reading quickly through this section worthwhile, because there are
some slight differences from what they may be used to. If you use a CASE tool, you may find that they can

Data Definition Commands 74

Professional LINUX Programming

often generate DDL (Data Definition Language) for creating databases directly from a design in the case toc
and this can be a very efficient way of generating your database.

In this chapter, we will do all of our work with psql from the command line, typing in commands as we go. In
practice, it almost always better to create some ordinary text files containing the SQL for your data
manipulation, then feed them to psql like this:

$ psql —d databasename -f command-file.sq|

That way, it's much easier to modify your database design. Just edit the command file, dropping the existing
table (saving the data first if needed!), and then re—-executing the modified command file.

Creating and Dropping Tables

First let's look at the syntax for creating a new table. The easiest way of getting a summary of the syntax is
actually to ask psqgl, with \n CREATE TABLE, which gives us the following syntax summary:

Command: CREATE TABLE

Description: Creates a new table

Syntax:

CREATE [TEMPORARY | TEMP] TABLE table (
column type

[NULL | NOT NULL] [UNIQUE] [DEFAULT value]
[column_constraint_clause | PRIMARY KEY }[...]]

L]

[, PRIMARY KEY (column [, ...1)]

[, CHECK (condition)]

[, table_constraint_clause]

) [INHERITS (inherited_table [, ...])]

People with SQL skills will notice this is not quite standard SQL, though it is very close. In particular the
'INHERITS' keyword is not in normal SQL syntax. This is part of PostgreSQL's object relational extensions,
and lets you do fascinating things, such as inherit column definitions from other tables. Sadly we don't have
the space in this chapter to explore these features. The rest of the syntax is fairly standard. As an example,
will create a very simple table, to store the ages and first names of some children. All you need to do is type
this in at the psqgl prompt:

Dbname=# CREATE TABLE children (
Dbname(# fname VARCHAR,
Dbname(# age INTEGER

Dbname(#);

being sure not to forget the trailing semi colon, and not to put a comma before the closing brace. psq|l
responds with the word CREATE telling you the table was successfully created. We can ask psql about the
table we just created by entering

Dbname=# \d children;
it responds with:

Table “children"

| Attribute | Type | Modifier |
| fname | varchar() | |

Data Definition Commands 75

Professional LINUX Programming

| age | integer | |

We can drop the table again with drop table children, which simply throws the table away. The drop table
command has the following syntax:

DROP TABLE class_namel, ... class_nameN
If there was any data in the table, that gets thrown away too, so be careful!

At the moment there is nothing that constrains the data in the table, providing the types are correct. It would
be perfectly reasonable as it stands to insert data about the same child twice, or many times. When working
with databases, we invariably need to ensure that there is a unique way of referring to a single row in a table
Often this is done by making the value in a single column unique, though sometimes it is a combination of
two or more columns that provides a unique reference or key. If we want to ensure that we only allow each
child's name to appear once, then we can ask the database to enforce this rule (always a much better idea
relying on application code or worse, users!) by specifying a constraint that fname is a primary key.

Dbname=# CREATE TABLE children (
Dbname(# fname VARCHAR PRIMARY KEY,
Dbname(# age INTEGER

Dbname(#);

psql warns us that to implement the primary key, it has created an index. This is fine.

NOTICE: CREATE TABLE/PRIMARY KEY will create implicit index
‘children_pkey' for table 'children’
Dbname=#

Although we have not yet got onto manipulating data in tables, we can jump ahead for a moment, and checl
that all is well, by trying to insert some data into our new table:

Dbname=# INSERT INTO children VALUES ('jenny’, 14);
INSERT 20195 1

Dbname=# INSERT INTO children VALUES (jenny', 15);
ERROR: Cannot insert a duplicate key into a unique index

The numbers you see after the first insert will be different you can ignore these for now. As you can see,
PostgreSQL is enforcing the rule about uniqueness for us. Sometimes it is not a single column that needs tc
unique, but a combination of two or more columns. Suppose we wanted to ensure that it was only the
combination of fname and age that was unique. We do this with a similar syntax, but using the
CONSTRAINT keyword at the end of the list of columns for our table, and specifying which combination of
columns must be unique:

Dbname=# CREATE TABLE children (

Dbname(# fname VARCHAR,

Dbname(# age INTEGER,

Dbname(# CONSTRAINT fname_age PRIMARY KEY (fname, age)
Dbname(#);

psql responds (providing you remembered to drop any earlier versions of the table first!):

NOTICE: CREATE TABLE/PRIMARY KEY will create implicit index
‘fname_age' for table 'children’
CREATE

Data Definition Commands 76

Professional LINUX Programming

Now PostgreSQL will allow us two rows with the same fname, so long as the age is different:

Dbname=# INSERT INTO children VALUES (jenny', 14);

INSERT 20195 1

Dbname=# INSERT INTO children VALUES (jenny’, 14);

ERROR: Cannot insert a duplicate key into a unique index fname_age
Dbname=# INSERT INTO children VALUES ('jenny’, 15);

INSERT 20228 1

The next important restriction we can impose on data in our tables is to prevent NULL values. This is very
simple, just put 'NOT NULL' after the column type, since by default NULL values are usually allowed.
Suppose we went back to our original table definition, but wanted to ensure the fname could never be NULL
The syntax we need is simply:

Dbname=# CREATE TABLE children (
Dbname(# fnrame VARCHAR NOT NULL,
Dbname(# age INTEGER

Dbname(#);

The last special constraint we will look at is automatically creating an incrementing value in a column. This
is such a common requirement that there is a special syntax for creating columns with values that
automatically get incremented when data is inserted just like we used in our author table earlier, when we
wanted an author_id that was unique. To do this we define the column type as SERIAL, like this:

Dbname=# CREATE TABLE children (
Dbname(# childno SERIAL,
Dbname(# fnrame VARCHAR,
Dbname(# age INTEGER

Dbname(#);

When you run this, psqgl warns you something special is happening:

NOTICE: CREATE TABLE will create implicit sequence ‘children_childno_seq'

for SERIAL column 'children.childno’

NOTICE: CREATE TABLE/UNIQUE will create implicit index ‘children_childno_key" for
table ‘children’

CREATE

This rather strange sequence of messages is because PostgreSQL is using another lower level facility it has
called sequences, in order to implement the SERIAL column type. In general it's not important to know abou
sequences, except, as we shall see in a moment, when you drop and recreate tables that use SERIAL colur

types.
This time when we insert data, we need to explicitly avoid adding data to the SERIAL column:

Dbname=# INSERT INTO children (fname, age) VALUES (‘Andrew’, '10");
INSERT 20327 1

Dbname=# INSERT INTO children (fname, age) VALUES (‘Jenny', '14");
INSERT 20328 1

Dbname=# SELECT * FROM children;

Childno |fname |age

4
T

1 |Andrew | 10

2 |Jenny | 14
(2 rows)

Data Definition Commands 77

Professional LINUX Programming

Don't worry about the new command 'select' we will be explaining it shortly. For now all you need to know is
that it retrieves data from a table for you.

As you can see, PostgreSQL automatically creates an incrementing value for us. However, there are a couf
of things to be aware of. The first is if we try and drop the table children, and then recreate it exactly as
before, we get a rather strange error message:

ERROR: Relation 'children_childno_seq' already exists

This is because although we dropped the table, PostgreSQL did not drop the sequence it automatically crea
We must do it ourselves before we can recreate the table:

Dbname=# DROP SEQUENCE children_childno_seq;

This is an unfortunate consequence of the way PostgreSQL currently implements SERIAL columns, and ma
be changed in later releases. It's only a minor annoyance, once you know what the error message means al
how to correct it. If you are not sure what sequences have been left around in your database, you can list th
with the psgl command \ds, which will provide a list.

You should also be aware of a couple of other features of SERIAL columns. Firstly, if you try and insert a
value into a SERIAL field, then providing it's a unique number, PostgreSQL will not prevent you. Secondly, i
you delete all the rows from a table and then insert some new ones, the serial number will not reset and stal
counting from one again. This is often a good thing, because it ensures that even if you had left some other
tables, which used the unique numbers in the table you just dropped, you will not add new rows that the old
stale data could accidentally refer to.

There is much, much more you can do to impose rules on the data in your tables, but those are the main
features that you will need to know.

PostgreSQL Data Types

The last area we need to look at when creating tables is data types. Up to now we have confined ourselves
INTEGER, which is self-explanatory, and VARCHAR, which as you probably guessed, is just a variable
length character string. Since we didn't specify a maximum length PostgreSQL allows the array to grow to a
internal limit.

PostgreSQL has an unusually large range of data types, and even allows you to add your own if you need
additional ones. Here we will just list the main ones:

bool Boolean. Stores true or false. On input, 'y', '1', 'yes', and 'true' are all taken o
mean true; 'n’, '0', 'no’, and ‘false' are all taken to mean false, independently of the
case used.

char(N) stores up to N characters in a fixed length field.

date a date (without time)

float a floating point number

integer a signed 32-bit integer

numeric(p, d) a number with a specified number of digits and precision

time a time (without date)

timestamp a combined date and time

Data Definition Commands 78

Professional LINUX Programming

varchar(N) a variable length string up to N characters. Unlike char(N) unused space is{not
stored in the database.
There are other types, including some unusual ones such as polygons and Ethernet MAC addresses, howe
almost all applications can manage with the set above.

Data Manipulation Commands

We have now seen how to create tables, and had a sneak look at adding and retrieving data from tables, bu
now it's time to look more fully at the data storage and retrieval parts of PostgreSQL. Readers who know SC
already will be pleased to discover that PostgreSQL's support for SQL92 in this area is very good, and all th
syntax we will be covering here is standard. PostgreSQL, unlike some databases, is not case sensitive to ta
names, nor does it matter what case is used for SQL commands. The authors of this chapter tend to type al
upper case on the command line, and always use lower case for all table and column names, partly becaus:
quicker, and partly for consistency.

When writing SQL that is embedded in procedural code, you may find it makes the SQL easier to read if yol
put SQL key words in upper case, while keeping table and column names lower case. We do strongly
recommend you avoid camel case (i.e. names like AuthorBooks) because it may cause you problems if you
ever need to port to a database that is case sensitive, and you have not been perfectly consistent. PostgreS
would not have noticed the inconsistency, since it takes no account of the case in the first place.

Inserting Data

The first thing we need to cover is inserting data into tables. After all, it's going to be difficult to demonstrate
much to do with manipulating data until we have some.

The SQL command for adding data is very simple, it's INSERT and it only allows you to insert data into a
single table with each command. PostgreSQL has a more complex version, which allows you to insert data
extracted from another table, but it's not commonly used, so we omit it here.

The basic syntax is:
Dbname=# INSERT INTO class_name [(attrl, attrN)] VALUES (exprl, exprN);

Notice that PostgreSQL uses the word 'class_name' where 'table_name' would be more conventional. This i
just how the syntax is displayed, and doesn't affect how it is used.

Notice the optional attributes; these are the names of the columns. If we simply want to insert data into all th
columns in a table, we can omit the column names, and just provide values. However, we recommend that \
avoid this shortened form in production code, and always explicitly name your columns. This is much safer
because it will catch any mistakes you might make if you re—order columns in your table, and also allows yo
to avoid accidentally inserting values into SERIAL columns. If you don't specify data for a column when you
insert data, then it will be given the value NULL.

The following session, using some very short names (so that a later display fits on the page better),
demonstrates an insert. In real code we would, of course, use much more descriptive names.

Dbname=# CREATE TABLE tb (
Dbname(# b bool,

Dbname(# cn char(5),
Dbname(# d date,

Data Manipulation Commands 79

Professional LINUX Programming

Dbname(# f float,
Dbname(# i integer,
Dbname(# n numeric(5, 3),
Dbname(# t time,

| varchar() | |

Dbname(# v varchar(32),
Dbname(# v0 varchar
Dbname(#);
CREATE
Dbname=# \d tb;
Table = "tb"
Attribute	Type	Modifier
b	boolean	
cn	char(5)	
d	date	
f	float [
	integer	
n	numeric(5,3)	
t	time	
v	varchar(32)	
vO		

Dbname=# INSERT INTO tb (b, cn, d, f, I, n, t, v, vO) VALUES (', 'CH', ‘June 1 2000,
'12.3', '45', '3.45', '15:32", 'It\'s', 'Hello world, how are you today?");

INSERT 20412 1

Dbname=# SELECT * FROM tb;

blecn | d fli| njt v |vO

y|CH |2000-06-01]12.3|45|3.450|15:32:00|lt's |Hello world, how are you today?
(2 row)

As you can see, there is not a lot to the INSERT statement. Remember to escape single quotes with a'\', ar
dates are safest when they are unambiguous, because not everyone agrees which order months and days
should come in! We used a month name 'June' in our INSERT statement, PostgreSQL stores and reports th
as numeric month, 6.

Retrieving Data from a Single Table

Now we have some data in tables, we might reasonably want to try and get it back out again, and this is whi
SQL comes into it's own with the SELECT statement. For our purposes we only need to use a tiny part of th
SELECT syntax, if you want to know more we suggest you take a look at one of the references.

The basic syntax for SELECT is:

SELECT [DISTINCT] exprl, ... ,.exprN
FROM table_list

WHERE qualifier

[ORDER BY atirl [ASC|DESC], ... ,attrN];

This apparently simple syntax enables you to do most of what you will need for data retrieval. The expr field
let you choose the columns you want, or * which selects all columns. The qualifier allows you to select a
subset of rows, and the ORDER clause allows you to order the result. In more formal terms we could say th
the expr terms allows you to project a subset of columns, and the where clause selects a subset of rows. It's
straightforward syntax, so let's look at a few examples of selecting data from a single table. First we insert

Data Manipulation Commands 80

Professional LINUX Programming

some rows, so we have a table with data like this:

Dbname=# SELECT * FROM children;
childno|fname |age

4+
1

1|Andrew| 10

2|Jenny | 14

3lAlex |11

4|Adrian| 5

5|Allen | 4
(5 rows)

First let's select the child number and the age:

Dbname=# SELECT childno, age FROM children;
childnojage
——— — — — — +___
1] 10
2|14
3|11
4 5
5| 4
(5 rows)

We can also impose an order:

Dbname=# SELECT childno, age FROM children ORDER BY age;
childnojage
——— e +___
5| 4
4 5
1] 10
3|11
2| 14
(5 rows)

Now let's have a subset, ordered by an alphanumeric field in descending order:

Dbname=# SELECT fname, age FROM children WHERE age <="'10' ORDER BY fname DESC;
fname |age

—_———— +___

Andrew| 10

Allen | 4

Adrian| 5

(3 rows)

As you can see, simple SELECT commands are easy to work with.

There are a small number of 'special’ expressions you can select, one of which is particularly useful. Quite
often you will find that you need to know how many rows match a query, but don't actually need to retrieve
the data. For example you might want to know how many rows there are in the children table. This is such a
common need that there is a special way of retrieving just the row count, which is to use the expression

COUNT(*) as the expression in your SELECT statement, like this:

Dbname=# SELECT COUNT(*) FROM children WHERE age < '6";
count

Data Manipulation Commands

Professional LINUX Programming

2
(1 row)

One other 'trick’ that comes in handy is to name the columns in the output of the selection. You do this by
simply adding ‘as name' where 'name’ is the name you want the column to be displayed as. You can name ¢
or just some columns, as you wish. For example we can force the name of the column 'fname’ to be display:
as 'firstname’ like this:

Dbname=# SELECT age, fname AS firsthame FROM children WHERE age < '6';
age|firstname
___+ _________
5|Adrian
4|Allen
(2 rows)

Retrieving Data Combined from Several Tables
Life gets slightly more complicated when we want to combine data from more than one table.

The extension of SELECT to multiple tables is deceptively simple you just list columns from more than one
table, specify multiple tables in the FROM clause, and use a WHERE clause to specify how the columns in
different tables are related.

Suppose we have two tables in a sales order application. One table called 'customer' has customer_id and
customer_name columns, and a table called 'placed_order' has order_id, and customer_id. The intention is
given an order_id, you can discover the customer's name by looking up the related customer_id in the
customer table. We need to know one slight extension to the syntax, which is that to specify a column from :
particular table, where there are columns with the same name in more than one table, we write
table_name.column_name.

If you were writing procedural code, you would write something like:

Fetch customer_id from placed_order where order_id = 4

into customer_id_variable

Fetch customer_name from customer where customer_id = customer_id_variable
into customer_name_variable

However in SQL, you should write this all as one statement, because that allows the SQL engine to process
the query much more efficiently. The SQL equivalent is:

Dbname=# SELECT customer_name FROM customer, ORDER WHERE
(placed_order.order_id = 4) AND (placed_order.customer_id = customer.customer_id);

Let's try this out. We start with our two tables with data like this:

Dbname=# SELECT * FROM placed_order;
order_id|customer_id

1
2|
3|
4
5|
(5 rows)
Dbname=# SELECT * FROM customer;

WKFEr NP W

Data Manipulation Commands 82

Professional LINUX Programming

customer_id|customer_name

1|Rick Stones

2|Neil Matthew

3|Simon Cozens
(3 rows)

Suppose we want to know the name of the customer for order number 4. We just ask:

Dbname=# SELECT customer_name FROM customer, placed_order
WHERE placed_order.customer_id = customer.customer_id AND
placed_order.order_id ="'4',

customer_name

Rick Stones

(1 row)

It doesn't matter which way round the statements are in the 'where' clause, the answer will still be the same.
Nor does it matter which way round the tables are, we can ask the question '"What orders were placed by Ri
Stones?' like this:

Dbname=# SELECT order_id FROM customer, placed_order WHERE
placed_order.customer_id = customer.customer_id AND
customer.customer_name = 'Rick Stones';

order_id

Extending this to three tables is easy. Suppose we additionally had an orderdate table that contains order IC
and dates. We could find both the order IDs and dates for Rick Stones like this:

Dbname=# SELECT placed_order.order_id, orderdate.order_date

FROM customer, placed_order, orderdate WHERE placed_order.customer_id =
customer.customer_id AND orderdate.order_id = placed_order.order_id AND
customer.customer_name = 'Rick Stones’;

order_id|order_date

2|03-07-2000
4|05-04-2000
(2 rows)

Notice that we now also specify the table names we want the columns to be selected from. In this particular
case it would not have mattered, since the value for order_id would have been the same in both tables, but |
does serve to illustrate the point.

Updating Data in a Table

Updating data in a table is very similar to selecting it, except that we can only work on one table at a time.
The basic syntax is:

UPDATE table_name SET attrl = exprl, ... ,attrN = exprN [WHERE qualifier];

Suppose the date in our last example for order_id 2 was wrong, and we want to correct it. All we need is to
update the column, specifying the rows to be updated:

Data Manipulation Commands 83

Professional LINUX Programming

Dbname=# UPDATE orderdate SET order_date = 'March 8 2000' WHERE order_id = '2";
If we don't specify a WHERE clause all rows get updated. This is rarely what is required, so be careful!
Deleting Data

Deleting data is easy, perhaps too easy. It's just the same as an update, except all you need is a table and «
optional condition to specify the rows to be deleted:

DELETE FROM table_name [WHERE qualifier];

Like the update command, delete only works on one table at a time. So to delete all records relating to Rick
Stones, we would have to do it in three steps, in order:

1. DELETE the orderdate entries
2. DELETE the placed_order entries
3. DELETE the customer entries

At first sight it looks like a bit of a problem. Since we can only specify one table, we apparently need some
procedural logic to determine which order_ids belong to Rick Stones first, and then delete the rows in the
other tables.

Actually we can do this in SQL, it's just that we need what is called a subquery, in this case the 'where' clau:
is actually a select statement. Sub—selects are, at the time of writing, one of the standard SQL features that
PostgreSQL possesses that are missing from many of it's competitors. In general you can use a sub-select
where clause in any type of SQL statement, including select statements, and sometimes that is the natural v
of writing the query. However, it is generally in DELETE statements that they are most often needed. In
pseudo code a sub-select looks like:

Delete from table where order_id in (select statement)

Notice that rather than writing 'order_id="as we did before in the where clauses, we write 'order_id in'. This i
a very important distinction it tells the database engine that the select statement may return more than one
row, and we want to delete all the matching rows.

Let's do it for real, and tidy up Rick Stones, who has left us as a customer. Since delete can only work on or
table at a time, we still need to execute three SQL statements in the correct order, but at least we don't neec
any procedural logic to tie them together.

First we remove the entries for order date:

Dbname=# DELETE FROM orderdate WHERE order_id IN (SELECT placed_order.order_id
FROM placed_order WHERE placed_order.customer_id = customer.customer_id AND
customer.customer_name = 'Rick Stones');

DELETE 2

Then we tidy up the order_ids in a similar way:

Dbname=# DELETE FROM placed_order WHERE order_id IN (SELECT placed_order.order_id
FROM placed_order WHERE placed_order.customer_id = customer.customer_id AND
customer.customer_name = 'Rick Stones’);

DELETE 2

Data Manipulation Commands 84

Professional LINUX Programming

Finally a simple delete to remove the customer entry:

Dbname=# DELETE FROM customer WHERE customer_name = 'Rick Stones’;
DELETE 1

Transactions

There is one short but very important topic we have barely mentioned so far, that of transaction support.
PostgreSQL's support for transactions is, at the time of writing, one of the main features that other open
source databases lack.

By default, when we execute data manipulation statements on PostgreSQL each statement acts on its own,
either succeeds or fails. What it never does is partially succeed, because PostgreSQL ensures that all
statements either execute to successful conclusion, or do not change the data at all.

Sometimes we need this type of behavior across several different SQL statements, particularly, as is often tl
case, where more than one user might be using the database at any one time. Suppose in our DVD store w
had a 'for sale' section, and we periodically moved old stock from the rental section to the for sale section.
This would probably involve at least two SQL statements, one to remove the DVD from the rental section,
and one to add it to the for sale section. If something happened to the application in the middle, the DVD
could be lost, unless we made either both SQL statements succeed, or neither SQL statement succeed.

This is done with transactions, and conceptually is very simple. Before executing the first of our SQL data
manipulation statements we execute the command BEGIN WORK. After the last SQL command we can
either decide to allow both of them to succeed, using the COMMIT statement, or make them both fail, with
the ROLLBACK command.

Underneath the hood, PostgreSQL is doing a lot of work to support this apparently simple idea, but
fortunately we generally don't have to worry about it. There is, however, one thing you should be aware of i
another user looks at the database after the first SQL statement, but before the COMMIT or ROLLBACK, it
may appear as though the data has been changed. If a ROLLBACK is performed the data will appear to go
back to its previous value. However, PostgreSQL will not let you see 'new' data another process is inserting
but which has not yet been committed.

Note Note for advanced users. PostgreSQL defaults to a transaction isolation level which allows
non-repeatable reads, and phantom reads, but not dirty reads.

Non-advanced users (i.e. most of us!) just need to be aware that occasionally in multi—user situations data
appear to change when you don't expect it to. The reason for this apparently strange behavior is to maximiz
performance. We don't have the space in this chapter to go into the complex subject of transaction isolation
levels, and the merits and drawbacks of PostgreSQL's default behavior.

Here is a quick look at BEGIN, COMMIT and ROLLBACK in action:

Dbname=# BEGIN WORK;

BEGIN

Dbname=# INSERT INTO children (fname, age) VALUES ('Fred', '1");
INSERT 20479 1

Dbname=# INSERT INTO children (fname, age) VALUES (‘Freda’, '2";
INSERT 20480 1

Dbname=# ROLLBACK;

ROLLBACK

Transactions 85

Professional LINUX Programming

Dbname=# SELECT * FROM children;
childno|fname |age

1|Andrew| 10

2|Jenny | 14

3lAlex |11

4|Adrian| 5

5|Allen | 4
(5 rows)

If we wanted to save our changes, we would have done a COMMIT, like this:

Dbname=# BEGIN WORK;

BEGIN

Dbname=# INSERT INTO children (fname, age) VALUES (‘Fred', '1");
INSERT 20481 1

Dbname=# INSERT INTO children (fname, age) VALUES (‘Freda’, '2;
INSERT 20482 1

Dbname=# COMMIT;

COMMIT

Dbname=# SELECT * FROM children;

childno|fname |age

1|Andrew| 10
2|Jenny | 14
3lAlex |11
4|Adrian| 5
5|Allen | 4
9|Fred | 1
10|Freda | 2
(7 rows)

Notice that there are now some 'holes' in the serial field because we rolled back some inserts. This is the we
PostgreSQL works, and is not a bug, you must allow for non—contiguous numbers in serial fields.

From a user perspective transactions are very important, and you should be careful to wrap your SQL in
transactions if an inconsistency could arise should one of a sequence of SQL statements fail. You should be
aware however, that like most commercial databases, there is no support for nested transactions once you
have used BEGIN WORK, you must either COMMIT or ROLLBACK.

And that concludes our lightning tour of SQL. There is far, far, more to SQL than we have shown here, but
you should find that this limited subset of the syntax is sufficient for most of your needs.

Database Design Tips

Having learnt about the basics of databases and SQL, now would be a good time for a few basic tips about
designing databases. Whole books have been written about database design, all we present here are some
that the authors have found helpful, and hope you do too.

* Naming tables Keep table names to the singular, so a table that holds product records is called
'‘product’ not 'products’. Stick to single case table names generally the authors prefer lowercase for
table names. Avoid key words in table names, they may occasionally be allowed, but it can be
confusing.

* Column order Try and make the primary key column (or columns for composite keys) appear first in
the table, it makes it much easier to look at the tables later and understand which columns are the

Database Design Tips 86

Professional LINUX Programming

important ones.

« Column names |If your primary key column is an 'invented' unigue numeric key perhaps generated
automatically by SERIAL, call it tablename_id. If the key is an external code, such as a country code
call it tablename_code.

 Foreign key names Foreign keys (i.e. where a column in one table refers to the primary key of
another table) names should use the name of the column in the primary table to which they relate,
where possible.

« Normalization Always finish your 'perfect' database design before you try and optimize performance
If you don't have to, don't optimize at all, beyond adding a few indexes to critical columns.

* NULL Be very careful about the use of NULL. NULL means 'unknown'. It is not zero or an empty
string, it is a distinct, but unknown, value.

« VARCHAR Where character fields are short, and have a well bounded upper length, use CHAR
rather than VARCHAR, since wasting a small number of characters on some rows is better than
making the database always track the length of a column. Conversely, if the length varies
considerably, you should use VARCHAR, rather than store many empty character spaces.

» Types It's normally better to use the built in database types, rather than have your own personal
format for storing special data types. For example if there is a database type 'date' it's usually better
use that than define your own format for dates and store them in character strings.

» Lookups Never provide free—form input fields to the user where you could provide a lookup and
force the user to pick from a known set of values. A common example is ‘color'. If you allow people
free reign to enter their own text, you will end up with a wide variety of weird and wonderful colors,
including the inevitable typing mistakes. Much better to provide a lookup table. After all you can
always add extra entries into the lookup table later if more options are needed, which is much easier
than cleaning up poor quality data after hundreds of rows have been entered. Keeping the lookup in
table also means you can change the options, without having to change your application.

« Unless it's a one—off experiment, always create your tables using the Data Definition Language, rath
than just typing into psqgl. When you want to change the structure it will be a lot easier if you have the
SQL file that created the table originally.

That's far from a complete list of database DOs and DON'Ts, but hopefully will help you make some of your
design decisions.

Resources

Instant Sgl Programming, by Joe Celko, ISBN: 1-874416-50-8

The Practical Sgl Handbook : Using Structured Query Language, by Judith S. Bowman, Sandra L. Emerson
Marcy Darnovsky, published by Addison-Wesley, ISBN: 0-201447-87-8

Database Design for Mere Mortals : A Hands—On Guide to Relational Database Design by Michael J.
Hernandez, published by Addison-Wesley, ISBN: 0-201694-71-9

Joe Celko's SQL for Smarties: Advanced SQL Programming by Joe Celko, published by Morgan Kaufmann
Publishers, ISBN: 1-558605-76—-2

The PostgreSQL documentation is available online at http://www.postgresql.org and often in /usr/doc on yol
Linux Installation.

Some related sites are:

Resources 87

Professional LINUX Programming

http://www.phpwizard.net/phpPgAdmin

http://www.pgadmin.freeserve.co.uk/

Last, but certainly not least, the PostgreSQL Introduction and Concepts book, available online from the
PostgreSQL web site, also due to be published by Addison-Wesley.

Summary

In this chapter we have had a very brief look at SQL and relational databases, from the specific point of viev
of PostgreSQL. We looked at the basics of creating users and databases, and then how to create tables in t
databases. We then moved on to look at the main data types that PostgreSQL offers us, how to insert data |
tables, and, more importantly, how to select it back out again. We also looked at how to select data specifyir
an order, and joining data between two or more tables.

Now we know how to build tables and access PostgreSQL from the command line, the next chapter takes u
on to accessing PostgreSQL from C so we can build compiled programs that access our database.

Summary 88

Chapter 4: PostgreSQL Interfacing

Now that we know the basics of how to use SQL to interactively access PostgreSQL from the psql interprete
we can move on to accessing a database from program code. The good news is that it is very similar, and y
can put all that command line knowledge to work almost immediately.

Accessing PostgreSQL from Code
PostgreSQL is accessible from many different programming languages. We know of at least:

«C

o C++

e Java

* Perl

* Python
* PHP

* Tcl

It's probable that there are even more languages supported that we don't know about.

There is also an ODBC driver, which opens the door to access from many other systems, including clients o
MS—-Windows that can talk to ODBC data sources, such as Access.

Even though the main examples in this book will be coded in C, and that is the language from which we wisl|
to access our PostgreSQL database, there are still two ways we could approach the problem of accessing
PostgreSQL from our code.

» The first is a traditional style library, called libpg. To use this your code calls library functions to
access the database.

» The second way is called embedded SQL, or ecpg in PostgreSQL terms, where SQL statements are
embedded in the C code, and processed by a pre—processor before the resulting C code is compilec
The approach is broadly similar to the C pre—processor that handles #include and #define before the
main C compiler sees the program. This will be familiar to users of some commercial products such
as Oracle's PRO*C and Informix's ESQLC because all of these follow, to a greater or lesser extent,
the ANSI standard for embedding SQL.

In this chapter we will see both ways in use, and you will be able to choose the method that is most
appropriate for your needs, or with which you feel most comfortable.

Libpg

In general the functions in libpg fall into one of three groups:
* Managing connections
» Executing SQL statements

 Obtaining results from queries

We will look at each of these in turn. The libpq library has accumulated some obsolete functions over the
years these are maintained for backward compatibility. We will generally ignore these, and present only the

Chapter 4: PostgreSQL Interfacing 89

Professional LINUX Programming

ones that should be used in newer programs. If you do look through some older libpg code and see some
unfamiliar library calls, you can always look them up in the documentation downloadable from the

PostgreSQL web site, http://www.postgresql.org.

To use any of the libpq functions you must:

« Include the header file libpg—fe.h
« Add the pgsql include directory to the include path when you compile
« Link with the pq library

In case you are wondering, the 'fe' in libpg—fe stands for 'front end'. Therefore, to compile a file that uses
libpg, you would generally use a compile command such as:

$ gcc —o program —l/usr/include/pgsqgl program.c —Ipg

depending of course on the exact installation directories on your system. If they are in a different place you
may need to alter the include directory, and specify an alternative library directory, by adding an additional
option of the form —L/usr/local/pgsql/lib.

Database Connection Routines

The preferred method of connecting to a PostgreSQL database is using the PQconnectdb command.
Incidentally, you should use the 'i' option when starting the postmaster so that it listens for TCP/IP sockets a
well as UNIX domain sockets.

PGconn *PQconnectdb(const char *conninfo);

The conninfo string is a general—-purpose string that can contain a sequence of parameters and values, eacl
separated by white space. Where a value needs to contain white space itself, then it must be enclosed in si
guotes. Parameters that are not set explicitly default to NULL, and the library function will generally use
default values, or values defined in environmental variables instead. The parameters that may be set are:

host the name of the host to connect to. By default this will be the local host.

port the port number to connect on. By default this will be the standard PostgreSQL poyt
which is 5432.

dbname the name of the database to connect to. By default the same as the current Linux (ogin
name.

user the user name to use. By default the same as the login name.

password the password to use.

options any tracing options required.

tty the file or terminal for debug output from the backend processor.

Each parameter is followed by an equals sign, then the value to which it should be set. So to connect to a
database templatel, on a machine gw1, we would use a command like this:

conn = PQconnectdb("host=gw1 dbname=templatel");

A NULL pointer is only returned if the library fails to allocate a connection object. Even if you get a
non—-NULL pointer back you must still check if the connection was successful using the PQstatus function.

ConnStatusType PQstatus(PGconn *conn);

Libpqg 90

Professional LINUX Programming

This returns one of two enums, either CONNECTION_OK or CONNECTION_BAD, which have the obvious
meanings. Once a good connection has been established, it will usually remain 'good’, unless there are
network problems, or the remote database is shut down.

If there is a problem with the connect, a meaningful error message can be retrieved with:

char *PQerrorMessage(PGconn *conn);

This returns a pointer to static space, so the text may be overwritten if you make further calls to libpq routine
When you have finished with a connection, either because your program has finished or because the
connection failed, you must call:

void PQfinish(PGconn *conn);

to close the connection. You must always call this routine, even if the connection failed. This is because it n
only closes open connections, but it also releases memory and other resources associated with the connect
Failing to correctly close the connection will cause your program to accidentally consume system resources

Once the connection object has been 'finished', the connection pointer no longer points anywhere meaningf
and must not be passed as a parameter to any more routines. A good defensive coding technique would be
set the connection pointer to NULL immediately after calling PQfinish.

Now we know those few routines, we are in a position to write our first C program to connect to a
PostgreSQL server. It's not very useful, all it does is test the connection, but it's a first step. Remember to
change the server name and login to your own local values, and you must have created a database with the
same name as your login id, which we saw how to do in the last chapter.

#include <stdlib.h>
#include <stdio.h>
#include <libpg—-fe.h>
int main()
{
PGconn *conn;
const char *connection_str = "host=localhost dbname=templatel1";
conn = PQconnectdb(connection_str);
if (PQstatus(conn) == CONNECTION_BAD) {
fprintf(stderr, "Connection to %s failed, %s", connection_str,
PQerrorMessage(conn));
}else {
printf("Connected OK\n");
}
PQfinish(conn);
return EXIT_SUCCESS;
}

This should be quite easy to follow. We set up a connection string to connect to the database templatel on
server localhost, attempt a connection, print an error if it fails, then close the connection again before exiting

Executing SQL Statements

Executing a query against the server is surprisingly simple. There is only one function to call, and three
functions to check the result and access error information. To execute an SQL command you call:

PGresult *PQexec(PGconn *conn, const char *sql_string);

Libpqg 91

Professional LINUX Programming

This routine can return a NULL pointer in exceptional circumstances, so this must be trapped otherwise the
result can be obtained by passing the result pointer to another routine:

ExecStatusType *PQresultStatus(PGresult *result);

The result is an enum of type ExecStatusType, with one of the following values:

PGRES EMPTY_QUERY Nothing was done.

PGRES_COMMAND_OK The command completed successfully, but no data could have|been
returned because the command was not a SELECT command.

PGRES_TUPLES_OK The command completed successfully, and some data may haye
been returned.

PGRES_COPY_OUT A copy to an external file was in progress.

PGRES_COPY_IN A copy from an external file was in progress.

PGRES BAD_RESPONSE Something unexpected happened.

PGRES NONFATAL_ERROR A non-—fatal error occurred.

PGRES FATAL ERROR A fatal error has occurred.

Notice the careful definition of PGRES_TUPLES_OK. Receiving this response means that a SELECT SQL
statement executed successfully, but it doesn't mean that any data has been returned. We shall find out in tl
next section how to check for returned data. The COPY errors relate to the database being loaded or backe

up.
If you want a textual error message, then you need:

const char *PQresultErrorMessage(PGresult *result);

Notice that this is different from error relating to connections, where we use PQerrorMessage to get a textue
error message.

It's often useful to know the number of rows that have been affected by an SQL command. This is particular
true for DELETE commands, because if you execute a DELETE command that is syntactically correct, but
doesn't actually delete any rows, then PostgreSQL considers the command to have executed successfully.

For INSERT, UPDATE and DELETE commands, we can find the number of rows affected with
PQcmdTuples.

const char *PQcmdTuples(PGresult *result);

Notice that this returns a char *result, containing a NULL-terminated string of digits in character format, not
the integer you might have expected. We will see how to obtain the number of rows returned by a SELECT
statement later, since this is rather more complex.

After we have finished with a result object we need to tell the library, so that its allocated memory can be
released. Just like connection objects, failure to do this will result in memory leaks in your application.

void PQclear(PQresult *result);
One other function that fits into this section that can be useful for debugging:

const char *PQresStatus(ExecStatusType status);

Libpqg 92

Professional LINUX Programming

converts a status enum into a descriptive string.

We now know just enough to write our first C program that executes SQL. Since we don't yet know how to
retrieve results from a query, we will stick to executing a DELETE. Here is our first C routine that does
something useful, dell.c, which extends our original conl.c. This time we are connecting to a database rick,
on a server called gwl.

Throughout this chapter we will be experimenting with a single table in our database called children, which
we created in the previous chapter. If you need to re—create the table, the SQL to type into psql is:

CREATE TABLE children (
childno SERIAL,

fname VARCHAR,

age INTEGER

);
The lines we changed between conl.c and dell.c are highlighted:

#include <stdlib.h>
#include <stdio.h>
#include <libpg—fe.h>
int main()
{
PGconn *conn;
PGresult *result;
const char *connection_str = "host=gw1 dbname=rick";
conn = PQconnectdb(connection_str);
if (PQstatus(conn) == CONNECTION_BAD) {
fprintf(stderr, "Connection to %s failed, %s", connection_str,
PQerrorMessage(conn));
}else {
printf("Connected OK\n");
}
result = PQexec(conn, "DELETE FROM children WHERE fname = 'freda™);
if (Iresult) {
printf("PQexec command failed, no error code\n");
}else {
switch (PQresultStatus(result)) {
case PGRES_COMMAND_OK:
printf("Command executed OK, %s rows
affected\n",PQcmdTuples(result));
break;
case PGRES_TUPLES_OK:
printf("Query may have returned data\n");
break;
default:
printf("Command failed with code %s, error message %s\n",
PQresStatus(PQresultStatus(result)),
PQresultErrorMessage(result));
break;

}

PQclear(result);

}

PQfinish(conn);
return EXIT_SUCCESS;

Libpqg 93

Professional LINUX Programming

If we ensure that there is a row in a table children with an fname column of freda, then when we compile anc
execute this program we see:

[rick@gwl psql]$./dell
Connected OK
Command executed OK, 1 rows affected

Now there is no row to be deleted matching this criterion. If we execute the program again, it still executes
successfully, but this time no rows are affected:

[rick@gw1l psql]$./dell
Connected OK
Command executed OK, 0 rows affected

You must be careful to distinguish between a statement that works, but affects no rows, and a statement the
fails because it is syntactically incorrect.

Obtaining Results from Queries
We now come to both the most used part of libpg, and also the most complex retrieving data.

When we retrieve data, we potentially have a bit of a problem. In general we will not know in advance how
many rows will be retrieved. If we were to execute a SELECT statement using *' as the column name to
retrieve all columns, we may not even know how many fields or what type of data there is in the rows we are
retrieving. Catering for these circumstances is what makes this part of the APl more complex. Don't worry,
there is no rocket science here, just a few more API calls to get to know.

Let's first convert our dell.c test program into a query that returns data, and while we are at it we will
restructure it slightly, so it is easier to add new functionality after the SQL statement is executed. This new
file is sell.c:

#include <stdlib.h>
#include <stdio.h>
#include <libpg—fe.h>
PGconn *conn = NULL;
void tidyup_and_exit();
int main()
{
PGresult *result;
const char *connection_str = "host=gw1 dbname=rick";
conn = PQconnectdb(connection_str);
if (PQstatus(conn) == CONNECTION_BAD) {
fprintf(stderr, "Connection to %s failed, %s", connection_str,
PQerrorMessage(conn));
tidyup_and_exit();
}else {
printf("Connected OK\n");
}
result = PQexec(conn, "SELECT age, fnrame FROM children WHERE age < '6");
if ('result) {
printf("PQexec command failed, no error code\n");
tidyup_and_exit();
}else {
switch (PQresultStatus(result)) {
case PGRES_COMMAND_OK:
printf("Command executed OK, %s rows affected\n", PQcmdTuples(result));

Libpqg 94

Professional LINUX Programming

break;
case PGRES_TUPLES_OK:
printf("Query may have returned data\n");
break;
default:
printf("Command failed with code %s, error message %s\n",
PQresStatus(PQresultStatus(result)),
PQresultErrorMessage(result));
PQclear(result);
tidyup_and_exit();
break;
}
}

/* New code will get added here */
if (result) PQclear(result);
PQfinish(conn);
return EXIT_SUCCESS;

}

void tidyup_and_exit() {
if (conn != NULL) PQfinish(conn);
exit(EXIT_FAILURE);

}

What we have done is to add a new routine, tidyup_and_exit, which allows us to abandon our program whel
database actions fail. This is obviously not how we should write it for production code, since aborting an
application because a single SQL statement failed is a bit drastic to say the least, but for test purposes it's
easier to work with the code this way. We have also changed the DELETE to a SELECT statement that
returns some data.

