

Python Digital Forensics Cookbook

Effective Python recipes for digital investigations

Preston Miller
Chapin Bryce

BIRMINGHAM - MUMBAI

Python Digital Forensics Cookbook

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the prior
written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information contained in
this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing, and its dealers and distributors will be held
liable for any damages caused or alleged to be caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of
the companies and products mentioned in this book by the appropriate use of
capitals. However, Packt Publishing cannot guarantee the accuracy of this
information.

First published: September 2017

Production reference: 1220917

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78398-746-7

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Preston Miller

Chapin Bryce

Copy Editor

Stuti Srivastava

Reviewer

Dr. Michael Spreitzenbarth

Project Coordinator

Virginia Dias

Commissioning Editor

Kartikey Pandey

Proofreader

Safis Editing

Acquisition Editor

Rahul Nair

Indexer

Aishwarya Gangawane

Content Development Editor

Sharon Raj

Graphics

Kirk D'Penha

Technical Editor

Prashant Chaudhari

Production Coordinator

Aparna Bhagat

About the Authors
Preston Miller is a consultant at an internationally recognized risk
management firm. He holds an undergraduate degree from Vassar College and
a master’s degree in Digital Forensics from Marshall University. While at
Marshall, Preston unanimously received the prestigious J. Edgar Hoover
Foundation’s Scientific Scholarship. He is a published author, recently of
Learning Python for Forensics, an introductory Python Forensics textbook.
Preston is also a member of the GIAC advisory board and holds multiple
industry-recognized certifications in his field.

Chapin Bryce works as a consultant in digital forensics, focusing on litigation
support, incident response, and intellectual property investigations. After
studying computer and digital forensics at Champlain College, he joined a firm
leading the field of digital forensics and investigations. In his downtime,
Chapin enjoys working on side projects, hiking, and skiing (if the weather
permits). As a member of multiple ongoing research and development projects,
he has authored several articles in professional and academic publications.

About the Reviewer
Dr. Michael Spreitzenbarth, after finishing his diploma thesis with the major
topic of mobile phone forensics, worked as a freelancer in the IT security
sector for several years. In 2013, he finished his PhD at the University of
Erlangen-Nuremberg in the field of Android forensics and mobile malware
analysis. Since then, he has been working as a team lead in an internationally
operating CERT.

Dr. Michael Spreitzenbarth's daily work deals with the security of mobile
systems, forensic analysis of smartphones and suspicious mobile applications,
as well as the investigation of security-related incidents within ICS
environments. At the same time he is working on the improvement of mobile
malware analysis techniques and research in the field of Android and iOS
forensics as well as mobile application testing.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.
com.

Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at www.Pa
cktPub.com and as a print book customer, you are entitled to a discount on the
eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and
offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access
to all Packt books and video courses, as well as industry-leading tools to help
you plan your personal development and advance your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on this
book's Amazon page at https://www.amazon.com/dp/1783987464.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks
and videos in exchange for their valuable feedback. Help us be relentless in
improving our products!

https://www.amazon.com/dp/1783987464

To my mother, Mary, whose love, courage, and guidance have had an
indelible impact on me.
I love you very much.

Preston Miller

This book is dedicated to the love of my life and my best friend, Alexa.
Thank you for all of the love, support, and laughter.

Chapin Bryce

Table of Contents
Preface

What this book covers
What you need for this book
Who this book is for
Sections

Getting ready
How to do it…
How it works…
There's more…
See also

Conventions
Reader feedback
Customer support

Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions

1. Essential Scripting and File Information Recipes
Introduction
Handling arguments like an adult

Getting started
How to do it…
How it works…
There's more…

Iterating over loose files
Getting started
How to do it…
How it works…
There's more…

Recording file attributes
Getting started
How to do it…
How it works…

There's more…
Copying files, attributes, and timestamps

Getting started
How to do it…
How it works…
There's more…

Hashing files and data streams
Getting started
How to do it…
How it works…
There's more…

Keeping track with a progress bar
Getting started
How to do it…
How it works…
There's more…

Logging results
Getting started
How to do it…
How it works…
There’s more…

Multiple hands make light work
Getting started
How to do it…
How it works…
There's more…

2. Creating Artifact Report Recipes
Introduction
Using HTML templates

Getting started
How to do it...
How it works...
There's more...

Creating a paper trail
Getting started
How to do it...
How it works...

There's more...
Working with CSVs

Getting started
How to do it...
How it works...
There's more...

Visualizing events with Excel
Getting started
How to do it...
How it works...

Auditing your work
Getting started
How to do it...
How it works...
There's more...

3. A Deep Dive into Mobile Forensic Recipes
Introduction
Parsing PLIST files

Getting started
How to do it...
How it works...
There's more…

Handling SQLite databases
Getting started
How to do it...
How it works...

Identifying gaps in SQLite databases
Getting started
How to do it...
How it works...
See also

Processing iTunes backups
Getting started
How to do it...
How it works...
There's more...

Putting Wi-Fi on the map
Getting started

How to do it...
How it works...

Digging deep to recover messages
Getting started
How to do it...
How it works...
There's more…

4. Extracting Embedded Metadata Recipes
Introduction
Extracting audio and video metadata

Getting started
How to do it...
How it works...
There's more...

The big picture
Getting started
How to do it...
How it works...
There's more...

Mining for PDF metadata
Getting started
How to do it...
How it works...
There's more...

Reviewing executable metadata
Getting started
How to do it...
How it works...
There's more...

Reading office document metadata
Getting started
How to do it...
How it works...

Integrating our metadata extractor with EnCase
Getting started
How to do it...
How it works...

There's more...
5. Networking and Indicators of Compromise Recipes

Introduction
Getting a jump start with IEF

Getting started
How to do it...
How it works...

Coming into contact with IEF
Getting started
How to do it...
How it works...

Beautiful Soup
Getting started
How to do it...
How it works...
There's more...

Going hunting for viruses
Getting started
How to do it...
How it works...

Gathering intel
Getting started
How to do it...
How it works...

Totally passive
Getting started
How to do it...
How it works...

6. Reading Emails and Taking Names Recipes
Introduction
Parsing EML files

Getting started
How to do it...
How it works...

Viewing MSG files
Getting started
How to do it...
How it works...

There’s more...
See also

Ordering Takeout
Getting started
How to do it...
How it works...
There’s more...

What’s in the box?!
Getting started
How to do it...
How it works...

Parsing PST and OST mailboxes
Getting started
How to do it...
How it works...
There’s more...
See also

7. Log-Based Artifact Recipes
Introduction
About time

Getting started
How to do it...
How it works...
There's more...

Parsing IIS web logs with RegEx
Getting started
How to do it...
How it works...
There's more...

Going spelunking
Getting started
How to do it...
How it works...
There's more...

Interpreting the daily.out log
Getting started
How to do it...

How it works...
Adding daily.out parsing to Axiom

Getting started
How to do it...
How it works...

Scanning for indicators with YARA
Getting started
How to do it...
How it works...

8. Working with Forensic Evidence Container Recipes
Introduction
Opening acquisitions

Getting started
How to do it...
How it works...

Gathering acquisition and media information
Getting started
How to do it...
How it works...

Iterating through files
Getting started
How to do it...
How it works...
There's more...

Processing files within the container
Getting started
How to do it...
How it works...

Searching for hashes
Getting started
How to do it...
How it works...
There's more...

9. Exploring Windows Forensic Artifacts Recipes - Part I
Introduction
One man's trash is a forensic examiner's treasure

Getting started
How to do it...

How it works...
A sticky situation

Getting started
How to do it...
How it works...

Reading the registry
Getting started
How to do it...
How it works...
There's more...

Gathering user activity
Getting started
How to do it...
How it works...
There's more...

The missing link
Getting started
How to do it...
How it works...
There's more...

Searching high and low
Getting started
How to do it...
How it works...
There's more...

10. Exploring Windows Forensic Artifacts Recipes - Part II
Introduction
Parsing prefetch files

Getting started
How to do it...
How it works...
There's more...

A series of fortunate events
Getting started
How to do it...
How it works...
There's more...

Indexing internet history

Getting started
How to do it...
How it works...
There's more...

Shadow of a former self
Getting started
How to do it...
How it works...
There's more...

Dissecting the SRUM database
Getting started
How to do it...
How it works...
There's more...
Conclusion

Preface
At the outset of this book, we strove to demonstrate a nearly endless corpus of
use cases for Python in today’s digital investigations. Technology plays an
increasingly large role in our daily life and shows no signs of stopping. Now,
more than ever, it is paramount that an investigator develop programming
expertise to work with increasingly large datasets. By leveraging the Python
recipes explored throughout this book, we make the complex simple,
efficiently extracting relevant information from large data sets. You will
explore, develop, and deploy Python code and libraries to provide meaningful
results that can be immediately applied to your investigations.

Throughout the book, recipes include topics such as working with forensic
evidence containers, parsing mobile and desktop operating system artifacts,
extracting embedded metadata from documents and executables, and
identifying indicators of compromise. You will also learn how to integrate
scripts with Application Program Interfaces (APIs) such as VirusTotal and
PassiveTotal, and tools, such as Axiom, Cellebrite, and EnCase. By the end of
the book, you will have a sound understanding of Python and will know how
you can use it to process artifacts in your investigations.

What this book covers
Chapter 1, Essential Scripting and File Information Recipes, introduces you to
the conventions and basic features of Python used throughout the book. By the
end of the chapter, you will create a robust and useful data and metadata
preservation script.

Chapter 2, Creating Artifact Report Recipes, demonstrates practical methods of
creating reports with forensic artifacts. From spreadsheets to web-based
dashboards, we show the flexibility and utility of various reporting formats.

Chapter 3, A Deep Dive into Mobile Forensic Recipes, features iTunes' backup
processing, deleted SQLite database record recovery, and mapping Wi-Fi
access point MAC addresses from Cellebrite XML reports.

Chapter 4, Extracting Embedded Metadata Recipes, exposes common file types
containing embedded metadata and how to extract it. We also provide you with
knowledge of how to integrate Python scripts with the popular forensic
software, EnCase.

Chapter 5, Networking and Indicators of Compromise Recipes, focuses on
network and web-based artifacts and how to extract more information from
them. You will learn how to preserve data from websites, interact with
processed IEF results, create hash sets for X-Ways, and identify bad domains
or IP addresses.

Chapter 6, Reading Emails and Taking Names Recipes, explores the many file
types for both individual e-mail messages and entire mailboxes, including
Google Takeout MBox, and how to use Python for extraction and analysis.

Chapter 7, Log-Based Artifact Recipes, illustrates how to process artifacts from
several log formats, such as IIS, and ingest them with Python info reports or
other industry tools, such as Splunk. You will also learn how to develop and
use Python recipes to parse files and create artifacts within Axiom.

Chapter 8, Working with Forensic Evidence Container Recipes, shows off the
basic forensic libraries required to interact and process forensic evidence
containers, including EWF and raw formats. You will learn how to access data
from forensic containers, identify disk partition information, and iterate through
filesystems.

Chapter 9, Exploring Windows Forensic Artifacts Recipes Part I, leverages the
framework developed in Chapter 8, Working with Forensic Evidence Container
Recipes, to process various Windows artifacts within forensic evidence
containers. These artifacts include $I Recycle Bin files, various Registry
artifacts, LNK files, and the Windows.edb index.

Chapter 10, Exploring Windows Forensic Artifacts Recipes Part II, continues to
leverage the framework developed in Chapter 8, Working with Forensic
Evidence Container Recipes, to process more Windows artifacts within
forensic evidence containers. These artifacts include Prefetch files, Event logs,
Index.dat, Volume Shadow Copies, and the Windows 10 SRUM database.

What you need for this book
In order to follow along with and execute the recipes within this cookbook, use
a computer with an Internet connection and the latest Python 2.7 and Python 3.5
installations. Recipes may require additional third-party libraries to be
installed; instructions for doing that are provided in the recipe.

For ease of development and implementation of these recipes, it is
recommended that you set up and configure an Ubuntu virtual machine for
development. These recipes, unless otherwise noted, were built and tested
within an Ubuntu 16.04 environment with both Python 2.7 and 3.5. Several
recipes will require the use of a Windows operating system, as many forensic
tools operate only on this platform.

Who this book is for
If you are a digital forensics examiner, cyber security specialist, or analyst at
heart that understands the basics of Python and want to take it to the next level,
this is the book for you. Along the way, you will be introduced to a number of
libraries suited for parsing forensic artifacts. You will be able to use and build
upon the scripts we develop in order to elevate their analysis

Sections
In this book, you will find several headings that appear frequently (Getting
ready, How to do it…, How it works…, There's more…, and See also).

To give clear instructions on how to complete a recipe, we use these sections
as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up
any software or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the
previous section.

There's more…
This section consists of additional information about the recipe in order to
make the reader more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles are
shown as follows: "We can gather the required information by calling the
get_data() function."

A block of code is set as follows:

def hello_world():
 print(“Hello World!”)
hello_world()

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

def hello_world():
 print(“Hello World!”)
hello_world()

Any command-line input or output is written as follows:

pip install tqdm==4.11.2

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think
about this book-what you liked or disliked. Reader feedback is important for
us as it helps us develop titles that you will really get the most out of.

To send us general feedback, simply email feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at htt
p://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed directly to you. You can
download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.

5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on
the book's webpage at the Packt Publishing website. This page can be accessed
by entering the book's name in the Search box. Please note that you need to be
logged in to your Packt account. Once the file is downloaded, please make sure
that you unzip or extract the folder using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPubl
ishing/Python-Digital-Forensics-Cookbook. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/PacktPublishing/. Check
them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Python-Digital-Forensics-Cookbook
https://github.com/PacktPublishing/

Downloading the color images of this
book
We also provide you with a PDF file that has color images of the
screenshots/diagrams used in this book. The color images will help you better
understand the changes in the output. You can download this file from https://www
.packtpub.com/sites/default/files/downloads/PythonDigitalForensicsCookbook_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/PythonDigitalForensicsCookbook_ColorImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books-maybe a mistake
in the text or the code-we would be grateful if you could report this to us. By
doing so, you can save other readers from frustration and help us improve
subsequent versions of this book. If you find any errata, please report them by
visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the
Errata Submission Form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be
uploaded to our website or added to any list of existing errata under the Errata
section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/s
upport and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very
seriously.

If you come across any illegal copies of our works in any form on the Internet,
please provide us with the location address or website name immediately so
that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material. We appreciate your help in protecting our authors and our ability to
bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Essential Scripting and File
Information Recipes
The following recipes are covered in this chapter:

Handling arguments like an adult
Iterating over loose files
Recording file attributes
Copying files, attributes, and timestamps
Hashing files and data streams
Keeping track with a progress bar
Logging results
Multiple hands make light work

Introduction
Digital forensics involves the identification and analysis of digital media to
assist in legal, business, and other types of investigations. Oftentimes, results
stemming from our analysis have a major impact on the direction of an
investigation. With Moore’s law more or less holding true, the amount of data
we are expected to review is steadily growing. Given this, it’s a foregone
conclusion that an investigator must rely on some level of automation to
effectively review evidence. Automation, much like a theory, must be
thoroughly vetted and validated so as not to allow for falsely drawn
conclusions. Unfortunately, investigators may use a tool to automate some
process but not fully understand the tool, the underlying forensic artifact, or the
output’s significance. This is where Python comes into play.

In Python Digital Forensics Cookbook, we develop and detail recipes
covering a number of typical scenarios. The purpose is to not only demonstrate
Python features and libraries for those learning the language but to also
illustrate one of its great benefits: namely, a forced basic understanding of the
artifact. Without this understanding, it is impossible to develop the code in the
first place, thereby forcing you to understand the artifact at a deeper level. Add
to that the relative ease of Python and the obvious benefits of automation, and it
is easy to see why this language has been adapted so readily by the community.

One method of ensuring that investigators understand the product of our scripts
is to provide meaningful documentation and explanation of the code. Hence the
purpose of this book. The recipes demonstrated throughout show how to
configure argument parsing that is both easy to develop and simple for the user
to understand. To add to the script's documentation, we will cover techniques
to effectively log the process that was taken and any errors encountered by the
script.

Another unique feature of scripts designed for digital forensics is the
interaction with files and their associated metadata. Forensic scripts and
applications require the accurate retrieval and preservation of file attributes,

including dates, permissions, and file hashes. This chapter will cover methods
to extract and present this data to the examiner.

Interaction with the operating system and files found on attached volumes are
at the core of any script designed for use in digital forensics. During analysis,
we need to access and parse files with a wide variety of structures and
formats. For this reason, it's important to accurately and properly handle and
interact with files. The recipes presented in this chapter cover common
libraries and techniques that will continue to be used throughout the book:

Parsing command-line arguments
Recursively iterating over files and folders
Recording and preserving file and folder metadata
Generating hash values of files and other content
Monitoring code with progress bars
Logging recipe execution information and errors
Improving performance with multiprocessing

Visit www.packtpub.com/books/content/support to download the code
bundle for this chapter.

http://www.packtpub.com/books/content/support

Handling arguments like an adult
Recipe Difficulty: Easy

Python Version: 2.7 or 3.5

Operating System: Any

Person A: I came here for a good argument!
Person B: Ah, no you didn't, you came here for an argument!
Person A: An argument isn't just contradiction.
Person B: Well! it can be!
Person A: No it can't! An argument is a connected series of statements
intended to establish a proposition.
Person B: No it isn't!
Person A: Yes it is! It isn't just contradiction.

Monty Python (http://www.montypython.net/scripts/argument.php) aside, arguments are an
integral part of any script. Arguments allow us to provide an interface for users
to specify options and configurations that change the way the code behaves.
Effective use of arguments, not just contradictions, can make a tool more
versatile and a favorite among examiners.

http://www.montypython.net/scripts/argument.php

Getting started
All libraries used in this script are present in Python's standard library. While
there are other argument-handling libraries available, such as optparse and
ConfigParser, our scripts will leverage argparse as our de facto command-line
handler. While optparse was the library to use in prior versions of Python,
argparse has served as the replacement for creating argument handling code. The
ConfigParser library parses arguments from a configuration file instead of the
command line. This is useful for code that requires a large number of
arguments or has a significant number of options. We will not cover ConfigParser
in this book, though it is worth exploring if you find your argparse configuration
becomes difficult to maintain.

To learn more about the argparse library, visit https://docs.python.org/
3/library/argparse.html.

https://docs.python.org/3/library/argparse.html

How to do it…
In this script, we perform the following steps:

1. Create positional and optional arguments.
2. Add descriptions to arguments.
3. Configure arguments with select choices.