If we run this version of the program, we can see that our code is correctly identifying that data may have
been returned:

[rick@gwl psql]$./sell
Connected OK
Query may have returned data

The first thing we can do is to find out how many rows were actually returned. We can do this with a call to
Pgntuples (remember PostgreSQL refers to rows as 'tuples’):

int PQntuples(PGresult *result);

Changing sell.c into sel2.c, we just need to change one line where we check the return code from
PQresultStatus:

case PGRES_TUPLES_OK:
printf("Query was OK and returned %d rows\n", PQntuples(result));
break;

When we run the query now, we get the result:

[rick@gwl psql]$./sel2
Connected OK
Query was OK and returned 3 rows

That's all very well, but clearly what we now need to do is access the data being returned. For now we'll star

Libpqg 95

Professional LINUX Programming

with the quickest and easiest way, which is simply to use one of libpg's special functions for outputting all th
data to a file stream. It has the benefit of being easy to use, and is great for debugging.

The function we need is PQprint, which looks like this:
void PQprint(FILE *stream, PGresult *result, PQprintOpt *options);

This is easy to use we need to provide an output stream, the result pointer we got back from executing our
SQL, and a pointer to an options structure.

The options structure as defined in libpg—fe.h looks like this:

typedef struct _PQprintOpt

{
pgbool header; [* print output field headings and row count */
pgbool align; * fill align the fields */
pgbool standard; /* old brain dead format */
pgbool htmi3; /* output html tables */
pgbool expanded; /* expand tables */
pgbool pager; [* use pager for output if needed */

char *fieldSep; /* field separator */

char *tableOpt; /*insertto HTML <table ...>*/

char *caption; /* HTML <caption> */

char **fieldName; /* null terminated array of replacement field names */
} PQprintOpt;

These options allow you some control over how the result data is output. You may notice that in the header
file there are several other output functions for writing to streams generally you should use PQprint, which
has superceded some earlier methods.

Now we can adapt our program to output the data we have retrieved to an output stream. We will send the
output to /dev/tty, which directs it to the controlling terminal. This file is sel3.c, but we only show the
modified lines here:

At the start of main, we need two new variables:

FILE *output_stream;
PQprintOpt print_options;

Then once the data has been retrieved, we can print it out:

output_stream = fopen("/dev/tty", "w");
if (output_stream == NULL) {
PQclear(result);
tidyup_and_exit();
}
memset(&print_options, \0', sizeof(print_options));
print_options.header = 1; [* print headers */

print_options.align = 1; [* align fields */
print_options.htmlI3 = 0; [* output as html tables */
print_options.fieldSep ="|"; /* field separator */

print_options.fieldName = NULL; /* alternate field names */

PQprint(output_stream, result, &print_options);

Libpqg 96

Professional LINUX Programming

Notice that we don't need to explicitly set all the fields of the PQprintOpt structure, the memset provides a
reasonable default for the values we do not need. However you should be aware that at the time of writing it
important to specify a field separator for fieldSep.

When we run this version of the program, we get:

[rick@gwl psql]$./sel3
Connected OK
Query was OK and returned 3 rows
age|fname
___+ ______
5|Adrian
4|Allen
1|fred
(3 rows)

our first bit of embedded SQL code that retrieves data.

Unfortunately, there are a couple of snags with this. Firstly, outputting the data to a file stream is great for
debugging, but not so good for actually processing the data. Secondly, we are retrieving all the data in one ¢
which is fine for small amounts of data, but will quickly become unwieldy for larger data sets.

Cursors

Suppose our program was accessing a large database, with thousands of rows, and we executed a query tt
returned all those rows. Our program could suddenly need a very large amount of memory indeed, to store :
those results. Since potentially this is all happening across a network as well, clearly we need a way of
retrieving the data in smaller quantities, say a row at a time. There is a standard way of doing this, and it is
how you would normally fetch data from an SQL database into a C program, (or indeed programs coded in
many other languages). What we need is a cursor.

A cursor is a feature we have not met so far, because they are normally only applicable either when using
SQL embedded in an external program, or within procedural language function stored in the database, ofter
referred to as 'stored procedures'. Cursors are not generally used from the command line. The SQL92 stanc
only defines cursors for use in embedded programs, so in most database environments this is the only place
you can use them, although in an extension to the SQL standard PostgreSQL does allow them from the
command line as well.

A cursor is a way of scrolling through a set of results, fetching returned data in discrete blocks. To use a
cursor, you declare it with a name that has an associated SELECT statement. You then FETCH the results
usually one row at a time, though you can fetch many rows at a time.

The SQL92 standard, and many other implementations of cursors, require an additional step, an OPEN curs
command, between the DECLARE and the FETCH. The PostgreSQL libpg does not need it, the DECLARE
taken as an implicit command. When we get onto ecpg (the alternative way of embedding SQL in C code),
you will see that we need to write the OPEN CURSOR command in the source code.

In pseudo code, the sequence looks something like:

BEGIN A TRANSACTION

DECLARE CURSOR mycursor FOR SELECT-statement
[OPEN mycursor]

DO {

Libpqg 97

Professional LINUX Programming

FETCH some data from mycursor
Process the row(s) retrieved
} WHILE the FETCH command found data
CLOSE mycursor
COMMIT WORK

There are two new SQL commands here, DECLARE CURSOR and FETCH, both of which we need to look
before we can write some program code that fetches data using a cursor.

The syntax for declaring a cursor is very straightforward:

DECLARE cursor_name [BINARY] CURSOR FOR <SELECT-statement>

This creates, and implicitly opens in libpg, a cursor with the given name. Notice that the cursor is bound to a
single SELECT statement. This cursor name is now effectively another way of referring to the SELECT
statement. We only need the BINARY option when we wish to retrieve binary data stored in a column, an
advanced topic that you will rarely need, so we are not considering it here. SQL92 experts will have noticed
some keywords from the SQL standard are missing, hotably SCROLL and FOR READ ONLY or FOR
UPDATE. In PostgreSQL all cursors can scroll, so the keyword SCROLL, whilst accepted, has no effect.
PostgreSQL also only supports 'read only' cursors, so we cannot use a cursor for updating the database, so
FOR clause is equally redundant, though the syntax FOR READ ONLY is accepted for compatibility with the
standard.

The syntax of FETCH is very simple:

FETCH [FORWARD|BACKWARD] [number|ALL|NEXT] [IN cursor_name];

Normally FORWARD or BACKWARD is omitted, the default is FORWARD. We use a number, or ALL, to
tell the FETCH that we wish to retrieve all, or just a fixed number, of rows. The keyword NEXT is the same
as giving a number of 1. The SELECT statement specified when we declared the cursor determines the actt
rows that can be fetched.

Now we have seen the principle, it's time to try it out in practice. This is sel4.c, which fetches data using a
cursor:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <libpg—-fe.h>
PGconn *conn = NULL;
void tidyup_and_exit();
int execute_one_statement(const char *stmt_to_exec, PGresult **result);
int main()
{
PGresult *result;
int stmt_ok;
const char *connection_str = "host=gw1 dbname=rick";
FILE *output_stream;
PQprintOpt print_options;
conn = PQconnectdb(connection_str);
if (PQstatus(conn) == CONNECTION_BAD) {
fprintf(stderr, "Connection to %s failed, %s", connection_str,
PQerrorMessage(conn));
tidyup_and_exit();
}else {
printf("Connected OK\n");

Libpqg 98

Professional LINUX Programming

}
stmt_ok = execute_one_statement("BEGIN WORK", &result);

if (stmt_ok) {
PQclear(result);
stmt_ok = execute_one_statement("DECLARE age_fname_cursor CURSOR FOR
SELECT age, fname FROM children
WHERE age < '6", &result);
if (stmt_ok) {
PQclear(result);
stmt_ok = execute_one_statement("FETCH ALL IN age_fname_cursor",
&result);
if (stmt_ok) {
PQclear(result);
stmt_ok = execute_one_statement("COMMIT WORK", &result);

}
}
}
if (stmt_ok) PQclear(result);
PQfinish(conn);
return EXIT_SUCCESS;
}
int execute_one_statement(const char *stmt_to_exec, PGresult **res_ptr) {
int retcode = 1;
const char *str_res;
PGresult *local_result;
printf("About to execute %s\n", stmt_to_exec);
local_result = PQexec(conn, stmt_to_exec);
*res_ptr = local_result;
if (llocal_result) {
printf("PQexec command failed, no error code\n");
retcode = 0;
}else {
switch (PQresultStatus(local_result)) {
case PGRES_COMMAND_OK:
str_res = PQcmdTuples(local_result);
if (strlen(str_res) > 0) {
printf("Command executed OK, %s rows affected\n”, str_res);
}else {
printf("Command executed OK, no rows affected\n");
}
break;
case PGRES_TUPLES_OK:
printf("Select executed OK, %d rows found\n", PQntuples(local_result));
break;
default:
printf("Command failed with code %s, error message %s\n",
PQresStatus(PQresultStatus(local_result)),
PQresultErrorMessage(local_result));
PQclear(local_result);
retcode = 0;
break;

}
}

return retcode;

} I* execute_one_statement */

void tidyup_and_exit() {
if (conn != NULL) PQfinish(conn);
exit(EXIT_FAILURE);

}

Libpqg

99

Professional LINUX Programming

The main changes from the previous version are highlighted. We have removed the printing of the output,
shortly we will see a more useful way of accessing the retrieved data than simply printing it out.

When we run this, we get:

Connected OK

About to execute BEGIN WORK

Command executed OK, no rows affected

About to execute DECLARE age_fname_cursor CURSOR FOR SELECT age,
fname FROM children WHERE age < '6'

Command executed OK, no rows affected

About to execute FETCH ALL IN age_fname_cursor

Select executed OK, 3 rows found

About to execute COMMIT WORK

Command executed OK, no rows affected

It is now trivial to fetch the rows one at a time, simply by changing the ALL to a 1 in the FETCH statement,
and checking that rows are actually returned. A FETCH, just like a SELECT, can succeed, but return no dat

The changed lines in sel5.c, are:

conn = PQconnectdb(connection_str);
if (PQstatus(conn) == CONNECTION_BAD) {
fprintf(stderr, "Connection to %s failed, %s", connection_str, tidyup_and_exit();
}else {
printf("Connected OK\n");
}
stmt_ok = execute_one_statement("BEGIN WORK", &result);
if (stmt_ok) {
PQclear(result);
stmt_ok = execute_one_statement("DECLARE age_fname_cursor CURSOR
FOR SELECT age, fname FROM children WHERE age < '6", &result);
stmt_ok = execute_one_statement("FETCH 1 IN age_fname_cursor", &result);
while(stmt_ok && PQntuples(result) > 0) {
PQclear(result);
stmt_ok = execute_one_statement("FETCH NEXT IN age_fname_cursor",
&result);

}
stmt_ok = execute_one_statement("COMMIT WORK", &result);

}
if (stmt_ok) PQclear(result);
PQfinish(conn);
return EXIT_SUCCESS;
}

The output is:

[rick@gwl psql]$./sel5

Connected OK

About to execute BEGIN WORK

Command executed OK, no rows affected

About to execute DECLARE age_fname_cursor CURSOR FOR SELECT age,
fname FROM children WHERE age < '6'

Command executed OK, no rows affected

About to execute FETCH 1 IN age_fname_cursor
Select executed OK, 1 rows found

About to execute FETCH NEXT IN age_fname_cursor
Select executed OK, 1 rows found

Libpg 100

Professional LINUX Programming

About to execute FETCH NEXT IN age_fname_cursor
Select executed OK, 1 rows found

About to execute FETCH NEXT IN age_fname_cursor
Select executed OK, 0 rows found

About to execute COMMIT WORK

Command executed OK, no rows affected

As you can see, it's actually very easy to retrieve our data one row at a time. The only drawback, which
usually doesn't matter, is that we don't know until we have retrieved all the data how many rows there were.
This is because PQntuples(result), not unreasonably for a FETCH of one row, has a value of one when a ro
is retrieved.

Now we have our data being retrieved in a more manageable format, we can progress to access individual
parts of that information.

Getting column information

The first piece of information that it's useful to extract from the returned data, is the column information (bott
the column names and data types). This is quite easy to do with three functions, one to discover how many
columns there are, one for the name of each column, and one for the data size of that column. Of course, yc
could specify by name each of the columns you want, but then, in theory, you know in advance the type of
each column that will be returned.

In general, it is a good idea to specify by name each column you require. The reason for this is to prevent yc
code from being 'surprised' if the database has new columns added. If columns are to be deleted, then at le:
‘grep' through the code will show that the names of the columns to be deleted are used in the code. Assumi
the column type in code is less clear cut it may be that determining the type at run time means your code c:
then automatically take account of any changes of column type. Conversely you are writing more code, whic
increases the risk of a bug and slightly decreases performance.

We find the number of columns in the returned result with PQnfields:
int PQnfields(PGresult *result);

We find the name of an individual column using PQfname function, and passing the field_index, where the
first column is at index O:

char *PQfname(PGresult *result, int field_index);

We can get an idea of the size of the data with PQfsize. We use the word 'idea’ because it returns only the
amount of space that PostgreSQL has used internally, and even then is —1 for variable length fields, such a:
VARCHAR.

int PQfsize(PGresult *result, int field_index);

The obvious omission in this set is the type of the column being returned. Unfortunately, the routine that
appears to do this, PQftype, returns an Oid type (actually a typedef for an unsigned integer). This gives only
an internal representation of the type, and is not externally documented anywhere, which makes it almost
useless. For this reason we will not use it here, though hopefully in a later release PostgreSQL, or at least tf
libpg library, will develop a more useful routine for discovering the type being returned.

We can now use this knowledge to extend our sel5.c program into sel6.c, by retrieving the column

Libpqg 101

Professional LINUX Programming

information. It doesn't matter which row of the retrieved data we use to extract the column header informatio
from, indeed even if the SELECT statement returned no rows, we could still access the column information.

The changes are very minor, so we just show the additions here, rather than repeat all the code.

First we add a prototype for our new function:

void show_column_info(PGresult *result);

Then we call it when data is retrieved. We allow it to be called each time data is returned, to show that this
works, though of course we would not do this in production code.

if (stmt_ok) {
PQclear(result);
stmt_ok = execute_one_statement("FETCH 1 IN age_fname_cursor",
&result);
if (stmt_ok) show_column_info(result);
while(stmt_ok && PQntuples(result) > 0) {
show_column_info(result);
PQclear(result);
stmt_ok = execute_one_statement("FETCH NEXT IN age_fname_cursor",
&result);
}
stmt_ok = execute_one_statement("COMMIT WORK", &result);

}
Finally, here is the implementation of show_column_info:

void show_column_info(PGresult *result) {
int num_columns;
inti;
if (Iresult) return;
num_columns = PQnfields(result);
printf("%d columns in the result set\n", num_columns);
for(i = 0; i < num_columns; i++) {
printf("Field %d, Name %s, Internal size %d\n",
I
PQfname(result, i),
PQfsize(result, i));
}

} I* show_column_info */
When we execute this, we get output like this:

About to execute FETCH NEXT IN age_fname_cursor
Select executed OK, 1 rows found

2 columns in the result set

Field 0, Name age, Internal size 4

Field 1, Name fname, Internal size -1

We have abbreviated the full output, to save space. Notice that the size of fname is reported as —1, because
is a variable size field type, a VARCHAR.

Libpqg 102

Professional LINUX Programming

Accessing the retrieved data

Last, but certainly not least, we need to access the data we have retrieved. As we mentioned before, type
information of the data being returned is not available in any sensible fashion, so you may be wondering hoy
we are going to manage this in code. The answer is very simple libpg always returns a string representatior
the returned data, which we can convert ourselves. (Actually this isn't quite true, for BINARY cursors binary
data is returned, but very few users will need such advanced PostgreSQL features.)

What we can discover is the length of the representation of the data that will be returned when we fetch the
data, this is done with PQgetlength:

int PQgetlength(PGresult *result, int tuple_number, int field_index);

Notice that this has a tuple_number field, which you will recall is PostgreSQL speak for a row. This is

because we might have not used a cursor (as we saw earlier) and retrieved all the data in one go, or asked
more than one row at a time, as we did in the last example. Without this parameter, retrieving several rows :
once would have been pointless, since we could not have accessed the data in any but the last row retrieve

We get the string representation of the data with PQgetvalue:
char *PQgetvalue(PGresult *result, int tuple_number, int field_index);

This returns a NULL terminated string. The actual string is inside a PGresult structure, so you must copy the
data out if you want it accessible after doing anything else with the result structure. At this point the astute
amongst you may have spotted a snag how do you distinguish between an empty string being returned
because the string in the database had no length, and an empty string being returned because the database
column was a NULL value (which we're sure you remember means ‘unknown’, rather than empty). The
answer is a special function, PQgetisnull, which is used to separate the two database values:

int PQgetisnull(PGresult *result, int tuple_number, int field_index);
This returns 1 if the field was NULL in the database, otherwise 0.

Now, at last, we are in a position to write our final version of our test code, which returns data from the
database row by row, displaying the column information and data as it goes. Before we run this, we set one
the rows we will retrieve to have a NULL value, so we can check our code detects NULLs correctly.
Depending on the data you put into the children table, you may have to use a different childno. | had a child
of 9, with an age of 1, where we set the fname field to NULL, by executing this statement in psql:

UPDATE children set fname = NULL where childno = 9;

Now here is the final version of our SELECT from C code, sel7.c. The principal changes are highlighted, an
some 'debug' type lines have also been removed, in order to clean up the output a little:

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <libpg—fe.h>

PGconn *conn = NULL;

void tidyup_and_exit();

int execute_one_statement(const char *stmt_to_exec, PGresult **result);
void show_column_info(PGresult *result);

void show_one_row_data(PGresult *result);

Libpqg 103

Professional LINUX Programming

int main()
{
PGresult *result;
int stmt_ok;
char *connection_str = "host=gw1 dbname=rick";
FILE *output_stream;
PQprintOpt print_options;
conn = PQconnectdb(connection_str);
if (PQstatus(conn) == CONNECTION_BAD) {
fprintf(stderr, "Connection to %s failed, %s", connection_str,
PQerrorMessage(conn));
tidyup_and_exit();
}else {
printf("Connected OK\n");
}
stmt_ok = execute_one_statement("BEGIN WORK", &result);
if (stmt_ok) {
PQclear(result);
stmt_ok = execute_one_statement("DECLARE age_fname_cursor CURSOR FOR
SELECT age, fname FROM children WHERE
age < '6", &result);
if (stmt_ok) {
PQclear(result);
stmt_ok = execute_one_statement("FETCH 1 IN age_fname_cursor",
&result);
if (stmt_ok) show_column_info(result);
while(stmt_ok && PQntuples(result) > 0) {
show_one_row_data(result);
PQclear(result);
stmt_ok = execute_one_statement("FETCH NEXT IN age_fname_cursor",
&result);
}
stmt_ok = execute_one_statement("COMMIT WORK", &result);
}
}
if (stmt_ok) PQclear(result);
PQfinish(conn);
return EXIT_SUCCESS;
}
int execute_one_statement(const char *stmt_to_exec, PGresult **res_ptr) {
int retcode = 1;
const char *str_res;
PGresult *local_result;
printf("About to execute %s\n", stmt_to_exec);
local_result = PQexec(conn, stmt_to_exec);
*res_ptr = local_result;
if (llocal_result) {
printf("PQexec command failed, no error code\n");
retcode = 0;
}else {
switch (PQresultStatus(local_result)) {
case PGRES_COMMAND_OK:
str_res = PQcmdTuples(local_result);
if (strlen(str_res) > 0) {
printf("Command executed OK, %s rows affected\n", str_res);
}else {
printf("Command executed OK, no rows affected\n");
}
break;
case PGRES_TUPLES_OK:
printf("Select executed OK, %d rows found\n", PQntuples(local_result));

Libpqg

104

Professional LINUX Programming

break;
default:

printf("Command failed with code %s, error message %s\n",
PQresStatus(PQresultStatus(local_result)),
PQresultErrorMessage(local_result));

PQclear(local_result);

retcode = 0;

break;

}
}
return retcode;
} I* execute_one_statement */
void show_column_info(PGresult *result) {
int num_columns = 0;
inti;
if (Iresult) return;
num_columns = PQnfields(result);
printf("%d columns in the result set\n", num_columns);
for(i = 0; i < num_columns; i++) {
printf("Field %d, Name %s, Internal size %d\n",
Iy
PQfname(result, i),
PQfsize(result, i));

} I* show_column_info */
void show_one_row_data(PGresult *result) {
int col;
for(col = 0; col < PQnfields(result); col++) {
printf("DATA: %s\n", PQgetisnull(result, 0, col) ?
"<NULL>": PQgetvalue(result, 0, col));
}
} /* show_one_row_data */
void tidyup_and_exit() {
if (conn !'= NULL) PQfinish(conn);
exit(EXIT_FAILURE);
}

Notice we check for NULLs in all columns. When we run this, we get:

Connected OK

2 columns in the result set

Field 0, Name age, Internal size 4
Field 1, Name fname, Internal size -1
DATA: 4

DATA: Adrian

DATA: 4

DATA: Allen

DATA: 1

DATA: <NULL>

And that concludes our tour of the libpq library. We have seen how we can use the libpqg library to access de

in the database, retrieving it row by row using cursors. We have also seen how to extract column informatiol
and handle NULL values in the database.

Libpqg 105

Professional LINUX Programming

ECPG

Now it's time to look at the alternative way of combining SQL and C, by embedding SQL statements in the C
code, and then pre—processing them into something the C compiler can understand, before invoking the C
compiler. There is still a library to interface C calls to the database, but the details are hidden away behind &
pre—processor.

PostgreSQL's ecpg follows the ANSI standard for embedding SQL in C code, and what follows will be
familiar to programmers who have used systems such as Oracle's PRO*C or Informix's ESQL-C. At the tim
of writing some of the less used features of embedded SQL are not supported, and the standard documentz
for ecpg that ships with PostgreSQL is somewhat limited.

Since we have now worked through many of the basics of SQL, this section will actually be quite short. The
first problem that has to be tackled is how to delimit sections in the file that the ecpg pre—processor needs tc
process. This is done with the special sequence in the source that starts 'exec sql', then contains the SQL y:
want to execute, and ends with a ';'. Depending on the exact syntax, as we shall see in a moment, this can
either be a single line that needs to be processed, or it can be used to mark a section that needs
pre—processing.

If we want to write a simple C program that performs a single UPDATE statement in the middle of some C
code, we need to do only one thing in the source code embed the UPDATE SQL statement.

What could be easier? Let's write a very simple C program with some embedded SQL that updates a table.
convention these have a file extension of pgc. Here is updl.pgc:

#include <stdlib.h>

exec sql include sqlca;

main() {

exec sgl connect to ‘rick@gwl’;

exec sql BEGIN WORK;

exec sgl UPDATE children SET fname = 'Gavin' WHERE childno = 9;
exec sgl COMMIT WORK;

exec sql disconnect all;

return EXIT_SUCCESS;

}

At first sight, this hardly looks like C at all. However, if you ignore the lines that start exec sql, you can see it
is just a minimal C program. To compile this program we need a two-stage process. First we must run the
ecpg pre—processor, then we compile the resulting C file, linking it with the ecpg library. To compile this you
may need to add a —I option to ecpg, to tell it where to look for the include file, depending on your
installation. For this program, updl.pgc, the commands are:

$ ecpg -t —l/usr/include/pgsql updl.pgc
$ gcc —o updl —l/usr/include/pgsql updl.c —lecpg —Ipq

The ecpg command pre—processes the file, leaving a .c file, which we then compile in the normal way, linkir
with two PostgreSQL libraries. The '-t' on the command line for ecpg tells ecpg that we wish to manage our
own transactions with explicit BEGIN WORK and COMMIT WORK statements in the source file. By default
ecpg will automatically start a transaction when you connect to the database. There is nothing wrong with th
it's just that the authors prefer to explicitly define transaction blocks.

You will notice the connect string is 'rick@gw1'. This requests a connection to the database 'rick' on server
'gwl'. No password is heeded since that's a local machine, and | am already logged in as user rick. Howeve

ECPG 106

Professional LINUX Programming

the general case you can specify the connection in a URL style format, in which case the format is

<protocol>:<service>://<machine>:<port>/<dbname> as <connection hame>
as <login name> using <password for login>

A concrete example makes this much clearer. Suppose we want to connect using tcp to the postgresql serv
on the dbs6 machine, port 5432, connecting to the database rick, using the database login name neil, who t
a password secret. The connect line we would put in our program would be:

exec sgl connect to tcp:postgresql://dbs6:5432/rick as connect_2
user neil using secret;

If we want to separate out the different elements, then we can use the same style of connect request, but us
"host variables", which you will notice always start with a ':". We will see more about host variables later in
the chapter; for now just imagine them as normal C variables.

exec sql BEGIN DECLARE SECTION;
char connect_str[256];
char as_str[25];
char user_str[25];
char using_str[25];
exec sql END DECLARE SECTION;
strcpy(connect_str, "tcp:postgresql://localhost:5432/rick™);
strcpy(as_str, "connect_2");
strcpy(user_str, "neil");
strepy(using_str, "secret");
exec sql connect to :connect_str as :as_str user :user_str using :using_str ;
if (sglca.sglcode = 0) {
pg_print_debug(_ FILE__, _ LINE__, sqlca, "Connect failed");
return DVD_ERR_BAD_DATABASE;

}

Now we have seen the basics, let's look in slightly more detail at what ecpg does.

The first feature that we almost always need when writing an ecpg program is to include a header file that
gives us access to errors and status information from PostgreSQL. Since we need this file to be pre—proces
by the ecpg processor, before the C compiler runs, a normal include will not do. What we need is to use the
exec sql include command. Since there is just a single file called sqlca, which we almost always need to
include, pgc files usually start with:

exec sql include sqlca;

This causes the ecpg command to include the file sqglca.h, which is (by default) found in the /usr/include/pgs
directory, though depending on your installation this may of course be different. This important include file
declares an sqglca structure, and variable of the same name, that allows us to determine results from our SQ
statements. The sqlca structure is a standard structure used when embedding SQL in C code, though
implementations vary slightly. For our install of PostgreSQL the structure is declared to be:

struct sqlca

{

char sqlcaid[8];
long sqlabc;
long sqlcode;
struct
{

int sqlerrml;

ECPG 107

Professional LINUX Programming

char sqlerrmc[70];
} sglerrm;
char sqlerrp[8];
long sqlerrd[6];
char sglwarn[8];
char sqlext[8];

h

Actually interpreting the contents of sqlca can seem a little odd. The implementation of ecpg that comes witl
PostgreSQL does not implement as much of the sqglca functionality as some commercial packages such as
Oracle. This means some members of the structure are unused, however all the important functions are
implemented, so it is perfectly usable.

When processing an sglca structure you first need to check sglca.sglcode. If it is less than zero then sometf
serious went wrong, if it's zero all is well, and if it's 100 then no data was found, but that was not an error.

When an INSERT, UPDATE or SELECT statement succeeds, sqlca.sqlerrd[2] will contain the number of
rows that were affected.

If sqlca.sqglwarn[0] is "W', then a minor error occurred, usually data was retrieved successfully, but was not
transferred correctly into a host variable (we will meet these later in the chapter).

When an error occurs sqglca.sglerrm.sglerrmc contains a string describing the error.
Commercial packages use more fields, that can tell you a notional 'cost' and other information, but these are
not currently supported in PostgreSQL. However since such information is only occasionally useful, it's

omission is not generally missed.

Let's just summarize that explanation:

sqglca.sglcode Contains a negative value for serious errors, zero for success, 100
for no data found.

sglca.sqlerrm.sglerrmc Contains a textual error message.

sglca.sqlerrd[2] Contains the number of rows affected.

sglca.sqglwarn[0] Is set to 'W' when data was retrieved, but not correctly transferted to
the program.

Let's try this out, by modifying our updl1.pgc file to include sglca, and also deliberately making it fail, by
using an invalid table name:

#include <stdlib.h>

#include <stdio.h>

exec sql include sqlca;

main() {

exec sql connect to 'rick@gwl';

exec sql BEGIN WORK;

exec sgl UPDATE XXchildren SET fname = 'Emma’' WHERE age = 0;

printf("error code %d, message %s, rows %d, warning %c\n", sglca.sqlcode,
sglca.sqglerrm.sqlerrmc, sqlca.sqlerrd[2], sqlca.sglwarn[0]);

exec sgl COMMIT WORK;

exec sql disconnect all;

return EXIT_SUCCESS;

}

ECPG 108

Professional LINUX Programming

This is upd2.pgc. The highlighted lines show the important changes. Compile it as before:

$ ecpg -t —l/usr/include/pgsql upd2.pgc
$ gcc —g —o upd2 I /usr/include/pgsql/ upd2.c -lecpg —lpq

This time when we run it, an error is generated:

error code —400, message Postgres error: ERROR: xxchildren: Table does not exist.
line 10., rows 0, warning

As you can see, it's a little basic but does the job.

Now we have seen the basics, we can get to important issue how do we access data that SQL statements
embedded in .pgc files return?

The answer is actually quite simple, and relies on variables called host variables, which are accessible to bc
the statements delimited by exec sql ... ; and to the ordinary C compiler.

We do this by having a declare section, usually near the start of the file, that is processed by both the ecpg
processor, and the C compiler. This is achieved by declaring C variables inside a special declare section,
which also tells the ecpg processor to process them. We use the delimiting statements:

exec sql begin declare section;
and

exec sql end declare section;

Suppose we wanted to declare two variables, child_name and child_age, that are intended to be accessible
both the embedded SQL and in the C code for use in the rest of the program. What we need is:

exec sql begin declare section;
int child_age;

VARCHAR child_name[50];
exec sgl end declare section;

You will notice two odd things here, firstly the 'magic number' 50 as a string length, and secondly that
VARCHAR is not a normal C type. We are forced to use literal numbers here, because this section of code i
being processed by ecpg before the C compiler runs, so it is not possible to use either a #define or a consta
The reason for VARCHAR is because the SQL type of the fname column in children is not a type that maps
directly to a C type. We must use the PostgreSQL type in our declaration, which is then converted into a leg
C structure by the ecpg pre—processor, before the C compiler sees it. The result of this line in the source file
to create a structure called child_name, with two members, a char array 'arr’, and an integer len, to store the
length. So what the C compiler sees from this one line is actually:

struct varchar_child_name {int len; char arr[50];} child_name;

Now we have two variables, visible both in SQL and in C. We use a slight extension of the SQL syntax, the
'into’ keyword, to retrieve data from the table into named variables, which are denoted by having a "'
prepended to the name. This is so they cannot be confused with values or table names. Notice this 'into’ is r
the same as the extension some vendors support to allow interactive selecting of data from one table into
another. The 'into' keyword has a slightly different meaning when using embedded SQL.

ECPG 109

Professional LINUX Programming

exec sgl SELECT fname into :child_name FROM children WHERE age = :child_age;

The epgc pre—processor converts this to C, which we compile in the normal way. So our complete code is
now in selpl.pgc, and looks like this:

#include <stdlib.h>
#include <stdio.h>
exec sql include sqlca;
exec sql begin declare section;
int child_age;
VARCHAR child_name[50];
exec sql end declare section;
main() {
exec sgl connect to ‘rick@gwl’;
exec sql BEGIN WORK;
child_age = 14;
exec sgl SELECT fname into :child_name FROM children WHERE age =
:child_age;
printf("error code %d, message %s, rows %d, warning %c\n", sqglca.sglcode,
sqlca.sglerrm.sqglerrmc, sqlca.sglerrd[2], sqlca.sqglwarn[0]);
if (sqlca.sglcode == 0) {
printf("Child's name was %s\n", child_name.arr);

}
exec sgl COMMIT WORK;

exec sql disconnect all;
return EXIT_SUCCESS,;

}

The important changes are highlighted. Notice we need to use child_name.arr to access the returned data.
However you only need to use VARCHAR declarations when you want to get data out of the database whe
you want to store data into a VARCHAR field you should use a NULL terminated C string in the normal way.

However there is a potential problem with this program. You will see that we had to declare our child_name
VARCHAR to be a fixed size, even though we could not know in advance how large the answer might have
been. What will happen if we make child_name only 3 long, and the name stored in the database is longer
than this? In this case ecpg will only retrieve the first 3 characters, and will set the warning flag. If we chang
the declaration to VARCHAR child_name[3] and run the program we get:

error code 0, message , rows 1, warning W
Child's name was Jen

(You may also see some corruption, we will explain why in a moment.)

As you can see, the sqglca.sglwarn[0] warn character was set to ‘W', and the returned name truncated. Howe
since our declaration of child_name is translated into a structure containing a character array of exactly 3
characters, there is no location for the string terminator to be stored. It's lucky our printout worked at all,
though we could have been decidedly cleverer with the printf format string. To be certain of getting a
VARCHAR into a normal C string we should always check that sqglca.sglwarn[0] is not set, and then copy the
string away to a separate location, adding the NULL terminator explicitly. A more secure version of the
program is selp3.c, which has the following changes:

#include <stdlib.h>

#include <stdio.h>

exec sql include sqlca;

exec sql begin declare section;
int child_age;

ECPG 110

Professional LINUX Programming

VARCHAR child_name[50];
exec sql end declare section;
main() {
exec sgl connect to ‘rick@gwl’;
exec sql BEGIN WORK;
child_age = 14;
exec sgl SELECT fname into :child_name FROM children WHERE age =
:child_age;
printf("error code %d, message %s, rows %d, warning %c\n", sqglca.sglcode,
sqglca.sqlerrm.sglerrmc, sqlca.sqlerrd[2], sqlca.sqglwarn[0]);
if (sqlca.sglcode == 0) {
child_name.arr[sizeof(child_name.arr) —1] = "\0;
printf("Child's name was %s\n", child_name.arr);
}
exec sgl COMMIT WORK;
exec sql disconnect all;
return EXIT_SUCCESS;

}

Now we can retrieve data, it's time to see how we use cursors with ecpg where we want to specify, at run tir
the condition for the SELECT, and also retrieve data into C variables. Unlike the libpg example, ecpg, (at
least in the version used while writing this chapter), required an explicit OPEN statement to open the cursor,
before data could be fetched. This example is selp4.pgc, it's noticeably shorter than the libpg equivalent:

#include <stdlib.h>
#include <stdio.h>
exec sql include sqlca;
exec sgl begin declare section;
int child_age;
VARCHAR child_name[50];
int req_age;
exec sql end declare section;
main() {
exec sgl connect to ‘rick@gwl’;
exec sql BEGIN WORK;
req_age = 6;
exec sgl DECLARE mycursor CURSOR FOR SELECT age, fname FROM children
WHERE age > :req_age;
exec sgl OPEN mycursor;
exec sgl FETCH NEXT IN mycursor into :child_age, :child_name;
if (sqlca.sglcode < 0)
printf("error code %d, message %s, rows %d, warning %c\n", sqlca.sglcode,
sqglca.sqglerrm.sqglerrmc, sqlca.sqlerrd[2], sqglca.sqlwarn[0]);
while (sqlca.sglcode == 0) {
if (sqlca.sglcode >= 0) {
child_name.arr[sizeof(child_name.arr) —1] = "\0';
printf("Child's name and age %s, %d\n", child_name.arr, child_age);
}
exec sql FETCH NEXT IN mycursor into :child_age, :child_name;
if (sqlca.sglcode < 0) printf("error code %d, message %s, rows %d, warning %c\n",
sqglca.sqlcode, sqlca.sqglerrm.sglerrmc, sqlca.sqlerrd[2], sglca.sqlwarn[0]);
}
exec sql CLOSE mycursor;
exec sgl COMMIT WORK;
exec sql disconnect all;
return EXIT_SUCCESS;

}

When we run this, we get the expected output:

ECPG 111

Professional LINUX Programming

Child's name and age Andrew, 10
Child's name and age Jenny, 14
Child's name and age Alex, 11

You may be thinking that all this messing with VARCHARS is a bit pointless, and providing your strings are
known to be reasonably consistent in size, it would be much easier to use fixed length strings. Unfortunately
this gives rise to a different problem PostgreSQL does not store the \O in CHAR columns. What it does do i
fill the field to the maximum size with spaces. So if you store "Foo" in a CHAR(10), when you get the data
back you actually get "Foo ", and you have to strip the spaces yourself. It does however add a \O whe
you retrieve the string, so you do get a conventional C string returned to you.

There is one last ecpg feature we need to look at, how to detect NULL values. Doing this in ecpg (and indee
the standard way for embedded SQL) is slightly more complex than in libpg, but it's not difficult.
Remembering that NULL means unknown, it's clear we can't use a magic string, or special integer value to
show NULL, since any of these values could actually occur in the database.

What we have to do is to declare an extra variable, often called an indicator variable, that goes alongside th
variable we will use to retrieve the data. This additional indicator variable is set to indicate if the data value
retrieved was actually NULL in the database. These are often named ind_nameofrealvariable, or sometimes
nameofrealvariable _ind, but could have any name. They are always integers a negative value indicating th
the associated variable has a NULL value.

For example, suppose in our earlier example we needed to detect if age was NULL. What we would do is
declare an extra variable in the declare section like this:

int ind_child_age;

Then when we do the FETCH from the cursor, we specify both the real variable, and the indicator variable,
joined by a colon, like this:

exec sql FETCH NEXT IN mycursor into :child_age:ind_child_age, :child_name;

Then if ind_child_age is not negative, we know that child_age is correctly filled in otherwise the data in it is
not valid because the database value was a NULL. For our final example of ecpg, let's convert our example
it correctly detects NULL values.

First we update our 'children’ table, so we have examples of both NULL ages and fnames. The test data we
start with looks like this:

SELECT * from children;
childno|fname |age

1|Andrew| 10
2|Jenny | 14
3lAlex |11
4|Adrian| 5
19| |17
16|[Emma | O
18|TBD |
20|Gavin | 4
(8 rows)

As you can see, we have a seventeen year old with an unknown name, and an unborn child whose name is
to be decided, and doesn't have an age yet.

ECPG 112

Professional LINUX Programming

This is selp5.pgc. By way of example, we have also used the alternate form of connection string.

#include <stdlib.h>
#include <stdio.h>
exec sql include sqlca;
exec sgl begin declare section;
int child_age;
int ind_child_age;
VARCHAR child_name[50];
int ind_child_name;
exec sql end declare section;
main() {
exec sql connect to tcp:postgresql://localhost:5432/rick as rick
user rick using secretpassword;
exec sql BEGIN WORK;
exec sgl DECLARE mycursor CURSOR FOR SELECT age, fname FROM children;
exec sgl OPEN mycursor;
exec sgl FETCH NEXT IN mycursor into :child_age:ind_child_age,
:child_name:ind_child_name;
if (sqlca.sglcode < 0)
printf("error code %d, message %s, rows %d, warning %c\n",
sqglca.sqlcode, sqlca.sglerrm.sglerrmc, sqlca.sqlerrd[2], sglca.sqlwarn[0]);
while (sqlca.sglcode == 0) {
if (sglca.sqglcode >= 0) {
if (ind_child_name >=0) {
child_name.arr[sizeof(child_name.arr) -1] = "\0';
}else {
strepy(child_name.arr, "Unknown");

}
if (ind_child_age >=0) {
printf("Child's name and age %s, %d\n", child_name.arr, child_age);
}else {
printf("Child's name %s\n", child_name.arr);
}

}
exec sql FETCH NEXT IN mycursor into :child_age:ind_child_age,

:child_name:ind_child_name;
if (sqlca.sglcode < 0)
printf("error code %d, message %s, rows %d, warning %c\n", sqlca.sglcode,
sqglca.sqlerrm.sqglerrmc, sqlca.sqlerrd[2], sqglca.sqlwarn[0]);
} /* end of while loop */
exec sgl CLOSE mycursor;
exec sgl COMMIT WORK;
exec sql disconnect all;
return EXIT_SUCCESS;

}
The sections related to checking for NULL values are highlighted. When we run this, we get:

Child's name and age Andrew, 10
Child's name and age Jenny, 14
Child's name and age Alex, 11
Child's name and age Adrian, 4
Child's name and age Unknown, 17
Child's name and age Emma, 0
Child's name TBD

Child's name and age Gavin, 4

As you can see, we correctly detect and handle NULL values now.