How it works…
To begin, we import print_function and the argparse module. By importing the
print_function from the __future__ library we can write print statements as they
are written in Python 3.X but still run them in Python 2.X. This allows us to
make recipes compatible with both Python 2.X and 3.X. Where possible, we
carry this through with most recipes in the book.

After creating a few descriptive variables about the recipe, we initialize our
ArgumentParser instance. Within the constructor, we define the description and
epilog keyword arguments. This data will display when the user specifies the -h
argument and can give the user additional context about the script being run.
The argparse library is very flexible and can scale in complexity if required for
a script. Throughout this book, we cover many of the library's different
features, which are detailed on its document page:

from __future__ import print_function
import argparse

__authors__ = ["Chapin Bryce", "Preston Miller"]
__date__ = 20170815
__description__ = 'A simple argparse example'

parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)

With the parser instance created, we can now begin adding arguments to our
command-line handler. There are two types of arguments: positional and
optional. Positional arguments start with an alphabetic character, unlike
optional arguments, which start with a dash, and are required to execute the
script. Optional arguments start with a single or double dash character and are
non-positional (that is, the order does not matter). These characteristics can be
manually specified to overwrite the default behavior we’ve described if
desired. The following code block illustrates how to create two positional
arguments:

Add Positional Arguments
parser.add_argument("INPUT_FILE", help="Path to input file")
parser.add_argument("OUTPUT_FILE", help="Path to output file")

In addition to changing whether an argument is required, we can specify help
information, create default values, and other actions. The help parameter is
useful in conveying what the user should provide. Other important parameters
are default, type, choices, and action. The default parameter allows us to set a
default value, while type converts the type of the input, which is a string by
default, to the specified Python object type. The choices parameter uses a
defined list, dictionary, or set to create valid options the user can select from.
The action parameter specifies the type of action that should be applied to a
given argument. Some common actions include store, which is the default and
stores the passed value associated with the argument; store_true, which assigns
True to the argument; and version, which prints the version of the code specified
by the version parameter:

Optional Arguments
parser.add_argument("--hash", help="Hash the files", action="store_true")

parser.add_argument("--hash-algorithm",
 help="Hash algorithm to use. ie md5, sha1, sha256",
 choices=['md5', 'sha1', 'sha256'], default="sha256"
)

parser.add_argument("-v", "--version", "--script-version",
 help="Displays script version information",
 action="version", version=str(__date__)
)

parser.add_argument('-l', '--log', help="Path to log file", required=True)

With our arguments defined and configured, we can now parse them and use
the provided inputs in our code. The following snippet shows how we can
access the values and test whether the user specified an optional argument.
Notice how we refer to arguments by the name we assign them. If we specify a
short and long argument name, we must use the long name:

Parsing and using the arguments
args = parser.parse_args()

input_file = args.INPUT_FILE
output_file = args.OUTPUT_FILE

if args.hash:
 ha = args.hash_algorithm
 print("File hashing enabled with {} algorithm".format(ha))

if not args.log:
 print("Log file not defined. Will write to stdout")

When combined into a script and executed at the command line with the -h
argument, the preceding code will provide the following output:

As seen here, the -h flag displays the script help information, automatically
created by argparse, along with the valid options for the --hash-algorithm
argument. We can also use the -v option to display the version information. The
--script-version argument displays the version in the same manner as the -v or -
version arguments as shown here:

The following screenshot shows the message printed to the console when we
select one of our valid hashing algorithms:

There's more…
This script can be further improved. We have provided a couple of
recommendations here:

Explore additional argparse functionality. For example, the argparse.FileType
object can be used to accept a File object as an input.
We can also use the argparse.ArgumentDefaultsHelpFormatter class to show
defaults we set to the user. This is helpful when combined with optional
arguments to show the user what will be used if nothing is specified.

Iterating over loose files
Recipe Difficulty: Easy

Python Version: 2.7 or 3.5

Operating System: Any

Often it is necessary to iterate over a directory and its subdirectories to
recursively process all files. In this recipe, we will illustrate how to use
Python to walk through directories and access files within them. Understanding
how you can recursively navigate a given input directory is key as we
frequently perform this exercise in our scripts.

Getting started
All libraries used in this script are present in Python's standard library. The
preferred library, in most situations, for handling file and folder iteration is the
built-in os library. While this library supports many useful operations, we will
focus on the os.path() and os.walk() functions. Let’s use the following folder
hierarchy as an example to demonstrate how directory iteration works in
Python:

SecretDocs/
|-- key.txt
|-- Plans
| |-- plans_0012b.txt
| |-- plans_0016.txt
| `-- Successful_Plans
| |-- plan_0001.txt
| |-- plan_0427.txt
| `-- plan_0630.txt
|-- Spreadsheets
| |-- costs.csv
| `-- profit.csv
`-- Team
 |-- Contact18.vcf
 |-- Contact1.vcf
 `-- Contact6.vcf

4 directories, 11 files

How to do it…
The following steps are performed in this recipe:

1. Create a positional argument for the input directory to scan.
2. Iterate over all subdirectories and print file paths to the console.

How it works…
We create a very basic argument handler that accepts one positional input,
DIR_PATH, the path of the input directory to iterate. As an example, we will use
the ~/Desktop path, the parent of SecretDocs, as the input argument for the script.
We parse the command-line arguments and assign the input directory to a local
variable. We’re now ready to begin iterating over this input directory:

from __future__ import print_function
import argparse
import os

__authors__ = ["Chapin Bryce", "Preston Miller"]
__date__ = 20170815
__description__ = "Directory tree walker"

parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
parser.add_argument("DIR_PATH", help="Path to directory")
args = parser.parse_args()
path_to_scan = args.DIR_PATH

To iterate over a directory, we need to provide a string representing its path to
os.walk(). This method returns three objects in each iteration, which we have
captured in the root, directories, and files variables:

root: This value provides the relative path to the current directory as a
string. Using the example directory structure, root would start as SecretDocs
and eventually become SecretDocs/Team and SecretDocs/Plans/SuccessfulPlans.
directories: This value is a list of sub-directories located within the
current root location. We can iterate through this list of directories,
although the entries in this list will become part of the root value during
successive os.walk() calls. For this reason, the value is not frequently used.
files: This value is a list of files in the current root location.

Be careful in naming the directory and file variables. In Python
the dir and file names are reserved for other uses and should
not be used as variable names.

Iterate over the path_to_scan
for root, directories, files in os.walk(path_to_scan):

It is common to create a second for loop, as shown in the following code, to
step through each of the files located in that directory and perform some action
on them. Using the os.path.join() method, we can join the root and file_entry
variables to obtain the file’s path. We then print this file path to the console.
We may also, for example, append this file path to a list that we later iterate
over to process each of the files:

 # Iterate over the files in the current "root"
 for file_entry in files:
 # create the relative path to the file
 file_path = os.path.join(root, file_entry)
 print(file_path)

We can also use root + os.sep() + file_entry to achieve the same
effect, but it is not as Pythonic as the method we're using to
join paths. Using os.path.join(), we can pass two or more strings
to form a single path, such as directories, subdirectories, and
files.

When we run the preceding script with our example input directory, we see the
following output:

As seen, the os.walk() method iterates through a directory, then will descend
into any discovered sub-directories, thereby scanning the entire directory tree.

There's more…
This script can be further improved. Here's a recommendation:

Check out and implement similar functionality using the glob library
which, unlike the os module, allows for wildcard pattern recursive
searches for files and directories

Recording file attributes
Recipe Difficulty: Easy

Python Version: 2.7 or 3.5

Operating System: Any

Now that we can iterate over files and folders, let’s learn to record metadata
about these objects. File metadata plays an important role in forensics, as
collecting and reviewing this information is a basic task during most
investigations. Using a single Python library, we can gather some of the most
important attributes of files across platforms.

Getting started
All libraries used in this script are present in Python’s standard library. The os
library, once again, can be used here to gather file metadata. One of the most
helpful methods for gathering file metadata is the os.stat() function. It's
important to note that the stat() call only provides information available with
the current operating system and the filesystem of the mounted volume. Most
forensic suites allow an examiner to mount a forensic image as a volume on a
system and generally preserve the file attributes available to the stat call. In Ch
apter 8, Working with Forensic Evidence Containers Recipes, we will
demonstrate how to open forensic acquisitions to directly extract file
information.

To learn more about the os library, visit https://docs.python.org/3/libra
ry/os.html.

https://docs.python.org/3/library/os.html

How to do it…
We will record file attributes using the following steps:

1. Obtain the input file to process.
2. Print various metadata: MAC times, file size, group and owner ID, and so

on.

How it works…
To begin, we import the required libraries: argparse for argument handling,
datetime for interpretation of timestamps, and os to access the stat() method. The
sys module is used to identify the platform (operating system) the script is
running on. Next, we create our command-line handler, which accepts one
argument, FILE_PATH, a string representing the path to the file we will extract
metadata from. We assign this input to a local variable before continuing
execution of the script:

from __future__ import print_function
import argparse
from datetime import datetime as dt
import os
import sys

__authors__ = ["Chapin Bryce", "Preston Miller"]
__date__ = 20170815
__description__ = "Gather filesystem metadata of provided file"

parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(", ".join(__authors__), __date__)
)
parser.add_argument("FILE_PATH",
 help="Path to file to gather metadata for")
args = parser.parse_args()
file_path = args.FILE_PATH

Timestamps are one of the most common file metadata attributes collected. We
can access the creation, modification, and access timestamps using the os.stat()
method. The timestamps are returned as a float representing the seconds since
1970-01-01. Using the datetime.fromtimestamp() method, we convert this value
into a readable format.

The os.stat() module interprets timestamps differently
depending on the platform. For example, the st_ctime value on
Windows displays the file's creation time, while on macOS and
UNIX this same attribute displays the last modification of the
file's metadata, similar to the NTFS entry modified time. This
is not the only part of os.stat() that varies by platform, though

the remainder of this recipe uses items that are common across
platforms.

stat_info = os.stat(file_path)
if "linux" in sys.platform or "darwin" in sys.platform:
 print("Change time: ", dt.fromtimestamp(stat_info.st_ctime))
elif "win" in sys.platform:
 print("Creation time: ", dt.fromtimestamp(stat_info.st_ctime))
else:
 print("[-] Unsupported platform {} detected. Cannot interpret "
 "creation/change timestamp.".format(sys.platform)
)
print("Modification time: ", dt.fromtimestamp(stat_info.st_mtime))
print("Access time: ", dt.fromtimestamp(stat_info.st_atime))

We continue printing file metadata following the timestamps. The file mode
and inode properties return the file permissions and inode as an integer,
respectively. The device ID refers to the device the file resides on. We can
convert this integer into major and minor device identifiers using the os.major()
and os.minor() methods:

print("File mode: ", stat_info.st_mode)
print("File inode: ", stat_info.st_ino)
major = os.major(stat_info.st_dev)
minor = os.minor(stat_info.st_dev)
print("Device ID: ", stat_info.st_dev)
print("\tMajor: ", major)
print("\tMinor: ", minor)

The st_nlink property returns a count of the number of hard links to the file. We
can print the owner and group information using the st_uid and st_gid properties,
respectively. Lastly, we can gather file size using st_size, which returns an
integer representing the file's size in bytes.

Be aware that if the file is a symbolic link, the st_size property
reflects the length of the path to the target file rather than the
target file’s size.

print("Number of hard links: ", stat_info.st_nlink)
print("Owner User ID: ", stat_info.st_uid)
print("Group ID: ", stat_info.st_gid)
print("File Size: ", stat_info.st_size)

But wait, that’s not all! We can use the os.path() module to extract a few more
pieces of metadata. For example, we can use it to determine whether a file is a
symbolic link, as shown below with the os.islink() method. With this, we could

alert the user if the st_size attribute is not equivalent to the target file's size. The
os.path() module can also gather the absolute path, check whether it exists, and
get the parent directory. We can also gather the parent directory using the
os.path.dirname() function or by accessing the first element of the os.path.split()
function. The split() method is more commonly used to acquire the filename
from a path:

Gather other properties
print("Is a symlink: ", os.path.islink(file_path))
print("Absolute Path: ", os.path.abspath(file_path))
print("File exists: ", os.path.exists(file_path))
print("Parent directory: ", os.path.dirname(file_path))
print("Parent directory: {} | File name: {}".format(
 *os.path.split(file_path)))

By running the script, we can relevant metadata about the file. Notice how the
format() method allows us to print values without concern for their data types.
Normally, we would have to convert integers and other data types to strings
first if we were to try printing the variable directly without string formatting:

There's more…
This script can be further improved. We have provided a couple of
recommendations here:

Integrate this recipe with the Iterating over loose files recipe to
recursively extract metadata for files in a given series of directories
Implement logic to filter by file extension, date modified, or even file size
to only collect metadata information on files matching the desired criteria

Copying files, attributes, and
timestamps
Recipe Difficulty: Easy

Python Version: 2.7 or 3.5

Operating System: Windows

Preserving files is a fundamental task in digital forensics. It is often preferable
to containerize files in a format that can store hashes and other metadata of
loose files. However, sometimes we need to copy files in a forensic manner
from one location to another. Using this recipe, we will demonstrate some of
the methods available to copy files while preserving common metadata fields.

Getting started
This recipe requires the installation of two third-party modules pywin32 and pytz.
All other libraries used in this script are present in Python's standard library.
This recipe will primarily use two libraries, the built-in shutil and a third-
party library, pywin32. The shutil library is our go-to for copying files within
Python, and we can use it to preserve most of the timestamps and other file
attributes. The shutil module, however, is unable to preserve the creation time
of files it copies. Rather, we must rely on the Windows-specific pywin32 library
to preserve it. While the pywin32 library is platform specific, it is incredibly
useful to interact with the Windows operating system.

To learn more about the shutil library, visit https://docs.python.org/3/l
ibrary/shutil.html.

To install pywin32, we need to access its SourceForge page at https://sourceforge.net/pr
ojects/pywin32/ and download the version that matches our Python installation. To
check our Python version, we can import the sys module and call sys.version
within an interpreter. Both the version and the architecture are important when
selecting the correct pywin32 installer.

To learn more about the sys library, visit https://docs.python.org/3/libr
ary/sys.html.

In addition to the installation of the pywin32 library, we need to install pytz, a
third-party library used to manage time zones in Python. We can install this
library using the pip command:

pip install pytz==2017.2

https://docs.python.org/3/library/shutil.html
https://sourceforge.net/projects/pywin32/
https://docs.python.org/3/library/sys.html

How to do it…
We perform the following steps to forensically copy files on a Windows
system:

1. Gather source file and destination arguments.
2. Use shutil to copy and preserve most file metadata.
3. Manually set timestamp attributes with win32file.

How it works…
Let’s now dive into copying files and preserving their attributes and
timestamps. We use some familiar libraries to assist us in the execution of this
recipe. Some of the libraries, such as pytz, win32file, and pywintypes are new.
Let’s briefly discuss their purpose here. The pytz module allows us to work
with time zones more granularly and allows us to initialize dates for the pywin32
library.

To allow us to pass timestamps in the correct format, we must also import
pywintypes. Lastly, the win32file library, available through our installation of
pywin32, provides various methods and constants for file manipulation in
Windows:

from __future__ import print_function
import argparse
from datetime import datetime as dt
import os
import pytz
from pywintypes import Time
import shutil
from win32file import SetFileTime, CreateFile, CloseHandle
from win32file import GENERIC_WRITE, FILE_SHARE_WRITE
from win32file import OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL

__authors__ = ["Chapin Bryce", "Preston Miller"]
__date__ = 20170815
__description__ = "Gather filesystem metadata of provided file"

This recipe's command-line handler takes two positional arguments, source and
dest, which represent the source file to copy and the output directory,
respectively. This recipe has an optional argument, timezone, which allows the
user to specify a time zone.

To prepare the source file, we store the absolute path and split the filename
from the rest of the path, which we may need to use later if the destination is a
directory. Our last bit of preparation involves reading the timezone input from
the user, one of the four common US time zones, and UTC. This allows us to
initialize the pytz time zone object for later use in the recipe:

parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
parser.add_argument("source", help="Source file")
parser.add_argument("dest", help="Destination directory or file")
parser.add_argument("--timezone", help="Timezone of the file's timestamp",
 choices=['EST5EDT', 'CST6CDT', 'MST7MDT', 'PST8PDT'],
 required=True)
args = parser.parse_args()

source = os.path.abspath(args.source)
if os.sep in args.source:
 src_file_name = args.source.split(os.sep, 1)[1]
else:
 src_file_name = args.source

dest = os.path.abspath(args.dest)
tz = pytz.timezone(args.timezone)

At this point, we can copy the source file to the destination using the
shutil.copy2() method. This method accepts either a directory or file as the
destination. The major difference between the shutil copy() and copy2() methods
is that the copy2() method also preserves file attributes, including the last
written time and permissions. This method does not preserve file creation
times on Windows, for that we need to leverage the pywin32 bindings.

To that end, we must build the destination path for the file copied by the copy2()
call by using the following if statement to join the correct path if the user
provided a directory at the command line:

shutil.copy2(source, dest)
if os.path.isdir(dest):
 dest_file = os.path.join(dest, src_file_name)
else:
 dest_file = dest

Next, we prepare the timestamps for the pywin32 library. We use the
os.path.getctime() methods to gather the respective Windows creation times, and
convert the integer value into a date using the datetime.fromtimestamp() method.
With our datetime object ready, we can make the value time zone-aware by
using the specified timezone and providing it to the pywintype.Time() function
before printing the timestamps to the console:

created = dt.fromtimestamp(os.path.getctime(source))
created = Time(tz.localize(created))
modified = dt.fromtimestamp(os.path.getmtime(source))

modified = Time(tz.localize(modified))
accessed = dt.fromtimestamp(os.path.getatime(source))
accessed = Time(tz.localize(accessed))

print("Source\n======")
print("Created: {}\nModified: {}\nAccessed: {}".format(
 created, modified, accessed))

With the preparation complete, we can open the file with the CreateFile()
method and pass the string path, representing the copied file, followed by
arguments specified by the Windows API for accessing the file. Details of
these arguments and their meanings can be reviewed at https://msdn.microsoft.com/en-u
s/library/windows/desktop/aa363858(v=vs.85).aspx:

handle = CreateFile(dest_file, GENERIC_WRITE, FILE_SHARE_WRITE,
 None, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, None)
SetFileTime(handle, created, accessed, modified)
CloseHandle(handle)

Once we have an open file handle, we can call the SetFileTime() function to
update, in order, the file's created, accessed, and modified timestamps. With
the destination file's timestamps set, we need to close the file handle using the
CloseHandle() method. To confirm to the user that the copying of the file's
timestamps was successful, we print the destination file's created, modified,
and accessed times:

created = tz.localize(dt.fromtimestamp(os.path.getctime(dest_file)))
modified = tz.localize(dt.fromtimestamp(os.path.getmtime(dest_file)))
accessed = tz.localize(dt.fromtimestamp(os.path.getatime(dest_file)))
print("\nDestination\n===========")
print("Created: {}\nModified: {}\nAccessed: {}".format(
 created, modified, accessed))

The script output shows copying a file from the source to the destination with
timestamps successfully preserved:

https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx

There's more…
This script can be further improved. We have provided a couple of
recommendations here:

Hash the source and destination files to ensure they were copied
successfully. Hashing files are introduced in the hashing files and data
streams recipe in the next section.
Output a log of the files copied and any exceptions encountered during the
copying process.

Hashing files and data streams
Recipe Difficulty: Easy

Python Version: 2.7 or 3.5

Operating System: Any

File hashes are a widely accepted identifier for determining file integrity and
authenticity. While some algorithms have become vulnerable to collision
attacks, the process is still important in the field. In this recipe, we will cover
the process of hashing a string of characters and a stream of file content.

Getting started
All libraries used in this script are present in Python’s standard library. For
generating hashes of files and other data sources, we implement the hashlib
library. This built-in library has support for common algorithms, such as MD5,
SHA-1, SHA-256, and more. As of the writing of this book, many tools still
leverage the MD5 and SHA-1 algorithms, though the current recommendation
is to use SHA-256 at a minimum. Alternatively, one could use multiple hashes
of a file to further decrease the odds of a hash collision. While we'll showcase
a few of these algorithms, there are other, less commonly used, algorithms
available.

To learn more about the hashlib library, visit https://docs.python.org/3
/library/hashlib.html.

https://docs.python.org/3/library/hashlib.html

How to do it…
We hash files with the following steps:

1. Print hashed filename using the specified input file and algorithm.
2. Print hashed file data using the specified input file and algorithm.

How it works…
To begin, we must import hashlib as shown in the following. For ease of use,
we have defined a dictionary of algorithms that our script can use: MD5, SHA-1,
SHA-256 and SHA-512. By updating this dictionary, we can support other hash
functions that have update() and hexdigest() methods, including some from
libraries other than hashlib:

from __future__ import print_function
import argparse
import hashlib
import os

__authors__ = ["Chapin Bryce", "Preston Miller"]
__date__ = 20170815
__description__ = "Script to hash a file's name and contents"

available_algorithms = {
 "md5": hashlib.md5,
 "sha1": hashlib.sha1,
 "sha256": hashlib.sha256,
 "sha512": hashlib.sha512
}

parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(", ".join(__authors__), __date__)
)
parser.add_argument("FILE_NAME", help="Path of file to hash")
parser.add_argument("ALGORITHM", help="Hash algorithm to use",
 choices=sorted(available_algorithms.keys()))
args = parser.parse_args()

input_file = args.FILE_NAME
hash_alg = args.ALGORITHM

Notice how we define our hashing algorithm object using our
dictionary and the argument provided at the command line,
followed by open and close parentheses to initiate the object.
This provides additional flexibility when adding new hashing
algorithms.

With our hash algorithms defined, we now can hash the file's absolute path, a
similar method employed during file naming for iTunes backups of an iOS
device, by passing the string into the update() method. When we are ready to

display the hex value of the calculated hash, we can call the hexdigest() method
on our file_name object:

file_name = available_algorithms[hash_alg]()
abs_path = os.path.abspath(input_file)
file_name.update(abs_path.encode())

print("The {} of the filename is: {}".format(
 hash_alg, file_name.hexdigest()))

Let's move onto opening the file and hashing its contents. While we can read
the entire file and pass it to the hash function, not all files are small enough to fit
in memory. To ensure our code works on larger files, we will use the technique
in the following example to read a file in a piecemeal fashion and hash it in
chunks.

By opening the file as rb, we will ensure that we are reading the binary
contents of the file, not the string content that may exist. With the file open, we
will define the buffer size to read in content and then read the first chunk of
data in.

Entering a while loop, we will update our hashing object with the new content
for as long as there is content in the file. This is possible as the read() method
allows us to pass an integer of the number of bytes to read and, if the integer is
larger than the number of bytes remaining in the file, will simply pass us the
remaining bytes.

Once the entire file is read, we call the hexdigest() method of our object to
display the file hash to the examiner:

file_content = available_algorithms[hash_alg]()
with open(input_file, 'rb') as open_file:
 buff_size = 1024
 buff = open_file.read(buff_size)

 while buff:
 file_content.update(buff)
 buff = open_file.read(buff_size)

print("The {} of the content is: {}".format(
 hash_alg, file_content.hexdigest()))

When we execute the code, we see the output from the two print statements
revealing the hash value of the file's absolute path and content. We can generate

additional hashes for the file by changing the algorithm at the command line:

There's more…
This script can be further improved. Here's a recommendation:

Add support for additional hashing algorithms and create the appropriate
entry within the available_algorithms global variable

Keeping track with a progress bar
Recipe Difficulty: Easy

Python Version: 2.7 or 3.5

Operating System: Any

Long-running scripts are unfortunately commonplace when processing data
measured in gigabytes or terabytes. While your script may be processing this
data smoothly, a user may think it's frozen after three hours with no indication
of progress. Luckily, several developers have built an incredibly simple
progress bar library, giving us little excuse for not incorporating this into our
code.

Getting started
This recipe requires the installation of the third-party module tqdm. All other
libraries used in this script are present in Python's standard library. The tqdm
library, pronounced taqadum, can be installed via pip or downloaded from
GitHub at https://github.com/tqdm/tqdm. To use all of the features shown in this recipe,
ensure you are using release 4.11.2, available on the tqdm GitHub page or with
pip using the following command:

pip install tqdm==4.11.2

https://github.com/tqdm/tqdm

How to do it…
To create a simple progress bar, we follow these steps:

1. Import tqdm and time.
2. Create multiple examples with tqdm and loops.

How it works…
As with all other recipes, we begin with the imports. While we only need the
tqdm import to enable the progress bars, we will use the time module to slow
down our script to better visualize the progress bar. We use a list of fruits as
our sample data and identify which fruits containing "berry" or "berries" in
their name:

from __future__ import print_function
from time import sleep
import tqdm

fruits = [
 "Acai", "Apple", "Apricots", "Avocado", "Banana", "Blackberry",
 "Blueberries", "Cherries", "Coconut", "Cranberry", "Cucumber",
 "Durian", "Fig", "Grapefruit", "Grapes", "Kiwi", "Lemon", "Lime",
 "Mango", "Melon", "Orange", "Papaya", "Peach", "Pear", "Pineapple",
 "Pomegranate", "Raspberries", "Strawberries", "Watermelon"
]

The following for loop is very straightforward and iterates through our list of
fruits, checking for the substring berr is within the fruit's name before sleeping
for one-tenth of a second. By wrapping the tqdm() method around the iterator,
we automatically have a nice-looking progress bar giving us the percentage
complete, elapsed time, remaining time, the number of iterations complete, and
total iterations.

These display options are the defaults for tqdm and gather all of the necessary
information using properties of our list object. For example, the library knows
almost all of these details for the progress bar just by gathering the length and
calculating the rest based on the amount of time per iteration and the number
elapsed:

contains_berry = 0
for fruit in tqdm.tqdm(fruits):
 if "berr" in fruit.lower():
 contains_berry += 1
 sleep(.1)
print("{} fruit names contain 'berry' or 'berries'".format(contains_berry))

Extending the progress bar beyond the default configuration is as easy as

specifying keyword arguments. The progress bar object can also be created
prior to the start of the loop and using the list object, fruits, as the iterable
argument. The following code exhibits how we can define our progress bar
with our list, a description, and providing the unit name.

If we were not using a list but another iterator type that does not have a __len__
attribute defined, we would need to manually supply a total with the total
keyword. Only basic statistics about elapsed time and iterations per second
display if the total number of iterations is unavailable.

Once we are in the loop, we can display the number of results discovered
using the set_postfix() method. Each iteration will provide an update of the
number of hits we have found to the right of the progress bar:

contains_berry = 0
pbar = tqdm.tqdm(fruits, desc="Reviewing names", unit="fruits")
for fruit in pbar:
 if "berr" in fruit.lower():
 contains_berry += 1
 pbar.set_postfix(hits=contains_berry)
 sleep(.1)
print("{} fruit names contain 'berry' or 'berries'".format(contains_berry))

One other common use case for progress bars is to measure execution in a
range of integers. Since this is a common use of the library the developers built
a range call into the library, called trange(). Notice how we can specify the
same arguments here as before. One new argument that we will use here, due
to the larger numbers, is the unit_scale argument, which simplifies large
numbers into a small number with a letter to designate the magnitude:

for i in tqdm.trange(10000000, unit_scale=True, desc="Trange: "):
 pass

When we execute the code, the following output is visible. Our first progress
bar displays the default format, while the second and third show the
customizations we have added:

There's more…
This script can be further improved. Here's a recommendation:

Further explore the capabilities the tqdm library affords developers.
Consider using the tqdm.write() method to print status messages without
breaking the progress bar.

Logging results
Recipe Difficulty: Easy

Python Version: 2.7 or 3.5

Operating System: Any

Outside of progress bars, we generally need to provide messages to the user to
describe any exceptions, errors, warnings, or other information that has
occurred during execution. With logging, we can provide this information at
execution and in a text file for future reference.

Getting started
All libraries used in this script are present in Python’s standard library. This
recipe will use the built-in logging library to generate status messages to the
console and a text file.

To learn more about the logging library, visit https://docs.python.org/3
/library/logging.html.

https://docs.python.org/3/library/logging.html

How to do it…

The following steps can be used to effectively log program execution data:

1. Create a log formatting string.
2. Log various message types during script execution.

How it works…
Let's now learn to log results. After our imports, we create our logger object by
initializing an instance using the script's name represented by the __file__
attribute. With our logging object initiated, we will set the level and specify
various formatters and handlers for this script. The formatters provide the
flexibility to define what fields will be displayed for each message, including
timestamps, function name, and the message level. The format strings follow
the standards of Python string formatting, meaning we can specify padding for
the following strings:

from __future__ import print_function
import logging
import sys

logger = logging.getLogger(__file__)
logger.setLevel(logging.DEBUG)

msg_fmt = logging.Formatter("%(asctime)-15s %(funcName)-20s"
 "%(levelname)-8s %(message)s")

The handlers allow us to specify where the log message should be recorded,
including a log file, standard output (console), or standard error. In the
following example, we use the standard output for our stream handler and the
script's name with the .log extension for the file handler. Lastly, we register
these handlers with our logger object:

strhndl = logging.StreamHandler(sys.stdout)
strhndl.setFormatter(fmt=msg_fmt)

fhndl = logging.FileHandler(__file__ + ".log", mode='a')
fhndl.setFormatter(fmt=msg_fmt)

logger.addHandler(strhndl)
logger.addHandler(fhndl)

The logging library by default uses the following levels in increasing order of
severity: NOTSET, DEBUG, INFORMATION, WARNING, ERROR, and CRITICAL. To showcase some
of the features of the format string, we will log a few types of messages from
functions:

logger.info("information message")

logger.debug("debug message")

def function_one():
 logger.warning("warning message")

def function_two():
 logger.error("error message")

function_one()
function_two()

When we execute this code, we can see the following message information
from the invocation of the script. Inspection of the generated log file matches
what was recorded in the console:

There’s more…
This script can be further improved. Here's a recommendation:

It is often important to provide as much information as possible to the
user in the event of an error in the script or for a user's validation of the
process. Therefore, we recommend implementing additional formatters
and logging levels. Using the stderr stream is best practice for logging, as
we can provide the output at the console while not disrupting stdout.

Multiple hands make light work
Recipe Difficulty: Medium

Python Version: 2.7 or 3.5

Operating System: Any

While Python is known for being single threaded, we can use built-in libraries
to spin up new processes to handle tasks. Generally, this is preferred when
there are a series of tasks that can be run simultaneously and the processing is
not already bound by hardware limits, such as network bandwidth or disk
speed.

Getting started
All libraries used in this script are present in Python’s standard library. Using
the built-in multiprocessing library, we can handle the majority of situations
where we would need multiple processes to efficiently tackle a problem.

To learn more about the multiprocessing library, visit https://docs.pyt
hon.org/3/library/multiprocessing.html.

https://docs.python.org/3/library/multiprocessing.html

How to do it…
With the following steps, we showcase basic multiprocessing support in
Python:

1. Set up a log to record multiprocessing activity.
2. Append data to a list using multiprocessing.

How it works…
Let's now look at how we can achieve multiprocessing in Python. Our imports
include the multiprocessing library, shortened to mp, as it is quite lengthy
otherwise; the logging and sys libraries for thread status messages; the time
library to slow down execution for our example; and the randint method to
generate times that each thread should wait for:

from __future__ import print_function
import logging
import multiprocessing as mp
from random import randint
import sys
import time

Before creating our processes, we set up a function that they will execute. This
is where we put the task each process should execute before returning to the
main thread. In this case, we take a number of seconds for the thread to sleep
as our only argument. To print a status message that allows us to differentiate
between the processes, we use the current_process() method to access the name
property for each thread:

def sleepy(seconds):
 proc_name = mp.current_process().name
 logger.info("{} is sleeping for {} seconds.".format(
 proc_name, seconds))
 time.sleep(seconds)

With our worker function defined, we create our logger instance, borrowing
code from the previous recipe, and set it to only record to the console.

logger = logging.getLogger(__file__)
logger.setLevel(logging.DEBUG)
msg_fmt = logging.Formatter("%(asctime)-15s %(funcName)-7s "
 "%(levelname)-8s %(message)s")
strhndl = logging.StreamHandler(sys.stdout)
strhndl.setFormatter(fmt=msg_fmt)
logger.addHandler(strhndl)

We now define the number of workers we want to spawn and create them in a
for loop. Using this technique, we can easily adjust the number of processes
we have running. Inside of our loop, we define each worker using the Process

class and set our target function and the required arguments. Once the process
instance is defined, we start it and append the object to a list for later use:

num_workers = 5
workers = []
for w in range(num_workers):
 p = mp.Process(target=sleepy, args=(randint(1, 20),))
 p.start()
 workers.append(p)

By appending the workers to a list, we can join them in sequential order. Joining,
in this context, is the process of waiting for a process to complete before
execution continues. If we do not join our process, one of them could continue
to the end of the script and complete the code before other processes complete.
While that wouldn't cause huge problems in our example, it can cause the next
snippet of code to start too early:

for worker in workers:
 worker.join()
 logger.info("Joined process {}".format(worker.name))

When we execute the script, we can see the processes start and join over time.
Since we stored these items in a list, they will join in an ordered fashion,
regardless of the time it takes for one worker to finish. This is visible below as
Process-5 slept for 14 seconds before completing, and meanwhile, Process-4 and
Process-3 had already completed:

There's more…
This script can be further improved. We have provided a recommendation
here:

Rather than using function arguments to pass data between threads, review
pipes and queues as alternatives to sharing data. Additional information
about these objects can be found at https://docs.python.org/3/library/multiprocessing.htm
l#exchanging-objects-between-processes.

https://docs.python.org/3/library/multiprocessing.html#exchanging-objects-between-processes.
https://docs.python.org/3/library/multiprocessing.html#exchanging-objects-between-processes.

Creating Artifact Report Recipes
In this chapter, we will cover the following recipes:

Using HTML templates
Creating a paper trail
Working with CSVs
Visualizing events with Excel
Auditing your work

Introduction
Probably within the first few hours of starting your career in cyber security,
you were already hunched over a screen, feverishly scanning a spreadsheet for
clues. This sounds familiar because it is true and part of the daily process for
most investigations. Spreadsheets are the bread and butter of cyber security.
Within them are details of various processes and specific information extracted
from valuable artifacts. In this cookbook, we will frequently output parsed
artifact data into a spreadsheet due to its portability and ease of use. However,
considering that at one time or another every cyber security professional has
created a technical report for a nontechnical audience, a spreadsheet may not
be the best option.

Why create reports at all? I think I've heard that muttered by stressed
examiners before. Today, everything is built on information interchange and
people want to know things as soon as you do. But that doesn't necessarily
mean they want a technical spreadsheet and to figure it out themselves.
Examiners must be able to effectively distill technical knowledge to laymen
audiences in order to properly do their job. As good as an artifact may be,
even if it is the proverbial smoking gun for a given case, it will likely require
detailed explanation to nontechnical individuals for them to fully understand
the meaning and ramifications. Give up; reports are here to stay and there's
nothing that can be done about that.

In this chapter, you will learn how to create a number of different types of
reports and a script to automatically audit our investigation. We will create
HTML, XLSX, and CSV reports to summarize data in a meaningful manner:

Developing an HTML dashboard template
Parsing FTK Imager acquisition logs
Building a robust CSV writer
Plotting charts and data with Microsoft Excel
Creating an audit trail of screenshots throughout an investigation

Visit www.packtpub.com/books/content/support to download the code
bundle for this chapter.

http://www.packtpub.com/books/content/support

Using HTML templates
Recipe Difficulty: Easy

Python Version: 2.7 or 3.5

Operating System: Any

HTML can be an effective medium for a report. There are a great number of
snazzy templates out there that can make even technical reports look appealing.
That's the first step towards hooking the audience. Or, at the very least, a
preventative measure to forestall the audience from instantly nodding off. This
recipe uses one such template and some test data to create a visually
compelling example of acquisition details. We really have our work cut out for
us here.

Getting started
This recipe introduces HTML templating with the jinja2 module. The jinja2
library is a very powerful tool and has a number of different documented
features. We will be using it in a rather simple scenario. All other libraries
used in this script are present in Python's standard library. We can use pip to
install jinja2:

pip install jinja2==2.9.6

In addition to jinja2, we will also be using a slightly modified template, called
light bootstrap dashboard. This slightly modified dashboard has been provided
with the recipe's code bundle.

To learn more about the jinja2 library, visit http://jinja.pocoo.org/doc
s/2.9/.
To download the light bootstrap dashboard, visit https://www.creati
ve-tim.com/product/light-bootstrap-dashboard.

http://jinja.pocoo.org/docs/2.9/
https://www.creative-tim.com/product/light-bootstrap-dashboard

How to do it...
We deploy an HTML dashboard following these principles:

1. Design HTML template global variables.
2. Process the test acquisition metadata.
3. Render the HTML templates with the inserted acquisition metadata.
4. Create a report in the desired output directory.