ECPG 113

Professional LINUX Programming

And that concludes our look at the ecpg, the embedded SQL pre—processor for PostgreSQL.
Which Method to Use?

So given two methods of accessing PostgreSQL from 'C', which is the right one to use? As usual, there is ne
right answer; use whichever you feel fits the problem and your way of working best. However we would
advise you not to mix and match inside a single project pick a preferred way of working and stick to it.

Advantages of libpq:

« It uses a familiar call library function paradigm, which is familiar to many people.
« It's reasonably well documented.

Disadvantages:

* It requires a lot of code.
» The SQL is difficult to spot in the middle of the surrounding C code.

Advantages of ecpg:

« It's a standard for embedding SQL.
» The SQL is much easier to read when it is not embedded in library calls.

Disadvantages:

» Debugging can be difficult, because the file is pre—processed before the C compiler sees it. This
means that errors from the C compiler can be harder to track down, and debugging with gdb can get
very confusing because the line numbers can appear to be wrong. Ecpg inserts #line directives in the
resulting 'C' file, which normally help, because error messages refer to the original .pgc file line
numbers. However this is not always what you want, and can also confuse gdb. You can work round
this, by allowing ecpg to generate a .c file, use grep —v '"Mline' > _1.c, copy the _1.c back to the .c fils
that ecpg created, then continue compiling. This strips the line setting commands out, and so error
messages from the compiler, and commands in gdb now work with line numbers from the .c file,
rather than the .pgc file. This difficulty is not specific to ecpg, most other embedded SQL systems
have similar quirks.

« To many people, it is probably not as familiar a technique as standard library usage.

* You must know in advance the number and types of the columns you will retrieve in SELECT
statements.

If you have a progam that is mostly C code, with only a small amount of SQL, then the added difficulties of
debugging pre—processed code are a distinct disadvantage.

The Application

Now we have learnt the basics of accessing the PostgreSQL database from 'C, it's time to see how we can
implement the backend of our database for the DVD store.

The first, and probably most important thing we need to do, is design our database tables. Well, we need a

table for storing member information, so there is our first table. We also need to think about the actual DVDs
It's important to realize that there are two different types of information to be stored information about a film

Which Method to Use? 114

Professional LINUX Programming

that is on DVD, for example, the film 'Death and the Maiden' starring 'Sigourney Weaver', which has a
director, a release date and so on, and the actual DVD disks available in the shop. The film exists
independently of an available DVD disk; there could be zero, one or many disks with that film title actually
available in the shop. This tells us that we should separate the film information from the disk information
using two separate tables. Clearly they are related pieces of information, but they are not the same.

The next piece of information to store is to relate member bookings to titles. We do this by adding an
additional table, ‘'member_booking, which stores a member ID and a title 1D, along with the booking date.
This acts as the link between a member and the title they have booked. This also allows more than one
member to have reserved the same title on the same day, a classic many—to—many relationship. (The
application must check how many disks are actually available of course!)

When we come to disks actually rented, we could do a similar thing, by adding a table between the 'disk' an
'member' tables, we could link disks to members when they are rented. However we notice an obvious
optimization there can only ever be no link, or a one to one link between a particular disk the store owns, ar
a member renting that disk. So we could store the 'renting' related information directly in the 'disk' table, usir
a NULL member ID when the disk is not rented. This is called de—normalizing, and should only be done
when you are sure you have properly analyzed your data structures. We do it here as much for the purpose
demonstration as any valid optimization technique, though it does slightly simplify the code.

Finally, we need three additional tables for utility information, one for error messages, one for the film genre
categories, and one for film classifications. Both the genre and film classifications relate directly to a film
title, and are the only values that should appear there. Here we have another set of choices to make. We co
either directly store the genre and classification text in the 'title' table against a film, relying on the applicatiol
to lookup the allowed text from the utility table. Alternatively we could store only an ID, with links in the
database back to the actual table where the text is stored.

If the text is very short, and we are confident we can rely on the application only to use a valid text string,
then it's probably better to simply store the actual text in the title table, since it makes the database design
simpler, and the SQL easier to write. However, if the text is longer, and we want to be absolutely certain tha
no illegal values could be stored, then we should store the ID for the text, and store the text in a different
table. This reduces the storage, since each unique string is only stored once. For the purposes of demonstr:
in this application, we store the classification directly, but keep the genre stored separately, so you can
compare the two techniques.

In a real application however, we would always recommend storing only a link to the table with the real data
This is because it's much more conducive to maintaining the quality of your data, which in a database shoul
always be your number one concern. A brilliantly designed database, that stores incorrect data, is little bette
than no database at all.

To make managing our table easier, we store the SQL we need to create the tables in a separate file, so we
edit the file and re—create the database easily. You can run SQL commands from a file in psqgl with the \i
file.sql command. Here is the SQL code that creates our database:

create table member (
member_id SERIAL,
member_no CHAR(6) NOT NULL,

title CHAR(4),
fname CHAR(26),
Iname CHAR(26) NOT NULL,

house_flat_ref CHAR(26) NOT NULL,
addressl CHAR(51) NOT NULL,

Which Method to Use? 115

Professional LINUX Programming

address2 CHAR(51),

town CHAR(51) NOT NULL,
state CHAR(3),
phone CHAR(31),

zipcode CHAR(11) NOT NULL,
CONSTRAINT member_no_unig UNIQUE(member_no)
);
create table title (
title_id SERIAL,
title_text CHAR(61) NOT NULL,
asin CHAR(11),
director CHAR(51),
genre_id INT,
classification CHAR(11),
actorl CHAR(51),
actor2 CHAR(51),
release_date CHAR(9),
rental_cost CHAR(7)
);
create table disk (
disk_id SERIAL,
title_id INT NOT NULL,
member_id INT, /*setif rented out otherwise NULL */
rented_date CHAR(9)
);
create table member_booking (
member_id INT NOT NULL,
title_id INT NOT NULL,
date_required CHAR(9) NOT NULL
);
create table filmclass (
class_name CHAR(11)
);
create table genre (
genre_id INT NOT NULL,
genre_name CHAR(21),
CONSTRAINT genre_id_uniq UNIQUE(genre_id)
);
create table errtext (
err_code INT,
err_text CHAR(50)

);
You should notice some extra 'constraints' have been added, for example:

CONSTRAINT genre_id_uniq UNIQUE(genre_id)

We did not want to make the genre_id a SERIAL column, because if we ever need to reload the data it's ver
important that we re—create each genre_id with the same value we had before, or all the information it relate
to in the title table will be wrong. On the other hand, it's very important that the value is unique. We trade off
these two conflicting demands by adding a constraint that allows us to pick the value of genre_id so long as
the value we pick does not currently exist in the database.

Below is a graphical representation of the database structure:

Which Method to Use? 116

Professional LINUX Programming

We don't have anything like the space required here to reproduce all the code, so we just show a few small

snippets to give you a flavor of how the application was developed. These code pieces are the lowest level
the application, and are called after general sanity checking (such as ensuring we have a database connect
and that pointer parameters were not NULL) has been performed.

For example, here is the code that takes a structure with the title details in it, finds the appropriate genre_id,
and adds the row to the title table.

int pg_title_insert(dvd_title *title_ptr) {
exec sgl BEGIN WORK;
strepy(title_text, title_ptr—>title_text);
strcpy(asin, title_ptr—>asin);
strepy(director, title_ptr—>director);
sprintf(genre_name, "%s%c", title_ptr—>genre, '%");
strepy(classification, title_ptr—>classification);
strcpy(actorl, title_ptr—>actorl);
strcpy(actor2, title_ptr—>actor2);
strcpy(release_date, title_ptr—>release_date);
strcpy(rental_cost, title_ptr—>rental_cost);
/* Find the genre_id */
exec sgl SELECT genre_id INTO :genre_id:genre_id_ind
FROM genre WHERE genre_name LIKE :genre_name;
if ((sglca.sqlcode < 0) || (sglca.sqglcode == 100)
|| (genre_id_ind == 1)) {
pg_print_debug(__FILE__, LINE__, sqlca,
"Unknow genre\n");
exec sql ROLLBACK WORK;
return DVD_ERR_BAD_GENRE;
}
exec sgl INSERT INTO title(
title_text, asin,
director, genre_id, classification,
actorl, actor2, release_date,
rental_cost)
VALUES (
title_text, :asin,
-director, :genre_id, :classification,
:actorl, :actor2, :release_date,
rental_cost);
if (sqlca.sglcode < 0) {
pg_print_debug(__FILE__, _ LINE__, sqlca, "insert into title failed\n");
exec sgl ROLLBACK WORK;
return DVD_ERR_BAD_TITLE_TABLE;

}else {
if (sqlca.sqglerrd[2] 1= 1) {
pg_print_debug(__FILE__, _LINE__, sqlca, "insert into title

Which Method to Use? 117

Professional LINUX Programming

failed\n");
exec sql ROLLBACK WORK;
return DVD_ERR_BAD_TITLE_TABLE;
}
}

exec sgl SELECT MAX(title_id) INTO :title_id FROM title;
if (sqlca.sglcode < 0) {
pg_print_debug(__FILE_ , _LINE__, sqlca, "select max title
failed\n™);
exec sgl ROLLBACK WORK;
return DVD_ERR_BAD_TITLE_TABLE;
}

exec sgl COMMIT WORK;

/* Update the member structure with the now known fields */
title_ptr—>title_id = title_id;
return DVD_SUCCESS;

} I* pg_title_insert */

The code that looks up the appropriate genre_id is highlighted. Notice we check that not only did the SQL

statement succeed (sglca.sglcode was not < 0), but also that data was returned (sqglca.sglcode was not ==
and the genre_id we recovered was not a NULL value (genre_id_ind was not 1). It's always good to have a
belt and braces approach to checking return status information. Hiding this use of the genre_id means that

unless the application tries to insert an invalid string, it is not aware of how the data is actually stored; this is
valuable separation of responsibility.

Here is the code that retrieves title information. It also hides the details of the data storage, and illustrates he

we join tables (select from more than one table at a time) to recover information from both the title table and
genre table in a single SELECT statement:

int pg_title_get(int req_title_id, dvd_title *title_ptr) {
title_id = req_title_id;
exec sgl BEGIN WORK;

exec sgl SELECT
title_id, title_text, asin,
director, genre_name, classification,
actorl, actor2, release_date,
rental_cost
INTO
title_id:ind_title_id, :title_text, :asin,
.director, :genre_name, :classification,
:actorl, :actor2, :release_date,
rental_cost
FROM title, genre WHERE title.title_id = :title_id AND title.genre_id
= genre.genre_id;
if (sglca.sglcode < 0) {
pg_print_debug(__FILE__, _LINE__, sqlca, "title get failed\n");
exec sql ROLLBACK WORK;
return DVD_ERR_BAD_TITLE_TABLE;
}

if ((sglca.sqlcode == 100) || (ind_title_id != 0)) {
pg_print_debug(__FILE_ , _ LINE__, sqlca, "title get failed no

Which Method to Use? 118

Professional LINUX Programming

entry\n");
exec sql ROLLBACK WORK;
return DVD_ERR_NOT_FOUND;

}

title_ptr—>title_id = title_id;
strepy(title_ptr—>title_text, title_text);
strepy(title_ptr—>asin, asin);
strepy(title_ptr—>director, director);
strcpy(title_ptr—>genre, genre_name);
strepy(title_ptr—>classification, classification);
strcpy(title_ptr—>actorl, actorl);
strcpy(title_ptr—>actor2, actor2);
strepy(title_ptr—>release_date, release_date);
strepy(title_ptr—>rental_cost, rental_cost);
exec sgl COMMIT WORK;

return DVD_SUCCESS;
} I* pg_title_get */

One other 'interesting' section of code that deals with titles is the searching. The API allows clients to searct
on a film title, and/or actors names. It might be tempting to write these as separate functions, but in SQL it is
very easy to express the selection in a single statement. Provided of course you know that '%' is the string
matching character in SQL.

int pg_title_search(char *title_to_find, char *name_to_find, int *result_ids[], int *count) {
int result_size = 0;
int *results = NULL;
if (title_to_find == NULL) strcpy(title_text, "%");
else sprintf(title_text, "%c%s%c", '%', title_to_find, '%");
if (name_to_find == NULL) strcpy(actorl, "%");
else sprintf(actorl, "%c%s%c", '%', name_to_find, '%");

exec sgl BEGIN WORK;

exec sgl DECLARE mycursor CURSOR FOR SELECT title_id from title WHERE
(title_text LIKE :title_text) AND ((actorl LIKE :actorl) OR
(actor2 LIKE:actorl)) ORDER by title_text, actorl,actor2;

exec sgl OPEN mycursor;

if (sqglca.sglcode < 0) {
pg_print_debug(__FILE__, LINE__, sqlca, "mycursor");
exec sql ROLLBACK WORK;
return DVD_ERR_BAD_TABLE;
}
exec sgl FETCH NEXT in mycursor INTO :title_id;
while (sqlca.sglcode == 0) {
result_size++;
results = (int *)realloc(results, sizeof(int) * result_size);
if (results == NULL) { /* Major error, we don't attempt a recovery */
exec sgl ROLLBACK WORK;
return DVD_ERR_NO_MEMORY;
}

results[result_size — 1] = title_id;

exec sql FETCH NEXT in mycursor INTO :title_id;

} I* while */

if (sglca.sqglcode < 0) {
pg_print_debug(__FILE__, _LINE__, sqlca, "mycursor");
exec sql ROLLBACK WORK;

Which Method to Use? 119

Professional LINUX Programming

return DVD_ERR_BAD_TABLE;
}

exec sgl COMMIT WORK;
*result_ids = results;
*count = result_size;
return DVD_SUCCESS;

} I* pg_title_search */
We even order the output by title and actorl, the most likely items to be correct.

The rest of the application code, like most of the code snippets from this book, is available on the Apress we
site.

Summary

In this chapter we have looked at two ways of accessing a PostgreSQL database from C code. Firstly we
looked at a conventional library based method, then we looked how SQL could be embedded more directly |
C code. We compared these two techniques, and saw that both had advantages and disadvantages. Finally
looked at a small section of our example application, which implemented access to data stored in a
PostgreSQL database for our imaginary DVD store.

Summary 120

Chapter 5: MySQL

We decided earlier that MySQL was not the ideal choice of backend database for our particular application,

but there are many applications where this very popular database is more than adequate. Generally, this is

where query speed is very important, but you don't need transactions or other more advanced SQL support.
Since that covers a significant number of applications, we're going to have a look at it anyway.

Installation and Commissioning
Installing MySQL is very easy. If your Linux distribution did not come with a copy, then the MySQL web
site (http://www.mysgl.com) has both source and binary distributions (including RPM packages) for many

platforms. Generally you will find a pre—built installation suitable for your needs, though source is also
available if you prefer.

Pre—compiled Packages
The RPM package is currently distributed as four RPMs:
» The main server package, with a name of the form
MySQL-<version>.<architecture>.rpm
This contains the main binaries and manual pages, as well as multi-language support files. You mus
install this package.
» The client package, with a name of the form
MySQL-client-<version>.<architecture>.rpm
This contains several standard client programs, which you should generally install along with the
server. It's packaged separately, so that if you have several machines which only need to act as cliel
accessing a MySQL server on a different machine, you can avoid installing the server components
unnecessarily.
» The shared component package, with a name of the form

MySQL-shared—<version>.<architecture>.rpm

which contains shared libraries required by some clients.
» The development package, with a name of the form

MySQL-devel-<version>.<architecture>.rpm

which contains the headers and additional library files for developing applications that communicate
with a MySQL server.

If you decide to start developing programs to access a MySQL server, you will need to install all of the
packages on your development system.

During installation, an initial database will have been created for you automatically by the installation scripts
You will also have an init.d script, mysq|l, for starting and stopping the server. Generally the easiest way to

Chapter 5: MySQL 121

Professional LINUX Programming

find the database files on your specific distribution is to locate this script in your init.d directory, and have a
look through it. Standard paths and defines are early in the script, and it's very easy to see where files have
been located. For example, on our binary installation of Red Hat RPMs, the 'shell variables' section of the
mysql script contains this:

bindir=/usr/bin

datadir=/var/lib/mysq|l

pid_file=/var/lib/mysql/mysqld.pid
mysql_daemon_user=mysqgl # Run mysqgld as this user.

This is nice and easy to follow. The installation will also create the user 'mysql', which is the user name that
the MySQL server daemon runs under. Depending on the version of MySQL you're using, the installation
may also start the server for you. To check this, use:

$ ps —el | grep mysqld

If you see some mysqld processes running, the server has been started. If not, you can get it started by runi
the mysql script (in init.d) as the mysql user, with the argument start. Depending on your distribution the
command will be similar to:

su — mysq|
$ /etc/re.dfinit.d/mysqgl start

Building from Source

Installing from the source is only slightly harder than using a pre—built package. Download and unpack the
sources in the usual way, then run:

$./configure ——help

to check if there are any configuration options you wish to change. Assuming the defaults are fine, the
sequence to build and install the server is:

$./configure
$ make
$su-

make install

If all is well, you can now run (as root) the install script scripts/mysq|_install_db to initialize the server for
first time use:

scripts/mysql_install_db

Depending on your version of MySQL, this script may start the server automatically. If it doesn't, you will
have to start it by hand, using the script mysqgl.server, which you will find in the support-files directory. The
mysql_install_db script creates some required base tables, and also initializes permissions. It's a
straightforward shell script, so if you're interested, you can always have a look to see what is being done.

Before the script completes, you will be given a message about how to cause MySQL to automatically start
when the system boots. You'll also receive a warning about setting an initial password for the 'root' MySQL

user. (Confusingly MySQL has a user with the name 'root' who is, by default, the server administrator.) Don'
worry if you miss these messages, you can always have a look in the script for them afterwards.

Building from Source 122

Professional LINUX Programming

The final step in a source install is to configure the server to automatically start and stop with the system. In
the support—files directory you will find a helpful script mysqgl.server, which you can copy to init.d, then
create links for automatic start and stop to the appropriate rc.d script. Alternatively you can always run the
script with the start or stop parameter by hand if you prefer. However, always be careful (just as with
PostgreSQL) to ensure that the database server is shutdown before the system is halted.

Post-install Configuration

If all went well, you've installed the default configuration with mysql_install_db and have started the MySQL
server demon using the script in init.d. It's now time to check the server is running:

$ mysql —u root mysq|

You should get a 'Welcome to the MySQL monitor' message, followed by a mysql> prompt. The good news
that your server is running. The bad news is that anyone can connect to it with administrator privileges. You
exit the mysql prompt by typing quit.

An alternative way to check if the server is running is to use the mysgladmin command, like this:
$ mysqgladmin —u root version

This will not only tell you if the server is running, but also which server version is in use and how long it has
been running.

If the connection failed when you used mysq|, firstly check the server is actually running, by using ps and
searching for mysqld processes. If it's not running, but you believe you started it, try the safe_mysqgld progra
with the ——log option to start the server. This will generate a log file in a file name with the same name as
your hostname, with .log appended, in the directory where MySQL is installed, often /var/lib/mysq|.

If the server is running, but you cannot connect, then have a look in the mysql_install_db script, or the
inid.d/mysql script to see where the database is installed. The directory /var/lib/mysq|, in a sub—directory
mysql is a common location. There should be some file with the extensions .frm .ISD and .ISM.

If all else fails, try stopping the server; manually delete the database files, and run the mysql_install_db scri
manually to recreate the database. Finally restart the server. Hopefully, all will then be well. If not, you can
find further debugging suggestions for the more unlikely problems in the comprehensive documentation that
comes with MySQL. If you installed a binary version, you will probably find them in
/usr/doc/MySQL-<version>. Alternatively have a look at the MySQL web pages.

A very confusing bug can be seen if the permissions on the database files do not match the mysql user cree
automatically by the installation, or the mysqgld processes are running with the wrong user ID. If you find that
mysql allows you to connect, but other programs (such as mysgladmin and mysglshow) fail, double—check t
ownership of the database files and the user under which the mysqgld processes are running; it's probable th
there is a mismatch. If this happens, you need to change the ownership of all the database files to be ownec
the mysql user.

Our next task is to set up an administrator (or root) password for the database server. We do this with the
mysqgladmin command, like this:

$ mysqgladmin —u root password newpassword

Post-install Configuration 123

Professional LINUX Programming

This will set an initial password of newpassword. Now try mysqgl again, and it should fail, unless you also
supply a user and a password, like this:

$ mysql —u root —psecretpassword mysqg|

Notice the syntax is a little unusual there must be no space between the —p and the actual password. The f
parameter, mysq|l, is the database to select. If you don't give a password (by using just —p) mysqgl will promp
for one. Since putting passwords on the command line is generally a bad idea (other people can read them,
using ps and other methods), it's normally much better to omit the actual password, and use this format:

$ mysql —u root —p mysq|l

Which will get mysql to prompt you for a password. Once you are running mysq|, you can check that the tes
database is present, by typing, at the mysqgl prompt:

mysql> select host, db, user from db;

You should get a list like this:

host	db	user
%	test	
%	test\ %	

4
T

2 rows in set (0.00 sec)

You can then type quit to exit mysql.

MySQL Administration

A small number of utility programs come with MySQL that you need to know about in order to administer the
system. The one you will need most often is mysgladmin, but for completeness, we will briefly run through
the others as well, before moving on to writing MySQL client programs.

Commands
All of the commands except mysqglshow take three standard parameters:

* —u username

e —p [password]

* —h host
The —h parameter is for connecting to a server on a different host, and can always be omitted for local serve
If —p is given but the password is omitted, then the password is prompted for. If the —p parameter is not
present, then MySQL commands assume no password is needed.
isamchk
This is a utility that checks and repairs the underlying data tables used by MySQL. To run this utility you
should be the same user as the mysql pseudo—user, and then change to the subdirectory under the main m

directory (probably /var/lib/mysqgl) with the name of the database you wish to check. For example, to check ¢

MySQL Administration 124

Professional LINUX Programming

database fud, then you should be in /var/lib/mysql/fud. The isamchk utility has many options, which are liste
if you run it with no parameters.

In general, you run it with one or more options, followed by *.I1SM to ask it to work on all the tables present.
The main options are:

-a analyze the files

- do extended checking

-r recover (correct) errors found

-S run silently unless an error is found

For more information, invoke isamchk with no parameters, and look through the extensive help message.
Hopefully you will never need this utility. However, if you do suffer an uncontrolled power down, or

shutdown the machine without shutting down the mysqgl daemon, it's possible you will manage to corrupt the
underlying database storage files. This is the tool you will need when you come to try and repair the damage

mysq|l

This is the standard command line tool, and can be used for many administration and permission tasks, whi
we will cover later.

The mysql command takes an additional argument, which must come after the options, the database name
connect to. For example, for rick, with a password bar, to start mysqgl with the database foo already selected
we need:

$ mysql —u rick —pbar foo

It's generally convenient to specify the database you wish to connect to in this way. Other options can be
displayed by invoking mysql with the —h option.

You can also ask mysql to process commands from a file, by simply redirecting standard input from a file,
like this:

$ mysqgl —u rick —pbar foo < sglcommands.sql
Once the file has been processed, mysql will exit.
mysgladmin

This is the main administration utility. Apart from the normal —u user and —p to ask it to prompt you for a
password, there are four main commands you will need:

create databasename create a new database

drop databasename delete a database

password newpassword change a password (as we saw earlier)

status provide the status of the server

version provide the version number of the server, as well as how long it
has been running

If you invoke it with no parameters, it will provide a helpful list of the commands it accepts.

Commands 125

Professional LINUX Programming

mysqlbug

Hopefully you will never need this utility! It gathers information about your installation and sets up a standare
report to be mailed to the maintainers, once you have edited—-in details of your problem.

mysqldump

This is a very handy utility that allows you to dump a database (either all tables or selected tables) to a file. |
writes standard SQL commands to the file, which can be executed by making it the input to mysql, as we sa
earlier, or using mysglimport, which we will meet shortly. The parameters are a database, and optionally a li
of one or more table names from the database. Apart from the standard —u and —p options, the main two
options you will find useful are:

——add-drop-table add SQL commands to the output file to drop (delete) any tables before the
commands to create them

-t dump only the data from tables

—d dump only the table structure

The information is produced on the standard output, so you'll probably need to redirect it to a file.

You can use this utility to make periodic backups, or export data for migration to a different database. The
output is in straight ASCII and is very easy to read; it even incorporates comments. For example, to dump tt
database rick to a file rick.dump, we would use the command:

$ mysqldump —u rick —p rick > rick.dump
The resulting file, which on our system has only a single table in the rick database, looks like this:

MySQL dump 7.1
#
Host: localhost Database: rick
#
Server version 3.22.32-log
#
Table structure for table ‘children’
#
CREATE TABLE children (
childno int(11) DEFAULT '0' NOT NULL auto_increment,
fname varchar(30),
age int(11),
PRIMARY KEY (childno)
);
#
Dumping data for table 'children'
#
INSERT INTO children VALUES (1,'Jenny',14);
INSERT INTO children VALUES (2,'Andrew’,10);
INSERT INTO children VALUES (3,'Gavin',4);
INSERT INTO children VALUES (4,'Duncan’,2);
INSERT INTO children VALUES (5,'Emma’,0);
INSERT INTO children VALUES (6,'Alex',11);
INSERT INTO children VALUES (7,'Adrian',5);

Commands 126

Professional LINUX Programming

mysqglimport

This is, as you probably guessed, the partner to mysgldump, and allows database tables to be recreated fro
text files, normally those created by mysgldump (though you could always write your own by hand if you
wanted to). Generally, the only parameters you need are a database name and a text file to read the comm:
from.

It's also possible to perform SQL commands from a text file by simply running mysql with input redirected
from a file.

mysqlshow

This is a very handy little utility that displays useful information about a server, a database, or a table,
depending on the parameters you give it:

« With no parameters, it lists all available databases.

» With a database as a parameter, it lists the tables in that database.

» With both a database and a table name, it lists the columns in that table.

» With a database, table and column, it lists the details of the specified column.

Generally there is hot much point in providing a column name, since all the information about each column i
shown at the table level anyway.

Creating Users, and Giving Them Permissions

The most common administration need, apart from backing up important data, is setting up user permission:
From version 3.22 of MySQL, user privileges should be managed with two SQL commands: grant and
revoke. Both of these are run inside the mysgl command utility.

grant

MySQL's grant command is similar to that of the SQL92 standard, but with some significant differences. The
general format is:

grant privilege on object to user [user—password] [option];

There are several privileges that can be granted, which are:

Alter alter tables and indexes
Create create databases and tables
Delete delete data from the database
Drop remove databases and tables
Index manage indexes

Insert add data to the database
Select retrieve data

Update modify data

All do anything

Note There are also several special administration privileges, but these do not concern us here.
The object on which you grant these privileges is identified as:

Commands 127

Professional LINUX Programming

databasename.tablename

and a * matches all, so rick.* matches all tables in the rick database. As a consequence of the way MySQL i
implemented, you can grant privileges on a database that does not yet exist. This might seem a little odd, bt
in practice it gives the user the right to create that database, which can be useful.

The specified user name can either be that of an existing user or, if you want, a new one, automatically
causing that user to be created. Client users of the MySQL server are always identified as username.host, €
if it's the local machine, in which case you should set the host name to localhost.

The special identifier % means 'any host'. If you prefer though, you can invoke the grant command several
times, once for each of the machines from which the user wishes to access the server. If you want to grant
connect permissions to a group of hosts in a domain, just use % for the host, specifying the domain as
something like:

rick@"%.docbox.co.uk"
Notice that we now need quotes.

Using the 'identified by' clause sets the password for the user name. Normally, if you are creating a new use
you should set a password immediately; otherwise you are leaving your database rather insecure.

with grant

The with grant option allows the user to pass on the privileges you just granted them. Normally you would n
use this option, unless you are setting up an administrator account.

Enough of the theory, let's create a user rick, who can connect from any machine, set his password to bar, &
allow him to create a database foo. The command inside mysqgl that we need is:

mysql> grant all on foo.* to rick@"%" identified by "bar";

Note Remember the trailing ; necessary in SQL commands.

This creates the user rick with password bar. This user can connect from any machine and can create and t
manage a database foo. Once you've granted rick permission to create a database foo, he can cause it to b
physically created using the normal create database SQL command.

revoke, delete

While we are looking at permissions, it's sensible to look at how we take privileges away again. Generally it
done with the revoke command, which has the syntax:

revoke a—privilege on an—object from a-user;
in a similar format to the grant command. For example:
revoke insert on foo.* from rick@"%";

There is, however, one slight oddity; even if you revoke all privileges from a user, they still have connect
permission on your database, which probably isn't what you want. To get rid of the user completely, you mu
also delete them from the user table of the MySQL database, and then force mysql to reload its permission
tables, like this:

Creating Users, and Giving Them Permissions 128

Professional LINUX Programming

mysql> use mysq|l
mysql> delete from user where User = "rick" and Host = "%";
mysql> flush privileges;

Passwords

If you forget to specify a password, you can always set it later on. You'll need to be logged on as root, and
have the mysqgl database selected. If you enter:

mysql> select host, user, password from user;

you should get a list like this:

| host |user | password |

localhost	root	67457e226alal5bd
%	rick	7c9e0a41222752fa
.%	foo	

2I rows in set (0.60 sec)

Say you want to assign the password bar to user foo; you can do so like this:
mysql> update user set password= password('bar') where user= 'foo’;

Display the relevant columns in the mysqgl.user table again:

mysql> select host, user, password from user;

4 4
T T T T

| host |user | password |

localhost	root	67457e226alal5bd
%	rick	7c9e0a41222752fa
.%	foo	7c9e0ad1222752fa

4
T

2 rows in set (0.00 sec)
mysql>

and sure enough, it's there; the same encrypted password as we defined earlier for user rick.
Creating a Database

Let's play around with a database called rick. First, as the mysqgl root user we must give ourselves permissic
to create the database:

mysql> grant all on rick.* to rick@% identified by "bar";
This will give user rick all permissions on database rick from all machines.
We can now quit mysq|l, start it again as user rick, and create the database:

mysql> quit
Bye
$ mysql u rick

Passwords 129

Professional LINUX Programming

mysql> create database rick;

We then switch to using the rick database, with the use command:
mysql> use rick

Now we are in a position to create any tables we require.

You may remember from the PostgreSQL chapter, we used a table ‘children’ for some examples. The SQL 1
create it was this:

create table children (
childno SERIAL,
fname VARCHAR,
age INTEGER

);

If we try and create this in MySQL, we immediately run into the first minor incompatibility: MySQL doesn't
support the SERIAL keyword. Fortunately, correcting this is very easy see the 'Differences' section later. Tt
equivalent SQL for MySQL is:

create table children (
childno INTEGER AUTO_INCREMENT NOT NULL PRIMARY KEY,
fname VARCHAR(30),
age INTEGER

);

which is an easy change. Inserting data is done in the same way as with PostgreSQL; we must specifically
ignore the auto—-incremented column:

insert into children(fname, age) values("Jenny", 14);
insert into children(fname, age) values("Andrew", 10);

with appropriate data for as many rows as needed.

SQL Support in PostgreSQL and MySQL

In_Chapter 3 we covered the basics of SQL, mostly from the viewpoint of PostgreSQL. MySQL's support for
SQL is similar to that in PostgreSQL. Although we note below the main differences that apply to the SQL
commands we covered earlier, you will find that the basic SQL coverage is the same. Most mainstream SQI
will work on both platforms. Remember that both servers are actively being developed, so this difference list
may change significantly in the future. Of course, these aren't the only differences, but we've mentioned the
main ones you are likely to encounter.

* MySQL does not currently support subqueries, though they are planned for a future release. As we
saw in PostgreSQL, these can be very useful in a few special cases, but normally it's possible to
re-write the SQL statement to avoid using sub—queries if you want to be able to use the same SQL «
port from one database to the other.

* MySQL considers table names to be case-sensitive, unlike PostgreSQL which is not case—sensitive
MySQL relies on the Operating System file system using one file per table for table storage and
considers table names with the same case-sensitivity as the underlying OS. Therefore, table names
are case-sensitive under Linux. This is not generally a problem, but is unusual, so you should be
careful never to make case the only distinguishing feature between two table names. In general, we

SQL Support in PostgreSQL and MySQL 130

Professional LINUX Programming

suggest you confine tables names to lower case.

* MySQL does not currently support the SERIAL column type, though it's easy to work round.
Replace the SERIAL keyword with INTEGER AUTO_INCREMENT NOT NULL PRIMARY KEY.
It's a bit more typing, but is almost identical in operation to PostgreSQL's SERIAL keyword; it also
has the advantage that dropping a table with such a type doesn't require any additional work to tidy
stray sequences, as you must do with PostgreSQL. Bear in mind though, that the SERIAL keyword i
the more common usage in SQL.

* MySQL has a lock command:

lock tables tablename READ | WRITE [,tablename READ | WRITE];
unlock tables;

Actually PostgreSQL has a lock command as well, but in PostgreSQL it should almost never be usec
since you should always use transactions to solve the problem of automically updating data. Since
MySQL doesn't currently support transactions (see below), the lock command is more commonly
needed.

Locking a table for read prevents any updates to the table. Locking a table for write prevents others
reading or writing the table, but the current thread of execution can both read and write it. Lock
commands do not nest; if you execute another lock command, any currently locked tables will be
unlocked automatically before the new list of tables is locked.

* MySQL has no transactions. This is the main difference between the two, and is the most difficult to
work around. For simple updates you can sometimes work around this in one of two ways:

Firstly, by making updates specify all column values of the row being updated. If, for example, you
wanted to adjust the balance in a user's account, which has a customer first name, customer last nal
a unique account number and amount, and want to update the amount from 3 to 4, then rather than
writing:

update account set amount = 4 where accnum = 3013;
put:

update account set amount = 4 where
accnum=3013 and customerfn = "Bilbo" and
customerln = "Baggins" and amount = 3;

That way, if any column in the row has already been updated between you discovering the value in
the account was 3, and wanting to make it 4, the update will fail because a column value has been
changed, and, providing you check and handle the failure, you can make an intelligent decision abot
what should happen next.

Secondly you can use the lock tables command to prevent other users accessing tables you wish to
update. This is simpler, but much more difficult to get right than using transactions; also, it can badly
hurt database performance where there are several users and frequent updates are being performec

These are the main differences you are most likely to come across, given the subset of SQL we have presel
in this book.

SQL Support in PostgreSQL and MySQL 131

Professional LINUX Programming
Accessing MySQL Data from C
Like PostgreSQL, MySQL can be accessed from many different languages. We know of:

«C

o C++

* Java

* Perl

* Python
* REXX
* Tcl
 PHP

There's also an ODBC driver for access on the Microsoft Windows platform, though there are also Linux
ODBC drivers, so we can use that method on Linux as well.

Note At time of writing there are some potential security issues with ODBC, so it should not generally be
your first choice of access method.

In this chapter we will only look at the C interface, not because it is better than the others in any way, simply
that C is the main focus of this book. The C programming interface to MySQL is very comprehensive, and
similar in many ways to the libpq interface for PostgreSQL. However, there is no equivalent of the embedde
SQL method of accessing data from C, which PostgreSQL offers with its ecpg command and library.

Connection Routines

There are two steps involved in connecting to a MySQL database from C:

« initializing a connection handle structure
« physically making the connection

To initialize a connection handle, we must use mysqgl_init:
MYSQL *mysql_init(MYSQL *);

Normally you pass NULL to the routine, and a pointer to a hewly allocated connection handle structure is
returned. If you pass an existing structure, it will be re—initialized. On error, NULL is returned.

Note MySQL actually provides two ways of connecting to the database, but mysqgl_connect, which you may
see in older code, is deprecated, so we will not consider it here.

At this point, all we have done is allocate and initialize a structure; we have not yet provided any parameters
to enable connection to a database. These parameters are set, and the actual connection made, with the
mysql_real_connect routine:

MYSQL *mysql_real_connect(MYSQL *connection,
const char *server_host,

const char *sgl_user_name,

const char *sql_password,

const char *db_name,

unsigned int port_number,

const char *unix_socket_name,

Accessing MySQL Data from C 132

Professional LINUX Programming

unsigned int flags);

The connection pointer must be a pointer to a structure that was earlier initialized with mysql_init. The
server_host is the name, or IP address, of the server machine on which the MySQL server is running. If you
want to connect to the local machine, you should use localhost rather than a machine name, as that allows
MySQL to optimize the connection type.

sql_user_name and sql_password are login credentials to the database. If the login name is NULL then the
current login ID is assumed. If the password is NULL, you will only be able to access data on the server that
accessible without a password. The password is encrypted before being sent across the network.

The port number and unix_socket_name should be 0 and NULL respectively, unless you have special reasc
for needing non-standard values. They will default to appropriate values.

Finally, the flag parameter allows you to OR together some bit—pattern defines, allowing you to alter certain
features of the protocol being used. The only two you're likely to need to use are:

» CLIENT_ODBC this should be set if you know that ODBC is being used for the remote database.
* CLIENT_FOUND_ROWS this is rather subtle, and to understand it we have to jump slightly ahead
of ourselves.

You will remember from the chapters on PostgreSQL that you can determine the number of rows
affected by INSERT, UPDATE and DELETE statements. For UPDATE statements, MySQL is subtly
different to PostgreSQL (and most other mainstream databases). When PostgreSQL returns the
number of rows an UPDATE statement affected, what it actually returns is the number of rows in
which the WHERE clause matched. For MySQL, the value is the number of rows changed, which
might be slightly different.

Suppose we had a table with three children called Ann, one aged 3, one 4 and one 5. In PostgreSQL
statement like:

UPDATE age SET age = 3 WHERE name ="Ann'

would report 3 rows the number of children with the name Ann. MySQL, on the other hand, would
report 2 the number of rows actually changed. By passing this flag to the connect routine, the defau
behavior is changed to be more like PostgreSQL, in that the number of rows matched is returned.

Other, less frequently used flags are documented in the manual.

If the connection fails, NULL is returned. To discover the underlying cause of the error, we can use
mysql_error, which we will meet shortly.

To close the connection when you have finished with it (normally this would only be at the end of a program
you use mysqgl_close:

void mysql_close(MYSQL *connection);
This closes the connection down. If the connection structure was allocated by mysql_init (because you pass

NULL when you called mysql_init originally), the structure is freed; the pointer is now invalid and must not
be used again.

Accessing MySQL Data from C 133

Professional LINUX Programming

Closely associated with the connection routines (since it can only be called between mysql_init and
mysql_real_connect) is mysql_options, a routine for setting options:

int mysql_options(MYSQL *connection, enum option_to_set,
const char *argument);

Since it can only set one option at a time, you have to call this routine as many times as you need, providing
you only call it between mysql_init and mysql_real_connect. Some of the options take arguments that are nc
of type char; for these you will have to cast the value to const char *. There are several possible options, an
we will look at the main three you may need to know. The full list is, as usual, included in the extensive
online manual, the documentation that is normally installed with MySQL (in the /usr/doc directory), and the
downloadable pdf format manual file.

enum option Actual Argument Type |Meaning

MYSQL_OPT_CONNECT_TIMEOUT|Const unsigned int * [The number of seconds to wait before
timing out a connection.

MYSQL_OPT_COMPRESS None, use NULL Use compression on the network
connection
MYSQL_INIT_COMMAND Const char * Command to send each time a connection

is established

On success, zero is returned. Since all the routine is doing is setting flags in the connection handle structure
failure means you used an invalid option.

To set the connection timeout to seven seconds, we would use a fragment of code such as this:

unsigned int timeout = 7;

connection = mysqgl_init(NULL);
ret = mysql_options(connection, MYSQL_OPT_CONNECT_TIMEOUT,
(const char *)&timeout);
if (ret) {
/* Handle error */

}

connection = mysql_real_connect(connection
Now we've seen the basics of setting up and closing a connection, let's write a short program, just to test it c

This is connectl.c, which connects to a server on the local machine, as user rick with password bar, to the
database called rick.