How it works...
First, we import the required libraries to handle argument parsing, creating
counts of objects, and copying files:

from __future__ import print_function
import argparse
from collections import Counter
import shutil
import os
import sys

This recipe's command-line handler takes one positional argument, OUTPUT_DIR,
which represents the desired output path for the HTML dashboard. After
checking whether the directory exists, and creating it if it doesn't, we call the
main() function and pass the output directory to it:

if __name__ == "__main__":
 # Command-line Argument Parser
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("OUTPUT_DIR", help="Desired Output Path")
 args = parser.parse_args()

 main(args.OUTPUT_DIR)

Defined at the top of the script are a number of global variables: DASH, TABLE, and
DEMO. These variables represent the various HTML and JavaScript files we
create as a product of the script. This is a book about Python, so we will not
get into the details of how these files are structured and how they work.
However, let's look at an example to showcase how jinja2 bridges the gap
between these types of files and Python.

A portion of the global variable DEMO is captured in the following snippet. Note
that the string block is passed to the jinja2.Template() method. This allows us to
create an object for which we can use jinja2 to interact with and dynamically
insert data into the JavaScript file. Specifically, the following code block
shows two locations where we can use jinja2 to insert data. These are denoted

by the double curly braces and the keywords we will refer to them by in the
Python code - pi_labels and pi_series, respectively:

DEMO = Template("""type = ['','info','success','warning','danger'];
[snip]
 Chartist.Pie('#chartPreferences', dataPreferences,
 optionsPreferences);

 Chartist.Pie('#chartPreferences', {
 labels: [{{pi_labels}}],
 series: [{{pi_series}}]
 });
[snip]
""")

Let's now turn our attention to the main() function. This function is really quite
simple for reasons you will understand in the second recipe. This function
creates a list of lists containing sample acquisition data, prints a status
message to the console, and sends that data to the process_data() method:

def main(output_dir):
 acquisition_data = [
 ["001", "Debbie Downer", "Mobile", "08/05/2017 13:05:21", "32"],
 ["002", "Debbie Downer", "Mobile", "08/05/2017 13:11:24", "16"],
 ["003", "Debbie Downer", "External", "08/05/2017 13:34:16", "128"],
 ["004", "Debbie Downer", "Computer", "08/05/2017 14:23:43", "320"],
 ["005", "Debbie Downer", "Mobile", "08/05/2017 15:35:01", "16"],
 ["006", "Debbie Downer", "External", "08/05/2017 15:54:54", "8"],
 ["007", "Even Steven", "Computer", "08/07/2017 10:11:32", "256"],
 ["008", "Even Steven", "Mobile", "08/07/2017 10:40:32", "32"],
 ["009", "Debbie Downer", "External", "08/10/2017 12:03:42", "64"],
 ["010", "Debbie Downer", "External", "08/10/2017 12:43:27", "64"]
]
 print("[+] Processing acquisition data")
 process_data(acquisition_data, output_dir)

The purpose of the process_data() method is to get the sample acquisition data
into an HTML or JavaScript format that we can drop in place within the jinja2
templates. This dashboard is going to have two components: a series of charts
visualizing the data and a table of the raw data. The following code block
deals with the latter. We accomplish this by iterating through the acquisition
list and adding each element of the table to the html_table string with the
appropriate HTML tags:

def process_data(data, output_dir):
 html_table = ""
 for acq in data:
 html_table += "<tr><td>{}</td><td>{}</td><td>{}</td><td>{}</td>" \
 "<td>{}</td></tr>\n".format(
 acq[0], acq[1], acq[2], acq[3], acq[4])

Next, we use the Counter() method from the collections library to quickly
generate a dictionary-like object of the number of occurrences of each item in
the sample data. For example, the first Counter object, device_types, creates a
dictionary-like object where each key is a different device type (for example,
mobile, external, and computer) and the value represents the number of
occurrences of each key. This allows us to quickly summarize data across the
data set and cuts down on the legwork required before we can plot this
information.

Once we have created the Counter objects, we again iterate through each
acquisition to perform a more manual summation of acquisition date
information. This date_dict object maintains keys for all the acquisition data and
adds the size of all acquisitions made on that day as the key's value. We
specifically split on a space to isolate just the date value from the date-time
string (for example, 08/15/2017). If the specific date is already in the dictionary,
we add the acquisition size directly to the key. Otherwise, we create the key
and assign its value to the acquisition size. Once we have created the various
summarizing objects, we call the output_html() method to populate the HTML
dashboard with this information:

 device_types = Counter([x[2] for x in data])
 custodian_devices = Counter([x[1] for x in data])

 date_dict = {}
 for acq in data:
 date = acq[3].split(" ")[0]
 if date in date_dict:
 date_dict[date] += int(acq[4])
 else:
 date_dict[date] = int(acq[4])
 output_html(output_dir, len(data), html_table,
 device_types, custodian_devices, date_dict)

The output_html() method starts by printing a status message to the console and
storing the current working directory to a variable. We append the folder path
to light-bootstrap-dashboard and use shutil.copytree() to copy the bootstrap files
to the output directory. Following that, we create three file paths representing
the output locations and names of the three jinja2 templates:

def output_html(output, num_devices, table, devices, custodians, dates):
 print("[+] Rendering HTML and copy files to {}".format(output))
 cwd = os.getcwd()
 bootstrap = os.path.join(cwd, "light-bootstrap-dashboard")

 shutil.copytree(bootstrap, output)

 dashboard_output = os.path.join(output, "dashboard.html")
 table_output = os.path.join(output, "table.html")
 demo_output = os.path.join(output, "assets", "js", "demo.js")

Let's start by looking at the two HTML files, as these are relatively simple.
After opening file objects for the two HTML files, we use the jinja2.render()
method and use keyword arguments to refer to the placeholders in the curly
brackets from the Template objects. With the file rendered with the Python data,
we write the data to the file. Simple, right? The JavaScript file, thankfully, is
not much more difficult:

 with open(dashboard_output, "w") as outfile:
 outfile.write(DASH.render(num_custodians=len(custodians.keys()),
 num_devices=num_devices,
 data=calculate_size(dates)))

 with open(table_output, "w") as outfile:
 outfile.write(TABLE.render(table_body=table))

While syntactically similar to the previous code block, when we render the
data this time, we feed the data to the return_labels() and return_series() methods.
These methods take the key and values from the Counter objects and format them
appropriately to work with the JavaScript file. You may have also noticed a
call to the calculate_size() method in the previous code block called on the dates
dictionary. Let's explore these three supporting functions now:

 with open(demo_output, "w") as outfile:
 outfile.write(
 DEMO.render(bar_labels=return_labels(dates.keys()),
 bar_series=return_series(dates.values()),
 pi_labels=return_labels(devices.keys()),
 pi_series=return_series(devices.values()),
 pi_2_labels=return_labels(custodians.keys()),
 pi_2_series=return_series(custodians.values())))

The calculate_size() method simply uses the built-in sum() method to return each
date key's total size collected. The return_labels() and return_series() methods
use string methods to format the data appropriately. Essentially, the JavaScript
file expects the labels to be within single quotes, which is accomplished with
the format() method, and both labels and series must be comma-delimited:

def calculate_size(sizes):
 return sum(sizes.values())

def return_labels(list_object):
 return ", ".join("'{}'".format(x) for x in list_object)

def return_series(list_object):
 return ", ".join(str(x) for x in list_object)

When we run this script, we receive a copy of the report in the specified output
directory along with the required assets for loading and rendering the page. We
can zip up this folder and provide it to team members, as it is designed to be
portable. Viewing this dashboard shows us the first page with the chart
information:

And the second page as the table of acquisition information:

There's more...
This script can be further improved. We have provided a couple of
recommendations here:

Add support for additional types of reports to better highlight the data
Include the ability to export the tables and charts for printing and sharing
through additional javascript

Creating a paper trail
Recipe Difficulty: Medium

Python Version: 2.7 or 3.5

Operating System: Any

Most imaging utilities create audit logs recording the details of the acquisition
media and other available metadata. Admit it; unless something goes horribly
wrong, these logs are mostly untouched if the evidence verifies. Let's change
that and leverage the newly created HTML dashboard from the previous recipe
and make better use of this acquisition data.

Getting started
All libraries used in this script are present in Python's standard library or
functions imported from the prior script.

How to do it...
We parse acquisition logs with these steps:

1. Identify and validate FTK logs.
2. Parse the log to extract relevant fields.
3. Create a dashboard with the acquisition data.

How it works...
First, we import the required libraries to handle argument parsing, parsing
dates, and the html_dashboard script we created in the previous recipe:

from __future__ import print_function
import argparse
from datetime import datetime
import os
import sys
import html_dashboard

This recipe's command-line handler takes two positional arguments, INPUT_DIR
and OUTPUT_DIR, which represent the path to the directory containing acquisition
logs and the desired output path, respectively. After creating the output
directory, if necessary, and validating that the input directory exists, we call
the main() method and pass these two variables to it:

if __name__ == "__main__":
 # Command-line Argument Parser
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("INPUT_DIR", help="Input Directory of Logs")
 parser.add_argument("OUTPUT_DIR", help="Desired Output Path")
 args = parser.parse_args()

 if os.path.exists(args.INPUT_DIR) and os.path.isdir(args.INPUT_DIR):
 main(args.INPUT_DIR, args.OUTPUT_DIR)
 else:
 print("[-] Supplied input directory {} does not exist or is not "
 "a file".format(args.INPUT_DIR))
 sys.exit(1)

In the main() function, we use the os.listdir() function to get a directory listing of
the input directory and identify only those files with a .txt file extension. This
is important, as FTK Imager creates acquisition logs with the .txt extension.
This helps us avoid some files that should not be processed by the extension
alone. We will, however, take it one step further. After we create a list of the
possible FTK logs, we create a placeholder list, ftk_data, to store the
processed acquisition data. Next, we iterate through each potential log and set
up a dictionary with the desired keys we will extract. To further eliminate false

positives, we call the validate_ftk() method, which returns either a True or False
Boolean value depending on the results of its inspection. Let's take a quick
look at how it works:

def main(in_dir, out_dir):
 ftk_logs = [x for x in os.listdir(in_dir)
 if x.lower().endswith(".txt")]
 print("[+] Processing {} potential FTK Imager Logs found in {} "
 "directory".format(len(ftk_logs), in_dir))
 ftk_data = []
 for log in ftk_logs:
 log_data = {"e_numb": "", "custodian": "", "type": "",
 "date": "", "size": ""}
 log_name = os.path.join(in_dir, log)
 if validate_ftk(log_name):

Thankfully, each FTK Imager log contains the words "Created by AccessData" on
the first line. We can rely on this to be the case to verify that the log is likely a
valid FTK Imager log. With the input log_file path, we open the file object and
read the first line using the readline() method. With the first line extracted, we
check whether the phrase is present and return True if it is or False otherwise:

def validate_ftk(log_file):
 with open(log_file) as log:
 first_line = log.readline()
 if "Created By AccessData" not in first_line:
 return False
 else:
 return True

Back in the main() method, after having validated the FTK Imager log, we open
the file, set a few variables to None, and begin iterating through each line in the
file. Based on the dependable layout of these logs, we can use specific
keywords to identify whether the current line is one we are interested in. For
example, if the line contains the phrase "Evidence Number:", we can be sure that
this line contains the evidence number value. And in fact, we split the phrase
and take the value to the right of the colon and associate it with the dictionary
e_numb key. This type of logic can be applied to most of the desired values, with
a few exceptions.

For the acquisition time, we must use the datetime.strptime() method to convert
the string into an actual datetime object. We must do this to store it in the format
that the HTML dashboard is expecting. We use the strftime() method on the
datetime object and associate it with the date key in the dictionary:

 with open(log_name) as log_file:
 bps, sec_count = (None, None)
 for line in log_file:
 if "Evidence Number:" in line:
 log_data["e_numb"] = line.split(
 "Number:")[1].strip()
 elif "Notes:" in line:
 log_data["custodian"] = line.split(
 "Notes:")[1].strip()
 elif "Image Type:" in line:
 log_data["type"] = line.split("Type:")[1].strip()
 elif "Acquisition started:" in line:
 acq = line.split("started:")[1].strip()
 date = datetime.strptime(
 acq, "%a %b %d %H:%M:%S %Y")
 log_data["date"] = date.strftime(
 "%M/%d/%Y %H:%M:%S")

The bytes per sector and sector count are handled a little differently from the
rest. Due to the fact that the HTML dashboard script is expecting to receive the
data size (in GB), we need to extract these values and calculate the acquired
media size. To do this, once identified, we convert each value into an integer
and assign it to the two local variables that were originally None. Once we
finish iterating through all lines, we check whether these variables are no
longer None, and if they are not, we send them to the calculate_size() method. This
method performs the necessary calculation and stores the media size within the
dictionary:

def calculate_size(bytes, sectors):
 return (bytes * sectors) / (1024**3)

Once the file has been processed, the dictionary with the extracted acquisition
data is appended to the ftk_data list. After all the logs have been processed, we
call the html_dashboard.process_data() method and supply it with the acquisition
data and output directory. The process_data() function is, of course, the exact
same as the previous recipe. Therefore, you know that this acquisition data
replaces the sample acquisition data of the previous recipe and populates the
HTML dashboard with real data:

 elif "Bytes per Sector:" in line:
 bps = int(line.split("Sector:")[1].strip())
 elif "Sector Count:" in line:
 sec_count = int(
 line.split("Count:")[1].strip().replace(
 ",", "")
)
 if bps is not None and sec_count is not None:
 log_data["size"] = calculate_size(bps, sec_count)

 ftk_data.append(
 [log_data["e_numb"], log_data["custodian"],
 log_data["type"], log_data["date"], log_data["size"]]
)

 print("[+] Creating HTML dashboard based acquisition logs "
 "in {}".format(out_dir))
 html_dashboard.process_data(ftk_data, out_dir)

When we run this tool, we can see the acquisition log information, as shown in
the following two screenshots:

There's more...
This script can be further improved. Here's a recommendation:

Create additional scripts to support logs from other acquisition tools,
such as Guymager, Cellebrite, MacQuisition, and so on

Working with CSVs
Recipe Difficulty: Easy

Python Version: 2.7 or 3.5

Operating System: Any

Everyone has reviewed data in a CSV spreadsheet at some point. They are
pervasive and a common output format for most applications. Writing CSVs
with Python is one of the easiest methods to create a report of processed data.
In this recipe, we will demonstrate how you can use the csv and unicodecsv
libraries to create quick reports with Python.

Getting started
Part of this recipe uses the unicodecsv module. This module replaces the built-in
Python 2 csv module and adds Unicode support. Python 3's csv module does not
have this limitation and can be used without the support of any additional
library. All other libraries used in this script are present in Python's standard
library. The unicodecsv library can be installed with pip:

pip install unicodecsv==0.14.1

To learn more about the unicodecsv library, visit https://github.com/jdu
nck/python-unicodecsv.

https://github.com/jdunck/python-unicodecsv

How to do it...
We follow these steps to create CSV spreadsheets:

1. Identify the version of Python that invoked the script.
2. Output a list of lists and a list of dictionaries using Python 2 and Python 3

conventions to spreadsheets in the current working directory.

How it works...
First, we import the required libraries to write spreadsheets. Later on in this
recipe, we also import the unicodecsv module:

from __future__ import print_function
import csv
import os
import sys

This recipe does not use argparse as a command-line handler. Instead, we
directly call the desired functions based on the version of Python. We can
determine the version of Python running with the sys.version_info attribute. If the
user is using Python 2.X, we call both the csv_writer_py2() and
unicode_csv_dict_writer_py2() methods. Both of these methods take four arguments,
where the last argument is optional: these are the data to write, a list of
headers, the desired output directory, and, optionally, the name of the output
CSV spreadsheet. Alternatively, if Python 3.X is being used, we call the
csv_writer_py3() method. While similar, CSV writing is handled a little
differently between the two versions of Python, and the unicodecsv module is
applicable only to Python 2:

if sys.version_info < (3, 0):
 csv_writer_py2(TEST_DATA_LIST, ["Name", "Age", "Cool Factor"],
 os.getcwd())
 unicode_csv_dict_writer_py2(
 TEST_DATA_DICT, ["Name", "Age", "Cool Factor"], os.getcwd(),
 "dict_output.csv")

elif sys.version_info >= (3, 0):
 csv_writer_py3(TEST_DATA_LIST, ["Name", "Age", "Cool Factor"],
 os.getcwd())

This recipe has two global variables that represent sample data types. The first
of these, TEST_DATA_LIST, is a nested list structure containing strings and integers.
The second, TEST_DATA_DICT, is another representation of this data but stored as a
list of dictionaries. Let's look at how the various functions write this sample
data to the output CSV file:

TEST_DATA_LIST = [["Bill", 53, 0], ["Alice", 42, 5],
 ["Zane", 33, -1], ["Theodore", 72, 9001]]

TEST_DATA_DICT = [{"Name": "Bill", "Age": 53, "Cool Factor": 0},
 {"Name": "Alice", "Age": 42, "Cool Factor": 5},
 {"Name": "Zane", "Age": 33, "Cool Factor": -1},
 {"Name": "Theodore", "Age": 72, "Cool Factor": 9001}]

The csv_writer_py2() method first checks whether the name input was provided.
If it is still the default value of None, we simply assign the output name
ourselves. Next, after printing a status message to the console, we open a File
object in the "wb" mode in the desired output directory. Note that it is important
to open CSV files in the "wb" mode in Python 2 to prevent intervening gaps
between rows in the resulting spreadsheet. Once we have the File object, we
use the csv.writer() method to convert this into a writer object. With this, we can
use the writerow() and writerows() methods to write a single list of data and a
nested list structure, respectively. Now, let's look at how unicodecsv works with
lists of dictionaries:

def csv_writer_py2(data, header, output_directory, name=None):
 if name is None:
 name = "output.csv"

 print("[+] Writing {} to {}".format(name, output_directory))

 with open(os.path.join(output_directory, name), "wb") as csvfile:
 writer = csv.writer(csvfile)
 writer.writerow(header)

 writer.writerows(data)

The unicodecsv module is a drop in for the built-in csv module and can be used
interchangeably. The difference, and it's a big one, is that unicodecsv
automatically handles Unicode strings in a way that the built-in csv module in
Python 2 does not. This was addressed in Python 3.

First, we attempt to import the unicodecsv module and print a status message to
the console if the import fails before exiting the script. If we are able to import
the library, we check whether the name input was supplied and create a name if
it wasn't, before opening a File object. With this File object, we use the
unicodecsv.DictWriter class and supply it with the list of headers. This object, by
default, expects the keys present in the supplied fieldnames list to represent all of
the keys in each dictionary. If this behavior is not desired or if this is not the
case, it can be ignored by setting the extrasaction keyword argument to the
string ignore. Doing so will result in all additional dictionary keys not specified

in the fieldnames list being ignored and not added to the CSV spreadsheet.