#include <stdlib.h>
#include <stdio.h>
#include "mysql.h"
int main(int argc, char *argv[]) {
MYSQL *conn_ptr;
conn_ptr = mysqgl_init(NULL);
if (lconn_ptr) {
fprintf(stderr, "mysql_init failed\n");
return EXIT_FAILURE;
}

conn_ptr = mysql_real_connect(conn_ptr, "localhost", "rick", "bar",
"rick", 0, NULL, 0);

Accessing MySQL Data from C 134

Professional LINUX Programming

if (conn_ptr) {

printf("Connection success\n");
}else {

printf("Connection failed\n");

}

mysql_close(conn_ptr);

return EXIT_SUCCESS;
}

Now we need to compile it. Depending on how you installed MySQL, you may need to add both the include
path and a library path, as well as specifying that the file needs linking with the library module mysqgiclient.
On our install from RPMs, the required compile line is:

$ gcc —l/usrfinclude/mysql connectl.c —L/usr/lib/mysqgl -Imysgiclient —o connectl

When we run it, we simple get a message saying the connection succeeded.

$./connectl
Connection success

$

As you can see, getting a connection to a database is very easy.

Error Handling

Before we progress to more useful programs, we need to look at how MySQL manages errors. All errors are
indicated by return codes, and the details reported via the connection handle structure. There are only two
routines to know:

unsigned int mysqgl_errno(MYSQL *connection);
and
char *mysql_error(MYSQL *connection);

If a mysql function returns an integer code indicating an error generally any non—zero value you can retriev
the error code by calling mysql_errno, passing the connection structure. Zero is returned if the error code he
not been set. This code is updated each time a call is made to the library. You can therefore only retrieve th
error code for the last command you executed, with the exception of these two error routines, which do not
cause the error code to be updated.

The return value is the error code, which you will either find defined in the errmsg.h include file, or in
mysqld_error.h, both in the mysql-specific include directory. The former is for client type errors, such as
losing a connection, and the latter for server type errors, such as passing an invalid command.

If you prefer a textual error message, then you can call mysqgl_error, which provides a meaningful text
message instead. The message is in internal static space, so you need to copy it elsewhere if you want to s;
the error text.

If we add some basic error handling to our connection tester program, we can see how this works in practice
However, you may have noticed we are about to have a problem. If mysql_real_connect returns a NULL
connection pointer when it fails, how do we get at the error code? The answer is to make the connection
handle a variable; then we can still access it if mysql_real_connect fails.

Error Handling 135

Professional LINUX Programming

Here is connect2.c, which illustrates both how we use the connection structure when it isn't dynamically
allocated, and also shows how we might write some basic error handling code. The changes are highlighted

#include <stdlib.h>
#include <stdio.h>
#include "mysql.h"
int main(int argc, char *argv[]) {
MYSQL my_connection;
mysql_init(&my_connection);
if (mysql_real_connect(&my_connection, "localhost", "rick",
"bar", "rick", 0, NULL, 0)) {
printf("Connection success\n");
mysql_close(&my_connection);
}else {
fprintf(stderr, "Connection failed\n");
if (mysql_errno(&my_connection)) {
fprintf(stderr, "Connection error %d: %s\n", mysql_errno(&my_connection),
mysql_error(&my_connection));

}
return EXIT_SUCCESS;

}

We could in fact have solved our problem quite simply; we'd simply have to avoid overwriting our connectior
pointer with the return result if mysql_real_connect failed. Nevertheless, this serves our purposes as an
illustration of the other way of using connection structures. If we force an error, perhaps by putting in an
incorrect password, we will get an error code and error text, much as we would have seen from the interacti
mysgq|l tool.

Executing SQL Statements

Now we have a connection, and know how to handle errors, it's time to look at doing some real work with ou
database. The principal keyword for executing SQL statements of all types is mysql_query:

int mysql_query(MYSQL *connection, const char *query)

As you can see, there is very little to it. It takes a pointer to a connection structure and a text string containir
the SQL to be executed; unlike the command line tool, no terminating semicolon should be used. On succes
zero is returned. In the special case that you need to include binary data, you can use a related function,
mysql_real_query. For the purposes of this chapter though, we only need to look at mysql_query.

SQL Statements That Return No Data

We will look first at UPDATE, DELETE and INSERT statements. Since they return no data from the
database, they are easier to use.

The other important function that we will introduce here is a function to check the number of rows affected:
my_ulonglong mysql_affected_rows(MYSQL *connection);

Probably the most obvious thing about this function is the rather unusual return result. For portability reason
this is a special unsigned type. For use in printf, you're recommended to cast to unsigned long, with a forma

specification of %lu. This function returns the number of rows affected by the previous UPDATE, INSERT ot
DELETE query executed using mysqgl_query.

Executing SQL Statements 136

Professional LINUX Programming

Unusually for mysql_ functions, a return code of zero indicates no rows affected; a positive number is the
actual result, normally the number of affected rows.

As we mentioned earlier, there can be some 'unexpected' results when using mysql_affected_rows. Let's loc
first at the number of rows affected by INSERT statements, which do behave as expected. We add the
following code to our connect2.c program, and call it insertl.c:

#include <stdlib.h>
#include <stdio.h>
#include "mysql.h"
int main(int argc, char *argv[]) {
MYSQL my_connection;
int res;
mysql_init(&my_connection);
if (mysql_real_connect(&my_connection, "localhost",
"rick", "bar", "rick", 0, NULL, 0)) {
printf("Connection success\n®);
res = mysql_query(&my_connection, "INSERT INTO children(fname, age)
VALUES('Ann', 3)");
if (Ires) {
printf("Inserted %lu rows\n",
(unsigned long)mysq|l_affected_rows(&my_connection));
} else {
fprintf(stderr, "Insert error %d: %s\n", mysql_errno(&my_connection),
mysqgl_error(&my_connection));

mysqgl_close(&my_connection);
}else {
fprintf(stderr, "Connection failed\n");
if (mysql_errno(&my_connection)) {
fprintf(stderr, "Connection error %d: %s\n",
mysql_errno(&my_connection), mysql_error(&my_connection));
}
}
return EXIT_SUCCESS;

}

As expected, the number of rows inserted is one.

Now we change the code, so the 'insert' section is replaced with:

mysql_errno(&my_connection), mysql_error(&my_connection));

}
res = mysql_query(&my_connection, "UPDATE children SET AGE =4

WHERE fname ="Ann™);
if (fres) {
printf("Updated %Ilu rows\n",
(unsigned long)mysql_affected_rows(&my_connection));
}else {
fprintf(stderr, "Update error %d: %s\n", mysql_errno(&my_connection),
mysql_error(&my_connection));

}

and call it updatel.c.

Now suppose our children table has data in it, like this:

Executing SQL Statements 137

Professional LINUX Programming

1 ' '
- + -

| childno | fname | age |

1|Jenny | 14|

2| Andrew | 10|
3| Gavin | 4]

4| Duncan| 2|
5|Emma | O]

6|Alex | 11|
7| Adrian| 5|
8|Ann | 3|
9|Ann | 4]
10| Ann | 3|

- —— —

11|Ann | 4]

Where we execute updatel, we would expect the number of rows affected to be reported as 4, but in practic
the program reports 2, since it only had to change 2 rows, even though the WHERE clause identified 4 rows
If we want mysql_affected_rows to report the result as 4, which may be the result people familiar with other
databases will expect, we need to remember to pass the CLIENT_FOUND_ROWS flag to
mysql_real_connect, as in update2.c, like this:

if (mysql_real_connect(&my_connection, "localhost",
"rick", "bar", "rick", 0, NULL, CLIENT_FOUND_ROWS)) {

If we reset the data in our database, then run the program with this modification, it reports the number of
affected rows as 4.

The function mysql_affected_rows has one last oddity, which appears when we delete data from the databa
If we delete data with a WHERE clause, then mysqgl_affected_rows returns the number of rows deleted, as \
would expect. However, if there is no WHERE clause, and all rows are therefore deleted, the number of row
affected is reported as zero. This is because an optimization deletes the whole table for efficiency reasons.
This behavior is not affected by the CLIENT_FOUND_ROWS option flag.

Statements That Return Data

It's now time to look at the most common use of SQL, the SELECT statement for retrieving data from a
database.

Note MySQL also supports SHOW, DESCRIBE and EXPLAIN SQL statements for returning results, but
we're not going to be considering these here. As usual, the manual contains explanations of these
statements.

You will remember from the PostgreSQL chapter that we could either retrieve the data from SQL SELECT
statements in a PQexec, where all the data was fetched at once, or use a cursor, where we retrieved data fr
the database row by row, so that large data sets did not overload the network or client.

MySQL has almost exactly the same choice of retrieval methods, for exactly the same reasons, although it
does not actually describe the row—by-row retrieval in terms of cursors. However what it does offer is an AF
with far fewer differences between the two methods, which will generally make it easier to swap between the
two methods, should you ever need to.

Generally there are four stages in retrieving data from a MySQL database:

Executing SQL Statements 138

Professional LINUX Programming

* issue the query

* retrieve the data

* process the data

« perform any tidy up required

We issue the query with mysqgl_query, as we did earlier. Retrieving the data is done with either
mysql_store_result or mysqgl_use_result, depending on how we want the data retrieved, followed by a
sequence of mysql_fetch_row calls to process the data. Finally we must call mysql_free_result to allow
MySQL to perform any required tidying up.

Functions for all-at—once data retrieval

We can retrieve all the data from a SELECT (or other statement that returns data), in a single call, using
mysql_store_result:

MYSQL_RES *mysql_store_result(MYSQL *connection);

This function must be called after a mysql_query has retrieved data, to store that data in a result set. This
function retrieves all the data from the server and stores it in the client immediately. It returns a pointer to a
structure that we haven't met before a result set structure. A NULL is returned if the statement failed.

CautionAs with the PostgreSQL equivalent, be aware that returning a NULL means an error has occurred,
and that this is different from no data being retrieved. Even if the returned value is not NULL, it does
not mean there is data present to process.

Providing NULL was not returned, you can then call mysqgl_num_rows and retrieve the number of rows
actually returned, which may of course be zero.

my_ulonglong mysqgl_num_rows(MYSQL_RES *result);

This takes the result structure returned from mysql_store_result, and returns the number of rows in that rest
set, which may be zero. Providing mysql_store_result succeeded, mysql_num_rows will always succeed.

This combination of mysql_store_result and mysgl_num_rows is an easy and intuitive way to retrieve data.
Once mysql_store_result has returned successfully, all the query data has been stored on the client, and we
know that we can retrieve it from the result structure without risk of further database or network errors
occurring, since all the data is now local to our program. We also get to discover the number of rows returne
immediately, which can make coding easier. As mentioned earlier, this sends all the results back to the clier
at once. For large result sets, this can consume enormous quantities of server, network and client resources
For these reasons, when working with larger data sets, it's often better to retrieve the data as we need it. W
will see how to do this shortly, using the mysql_use_result function.

Once the data has been retrieved, we can retrieve it with mysql_fetch_row, and also jump around the result
with mysql_data_seek, mysqgl_row_seek, mysqgl_row_tell. Before we move on to retrieving the data in stage:
let's have a look at these functions.

mysql_fetch_row
MYSQL_ROW mysql_fetch_row(MYSQL_RES *result);

This function takes the result structure we obtained from store result, and retrieves a single row from it,
returning the data in a row structure that it allocates for you. When there is no more data, or an error occurs.

Executing SQL Statements 139

Professional LINUX Programming
NULL is returned. We will come back to processing the data in this row structure later.
mysql_data_seek

void mysql_data_seek(MYSQL_RES *result, my_ulonglong offset);

This function allows you to jump about in the result set, setting the row that will be returned by the next fetct
row operation. The offset value is a row number, and must be in the range zero to one less than the number
rows in the result set. Passing zero will cause the first row to be returned on the next call to mysqgl_fetch_rov

mysql_row_tell, mysql_row_seek

MYSQL_ROW_OFFEST mysql_row_tel(MYSQL_RES *result);

This function returns an offset value, indicating the current position in the result set. It is not a row number,
and you can't use it with mysql_data_seek. However you can use it with:

MYSQL_ROW_OFFSET mysql_row_seek(MYSQL_RES *result, MYSQL_ROW_OFFSET offset);
which moves the current position in the result set, and returns the previous position.

This pair of functions can sometimes be useful for jumping between known points in the result set. Be carefi
never to mix up the offset value used by row tell and row seek with the row number used by data_seek.
These are not interchangeable, and your results will not be what you were hoping for.

mysq|l_free_result

There is one last function we need to know before we can use these new functions in anger, and that is
mysql_free_result.

void mysql_free_result(MYSQL_RES *result);

When you've finished with a result set you must always call this function, to allow the MySQL library to tidy
up the objects it has allocated.

Retrieving the data

We are now in a position to write our first program that retrieves data from the database. We're going to sele
the contents of all rows for which age is greater than 5. Unfortunately we don't know how to process this dat
yet, so all we can do it loop round retrieving it. This is selectl.c:

#include <stdlib.h>
#include <stdio.h>
#include "mysqgl.h"
MYSQL my_connection;
MYSQL_RES *res_ptr;
MYSQL_ROW sqlrow;
int main(int argc, char *argv[]) {
int res;
mysql_init(&my_connection);
if (mysql_real_connect(&my_connection, "localhost", "rick",
"bar", "rick", 0, NULL, 0)) {
printf("Connection success\n");

res = mysql_query(&my_connection, "SELECT childno, fname,

Executing SQL Statements 140

Professional LINUX Programming

age FROM children WHERE age > 5");
if (res) {
printf("SELECT error: %s\n", mysqgl_error(&my_connection));
}else {
res_ptr = mysql_store_result(&my_connection);
if (res_ptr) {
printf("Retrieved %Ilu rows\n", (unsigned long)mysql_num_rows(res_ptr));
while ((sglrow = mysql_fetch_row(res_ptr))) {
printf("Fetched data...\n");

if (mysql_errno(&my_connection)) {
fprintf(stderr, "Retrive error: %s\n", mysql_error(&my_connection));

}
}

mysqgl_free_result(res_ptr);

mysgl_close(&my_connection);
}else {
fprintf(stderr, "Connection failed\n");
if (mysql_errno(&my_connection)) {
fprintf(stderr, "Connection error %d: %s\n",
mysql_errno(&my_connection), mysql_error(&my_connection));
}

}
return EXIT_SUCCESS;

}
The important section, where we retrieve a result set and loop through the retrieved data, is highlighted.

Retrieving the data one row at a time

To retrieve the data row by row, as we require it, rather than fetching it all at once and storing it in the client,
we can replace the mysqgl_store_result call with mysql_use_result:

MYSQL_RES *mysqgl_use_result(MYSQL *connection);

This function also takes a connection object and returns a result set pointer, or NULL on error. Like
mysqgl_store_result, this returns a pointer to a result set object; the crucial difference though, is that it hasn't
actually retrieved any data into the result set when it returns, just initialized the result set ready to receive de

Caution To actually retrieve the data you must call mysqgl_fetch_row repeatedly, as we did before
until all the data has been retrieved. If you fail to fetch all the data from a use result call,
then subsequent data retrieval will be corrupted.

What if we use mysqgl_use_result? Although we have potentially a major benefit, in that we've minimized bot
the client and network resources being used, there's a tradeoff we can't use functions mysqgl_num_rows,
mysgl_data_seek, mysqgl_row_seek and mysql_row_tell along with mysqgl_use_result. Actually that's not
strictly true: mysqgl_num_rows can be called, but won't return the number of available rows until the last one
has been retrieved with mysql_fetch_result. It's therefore not very useful.

We've also increased the latency between row requests, since each time we ask for the next row, it now has
be fetched across the network. Another problem is that we have left ourselves open to the possibility of the
network connection failing before we have finished retrieving all the data; this will prevent us actually
accessing that data, since it isn't stored locally any more.

Executing SQL Statements 141

Professional LINUX Programming

However we still have some big benefits: we've smoothed our network traffic load, and significantly reduced
a potentially very large storage overhead from the client. For larger data sets, the row—by-row fetch of
mysqgl_use_result is almost always to be preferred.

Changing selectl.c into select2.c (which will use the mysgl_use_result method) is easy, so we just show the
changed section here with changed lines highlighted:

if (res) {
printf("SELECT error: %s\n", mysqgl_error(&my_connection));
}else {
res_ptr = mysql_use_result(&my_connection);
if (res_ptr) {
while ((sglrow = mysql_fetch_row(res_ptr))) {
printf("Fetched data...\n");

if (mysql_errno(&my_connection)) {
printf("Retrive error: %s\n", mysql_error(&my_connection));

}
}

mysqgl_free_result(res_ptr);

}

Notice that we can no longer discover the number of rows retrieved immediately after obtaining a result.
Furthermore, our earlier error—checking technique using the fact that mysql_errno(&my_connection) would
be zero unless an error occurred made this change very easy to apply. If you write code using
mysql_store_result, but think there's a chance that you'll need to go back and change to using
mysql_use_result, you can make the change much easier by coding the original with this in mind, and code
defensively by checking the return results from all functions.

Processing Returned Data

Retrieving the data is not of much use unless we can do something with it afterwards. Just like PostgreSQL,
there are two types of data return:

« the actual information from the database that was retrieved
« data about the data, so called metadata

First let's see how we would recover and print the data out, before we worry about determining column nam
and other information about the data.

In newer versions of MySQL you can use the function mysql_field_count, which takes a connection object
and returns the number of fields in the result set:

unsigned int mysql_field_count(MYSQL *connection);

This function can also be used in more generic processing, for example, to determine why a
mysql_store_result call failed. If mysql_store_result returns NULL, but mysql_field_count returns a number
greater than zero, you know there should have been some columns in the result set, but that there was an e
retrieving them. On the other hand, if mysql_field_count returns zero, there were no columns to retrieve, anc
that will be why attempting to store the result has failed.

This is more likely to be used where the SQL statement is not known in advance, or where you wish to write
completely generic query processing module.

Executing SQL Statements 142

Professional LINUX Programming

Note In code written for older versions of MySQL, you may see mysqgl_num_fields being used. These could
take either a connection structure or a result structure pointer and return the number of rows.

In newer code you should generally use mysql_field _count, unless you know that your code needs to
execute on older versions of MySQL.

If we simply want to get at the result information in an unformatted text format, then we now know enough tc
print out the data directly, using the MYSQL_ROW structure returned from mysql_fetch_row. We can add a
very simple function, display_row, to our select2.c program, to print out the data.

Note Notice we have made the connection, result, and row information returned from mysqgl_fetch_row all
global, to simplify the example. In production code we would not recommend this.

Here is our very simple routine for printing out the data:

void display_row() {
unsigned int field_count;
field_count = 0;
while (field_count < mysqgl_field_count(&my_connection)) {
printf("%s ", sqlrow[field_count]);
field_count++;
}
printf("\n");
}

Append it to select2.c, and add a declaration and a function call:

void display_row();
int main(int argc, char *argv[]) {
int res;
mysql_init(&my_connection);
if (mysql_real_connect(&my_connection, "localhost", "rick",
"bar", "rick", 0, NULL, 0)) {
printf("Connection success\n®);

res = mysql_query(&my_connection, "SELECT childno, fname,
age FROM children WHERE age > 5");
if (res) {
printf("SELECT error: %s\n", mysqgl_error(&my_connection));
}else {
res_ptr = mysqgl_use_result(&my_connection);
if (res_ptr) {
while ((sqglrow = mysql_fetch_row(res_ptr))) {
printf("Fetched data...\n");
display_row();

Now save the finished product as select3.c. Finally, compile and run select3 as follows:

$ gcc l/usr/include/mysql select3.c L/usr/lib/mysql Imysglclient o select3
$./select3

Connection success

Fetched data...

1 Jenny 14

Fetched data...

2 Andrew 10

Fetched data...

Executing SQL Statements 143

Professional LINUX Programming

6 Alex 11
$

Well, that shows it's working, although the formatting is rather basic. We've also not taken account of possik
NULL values in the result. If we wanted to display the output in a table, for example, we would need to obtai
both the data, and information about the data, in a more structured form. So how do we do this?

Rather than use the row object (defined as a char **) that mysql_fetch_row returned directly, we can fetch tt
information, one field at a time, into a structure containing both data and metadata (data about the returned
data). This is done with the mysql_fetch_field function:

MYSQL_FIELD *mysql_fetch_field(MYSQL_RES *result);

You need to call this repeatedly to step though the fields, one at a time. NULL is returned when there are nc
more fields to process. The pointer to the field structure returned can be used to access various information
about the column, stored in the field structure. This is defined in mysql.h:

Field in MYSQL_FIELD structure Meaning
char *name; The name of the column, as a string.

char *table; The name of the table from which the column came. This tends to

be more useful where your select uses multiple tables. Beware that
for calculated values, such as MAX will have an empty string for
the table name.

char *def; If you call the mysql_list_fields (which we are not covering here),
then this will contain the default value of the column.

enum enum_field_types type; Type of the column. See below.

unsigned int length; The width of the column, as specified when the table was defiped.

unsigned int max_length; If you used mysql_store_result then this contains the longest actual
column length found. It is not set if you used mysql_use_result.

unsigned int flags; Flags. These tell you about the definition of the column, not abhout

the data actually found. The common flags have obvious meahings,
and are: NOT_NULL_FLAG, PRI_KEY_FLAG,

UNSIGNED_FLAG, AUTO_INCREMENT_FLAG,
BINARY_FLAG. The full list can be found in the documentatiop.

unsigned int decimals; The number of decimals, valid only numeric fields.

Column types are quite extensive. The full list can be found in mysqgl_com.h, and in the documentation. The
common ones are:

« FIELD_TYPE_DECIMAL

« FIELD_TYPE_LONG

« FIELD_TYPE_STRING

« FIELD_TYPE_VAR_STRING

One particularly useful macro that is defined is IS_NUM, which returns true if the type of the field is numeric
like this:

if (IS_NUM(myslg_field_ptr—>type)) printf("Numeric type field\n");

Before we update our program, we should mention one extra function:

Executing SQL Statements 144

Professional LINUX Programming

MYSQL_FIELD_OFFSET mysql_field_seek(MYSQL_RES *result,
MYSQL_FIELD_OFSET offset);

This allows us to override the current field number, which is internally incremented each time
mysql_fetch_field is called, and by passing an offset of zero jump back to the first column in the result. The
previous offset is returned.

We now know enough to update our select program, to show all the additional data that is available about a
column. This would also enable us to produce a more stylish output, if we so desired.

This is select4.c; we print the whole file here, so you get a complete example to look at. Notice that it does r
attempt an extensive analysis of the column types, it just demonstrates the principles required.

#include <stdlib.h>
#include <stdio.h>
#include "mysql.h"
MYSQL my_connection;
MYSQL_RES *res_ptr;
MYSQL_ROW sqlrow;
void display_header();
void display_row();
int main(int argc, char *argv[]) {
int res;
int first_row = 1;
mysql_init(&my_connection);
if (mysql_real_connect(&my_connection, "localhost", "rick",
"bar", "rick", 0, NULL, 0)) {
printf("Connection success\n");

res = mysql_query(&my_connection, "SELECT childno, fname,
age FROM children WHERE age > 5");
if (res) {
fprintf(stderr, "SELECT error: %s\n", mysql_error(&my_connection));
} else {
res_ptr = mysqgl_use_result(&my_connection);
if (res_ptr) {
display_header();
while ((sglrow = mysql_fetch_row(res_ptr))) {
if (first_row) {
display_header();
first_row = 0;
}
display_row();

if (mysqgl_errno(&my_connection)) {
fprintf(stderr, "Retrive error: %s\n",
mysgl_error(&my_connection));
}
}

mysqgl_free_result(res_ptr);

mysgl_close(&my_connection);
}else {
fprintf(stderr, "Connection failed\n");
if (mysql_errno(&my_connection)) {
fprintf(stderr, "Connection error %d: %s\n",
mysqgl_errno(&my_connection),
mysqgl_error(&my_connection));

}

Executing SQL Statements 145

Professional LINUX Programming
}

return EXIT_SUCCESS;
}
void display_header() {
MYSQL_FIELD *field_ptr;
printf("Column details:\n");
while ((field_ptr = mysql_fetch_field(res_ptr)) '= NULL) {
printf("\t Name: %s\n", field_ptr->name);
printf("\t Type: ");
if (IS_NUM(field_ptr—>type)) {
printf("Numeric field\n");
}else {
switch(field_ptr—>type) {
case FIELD_TYPE_VAR_STRING:
printf("VARCHAR\N");
break;
case FIELD_TYPE_LONG:
printf("LONG\n");
break;
default:
printf("Type is %d, check in mysqgl_com.h\n", field_ptr->type);
} I* switch */
} I* else */
printf("\t Max width %d\n", field_ptr—>length);
if (field_ptr—>flags & AUTO_INCREMENT_FLAG)
printf("\t Auto increments\n");
printf("\n");
} I* while */

}
void display_row() {
unsigned int field_count;
field_count = 0;
while (field_count < mysqgl_field_count(&my_connection)) {
if (sqlrow[field_count]) printf("%s ", sqlrow[field_count]);
else printf("NULL");
field_count++;

}
printf("\n");
}

Where we compile and run this, the output we get is:

$./select4

Connection success

Column details:
Name: childno
Type: Numeric field
Max width 11
Auto increments
Name: fname
Type: VARCHAR
Max width 30
Name: age
Type: Numeric field
Max width 11

Column details:

1 Jenny 14

2 Andrew 10

6 Alex 11

$

Executing SQL Statements 146

Professional LINUX Programming

It's not particularly stylish, but is at least informative.

There are other functions that allow you to retrieve arrays of fields, and jump between columns. Generally a
you need is the routines shown here, the interested reader can find more information in the MySQL manual.

Miscellaneous Functions

There are a few API functions that do not fit into the categories we have covered so far, but are useful to
know. Where possible you should do as much of your work on the database through the mysqgl_query
interface. For example there is an APl mysql_create_db for creating databases, however it's generally easie
use the CREATE DATABASE command in conjunction with mysql_query, since then you only need to know
the SQL for creating a database, rather than a larger number of specialized API calls.

Additional API calls that you may find useful are:

mysql_get_client_info char *mysql_get_client_info(void);

Returns version information about the library that the client is
using.
mysql_get_host _info char *mysql_get_host_info(MYSQL *connection);

Returns server connection information.
mysql_get_server_info char *mysql_get_server_info(MYSQL *connection);

Returns information about the server that we are currently connected
to.

mysql_info char *mysqgl_info(MYSQL *connection);

Returns information about the most recently executed query, but
only works for a few query types, generally INSERT and UPDATE
statements. Otherwise returns NULL.

mysql_select_db int mysql_select_db(MYSQL *connection, const char *dbname};

Change the default database to the one given as a parameter,
providing the user has appropriate permissions. On success zgro is
returned.

mysql_shutdown int mysql_shutdown(MYSQL *connection);

If you have appropriate permissions, shuts down the database [server
you are connected to. On success zero is returned.

Resources

The main resource for MySQL is quite simply the main web site at http://www.mysql.com
Books that you may wish to look at include: MySQL, by Paul DuBois, New Riders (ISBN 0-7357-0921-1)

and MySQL & mSQL, by Randy Jay Yarger, George Reese and Tim King, O'Reilly & Associates (ISBN
1-56592-434-7).

Miscellaneous Functions 147

Professional LINUX Programming

Summary

In this chapter we have taken a brief look at MySQL. Although not as fully featured as PostgreSQL, it is
nonetheless a very capable product, with a comprehensive C-based API.

We saw how to install and configure a basic MySQL database, some of the relevant utility commands, and
then looked at the API for C, just one of the many programming languages that can access data in a MySQI
database.

MySQL's main advantage over PostgreSQL is its performance. For read-only access, as is common on ma
web sites, MySQL is very fast indeed. Its main drawbacks are weaker support for standard SQL, and the lac
of support for transactions.

Summary 148

Chapter 6: Tackling Bugs

Overview

In this chapter we are going to take a look at some of the tools and technigques we can use to make our
application robust. We will consider some of the errors that creep into our programs and what we can do to
to prevent them, find them quickly and remove them.

We will cover debug print statements, assertions, tracing functions and using a debugger.

Before we get on to the tools, such as the debuggers and special libraries, let's consider why it is that our
programs don't always do what we want them to. Some of this may seem quite obvious, but one man's
everyday observation is another man's blinding revelation. Hopefully you will glean some useful nuggets frol
the tips and techniques in this chapter.

Error Classes

Before we get started it is useful to consider classes of errors. We will keep it simple here by mentioning jus
two of the most common classes of error, faulty input and faulty programming.

The first class occurs when something out of the ordinary happens to our program. Perhaps the user of an
image viewing application asks to view a database file and an error occurs because the file format is not as
expected. The application should react gracefully to this and prompt to the user to re—select. This class of
error can and should always be handled by the software.

The second class of errors occurs when the software is at fault. Perhaps, because the check for correct file

format mentioned earlier is missing, the image viewer goes on to crash as a result of reading garbage data.

Another example might be a financial calculator program that routinely calculates an incorrect repayment fol
a loan.

We shall see in the course of this chapter a number of techniques that can be used both to minimize the effe
of the first class of error (user or environment error) and reduce the time it takes to track down the cause of
second (software error).

Reporting Errors

If you want to save yourself a lot of time and effort tracking down bugs in your programs there is one thing
that you really ought to make a golden rule.

CautionAlways, always, check return results.

It is all too easy for programmers to lapse into bad habits brought on by laziness or poor assumptions. To b
fair, many books and courses skip over error handling so as not to clutter up an example program with
unnecessary details. Once past the learning stage a professional programmer will want to do better. Whene
you use a function written by someone else it is up to you to make sure that you understand what that functi
does, what assumptions it makes about its arguments or environment and under what conditions it might fai
If you do not check that the function succeeded you will only store up trouble. Your program must be able to
cope with errors that occur in functions that you call.

Chapter 6: Tackling Bugs 149

Professional LINUX Programming

A simple example is found in the standard 1/O library.

The fopen function opens a file for reading or writing or both. It returns a stream pointer that can be used in
future read or write operations. If the file cannot be opened a NULL is returned. Just about anyone who use:
fopen knows to check the return result or risk a program crash trying to read a file that does not exist.

Many programmers who use the fwrite function will be aware that the function may not write all of the data
that you pass to it. When this happens it may or may not be an error. If your hard disk is full it's probably an
error. If you are writing across a network or to a device driver it's possible that the write operation has
succeeded in writing part of your data (perhaps just a single packet). It may be quite happy enough to accey
more data at some later point in time, even immediately if it is simply writing packet by packet — you just
have to call fwrite again with the remaining non-written data.

A program that is written to maximize the chance of discovering a genuine error as close as possible to the
point at which it occurs will be coded in such a way that it deals with all three of the possible outcomes of
calling fwrite. These are: success in writing all data, partial success in writing some of the data, or failure. It
will also be in a position to handle any error in the most appropriate way.

Almost no program checks the return result from calling fclose.
Why is this?

Well, some say that fclose never returns an error in practice. Some say there is nothing you can do to retrie
the situation if there is an error closing a file. If your application depends on knowing that your data has beel
safely written away then you better had check that closing the file succeeded, or find some other way to
determine that all is well with your data. (The functions fstat and fflush can be helpful in this case.)

It is possible that on a networked file system, or anywhere where writes are asynchronous that data bufferin
in the system may allow the final write to appear to succeed, the failure only being picked up when the buffe
are flushed on closing the file. An example might be the case when exceeding a disk quota. An application
sensitive to this may retain its data in memory and on failure try to write the data to a different location — at
least giving the user a chance to rectify the situation. That must be better than failing silently, leaving corrup
information to lead to failures later, and a long, cold, trail back to the original culprit.

Many functions, especially in the standard C library, make use of the error variable, errno. This integer
variable is set to one of a number of error codes when a function fails. The manual page is a good place to
start when looking for information about return results and possible error conditions for functions you are
using.

For example, the manual page for fclose reminds us that fclose may fail, and set the errno variable, for any
the reasons that close may fail. In turn, the manual page for close actually contains a warning that it is a
serious, but common error to ignore the result of a close, especially when using the network file system NFS
We have been alerted to it only by considering return results.

Remember that just because your program today is only ever run writing to a hard disk, that's no guarantee
that a user in the future won't find a new use for it running over a network.

Continuing our analysis we find that fclose might fail and set errno to values that include:

EBADF stream pointer or underlying file descriptor is invalid

Chapter 6: Tackling Bugs 150

Professional LINUX Programming

ENOSPC no space left on device
EIO a low-level I/O operation failed
EPIPE the stream is connected to a pipe or socket that has closed

We can, and should, test the value of errno against any of these error values defined in errno.h. To help infc
the user of the problem we have encountered we can use the library functions strerror to obtain a string
describing the error or perror to print a message. perror writes to the standard error stream, stderr, text
describing the last error encountered — the one that caused errno to be set.

Fastidiously checking return results helps keep errors from spreading it is part of coding defensively. If a
function you call returns an unexpected value, your function might use it and generate its own errors. This is
sometimes called error propagation, or knock—on errors. If you take care to check the return result of every
function you call, you can be sure that you will spot any error as soon as it occurs.

In your own functions it is a good idea to establish a method for dealing with errors and their propagation
right from the start. Define a common set of error values that your functions can share. Make each function
consistent in its use of the error values, and make the error values meaningful. Here is an example taken frc
the reference implementation of the DVD store application APIs:

/* Error definitions */

#define DVD_SUCCESS 0

#define DVD_ERR_NO_FILE -1

#define DVD_ERR_BAD_TABLE -2
#define DVD_ERR_NO_MEMBER_TABLE -3
#define DVD_ERR_BAD_MEMBER_TABLE -4
#define DVD_ERR_BAD TITLE TABLE -5
#define DVD_ERR_BAD _DISK TABLE -6

#define DVD_ERR_BAD_SEEK -7
#define DVD_ERR_NULL_POINTER -8
#define DVD_ERR_BAD_WRITE -9
#define DVD_ERR_BAD_READ -10
#define DVD_ERR_NOT_FOUND -11
#define DVD_ERR_NO_MEMORY -12

#define DVD_ERR_BAD_RENTAL_TABLE -13
#define DVD_ERR_BAD_RESERVE_TABLE -14
static int file_set(FILE *file, long file_position, int size, void *data)
{
if(fseek(file, file_position, SEEK_SET) != 0)
return DVD_ERR_BAD_SEEK,;
if(fwrite(data, size, 1, file) I= 1)
return DVD_ERR_BAD_WRITE;
return DVD_SUCCESS;

}
FILE *member_file;

int dvd_member_set(dvd_store_member *member_record_to_update)
{
if(member_record_to_update == NULL)
return DVD_ERR_NULL_POINTER,;
return
file_set(member_file,
sizeof(dvd_store_member) * (member_record_to_update —> member_id),
sizeof(dvd_store_member),
(void *) member_record_to_update);

Chapter 6: Tackling Bugs 151

Professional LINUX Programming

All functions in the reference implementation return a status value. Any data that needs to be passed or
returned is done through arguments and pointers. This is an important point. By reserving return results for
success or error indications we separate the control and data flow. This is generally a good thing as we avoi
'special values', otherwise valid results that are used for special purposes. The design of some of the UNIX
system is poor is this respect. Take getchar as an example. It returns the next character that can be read frc
the standard input. But the return result is not a char, it's an int. This is because it needs to have a special
value, EOF, to indicate the end of file has been reached. EOF is defined as -1 so that it is outside the range
valid character values. So we end up with a function that confuses in its return type the data that it's returnin
and a status that would be used to control the flow of the program by way of a test for EOF.

In our example from the reference API implementation, the function member_set writes a structure to a flat
file database. As with all other functions in this implementation it will return either DVD_SUCCESS if all is
well or an error indication, in this case one of DVD_ERR_NULL_POINTER, DVD_ERR_BAD_SEEK or
DVD_ERR_BAD_WRITE. It used a data structure passed to it as an argument. Notice that it is coded
defensively. It checks first that the pointer it has been given is not NULL, although this is not really a strong
enough test to be sure that it is valid — but that's another story. This is an example of a pre—condition test.
We'll cover those in more detail shortly. If we have a NULL pointer we return with the result
DVD_ERR_NULL_POINTER, otherwise we pass control to a helper function file_set.

Making a program detect and report errors in the functions it calls as soon as paossible will help identify bugs
Making it robust to errors, taking appropriate action when things don't quite go to plan like closing opened
files when reads fail will make the application a better one. Robust applications tend to live longer in the
software community, and get used more widely than ever thought possible.

Detecting Software Errors

Even if we are careful to build our application correctly and meticulously record every change we make as w
go along problems still occur. It is a fact of life that our applications have bugs in them. It is possible to find
these bugs, errors or defects just by informally reading the source or by performing more formal code
inspections. Very often they are only found when we come to use the program, either in testing before relea
or when users find new ways of using the application that we didn't think of.

Sometimes these bugs can be difficult or time consuming to track down, but there are a few things that we ¢
do before we get to the testing stage that will help squash those bugs quickly.

Most importantly we can adopt a coding style that will help with debugging. In this chapter we shall see why
you should add debug support to your program and how to go about it. Adding debug messages and other
functions that support debugging is much easier to do as you write the program than it is later on, usually
when you are really busy trying to fix a nasty problem.

Once you have a well-structured application coded with debugging in mind, testing it and fixing it will be
much easier. We will cover testing in more detail in a later chapter.

Types of Software Error

During the testing stage of application development we will discover bugs, mistakes that we have made
somewhere along the line. These errors could have crept in at any stage.

The simplest error is a plain and simple coding error. Perhaps we misspelled something, used the wrong
variable, or passed an incorrect parameter, or got the order of the statements in some function transposed.

Detecting Software Errors 152

Professional LINUX Programming

These coding errors are usually quite easy to fix, once you've found out where they are. If you've coded the
application along the lines we mentioned earlier, that should be no problem. Some higher-level languages,
especially those more strongly typed than C, can spot some of these issues at compile time.

Sometimes we make larger errors. It might turn out that we have misunderstood how some library works, or
how to deal with some other system we need to communicate with. These design errors can be hard to put
right. We may have to re—think how we are going to perform a certain task and we may have to re-write a
portion of our application.

You can try to prevent design errors by making sure that you fully understand how your application is going
to work. It is definitely worth spending some time writing down how your program is split into modules, what
each module will do, and how it talks to other modules. Consider drawing some diagrams that show the
relationships between modules and the data they use.

The worst kind of error is the specification error. This can happen if the purpose of the application is not
understood or communicated accurately. Sometimes the customer does not make it clear what is wanted, o
changes his or her mind. When this happens you can end up with a finished application that works, has bee
tested and debugged, but does not do what it should. In the worst case you might have to throw it away and
start all over again. All this effort might have been saved if we spent longer talking to the end user, or thinkir
about what the application should do.

You can see that the effort that might be needed to fix each of these types of error increases sharply as
development proceeds. It is estimated that you need about ten times more effort to fix a problem for each
stage of development you go through before finding that you have an error.

The key to successful development is to try hard to get a good understanding of the requirements of the
application, design it carefully and code in a way that helps debugging and testing. Studies show that errors
will always crop up, possibly as many as 5 per 100 lines of code. If we take care we can make sure that the!
are mainly simple to fix.

So let's look at how to track down and avoid coding errors.

Debug Statements

To track down where a program is going wrong we need to be able to see what it is doing. Sometimes this
might be very clear, if for example the bug is in some user interface screen we might see an incorrect displa
and immediately deduce the fault. Very often things are not so straightforward. If a spreadsheet calculates a
incorrect value in the bottom right—hand corner of a complex worksheet we probably need to know more
about the route the program has taken through its code, how exactly it reached the wrong result.

The simplest way of discovering where a program has been is to introduce debug statements in the code.
There are a number of ways of doing this, and the best method will depend on the size and complexity of yo
program. For small programs a simple approach may work sufficiently well. Larger projects may need a
sophisticated strategy for debugging information. Others again might fall between these two extremes. Here
we will take a look at a range of options looking at the advantages and disadvantages of each.

The easiest way to introduce debug information is perhaps to use fprintf at key points in the code. For
example:

fprintf(stderr, "calling important function with %d\n", arg);
result = important(arg);

Debug Statements 153

Professional LINUX Programming

fprintf(stderr, "important function returned %d\n", result);

This approach is clearly easy to do and may be a good choice for small programs, but it has some
disadvantages. For a start we have no way of controlling it we get it all the time.

When we run our program we get the debug messages mixed up with the normal program output, but we ce
redirect them independently of the normal output using a shell redirection:

$./prog 2>stderr.log # send debug messages to the file stderr.log

This shell command runs the program, prog, redirecting any output it sends to stderr to the file stderr.log. Tt
is not very convenient if we want to view the output as the program runs, but we can use

$ tail —f stderr.log
in another terminal session if we wish.