After the DictWriter object is set up, we use the writerheader() method to write the
field names and writerows() to, this time, write the list of dictionaries to the CSV
file. Another important thing to note is that the columns will be in the order of
the elements in the supplied fieldnames list:

def unicode_csv_dict_writer_py2(data, header, output_directory, name=None):
 try:
 import unicodecsv
 except ImportError:
 print("[+] Install unicodecsv module before executing this"
 " function")
 sys.exit(1)

 if name is None:
 name = "output.csv"

 print("[+] Writing {} to {}".format(name, output_directory))
 with open(os.path.join(output_directory, name), "wb") as csvfile:
 writer = unicodecsv.DictWriter(csvfile, fieldnames=header)
 writer.writeheader()

 writer.writerows(data)

Lastly, the csv_writer_py3() method operates in mostly the same fashion.
However, note the difference in how the File object is created. Rather than
opening a file in the "wb" mode, with Python 3, we open the file in the "w" mode
and set the newline keyword argument to an empty string. After doing that, the
rest of the operations proceed in the same manner as previously described:

def csv_writer_py3(data, header, output_directory, name=None):
 if name is None:
 name = "output.csv"

 print("[+] Writing {} to {}".format(name, output_directory))

 with open(os.path.join(output_directory, name), "w", newline="") as \
 csvfile:
 writer = csv.writer(csvfile)
 writer.writerow(header)

 writer.writerows(data)

When we run this code, we can look at either of the two newly generated CSV
files and see the same information, as in the following screenshot:

There's more...
This script can be further improved. Here's a recommendation:

Create more robust CSV writers with additional feature sets and options.
The idea here is that you could supply data of different types and have a
method to handle them equivalently.

Visualizing events with Excel
Recipe Difficulty: Easy

Python Version: 2.7 or 3.5

Operating System: Any

Let's take it one step further from the previous recipe with Excel. Excel is a
very robust spreadsheet application and we can do a lot with it. We will use
Excel to create a table and plot graphs of the data.

Getting started
There are a number of different Python libraries with varying support for Excel
and its many features. In this recipe, we use the xlsxwriter module to create a
table and graph of the data. This module can be used for much more than that.
This module can be installed by pip using the following command:

pip install xlsxwriter==0.9.9

To learn more about the xlsxwriter library, visit https://xlsxwriter.read
thedocs.io/.

We also use a custom utilcsv module that we wrote based on the previous
recipe to handle interactions with CSVs. All other libraries used in this script
are present in Python's standard library.

https://xlsxwriter.readthedocs.io/

How to do it...
We create an Excel spreadsheet via the following steps:

1. Create a workbook and worksheet objects.
2. Create a table of spreadsheet data.
3. Create a chart of the event log data.

How it works...
First, we import the required libraries to handle argument parsing, creating
counts of objects, parsing dates, writing XLSX spreadsheets, and our custom
utilcsv module, which handles CSV reading and writing in this recipe:

from __future__ import print_function
import argparse
from collections import Counter
from datetime import datetime
import os
import sys
from utility import utilcsv

try:
 import xlsxwriter
except ImportError:
 print("[-] Install required third-party module xlsxwriter")
 sys.exit(1)

This recipe's command-line handler takes one positional argument: OUTPUT_DIR.
This represents the desired output path for the XLSX file. Before calling the main()
method, we check whether the output directory exists and create it if it does
not:

if __name__ == "__main__":
 # Command-line Argument Parser
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("OUTPUT_DIR", help="Desired Output Path")
 args = parser.parse_args()

 if not os.path.exists(args.OUTPUT_DIR):
 os.makedirs(args.OUTPUT_DIR)

 main(args.OUTPUT_DIR)

The main() function is really quite simple; its job is to print a status message to
the console, use the csv_reader() method, which is a slightly modified function
from the previous recipe, and then write the resulting data to the output
directory with the xlsx_writer() method:

def main(output_directory):

 print("[+] Reading in sample data set")
 # Skip first row of headers
 data = utilcsv.csv_reader("redacted_sample_event_log.csv")[1:]
 xlsx_writer(data, output_directory)

The xlsx_writer() starts by printing a status message and creating the workbook
object in the output directory. Next, we create two worksheet objects for the
dashboard and data worksheets. The dashboard worksheet will contain a graph
summarizing the raw data on the data worksheet:

def xlsx_writer(data, output_directory):
 print("[+] Writing output.xlsx file to {}".format(output_directory))
 workbook = xlsxwriter.Workbook(
 os.path.join(output_directory, "output.xlsx"))
 dashboard = workbook.add_worksheet("Dashboard")
 data_sheet = workbook.add_worksheet("Data")

We use the add_format() method on the workbook object to create customized
formats for the spreadsheet. These formats are dictionaries with key-value
pairs configuring the format. Most of these keys are self-explanatory based on
the key name. A description of the various format options and features can be
found at http://xlsxwriter.readthedocs.io/format.html:

 title_format = workbook.add_format({
 'bold': True, 'font_color': 'white', 'bg_color': 'black',
 'font_size': 30, 'font_name': 'Calibri', 'align': 'center'
 })
 date_format = workbook.add_format(
 {'num_format': 'mm/dd/yy hh:mm:ss AM/PM'})

With the formats set, we can enumerate through the list of lists and write each
using the write() method. This method takes a few inputs; the first and second
arguments are the row and column followed by the value to write. Note that in
addition to the write() method, we also use the write_number() and write_datetime()
methods. These preserve the data type within the XLSX spreadsheet.
Specifically, with the write_datetime() method, we supply it with the date_format
variable to appropriately format the date object. After looping through all of
the data, we have successfully stored the data within the spreadsheet and
retained its value types. However, we can do much more than that with an
XLSX spreadsheet.

We use the add_table() method to create a table of the data we just wrote. To
accomplish this, we must supply the function using the Excel notation to denote

http://xlsxwriter.readthedocs.io/format.html

the top-left and bottom-right columns of the table. Beyond that, we can also
provide a dictionary of objects to further configure the table. In this case, the
dictionary only contains the header names for each column of the table:

 for i, record in enumerate(data):
 data_sheet.write_number(i, 0, int(record[0]))
 data_sheet.write(i, 1, record[1])
 data_sheet.write(i, 2, record[2])
 dt = datetime.strptime(record[3], "%m/%d/%Y %H:%M:%S %p")
 data_sheet.write_datetime(i, 3, dt, date_format)
 data_sheet.write_number(i, 4, int(record[4]))
 data_sheet.write(i, 5, record[5])
 data_sheet.write_number(i, 6, int(record[6]))
 data_sheet.write(i, 7, record[7])

 data_length = len(data) + 1
 data_sheet.add_table(
 "A1:H{}".format(data_length),
 {"columns": [
 {"header": "Index"},
 {"header": "File Name"},
 {"header": "Computer Name"},
 {"header": "Written Date"},
 {"header": "Event Level"},
 {"header": "Event Source"},
 {"header": "Event ID"},
 {"header": "File Path"}
]}
)

With the data worksheet complete, let's now turn our focus on the dashboard
worksheet. We will create a graph on this dashboard, breaking down the event
IDs by frequency. First, we calculate this frequency using a Counter object, as
shown in the HTML dashboard recipe. Next, we set a title for this page by
merging a number of columns and setting the title text and format.

Once that is complete, we iterate through the frequency of event IDs Counter
object and write them to the worksheet. We write them starting at row 100 to
make sure the data is out of the way and not at the forefront. Once this data is
written, we convert it into a table using the same method discussed previously:

 event_ids = Counter([x[6] for x in data])
 dashboard.merge_range('A1:Q1', 'Event Log Dashboard', title_format)
 for i, record in enumerate(event_ids):
 dashboard.write(100 + i, 0, record)
 dashboard.write(100 + i, 1, event_ids[record])

 dashboard.add_table("A100:B{}".format(
 100 + len(event_ids)),
 {"columns": [{"header": "Event ID"}, {"header": "Occurrence"}]}
)

Finally, we can plot this chart we keep talking about. We use the add_chart()
method and specify the type as a bar chart. Next, we use the set_title() and
set_size() methods to properly configure this graph. All that is left is to use the
add_series() method to add the data to the chart. This method takes a dictionary
with a category and values key. In a bar chart, the categories values represent
the x axis and the values represent the y axis. Note the use of Excel notation to
designate the range of cells that make up the categories and values keys. Once
the data has been selected, we use the insert_chart() method on the worksheet
object to display it before closing the workbook object:

 event_chart = workbook.add_chart({'type': 'bar'})
 event_chart.set_title({'name': 'Event ID Breakdown'})
 event_chart.set_size({'x_scale': 2, 'y_scale': 5})

 event_chart.add_series(
 {'categories': '=Dashboard!A101:A{}'.format(
 100 + len(event_ids)),
 'values': '=Dashboard!B101:B{}'.format(
 100 + len(event_ids))})
 dashboard.insert_chart('C5', event_chart)

 workbook.close()

When we run this script, we can review the data in an XLSX spreadsheet and
the chart we created summarizing Event IDs:

Auditing your work
Recipe Difficulty: Easy

Python Version: 2.7 or 3.5

Operating System: Any

Keeping detailed investigative notes is a key to any investigation. Without this,
it can be difficult to put all of the pieces together or accurately recall findings.
Sometimes, it can be helpful to have a screenshot or a series of them to remind
you of the various steps you took during your review.

Getting started
In order to create a recipe with cross-platform support, we have elected to use
the pyscreenshot module. This module relies on a few dependencies, specifically
the Python Imaging Library (PIL), and one or more backends. The backend
used here is the WX GUI library. All three of these modules can be installed
with pip:

pip install pyscreenshot==0.4.2
pip install Pillow==4.2.1
pip install wxpython==4.0.0b1

To learn more about the pyscreenshot library, visit https://pypi.pyth
on.org/pypi/pyscreenshot.

All other libraries used in this script are present in Python's standard library.

https://pypi.python.org/pypi/pyscreenshot

How to do it...
We use the following methodology to accomplish our objective:

1. Process user-supplied arguments.
2. Take screenshots based on user-supplied inputs.
3. Save screenshots to the specified output folder.

How it works...
First, we import the required libraries to handle argument parsing, sleeping the
script, and taking screenshots:

from __future__ import print_function
import argparse
from multiprocessing import freeze_support
import os
import sys
import time

try:
 import pyscreenshot
 import wx
except ImportError:
 print("[-] Install wx and pyscreenshot to use this script")
 sys.exit(1)

This recipe's command-line handler takes two positional arguments, OUTPUT_DIR
and INTERVAL, which represent the desired output path and the interval between
screenshots, respectively. The optional total argument can be used to impose
an upper limit on the number of screenshots that should be taken. Note that we
specify the type for both INTERVAL and total arguments as integers. After
validating that the output directory exists, we pass these inputs to the main()
method:

if __name__ == "__main__":
 # Command-line Argument Parser
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("OUTPUT_DIR", help="Desired Output Path")
 parser.add_argument(
 "INTERVAL", help="Screenshot interval (seconds)", type=int)
 parser.add_argument(
 "-total", help="Total number of screenshots to take", type=int)
 args = parser.parse_args()

 if not os.path.exists(args.OUTPUT_DIR):
 os.makedirs(args.OUTPUT_DIR)

 main(args.OUTPUT_DIR, args.INTERVAL, args.total)

The main() function creates an infinite while loop and starts incrementing a

counter by one for each screenshot taken. Following that, the script sleeps for
the provided interval before using the pyscreenshot.grab() method to capture a
screenshot. With the screenshot captured, we create the output filename and use
the screenshot object's save() method to save it to the output location. That's
really it. We print a status message notifying the user about this and then check
whether the total argument was provided and whether the counter is equal to it.
If it is, the while loop is exited, but otherwise, it continues forever. As a word
of caution/wisdom, if you choose not to provide a total limit, make sure to stop
the script manually once you have completed your review. Otherwise, you may
come back to an ominous blue screen and full hard drive:

def main(output_dir, interval, total):
 i = 0
 while True:
 i += 1
 time.sleep(interval)
 image = pyscreenshot.grab()
 output = os.path.join(output_dir, "screenshot_{}.png").format(i)
 image.save(output)
 print("[+] Took screenshot {} and saved it to {}".format(
 i, output_dir))
 if total is not None and i == total:
 print("[+] Finished taking {} screenshots every {} "
 "seconds".format(total, interval))
 sys.exit(0)

With the screenshotting script running every five seconds and storing the
pictures in the folder of our choice, we can see the following output, as
captured in the following screenshot:

There's more...
This script can be further improved. We have provided a couple of
recommendations here:

Add video recording support to the script
Add the functionality to automatically create archives of the screenshots
with the date as the archive name

A Deep Dive into Mobile Forensic
Recipes
The following recipes are covered in this chapter:

Parsing PLIST files
Handling SQLite databases
Identifying gaps in SQLite databases
Processing iTunes backups
Putting Wi-Fi on the map
Digging deep to recover messages

Introduction
Perhaps it is becoming a bit of a cliché, but it remains true that as technology
evolves it continues to become more integrated with our lives. Never has this
been so apparent as with the development of the first smartphone. These
precious devices seemingly never leave the possession of their owners and
often receive more interaction than human companions. It should be no surprise
then that a smartphone can supply investigators with lots of insight into their
owner. For example, messages may provide insight into the state of mind of the
owner or knowledge of particular facts. They may even shed light on
previously unknown information. Location history is another useful artifact we
can extract from these devices and can be helpful to validate an individual's
alibi. We will learn to extract this information and more.

A common source of evidentiary value on smartphones are SQLite databases.
These databases serve as the de facto storage for applications in most
smartphone operating systems. For this reason, many scripts in this chapter
will focus on teasing out data and drawing inferences from these databases. In
addition to that, we will also learn how to process PLIST files, commonly
used with Apple operating systems, including iOS, and extract relevant data.
The scripts in this chapter focus on solving specific problems and are ordered
by complexity:

Learning to process XML and binary PLIST files
Using Python to interact with SQLite databases
Identifying missing gaps in SQLite databases
Converting an iOS backup into a human-readable format
Processing output from Cellebrite and performing Wi-Fi MAC address
geolocation lookups with WiGLE
Identifying potentially intact deleted content from SQLite databases

Visit www.packtpub.com/books/content/support to download the code
bundle for this chapter.

http://www.packtpub.com/books/content/support

Parsing PLIST files
Recipe Difficulty: Easy

Python Version: 2.7 or 3.5

Operating System: Any

This recipe will process the Info.plist file present in every iOS backup and
extract device-specific information such as the device name, IMEI, serial
number, product make, model, and iOS version, and the last backup date.
Property lists, or PLISTs, come in two different formats: XML or binary.
Typically, when dealing with binary PLISTs, one will need to use the plutil
utility on a macOS platform to convert it to a readable XML format. However,
we will introduce a Python library that handles both types readily and easily.
Once we extract the relevant data elements from the Info.plist file, we will
print this data to the console.

Getting started
This recipe requires the installation of the third-party library biplist. All other
libraries used in this script are present in Python's standard library. The biplist
module provides a means of processing both XML and binary PLIST files.

To learn more about the biplist library, visit https://github.com/woost
er/biplist.

Python has a built-in PLIST library, plistlib; however, this library was found to
not support binary PLIST files as extensively as biplist does.

To learn more about the plistlib library, visit https://docs.python.org/
3/library/plistlib.html.

Installing biplist can be accomplished using pip:

pip install biplist==1.0.2

Be sure to grab your own Info.plist file to process with this script. If you
cannot find an Info.plist file, any PLIST file should be suitable. Our script is
not so specific and should technically work with any PLIST file.

https://github.com/wooster/biplist
https://docs.python.org/3/library/plistlib.html

How to do it...
We will employ the following steps to process the PLIST file:

1. Open the input PLIST file.
2. Read PLIST data into a variable.
3. Print formatted PLIST data to the console.

How it works...
First, we import the required libraries to handle argument parsing and
processing PLISTs:

from __future__ import print_function
import argparse
import biplist
import os
import sys

This recipe's command-line handler accepts one positional argument,
PLIST_FILE, which represents the path to the PLIST file we will process:

if __name__ == "__main__":
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("PLIST_FILE", help="Input PList File")
 args = parser.parse_args()

We use the os.exists() and os.path.isfile() functions to validate that the input file
exists and is a file, as opposed to a directory. We do not perform any further
validation on this file, such as confirming whether it is a PLIST file rather than
a text file and instead rely on the biplist library (and common sense) to catch
such errors. If the input file passes our tests, we call the main() function and
pass it the PLIST file path:

 if not os.path.exists(args.PLIST_FILE) or \
 not os.path.isfile(args.PLIST_FILE):
 print("[-] {} does not exist or is not a file".format(
 args.PLIST_FILE))
 sys.exit(1)

 main(args.PLIST_FILE)

The main() function is relatively straightforward and accomplishes the goal of
reading the PLIST file and then printing the data to the console. First, we print
an update to the console that we are attempting to open the file. Then, we use
the biplist.readPlist() method to open and read the PLIST into our plist_data
variable. If the PLIST is corrupt or otherwise inaccessible, biplist will raise

an InvalidPlistException or NotBinaryPlistException error. We catch both of these in a
try and except block and exit the script accordingly:

def main(plist):
 print("[+] Opening {} file".format(plist))
 try:
 plist_data = biplist.readPlist(plist)
 except (biplist.InvalidPlistException,
 biplist.NotBinaryPlistException) as e:
 print("[-] Invalid PLIST file - unable to be opened by biplist")
 sys.exit(2)

Once we have successfully read in the PLIST data, we iterate through the keys
in the resulting plist_data dictionary and print them to the console. Notice that
we print all keys in the Info.plist file with the exception of the Applications and
iTunes Files keys. Both of these keys contain a great deal of data that floods the
console and therefore are not desirable for this type of output. We use the
format method to help create legible console output:

 print("[+] Printing Info.plist Device "
 "and User Information to Console\n")
 for k in plist_data:
 if k != 'Applications' and k != 'iTunes Files':
 print("{:<25s} - {}".format(k, plist_data[k]))

Notice the additional formatting characters in the first curly brackets. We are
specifying here to left-align the input string with a static width of 25
characters. As you can see in the following screenshot, this ensures the data is
presented in an orderly and structured format:

There's more…
This script can be further improved. We have provided a couple of
recommendations here:

Rather than printing data to the console, add a CSV function to write the
data to a CSV file
Add support for processing a directory full of PLIST files

Handling SQLite databases
Recipe Difficulty: Easy

Python Version: 3.5

Operating System: Any

As discussed, SQLite databases serve as the primary data repository on
mobile devices. Python has a built-in library, sqlite3, which can be used to
interface with these databases. In this script, we will interact with the iPhone
sms.db file and extract data from the message table. We will also use this script as
an opportunity to introduce the csv library and write the message data to a
spreadsheet.