We can ignore the debug output if we need to by redirecting it to the 'bit bucket', /dev/null, which will just
discard it.

$./prog 2>/dev/null

To control the debug output itself we can use conditionals. For reasons that will become apparent shortly
when we look at assertions, we could reasonably choose only to produce debug information if the macro
NDEBUG (for No Debug) is not set. Our debug statements would then look like this:

#ifndef NDEBUG
fprintf(stderr, "calling important function\n");
#endif

This is perhaps rather cumbersome, and in fact has limitations. To turn debug information on and off we still
need to recompile, although now we no longer have to edit the code. We just pass the flag -DNDEBUG
(Define NDEBUG) to the C compiler when we compile any source file we want to disable debug information
for. While this has the advantage of eliminating any overhead incurred by the additional debug statements
themselves it means that the debug version and non—-debug version of our program are different binaries. If
our intention was to test with debug enabled and then distribute a binary package with no debug we run a ri
because the tested program and the released one are different.

The NDEBUG flag is also a very coarse tool. We either get all debug information, or none at all. This might
be all you need, but with a little thought we can do a little better. If we create a binary variable, say
debug_level, we can use that to activate or deactivate debug information at run time.

int debug_level = 0; /* Default to no debug */

if(arguments contain —d)

debug_level = 1;

if(debug_level)

fprintf(stderr, "calling important function\n");

Here we add code to process a debug argument to our program, —d is a good choice, and use its presence

set the debug_level variable to control the debug information. Now we can run the program normally and ge
no debug information and run it with a —d argument and get the debug information. One disadvantage to thi:

Debug Statements 154

Professional LINUX Programming

approach is that we incur additional overhead in our program compared with the compile—time switched
version. We have also allowed our users to turn on debugging information, which may not always be
desirable.

Sometimes it is useful to create many different levels of debug information. We may decide that to begin wit
we need to know exactly what steps our program is taking. Later, as the program develops we might want tc
know less, perhaps just those occasions when something unexpected happens. Later again, when we have
handled all the 'normal errors' we might want to know only about severe or fatal errors.

We can implement debug levels as an extension of our debug variable technique. We could allow the
debug_level variable to be an integer variable the higher it is set the more detail we require. We could allow
the —d flag to take an argument to set the variable and then use this to decide whether or not to execute the
debug statement.

if(debug_level >= 3)

fprintf(stderr, "some routine information\n");
if(debug_level >= 1)

fprintf(stderr,"some critical information\n");

It would be sensible to create some constants with meaningful names for the values of the debug_level
variable to make the code more readable.

We could also consider the debug_level variable as a bit mask. For each type of debug information we want
be produced we define a bit in the debug bit mask, and each statement tests for its own bit to decide whethe
to execute or not. In this way, each module of a complex program can have its own, independently switchec
debug information.

#define DEBUG_UI 1 /* Debug information for user interface */
#define DEBUG_DB 2 [* Debug information for the database */
#define DEBUG_LOC 4 /* Debug information for program location */
if(debug_level & DEBUG_DB)
fprintf(stderr, "database opened with handle %d\n",...);
if(debug_level & DEBUG_LOC)
fprintf(stderr, "just entered function func\n");

Multiple levels of information make it very straightforward to separate any error messages your program
might produce from additional statements meant solely to aid debugging, especially if your messages contai
an indication of their level:

if(debug_level & DEBUG_DB)
fprintf(stderr, "DB: database open\n");

Note An alternative way of setting the debug level is to use the value of an environment variable. This is
especially useful for programs that are started with no command line arguments, for example via a
graphical user interface.

The C pre—processor has a number of facilities that can help with creating debug statements. A macro can |

used to cut down on the repetition involved in testing debug variables:

#define debug_db(x) {if(debug_level & DEBUG_DB)
fprintf(stderr, "DB: " ## x ## "\n");}

debug_db("database opened");
The standard error will contain the line:

Debug Statements 155

Professional LINUX Programming

DB: database opened
when this code is executed.

Note that the string concatenation operator (##) has been used to automatically prepend the correct debug
level identifier to the message that is being logged. A debug statement macro can also make use of
pre—processor defines that are available at compile time. These include the current file name and line numb
(__FILE__and __LINE__ respectively).

#include <stdio.h>
#define debug_db(x) if(debug_level & DEBUG_DB) {
fprintf(stderr, "DB:
"__FILE_ "(%d):", __LINE_);
fprintf(stderr, x ## "\n");

}
#define DEBUG_DB 1

main()

int debug_level = DEBUG_DB;
debug_db("error message");

}

Here we use the file and line number information to add to the debug message being produced so that the
standard error in this case would contain:

DB: debug.c(15): error message

If you are using the GNU C compiler, which is likely with almost all Linux distributions, you can also take
advantage of a third location macro defined in the C pre—processor, _PRETTY_FUNCTION__, which
expands to be the current function name. To keep things portable protect your use of this GNU-specific
extension with #ifdefs.

Linux and UNIX support the idea of multiple levels of seriousness for messages with the syslog facility. This
is a standard facility for adding messages to the system error log. It should be used very sparingly during
development, as there is typically only one set of log files collecting log information for the entire computer
system. However, it can be invaluable for recording fatal errors, like being unable to start, or abnormal
termination. Check out the manual pages for syslog(3) and syslog.conf(5).

One trick that might come in handy when deciding how to handle debug information is to redirect the standa
error within the program, rather than rely on a shell redirection. This can be useful if a shell script you'd rathe
not edit starts your program. If you execute

stderr = freopen("stderr.log", "w", stderr);

then the standard error will be redirected to the file stedrr.log from this point forward. You will need to check
that the return result is not NULL in which case the freopen call failed. The log file will be created if it does
not exist, and truncated to zero length if it does.

Assertions
You can extend the idea of error detection a stage further by adding statements to check pre— and

post—conditions, and invariants in general. These are conditions that are assumed to be true when a functio
starts and when it finishes. For example, if a function you write expects a pointer that must never be NULL,

Assertions 156

Professional LINUX Programming

add debug code to check this. The same goes for parameters that must be in a valid range. When your func
is about to return a value that must be in a certain range, check that too.

The standard C library supports the concept of assertions. These are defined as conditions that are suppose
be true and describe the assumptions that have been made in the code. They are ideal for pre- and
post—conditions for function parameters and return results. They are used to check for things that should ne
happen.

Let's take a look at a simple use of assertions.

If we were writing a square root function we might only wish to deal with positive arguments. We might
document that our function must only be used with positive arguments. We assert that the argument is
positive. The assert function in the C library allows us to implement this assertion in a straightforward way.
Here is a program that does just that.

#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include <stdio.h>
double mysqgrt(double x)

/* Example use of an assertion */
assert(x >= 0);
return sqrt(x);

int main()

double value = -1.0;
printf("mysqrt returns %g\n", mysqrt(value));
exit(EXIT_SUCCESS);

}

The function mysqrt must only be called with positive or zero arguments. The call to assert says that the
expression x>=0 must always be true whenever this code is executed. If the test ever fails our program will
immediately halt. The exact implementation of the assert function may vary from system to system, in the
UNIX98 standard it is in fact a macro. Usually assert will print a message before ending the program with a
call to abort. In our example in main we call mysqrt with a negative argument. Let's compile and run to see
what happens.

$ gcc —o asserts asserts.c —-Im

$.Jasserts

asserts: asserts.c:9: mysqrt: Assertion 'x >= 0' failed.
Aborted

You can see that the assert function has detected that our test has failed and printed a message. This is an
assertion failure. The message Aborted has come from the shell reporting an abnormal termination of our
program. If the assertion does not fail, in the case where we pass a positive value, the assert function does
nothing (apart from evaluate the test expression).

While assertions can be useful when developing a program they are not at all user friendly after the
application is released. Halting a program immediately a problem arises can cause considerable inconvenie
to the user. We might leave behind a corrupt file or invalid data in a database. It is almost always better to tr
to allow the user to save his work before quitting. However, assertions do have their place, not least in
documenting the assumptions made in the code. Assertions are disabled by defining the constant NDEBUG

Assertions 157

Professional LINUX Programming

before including assert.h. This has the effect of redefining the assert function to do nothing. In this way we
can leave assertions in the source code, enable them during development and test, and possibly disable the
before release (if we have added sufficient error recovery).

Unlike most headers, assert.h is designed to be included multiple times, and #define #undef NDEBUG befol
its inclusion can turn off and on assertion checking.

A simple way to define the NDEBUG macro is on the compiler command line:

$ gcc —-o asserts ~-DNDEBUG asserts.c —Im
$.Jasserts

mysqrt returns nan

$

Here we can see that the assertion had no effect, even though we know the test will have failed. The sqrt
function is called with a negative argument and in turn returns an invalid result. In this case the special value
NaN is used to mean 'Not a Number'. The printf function is called to display this invalid result and prints

nan-.

Assertions are useful to police what might be described as a contract between a function and its caller. The
function user has to promise to abide by the conditions set out in the assertions within the function. If an
assertion is used on the function return result it has the effect of ensuring that the function in turn holds up it
end of a bargain with respect to results.

Where Are You?

Copious amounts of debug information can be very useful, but also difficult to sift through, although adopting
a consistent style of error message and a judicious application of grep can help.

Sometimes it is appropriate to limit the amount of information to certain key points, perhaps when an error
occurs. In this case it may be helpful to know more about how it was that the error arose. We'd like to know
the path the program took to reach this point. With full debug information enabled that is possible, but we ca
also implement a utility that will tell us where we are, without having to produce mounds of information.

The idea is a simple one. If we add some tracing functionality to our program and record it, we can print it ot
when we need it. Let's take a look at one possible implementation. As we write our program we are going to
add a call to our trace function to each function. We will call one function when we enter and another when
we leave. We will in fact use macros so that we can capture the filename and function name as before, but
time instead of printing them we will keep a record of them in a stack, removing them as our code returns. It
probably easier to see with an example. We want to write our code, like this:

int main()

{
trace_in();
function();
trace_out();

void function()
{
trace_in();
if(error)
trace_print();

Where Are You? 158

Professional LINUX Programming

trace_out();

}
When an error occurs and we call trace_print we want to see output like this:

main.c: main in
main.c: function in

We can therefore see that we came to be in function via the call in main. This is effectively the same as a st
trace that we could get from a debugger if we ran the program under the debugger's control and set a break
point at the place the error occurred. Here though, we do not have to use a debugger, or stop the program.

A simple implementation of the trace logging functionality might look like this:

#include <stdio.h>
#include <assert.h>
#include <signal.h>

void handle_signal(int sig)

{

trace_print();

}
#define debug_db(x) if(debug & DEBUG_DB) {
fprintf(stderr, "DB:
" __FILE__ "(%d):", __LINE_),

_ PRETTY_FUNCTION__": " ## x ## "\n");
}

#define DEBUG_DB 1

int trace_idx = 0;

#define TRACE_STACK 100

char *trace_stack[TRACE_STACK];

#define stringify(x) str2(x)

#define str2(x) #x

#define trace_in()

{
assert(trace_idx < TRACE_STACK);
trace_stack|trace_idx++] = __ FILE__ ":" stringify(_ LINE_)" " __PRETTY_FUNCTION__ "in\n";
}
#define trace_out()
{
trace_idx—-;
}

trace_print()

intidx = 0;
while(idx < trace_idx)
fprintf(stderr, trace_stack[idx++]);
}

We allow space in a stack for 100 entries, after which the program will abort with an assertion failure. This
level of stack depth should be sufficient for most programs. If the stack is exceeded it will probably be an
indication that the program is stuck in a recursive loop, or that there is a route out of a function that does nof
include a call to trace_out. In fact, to help detect the loop it might be even better to print out the stack before
aborting!

An alternative implementation might choose to record the last 100 trace_in records, rather than use a simple
stack. This would give a trace that listed the most recent functions entered.

Where Are You? 159

Professional LINUX Programming

Finally for this section we can consider ways of making our errant program give up its secrets without havin
to decide in advance what we want to know. If we arrange to catch a signal in our program we can use it to
the program to tell us where it is. This can be an extremely useful technique for debugging programs that hz
long computations that you suspect may be 'stuck’. You can send a signal to probe for status information, st
as the trace_print that we just looked at.

A reasonable signal to choose for status information would be one of the user—defined signals, either
SIGUSRL1 or SIGUSR2. To do this we just add the following code to our application:

#include <signal.h>
void handle_signal(int sig)

{

trace_print();

}

main()

{

struct sigaction act;
act.sa_handler = handle_signal;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
sigaction(SIGUSR1, &act, 0);

}

Now if we want to find out where our program is at whilst it is busy, we can send it a signal and it'll dutifully
report its whereabouts.

$./debug &

[1] 1835

$ kill -USR1 1835
debug.c: main in
debug.c: function in

Using signals bring it's own complications. You must make sure that you are prepared to handle the
consequences of the interrupt occurring. Specifically if your program is interrupted while executing one of
many system calls you will see the call fail, probably setting the error variable, errno, to the value EINTR or
possibly EAGAIN. This error value is used to indicate that a system call was interrupted and that the prograr
should reissue the call. As long as you are careful to check return results and act on them accordingly all wil
be well.

Generally speaking it is best to keep the amount of processing you perform using interrupt handlers to a
minimum, if possible limiting them to setting a global variable that can be tested in the main program code. |
you are trying to locate a hard to find bug though, this technigque can be very useful.

There are many alternatives for handling debug output that we do not have space to cover here. One such i
write debug output to a socket connection that can be received by another process created for the purpose.
One advantage of this approach is that you can use the fact that 'writes to sockets' will fail if there is no
process listening and this might be one way to eliminate unwanted output.

Backtrace
For Linux users prepared to give up some flexibility and portability there is an alternative way to obtain
information about a program's whereabouts. The GNU C library now contains a number of functions that

allow a program to probe its own executable file as it is running. These functions are available in GLIBC 2.1

Backtrace 160

Professional LINUX Programming

or later and require a Linux kernel version of 2.2 or later and best results are obtained if you are using the
GNU C compiler version 2.95.1 or later. Other UNIX platforms have similar facilities, although they are often
highly compiler specific and not well documented, if at all. Our trace functions developed earlier will work on
a wider range of system versions, including most UNIX systems.

The functions are declared like this:

#include <execinfo.h>

int backtrace(void **array, int size);

char **backtrace_symbols(void **array, int count);

void backtrace_symbols_fd(void **array, int count, int fd);

The function backtrace stores up to count return addresses from the program stack into the given array. The
addresses represent the point in the program that the last function was called, and where that function was
called from and so on all the way back to main. In fact, to where main is called from the C library startup
code. The backtrace function returns the number of addresses actually written into array.

To translate the raw addresses returned by backtrace into program locations we use one of the symbol
functions. The function backtrace_symbols returns an array of strings describing the locations given by the
addresses in the array. The count parameter must be the number of valid addresses, as returned by backtre
The array of strings is held in memory allocated by malloc, and therefore should be deallocated by a call to
free.

The function backtrace_symbols_fd writes the strings directly to an open file and avoids the use of malloc
altogether. The fd parameter must be a file descriptor for a file open for writing.

Here is the layout of an example program using backtrace.

/* backtrace.c */
#include <stdio.h>
#include <execinfo.h>
/*
Example program to illustrate the use of backtrace
*/
void dumptrace()
{
#define maxdepth 10
static void *addresses[maxdepth];
int naddresses = backtrace(addresses, maxdepth);
char **names = backtrace_symbols(addresses, naddresses);
inti=0;
for(i; i < naddresses; i++)
fprintf(stderr, "%d: %s\n", i, names]i]);
free(names);

}
func3()

dumptrace();
}
func2()
func3();
}
funcl()

func2();

Backtrace 161

Professional LINUX Programming

}

int main()

{
funcl();

}

The program simply illustrates the use of backtrace called from inside a small number of nested function cal
The output reflects the stack frames at the time backtrace is called.

The output from this program will vary according to the versions of the kernel, compiler and libraries as
mentioned earlier. At the time of writing, backtrace information is only provided for locations in shared
objects. So, to get meaningful information we must build our application using a shared object for our code.
This is quite simple we just need an extra link step, like this:

$ gcc —c backtrace.c
$ Id —shared —o backtrace.so backtrace.o
$ gcc -0 backtrace backtrace.so

Now when we run the program backtrace it will dynamically link to our shared object backtrace.so that
contains all of our code. We just need to make sure that the dynamic loader can locate it. The easiest way i
set the environment variable LD_LIBRARY_PATH to include the current directory when we run our
program.

$ LD_LIBRARY_PATH=. ./backtrace

. ./backtrace.so(dumptrace+0x12) [0x40015322]

. ./backtrace.so (func3+0x8) [0x400153a8]

. ./backtrace.so (func2+0x8) [0x400153b8]

. ./backtrace.so (func1+0x8) [0x400153c8]

. ./backtrace.so (main+0x8) [0x400153d8]

: llib/libc.so0.6(__libc_start_ main+0x103) [0x4003b313]
: [0x8048411]

OO, WNEFEO

Preparing to Debug

Debugging and testing really go hand in hand. A productive testing session will reveal that an application ha
problems, or defects, that have to be fixed. That's only the start.

Bugs have a nasty habit of being tricky to track down. Sometimes they appear to come and go, or only appe
in odd places.

The next thing we have to do is stabilization. That is, make the bug appear every time we run a particular te:
To do this we have to experiment and try to work out what operations make the bug appear. We could try
different data, different order of operation, or a combination. Once we have developed a test that reliably fail
then we can track down the bug.

Determining exactly why a program is not functioning as it should requires a scientific approach to be most
effective. Debugging is about collecting information, forming a theory about what is happening, and then
testing the theory by making changes.

It is sensible to make sure that you have looked at all of the data you have available before reaching for a
debugger program. It is best to locate your problem first, if you can. Finding out exactly where the bug is
hiding is called localization. Here's where we can use our debug statements to find out what is going on and
where.

Preparing to Debug 162

Professional LINUX Programming

A debugger program comes into its own when theories about a program are hard to form, maybe the flow of
control is unknown, or the application crashes and dumps core. If you have a suspect function, you can use
debugger to go right to it. We can use a debugger program to run the application, stopping at various places
see exactly what is going on and try out fixes.

Using the Debugger

Once we are on the trail of a bug and decide to use a debugger there is one additional step we can take to
make life easier.

When a compiled program is running, it is separated from its source code it's now just a set of CPU
instructions. If we want to be able to control the application and view the data it's using we need to prepare :
special version.

With just about any C compiler you can compile and link your application with the —g flag. This tells the
compiler to include extra information in the object files that will allow the debugger to relate processor
instructions to the source code. We will be able to tell the debugger to stop the application at a particular line
of code and the debugger will know the exact instruction to stop the program.

There is a lesson lurking in the paragraph above. Note that we can tell the debugger to stop a program at a
particular line of code. This can be a problem. If the line of code is a very complex one we will not easily be
able to execute it piece by piece in the debugger. There are ways of stepping through code right down to the
machine code level, but it is easier if we keep all our code statements simple and on a line by themselves. I
then easier to step through. In the same vein the compiler does not produce line number information for
pre—processor macros. If your macro contains code, even if it is split over multiple lines, at the place where |
is expanded it appears as if on a single line. It is a good idea to keep macros that contain code as simple as
possible, or avoid them altogether.

There are a number of good debuggers available for Linux. A personal favorite of the authors is the GNU
debugger, GDB. This debugger has been available since the early days of the GNU project and can be usec
a number of different ways. It is a command line program, although graphical front ends like xxgdb and DDL
have been written. Here is the KDE equivalent, Kdbg:

*0 kiibg eee

Ele View Execution Breakpont Window Help

g eg o Iv ® R v

Add l Oel I

GDB can be run inside an Emacs session. Both the traditional GNU Emacs and the graphical XEmacs supp
a GDB mode that allow you to view your source code and a debug session at the same time. GDB can ever
attach itself to a program that is already running, as we shall see.

Using the Debugger 163

Professional LINUX Programming

Simple GDB Commands

Using GDB is reasonably simple. You run GDB on the debug version of your application. GDB is used to
start the program with the run command.

If you need to stop execution at a specific place you can set breakpoints with the break command.

When the program is stopped you can continue the program line—by-line with the step command, or
function—by-function with the next command. You can examine variables with the print command.

You can let the program carry on to the next breakpoint with the cont (for Continue) command.

Other commands let you see the source code being executed (the list command) and how the application g
to that point (the backtrace command).

There is a tutorial on the use of GDB in the companion volume to this book Beginning Linux Programming
or you can read the GDB manual on-line with the info command:

$ info gdb
File: gdb.info, Node: Top, Next: Summary, Prev: (dir), Up: (dir)
Debugging with GDB
This file describes GDB, the GNU symbolic debugger.
This is the Seventh Edition, February 1999, for GDB Version 4.18.
Copyright (C) 1988-1999 Free Software Foundation, Inc.

* Menu:

* Summary:: Summary of GDB

* Sample Session:: A sample GDB session

* Invocation:: Getting in and out of GDB

* Commands:: GDB commands

* Running:: Running programs under GDB
* Stopping:: Stopping and continuing

* Stack:: Examining the stack

* Source:: Examining source files

* Data:: Examining data

All we really want to cover here is the GDB trick we alluded to earlier, that of attaching to a program that is
already running. Here is the full code of the debug sample tracing program we have been developing so far.

#include <stdio.h>
#include <assert.h>
#include <signal.h>

void handle_signal(int sig)

{

trace_print();

}
#define debug_db(x) if(debug & DEBUG_DB) {
fprintf(stderr, "DB:
" __FILE_ "(%d):", __LINE_);
fprintf(stderr, "in
" __PRETTY_FUNCTION__ ": " ## x ##"\n");

}
#define DEBUG_DB 1
int trace_idx = 0;
#define TRACE_STACK 100
char *trace_stack[TRACE_STACK];

Simple GDB Commands 164

Professional LINUX Programming

#define stringify(x) str2(x)
#define str2(x) #x
#define trace_in()

{
assert(trace_idx < TRACE_STACK);
trace_stack[trace_idx++]=_ FILE__ ™"
stringify(__LINE_)":"__ PRETTY_FUNCTION__ "in\n";
}
#define trace_out()
{
trace_idx——;
}

trace_print()

intidx = 0;
while(idx < trace_idx)
fprintf(stderr, trace_stack[idx++]);
}
main()
{
int debug = DEBUG_DB;
(void) signal(SIGUSR1, handle_signal);
trace_in();
function();
/* stderr = freopen("stderr.log", "w", stderr); */
/* debug_db("error message"); */
trace_out();
}
function()
{
int snooze = 30;
trace_in();
while(snooze)
snooze = sleep(snooze);
trace_out();

}

The function function is intended to simulate a long and complex calculation. You can see that it just in fact
sleeps for 30 seconds. Notice that the call to sleep is in a loop. This is because sleep will return if it is
interrupted. The return value from sleep is the number of seconds left to sleep. We can run this program anc
send it signals as before, or we can stop it in its tracks with GDB and probe its state.

Let's compile the program ready for debugging, and then start it running in the background.

$ gcc —o debug —g debug.c
$./debug &
[1] 1943

We will now start up GDB with the intention of finding out what is happening with our program, now running
as process 1943. (If you try this you will need to use the process number reported by the shell.)

$ gdb

GNU gdb 4.18

Copyright 1998 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386—suse-linux—gnu".

Simple GDB Commands 165

Professional LINUX Programming

(gdb) file debug
Reading symbols from debug...done.

We start up GDB and tell it that the application we are going to debug is debug. We do this with the file
command. GDB then reads the debug information from the copy of the executable that we have in the curre
directory. Now we can attach to the running program, which will immediately halt, just as if it had hit a
breakpoint.

(gdb) attach 1943

Attaching to program: /home/neil/PLiP/chapter06/debug, Pid 1943

Reading symbols from /lib/libc.so.6...done.

Reading symbols from /lib/Id-linux.so.2...done.

0x400b5621 in __libc_nanosleep () from /lib/libc.so0.6

(gdb) where

#0 0x400b5621 in __libc_nanosleep () from /lib/libc.so0.6

#1 0x400b559d in __sleep (seconds=30) at ../sysdeps/unix/sysv/linux/sleep.c:78
#2 0x8048609 in function () at debug.c:58

#3 0x8048585 in main () at debug.c:45

Here we have used the where command in GDB to find out exactly where the program has got to. We can s
from the stack trace that we are in the function function called from main. We actually interrupted the
program while in a function used by sleep to do its work. The exact format of this stack trace beyond functio
will vary from system to system and by library version.

To allow the program to proceed we can use the usual breakpoint and continue functions in GDB if we wish
When we are done, we can allow our program to continue once more on its own by using the detach
command. This releases the captive process that then continues as before.

(gdb) detach
Detaching from program: /home/neil/PLiP/chapter06/debug, Pid 1943

(gdb) quit
$

Other GDB Features

You can run GDB and other debuggers on a program after it has crashed, if it has dumped core. This will
allow you to examine the contents of global data structures at the time the application died. To do this run
GDB with the command:

$ gdb application core

Within a GDB session you can call any function contained within your application or libraries you have used
Just use the call command with a valid C function call as argument.

(gdb) call printf("hello\n")

hello

$2=5

(gdb) call dumptrace()

0: ./backtrace.so(dumptrace+0x12) [0x40015322]

GDB will allow you to set watchpoints, a type of breakpoint that only triggers when the value of an
expression changes. This will slow down execution, but can be a lifesaver. Check out the GDB manual or
on-line help for more details.

Other GDB Features 166

Professional LINUX Programming

Resources

There are many other tools, tricks and tips used by experienced programmers that we don't have the space
cover in any detail here. Here are a few suggestions that we have found useful.

The strace utility prints all of the system calls that a program makes as it runs. It can also record the signals
that the application receives. This can be especially useful tracking down problems with files, since all of the
low-level open, read and write calls are shown. Other UNIX-like systems have similar tools - the
BSD-based systems have ktrace, Solaris has truss and sotruss.

It is possible to replace a library function with one of your own devising perhaps that logs more information
about its operation. This is often done with the memory allocation routines, malloc and friends. There are
many replacement implementations available that help to track down memory problems. Some of these are
covered in_ Chapter 11.

On Linux you have access to the source code, so you can even build your own version of the complete C
library if you wish!

If your application can run over a network, doing so with a network traffic 'sniffer' running can be useful.
Programs such as tcpdump log the packets that are crossing the network, and can be configured to record j
one particular type of exchange.

Using telnet on the appropriate port can often access applications such as web servers that listen for netwo
connections on a TCP port. This approach may allow you to check out server functionality independently of
client application.

Performance tools like top and system administration tools like Isof can provide a viewport into what a
process is up to. Don't forget ps too! It can show how much memory a process is using; very helpful.

If a program exists in different versions, try them out. This can often be a clue.

Running a buggy application on a different machine can help. Perhaps run on an Alpha for a 64 bit system ¢
a SPARC or PA-RISC machine for a big—endian machine. If a libc problem is suspected try the application
on a commercial UNIX system, or a BSD-based system and compare.

Finally, once a bug is found, add a test for it to the regression suite for the application, so that it doesn't com
back! Do the same thing with OS bugs. Finding bugs your vendor has re—introduced (even if your vendor is
Open Source) is very painful.

If a program is behaving oddly and you've no idea at all, try a different optimization level or a different

compiler. Compiler bugs are rare this is not the first thing to try but they do happen, and your boss won't be
impressed that they are rare, he or she will just ask how you are going to get back on schedule!

Summary

In this chapter we have looked at the different types of error your application has to contend with. It has to
deal with problems that arise in the environment it finds itself in, and it has to help you to track down errors
made in its construction.

Resources 167

Professional LINUX Programming

We have looked at ways of making programs robust to run—time errors by checking return results and error
values.

We saw ways of providing information to help track down bugs, including debug statements, location

reporting and stack traces. We also took a quick look at some features in the C library that can help with erri
reporting and tracing.

We finished up by considering how to employ a debugger to home in on elusive bugs.

Resources 168

Chapter 7: LDAP Directory Services

What is a Directory Service?

For larger organizations, there are significant benefits in having a centralized service for employee data, log
authorization, looking up phone numbers and e-mail address, determining user groups and printer rights, at
many similar tasks. Organizations are starting to turn to directory servers to act as a central point of access
information in the organization, and increasingly to LDAP based servers.

Directory services themselves are not new. Many Linux and UNIX users will be familiar with NIS (the

facility originally known as 'yellow pages') that Sun invented to provide network-wide account management
on UNIX flavor machines, allowing a single point of logon and administration for user accounts. Similar
centralized administration facilities exist for Novell networks, and Microsoft NT domain administration.
Unfortunately all of these solutions are somewhat vendor specific, and in the heterogeneous environment th
is today's network, none of these can provide a simple solution across an organization of any size or
complexity. What is needed is a server that can look up generally useful things; such as addresses, logins,
e—mail addresses, and validate logins for many heterogeneous systems across the enterprise, from a centre
location, using a standardized open protocol.

At first sight, a directory server seems much like a database server. They both hold data, and they both let y
ask questions which result in data being returned. You might reasonably ask why anyone would bother with
directory server, when they could simply use a database. Getting further into directory services, one thought
that occurs to most database experts is that directory servers are actually less flexible than databases. Man
directory servers actually use more conventional relational or other databases as part of their implementatio
So a reasonable opening question for the chapter is: 'Why use a directory server in the first place?'

The answers are speed, more speed, redundancy and standardization of the protocol. Directory servers are
blindingly fast at processing searches, because unlike general-purpose databases, they are heavily optimiz
to solve a very specific problem fast searching over a network. Directory servers are also normally replicate
with two or more servers seamlessly providing service even in the event of a failure of any single server. On
of the authors once worked with a large directory server that stored the profiles of tens of thousands of staff,
their computers, departments and many other details. It was a huge amount of data, and yet the directory
server could answer queries, even very complex ones, almost instantaneously.

The other benefit, standardization, is perhaps less immediately apparent, since for databases SQL is alread
well-established standard. However, there is no standard way of storing data beyond the basic data types.
SQL for retrieving data about people, for example, will depend on exactly how the database designer arrang
the table and column names. In addition the protocol that the SQL server uses for clients to access them is |
standardized, so, for example, a Sybase client cannot talk to an Oracle database. With a directory server, m
of this storage dependency is hidden away, and what is presented is a standard way of asking for data, and
standard format for receiving the answer, with standard object types, such as people, having a well-defined
standard set of base attributes. The protocol is also standardized, so you should be able to mix and match y
servers and clients using the combination that suits you.

X.500 and LDAP

The solution to this rather confusing mix was intended to be a directory service designed by the ITU
(International Telecommunications Union) called X.500. This was to be a universal solution for directory
services, with multiple servers around the world collaborating to provide different branches of a universal

Chapter 7: LDAP Directory Services 169

Professional LINUX Programming

directory tree; a very ambitious idea indeed.

Unfortunately, there were three big problems with X.500. Firstly, it was designed to use OSI protocols, whicl
were one of those great networking ideas that never happened. This was largely because TCP/IP was alrea
well established, supported on a wide variety of machines, and was, perhaps decisively, the protocol of the
Internet. Secondly, X.500 is complicated. It is hard to implement and X.500 servers are hard to manage. At
the time it was proposed, it required (for the time) serious computing resources to support an X.500 server.
The final problem with OSI protocols is that it would cost people money just to see the specification, a very
different approach from the Internet RFCs, with their very open approach to standards.

To get around the first of these problems, a protocol called LDAP (Lightweight Directory Access Protocol)
was invented at the University of Michigan, which allowed X.500 servers to be accessed over TCP/IP
protocols. This opened up the accessibility of X.500 servers to smaller machines on a TCP/IP network. It als
hid the complexities of X.500, making implementation of the client much easier. LDAP very successfully
addressed the client end of the directory service problem, and in a sense the server end too. The
implementation details of the server are completely hidden by the LDAP protocol, so it doesn't actually matte
if the server supports X.500 or not all that matters is that the LDAP protocol is supported.

LDAP is specified in RFC 1777 (v.2 of the protocol) and more recently in RFC 2252 (see also the Resource:
section at the end of the chapter), which specifies v.3 of the protocol. This specification has widespread
vendor support, including SUN, Microsoft, Netscape and Novell. There is no licensing cost; anyone is free tc
read the specifications and develop their own implementation. Perhaps just as importantly, the University of
Michigan released a free reference implementation, which allowed others to see how such servers could be
built.

The mantle of a free LDAP-based server has now passed to the OpenLDAP group, at
http://www.openldap.org, who are now making an excellent attempt at doing for LDAP what Apache did for
web servers providing a high quality, free, open source solution for everyone.

Structure of a Directory Server

Data in an LDAP directory server is laid out in a tree structure. The root is the starting point for all data held
in the tree. However, LDAP servers often support a 'referral’ service, where requests that are outside the sc
of the tree on the local server can be referred to another server.

Let's consider a company. It must be registered in a country, along with other companies in that country. It
probably has some departmental structure, perhaps an architecture department, a development department
and almost certainly an accounts department. These departments may be sub-divided, for example
development might have separate divisions for communications and applications. Suppose we have a
(mythical as far as we know) company called Stixen. We can easily draw this as a tree:

Structure of a Directory Server 170

Professional LINUX Programming

This is almost exactly how a company would be represented in an LDAP directory.

There is, however, a slight problem. The initial X.500 idea was to have the top level of each tree a country,
and inside the country was a group of unique organizations. The problem with this has turned out to be
ensuring absolute uniqueness of names. More recently, as the Internet expanded, an alternative scheme
became popular, which used Internet domain names to designate uniqueness. After all, an Internet domain
name is already guaranteed to be unique, so it's an easy starting point. To make life even more complex, thi
are two ways of using an Internet domain name in an LDAP directory, as we shall see in a moment.

The Naming of Parts

The easiest way to think about the nodes of an LDAP tree is as objects. Each object in an LDAP directory h:
to have a unigue name. In LDAP parlance, this is called a 'Distinguished Name', or dn. (Note that although &
acronym, it is normally written in lowercase.) The dn of any component of an LDAP tree is made up of the
unique attributes of all the objects above it in the tree, plus an additional attribute of its own. Each of these
separate components is called a Relative Distinguished Name, or rdn. Consequently no two objects at the
same level in the tree can have the same rdn. For our company the rdn is 0=Stixen, since that is the
organization name. The country is defined using a two character country code, notionally the ISO 3166
country code, though the United Kingdom, tends to be uk, rather than the ISO code gb, since that's the Inter
domain it uses. In an LDAP directory the dn for the UK is shown as c=uk. The company in the country,
notionally Stixen, is an organization, so is identified with 0=Stixen. Putting these two together, gives not only
a path to the company object, but also its dn: '0=Stixen, c=uk'.

Don't worry about the magic strings c= and o= parts for now, we will come back to them shortly.

dn Naming

The precise method of generating dns is not currently standardized. There are three common ways which w
describe below. The names are not official names for the naming schemes, but they do give us a convenien
way to refer to them.

X.500 Naming Scheme

The original X.500 scheme is the easiest to understand, and is exactly as we have shown above. We simply
paste together the country code and the company name, and bingo, we have a dn. Unfortunately, as we
mentioned earlier, determining uniqueness of a company name is not always a trivial task in some countries
and the issue of trademarks, which are often similar, but different, to company names is also a consideratior
For example, companies with very similar names, Such as 'Olympic Motorcycles' and 'Olympic Office
Supplies' might want to use the same organization, 0=Olympic. An added complication is that in some
countries (until recently, including Australia) business names do not have to be unique across the country.

The Naming of Parts 171

Professional LINUX Programming

X.500 with Domains Naming Scheme

This is a slight variation on the original scheme, where the company, or organization, name, the o= part, is
simply replaced with the domain name of the company. In our case this would give a dn of 'o=stixen.co.uk,
c=uk'. This has the advantage over the original scheme that determining uniqueness of an Internet domain
name is trivially easy. However it's a bit 'unclean' in that the country now appears to be encoded twice; we ¢
see from the o= part that the company must be a UK company, although the trend for companies to register
a .com, even if not based in the US, confuses the issue somewhat. It also causes problems in determining
which LDAP server should hold the master entry for that company; one in the country where it's based, or ol
in the US where its domain entry is held?

Domain Component Naming Scheme

An alternative scheme is also used, where the country code part is omitted, and the domain name broken d
into components. In this scheme, the company domain, stixen.co.uk, is considered to consist of an ordered
of Domain Component (dc) parts, so the dn would be 'dc=stixen, dc=co, dc=uk'.

In this chapter we will use what we have termed the 'X.500 with domains' naming scheme, because it has tf
advantage of simplicity, even if it's not a pure naming scheme. For the interested, RFC2377 contains an
excellent and detailed explanation of the different naming schemes.

Object Components

If all we could do with a directory server were to name the objects in it, it would not be very useful. In
practice, objects in an LDAP directory have many attributes of various types. It is also possible for an object
to have many attributes of the same type with different names, a sort of unordered collection.

For example, we might wish to identify someone in our organization who is a person, works in the
development department, and is also a director. We would manage this by giving them several ou
(organizational unit) attributes, like this:

dn: cn=Bill O'Neill, ou=People, o=mythical.co.uk, c=uk
cn: Bill

sn: O'Neill

givenname: Bill

uid: bon

ou: Development

ou: People

ou: Director

objectclass: top

objectclass: person

Don't worry too much about the details, we will be finding out more about this representation of entries
(known as Idif files) very shortly. For now it's just important to realize that although the dn must be unique,
it's possible for other attributes to have multiple values, as in the case of the ou attribute above. Notice that
there are also two objectclass values there is no limit on the number of attributes that can have multiple
values.

The definitions of objects in an LDAP schema are quite complex, and, at first sight, unnecessarily so.

However, as we mentioned earlier, one of the benefits of LDAP is the standardization all LDAP servers
should support a base set of object types and attributes in a standard form.

dn Naming 172

Professional LINUX Programming

The OpenLDAP server, which we will be using throughout this chapter, comes with two object schema
configuration files, slapd.oc.conf and slapd.at.conf.

The at file defines a set of attributes and the type each attribute has, while the oc file defines the object clas:
which attributes can be contained in each object. The overall schema for LDAP is defined in RFC 2256,
where you will find some very detailed specifications. One thing you will notice is that each data format has
dotted number associated with it, for example the attribute serialNumber has a number 2.5.4.5 associated w
it. These numbers are Obiject Identifiers, or OIDs, and are guaranteed to be unique throughout the world. If
you follow the links from the OpenLDAP home page you will find not only definitions of OIDs, but links
where you can register your own.

When you run an LDAP server, one of the important configuration options is to decide if you wish to enforce
schema checking. If this is turned on, then adding objects to the directory server will be slower, but the servi
will check that all your objects conform to the schema. For experimentation purposes it's easier to leave
schema checking turned off, and that's what we will assume for the rest of this chapter. For production use
you should turn schema checking on.

Standard Types and Attributes

Even working inside the default schema, there are a set of standard defined types and attributes that you ca
use, that will be sufficient for many server needs. For the rest of this chapter we will be working with the
standard types and attributes. Whilst defining your own types, attributes and extending the LDAP schema is
possible, it's an advanced topic, which we don't have the space to cover here. For more information see the
documentation that comes with the OpenLDAP server.

Standard types

There are only a few standard types of attributes that you need to know. The common ones that you will see
are:

Type Meaning

Ccis Case Ignore String
ces Case Enforce String
bin Binary Data

dn Distinguished Name

In this chapter we are only concerned with strings, and distinguished names.

Standard Attributes

The list of standard attributes is extensive, but again only a small number are essential. Some common
attributes are listed below.

Attribute Meaning
C The two letter ISO 3166 country code
Cn Common Name. For a person this would normally be the name by which they

are known. For example Norma Jean Baker is normally known as Marilyn
Monroe, so that would be the common name in a directory server.

GivenName A person's given, or non—family, name.
Member

Object Components 173

Professional LINUX Programming

Can appear multiple times, and contains a dn, thus allowing an object td be
associated with many other objects. For example a person may be a mgmber o
the development team, and also a member of the management team.
O The name of the organization.

ObjectClass The type of object. This is a multi-valued attribute. Each object, although it
can only appear once in the directory tree, can 'belong' to multiple types| As a
minimum each object must have an entry with ObjectClass set to 'top'.

Organizational Unit, or ou |A type of grouping defined within an organization, for example 'Support

Group'.
PostalAddress A postal address.
PostalCode A post, or ZIP, code for the location.
SerialNumber A serial number.
Sn A surname, containing the family name for a person.
TelephoneNumber A telephone number.
UserPassword The user's password for accessing the LDAP server.

This is only a short list to give you the general idea, the full list of standard attributes can be found in
RFC2256. Local LDAP servers may also extend the scheme. A good place to look for more standard scherr

items is_http://www.hklc.com/ldapschemal/.

The actual types of the attribute are defined in the schema for the directory server you are using, as are any
mandatory attributes. In general a dn is always required, as is ObjectClass. Others may be omitted, depend
on the schema in use.

LDAP Directory Tree

Now we have the general idea of what an LDAP directory can contain, we can show, in a simplified way,
what a very simple LDAP directory might look like.

We have removed the 'Accounts' department to give us more room on the diagram, and also added an
organizational unit, 'People’. Adding a special group for 'People’ might seem a little odd, why did we not put
people under the departments in which they work? In LDAP schemas it is common practice to separate peo
from the actual departments they work in, because this minimizes changes as people move departments, a:
they invariably do. If we had put a person under a department, and then they move, that person's complete
Distinguished Name would be wrong, and we would have a major schema update to perform.

Changing an attribute is a minor operation on a directory server, changing the structure is a major
undertaking. Instead we class people in a separate group, and link them to departments by giving them
multiple ou attributes. That way we allow people to be members of two groups, such as Architecture and

LDAP Directory Tree 174

Professional LINUX Programming

Management, and a move of that person from Architecture to Development would only entail the update of
single attribute in the person object, rather than a move of the object within the LDAP directory tree.

LDIF Files

Drawing an LDAP directory visually is very nice, and easy to understand, but not a practical way of
transporting data around, or preparing data for loading into an LDAP server. A simple text representation is
what is needed, and indeed there is such a format, called LDAP Data Interchange Format, or LDIF. (Don't y
love these embedded acronyms?) The format is very simple. Each object starts with a dn: line. This is
followed by as many lines as needed to specify the attributes of the object, one per line, after which a new d
line marks the start of a new object.

Here is a short Idif file, that expresses the structure shown above, as well as adding more details to each
object. This is available in the download bundle as plip.Idif

dn: o=stixen.co.uk, c=uk

0: stixen.co.uk

objectclass: top

objectclass: organization

dn: ou=People, o=stixen.co.uk, c=uk

ou: People

objectclass: top

objectclass: organizationalunit

dn: ou=Architecture, o=stixen.co.uk, c=uk
ou: Architecture

objectclass: top

objectclass: organizationalunit

dn: ou=Development, o=stixen.co.uk, c=uk
ou: Development

objectclass: top

objectclass: organizationalunit

dn: ou=Communications, ou=Development, o=stixen.co.uk, c=uk
ou: Communications

objectclass: top

objectclass: organizationalunit

dn: ou=Applications, ou=Development, o=stixen.co.uk, c=uk
ou: Comms

objectclass: top

objectclass: organizationalunit

dn: cn=Rick Stones, ou=People, o=stixen.co.uk, c=uk
cn: Rick Stones

sn: Stones

givenname: Richard

uid: stonesr

mail: Rick.Stones@mythicalcompany.co.uk
userpassword: bangalore

title: Systems Architect

objectclass: top

objectclass: person

ou: Architecture

ou: People

postalAddress:1 School Street, Newtown
postalCode:NT1 1AA
telephoneNumber:01234 987654321

dn: cn=Richard Neill, ou=People, o=stixen.co.uk, c=uk
cn: Richard Neill

sn: Neill

givenname: Richard

LDIF Files 175

Professional LINUX Programming

uid: neillr

mail: rjin@mythicalcompany.co.uk
userpassword: ulsoor

title: Specialist

objectclass: top

objectclass: person

ou: Development

ou: People

postalAddress:2 Thatched Street, Newtown
postalCode:NT1 2BB
telephoneNumber:01234 876543210

dn: cn=Neil Matthew, ou=People, o=stixen.co.uk, c=uk
cn: Neil Matthew

sn: Matthew

givenname: Neil

uid: matthewn

mail: Neil. Matthew@mythicalcompany.co.uk
userpassword: lalbagh

title: Software Specialist

objectclass: top

objectclass: person

ou: Architecture

ou: People

postalAddress:3 Barn Street, Newtown
postalCode:NT1 3CC
telephoneNumber:01234 765432109

An alternative is DSML, a markup language for representing directory services in XML, although at the time
of writing LDIF files are much more common. See_the Resources section for more information.

Installing and Configuring an LDAP Server

Now that we have had a very brief look at the theory behind LDAP, it's time to move onto the more practical
aspects of an LDAP server. However, first we must find a server to work with, and get some base data load:
into it.

The server we use in this chapter is OpenLDAP, which is freely downloadable, and complete with source
code. The source can be compiled for many platforms, including Linux, FreeBSD, AlX, Solaris, HP-UX, and
others. Some of the clients in the source distribution have also been ported to Windows 9x/NT. There are al
pre—compiled versions, in various formats, but if your distribution isn't supported, or you simply prefer to
install from source, you can compile it yourself.

We will only cover the essential steps of installing OpenLDAP from source here, for two reasons. Firstly it's
very easy indeed, and secondly there is a very informative LDAP Linux HOWTO (see the Resources list at
the end of the chapter), which provides more details if you need them. You should be aware that you norma
need an implementation of the dbm libraries installed before you start, the GNU set, gdbm, is fine, and
installed by most Linux distributions. There is also a chapter in the book Professional Linux Deployment,
which provides some information on installing OpenLDAP.

Steps in Installing OpenLDAP
In case you were worried that installing OpenLDAP might be complicated, worry not. It's possible that your

Linux distribution came with one already, look for a startup script Idap in the standard init.d directory. Even i
there isn't one, or you want to run the very latest version, installation follows the standard steps:

Installing and Configuring an LDAP Server 176

Professional LINUX Programming

« Fetch the latest stable OpenLDAP sources from http://www.openLDAP.org.
* Run tar zxvf on the source tarball.

« Change to the unpacked directory and run ./configure.

* Run make depend to setup the dependencies.

* Run make to build the components.

« As root, run make install to install the server.

 As root, cd tests then make to execute the tests.

Assuming all went well, you now have an installation of OpenLDAP, probably in /usr/local. Well, we did say
it was easy!

Configuring OpenLDAP

Now the server is installed, you need to perform some basic configuration, before it can be used. OpenLDAI
comes with some default configuration files, which are an excellent starting point, but we still need to make
few decisions and minor edits before we are up and running.

Firstly we need to decide if we wish to run the LDAP service from inetd, or as a standalone service. Unless
you have some very special nheed, standalone is normally recommended, for several reasons. If you are in
development mode, you may need to stop and restart the service several times, and with a standalone servi
this is slightly easier. In production a standalone service is usually recommended, because the default back
implementation of OpenLDAP is to use dbm, and allowing it to run continuously allows it to perform some
caching. In addition, one of the main benefits of LDAP is its incredible response speed, and running it via
inetd significantly impacts those response times.

For the rest of this chapter we assume you will be using standalone execution, and that you have installed tl
standalone Idap daemon (slapd) server under /ust/local. If this is not where the server has been installed, yc
will need to adjust the paths shown as appropriate. The main configuration file is probably in
lusr/local/etc/openldap/slapd.conf, if you built from sources, or /etc/openldap/slapd.conf for most Red Hat
distributions if you installed the provided distribution. Other distributions may use other locations. We
suggest you make a copy of the default, before making any changes.

The default file that comes with the sources, which is nice and short, looks like this:

#

See slapd.conf(5) for details on configuration options.

This file should NOT be world readable.

#

include /usr/local/etc/openldap/slapd.at.conf

include /usr/local/etc/openldap/slapd.oc.conf

schemacheck off

#referral Idap://root.openldap.org/

pidfile lusr/locallvar/slapd.pid

argsfile lusr/local/var/slapd.args

HHHHHHH TR AR H R R R H R R R
ldbm database definitions

HHHHHH AR H AR R R R
database ldbm

suffix "dc=my-domain, dc=com"

#suffix "0=My Organization Name, c=US"

rootdn "cn=Manager, dc=my-domain, dc=com"
#rootdn "cn=Manager, 0=My Organization Name, c=US"
rootpw secret

cleartext passwords, especially for the rootdn, should

Configuring OpenLDAP 177

Professional LINUX Programming

be avoided. See slapd.conf(5) for details.
Directory /usr/tmp

The version on your local machine will probably vary slightly, especially if you installed a version of LDAP
that came with your Linux distribution. In particular the pid files may have alternate locations, such as
/var/run, and the configuration files will probably be under /etc/openldap.

The first section is the global configuration, then there can be one or more 'database’ sections, The first two
lines refer to the attribute and objectclass configuration files, the configuration of which is an advanced topic
beyond the scope of a single chapter. However it is instructive to have a look at the files, as the default
contents are reasonably easy to understand. The line schemacheck off tells the server not to check objects
being added against the schema. As we said before, this is a convenient default during development, but
should be changed before the system is put into production.

Next comes a commented out referral line, which allows you to configure your LDAP server to pass on
gueries it can't answer to a different server.

The next two lines tell slapd where to place its process identifier (pid) and arguments. The pid file is useful
when shutting the slapd daemon down, as we will see in a moment.

The next section of the file is a database section. It's possible to have multiple back end databases for differ
branches of an LDAP tree, but normally only one is required.

The first line of the section specifies the database type to be used. Your choices are Idbm, shell, or passwd,
which control the 'back end' implementation of the data retrieval. Normally you should choose Idbm.

The suffix line tells the LDAP server which part or parts of the global LDAP namespace this database will
serve. At least one suffix line must be present in each database section, since otherwise there is no point in
having the database at all, but you can have multiple suffix lines if required.

The rootdn and rootpw lines provide a 'bootstrap' login ID and password for the server that is always valid,
and has administrator privileges on the server. Now you know why the comment at the top of the file warns
against having this file world readable! The password can be in cleartext, as it is here, crypt or MD5 format.
Whilst cleartext is fine while you are developing, we strongly suggest that you don't use it on a production
server.

The final control line, directory, tells the [dbm database backend where to store the data and index files. Yot
probably want to change this value to something less temporary than the default, we use
Ivar/local/<meaningful-name>.

There are other options, particularly for running multiple LDAP servers and using replication to keep them in
synchronization. In this case you will have producer and consumer LDAP servers, but the ones presented h
are sufficient for everyday needs.

A more detailed explanation can be found in the online slapd.conf manual page, or in the Administrator's
guide, which can be found_at http://www.umich.edu/~dirsvcs/ldap/doc/guides/. Although the guide is intende
for the University of Michigan LDAP server, it's still a recommended read, as much of the information is still
relevant.

Once we customize the file to our local needs, it looks like this:

Configuring OpenLDAP 178

Professional LINUX Programming

#

See slapd.conf(5) for details on configuration options.

This file should NOT be world readable.

#

include /usr/local/etc/openldap/slapd.at.conf

include /usr/local/etc/openldap/slapd.oc.conf

schemacheck off

pidfile /usr/local/var/slapd.pid

argsfile /usr/locallvar/slapd.args

HH R R R T
ldbm database definitions

S A A R
database Idbm

suffix "o=stixen.co.uk, c=uk"

rootdn "cn=root, o=stixen.co.uk, c=uk"

rootpw secret

directory /var/local/stixen

#

Running the Server

Now that we have configured the slapd.conf file, and made sure that the directory specified in the file exists,
it's time to fire up the server and see if we can connect to it. If your system came with slapd already
configured in the init.d directory, you may find that the server is already running, or at least has a script to
start it. If so look for the shutdown script in the init.d directory and manually stop it before restarting in a
fashion appropriate to your system.

First, as root, run up the slapd server, passing the configuration file as a parameter:

lusr/local/libexec/slapd —f /usr/local/etc/openldap/slapd.conf

Hopefully you will just get a prompt back, since slapd automatically runs in the background. If you run ps —e
you should see some slapd processes running. Now we need to load some data into the server, to check it'
accessible.

As an ordinary user, create a file test.Idif that contains:

dn: o=stixen.co.uk, c=uk
0: stixen.co.uk
objectclass: top
objectclass: organization

Now we can load this into the server. We specify the host to use with —h, the port 389 (the default LDAP por
with —p, =D is the rootdn we specified in the slapd.conf file, —w is the password we specified, and —f is the
file to load:

$ /usr/local/bin/ldapadd -h localhost —-p 389 -D
"cn=root, o=stixen.co.uk, c=uk" —w secret —f test.ldif

And you will hopefully get:

adding new entry o=stixen.co.uk, c=uk

Check that you can retrieve the data:

Running the Server 179

Professional LINUX Programming

$ /usr/local/bin/ldapsearch -h localhost —p 389 -D
"cn=root, o=stixen.co.uk, c=uk" —w secret —b "o=stixen.co.uk,
c=uk" 'objectclass=*'

And you should get:

o=stixen.co.uk, c=uk
o=stixen.co.uk
objectclass=top
objectclass=organization

Congratulations, you now have a running LDAP server. If you have a look in /var/local/stixen, you will see
that slapd has created several files for its own use. The online manual contains more detailed specifications
these and other parameters to Idapadd and Idapsearch.

It's important that you always shutdown the LDAP server in a graceful manner. You might even want to add
the shutdown into your /etc/rc.d scripts, to ensure you don't forget. Closing the server down is very simple,
you just run:

kill -TERM "cat /usr/local/var/slapd.pid

If your LDAP server doesn't seem to be working, don't worry, it's most probably that you have a minor typing
mistake somewhere in the configuration. Kill the slapd server (as shown above) and restart it in debug mode
by adding —d256 to the command line. It should stay in the foreground and print debugging information as it
runs. Then run both Idapadd and Idapsearch adding the —v option to the parameters shown above, which tu
on verbose output. Hopefully the cause of your problems should soon be apparent. The online OpenLDAP

manual provides more detail on running slapd in debug mode, and other parameters you might wish to use.

If you want to wipe your Idap database and start again, this is very easy. First shutdown your slapd server,
then remove all the files in the database directory as specified as directory entry of slapd.conf (here
/var/local/stixen), and you are back to an empty directory again.

We have now learned a little about directory servers, and seen how to create a basic OpenLDAP server
configuration and get the LDAP server daemon running. It's time to move on to some programming.

Accessing LDAP from C

It's taken us a few steps to get a here, but the good news is that writing code to talk to your newly installed
LDAP server is quite easy. However, if you have installed an LDAP server from a distribution, it's possible
that the programming includes and libraries have not been installed, even if the server was. You may need t
check your distribution, and if all else fails install the OpenLDAP server from sources, which does include th
programming interface files. All the examples are designed to work with plip.Idif.

There are two distinct sets of APIs, a synchronous set and an asynchronous set. The synchronous set has t
same names as the asynchronous set with an s appended to the name. The advantage of the asynchronou:
is that it allows you to initiate a query on the LDAP server, and then continue other processing before
returning to retrieve the results. The drawback, as I'm sure you guessed, is increased complexity. Since
generally the synchronous set is sufficient, that is the set we will concentrate on in this chapter.

Accessing LDAP from C 180

Professional LINUX Programming

Initialize the LDAP Library

The routines we will be using to write client programs for accessing our LDAP server come with OpenLDAP.
and are in libraries Idap, Iber, and the include file Idap.h. The first stage in talking to the LDAP server is to
initialize the library. The function Idap_init is the preferred method, and the only one we will consider here,
although in older code you may come across Ipad_open which acts in a very similar way, but is how a
deprecated interface. The prototype for Idap_init is:

#include <lber.h>
#include <ldap.h>

LDAP *ldap_init(char *host, int port);

The LDAP structure to which the function returns a pointer can be found in Idap.h, for those interested. If the
routine fails, NULL is returned and errno set appropriately. The actual parameters to Idap_init can be
specified in two ways. The most common way is to specify a host where the server lives as a simple string,
such as Idap_host.stixen.co.uk, and the port to use, which would normally be the default port, 389, available
as a define LDAP_PORT. However, where an LDAP server is a critical part of the infrastructure, it may be
that there are two or more LDAP servers, any of which could satisfy the request, and we don't actually care
which one is used. We can specify this by making the host string a list of space—separated hosts, each with
optional port number. If no port number is specified then the port given in the second parameter is used. As
example, the call:

Idap_init("Idap_master Idap_slave Idap_master:10389", LDAP_PORT);

This tells the LDAP library that we want it to first try port 389 on the host [dap_master, then try port 389 on
Idap_slave, and finally port 10389 on Idap_master. The library takes care of the actual details of selecting a
server for us.

Bind to the LDAP Server

Having initialized the LDAP library, the next stage is to bind to it, which is done with a call to Idap_bind_s.
There are actually a whole group of closely related bind calls, but this one is the only one you will generally
need. The prototype is:

#include <Iber.h>
#include <ldap.h>

int [dap_bind_s(LDAP *Id, char *who, char *credentials, int method);

Note You may have noticed that some parameters that are probably const are not actually specified
such. The original C API for LDAP (RFC1823) defined them in Kernigan and Ritchie style, and
this is still how the prototype appears in the OpenLDAP include files.

The Id pointer is the pointer returned from the earlier I[dap_init call. The rest of the parameters depend

somewhat on the authentication method being used, which is defined by the parameter passed in the methc
parameter. The normal method, set by passing LDAP_AUTH_SIMPLE, is the most commonly used and is tf
one we will consider here. The alternative is Kerberos authentication, which is also freely available for Linux

The who parameter specifies the user who wishes to connect. You will remember we specified a rootdn use
in our slapd.conf file of cn=root, o=stixen.co.uk, c=uk, and this is the user we will use here. For simple
authentication the credentials parameter is just a password, in this case the rootpw from slapd.conf, but in t
general case the userPassword attribute of the LDAP entry is used.

Initialize the LDAP Library 181

Professional LINUX Programming

The call to Idap_bind_s will return LDAP_SUCCESS if all is well, otherwise it will return an LDAP specific
error code, which we will come to shortly.

When your program has finished with the connection to an LDAP server you must call [dap_unbind_s to
release the connection to the server and other resources associated with the link before your program exits.
The prototype is:

#include <lber.h>
#include <ldap.h>

int [dap_unbind_s(LDAP *d);

The Id parameter is a pointer to the structure returned from the Idap_init call. Once you have called
Idap_unbind_s the connection to the LDAP server will have been closed, and the |d structure invalidated, so
you must start back at the |dap_init stage if later in your program you wish to initiate another LDAP
operation. The return value will be LDAP_SUCCESS unless there was a problem. We will be seeing the
LDAP specific error codes next.

LDAP Error Handling

Before we go any further, we need to look at error handling. Generally the Idap_functions calls return an
integer value, which is either LDAP_SUCCESS if all is well, or an error code. The LDAP structure also
contains a member, Id_errno, which will, conveniently, contain the same error number. The error codes are
defined in Idap.h, generally with well-chosen names that make the meaning obvious. In addition there are
three useful routines, which you can use for obtaining more information. These are:

#include <lber.h>
#include <ldap.h>

void Idap_perror(LDAP *Id, char *message);
char *ldap_err2string(int err);

int [dap_result2error(LDAP *Ild, LDAPMessage *result, int freeit);

The simplest of these is Idap_perror, which works in a very similar way to perror. You pass ldap_perror a
pointer to an LDAP structure, and an additional text string. This routine converts the error number in the
LDAP structure to a meaningful message, combines it with the additional string passed in, and prints the
result on the standard error stream.

The Idap_err2string routine is similar, except it simply returns a pointer to the human readable string, giving
you more control over how the error is displayed. The pointer returned points to static data and must not be
modified, as it will be overwritten next time Idap_err2string is called.

The third routine, Idap_result2error, is used in a situation we have not yet met, when a search on an LDAP
server needs processing to determine the error code. We mention it here since it logically fits with the other
LDAP error utility functions. By passing an LDAPMessage structure (which we meet later) to the routine, the
error code is extracted, returned and set in the LDAP structure. If freeit has a non-zero value then the
LDAPMessage structure is automatically freed afterwards.

LDAP Error Handling 182

Professional LINUX Programming

A First LDAP Client Program

We now know enough about the LDAP library to write our first program to access our LDAP server. It's not
very useful, but ties together what we have learnt so far, by initializing a connection to an LDAP server,
binding to that connection, then releasing the resources again. Here is Idapl.c:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <lber.h>
#include <ldap.h>
int main() {
LDAP *Id;
int res;
int authmethod = LDAP_AUTH_SIMPLE;

char *ldap_host = "locahost";

char *user_dn = "cn=root, o=stixen.co.uk, c=uk";

char *user_pw = "secret";

if ((Id = Idap_init(Idap_host, LDAP_PORT)) == NULL) {
perror("Failure of Idap_init");
exit(EXIT_FAILURE);

}

if (Idap_bind_s(ld, user_dn, user_pw, authmethod) != LDAP_SUCCESS) {
Idap_perror(Id, "Failure of Idap_bind");
exit(EXIT_FAILURE);

}
res = Idap_unbind_s(Id);
if (res 1= 0) {

fprintf(stderr, "ldap_unbind_s failed: %s\n", Idap_err2string(res));
exit(EXIT_FAILURE);

}
return EXIT_SUCCESS;
} /* main */

This file is quite simple; it just exercises most of the functions we have used so far. To compile this file you
may need to force the inclusion of additional include and library path directories, as well as linking with the
Idap and Iber libraries. The compile line for our ‘'installed from source' LDAP server was:

$ gcc —~Wall —g —l/usr/local/include Idapl.c —o Idapl —L/usr/local/lib -lldap —llber

Go ahead and try this, including changing some of the parameters so the initialize or bind fails, so you can s
the errors that are returned. If the program runs silently, you have successfully connected to an LDAP serve

Searching

The main reason for using an LDAP server is to hold data that you need to search, but need the results
quickly. There are two main ways to restrict the results from an LDAP directory search, which are usually
combined.

Selecting the Scope

The first way is to determine which part of the directory you wish to search. As you will remember from
earlier in the chapter, LDAP directories are best thought of as tree structures. When you execute a search o

A First LDAP Client Program 183

Professional LINUX Programming

directory, you can specify two parameters. The first is the start point, or base of the search, which might be
top of the tree, or some levels down. The second is the depth of the search, which can be one of three deptl
or 'scopes' as they are termed. The base of the search is always expressed as a dn, a distinguished name,
the scope as one of three constants:

LDAP_SCOPE_BASE this causes the search to be made only on the object specified by the base
dn. This is normally used if you already know the entry you wish to
retrieve, and just need to retrieve some or all of its attributes.
LDAP_SCOPE_ONELEVEL this allows the search to work on the object pointed to by the base gn,
and all the objects at one level of the tree beneath the base object.
LDAP_SCOPE_SUBTREE this allows the search to work on the object pointed to by the base fn,
and all objects underneath it in the tree.
It might seem odd that you can't specify a particular number of levels, except for one, but that's just the way
is.

Filtering the Results

The other way of restricting the results from an LDAP search is to filter the results by specifying a pattern, ol
patterns, that attributes of the required objects must possess. For example you might wish to find only objec
of type 'person’, so you would set the filter to be (objectclass=person).

The format of LDAP filters is specified formally in RFC2254, here we will present a less formal specification,
but hopefully in an easier to read format.

LDAP filters are always enclosed in round parentheses, and can be either a simple filter, such as checking t
a particular attribute has a given value, or are combined, to check for example that attributel has a particula
value, and attribute2 has a particular value. We will look at simple filters first, and then see how they can be
combined.

The tests that can be applied to an attribute are:

= equals

~= approximately equals

>= greater than

<= less than

=* attribute is present in the object

= string* attribute value starts with string

= *string attribute value ends with string

= *string* string occurs in the attribute's value

Notice that the operators > and < are not valid. The definition of ‘approximately equals’' seems to be left to th
implementers of LDAP servers, so results using this may vary slightly between servers. The filter does not
control the issue of case sensitivity rather it is determined by how the attribute type was defined. You will
recall from the beginning of the chapter that string attribute types could be '‘Case Ignore String' or ‘Case
Enforce String’, and this controls how matching is performed.

Here are a few examples of simple filters:

|(cn=Rick Stones) The common name is "Rick Stones".

Searching 184

Professional LINUX Programming

(cn=*Stones) The common name ends in "Stones".
(ou=Architecture) The organizational unit is "Architecture”.
(postalCode=*) The postalCode attribute is present in the object.

Occasionally you need to search for something where one of the special characters appears in the string. Y
can do this by using a standard escape, which is a backslash (\) followed by the hexadecimal value of the
ASCII character. The characters *, (,), \, and NULL must always be escaped. Here are some examples:

(cn=*\2a*) The common name contains a '*' (Ox2a) character.
(ou=\28Architecture\29) The organizational unit is "(Architecture)”, including the parentheses.

Simple filters are useful, but often need to be combined with Boolean operators to be truly useful. The three
operators allowed are:

* & (and)

* | (on)
* I (not)

Filters are combined in a prefix notation, where the Boolean operator precedes the two filters it combines.
You can combine as many filters as you need to narrow down your criteria. For example, to search for objec
that represent people who work in the organizational unit Architecture group, we need to combine the filter
(objectClass=Person) with the filter (ou=Architecture), like this:

(&(objectClass=Person)(ou=Architecture))

The not operator simply negates a filter, so we search for objects which don't have the attribute title set to
Systems Architect like this:

(I(title= Systems Architect))

You can combine filters, just paste together the required filters with more operators. For example, to find
people with a surname of "Stones" or "Matthew", we would use:

(&(objectClass=Person)(|(sn=Stones)(sn=Matthew)))

As you can see, although the way filters are expressed may not be quite what you are used to, it is simple a
unambiguous. If you want to experiment, you can always use the Idapsearch program provided as part of th
OpenLDAP distribution. Do beware, however, of repeatedly performing sub—tree searches on a large
production directory server that returns a large volume of results you might well be causing an administrato
somewhere to wonder what has suddenly happened to the performance of his server!

As an example of using ldapsearch, here is a query that will list all the objects in our server:

$ Idapsearch -D "cn=root, o=stixen.co.uk, c=uk" —w secret
—b "o=stixen.co.uk, c=uk" ‘objectclass=*"

The -D and -w, as you can probably guess, are our connection credentials. Notice we have to specify the b
of our search, using the —b option. This is not the sort of query you want to run on a production server, but o
our test server the output, abbreviated to save space, starts:

o=stixen.co.uk, c=uk
o=stixen.co.uk
objectclass=top

Searching 185

Professional LINUX Programming

objectclass=organization

ou=People, o=stixen.co.uk, c=uk
ou=People

objectclass=top
objectclass=organizationalunit

ou=Architecture, o=stixen.co.uk, c=uk
ou=Architecture

objectclass=top
objectclass=organizationalunit

ou=Development, o=stixen.co.uk, c=uk
ou=Development

objectclass=top
objectclass=organizationalunit

and so on till all the objects have been shown.

A more sensible search, which lists all the attributes for people with a surname of Stones, would be:

$ Idapsearch —D "cn=root, o=stixen.co.uk, c=uk" -w
secret —b "o=stixen.co.uk, c=uk" '(&(sn=Stones)(objectclass=person))'

Searching Using the API

Now we know how to search an LDAP server, we can have a look at writing some code to execute our
searches. Searching is reasonably complex, because not only do we have more details to specify, but also \
must handle multiple results being returned.

The basic search API is:

#include <lber.h>

#include <ldap.h>

int Idap_search_s(LDAP *|d, char *base_dn, int scope, char *filter, char
*attrs_required[], int attributesonly, LDAPMessage **result);

This is the synchronous version, which only returns when all results are available, and is generally the most
useful. However there are two closely related calls, I[dap_search, which is an asynchronous search, and
Idap_search_st, which is synchronous, but has a timeout to force a return after a given interval, even if no
results are available. We will only consider the synchronous version of the search here; the manual pages
contain more information about the other variants of the search function.

Let's look at the parameters in turn:

« The first parameter, Id, is the pointer to the structure bound to the LDAP server.

* base_dn is a pointer to the object where searching should start. This could be the top of the tree, or
some lower point, for example "ou=Development, o=stixen.co.uk, c=uk", which is one level into the
directory tree of the test data loaded in our test server.

« scope is one of the three defines we saw before, LDAP_SCOPE_BASE,
LDAP_SCOPE_ONELEVEL or LDAP_SCOPE_SUBTREE.

« filter is a filter, such as (postalCode=NT1%*).

e attrs_required is a NULL terminated array of the attributes that should be returned. For example we
may only be interested in the sn and uid attributes of a person, and it would be wasteful to return all

Searching 186

Professional LINUX Programming

the others. If you specify NULL then all attributes will be returned.
« attributesonly, if set to 1, will cause only the attribute types to be returned. Normally it is O which
allows both types and values to be returned.

On success LDAP_SUCCESS is returned, otherwise an LDAP-specific error code is returned.

You must free the result set afterwards, which is done with Idap_msgfree:

#include <lber.h>
#include <ldap.h>

int Idap_msgfree(LDAPMessage *msg);
Unusually, the returned value is the type of message freed, not a result code, and is not generally of interes

Having performed a search, we need to process the results. This is done with a set of three routines:

#include <lber.h>
#include <ldap.h>

int [dap_count_entries(LDAP *Id, LDAPMessage *result);
LDAPMessage *ldap_first_entry(LDAP *Id, LDAPMessage *result);

LDAPMessage *ldap_next_entry(LDAP *Id, LDAPMessage *result);

These functions parse the result chain, and allow us to extract each result in turn. We will see shortly how tc
extract the actual values from the results. Once all results have been fetched the Idap_next_entry returns a
NULL.

The routine Idap_count_entries is simply a convenience, to allow us to tell how many results we have
obtained; you normally only need to use Idap_first_entry and Idap_next_entry to process those results. The
sequence in pseudo code is:

Initialize an LDAP structure

Bind to an LDAP server

Execute a search

Obtain the first result message

WHILE (result message) DO
Process the LDAP message
Free the message structure
Get the next result message

DONE

UNBIND from the server

Let's update our program (as ldap2.c) to do a search, even though we are not in a position to process the
results yet. Just to show we are obtaining results, we will use one function we will meet in the next section,
Idap_get _dn, which returns the distinguished name of the object found. The important changes are
highlighted:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <lIber.h>
#include <ldap.h>
int main() {

Searching 187

Professional LINUX Programming

LDAP *Id;
int res;
LDAPMessage *ldap_message_set, *Idap_one_message;
char *attributes[4] = {"sn",
"ou",
"title",
NULL},
int authmethod = LDAP_AUTH_SIMPLE;

char *ldap_host = "localhost";

char *user_dn = "cn=root, o=stixen.co.uk, c=uk";
char *user_pw = "secret";

char *base_dn = "o=stixen.co.uk, c=uk";
char *filter = "(objectClass=Person)";

if ((Id = Idap_init(Idap_host, LDAP_PORT)) == NULL) {
perror("Failure of Idap_init");
exit(EXIT_FAILURE);

}

if (Idap_bind_s(ld, user_dn, user_pw, authmethod) != LDAP_SUCCESS) {
Idap_perror(Id, "Failure of Idap_bind");
exit(EXIT_FAILURE);

}

res = l[dap_search_s(ld, base_dn, LDAP_SCOPE_SUBTREE, filter,
attributes, 0, &ldap_message_set);
if (res 1= LDAP_SUCCESS) {
Idap_perror(Id, "Failure of Idap_search_s");
exit(EXIT_FAILURE);

}

printf("There were %d objects found\n", I[dap_count_entries(ld,
Idap_message_set));

Idap_one_message = Idap_first_entry(ld, Idap_message_set);
while (Idap_one_message) {

char *dn_str;

dn_str = Idap_get_dn(ld, Idap_one_message);

printf("Found DN %s\n", dn_str);

free(dn_str);

Idap_one_message = Idap_next_entry(ld, Idap_one_message);

(void)ldap_msgfree(ldap_message_set);
res = Idap_unbind_s(Id);
if (res 1= 0) {

fprintf(stderr, "ldap_unbind_s failed: %s\n", Idap_err2string(res));
exit(EXIT_FAILURE);

}

return EXIT_SUCCESS;
} /¥ main */

When we run this we see:

There were 3 objects found
Found DN cn=Rick Stones, ou=People, o=stixen.co.uk, c=uk

Searching

188

Professional LINUX Programming

Found DN cn=Richard Neill, ou=People, o=stixen.co.uk, c=uk
Found DN cn=Neil Matthew, ou=People, o=stixen.co.uk, c=uk

Now we can move on, and extract the actual attributes and values. Apart from the special case of Idap_get_
that we had a sneak preview of, there are first and next routines to step through the attributes, and a routine
access the value(s) of each attribute.

#include <lber.h>

#include <ldap.h>

char *ldap_first_attribute(LDAP *Id, LDAPMessage *entry,
BerElement **ber_element);

char *Idap_next_attribute(LDAP *Id, LDAPMessage *entry,
BerElement *ber_element);

char *Idap_get_dn(LDAP *Id, LDAPMessage *entry);
char **|dap_get_values(LDAP *Id, LDAPMessage *entry, char *attribute);

void Idap_value_free(char **value);

Notice the subtle difference between Idap_first_attribute and Idap_next_attribute, where there is an addition
level of indirection on the Idap_first_attribute third parameter. You also need to be aware that internal to the
library Idap_next_attribute arranges to free memory that Idap_first_attribute allocated once the end of the lis
of attributes is reached. You need to be aware that if for some reason you do not call [dap_next_attribute to
retrieve all the attributes (that is, until it returns a NULL), you need to call a routine ber_free, passing the
ber_element and a zero, thus ber_free(ber_element, 0). Since normally you will use Idap_next_attribute unti
all the attributes are exhausted, you do not need to worry about this, so we will not discuss it here.

Again, we can see, in pseudocode, the sequence required on each LDAPMessage retrieved:

Get first attribute

WHILE (attribute) DO
Get values for attribute
Release memory used for attributes
Get the next attribute

DONE

Let's modify our program for a third time, to show the code required. This is Idap3.c:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#include <lber.h>
#include <ldap.h>
int main(int argc, char *argv[]) {
LDAP *Id;
int res;
LDAPMessage *ldap_message_set, *ldap_one_message;
char *attributes[4] = {"sn",
"ou",
"title",
NULL};

char *attribute;
char **values;

Searching 189

Professional LINUX Programming

BerElement *ber_element_ptr;
inti;

int authmethod = LDAP_AUTH_SIMPLE;
char *Idap_host = "gw1";

char *user_dn = "cn=root, o=stixen.co.uk, c=uk";
char *user_pw = "secret";

char *base_dn = "o=stixen.co.uk, c=uk";
char *filter = "(objectClass=Person)";

if ((Id = Idap_init(Idap_host, LDAP_PORT)) == NULL) {
perror("Failure of Idap_init");
exit(EXIT_FAILURE);

}

if (Idap_bind_s(ld, user_dn, user_pw, authmethod) != LDAP_SUCCESS) {
Idap_perror(Id, "Failure of Idap_bind");
exit(EXIT_FAILURE);

}

res = Idap_search_s(Id, base_dn, LDAP_SCOPE_SUBTREE, filter, attributes,
0, &ldap_message_set);
if (res !I= LDAP_SUCCESS) {
Idap_perror(Id, "Failure of Idap_search_s");
exit(EXIT_FAILURE);

}

printf("There were %d objects found\n", I[dap_count_entries(ld,
Idap_message_set));

Idap_one_message = Idap_first_entry(ld, [dap_message_set);
while (Idap_one_message) {

char *dn_str;

dn_str = Idap_get_dn(ld, Idap_one_message);

printf("Found DN %s\n", dn_str);

free(dn_str);

attribute = Idap_first_attribute(ld, [dap_one_message,
&ber_element_ptr);

while (attribute '= NULL) {
if ((values = Idap_get_values(ld, Idap_one_message,
attribute))!=NULL){
for (i=0; values[i] = NULL; i++) {
printf("%s: %s\n", attribute, values]i]);

Idap_value_free(values);

attribute = Idap_next_attribute(ld, Idap_one_message,
ber_element_ptr);
}

Idap_one_message = Idap_next_entry(ld, Idap_one_message);
printf("\n");
}

Idap_msgfree(ldap_message_set);

res = Idap_unbind_s(Id);
if (res 1= 0) {

Searching

190

Professional LINUX Programming

fprintf(stderr, "ldap_unbind_s failed: %s\n", Idap_err2string(res));
exit(EXIT_FAILURE);

}

return EXIT_SUCCESS;
} /* main */

The important changes have been highlighted.

When we run it on our test data, the output is:

There were 3 objects found

Found DN cn=Rick Stones, ou=People, o=stixen.co.uk, c=uk
sn: Stones

title: Systems Architect

ou: Architecture

ou: People

Found DN cn=Richard Neill, ou=People, o=stixen.co.uk, c=uk
sn: Neill

title: Specialist

ou: Development

ou: People

Found DN cn=Neil Matthew, ou=People, o=stixen.co.uk, c=uk
sn: Matthew

title: Software Specialist

ou: Architecture

ou: People

Notice that the ou attribute occurs more than once, and that only attributes we requested in our attributes ar
were retrieved.

Sorting Returned Objects

There is one last feature relating to searching that we should cover, and that is sorting the results, since it's
common requirement, and the LDAP library gives us an elegant way to sort entries.

The function we need is Idap_sort_entries, which looks like this:

#include <lber.h>
#include <ldap.h>

int Idap_sort_entries(LDAP *Id, LDAPMessage **msg, char *attr_to_sort_on,
int (*cmp)());

This takes the LDAPMessage chain we got back from Idap_search_s, and uses the cmp function to sort the
entries. The cmp function uses a similar convention to gsort, in that it passes pointers to a pair of strings, an
the function should return a negative, zero, or positive number to indicate the relative order of the strings.
Often the function strcmp is all that is required. We can sort our returned results by including string.h, and
immediately before we call Idap_first_entry, add just four lines of additional code:

res = Idap_sort_entries(ld, &ldap_message_set, "sn", strcmp);
if (res 1= LDAP_SUCCESS) {
Idap_perror(Id, "Failure of Idap_sort_entries");

}

Searching 191

Professional LINUX Programming

Now our results are sorted by surname. Sorting of results doesn't come much easier than that.

Changing the Data

Just occasionally we need to change the data in the LDAP directory server. As we saw earlier, there are util
routines provided to do this, such as Idapadd, Idapmodify, and Idapdelete. Not surprisingly there are also
library functions for performing these tasks from C. We would however suggest that the best way of adding
group of entries is to build an Idif file, and use the provided Idapadd utility, as we saw earlier.

Adding a New Entry

We will start by adding a new entry to our data. During this we will also learn of the data structures that we
will need to modify operations, as the two operations are carried out in a very similar manner.

To add a new entry, we first need to construct a structure with all the attributes and values needed for that
entry. Only then can we add it to our directory server. Since the data structure of an object in an LDAP
directory is quite flexible (it just needs to conform to the schema, if schema checking is enabled), this leads
an array of structures, some of which themselves contain arrays.

The basic building block of an LDAP entry is an LDAPMod structure. This contains the building block for a
single attribute within an object. The actual definition is:

typedef struct Idapmod {
int mod_op;
char *mod_type;
union {
char **modv_strvals;
struct berval **modv_bvals;
} mod_vals;
struct [dapmod *mod_next;
} LDAPMod;
#define mod_values mod_vals.modv_strvals
#define mod_bvalues mod_vals.modv_hvals

Don't worry, it's easier to use than it looks. In practice we only need to set three fields, because we are only

using string attributes in this chapter, so we can ignore modv_bvals, and mod_next is only for use by the
library. The mod_op value is one of LDAP_MOD_ADD, LDAP_MOD_DELETE, LDAP_MOD_REPLACE.

Before we can create an LDAPMod structure, we need to set up an array of strings for the attribute values, f
assignment to mod_values (or mod_vals.modv_strvals). It has to be an array of strings because some
attributes have several values; for example objectClass and ou quite often have two or more values.

Let's start by declaring the arrays of strings we need:

char objectClass_vals[] = {"top", "person”, NULL};
char ou_vals[] = {" Development", "People”, NULL};
char cn_vals[] = {"Jenny Stones", NULL};

Now we can declare some LDAPMod structures, which use these arrays:

LDAPMod cn_attribute, objectclass_attribute

Changing the Data 192

Professional LINUX Programming

We can then set up each LDAPMod structure with the appropriate values:

cn_attribute.mod_op = LDAP_MOD_ADD;
cn_attribute.mod_type = "cn";
cn_attribute.mod_values = cn_vals;

objectclass_attribute.mod_op = LDAP_MOD_ADD;

objectclass_attribute.mod_type = "objectClass";
objectclass_attribute.mod_values = objectClass_vals;

Last in the sequence of setting up the data structure we need, we build an array of the attributes our new
directory object needs:

LDAPMopd *mods[8];

mods[0] = &cn_attribute;
mods[1] = &objectclass_attribute;

mods[7] = NULL;

After all that setting up of data, you will be pleased to know that the actual function for adding a new entry is
quite simple:

#include <lber.h>
#include <ldap.h>

int [dap_add_s(LDAP *Id, char *new_dn, LDAPMod *mods]]);

We just need to pass it the LDAP structure, which needs to have been bound to an LDAP server, the dn to
create as a string, and our array of attribute structures.