To learn more about the sqlite3 library, visit https://docs.python.org/3
/library/sqlite3.html.

https://docs.python.org/3/library/sqlite3.html

Getting started
All libraries used in this script are present in Python's standard library. For
this script, make sure to have an sms.db file from which to query. With some
minor modification, you can use this script with any database; however, we
will specifically be talking about it with respect to the iPhone SMS database
from an iOS 10.0.1 device.

How to do it...
The recipe follows these basic principles:

1. Connect to the input database.
2. Query table PRAGMA to extract column names.
3. Fetch all table content.
4. Write all table content to CSV.

How it works...
First, we import the required libraries to handle argument parsing, writing
spreadsheets, and interacting with SQLite databases:

from __future__ import print_function
import argparse
import csv
import os
import sqlite3
import sys

This recipe's command-line handler accepts two positional arguments,
SQLITE_DATABASE and OUTPUT_CSV, which represent the file paths for the input
database and the desired CSV output, respectively:

if __name__ == '__main__':
 # Command-line Argument Parser
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("SQLITE_DATABASE", help="Input SQLite database")
 parser.add_argument("OUTPUT_CSV", help="Output CSV File")
 args = parser.parse_args()

Next, we use the os.dirname() method to extract just the directory path of the
output file. We do this to check if the output directory already exists. If it does
not, we use the os.makedirs() method to create each directory in the output path
that does not already exist. This avoids issues later on if we were to try to
write the output CSV to a directory that does not exist:

 directory = os.path.dirname(args.OUTPUT_CSV)
 if directory != '' and not os.path.exists(directory):
 os.makedirs(directory)

Once we have verified that the output directory exists, we pass the supplied
arguments to the main() function:

 main(args.SQLITE_DATABASE, args.OUTPUT_CSV)

The main() function prints a status update for the user to the console and then

checks if the input file exists and is a file. If it does not exist, we use the
sys.exit() method to exit the script using a value greater than 0 to indicate the
script exited due to an error:

def main(database, out_csv):
 print("[+] Attempting connection to {} database".format(database))
 if not os.path.exists(database) or not os.path.isfile(database):
 print("[-] Database does not exist or is not a file")
 sys.exit(1)

Next, we use the sqlite3.conn() method to connect to the input database. It is
important to note that the sqlite3.conn() method opens a database of the supplied
name regardless of whether it exists or not. Therefore, it is vital to check that
the file exists before trying to open a connection to it. Otherwise, we could
create an empty database, which would likely cause issues in the script when
we interact with it. Once we have a connection, we need to create a Cursor
object to interact with the database:

 # Connect to SQLite Database
 conn = sqlite3.connect(database)
 c = conn.cursor()

We can now perform queries against the database using the Cursor object's
execute() command. At this point, the strings we pass into the execute function
are just standard SQLlite queries. For the most part, you can run any query that
you normally would when interacting with an SQLite database. The results
returned from a given command are stored in the Cursor object. We need to use
the fetchall() method to dump the results into a variable we can manipulate:

 # Query DB for Column Names and Data of Message Table
 c.execute("pragma table_info(message)")
 table_data = c.fetchall()
 columns = [x[1] for x in table_data]

The fetchall() method returns a tuple of results. Each column's name is stored in
the first index of each tuple. By using list comprehension, we store the column
names for the message table into a list. This comes into play later when we write
the results of the data to a CSV file. After we obtain the column names for the
message table, we directly query that table for all of its data and store it in the
message_data variable:

 c.execute("select * from message")
 message_data = c.fetchall()

With the data extracted, we print a status message to the console and pass the
output CSV and the message table columns and data to the write_csv() method:

 print("[+] Writing Message Content to {}".format(out_csv))
 write_csv(out_csv, columns, message_data)

You'll find that most of the scripts end with writing data to a CSV file. There
are a few reasons for that. Writing CSVs in Python is very straightforward and
can be accomplished in a few lines of code for most datasets. Additionally,
having data in a spreadsheet allows one to sort and filter on columns to help
summarize and understand large datasets.

Before we begin to write to the CSV file, we use the open() method to create a
file object and its alias, csvfile. The way in which you open this file changes
depending on if you are using Python 2.x or Python 3.x. For Python 2.x, you
open the file in wb mode and without the newline keyword argument. With
Python 3.x, you instead open the file in w mode and with the newline keyword
set to an empty string. Where possible the code is written for Python 3.x, so we
use the latter. Failing to open the file object in this manner results in the output
CSV file containing an empty row between each row that is written.

After opening the file object, we pass it to the csv.writer() method. We can use
the writerow() and writerows() methods from this object to write the column
header list and the list of tuples, respectively. As an aside, we could iterate
through each tuple in the msgs list and call writerow() for each tuple. The
writerows() method eliminates the need for the unnecessary loop and is used
here:

def write_csv(output, cols, msgs):
 with open(output, "w", newline="") as csvfile:
 csv_writer = csv.writer(csvfile)
 csv_writer.writerow(cols)
 csv_writer.writerows(msgs)

When we run this script, we see the following console message. Within the
CSV we can gather in-depth details about the messages sent and received,
along with interesting metadata including dates, errors, the source, and so on:

Identifying gaps in SQLite
databases
Recipe Difficulty: Easy

Python Version: 2.7 or 3.5

Operating System: Any

This recipe will demonstrate how to programmatically identify missing entries
for a given table by using its primary key. This technique allows us to identify
records that are no longer active in the database. We will use this to identify
which and how many messages have been deleted from an iPhone SMS
database. This, however, will work with any table that uses an auto-
incrementing primary key.

To learn more about SQLite tables and primary keys, visit https://
www.sqlite.org/lang_createtable.html.

One fundamental idea governing SQLite databases and their tables are primary
keys. A primary key is typically a column that serves as a unique integer for a
particular row in the table. A common implementation is the auto-incrementing
primary key, starting typically at 1 for the first row, and incrementing by 1 for
each successive row. When rows are removed from the table, the primary key
does not change to account for that or reorder the table.

For example, if we had a database with 10 messages and deleted messages 4
through 6, we would have a gap in the primary key column from 3 to 7. With our
understanding of auto-incrementing primary keys, we can make the inference
that messages 4 through 6, at one point present, are no longer active entries in
the database. In this manner, we can quantify the number of messages no longer
active in the database and the primary key value associated with them. We will

https://www.sqlite.org/lang_createtable.html

use this in a later recipe, Digging deep to recover messages, to then go hunt
for those entries in an effort to determine if they are intact and recoverable.

Getting started
All libraries used in this script are present in Python's standard library. This
recipe does require a database to run against. For this example, we will use
the iPhone sms.db database.

How to do it...
We will perform the following steps in this recipe:

1. Connect to the input database.
2. Query table PRAGMA to identify a table's primary key(s).
3. Fetch all primary key values.
4. Calculate and display gaps in the table to the console.

How it works...
First, we import the required libraries to handle argument parsing and
interacting with SQLite databases:

from __future__ import print_function
import argparse
import os
import sqlite3
import sys

This recipe's command-line handler accepts two positional arguments,
SQLITE_DATABASE and TABLE, which represents the path of the input database and the
name of the table to review, respectively. An optional argument, column,
indicated by the dash, can be used to manually supply the primary key column
if it is known:

if __name__ == "__main__":
 # Command-line Argument Parser
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("SQLITE_DATABASE", help="Input SQLite database")
 parser.add_argument("TABLE", help="Table to query from")
 parser.add_argument("--column", help="Optional column argument")
 args = parser.parse_args()

If the optional column argument is supplied, we pass it to the main() function as
a keyword argument along with the database and table name. Otherwise, we
just pass the database and table name to the main() function without the col
keyword argument:

 if args.column is not None:
 main(args.SQLITE_DATABASE, args.TABLE, col=args.column)
 else:
 main(args.SQLITE_DATABASE, args.TABLE)

The main() function, like the previous recipe, first performs some validation that
the input database exists and is a file. Because we are using keyword
arguments with this function, we must indicate this with the **kwargs argument in
the function definition. This argument serves as a dictionary that stores all

provided keyword arguments. In this case, if the optional column argument
were supplied, this dictionary would contain a col key/value pair:

def main(database, table, **kwargs):
 print("[+] Attempting connection to {} database".format(database))
 if not os.path.exists(database) or not os.path.isfile(database):
 print("[-] Database does not exist or is not a file")
 sys.exit(1)

After validating the input file, we use sqlite3 to connect to this database and
create the Cursor object we use to interact with it:

 # Connect to SQLite Database
 conn = sqlite3.connect(database)
 c = conn.cursor()

In order to identify the primary key for the desired table, we run the pragma
table_info command with the table name inserted in parentheses. We use the
format() method to dynamically insert the name of the table into the otherwise
static string. After we store the command's results in the table_data variable, we
perform validation on the table name input. If the user supplied a table name
that does not exist, we will have an empty list as the result. We check for this
and exit the script if the table does not exist:

 # Query Table for Primary Key
 c.execute("pragma table_info({})".format(table))
 table_data = c.fetchall()
 if table_data == []:
 print("[-] Check spelling of table name - '{}' did not return "
 "any results".format(table))
 sys.exit(2)

At this point, we create an if-else statement for the remainder of the script,
depending on whether the optional column argument was supplied by the user.
If col is a key in the kwargs dictionary, we immediately call the find_gaps()
function and pass it the Cursor object, c, the table name, and the user-specified
primary key column name. Otherwise, we try to identify the primary key(s) in
the table_data variable.

The command previously executed and stored in the table_data variable returns
a tuple for each column in the given table. The last element of each tuple is a
binary option between 1 or 0, where 1 indicates that the column is a primary
key. We iterate through each of the last elements in the returned tuples and, if

they are equal to 1, the column name, stored in index one of the tuple, is
appended to the potential_pks list:

 if "col" in kwargs:
 find_gaps(c, table, kwargs["col"])

 else:
 # Add Primary Keys to List
 potential_pks = []
 for row in table_data:
 if row[-1] == 1:
 potential_pks.append(row[1])

Once we have identified all primary keys, we check the list to determine if
there are zero or more than one keys present. If either of these cases exists, we
alert the user and exit the script. In these scenarios, the user would need to
specify which column should be treated as the primary key column. If the list
contains a single primary key, we pass the name of that column along with the
database cursor and table name to the find_gaps() function:

 if len(potential_pks) != 1:
 print("[-] None or multiple primary keys found -- please "
 "check if there is a primary key or specify a specific "
 "key using the --column argument")
 sys.exit(3)

 find_gaps(c, table, potential_pks[0])

The find_gaps() method starts by displaying a message to the console, alerting
the user of the current execution status of the script. We attempt the database
query in a try and except block. If the user-specified column does not exist or
was misspelled, we will receive an OperationalError from the sqlite3 library.
This is the last validation step of user-supplied arguments and will exit the
script if the except block is triggered. If the query executes successfully, we
fetch all of the data and store it in the results variable:

def find_gaps(db_conn, table, pk):
 print("[+] Identifying missing ROWIDs for {} column".format(pk))
 try:
 db_conn.execute("select {} from {}".format(pk, table))
 except sqlite3.OperationalError:
 print("[-] '{}' column does not exist -- "
 "please check spelling".format(pk))
 sys.exit(4)
 results = db_conn.fetchall()

We use list comprehension and the built-in sorted() function to create a list of

sorted primary keys. The results list contains tuples with one element at index
0, the primary key, which for the sms.db message table is the column named
ROWID. With the sorted list of ROWIDs, we can quickly calculate the number
of entries missing from the table. This would be the most recent ROWID minus
the number of ROWIDs present in the list. If all entries were active in the
database, this value would be zero.

We are working under the assumption that the most recent
ROWID is the actual most recent ROWID. It is possible that
one could delete the last few entries and the recipe would only
detect the most recent active entry as the highest ROWID.

 rowids = sorted([x[0] for x in results])
 total_missing = rowids[-1] - len(rowids)

If we are not missing any values from the list, we print this fortuitous message
to the console and exit with 0, indicating a successful termination. On the other
hand, if we are missing entries, we print that to the console along with the
count of the missing entries:

 if total_missing == 0:
 print("[*] No missing ROWIDs from {} column".format(pk))
 sys.exit(0)
 else:
 print("[+] {} missing ROWID(s) from {} column".format(
 total_missing, pk))

To calculate the missing gaps, we generate a set of all ROWIDs between the
first ROWID and the last using the range() method and then compare that against
the sorted list that we have. The difference() function can be used with a set to
return a new set with elements in the first set that are not present in the object
in parentheses. We then print the identified gaps to the console, which
completes the execution of the script:

 # Find Missing ROWIDs
 gaps = set(range(rowids[0], rowids[-1] + 1)).difference(rowids)
 print("[*] Missing ROWIDS: {}".format(gaps))

An example of the output of this script may look like the following screenshot.
Note how quickly the console can become cluttered based on the number of
deleted messages. This, however, is not the intended end of this recipe. We
will use the logic from this script in a more advanced recipe, Digging deep to

recover messages, later in the chapter to identify and then attempt to locate
potentially recoverable messages:

See also
For more on SQLite database structure and primary keys, refer to their
extensive documentation at https://www.sqlite.org/.

https://www.sqlite.org/

Processing iTunes backups
Recipe Difficulty: Easy

Python Version: 2.7 or 3.5

Operating System: Any

In this recipe, we will convert unencrypted iTunes backups into a human-
readable format, allowing us to easily explore its contents without any third-
party tools. Backups can be found in the MobileSync\Backup folder on the host
computer.

For details on default iTunes backup locations for Windows
and OS X, visit https://support.apple.com/en-us/HT204215.

If an Apple product has been backed up to the machine, there will be a number
of folders whose name is a GUID representing a specific device within the
backup folder. These folders contain differential backups for each device over
a period of time.

With the new backup format introduced in iOS 10, files are stored in
subfolders containing the first two hexadecimal characters of the file name.
Each file's name is a SHA-1 hash of its path on the device. In the root of the
device's backup folder, there are a few files of interest, such as the Info.plist
file we discussed earlier and the Manifest.db database. This database stores
details on each backed up file, including its SHA-1 hash, file path, and name. We
will use this information to recreate the native backup folder structure with
human-friendly names.

https://support.apple.com/en-us/HT204215

Getting started
All libraries used in this script are present in Python's standard library. To
follow along, you will need to procure an unencrypted iTunes backup to work
with. Make sure the backup is of the newer iTunes backup format (iOS 10+)
matching what was described previously.

How to do it...
We will use these steps to process the iTunes backup in this recipe:

1. Identify all backups in the MobileSync\Backup folder.
2. Iterate through each backup.
3. Read the Manifest.db file and associate SHA-1 hash names with filenames.
4. Copy and rename backed-up files to the output folder with the appropriate

file path and name.

How it works...
First, we import the required libraries to handle argument parsing, logging,
copying files, and interacting with SQLite databases. We also set up a variable
used to later construct the recipe's logging component:

from __future__ import print_function
import argparse
import logging
import os
from shutil import copyfile
import sqlite3
import sys

logger = logging.getLogger(__name__)

This recipe's command-line handler accepts two positional arguments, INPUT_DIR
and OUTPUT_DIR, which represent the iTunes backup folder and the desired output
folder, respectively. An optional argument can be supplied to specify the
location of the log file and the verbosity for the log messages:

if __name__ == "__main__":
 # Command-line Argument Parser
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument(
 "INPUT_DIR",
 help="Location of folder containing iOS backups, "
 "e.g. ~\Library\Application Support\MobileSync\Backup folder"
)
 parser.add_argument("OUTPUT_DIR", help="Output Directory")
 parser.add_argument("-l", help="Log file path",
 default=__file__[:-2] + "log")
 parser.add_argument("-v", help="Increase verbosity",
 action="store_true")
 args = parser.parse_args()

Next, we begin to set up the log for this recipe. We check if the optional
verbosity argument was supplied by the user, and if it has been, we increase
the level from INFO to DEBUG:

 if args.v:
 logger.setLevel(logging.DEBUG)
 else:

 logger.setLevel(logging.INFO)

For this log, we set up the message format and configure handlers for the
console and file output, attaching them to our defined logger:

 msg_fmt = logging.Formatter("%(asctime)-15s %(funcName)-13s"
 "%(levelname)-8s %(message)s")
 strhndl = logging.StreamHandler(sys.stderr)
 strhndl.setFormatter(fmt=msg_fmt)
 fhndl = logging.FileHandler(args.l, mode='a')
 fhndl.setFormatter(fmt=msg_fmt)

 logger.addHandler(strhndl)
 logger.addHandler(fhndl)

With the log file set up, we log a few debug details to the log, including the
arguments supplied to this script and details about the host and Python version.
We exclude the first element of the sys.argv list, which is the name of the script
and not one of the supplied arguments:

 logger.info("Starting iBackup Visualizer")
 logger.debug("Supplied arguments: {}".format(" ".join(sys.argv[1:])))
 logger.debug("System: " + sys.platform)
 logger.debug("Python Version: " + sys.version)

Using the os.makedirs() function, we create any necessary folders for the desired
output directory if they do not already exist:

 if not os.path.exists(args.OUTPUT_DIR):
 os.makedirs(args.OUTPUT_DIR)

Lastly, if the input directory exists and is actually a directory, we pass the
supplied input and output directories to the main() function. If the input directory
fails validation, we print an error to the console and log before exiting the
script:

 if os.path.exists(args.INPUT_DIR) and os.path.isdir(args.INPUT_DIR):
 main(args.INPUT_DIR, args.OUTPUT_DIR)
 else:
 logger.error("Supplied input directory does not exist or is not "
 "a directory")
 sys.exit(1)

The main() function starts by calling the backup_summary() function to identify all
backups present in the input folder. Let's first look at the backup_summary()
function and understand what it does before continuing on with the main()

function:

def main(in_dir, out_dir):
 backups = backup_summary(in_dir)

The backup_summary() function uses the os.listdir() method to list the contents of
the input directory. We also instantiate the backups dictionary, which stores
details for each discovered backup:

def backup_summary(in_dir):
 logger.info("Identifying all iOS backups in {}".format(in_dir))
 root = os.listdir(in_dir)
 backups = {}

For each item in the input directory, we use the os.path.join() method with the
input directory and item. We then check if this is a directory, rather than a file
and if the name of the directory is 40 characters long. If the directory passes
these checks, this is likely a backup directory and so we instantiate two
variables to keep track of the number of files within the backup and the total
size of those files:

 for x in root:
 temp_dir = os.path.join(in_dir, x)
 if os.path.isdir(temp_dir) and len(x) == 40:
 num_files = 0
 size = 0