In many ways, the description of how to add a new dn is harder than the actual code. So here is
Idap_add_one.c, which creates a hew entry in our server:

#include <stdio.h>

#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#include <Iber.h>
#include <ldap.h>

int main(int argc, char *argv[]) {
LDAP *Id;
int res;
int authmethod = LDAP_AUTH_SIMPLE;

char *ldap_host = "gw1";

char *user_dn = "cn=root, o=stixen.co.uk, c=uk";
char *user_pw = "secret";

char *new_dn = "cn=Jenny Stones, ou=People, o=stixen.co.uk, c=uk";
char *cn_vals[] = {"Jenny Stones", NULL};

char *sn_vals[] = {"Stones", NULL};

char *givenname_vals[] = {"Jenny", NULL};

Changing the Data 193

Professional LINUX Programming

char *uid_vals[] = {"stonesj", NULL};

char *title_vals[] = {"Programmer", NULL};

char *objectClass_vals[] = {"top", "person”, NULL};
char *ou_vals|[] = {"Development”, "People”, NULL};

LDAPMod cn_attribute, sn_attribute, givenname_attribute, uid_attribute,
title_attribute, objectClass_attribute, ou_attribute;

LDAPMod *mods][8];

cn_attribute.mod_op = LDAP_MOD_ADD;
cn_attribute.mod_type = "cn";
cn_attribute.mod_values = cn_vals;

sn_attribute.mod_op = LDAP_MOD_ADD;
sn_attribute.mod_type = "sn";
sn_attribute.mod_values = sn_vals;

givenname_attribute.mod_op = LDAP_MOD_ADD;
givenname_attribute.mod_type = "givenname";
givenname_attribute.mod_values = givenname_vals;

uid_attribute.mod_op = LDAP_MOD_ADD;
uid_attribute.mod_type = "uid";
uid_attribute.mod_values = uid_vals;

title_attribute.mod_op = LDAP_MOD_ADD;
title_attribute.mod_type = "title";
title_attribute.mod_values = title_vals;

objectClass_attribute.mod_op = LDAP_MOD_ADD;
objectClass_attribute.mod_type = "objectClass";
objectClass_attribute.mod_values = objectClass_vals;

ou_attribute.mod_op = LDAP_MOD_ADD;
ou_attribute.mod_type = "ou";
ou_attribute.mod_values = ou_vals;

mods[0] = &cn_attribute;

mods[1] = &sn_attribute;

mods[2] = &givenname_attribute;
mods[3] = &uid_attribute;
mods[4] = &title_attribute;
mods[5] = &objectClass_attribute;
mods[6] = &ou_attribute;

mods[7] = NULL;

if ((Id = Idap_init(Idap_host, LDAP_PORT)) == NULL) {
perror("Failure of Idap_init");
exit(EXIT_FAILURE);

}

if (Idap_bind_s(Id, user_dn, user_pw, authmethod) != LDAP_SUCCESS) {
Idap_perror(Id, "Failure of Idap_bind");
exit(EXIT_FAILURE);

}

if (Idap_add_s(ld, new_dn, mods) != LDAP_SUCCESS) {
Idap_perror(Id, "Failure of Idap_add_s");
}

Changing the Data 194

Professional LINUX Programming
res = Idap_unbind_s(Id);
if (res 1= 0) {

fprintf(stderr, "ldap_unbind_s failed: %s\n", Idap_err2string(res));
exit(EXIT_FAILURE);

}

return EXIT_SUCCESS;
} /¥ main */

As you can see, the support code is identical to our initial Idapl.c, and the bulk of the effort is in setting up tt
rather complex data structures.

Modifying an Entry

Now we have learnt how to add an entry, simply modifying an entry is easy to understand. We build an arra:
of LDAPMaods in much the same way as we did before, except we can now use LDAP_MOD_REPLACE for
attributes we wish to modify, or stick to LDAP_MOD_ADD, for attributes that are new to the object. Then we
just call Idap_mod_s, which is almost identical to Idap_add_s:

#include <lber.h>
#include <ldap.h>

int [dap_mod_s(LDAP *Id, char *new_dn, LDAPMod *mods]]);

Again, it's easiest to see it in action, so here is [dap_mod_one.c, which updates the person's title, and adds
telephone number. The changes are highlighted:

#include <stdio.h>

#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#include <Iber.h>
#include <ldap.h>

int main(int argc, char *argv[]) {
LDAP *Id;
int res;
int authmethod = LDAP_AUTH_SIMPLE;

char *ldap_host = "gw1";

char *user_dn = "cn=root, o=stixen.co.uk, c=uk";
char *user_pw = "secret";

char *new_dn = "cn=Jenny Stones, ou=People, o=stixen.co.uk, c=uk";
char *title_vals[] = {"Supervisor", NULL};

char *phone_vals[] = {"01234 654310987", NULL};

LDAPMod title_attribute, telephoneNumber_attribute;

LDAPMod *mods|[3];

title_attribute.mod_op = LDAP_MOD_REPLACE;
title_attribute.mod_type = "title";

Modifying an Entry 195

Professional LINUX Programming

title_attribute.mod_values = title_vals;

telephoneNumber_attribute.mod_op = LDAP_MOD_ADD;
telephoneNumber_attribute.mod_type = "telephoneNumber";
telephoneNumber_attribute.mod_values = phone_vals;

mods[0] = &title_attribute;

mods[1] = &telephoneNumber_attribute;

mods[2] = NULL;

if ((Id = Idap_init(ldap_host, LDAP_PORT)) == NULL) {
perror("Failure of Idap_init");
exit(EXIT_FAILURE);

}

if (Idap_bind_s(ld, user_dn, user_pw, authmethod) != LDAP_SUCCESS) {
Idap_perror(Id, "Failure of Idap_bind");
exit(EXIT_FAILURE);

}

if (Idap_modify_s(Id, new_dn, mods) != LDAP_SUCCESS) {
Idap_perror(Id, "Failure of Idap_modify_s");
}

res = Idap_unbind_s(Id);

if (res 1= 0) {
fprintf(stderr, "ldap_unbind_s failed: %s\n", Idap_err2string(res));
exit(EXIT_FAILURE);

}

return EXIT_SUCCESS;
} /¥ main */

We can test that all is well, using the utility Idapsearch function:

$ Idapsearch -v —h localhost —p 389 -D "cn=root,
o=stixen.co.uk, c=uk" —w secret —b "o=stixen.co.uk, c=uk" 'objectclass=person’
$

This returns four objects; for sake of brevity, only the last of these is shown below:

cn=Jenny Stones, ou=People, o=stixen.co.uk, c=uk
cn=Jenny Stones

sn=Stones

givenname=Jenny

uid=stones;j

objectclass=top

objectclass=person
ou=Development

ou=People

titte=Supervisor
telephonenumber=01234 654310987

As you can see, we have changed the title and added a phone number.

Modifying an Entry

196

Professional LINUX Programming

Deleting an Entry

Last, but not least, deleting an entry is simplicity itself. We just need:

#include <lber.h>
#include <ldap.h>

int Idap_delete_s(LDAP *Id, char *dn_to_delete,);
Just for completeness, here is |[dap_delete_one.c:

#include <stdio.h>

#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#include <lIber.h>
#include <ldap.h>

int main(int argc, char *argv[]) {
LDAP *d;
int res;
int authmethod = LDAP_AUTH_SIMPLE;

char *ldap_host = "gw1";
char *user_dn = "cn=root, o=stixen.co.uk, c=uk";
char *user_pw = "secret";

char *dn_to_delete = "cn=Jenny Stones, ou=People, o=stixen.co.uk, c=uk";
if ((Id = Idap_init(ldap_host, LDAP_PORT)) == NULL) {

perror("Failure of Idap_init");

exit(EXIT_FAILURE);

}

if (Idap_bind_s(ld, user_dn, user_pw, authmethod) != LDAP_SUCCESS) {
Idap_perror(Id, "Failure of Idap_bind");
exit(EXIT_FAILURE);

}

if (Idap_delete_s(ld, dn_to_delete) '= LDAP_SUCCESS) {
Idap_perror(Id, "Failure of Idap_delete_s");

}
res = Idap_unbind_s(ld);
if (res 1= 0) {

fprintf(stderr, "ldap_unbind_s failed: %s\n", Idap_err2string(res));
exit(EXIT_FAILURE);

}

return EXIT_SUCCESS;
} ¥ main */

Again the principal changes are highlighted, not that there is much to change!

Deleting an Entry 197

Professional LINUX Programming
The Application

As you can probably appreciate, using an LDAP server to fully implement our DVD store database would nc
be a good idea. An essential part of the functionality requires us to store details that are subject to change,
such as who rented a disk, but the write performance of an LDAP server is generally pretty terrible it's not
what LDAP servers were designed to do particularly well. They also have no concept of transactions, which
(as we saw in Chapter 4) can be very important when we need multi-user updates to data.

We could use an LDAP server to store items like usernames and addresses, and possibly the base details ¢
DVDs, such as the title, actors, and directors, the details of which are fairly static and well defined. It's
conceivable that in the future there may be publicly accessible LDAP servers on the Internet, possibly with
basic address details for the local region, and perhaps even an online DVD catalogue with an LDAP interfac
We could then remove most of the attributes from our DVD store database, rather storing a distinguished
name, which we could use to retrieve additional details from LDAP servers as required.

Resources

RFCs can be found at many locations on the Internet, such as http://www.rfc.net. The primary ones of intere
in the LDAP area are RFC1777 (which replaces the earlier RFC 1487), RFC2251, RFC2252, RFC2255,
RFC1778, RFC1779, RFC 1823, RFC1959, RFC1960, RFC2247, RFC2377 and RFC1558.

The OpenLDAP project can be found at http://www.openldap.org and has many useful resources and links.

The LDAP Linux HOWTO can be found on the http://www.linuxdoc.org server, at
http://www.linuxdoc.org/HOWTO/LDAP—-HOWTO.html.

The configuration guide for the standalone LDAP server can be found at
http://www.umich.edu/~dirsvcs/Idap/doc/guides/.

Some standard schema items can be found at http://www.hklc.com/Idapschema/, and information about
DSML, and alternative markup scheme based on XML, can be found at http://www.dsml.org/.

If you're interested in books on the subject, we recommend the excellent Implementing LDAP by Mark
Wilcox, (ISBN 1-861002-21-1).

Summary

In this chapter we have introduced some theory and concepts about the OpenLDAP directory server. We
installed and provided basic configuration for this server, and looked briefly at its schema definition. We
looked at how queries, the most important feature of a directory server, are expressed.

We then moved onto programming and looked at the C API for accessing LDAP servers, using the tools tha
come with the OpenLDAP sources. We learned how to query and manipulate data in the server.

The open source OpenLDAP server is a very complete and competent LDAP server, which will hopefully
become as ubiquitous and well respected in the directory server world as Apache is in the web server world

The information about LDAP in this chapter is of necessity rather superficial in some areas, notably when
configuring OpenLDAP. There is a substantial amount of information available on the Internet, particularly in

The Application 198

Professional LINUX Programming

the Linux LDAP HOWTO, the LDAP FAQ and numerous RFCs, most of which come bundled with the
OpenLDAP distribution.

The Application 199

Chapter 8: GUI programming with GNOME/GTK+

Overview

GNOME is the GNU Network Object Model Environment, a thriving part of the GNU free software project.
The aims of the GNOME project are to build a complete, easy-to—use desktop environment for the user, an
powerful application framework for the software developer. By allowing close integration of desktop tools
with a powerful and flexible development framework, the GNOME and GTK+ libraries (on which the
graphical elements of GNOME are largely based) provide an increasingly attractive choice for developing
professional GUI applications in Linux.

Graphical toolkits such as Tk, Qt, Matif, and so on, have long been around to hide the underlying The X
Window system API from the GUI programmer, so precisely what are some of the advantages of the
GNOME/GTKH+ libraries?

« Licensed under the GPL, they are, always have been, and always will be completely free software.
One major advantage that they have had over KDE for example, is that, unlike KDE, they do not
make use of any proprietary, or even semi—proprietary libraries in their underlying architecture.

» With an emphasis on portability, they are written in C, implementing a sophisticated Object and Type
system, to provide a complete object-oriented framework. This framework encourages language
bindings: already you can use C, C++, Python, Guile, and Perl to program with GNOME/GTK+.

A core element of the architecture in new and forthcoming releases of GNOME is Bonobo; this
technology allows the implementation of embeddable, reusable software components similar to
ActiveX and Java Beans. This will allow, for instance, the embedding of a graphical, or word
processing component in a spreadsheet program.

The GNOME desktop is both user—friendly and highly customizable. Menus come preconfigured with an
intuitive layout and well designed, attractive icons. GNOME is independent of the window manager, but doe
supply 'hints' to compliant window managers, so as to interact appropriately with GNOME features such as
the panel.

Assuming basic knowledge of GNOME/GTK+ we will in the course of this chapter cover the core
GNOME/GTK+ material; we'll summarize familiar topics, and take an overview of some more advanced
ideas. The aim is to reach a level where we can comfortably implement a GNOME/GTK+ GUI for the DVD
Store application. We'll be working exclusively in C, which as we'll see, fits surprisingly well with
GTK+/GNOME's object-oriented structure.

Note If you're totally new to GNOME/GTK+, you may first want to check out some of the introductory
resources listed at the end of the chapter.

The GTK+/GNOME libraries

In this chapter and the next, we'll be dealing almost exclusively with the following libraries:
* glib

* GTK+ (along with GDK)
* GNOME

Chapter 8: GUI programming with GNOME/GTK+ 200

Professional LINUX Programming
glib

glib provides the backbone to much of GTK+ and GNOME. It's a multi—faceted library that provides all
manner of support features for C programmers, including memory functions, data storage and sorting
functions. It also contains many improved alternatives to the standard system and C library functions. We'll
explore in more detail in a following section, where we'll explain what's meant by 'improved alternatives'.

GTK+

GTK+, the GIMP ToolKit, is the GUI toolkit used by GNOME to provide a layer of abstraction between the
programmer and the underlying window system (be it X or Win32) to make for more pain—free GUI
programming. Supporters of GTK+ point to its powerful container layout system (see the Containers section
later on in this chapter) for designing windows; also the straightforward system used to link user events to
code.

Caution In the X Window system, events are called signals; these are totally different from (and not to
be confused with) low—-level UNIX signals.

GDK

GDK is the GIMP Drawing Kit, which provides a thin layer between applications and the Xlib primitive
drawing routines. When you develop with GTK+ you are actually using a wrapper on top of GDK, which in
turn wraps X. This means that the GDK library is an essential component in the development of a
GTK+/GNOME application for Linux.

There are several more very powerful libraries associated with GNOME. While these are strictly outside the
scope of this book, they they are so commonly used and referred to in GNOME circles, it would be criminal
not to mention them. These are:

* Imlib

* ORBIt
¢ libGnorba

Imlib

Imlib is a powerful image handling library, capable of manipulating a large number of image formats, such a
JPGs and PNGs. GNOME uses the GDK version of the library. In future, Imlib will be replaced by the even
better gdk_pixbuf library.

ORBit

ORBIt is a free implementation of a CORBA 2.2 ORB, designed for speed and simplicity. ORBit also
supports the C language, and is therefore an appropriate choice of ORB for GNOME. You can read more
about CORBA in Chapters 20 and 21.

libGnorba

libGnorba provides GNOME with links to ORBIt, including mechanisms for object activation and security.

glib 201

Professional LINUX Programming
glib

glib is a general C utility library that provides robust, low level elements essential to the portability of
applications between different UNIX type systems and Windows. glib brings a standard set of utility function
and data types to programmers on all platforms, reducing the need for wheel-reinvention in your code and
consequently reducing both development time and memory usage. Furthermore, it can increase the stability
your code in that you don't need to learn a new set of standards for each platform you want to develop on.
Even if you're just wanting to develop Linux applications, then it has the edge by being just so darn helpful.

The functionality glib provides is impressive by any standard; a complete discussion is well beyond the scop
of this chapter. Fortunately, as is typical of GNU projects, glib is very well documented, both on its parent
web site, www.gtk.org and in the header file glib.h. Even if you aren't the sort that loves reading header files
there's a lot of really useful information to be gleaned from them, and it's sometimes actually quicker to look
up in the header than it is to browse the help files or web pages.

GNOME and GTK+ themselves rely heavily on the types, functions and debugging macros that glib provide:
so a good understanding of glib should be the cornerstone of any aspiring GNOME/GTK+ programmer's
training.

The features covered in this section are:

« glib types

* macros

e memory routines

« string handling functions
* lists

Types

One important but easily forgotten aspect of C is that the sizes of certain primitive types are platform-
dependent. For example, an int will usually occupy 32 bits of memory, but on some machines it can be more
or less than this. Of course there are fairly simple coding methods you can use to ensure that this doesn't ce
problems, but mistakes do happen.

Therefore, to make our lives easier, glib defines its own set of primitive types of guaranteed length, together
with new boolean, string and void pointer types for complete convenience. For example gintl6 is a signed
integer of length 16 bits, and guint16 its unsigned partner.

glib type Description

gint8, gintl16, gint32, gint64 signed integer of guaranteed length

guint8, guintl6, guint32, guint64 unsigned integer of guaranteed length
gboolean boolean type, TRUE/FALSE also defined by glib
gint equivalent to int

gshort equivalent to short

gchar equivalent to char

gfloat equivalent to float

gdouble equivalent to double

gpointer eqguivalent to void *

glib 202

Professional LINUX Programming

Note that gint64 and guint64 only exist if the platform can support them. If it can, then glib will define
G_HAVE_GINT64.

gint, gshort, gchar, gfloat and gdouble are simple wrappers around the existing C types, and are included
purely for consistency. Given their identical nature, you might wonder what benefits there are in using gint
over int, or gchar over char. The fact is that technically there aren't any; in terms of good programming
practice though, we're maintaining consistency, a habit that we should try to reinforce whenever we have the
opportunity. It's particularly important to use common coding style and maintain overall consistency when
writing cross—platform code, so although gint versus int won't make any difference to your compiled code, it
may well help you in more subtle ways.

Macros
glib defines several macros to aid with general programming and debugging, most of which will be familiar t
C programmers. To complement the gboolean type, there are TRUE and FALSE macros. NULL is predefine

as a void pointer: (void *)0 in ANSI C.

There are also several simple macros provided to help with numerical juggling, principally there to help spee
up coding and help with code legibility.

Macro Description

FALSE #define FALSE (0)

TRUE #define TRUE ('FALSE)

NULL #define NULL ((void *) 0)

ABS(x) Returns the absolute value of x

MIN(a,b) Returns the smaller of a and b

MAX(a,b) Returns the larger of a and b

CLAMP(x, low, high) Returns x if x is between low and high.
Returns low if x<low or high if x>high

According to the machine's processor, the macro G_BYTE_ORDER is setto G_LITTLE_ENDIAN,
G_BIG_ENDIAN or G_PDP_ENDIAN (byte orderings 4321, 1234 and 3412 respectively).

Debugging macros

glib provides us with a set of macros that can be used to test assumptions made in the code, allowing bugs
be caught early. Place these macros in code check conditions and make assertions, which upon failure, prir
warning to the console. They can force an immediate return to the calling function or even force the
application to quit.

These functions are divisible into two types: those which are commonly used to check that the calling functic
has supplied us with valid arguments, and those used to check conditions within the function itself.

Checking valid arguments is often the first thing done at the beginning of a function so called precondition
checks. The two macros g_return_val_if_fail(condition, retval) and g_return_if_fail(condition) print a warning
if (condition!=TRUE) and return from the function. The former is used in void functions, while the latter
returns retval, and must be used in non-void functions.

Macros 203

Professional LINUX Programming

You don't have to look hard to find examples in the GNOME source here's a shippet from the GNOME pane
implementation:

void
panel_clean_applet(Appletinfo *info)

{
g_return_if_fail(info 1= NULL);
if(info—>widget) {
if(info—>type == APPLET_STATUS) {
status_applet_put_offscreen(info—>data);

gtk_widget_destroy(info—>widget);
}
}

Without g_return_if_fail, panel_clean_applet would run into problems if info was passed NULL. With the
assertion macro in place, g_return_if_fail returns the error:

** CRITICAL **: file panel.c: line 227 (panel_clean_applet):
assertion 'info = NULL' failed.

which directs us straight to the problem. Checking internal consistency within functions is most often done
with the assertion macro:

g_assert(condition)

If the condition fails, abort is called and a core dump is generated

* ERROR **: file test.c: line 9 (assert_test):
assertion failed: (pointer = NULL)

aborting...

Aborted (core dumped)

$

Since g_assert ends program execution, it's preferable to use g_return_if_fail within a function in cases whe
failure would be non-fatal.

To denote a region of code that should never be executed, glib provides:

g_assert_not_reached()
which aborts with the error:

* ERROR **: file search_window.c: line 733 (update_search_clist):
should not be reached

aborting...

Aborted (core dumped)

$

if ever reached. This proves useful in conditional statements where one or more conditions should never be
met. For instance, in this code fragment:

current_page = gtk_notebook_get_current_page (GTK_NOTEBOOK (search_notebook));
switch (current_page)

{
case TITLE_PAGE:

Macros 204

Professional LINUX Programming

clist = lookup_widget (GTK_WIDGET (button), "title_search_clist");
break;

case MEMBER_PAGE:
clist = lookup_widget (GTK_WIDGET (button), "member_search_clist");
break;

case DISK_PAGE:
clist = lookup_widget (GTK_WIDGET (button), "disk_search_clist");
break;

default:
g_assert_not_reached();

}

we make sure that current_page is equal to either TITLE_PAGE, MEMBER_PAGE or DISK_PAGE in the
switch statement.

GNOME and GTK+ frequently use these macros in their source; this is one of the reasons they are so easy
program with, and why spotting errors is very straightforward when using them. Learn by example using
debugging macros will halve the time you spend searching for NULL pointers and other irritating bugs.

String functions

String handling in C is an awkward task, as every C programmer knows. Dealing with character arrays,
pointers to characters, pointers to arrays, arrays of pointers, and so on, requires consistent, flawless
programming.

Running over memory boundaries and incorrect use of pointers form the backbone of runtime errors, and it
doesn't help that the standard string functions in string.h are as unforgiving as they are. glib provides cleane

safer, portable alternatives, and includes helpful extra functions when it comes to chopping, changing, and
general string manipulation.

A good example of glib's robust string library is g_snprintf. This function is equivalent to sprintf but it will
copy only the first n characters of the formatting string to buf and guarantees to NULL-terminate the string.
Note that the n characters include the NULL terminator.

gint g_snprintf(gchar *buf, gulong n, const gchar *format, ...)

Before using g_snprintf though, you must allocate enough space for the formatted string:

gchar *msg = g_malloc(50);
g_snprintf(msg, 50 , "Error %d occurred. %s", err, action);

In this case, a more convenient method is to use g_strdup_printf:
gchar * g_strdup_printf(const gchar * format, ...)

g_strdup_printf allocates the correct space to hold the formatted string, removing the need to guess or
calculate the required length:

gchar *msg = g_strdup_printf("Error %d occurred. %s", err, action);
In both cases, the allocated buffer must still be freed with g_free after use:

g_free(msg);

String functions 205

Professional LINUX Programming

We'll look at more of glib's memory management functions later.

glib makes strcasecmp and strncasecmp available on all platforms in the form of two functions:

gint g_strcasecmp(const gchar *s1, const gchar *s2)
gint g_strncasecmp(const gchar *s1, const gchar *s2, guint n)

g_strcasecmp compares two given strings, and g_strncasecmp the first n characters of two strings, returnin
if they match, a negative value if s1 < s2, and a positive value if s1 > s2. Note that the comparison is
case-insensitive.

glib also provides functions for in—situ string modification. To convert a string to upper or lower case, call
strup and strdown respectively. The order of characters in a string is reversed using g_strreverse, so that
g_strreverse("glib") will return a pointer to "bilg".

void g_strup(gchar *string)
void g_strdown(gchar *string)
gchar * g_strreverse(gchar *string)

g_strchug removes leading spaces in a string; similarly g_strchomp removes trailing spaces.

gchar * g_strchug(gchar *string)
gchar * g_strchomp(gchar *string)

To copy a string to a newly allocated string we have g_strdup, g_strndup and g_strdup_printf as mentioned
previously. g_strdup copies the complete string, g_strndup only the first n characters:

gchar * g_strdup(const gchar *str)
gchar * g_strndup(const gchar * format, guint n)

Finally in our quick tour of the most commonly used string functions, are a couple of functions to concatenat
strings:

gchar * g_strconcat(const gchar *s1, ...)
gchar * g_strjoin(const gchar * separator, ...)

g_strconcat returns a newly allocated string containing the concatenation of the arguments. g_strjoin works
a similar fashion, but places separator between elements of the concatenation.

Memory Allocation

glib irons out any potential problems with the C malloc and free memory functions by wrapping them with its
own equivalents: g_malloc and g_free. The glib pair also provides useful memory profiling when used with
the ——enable-mem-profile compilation option. Calling g_mem_profile prints handy information on the
memory use of your program to the console. Specifically, g_mem_profile outputs the frequency of allocation
of different sizes, the total number of bytes that have been allocated, the total number freed, and the differer
between these values; that is, the number of bytes still in use. Memory leaks become easy to spot.

g_malloc will sensibly deal with a 0 size allocation request, unlike malloc, by returning a NULL pointer.
g_malloc will immediately abort the program if the allocation fails, thereby circumventing the need to check
for a NULL pointer. This can be seen as a disadvantage, as there's no scope for fallback in the case of failul
g_free happily ignores NULL pointers given to it, unlike free.

Memory Allocation 206

Professional LINUX Programming

As the two allocators malloc and g_malloc may use separate pools of memory, it's essential to match g_free
with g_malloc, likewise free and malloc must be used in pairs.

gpointer g_malloc(gulong size)
void g_free(gpointer mem)

g_realloc is a glib mirror of the familiar realloc, to reallocate a buffer to a new size. Consistent with g_malloc
g_realloc returns a NULL pointer if passed a zero-length buffer. g_memdup copies a block of memory into ¢
newly allocated buffer.

gpointer g_realloc(gpointer mem, gulong size)
gpointer g_memdup(gconstpointer mem, guint bytesize)

Lists

Storage of data in singly or doubly linked lists is a very common programming requirement, and glib provide
excellent resources for implementing both in a clean and efficient manner.

The doubly linked list struct GList contains pointers to both the previous and next elements:

/* Doubly Linked List */
struct GList

{

gpointer data;
GList *next;
GList *prev;
%

Unlike the singly linked list GSList, Glist enables the possibility of traversing the list both forwards and
backwards.

/* Singly Linked List */
struct GSList
{

gpointer data;
GSList *next;

I3

Note that the data in both lists is stored as gpointers, but you can easily store integers using the macros
GINT_TO_POINTER, GPOINTER _TO_INT, GUINT_TO_POINTER and GPOINTER_TO_UINT.

To create an empty singly linked list, just initialize a NULL pointer:

GSList* single_list = NULL;

Similarly, a doubly linked list is created with:

GList *double_list = NULL;

Both use an identical API, with the exception of a leading 'S’ in the case of singly linked list functions, which
makes sense given that doubly linked lists are a superset of singly linked ones. For instance, g_slist_appent

adds an element to a singly linked list, and g_list_append adds an element to a doubly linked list. There is n
singly linked equivalent of g_list_previous though.

Lists 207

Professional LINUX Programming

To add items to a list, use g_slist_append, making sure to update the GSList pointer with the returned value
case the start of the list has changed.

GSList * g_slist_append (GSList *list, gpointer data);
For example, to add a string and integer as elements to the end of a list we would write:

GSList *single_list = NULL;
single_list = g_slist_append(single_list, "The answer is:");
single_list = g_slist_append(single_list, GINT_TO_POINTER (42));

noting of course that we need to be careful with the subsequent code if we have elements holding different
datatypes in the same list.

To add elements to the start of the list, use g_slist_prepend:
single_list = g_slist_prepend(single_list, "This appears at the start™);
And finally to free the list, call g_slist_free:
g_slist_free(single_list);

This frees up the list cells, but not the contents of the cells. You have to free the contents of a list manually i
necessary, to avoid memory leaks.

To retrieve the contents of a cell, simply access the data element of the GSList struct directly:
gpointer data = single_list->data;

and to move to the next cell in the list, call g_slist_next:

single_list = g_slist_next(single_list);

Naturally, we can also move backwards in the list with doubly linked lists:

double_list = g_list_previous(double_list);

We often need to add items at a specific position in the list; likewise we may well need to grab data from a
certain position in the list. For these purposes we have:

GSList * g_slist_insert(GSList *list, gpointer data, gint position)
gpointer g_slist_nth_data(GSList *list, guint n)

Also of great use is g_slist_remove, which removes the element containing data:

GSList * g_slist_remove(GSList *list, gpointer data)

Other functions to grab data from the list return the list at the element specified. The three listed below
respectively allow you to specify the element by its contents, its position from the start, or simply the fact tha

it's the last element in the list;

GSList * g_slist_find(GSList *list, gpointer data)
GSList * g_slist_nth(GSList *list, guint n)

Lists 208

Professional LINUX Programming

GSList *g_slist_last(GSList *list)

GTK+

The GIMP ToolKit, GTK+, has its roots in providing the user interface for the GNU Image Manipulation
Program, known as the GIMP. GTK+ has since gone from strength to strength, and is now a well featured,
easy to use, lightweight, non—-desktop specific Toolkit. None of its features place any demands on the actua
desktop environment; for instance, it doesn't include the ability to interact with desktop menus or save state
between sessions. This is entirely by design, as it enables GTK+ to be ported between OS platforms;
successful ports include those to Windows, Sloaris and BeOS.

As GNOME is based upon GTK+, a good working knowledge of GTK+ is a prerequisite for aspiring
GNOME programmers. The information that appears in this section is only a small fraction of what we could
conceivably present, but as you'll find, the key to understanding GNOME/GTK+ lies in an appreciation of the
general concepts, rather than in the details of individual widgets.

Widgets

A widget is an X Windows term for any user interface element, as originally coined by the MIT Athena
project; widgets can be labels, frames, entry boxes, windows, buttons, whatever else you happen to need.
GTK+ is an object-oriented toolkit, and all widgets in GTK+ are derived from the GtkWidget base class
(itself derived from the base object GtkObject). As mentioned earlier, GTK+ is written in C, and includes a
comprehensive Object and Type System to deal with class properties, inheritance, typecasting and storage
retrieval of arbitrary object data.

A typical widget life-cycle involves five steps:

A Bt Maid o S| > X » Dost
! ' .
Widget Creation

A widget is typically created with a GtkWidget *gtk_widgetname_new function, which returns a pointer of
type GtkWidget for convenience.

label = gtk_label_new("Hello World");

To use label in a label widget—specific function such as gtk _label_set_text we would need to use the casting
macro GTK_LABEL:

gtk_label_set_text(GTK_LABEL(label), "Goodbye World");

You can find a full description of the Object and Type system, together with examples on writing your own
widgets in GTK+/GNOME Application Development, details of which are given at the end of the chapter.

Containers
A GTK+ container is a widget that can physically contain other widgets. GtkContainer is an example of such

a widget, whose purpose is to provide extra functionality to its children; that is, widgets derived from
GtkContainer have the ability to ‘contain’ other widgets.

GTK+ 209

Professional LINUX Programming

It's this ability that GTK+ uses to create the layout of widgets on screen. Rather than positioning widgets in
window using a fixed coordinate system, each widget is added to a parent container using the function:

void gtk_container_add(GtkContainer *container, GtkWidget *widget)

The position and size of a widget on screen is determined by the properties of the container. This approach
hugely flexible, resulting in the intelligent sizing of widgets within windows, regardless of window size.

tyoct Haerarchy

Looking at the widget hierarchy above, we see the window widget GtkWindow and button widget GtkButton
are amongst those derived from GtkContainer. Therefore to make a GtkWindow contain a GtkButton, and
have that GtkButton contain a GtkLabel, we can write:

GtkWidget *window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
GtkWidget *button = gtk_button_new();

GtkWidget *label = gtk_label_new("Hello World");
gtk_container_add(GTK_CONTAINER(button), label);
gtk_container_add(GTK_CONTAINER(window), button);

Gtkwindow and GtkButton are descendants of GtkBin, another abstract widget class that has been designe
hold a single child widget only. To create more complicated layouts, we use the direct descendants of
GtkContainer, which can hold multiple widgets in any one of several formats.

Packing Boxes

GtkHBox and GtkVBox are containers that divide an occupied portion of a window into rows and columns
respectively. Each of these 'packing boxes' can hold all the usual widgets, including more packing boxes. Tt
is the key to flexible arrangement of widgets in windows; it allows you to subdivide a simple window in
complex but still well-defined ways. The relative size and spacing of widgets in the box are controlled by the
properties of the HBox and VBox widgets.

The relevant creation functions require two overall properties: homogeneous, dictating whether child widget:
are given equal space, and spacing, the spacing in pixels between adjacent widgets.

GtkWidget *gtk_hbox_new(gboolean homogeneous, gint spacing)
GtkWidget *gtk_vbox_new(gboolean homogeneous, gint spacing)

Individual widget spacing properties are specified upon adding the child widget to the Vbox or Hbox:

void gtk_box_pack_start(GtkBox *box, GtkWidget *child,
gboolean expand, gboolean fill, gint padding)
void gtk_box_pack_end(GtkBox *box, GtkWidget *child,
gboolean expand, gboolean fill, gint padding)

gtk_box_pack_start will add a child to the top of a GtkVBox or the left of a GtkHBox. Conversely,
gtk_box_pack_end adds to the bottom or right.

Widgets 210

Professional LINUX Programming

Quite a complicated interplay takes place between packing box and child widgets in order to determine their
spacing. The three arguments passed when adding each child are easy to understand:

Argument Type Description

expand gboolean If TRUE, the child widget expands to fill the available space, otherwise
it remains its default size.

fill gboolean If TRUE, the child widget expands to fill the allocated space, othenwise
it adds more padding around the widget.

padding gint The space, in pixels, with which to surround the child widget.

Note Bear in mind that if the packing box is homogeneous, the expand parameter is irrelevant.
It's well worth experimenting with these properties, and probably easiest using Glade, a program which we'll
be looking at in some depth in the next chapter.

Tables

A common layout for dialog boxes uses rows of label and entry widgets, for input from the user. One metho
of creating this layout would be to pack each label/entry pair into a GtkHBox, and pack rows of these into a
GtkVBox. However, aligning columns of label and entry widgets proves rather tiresome unless the text for al
the labels is of the same length.

00

Member Number: 10001
~Name
Title: | Mr
| First name: | Andrew o
‘ Last name: fFroggatt
rAddress-

House no. |19

1 Address 1:|Castle House

| Address 2: |Clare College

Town: |Cambridge|

1 State: |

| Zip:

| Phone:

<9 OK \ ¥ X Cancel \

It turns out that in this case, it's easier to use a GtkTable. As its name suggests, a GtkTable consists of a la
table, with cells divided into rows and columns, to which widgets can be attached. Widgets can be made to
span more than one row or column if necessary. GtkTable aligns rows and columns for neatness, and gives
similar flexibility for individual widget placing to GtkHBoxes and GtkVBoxes.

Widgets 211

Professional LINUX Programming

GtkWidget *gtk_table_new(guint rows, guint columns, gboolean homogeneous)

The first two arguments to gtk_table_new specify the initial number of rows and columns of the table,
although the table will automatically expand as needed, if a widget is added to the table outside its current
limits. As with boxes, homogeneous specifies whether each cell will be forced to occupy the same area.

Adding a widget to the table involves a call to gtk_table_attach, to which we give the row and column
bounding edges, two gtkAttachOptions, and padding to surround the widget.

GtkWidget * gtk_table_attach(GtkTable *table, GtkWidget *child,
guint left_column, guint right_column,
guint top_row, guint bottom_row,
GtkAttachOptions xoptions,
GtkAttachOptions yoptions,
guint xpadding, guint ypadding)

The position of each child widget in the table is specified in terms of the row and column lines that form the
widget's bounding box. For example, in a table with 3 columns and 2 rows, there are 4 column lines
(numbered 0 to 3) and 3 row lines (numbered 0 to 2).

To place a child widget in the shown position, we would thus set left_column to 1, right_column to 3
respectively, and top_row and bottom_row to 1 and 2 respectively.

The GtkAttachOptions arguments take one or more of three enum values to give the table more information
on how to space the widget. The values are bitmasks, so to specify two or more simultaneously, use the
bitwise OR: for example, GTK_EXPAND|GTK_FILL

GtkAttachOptions Description

GTK_EXPAND This section of the table expands to fill the available space.

GTK_FILL The child widget will expand to fill the space allocated when this is used With
GTK_EXPAND. It has no effect unless GTK_EXPAND is also used.

GTK_SHRINK If there is insufficient space for the child widget and GTK_SHRINK is set, the
table forcibly shrinks the child. If unset, the child will be given its requestgd
size, which may result in clipping at the boundaries.

We might write something like this:

table = gtk_table_new(2,1, FALSE);
labell= gtk_label_new("Label One");
label2 = gtk_label_new("Label Two");
gtk_table_attach(GTK_TABLE(table), labell,
0,1,
0,1,

Widgets 212

Professional LINUX Programming

GTK_FILL,
GTK_FILL,
0,
0);
gtk_table_attach(GTK_TABLE(table), label2,
0,1,
1, 2,

GTK_FILL | GTK_EXPAND | GTK_SHRINK,
GTK_FILL | GTK_EXPAND | GTK_SHRINK,
0,
0);

We'd then have to add table itself to a container.

Manually writing layout code is undeniably rather tedious and repetitive, especially for complicated windows
Consider using a user interface builder (such as Glade) to design your interface. Not only are they
WYSIWYG What You See Is What You Gdiut offer far more flexibility, such as the possibility of
dynamically loading GUI designs.

Signals

Generating responses to user actions is an integral part of all GUI programming. When something interestin
happens, typically a user clicking on a widget, or typing in an entry box, that widget will emit a signal. (As we
mentioned before, signals in the GTK+ sense are wholly different from low level UNIX signals.) Each widget
can emit signals specific to its type, and all of those specific to its parent widgets in its hierarchy.

Signals are referred to by string identifiers. For example, when a GtkButton is clicked, it emits the "clicked"
signal. To take action on this signal, we connect a callback function, which is executed on the emission of
that signal:

gint id = gtk_signal_connect(GTK_OBJECT (button),
"clicked",
GTK_SIGNAL_FUNC(button_clicked_callback),
NULL);

Here, gtk_signal_connect connects the function button_clicked_callback to the "clicked" signal of button. We
have the option to pass arbitrary user data as the fourth parameter in the form of a gpointer; here we choose
not to, and pass NULL instead. gtk_signal_connect returns a unique signal connection ID; this is rarely usec
but necessary if we later want to disconnect the signal.

The prototype for a typical callback function looks like this:

void button_click_callback(GtkButton *button, gpointer data);

Certain signals require slightly different callback functions though, as we'll see for GNOME dialogs later. We
are always passed a pointer to the widget emitting the signal as the first argument.