We use the os.walk() method discussed in Chapter 1, Essential Scripting and File
Information Recipes, and create lists for the root, subdirectories, and files
under the backup folder. We can, therefore, use the length of the files list and
continue to add it to the num_files variable as we iterate through the backup
folder. In a similar manner, we use a nifty one-liner to add each file's size to
the size variable:

 for root, subdir, files in os.walk(temp_dir):
 num_files += len(files)
 size += sum(os.path.getsize(os.path.join(root, name))
 for name in files)

After we finish iterating through the backup, we add the backup to the backups
dictionary using its name as the key and store the backup folder path, file count,
and size as values. Once we complete iteration of all backups, we return this
dictionary to the main() function. Let's pick it back up there:

 backups[x] = [temp_dir, num_files, size]

 return backups

Back in the main() function, we print a summary of each backup to the console if
any were found. For each backup, we print an arbitrary number identifying the
backup, the name of the backup, the number of files, and the size. We use the
format() method and manually specify newlines (\n) to ensure the console
remains legible:

 print("Backup Summary")
 print("=" * 20)
 if len(backups) > 0:
 for i, b in enumerate(backups):
 print("Backup No.: {} \n"
 "Backup Dev. Name: {} \n"
 "# Files: {} \n"
 "Backup Size (Bytes): {}\n".format(
 i, b, backups[b][1], backups[b][2])
)

Next, we use a try-except block to dump the contents of the Manifest.db file to the
db_items variable. If the Manifest.db file is not found, the identified backup folder
is either of an older format or invalid and so we skip it with the continue
command. Let's briefly discuss the process_manifest() function, which uses sqlite3
to connect to and extract all data in the Manifest.db files table:

 try:
 db_items = process_manifest(backups[b][0])
 except IOError:
 logger.warn("Non-iOS 10 backup encountered or "
 "invalid backup. Continuing to next backup.")
 continue

The process_manifest() method takes the directory path of the backup as its only
input. To this input, we join the Manifest.db string, to represent the location
where this database should exist in a valid backup. If it is found that this file
does not exist, we log that error and raise an IOError to the main() function,
which as we just discussed will cause a message to be printed to the console
and continue on to the next backup:

def process_manifest(backup):
 manifest = os.path.join(backup, "Manifest.db")

 if not os.path.exists(manifest):
 logger.error("Manifest DB not found in {}".format(manifest))
 raise IOError

If the file does exist, we connect to it and create the Cursor object using sqlite3.
The items dictionary stores each entry in the Files table using the item's SHA-1
hash as the key and storing all other data as values in a list. Notice here an
alternative method of accessing the results of the query rather than the fetchall()
function used in previous recipes. After we have extracted all of the data from
the Files table, we return the dictionary back to the main() function:

 conn = sqlite3.connect(manifest)
 c = conn.cursor()
 items = {}
 for row in c.execute("SELECT * from Files;"):
 items[row[0]] = [row[2], row[1], row[3]]

 return items

Back in the main() function, we immediately pass the returned dictionary, now
referred to as db_items, to the create_files() method. The dictionary we just
created is going to be used by the next function to perform lookups on the file
SHA-1 hash and determine its real filename, extension, and native file path. The
create_files() function performs these lookups and copies the backed-up file to
the output folder with the appropriate path, name, and extension.

The else statement handles situations where there were no backups found by the
backup_summary() function. We remind the user of what the appropriate input
folder should be and exit the script. This completes the main() function; now
let's move onto the create_files() method:

 create_files(in_dir, out_dir, b, db_items)
 print("=" * 20)

 else:
 logger.warning(
 "No valid backups found. The input directory should be "
 "the parent-directory immediately above the SHA-1 hash "
 "iOS device backups")
 sys.exit(2)

We start the create_files() method by printing a status message to the log:

def create_files(in_dir, out_dir, b, db_items):
 msg = "Copying Files for backup {} to {}".format(
 b, os.path.join(out_dir, b))
 logger.info(msg)

Next, we create a counter to track the number of files found in the manifest but

not within the backup. We then iterate through each key in the db_items
dictionary generated from the process_manifest() function. We first check if the
associated file name is None or an empty string and continue onto the next SHA-1
hash item otherwise:

 files_not_found = 0
 for x, key in enumerate(db_items):
 if db_items[key][0] is None or db_items[key][0] == "":
 continue

If the associated file name is present, we create a few variables representing
the output directory path and the output file path. Notice the output path is
appended to the name of the backup, b, to mimic the backup folder structure in
the input directory. We use the output directory path, dirpath, to first check if it
exists and create it otherwise:

 else:
 dirpath = os.path.join(
 out_dir, b, os.path.dirname(db_items[key][0]))
 filepath = os.path.join(out_dir, b, db_items[key][0])
 if not os.path.exists(dirpath):
 os.makedirs(dirpath)

We create a few more path variables, including the location of the backed-up
file in the input directory. We do this by creating a string with the backup name,
the first two characters of the SHA-1 hash key, and the SHA-1 key itself separated
by forward slashes. We then join this to the input directory:

 original_dir = b + "/" + key[0:2] + "/" + key
 path = os.path.join(in_dir, original_dir)

With all of these paths created, we can now begin to perform a few more
validation steps and then copy files over to the new output destination. First,
we check if the output file already exists in the output folder. During
development of this script, we noticed some files had the same name and were
stored in the same folder in the output. This caused data to be overwritten and
file counts to not match up between the backup folder and the output folder. To
remedy this, if the file already exists in the backup, we append an underscore
and an integer, x, which represents the loop iteration number, which serves as a
unique value for our purposes:

 if os.path.exists(filepath):
 filepath = filepath + "_{}".format(x)

With filename collisions sorted out, we use the shutil.copyfile() method to copy
the backed-up file, represented by the path variable, and rename it and store it
in the output folder, represented by the filepath variable. If the path variable
refers to a file that is not in the backup folder, it will raise an IOError, which we
catch and log to the log file and add to our counter:

 try:
 copyfile(path, filepath)
 except IOError:
 logger.debug("File not found in backup: {}".format(path))
 files_not_found += 1

We then provide a warning to the user about the number of files that were not
found in the Manifest.db, just in case the user did not enable verbose logging.
Once we have copied all files in the backup directory, we use the
shutil.copyfile() method to individually copy the non-obfuscated PLIST and
database files present in the backup folder to the output folder:

 if files_not_found > 0:
 logger.warning("{} files listed in the Manifest.db not"
 "found in backup".format(files_not_found))

 copyfile(os.path.join(in_dir, b, "Info.plist"),
 os.path.join(out_dir, b, "Info.plist"))
 copyfile(os.path.join(in_dir, b, "Manifest.db"),
 os.path.join(out_dir, b, "Manifest.db"))
 copyfile(os.path.join(in_dir, b, "Manifest.plist"),
 os.path.join(out_dir, b, "Manifest.plist"))
 copyfile(os.path.join(in_dir, b, "Status.plist"),
 os.path.join(out_dir, b, "Status.plist"))

When we run this code, we can see the following updated file structure in our
output:

There's more...
This script can be further improved. We have provided a recommendation
here:

Add functionality to convert encrypted iTunes backups. Using a third-
party library, such as pycrypto, one can decrypt the backups by supplying
the correct password.

Putting Wi-Fi on the map
Recipe Difficulty: Medium

Python Version: 3.5

Operating System: Any

Without a connection to the outside world, mobile devices are little more than
an expensive paperweight. Fortunately, open Wi-Fi networks are everywhere,
and sometimes a mobile device will connect to them automatically. On the
iPhone, a list of Wi-Fi networks the device has connected to is stored in a
binary PLIST named com.apple.wifi.plist. This PLIST records, among other
things, the Wi-Fi SSID, BSSID, and connection time. In this recipe, we will
show how to extract Wi-Fi details from a standard Cellebrite XML report or
supply Wi-Fi MAC addresses in a newline-delimited file. As the Cellebrite
report formats may evolve over time, we are basing our XML parsing on a
report generated with UFED Physical Analyzer version 6.1.6.19.

WiGLE is an online searchable repository of, at the time of writing, over 300
million Wi-Fi networks. We will use the Python requests library to access the
API for WiGLE, to perform automated searches based on Wi-Fi MAC
addresses. To install the requests library, we can use pip, as shown here:

pip install requests==2.18.4

If a network is found in the WiGLE repository, we can obtain a great deal of
data about it, including its latitude and longitude coordinates. With this
information, we can understand where a user's device, and presumably the user
itself, has been and when that connection was made.

To learn more about and use WiGLE, visit the website https://wigle
.net/.

https://wigle.net/

Getting started
This recipe requires an API key from the WiGLE website. To register for a
free API key, visit https://wigle.net/account and follow the instructions to display
your API key. There are two API values, the name and key. For this recipe,
please create a file with a single line where the API name value is first,
followed by a colon (no spaces), and then the API key. This format will be
read by the script to authenticate you to the WiGLE API.

At the time of writing, in order to query the WiGLE API you must contribute
data to the service. This is because the whole site is built on community
sourced data and this encourages users to share information with others. There
are many ways to contribute data, as documented on https://wigle.net.

https://wigle.net/account
https://wigle.net

How to do it...
This recipe follows the following steps to accomplish the goal:

1. Identify input as either a Cellebrite XML report or a line-separated text
file of MAC addresses.

2. Process either type of input into a Python dataset.
3. Query the WiGLE API using requests.
4. Optimize the returned WiGLE results into a more convenient format.
5. Write the processed output to a CSV file.

How it works...
First, we import the required libraries to handle argument parsing, writing
spreadsheets, processing XML data, and interacting with the WiGLE API:

from __future__ import print_function
import argparse
import csv
import os
import sys
import xml.etree.ElementTree as ET
import requests

This recipe's command-line handler accepts two positional arguments,
INPUT_FILE and OUTPUT_CSV, representing the input file with Wi-Fi MAC addresses
and the desired output CSV, respectively. By default, the script assumes the
input file is a Cellebrite XML report. The user can specify the type of the input
file using the optional -t flag and choose between xml or txt. Additionally, we
can set the path of the file containing our API key. By default, this is set in the
base of the user's directory and named .wigle_api, though you can update this
value to reflect what is easiest in your environment.

This file holding your API key should have additional
protections, through file permissions or otherwise, to prevent
theft of your key.

if __name__ == "__main__":
 # Command-line Argument Parser
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__),
 formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
 parser.add_argument("INPUT_FILE", help="INPUT FILE with MAC Addresses")
 parser.add_argument("OUTPUT_CSV", help="Output CSV File")
 parser.add_argument(
 "-t", help="Input type: Cellebrite XML report or TXT file",
 choices=('xml', 'txt'), default="xml")
 parser.add_argument('--api', help="Path to API key file",
 default=os.path.expanduser("~/.wigle_api"),
 type=argparse.FileType('r'))
 args = parser.parse_args()

We perform the standard data validation steps and check that the input file
exists and is a file, exiting the script otherwise. We use os.path.dirname() to
extract the directory path and check if it exists. If it does not already exist, we
use the os.makedirs() function to create the directory. We also read in and split
the API name and key before calling the main() function:

 if not os.path.exists(args.INPUT_FILE) or \
 not os.path.isfile(args.INPUT_FILE):
 print("[-] {} does not exist or is not a file".format(
 args.INPUT_FILE))
 sys.exit(1)

 directory = os.path.dirname(args.OUTPUT_CSV)
 if directory != '' and not os.path.exists(directory):
 os.makedirs(directory)

 api_key = args.api.readline().strip().split(":")

After we perform argument validation, we pass all arguments to the main()
function:

 main(args.INPUT_FILE, args.OUTPUT_CSV, args.t, api_key)

In the main() function, we first determine the type of input we are working with.
By default, the type variable is "xml" unless otherwise specified by the user.
Depending on the file type, we send it to the appropriate parser, which returns
the extracted Wi-Fi data elements in a dictionary. This dictionary is then
passed, along with the output CSV, to the query_wigle() function. This function is
responsible for querying, processing, and writing the query results to a CSV
file. First, let's take a look at the parsers, starting with the parse_xml() function:

def main(in_file, out_csv, type, api_key):
 if type == 'xml':
 wifi = parse_xml(in_file)
 else:
 wifi = parse_txt(in_file)

 query_wigle(wifi, out_csv, api_key)

We parse the Cellebrite XML report using xml.etree.ElementTree, which we have
imported as ET.

To learn more about the xml library, visit https://docs.python.org/3/libr
ary/xml.etree.elementtree.html.

https://docs.python.org/3/library/xml.etree.elementtree.html
https://docs.python.org/3/library/xml.etree.elementtree.html

Parsing a report generated by a forensic tool can be tricky business. These
reports may change in format and break your script. Therefore, we cannot
assume that this script will continue to function with future iterations of
Cellebrite's Physical Analyzer software. And it is for that reason that we've
included an option to use this script with a text file containing MAC addresses
instead.

As with any XML file, we need to first access the file and parse it using the
ET.parse() function. We then use the getroot() method to return the root element of
the XML file. We use this root as the initial foothold in the file as we search
for the Wi-Fi data tags within the report:

def parse_xml(xml_file):
 wifi = {}
 xmlns = "{http://pa.cellebrite.com/report/2.0}"
 print("[+] Opening {} report".format(xml_file))
 xml_tree = ET.parse(xml_file)
 print("[+] Parsing report for all connected WiFi addresses")
 root = xml_tree.getroot()

We use the iter() method to iterate through the child elements of the root. We
check the tag for each child looking for the model tag. If found, we check if it
has a location type attribute:

 for child in root.iter():
 if child.tag == xmlns + "model":
 if child.get("type") == "Location":

For each location model found, we iterate through each of its field elements
using the findall() method. This element contains metadata about the location
artifact, such as the timestamp, BSSID, and SSID, of the network. We can
check if the field has a name attribute with the value of "Timestamp" and store its
value in the ts variable. If the value does not have any text content, we continue
on to the next field:

 for field in child.findall(xmlns + "field"):
 if field.get("name") == "TimeStamp":
 ts_value = field.find(xmlns + "value")
 try:
 ts = ts_value.text
 except AttributeError:
 continue

In a similar fashion, we check if the field's name matches "Description". This

field contains the BSSID and SSID of the Wi-Fi network in a tab-delimited
string. We attempt to access the text of this value and except an AttributeError if
there is no text:

 if field.get("name") == "Description":
 value = field.find(xmlns + "value")
 try:
 value_text = value.text
 except AttributeError:
 continue

Because there may be other types of "Location" artifacts in the Cellebrite report,
we check that the string "SSID" is present in the value's text. If so, we split the
string using the tab special character into two variables. These strings we
extracted from the value's text contain some unnecessary characters, which we
remove from the string using string slicing:

 if "SSID" in value.text:
 bssid, ssid = value.text.split("\t")
 bssid = bssid[7:]
 ssid = ssid[6:]

After we extract the timestamp, BSSID, and SSID from the report, we can add
them to the wifi dictionary. If the Wi-Fi BSSID is already stored as one of the
keys, we append the timestamp and SSID to the list. This is so that we can
capture all historical connections to this Wi-Fi network and any changes to the
name of the network. If we have not yet added this MAC address to the wifi
dictionary, we create the key/value pairs including the WiGLE dictionary that
stores API call results. After we have parsed all Location model artifacts, we
return the wifi dictionary to the main() function:

 if bssid in wifi.keys():
 wifi[bssid]["Timestamps"].append(ts)
 wifi[bssid]["SSID"].append(ssid)
 else:
 wifi[bssid] = {
 "Timestamps": [ts], "SSID": [ssid],
 "Wigle": {}}
 return wifi

In contrast to the XML parser, the TXT parser is much more straightforward.
We iterate through each line of the text file and set up each line, which should
be one MAC address, as a key to an empty dictionary. After we have
processed all lines in the file, we return the dictionary to the main() function:

def parse_txt(txt_file):
 wifi = {}
 print("[+] Extracting MAC addresses from {}".format(txt_file))
 with open(txt_file) as mac_file:
 for line in mac_file:
 wifi[line.strip()] = {"Timestamps": ["N/A"], "SSID": ["N/A"],
 "Wigle": {}}
 return wifi

With the dictionary of MAC addresses, we can now move onto the query_wigle()
function and use requests to make WiGLE API calls. First, we print a message
to the console informing the user of the current execution status. Next, we
iterate through each MAC address in the dictionary and use the query_mac_addr()
function to query the site for the BSSID:

def query_wigle(wifi_dictionary, out_csv, api_key):
 print("[+] Querying Wigle.net through Python API for {} "
 "APs".format(len(wifi_dictionary)))
 for mac in wifi_dictionary:
 wigle_results = query_mac_addr(mac, api_key)

The query_mac_addr() function takes our MAC address and API key and constructs
the URL for the request. We use the base URL for the API and insert the MAC
address at the end of it. This URL is then provided to the requests.get() method,
along with an auth kwarg to provide the API name and key. The requests library
handles forming and sending the packet to the API with the correct HTTP basic
authentication. The req object is now ready for us to interpret, so we can call
the json() method to return the data as a dictionary:

def query_mac_addr(mac_addr, api_key):
 query_url = "https://api.wigle.net/api/v2/network/search?" \
 "onlymine=false&freenet=false&paynet=false" \
 "&netid={}".format(mac_addr)
 req = requests.get(query_url, auth=(api_key[0], api_key[1]))
 return req.json()

With the returned wigle_results dictionary, we check the resultCount key to
determine how many results were found in the Wigle database. If there are no
results, we append an empty list to the results key in the Wigle dictionary.
Likewise, if there are results, we directly append the returned wigle_results
dictionary to the dataset. The API does have limits to a number of calls you can
execute per day. When you reach that limit, a KeyError will be generated, which
we catch and print to the console. We also provide reporting for other errors
identified in a run, as the API may grow to expand the error reporting. After

searching for each address and adding the results to the dictionary, we pass it,
along with the output CSV, to the prep_output() method:

 try:
 if wigle_results["resultCount"] == 0:
 wifi_dictionary[mac]["Wigle"]["results"] = []
 continue
 else:
 wifi_dictionary[mac]["Wigle"] = wigle_results
 except KeyError:
 if wigle_results["error"] == "too many queries today":
 print("[-] Wigle daily query limit exceeded")
 wifi_dictionary[mac]["Wigle"]["results"] = []
 continue
 else:
 print("[-] Other error encountered for "
 "address {}: {}".format(mac, wigle_results['error']))
 wifi_dictionary[mac]["Wigle"]["results"] = []
 continue
 prep_output(out_csv, wifi_dictionary)

If you haven't noticed, the data is becoming increasingly complicated, which
makes writing it and working with it a bit more complicated. The prep_output()
method essentially flattens the dictionary into easily writable chunks. The other
reason we need this function is that we need to create separate rows for each
instance a particular Wi-Fi network was connected to. While the WiGLE
results for that network will be the same, the connection timestamp and the
network SSID may be different.