To disconnect a signal, we need to pass the GtkObject and connection ID:

gtk_signal_connect(GTK_OBJECT (button), id);

Widgets 213

Professional LINUX Programming

Showing, Sensitivity and Hiding

To make widgets visible on screen, we must call gtk_widget_show on each widget. More conveniently, we
can call gtk_widget_show_all on the top level widget, which recursively shows all of its children:

void gtk_widget_show(GtkWidget *widget)
void gtk_widget_show_all(GtkWidget *widget)

We often want a widget to appear shaded, or grayed out; in GTK parlance, we want its sensitivity set to
FALSE; effectively we want to deactivate the widget. We can adjust the sensitivity with a call to:

void gtk_widget_set_sensitive(GtkWidget *widget, gboolean setting)

We can also hide a widget temporarily, with a call to gtk_widget_hide:
void gtk_widget_hide(GtkWidget *widget)

Destruction

Destroying widgets that are no longer needed keeps memory usage to a minimum:

void gtk_widget_destroy(GtkWidget *widget)
gtk_init and gtk_main

All GTK+ programs must be initialized with a single call to gtk_init, which connects to the X server and
parses GTK+ specific command line options. Simply pass argc and argv, and gtk_init removes the options it
recognizes from argv, and decrements argc appropriately:

gtk_init(&argc, &argv);

Having created and laid out the primary window, a typical GTK+ application passes control to the event
handling loop with a call to gtk_main, which takes no arguments. When gtk_main is called, the program
interacts with the user only through the signal and event callback functions, until such time as gtk_main_quif
is called:

Example GTK+ Application

This is a very simple application, using the principles we've seen so far in this chapter:

/*

* A hello world application using GTK+

*/

#include <gtk/gtk.h>

static void

on_button_clicked(GtkWidget *button, gpointer data)

g_print("The button was clicked — Hello World!\n");

static gint
on_delete_event(GtkWidget *window, GdkEventAny *event, gpointer data)

gtk_main_quit();
return FALSE;

Widgets 214

Professional LINUX Programming

} .

gint

main(gint argc, gchar *argv(])

{
GtkWidget *window;
GtkWidget *vbox;
GtkWidget *label;
GtkWidget *button;
gtk_init(&argc, &argv);
window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
vbox = gtk_vbox_new(TRUE, 10);
label = gtk_label_new("This label is placed first into the VBox");
button = gtk_button_new_with_label("Click Me!");
gtk_box_pack_start(GTK_BOX(vbox), label, FALSE, FALSE, 0);
gtk_box_pack_start(GTK_BOX(vbox), button, FALSE, FALSE, 0);
gtk_container_add(GTK_CONTAINER(window), vbox);

gtk_window_set_title(GTK_WINDOW(window), "The Title");

gtk_signal_connect(GTK_OBJECT(window), "delete_event",
GTK_SIGNAL_FUNC(on_delete_event),
NULL);

gtk_signal_connect(GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC(on_button_clicked),
NULL);

gtk_widget_show_all(windowy);

gtk_main();

return O;

}
The Makefile for basic_gtk_app.c looks like this:
CC=gcc

all: basic_gtk_app.c
$(CC) 'gtk—config —-libs —cflags’ —o basic_gtk_app basic_gtk_app.c

GNOME Basics

In this section we're going to look at some important aspects of GNOME and GNOME programming,
including:

« GNOME widgets
* building menus and toolbars with GNOME
« GNOME dialog boxes

As mentioned in the chapter introduction, GNOME builds on GTK+ in two ways: it adds widgets that extend
the functionality of existing GTK+ widgets, for example, gnome_entry enhances gtk_entry; it also replaces
the GTK+ routines used to build menus, toolbars and dialogs with a new set of functions, which are not only
more powerful, but also easier to use.

All of the GNOME, GTK+, GDK, etc. header files are #included with:

#include <gnome.h>

GNOME Basics 215

Professional LINUX Programming
gnome_init

This function is analogous to gtk _init; an application must pass a short version of its name and version
number (along with the usual command line parameters) to gnome_init in order to initialize both GNOME
and GTK+. It therefore replaces the need to call gtk_init in GNOME programs. It should (that is, it doesn't at
present, but may do in future) return non-zero if the call fails; current versions of GNOME abort on failure
instead.

gint gnome_init(const char *app_id, const char *app_version,
gint argc, char **argv)

gnome_init will not change argc and argv in the way that gtk_init does. Command line parsing in gnome
applications is best done using gnome_init_with_popt_table.

popt is a specialized command line parsing library, about which we'll say more later.

GnomeApp

Almost all GNOME applications make use of the GnomeApp widget for their main window. GnomeApp is a
subclass of GtkWindow, and provides the basis for easy menu, toolbar and status bar creation. What's grea
about GnomeApp is that it gives the application a large amount of extra functionality at no cost:

* Menu and toolbars can be detached and 'docked' in horizontal and vertical positions on the
GnomeApp. GNOME automatically saves the docking configuration between sessions.
» Users can configure global preferences that determine the properties of menus and toolbars.

Creating a GnomeApp widget requires a call to gnome_app_new, passing the same app_id that we passed
gnome_init and a string to be placed in the window title:

GtkWidget *gnome_app_new(gchar *app_id, gchar *title)

Once a GnomeApp exists, adding a menu, toolbar and status bar is simply a matter of setting up the require
menu and toolbar structs, creating a status bar, and then calling:

void gnome_app_set_menus(GnomeApp *app, GtkMenuBar *menubar)
void gnome_app_set_toolbar(GnomeApp *app, GtkToolbar *toolbar)
void gnome_app_set_statusbar(GnomeApp *app, GtkWidget *statusbar)

Menus and Toolbars

The GNOME method of creating menus and toolbars is to define each menu and toolbar item using a
GnomeUlInfo struct:

typedef struct {
GnomeUlinfo type;
gchar* label;
gchar* hint;
gpointer moreinfo;
gpointer user_data;
gpointer unused_data;
GnomeUIPixmapType pixmap_type;
gpointer pixmap_info;
guint accelerator_key;

gnome_init 216

Professional LINUX Programming

GdkModifierType ac_mods;
GtkWidget* widget;
} GnomeUlInfo;

In fact, we rarely have to fill in this struct ourselves, as GNOME has plenty of predefined GhomeUlInfo
structs; it's useful nevertheless to have an understanding of its innards.

* type is a type marker relating to one of the GhomeUlInfoType enums; its value controls the
interpretation of the fourth parameter, moreinfo, as shown below:

Type Moreinfo interpreted as Description
GNOME_APP_UI_ITEM callback function Standard menu/toolbar item
GNOME_APP_UI TOGGLE_ITEM |callback function Toggle or Check item
GNOME_APP_UI_RADIOITEMS |array of radio items in the |Radio item group

group
GNOME_APP_Ul_SUBTREE GnomeUlInfo array that formSubmenu

a subtree
GNOME_APP_Ul SEPARATOR NULL Separator between items
GNOME_APP_Ul HELP help node to load Help item
GNOME_APP_UI_ENDOFINFO NULL GnomeUlInfo array

terminator

* label contains the text of the menu or toolbar item.

« hint points to some additional descriptive text; in the case of a button this will be displayed as a
tooltip, whereas for menu items it can be made to appear in the status bar. Make tooltips long if
necessary, sufficient to explain the function of the item. In any case, don't just repeat label.

« moreinfo is dependent on type, as shown above; if it contains a callback function, then the next
parameter

* ...user_data is passed to the callback function.

» unused_data is reserved for future use, and should be set to NULL.

* pixmap_type and pixmap_info specify a pixmap to be used in the menu or toolbar item, one dictating
the interpretation of the other as follows:

pixmap_type pixmap_info interpreted|Description
as
GNOME_APP_PIXMAP_STOCK [name of a stock GNOMPBJse a GNOME-provided pixmap
pixmap
GNOME_APP_PIXMAP_DATA pointer to a GdkPixmap|Use an application—specific
pixmap
GNOME_APP_PIXMAP_FILENAME(filename of a pixmap |Use the pixmap found at filename
GNOME_APP_PIXMAP_NONE NULL No pixmap

« accelerator_key and ac_mods define the keyboard shortcuts that apply to this item. The former can |
a character such as 'a’, or a value taken from gdk/gdkkeysms.h. The latter is a mask (like
GDK_CONTROL_MASK) that controls the modifier keys (or combinations thereof) that can be used
with the shortcut.

» widget should be left NULL; on passing GnomeUlInfo to gnome_app_create_menus, GNOME fills
widget with a pointer to an actual widget of that menu or toolbar item. This pointer is used to specify
the menu or toolbar item during program execution. A common use would be to gray out the item by
passing widget to gtk_widget_sensitivity.

gnome_init 217

Professional LINUX Programming

Here's an entry for an 'Undo’ item, as a concrete example:

GnomeUlInfo undo = {GNOME_APP_UI_ITEM,
N_("_Undao"),
N_("Undo the last action"),
on_undo_clicked,
NULL,
GNOME_APP_PIXMAP_DATA,
undo_pixmap,
7
GDK_CONTROL_MASK};

Note The N_ macro surrounding the on—screen text strings facilitates internationalization, a topic that we'll
cover in_chapter 28.

Menus and toolbars are built from arrays of GhomeUlInfo structs, followed by a call to either

gnome_app_create_menus and gnome_app_create_toolbar, as appropriate.

void gnome_app_create_menus(GnomeApp *app, GhnomeUlInfo *uiinfo)
void gnome_app_create_toolbar(GnomeApp *app, GnomeUlInfo *uiinfo)

While GnomeUlInfo structs provide complete control over menu and toolbar definition, complete control is
not always necessary, or indeed desirable. Many GUI applications follow a File, Edit, View, Help format of
top level menus, and most of those that don't really ought to. Once inside the top level menus, there are mo
conventions as to which menu items appear where, and in what order. For example New, Open, and Exit ite
are conventionally placed first, second and last in the File menu.

With standardization in mind, GNOME provides a whole set of macros that define GnomeUlInfo structs for
commonly used menu items; they can set out the label, tooltip, pixmap and accelerator for you. Standard
menu design is therefore very quick and easy.

Each top level menu on the menubar consists of an array of GhomeUlInfo structs, and the menu definitions
are combined to form the complete menu tree by including pointers to these arrays, using the
GNOMEUIINFO_SUBTREE macro. You can find these definitions in libgnomeui/gnome—app-help.h

GnomeAppbar

The GnomeApp widget can optionally hold a status bar; these are the strips that often lie along a window's

bottom edge, which convey information about the application's status. GnomeApps can also hold a progress
bar, giving a graphical indication of progress for a time consuming operation. For instance, Netscape uses it
progress bar to show the approximate percentage of a web page or email that has currently been download

On creating a GnomeAppbar, we use booleans to specify whether it consists of a status bar, progress bar, ¢
both. There's also an interactivity term, which in future versions of GNOME may allow for further interaction
with the user. Until this feature is developed though, the recommended setting is
GNOME_PREFERENCES_USER.

GtkWidget *gnome_appbar_new(gboolean has_progress,
gboolean has_status,
GnomePreferencesType interactivity)

This creates the appbar; to then add it to the GnomeApp window, we require the function:

void gnome_app_set_statusbar(GnomeApp *app, GtkWidget *statusbar)

Menus and Toolbars 218

Professional LINUX Programming

Text in the status bar is treated as a stack system. Adding text means pushing it onto the stack with:

void gnome_appbar_push(GnomeAppBar appbar, const gchar *text)

Text pushed onto the top of the stack remains visible until either new text is pushed on top or the stack is
popped with a call to gnome_appbar_pop. In the latter case, the text held one position lower in the stack is
displayed.

void gnome_appbar_pop(GnomeAppBar *appbar, const gchar *status)

Should the stack become empty, the default text is displayed; this is normally an empty string. You can
change this text using:

void gnome_appbar_set_default(GhomeAppBar *appbar, const gchar *default_text)

The entire stack can be cleared quickly and simply with gnome_appbar_clear_stack. Although the stack is
useful for allowing different parts of your application to use the status bar simultaneously without risk of
interference, you'll often just need to display temporary information without recourse to the stack. You can
add transient text using gnome_appbar_set_status, which remains visible until either new transient text is
added, or the stack is pushed, popped, cleared, or refreshed with a call to gnome_appbar_refresh.

void gnome_appbar_clear_stack(GnomeAppBar *appbar)
void gnome_appbar_set_status(GnomeAppBar *appbar, const gchar *status)
void gnome_appbar_refresh(GnomeAppBar *appbar)

As the mouse pointer highlights menu items, GNOME allows the display of menu tooltips on the status bar
for the cost of one call to:

void gnome_app_install_menu_hints(GnomeApp *app, GnomeUlInfo *uiinfo)

The GnomeUlInfo struct must previously have been created with a call to one of the menu creation function:
so that its widget field is filled in.

Progress Bar

The progress bar consists of a GtkProgress widget, and providing the GhomeAppBar has been created with
the optional progress bar, a pointer to the GtkProgress can be returned with:

GtkProgress *gnome_appbar_get_progress(GnomeAppBar *appbar)
Finally, and most importantly, you can add contents to a GnomeApp widget with:
void gnome_app_set_contents(GnomeApp *app, GtkWidget *contents)

This is equivalent to using gtk_container_add with a conventional gtk_window.

Dialogs

Dialogs form an essential part of any GUI application, allowing the user to select or enter data, and report to
the user all manner of information such as errors, general messages and help text. In a typical application,

there are many more dialog boxes than central windows, so the easy programming of dialogs is an essentia
requirement for any modern toolkit.

Menus and Toolbars 219

Professional LINUX Programming

Dialog boxes have certain distinctions from normal windows:

» They always have one or more buttons that signal to the application to invoke or cancel the operatiol
of the dialog.

» They have no minimize tab on the window decoration.

» They have the option of being modal, that is, preventing use of the rest of the application until the
dialog is dismissed.

Recognizing these distinctions, GNOME implements dialogs by extending GtkWindow to a dialog base clas:
GnomeDialog. This forms a ready-built dialog template complete with assorted functions; making dialogs
with GNOME is therefore a wholly civilized affair.

Widget Hierarchy

[o

However, GhomeDialog isn't the end of the story. There are also three special dialog types:

» GnomeAbout
* GnomePropertyBox
* GnomeMessageBox

These make it quicker and easier to create commonly used dialog boxes for more specific purposes. What's
more, they're derived from GnomeDialog, share its functionality and help maintain consistency across
GNOME applications. Let's look in more detail at GnomeDialog.

Creating a GnomeDialog

To create a GnomeDialog widget, call gnome_dialog_new and pass the window title and a NULL-terminate
list of buttons (to be placed inside the dialog box) as arguments:

GtkWidget *gnome_dialog_new(const gchar *title, ...)

The buttons list is a list of strings to be used as text for the buttons. Rather than pass simple strings, it's am
better idea to use the GNOME macros for commonly used buttons. Just like menu/toolbar macros, it provide
pixmaps to standardize the interface.

The macro list is held in libgnomeui/gnome-stock.h and includes:

« GNOME_STOCK_BUTTON_OK

« GNOME_STOCK_BUTTON_CANCEL
« GNOME_STOCK_BUTTON_YES

« GNOME_STOCK_BUTTON_NO

« GNOME_STOCK_BUTTON_CLOSE
« GNOME_STOCK_BUTTON_APPLY

Creating a GnomeDialog 220

Professional LINUX Programming

« GNOME_STOCK_BUTTON_HELP

« GNOME_STOCK_BUTTON_NEXT

« GNOME_STOCK_BUTTON_PREV

« GNOME_STOCK_BUTTON_UP

« GNOME_STOCK_BUTTON_DOWN
« GNOME_STOCK_BUTTON_FONT

Note These macros equate to simple strings, so be aware that if you create a button with the text of
one of these strings, you'll probably end up with an icon as well as text.

Creating a simple OK/Cancel dialog would look something like this:

GtkWidget *dialog = gnome_dialog_new(
_("A GnomeDialog with Ok and Cancel buttons"),
GNOME_STOCK_BUTTON_OK,
GNOME_STOCK_BUTTON_CANCEL,
NULL);

Buttons are filled in the dialog from left to right, and given numbers starting from 0, which represents the
leftmost button.

GnomeDialogs are automatically created with a GtkVBox widget in the main part of the window, accessible
as the vbox member of the dialog struct. Adding widgets to a newly created GnomeDialog is just a matter of
packing widgets into that GtkVBox:

GtkWidget *label = gtk_label_new(_("This label is placed in the dialog"));

gtk_box_pack_start(GTK_BOX(GNOME_DIALOG(dialog)—>vbox)),
label, TRUE, TRUE, 0);

Showing a GnomeDialog

Having created and filled the dialog, we need to put it into action by showing it on the screen. The
mechanisms for showing the dialog and waiting for user response are very different for modal and hon—-mod
dialogs. You should set its modality before showing it, by calling gtk_window_set_modal. Windows and
dialogs are non—modal by default.

gtk_window_set_modal(GtkWindow *window, gboolean modality)

Non-modal dialogs

Non-modal dialogs are the type that don't restrict usage of other windows. As this allows normal operation
the rest of your application, you must connect callbacks to the GnomeDialog that inform you when a button |
clicked or the dialog is closed. Once a non—-modal GnomeDialog has been created and filled, use
gtk_widget_show as normal to make the dialog visible on screen.

gtk_widget_show(dialog);
Rather than connect handlers to individual buttons, it is best to make use of GnomeDialog's own signals. It

emits two signals: "clicked" and "close" in addition to those provided by its parent classes; it is these signals
that you should connect to in order to provide dialog functionality.

Creating a GnomeDialog 221

Professional LINUX Programming

» The "clicked" signal is emitted when a dialog button is clicked. The callback function connected to
"clicked" is provided with three arguments, a pointer to the dialog, the number of the button that was
clicked, and user data. Be aware that the GnomeDialog "clicked" signal is different from the "clicked"
signal of the buttons themselves.

» The "close" signal is emitted when gnome_dialog_close is called, and has a default handler providec
by GNOME. This handler by default destroys the dialog by calling gtk_widget_destroy, unless
gnome_dialog_close_hides is invoked passing setting as TRUE.

void gnome_dialog_close_hides(GnomeDialog *dialog, gboolean setting)

In this case, the "close" handler will hide the dialog with gtk_dialog_hide. This simply means that you won't
have to recreate it should you want to show it again. This is ideal for complicated dialogs, or situations wher
you want to preserve the state of the widgets in the dialog between dialog operations.

You can also connect your own handler to "close"; it could put up an "Are you sure?" message, the return
value of which tells GNOME whether or not to execute the default action.

It is useful to have the "close" signal emitted when a button is clicked, as this removes the need to destroy a
hide the dialog yourself. To make GnomeDialog emit "close" as well as "clicked" when a button is clicked,
call gnome_dialog_set_close with setting as TRUE.

void gnome_dialog_set_close(GnomeDialog *dialog, gboolean setting)
Modal Dialogs

Modal dialogs prevent the user from interacting with other windows until the dialog has been dealt with.
Using modal dialogs is sometimes essential to prevent the user from changing critical settings while the dial
is in place, or to force the user into making an immediate decision. Since the rest of the application is frozen
while the dialog is being shown, it's possible for your code to wait for user input without compromising the
functionality of the rest of the application. In other words, we don't need to use callbacks, as we simply
display the dialog and wait for something to happen.

This makes it much easier to write modal dialogs than their non—modal equivalents, a fact that makes them
very popular with programmers, even in situations where a non—modal dialog would be more appropriate. T
use a modal dialog, create and show the GnomeDialog as usual, and call either gnome_dialog_run or
gnome_dialog_run_and_close. They both show a GnomeDialog and return the number of the button presse
(or 1 if the dialog was closed by the window manager). The run_and_close variant destroys the dialog when
returning if the dialog is not destroyed by the normal means.

gint gnome_dialog_run(GnomeDialog *dialog)
gint gnome_dialog_run_and_close(GnomeDialog *dialog)

These calls automatically make the dialog modal we don't need to use gtk_window_set _modal beforehand.
Remember that the buttons are numbered starting from 0, in the order that they were given to
gnome_dialog_new:

GtkWidget *dialog;
gint result;
dialog = gnome_dialog_new (_("Do you really want to quit?"),
GNOME_STOCK_BUTTON_YES,
GNOME_STOCK_BUTTON_NO,
NULL);
gtk_widget_show(dialog);

Creating a GnomeDialog 222

Professional LINUX Programming

result = gnome_dialog_run_and_close (GNOME_DIALOG (dialog));
switch (result)

{

case 0: g_print("You clicked Yes\n");

break;

case 1: g_print("You clicked No\n");

break;

default: g_print("You closed the dialog\n");

GnomeAbout

We mentioned when talking about GnomeDialog that it has three descendants, which provide further
specialization. GnomeAbout is the first of these, a template for the ubiquitous 'About' dialog, which gives
information about the application version, authors, copyright and other comments. For extra professionalism
we can even add a logo!

GtkWidget gnome_about_new(const gchar *title,
const gchar *version,
const gchar *copyright,
const gchar **authors,
const gchar *comments,
const gchar *logo)

The only mandatory field is authors, an array of strings. GnomeAbout contains an OK button which destroys
the dialog when clicked.

& ok

A GnomeAbout dialog should be set up to appear when the 'About' item is clicked in the Help menu.
GnomePropertyBox
GnomePropertyBox is a much greater extension of GhomeDialog than GnomeAbout. As the name suggests

this is a template for a Property or Preferences dialog box. It contains a GtkNotebook widget to enable
separation of Preferences into pages, and four buttons: OK, Apply, Cancel and Help.

Creating a GnomeDialog 223

Professional LINUX Programming

[P 508

General | Search Window

Log Fie name

Maximumn renting perod bedore overdue

days

& ok v X Close ¥ Help

GnomePropertyBox helps you along with coding the dialog by emitting "apply" and "help" signals. It also
closes the dialog automatically if the OK or Cancel buttons are clicked. Creating a GhomePropertyBox
involves calling gnome_property_box_new, which takes no arguments. Like GnomeAbout, the dialog title is
set by default to the name of the application.

GtkWidget * Gnome_property _box_new()

The Apply button is initially set insensitive that is, it's grayed out to indicate there are no outstanding
changes in the preferences. If any widget on any of the pages is modified, then it's the programmer's
responsibility to make the Apply button sensitive. To do this, we simply call gnome_property _box_changed
in response to the "changed" signal of widgets in the GnomePropertyBox.

void gnome_property_box_changed(GnomePropertyBox *box)

Of course, first we must add pages to the dialog, using gnome_property_box_append_page, which returns t
number of the page just added:

gint gnome_property_box_append_page(GhomePropertyBox *box,
GtkWidget *page, GtkWidget *tab)

page is the widget to be added to a new page, and will most likely be a GtkFrame or container widget to ma
the page look presentable, even if it only contains one widget. tab is the widget placed in the tab of the
notebook, and it lets us use pixmaps as well as text to identify each page.

GnomePropertyBox emits the "apply" signal when either the Apply or OK buttons are clicked; in response,
our code should then read the state of the widgets in the pages, and apply preferences accordingly. If the
button clicked was Apply, GnomePropertyBox sets the Apply button insensitive once again.

In the unlikely event that you need to set the state of this '‘changes pending' flag manually, you can use
gnome_properties_box_set_state where passing setting as TRUE indicates there are indeed changes pend

void gnome_properties_box_set_state(GnomePropertyBox *box, gboolean setting)
The callback prototype for the "apply" and "help" signhals should look like this:

void property_box_handler(GtkWidget *box, gint page_num, gpointer data);

Creating a GnomeDialog 224

Professional LINUX Programming

For the "help" signal handler, page_num holds the number of the current open page, allowing
context—sensitive help to be displayed. For the "apply" signal though, things aren't quite as straightforward. |
fact, the "apply" signal is emitted once for each page, and one final time, passing page_num as 1. Your
handler needn't distinguish between pages; it simply needs to wait for the 1 page number to be emitted, and
then update the properties relating to all pages.

GnomeMessageBox

The final descendant of GhomeDialog is GhomeMessageBox, a simple dialog subclass that displays a shor
message together with an appropriate title and icon, determined by the message box type. The creation
function is the only one special to GhomeMessageBox, and in calling it, you specify the text content, type,
and NULL-terminated button list:

GtkWidget * gnome_message_box_new(const gchar *message,
const gchar *messagebox_type,

)

GNOME gives us macros to supply for the messagebox_type, which are self-explanatory:

« GNOME_MESSAGE_BOX_INFO
- GNOME_MESSAGE_BOX_WARNING
« GNOME_MESSAGE_BOX_ERROR

« GNOME_MESSAGE_BOX_QUESTION
« GNOME_MESSAGE_BOX_GENERIC

Here's an example, using the question type GnomeMessageBox:

GtkWidget *dialog;
gint reply;
dialog = gnome_message_box_new(_("Delete this Member?"),
GNOME_MESSAGE_BOX_QUESTION,
GNOME_STOCK_BUTTON_OK,
GNOME_STOCK_BUTTON_CANCEL,
NULL);
gtk_widget_show(dialog);
reply = gnome_dialog_run(GNOME_DIALOG(dialog));

if (reply == GNOME_OK)

/* User clicked OK */
}

Example GNOME Application

Before we move on any further, let's put some of what we've talked about into action, in the form of a simple
GNOME application. This example creates a GnomeApp widget, populates it with several menu and toolbar
items, and connects the appropriate callbacks to indicate which menu item was clicked.

#include <gnome.h>

const static gchar *app_id = "Gnome Example";

const static gchar *version ="0.1";

static void

on_menu_item_clicked(GtkWidget *button, gpointer data)

{

gchar *text = (gchar*) data;

Creating a GnomeDialog 225

Professional LINUX Programming

g_print("The %s menu item was clicked\n", text);

}

/* File menu structures */
static GhomeUlInfo filemenu[] = {

GNOMEUIINFO_MENU_NEW_ITEM ("New", "This is the Hint", on_menu_item_clicked,
GNOMEUIINFO_MENU_OPEN_ITEM (on_menu_item_clicked, "Open"),

GNOMEUIINFO_END
}.

static GhomeUlInfo custom_menu[] = {

{GNOME_APP_UI_ITEM, "ltem One", "ltem One Hint", NULL, NULL, 0O, 0},
{GNOME_APP_UI_ITEM, "Item Two", "ltem Two Hint", NULL, NULL, 0,0},

GNOMEUIINFO_END
h
static GhomeUlInfo menu[] = {
GNOMEUIINFO_MENU_FILE_TREE (filemenu),
GNOMEUIINFO_SUBTREE ("Custom", custom_menu),
GNOMEUIINFO_END
5
static gint
on_delete_event(GtkWidget *window, GdkEventAny *event, gpointer data)
{
gtk_main_quit();
return FALSE;
}
gint main(gint argc, gchar *argv([])
{
GtkWidget *window;
gnome_init(app_id, version, argc, argv);
window = gnome_app_new (app_id, "This is the window Title");
gtk_window_set_default_size(GTK_WINDOW(window), 300, 300);
gtk_signal_connect(GTK_OBJECT(window), "delete_event",

GTK_SIGNAL_FUNC(on_delete_event),

NULL);
gnome_app_create_menus(GNOME_APP(window), menu);
gnome_app_create_toolbar(GNOME_APP(window), custom_menu);
gtk_widget_show(window);
gtk_main();
return O;

}
The Makefile for this GNOME example is also very simple:

CC=gcc
all: basic_gnome_app.c

$(CC) "gnome-config —libs —cflags gnomeui’ —o basic_gnome_app basic_gnome_app.c

Creating a GnomeDialog

226

Professional LINUX Programming

e

The GNOME Source Tree

Developing the source code for a GNOME application can appear to be one of the most time consuming
components of the development cycle, but the most crucial component is that of ensuring that the applicatio
is well-structured in every respect. If we anticipate distributing our application, either throughout the world o
just to another computer, it is essential that we build a source tree for our application; this is best done befor
a single line of code is written.

Note GNOME source trees elements follow a number of conventions that differ little from those of
typical GNU software source trees. While the tree consists of many files and subdirectories,
most can simply be copied from other GNOME apps without alteration. The remaining files
we create ourselves using templates.

1. The first step in manually creating a GNOME source tree is to create the directory structure,
consisting of a top level directory (named appropriately for the application) and subdirectories src,
macros, docs and pixmaps (assuming your GNOME application will ship with pixmaps).

2. Next create the text files AUTHORS, NEWS, COPYING, README and ChangelLog. Each one
should contain relevant, appropriately formatted information, consistent with other GNOME
applications go check some source files. Fill them up, and place in the top level directory.

3. Create an empty file called stamp.h.in. This is needed by configure.in for use with the
AM_CONFIG_HEADER macro.

4. Write configure.in and acconfig.h files and place them in the top level directory. Write a Makefile.am
file for the top level directory, listing each directory that contains source code. Then write an
individual Makefile.am for each of those directories.

5. Run the gettextize executable that comes with the GNU gettext package. This will create the intl and
po directories that deal with internationalization. In po/POTFILES.in, list the source files containing
strings that should be scanned for translation.

6. Copy the contents of the macro directory, and copy autogen.sh from another GNOME application.

7. Finally, run autogen.sh to call automake, autoconf, autoheader, aclocal and libtoolize.

The GNOME Source Tree 227

Professional LINUX Programming

7 v ‘ v ¥ | v L g 7/

Now, for the files we need to write ourselves: configure.in and Makefile.am.

configure.in

configure.in is a template that autoconf uses to create the configure script, and consists of m4 macros that &
expanded into shell scripts.

The example configure.in script here is the one used for our GNOME DVD Store frontend. There are only
three GNOME-specific macros here: GNOME_INIT, GNOME_COMPILE_WARNINGS and
GNOME_X_CHECKS, which are expanded into shell scripts from files held in the macros directory.

dnl Process this file with autoconf to produce a configure script.
AC_INIT(configure.in)
AM_INIT_AUTOMAKE(dvdstore, 0.1)
AM_CONFIG_HEADER(config.h)
dnl Pick up the Ghome macros.
AM_ACLOCAL_INCLUDE(macros)
GNOME_INIT
AC_ISC_POSIX
AC_PROG_CC
AM_PROG_CC_STDC
AC_HEADER_STDC
GNOME_COMPILE_WARNINGS
GNOME_X_CHECKS
dnl Add the languages which your application supports here.
ALL_LINGUAS=""
AM_GNU_GETTEXT
dnl Set PACKAGE_LOCALE_DIR in config.h.
if test "x${prefix}" = "xXNONE"; then
AC_DEFINE_UNQUOTED(PACKAGE_LOCALE_DIR, "${ac_default_prefix}/${DATADIRNAME}/locale")
else
AC_DEFINE_UNQUOTED(PACKAGE_LOCALE_DIR, "${prefix}/${DATADIRNAME}/locale")
fi
dnl Subst PACKAGE_PIXMAPS_DIR.
PACKAGE_PIXMAPS_DIR=""gnome-config ——datadir’ /pixmaps/${PACKAGE}"
AC_SUBST(PACKAGE_PIXMAPS_DIR)
AC_OUTPUT([
Makefile
macros/Makefile
src/Makefile
intl/Makefile
po/Makefile.in

)

« GNOME_INIT is responsible for adding GNOME-specific command line arguments to the configure
script, by making extensive use of the gnome-config program.

configure.in 228

Professional LINUX Programming

« GNOME_COMPILE_WARNINGS turns on all appropriate compiler checking flags.
« GNOME_X_CHECKS carries out simple checks on the X11 server, and checks for the Xpm library.

This configure.in script also creates and exports the PACKAGE_PIXMAPS_DIR environment variable (using
the AC_SUBST macro) for our code to locate any installed pixmaps.

Makefile.am

automake reads the Makefile.am files in the top level directory and each source—containing subdirectory, an
processes them into Makefile.in. Remember that automake is called when you execute autogen.sh. The top
level Makefile.am may only contain a SUBDIRS pointer to the subdirectories. In the makefile for the
GNOME DVD Store frontend, shown below, there's also an entry to install a .desktop file and a couple of
extra make options defined: install-data—local and dist—hook.

Process this file with automake to produce Makefile.in
SUBDIRS = intl po macros src
EXTRA_DIST =\
dvdstore.desktop
Applicationsdir = $(gnomedatadir)/gnome/apps/Applications
Applications_DATA = dvdstore.desktop
install-data—local:
@$(NORMAL_INSTALL)
if test —d $(srcdir)/pixmaps; then \
$(mkinstalldirs) $(DESTDIR)@PACKAGE_PIXMAPS_DIR@; \
for pixmap in $(srcdir)/pixmaps/*; do \
if test —f $$pixmap; then \
$(INSTALL_DATA) $$pixmap $(DESTDIR)@PACKAGE_PIXMAPS_DIR@; \
fi\
done\
fi
dist-hook:
if test —d pixmaps; then \
mkdir $(distdir)/pixmaps; \
for pixmap in pixmaps/*; do \
if test —f $$pixmap; then \
cp —p $$Spixmap $(distdir)/pixmaps; \
fi\
done \
fi

A .desktop file tells GNOME how and where to place an entry for the application in the GNOME menus.
dvdstore.desktop looks like this:

[Desktop Entry]
Name=DVDStore
Comment=DVD Store GUI
Exec=dvdstore
Icon=dvdstore.png
Terminal=0
Type=Application

The .desktop file is made up of a series of key—value pairs:
* Name is the name of the application as it appears in the default locale.

« Comment appears as its tooltip.
» Exec specifies the command line statement used to execute the program.

Makefile.am 229

Professional LINUX Programming

« Icon is the icon to place alongside the entry in the GNOME menu.
» Terminal is a boolean; if non-zero the application will execute in a terminal window.
» Type should be set to Application.

The Makefile.am file in the src directory for dvdstore informs automake of the source files and libraries that
must be compiled and linked:

Process this file with automake to produce Makefile.in
INCLUDES =\

-1$(top_srcdir)/intl \

$(GNOME_INCLUDEDIR)
bin_PROGRAMS = dvdstore
dvdstore_ SOURCES =\

flatfile.c dvd.h \

main.c \

support.c support.h \

interface.c interface.h \

callbacks.c callbacks.h \

dvd_gui.c dvd_gui.h

dvdstore_LDADD = $(GNOME_LIBDIR) $(GNOMEUI_LIBS) $(INTLLIBS)

The process of creating and compiling the source tree is represented by the following diagram:

S L | S— e

Configuration Saving

An important feature for any GUI application is the ability to save configuration and user preferences.
GNOME makes it very easy to store and retrieve data in all common data types, and provides a
comprehensive API under the namespace gnome_config precisely for this purpose. Configuration data is
stored as key/value pairs in a plain text file, which resides by default in the root/.gnome directory.

Storing data

Saving data to a configuration file involves passing a key path, along with the data we want stored, to the
appropriate gnome_config_set function. This key path is made up of three '/'-separated sections:

* the name of the config file, conventionally that of the application,
* the section, an arbitrary label describing the key category,
» and the key itself: ./<filename>/<section>/<key>.

Therefore, to save an integer value to the path application/General/number, simply call gnome_config_set i
followed by gnome_config_sync to actually write the data to disk.

Configuration Saving 230

Professional LINUX Programming

gint value = 42;
gnome_config_set_int("/application/general/number"”, value);
gnome_config_sync();

There are similar functions for other datatypes:

void gnome_config_set_string(const gchar *path, const gchar *value)
void gnome_config_set_float(const gchar *path, gdouble value)
void gnome_config_set_bool(const gchar *path, gboolean value)
void gnome_config_set_int(const gchar *path, gint value)
void gnome_config_set_translated_string(const gchar *path,
const gchar *value)

void gnome_config_set_vector(const gchar *path, gint argc,

const gchar *const argv[])

There are an equivalent set of functions that save data under the directory ~/.gnome_private that begin with
gnome_config_private_set. This directory should only be readable by the user, so gnome_config_private
functions can be used to save sensitive data, such as passwords.

Reading the Stored Data

Conveniently, data is returned in the return values of the gnome_config functions:

gchar *gnome_config_get_string(const gchar *path)

gdouble gnome_config_get_float(const gchar *path)

gboolean gnome_config_get_bool(const gchar *path)

gint gnome_config_get_int(const gchar *path)

gchar *gnome_config_get_translated_string(const gchar *path)

void gnome_config_set_vector(const gchar *path, gin *argcp, gchar ***argvp)

We can therefore retrieve our previously stored int simply with:

g_print("The answer is %d\n",
gnome_config_get_int("/application/general/number"));

giving us:
The answer is 42

If the configuration file has not been created, or the key doesn't yet exist, the gnome_config_get functions
return 0, NULL or FALSE, according to the type. For convenience, you can provide a default value to be
returned in case the key is not found, by appending =default to the path. This also removes the possibility of
gnome_config returning a NULL pointer.

gchar *msg;

msg = gnome_config_get_string("/application/general/string=Default_Text");
g_print("The stored string is %s\n", msg);

g_free(msg);

gnome-config provides the gnome_config_push_prefix and gnome_config_pop_prefix functions, which let u
avoid having to specify the complete path for every call. Also, the session manager can pass a prefix to a
suitable file to save configuration data between sessions; this is described in the next section.

gnome_config_push_prefix("/application/general");
gnome_config_get_int("number=42");

Reading the Stored Data 231

Professional LINUX Programming

gnome_config_pop_prefix();

Session Management

Session management is the process of saving the state of the desktop at the end of a session, and recreatir
at the start of a new session.

Note Desktop state refers to current open applications, position and size of their windows, open
documents etc. as well as desktop components, such as panel position.

It is your responsibility as an application writer to interact with the session manager, and when requested, s:
enough information about your application's state to enable us to restart (or clone it) in the same state.

The GNOME session manager gnome-session uses the X session management specification for compatibi
with other desktop environments such as CDE and KDE. gnome-session communicates with GNOME
applications through signals:

* It emits the "save-yourself" signal when an application must save its current state;
« "die" when an application should immediately exit.

Note You should note that although GNOME generates GTK signals within the application,
those used by the session manager are not GTK signals.

The amount of information an application should save between sessions will depend on the application type
A word processor, for instance, might save the current open document, the cursor position, the undo/redo
stack, etc., etc., whereas a small utility may save nothing at all. In some cases, saving the state might have
security implications, such as in a password protected database program.

In GNOME, the user normally has to actively request that the session be saved, by checking a toggle buttor
on the logout window.

GnomecClient

To connect to the signals from gnome-—client, first grab a pointer to the master client object, then connect the
callback functions as normal:

GnomecClient *client = gnome_master_client ();

gtk_signal_connect(GTK_OBJECT(client), "save_yourself",
GTK_SIGNAL_FUNC(on_session_save), argv[0]);

gtk_signal_connect(GTK_OBJECT(client), "die",
GTK_SIGNAL_FUNC(on_session_die), NULL);

In the save_yourself callback, the application must save the appropriate information for restarting in the nex
session. There are two usual methods of saving data:

Command Line Arguments

If there's not a lot of information, and it can easily be represented by command line arguments, then you cat
pass gnome-session whatever arguments are needed to start up your application in the required state.

Here's an example where two parameters, ——username and ——password, together with their current values
user and passwd, are passed to gnome—session in an argv array. At the start of the next session,

Session Management 232

Professional LINUX Programming

gnome-session will restart the application, passing ——username user ——password passwd as arguments. C
application should then take appropriate action; in this case, it's probably to open the GUI with the
application—specific username and password previously entered.

static gint
on_session_save(GnomeClient *client, gint phase, GhomeSaveStyle save_style,
gint is_shutdown, GnomelnteractStyle interact_style, gint is_fast,
gpointer client_data)
{
gchar **argv;
guint argc;
if (!(argv = malloc(sizeof(char *) * 6)) {
perror("malloc() failed") ;
exit(errno);
}
memset(argv, 0, (sizeof(char *) *6)) ;
argv[0] = client_data;

argc = 1;
If (connected)
{
argv[1] = "-—-username”;
argv[2] = user;
argv[3] = "-—password";
argv[4] = passwd;
argc = 5;

}
gnome_client_set_clone_command (client, argc, argv);
gnome_client_set_restart_command (client, argc, argv);
return TRUE;

}

The gnome-config API

Using command line arguments to store information between sessions is only really convenient when the
amount of information is small. When there is more substantial data, an alternative method is to use the
gnome-config API, asking gnome-session to provide a suitable prefix. Retrieving information on restart
doesn't then require you to parse command line arguments. Let's give it a try.

Use gnome_client_get_config_prefix to grab the prefix:

static gint

save_yourself (GnomeClient *client, gint phase, GhomeSaveStyle save_style,
gint is_shutdown, GnomelnteractStyle interact_style,
gint is_fast, gpointer client_data)

gchar* args[4] = { "rm", "=r", NULL, NULL };

gnome_config_push_prefix (gnome_client_get_config_prefix (client));

gnome_config_set_string("/username”, user);

gnome_config_set_string("/password", passwd);

gnome_config_pop_prefix ();

args[2] = gnome_config_get_real_path
(gnome_client_get_config_prefix (client));

gnome_client_set_discard_command (client, 3, args);

return TRUE;

}

By using gnome_client_set discard_command, we delete any information saved as part of the session that
was in progress when the discard command was set.

Session Management 233

Professional LINUX Programming

The "die" callback is much simpler; all we have to do is exit neatly:

static gint
on_session_die(GnomeClient *client, gpointer client_data)

{
gtk_main_quit;
return TRUE;

}

With these two signals handled correctly, GNOME applications will happily reinstate themselves
automatically at the start of a new session. The definitive reference sources on gnome-session are the files
session—management.txt and gnome—client.h, both found in the GNOME libraries. They include details on
user interaction during session saves