To accomplish this, we start by creating a dictionary for the final processed
results and a Google Maps-related string. We use this string to create a query
with the latitude and longitude so the user can easily paste the URL into their
browser to view geolocation details in Google Maps:

def prep_output(output, data):
 csv_data = {}
 google_map = "https://www.google.com/maps/search/"

We iterate through each MAC address in the dictionary and create two
additional loops to iterate through all timestamps and all WiGLE results for the
MAC address. With these loops, we can now access all of the data we have
collected thus far and begin to add the data to the new output dictionary.

Due to the complexity of the initial dictionary, we create a variable called
shortres to act as a shortcut to a deeper part of the output dictionary. This

prevents us from unnecessarily writing the entire directory structure each and
every time we need to access that part of the dictionary. The first use of the
shortres variable can be seen as we extract the latitude and longitude of this
network from the WiGLE results and append it to the Google Maps query:

 for x, mac in enumerate(data):
 for y, ts in enumerate(data[mac]["Timestamps"]):
 for z, result in enumerate(data[mac]["Wigle"]["results"]):
 shortres = data[mac]["Wigle"]["results"][z]
 g_map_url = "{}{},{}".format(
 google_map, shortres["trilat"], shortres["trilong"])

In one (rather complicated) line, we add a key and value pair where the key is
unique based on loop iteration counters and the value is the flattened
dictionary. We do this by first creating a new dictionary containing the BSSID,
SSID, timestamp, and the newly created Google Maps URL. Because we want
to simplify the output, we need to merge the new dictionary and the WiGLE
results, stored in the shortres variable, together.

We could iterate through each key in the second dictionary and add its key and
value pairs one by one. However, it is much quicker to use a feature introduced
in Python 3.5 whereby we can merge the two dictionaries by placing two *
symbols before each dictionary. This will combine both dictionaries and, if
there are any keys with the same name, overwrite data from the first dictionary
with the second one. In this case, we do not have any key overlap, so this will
simply combine the dictionaries as desired.

See the following StackOverflow post to learn more about
dictionary merging:
https://stackoverflow.com/questions/38987/how-to-merge-two-python-dictionaries-
in-a-single-expression.

After all of the dictionaries have been merged, we proceed to the write_csv()
function to finally write the output:

 csv_data["{}-{}-{}".format(x, y, z)] = {
 **{
 "BSSID": mac, "SSID": data[mac]["SSID"][y],
 "Cellebrite Connection Time": ts,
 "Google Map URL": g_map_url},
 **shortres
 }

https://stackoverflow.com/questions/38987/how-to-merge-two-python-dictionaries-in-a-single-expression

 write_csv(output, csv_data)

In this recipe, we reintroduce the csv.DictWriter class, which allows us to easily
write dictionaries to a CSV file. This is preferable over the csv.writer class we
have used previously as it provides us a few benefits, including ordering the
columns. To take advantage of that, we need to know all of the fields we use.
Because WiGLE is dynamic and the reported results may change, we elected to
dynamically find the names of all keys in the output dictionary. By adding them
to a set, we ensure we only have unique keys:

def write_csv(output, data):
 print("[+] Writing data to {}".format(output))
 field_list = set()
 for row in data:
 for field in data[row]:
 field_list.add(field)

Once we have identified all of the keys we have in the output, we can create
the CSV object. Notice how with the csv.DictWriter object we use two keyword
arguments. The first, as mentioned previously, is a list of all the keys in the
dictionary that we have sorted. This sorted list is the order of the columns in
the resulting CSV. If the csv.DictWriter encounters a key that is not in the
supplied field_list, which shouldn't happen in this case due to our precautions,
it will ignore the error rather than raise an exception due to the configuration in
the extrasaction kwarg:

 with open(output, "w", newline="") as csvfile:
 csv_writer = csv.DictWriter(csvfile, fieldnames=sorted(
 field_list), extrasaction='ignore')

Once we have the writer set up, we can use the writeheader() method to
automatically write the columns based on the supplied field names. After that,
it's a simple matter of iterating through each dictionary in the data and writing
it to the CSV file with the writerow() function. While this function is simple,
imagine the headache we would have if we did not simplify the original data
structure first:

 csv_writer.writeheader()
 for csv_row in data:
 csv_writer.writerow(data[csv_row])

After running this script, we can see all sorts of useful information in our CSV

report. The first few columns include the BSSID, Google Maps URL, City and
County:

We then see several timestamps such as the first time seen, most recent time
seen, and more specific locations such as the region and road:

And finally, we can learn the SSID, coordinates, and type of network and
authentication used:

Digging deep to recover messages
Recipe Difficulty: Hard

Python Version: 3.5

Operating System: Any

Earlier in this chapter, we developed a recipe to identify missing records from
a database. In this recipe, we will leverage the output from that recipe and
identify recoverable records and their offset within a database. This is
accomplished by understanding some internals of SQLite databases and
leveraging that understanding to our advantage.

For a detailed description of the SQLite file internals, review ht
tps://www.sqlite.org/fileformat.html.

With this technique, we will be able to quickly triage a database and identify
recoverable messages.

When a row from a database is deleted, similar to a file, the entry is not
necessarily overwritten. This entry can still persist for some time based on
database activity and its allocation algorithms. Our chances for data recovery
decrease when, for example, a vacuum command is triggered.

We will not get into the weeds discussing SQLite structure; suffice to say that
each entry is made up of four elements: payload length, the ROWID, the
payload header, and the payload itself. The previous recipe identifies missing
ROWID values, which we will use here to find all such occurrences of the
ROWID across the database. We will use other data, such as known standard
payload header values, with the iPhone SMS database to validate any hits.
While this recipe is focused on extracting data from the iPhone SMS database,
it can be modified to work for any database. We will later point out the few

https://www.sqlite.org/fileformat.html

lines of code one would need to change to use it for other databases.

Getting started
All libraries used in this script are present in Python's standard library. If you
would like to follow along, obtain an iPhone SMS database. If the database
does not contain any deleted entries, open it with an SQLite connection and
delete a few. This is a good test to confirm the script works as intended on
your dataset.

How to do it...
This recipe is made up of the following steps:

1. Connect to the input database.
2. Query table PRAGMA and identify active entry gaps.
3. Convert ROWID gaps into their varint representation.
4. Search the raw hex of the database for missing entries.
5. Output results to a CSV file.

How it works...
First, we import the required libraries to handle argument parsing,
manipulating hex and binary data, writing spreadsheets, creating tuples of
cartesian products, searching with regular expression, and interacting with
SQLite databases:

from __future__ import print_function
import argparse
import binascii
import csv
from itertools import product
import os
import re
import sqlite3
import sys

This recipe's command-line handler takes three positional and one optional
argument. This is largely the same as the Identifying gaps in SQLite databases
recipe earlier in this chapter; however, we have also added an argument for the
output CSV file:

if __name__ == "__main__":
 # Command-line Argument Parser
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("SQLITE_DATABASE", help="Input SQLite database")
 parser.add_argument("TABLE", help="Table to query from")
 parser.add_argument("OUTPUT_CSV", help="Output CSV File")
 parser.add_argument("--column", help="Optional column argument")
 args = parser.parse_args()

After we parse the arguments, we pass the supplied arguments to the main()
function. If the optional column argument was supplied by the user, we pass it
to the main() function using the col keyword argument:

 if args.column is not None:
 main(args.SQLITE_DATABASE, args.TABLE,
 args.OUTPUT_CSV, col=args.column)
 else:
 main(args.SQLITE_DATABASE, args.TABLE, args.OUTPUT_CSV)

Because this script leverages what we have previously built, the main() function
is largely duplicative of what we have already shown. Rather than repeating
the comments about the code (there's only so much one can say about a line of
code) we refer you to the Identifying gaps in SQLite databases recipe for an
explanation of that portion of the code.

To refresh everyone's collective memory, see the following summary of that
recipe: the main() function performs basic input validation, identifies potential
primary keys from a given table (unless the column was supplied by the user),
and calls the find_gaps() function. The find_gaps() function is another holdover
from the previous script and is almost identical to the previous with the
exception of one line. Rather than printing all of the identified gaps, this
function now returns the identified gaps back to the main() function. The
remainder of the main() function and all other code covered here on out is new.
This is where we pick back up the thread as we continue to understand this
recipe.

With gaps identified, we call a function called varint_converter() to process each
gap into its varint counterpart. Varints, also known as variable-length integers,
are big-endian integers between one and nine bytes in size. Varints are used by
SQLite because they can take up less space than actually storing the ROWID
integer itself. Therefore, in order to search for the deleted ROWID effectively,
we must first convert it to a varint as we must search for that instead:

 print("[+] Carving for missing ROWIDs")
 varints = varint_converter(list(gaps))

For ROWIDs less than or equal to 127, their varint equivalent is simply the
hex representation of the integer. We use the built-in hex() method to convert the
integer into a hex string and use string slicing to remove the prepended 0x. For
example, executing hex(42) returns the string 0x2a; in this case, we remove the
leading 0x hex designator as we are only interested in the value:

def varint_converter(rows):
 varints = {}
 varint_combos = []
 for i, row in enumerate(rows):
 if row <= 127:
 varints[hex(row)[2:]] = row

If the missing ROWID is 128 or greater, we start an infinite while loop to find the
relevant varint. Before starting the loop, we use list comprehension to create a
list containing numbers 0 through 255. We also instantiate a counter variable
with a value of 1. The first part of the while loop creates a list of tuples, whose
number of elements equals to the counter variable, containing every combination
of the combos list. For example, if counter is equal to 2, we see a list of tuples
representing all possible 2-byte varints as [(0, 0), (0, 1), (0, 2), ..., (255,
255)]. After that process completes, we use list comprehension again to remove
all tuples whose first element is less than or equal to 127. Due to the fact that
this part of the if-else loop deals with rows greater than or equal to 128, we
know the varint cannot be equal to or less than 127 and so those values are
eliminated from consideration:

 else:
 combos = [x for x in range(0, 256)]
 counter = 1
 while True:
 counter += 1
 print("[+] Generating and finding all {} byte "
 "varints..".format(counter))
 varint_combos = list(product(combos, repeat=counter))
 varint_combos = [x for x in varint_combos if x[0] >= 128]

After creating the list of n-byte varints, we loop through each combination and
pass it to the integer_converter() function. This function treats these numbers as
part of a varint and decodes them into the corresponding ROWID. We can then
check the returned ROWID against the missing ROWID. If it matches, we add a
key and value pair to the varints dictionary where the key is the hexadecimal
representation of the varint and the value is the missing ROWID. At this point,
we increment the i variable by 1 and try to fetch the next row element. If
successful, we process that ROWID and so on until we have reached the end of
the ROWIDs that will generate an IndexError. We catch such an error and return
the varints dictionary back to the main() function.

One important thing to note about this function, because the input was a sorted
list of ROWIDs, we only need to calculate the n-byte varint combinations once
as the next ROWID in line can only be bigger not smaller. Additionally, due to
the fact that we know the next ROWID is at least one greater than the previous,
we continue looping through the varint combinations we created without
restarting as it would be impossible for the next ROWID to be smaller. These

techniques show a great use case for while loops as they vastly improve the
execution speed of the recipe:

 for varint_combo in varint_combos:
 varint = integer_converter(varint_combo)
 if varint == row:
 varints["".join([hex(v)[2:].zfill(2) for v in
 varint_combo])] = row
 i += 1
 try:
 row = rows[i]
 except IndexError:
 return varints

The integer_converter() function is relatively straightforward. This function
makes use of the built-in bin() method, similar to the hex() method already
discussed, to convert an integer into its binary equivalent. We iterate through
each value in the proposed varint, first converting each using bin(). This returns
a string, this time with the binary prefix value 0b prepended, which we remove
using string slicing. We again use zfill() to ensure the bytes have all bits intact
as the bin() method removes leading 0 bits by default. After that, we remove the
first bit from every byte. As we iterate through each number of our varint, we
add the resulting processed bits to a variable called binary.

This process may sound a little confusing; however, this is the manual process
of decoding varints.

Refer to this blog post on Forensics from the sausage factory
for more details about how to manually convert varints to
integers and other SQLite internals:
https://forensicsfromthesausagefactory.blogspot.com/2011/05/analysis-of-record-st
ructure-within.html.

After we finish iterating through the list of numbers, we use lstrip() to strip out
any leftmost zero values in the binary string. If the resulting string is empty, we
return 0; otherwise, we convert and then return the processed binary data back
into an integer from the base-2 binary representation:

def integer_converter(numbs):
 binary = ""
 for numb in numbs:
 binary += bin(numb)[2:].zfill(8)[1:]
 binvar = binary.lstrip("0")

https://forensicsfromthesausagefactory.blogspot.com/2011/05/analysis-of-record-structure-within.html
https://forensicsfromthesausagefactory.blogspot.com/2011/05/analysis-of-record-structure-within.html

 if binvar != '':
 return int(binvar, 2)
 else:
 return 0

Back in the main() function, we pass the varints dictionary and the path to the
database file to the find_candidates() function:

 search_results = find_candidates(database, varints)

The two candidates we search for are "350055" and "360055". As discussed
before, in a database, following the ROWID for a cell is the payload header
length. This payload header length is typically one of two values in the iPhone
SMS database: either 0x35 or 0x36. Following the payload header length is the
payload header itself. The first serial type of the payload header will be 0x00
and represents a NULL value, which the primary key of the database--the first
column and hence the first serial type--will always be recorded as. Next is the
serial type 0x55 corresponding to the second column in the table, the message
GUID, which is always a 21 byte string and therefore will always be
represented by the serial type 0x55. Any validated hits are appended to the
results list.

By searching for the ROWID varint and these three additional bytes, we can
greatly reduce the number of false positives. Note that if you are working on a
database other than the iPhone SMS database, you need to change the value of
these candidates to reflect any static content proceeding the ROWID in your
table:

def find_candidates(database, varints):
 results = []
 candidate_a = "350055"
 candidate_b = "360055"

We open the database in rb mode to search its binary content. In order to do so,
we must first read in the entire database and, using the binascii.hexlify()
function, convert this data into hex. As we have already stored the varints as
hex, we can now easily search this dataset for the varint and other surrounding
data. We begin the search process by looping through each varint and creating
two different search strings to account for either of the two static footholds in
the iPhone SMS database:

 with open(database, "rb") as infile:
 hex_data = str(binascii.hexlify(infile.read()))
 for varint in varints:
 search_a = varint + candidate_a
 search_b = varint + candidate_b

We then use the re.finditer() method to iterate through each hit based on the
search_a and search_b keywords. For each result, we append a list with the
ROWID, the search term used, and the offset within the file. We must divide by
2 to accurately report the number of bytes rather than the number of hex digits.
After we finish searching the data, we return the results to the main() function:

 for result in re.finditer(search_a, hex_data):
 results.append([varints[varint], search_a, result.start() / 2])

 for result in re.finditer(search_b, hex_data):
 results.append([varints[varint], search_b, result.start() / 2])

 return results

For the last time, we are back in the main() function. This time we check if there
are any search results. If there are, we pass them along with the CSV output to
the csvWriter() method. Otherwise, we print a status message to the console
notifying the user that there were no intact recoverable ROWIDs identified:

 if search_results != []:
 print("[+] Writing {} potential candidates to {}".format(
 len(search_results), out_csv))
 write_csv(out_csv, ["ROWID", "Search Term", "Offset"],
 search_results)
 else:
 print("[-] No search results found for missing ROWIDs")

The write_csv() method is true to form and simple as always. We open a new
CSV file and create three columns for the three elements stored in the nested
list structure. We then use the writerows() method to write all rows in the results
data list to the file:

def write_csv(output, cols, msgs):
 with open(output, "w", newline="") as csvfile:
 csv_writer = csv.writer(csvfile)
 csv_writer.writerow(cols)
 csv_writer.writerows(msgs)

When we look at the exported report we can clearly see our row ID, the
searched hex value, and the offset within the database the record was found:

There's more…
This script can be further improved. We have provided a recommendation
here:

Rather than hard-coding the candidates, accept a text file of such
candidates or command-line entries to increase the recipe's flexibility

Extracting Embedded Metadata
Recipes
This chapter covers the following recipes:

Extracting audio and video metadata
The big picture
Mining for PDF metadata
Reviewing executable metadata
Reading office document metadata
Integrating our metadata extractor with EnCase

Introduction
When an investigation comes down to just a few files of interest, it is critical
to extract every piece of available information about the file. Embedded
metadata, often overlooked, can provide us with crucial information that
solidifies the evidentiary value of a given file. Whether it is gathering
authorship information from Microsoft Office files, mapping GPS coordinates
from pictures, or extracting compilation information from executables, we can
learn a lot more about files we are investigating. In this chapter, we will
develop scripts to examine these file formats, and others, to extract key
information for our review. We will illustrate how to integrate these recipes
with EnCase, the popular forensic suite, and add them to your investigative
workflow.

In particular, we will develop code that highlights the following:

Parsing ID3 and QuickTime-formatted metadata from audio and video
formats
Revealing GPS coordinates embedded within images
Identifying authorship and lineage information from PDF files
Extracting embedded names, compilation dates, and other attributes of
Windows executable files
Reporting on document creation and source of Microsoft Office files
Launching Python scripts from EnCase

Visit www.packtpub.com/books/content/support to download the code
bundle for this chapter.

http://www.packtpub.com/books/content/support

Extracting audio and video
metadata
Recipe Difficulty: Easy

Python Version: 2.7 or 3.5

Operating System: Any

Audio and video files are common file formats that make use of embedded
metadata. This information, for example, is used by your preferred media
player to show the artist, album, and track name information of the content you
import. Though the majority of this information is standard and focused on
providing information to the listener, we sometimes find important details in
this area of the file. We begin our exploration of embedded metadata with the
extraction of the common attributes from audio and video files.

Getting started
This recipe requires the installation of the third-party library mutagen. All other
libraries used in this script are present in Python's standard library. This
library allows us to extract metadata from audio and video files. This library
can be installed using pip:

pip install mutagen==1.38

To learn more about the mutagen library, visit https://mutagen.readthed
ocs.io/en/latest.

https://mutagen.readthedocs.io/en/latest

How to do it...
In this script, we perform the following steps:

1. Identify the input file type.
2. Extract embedded metadata from the file type processor.

How it works...
To extract information from a sample MP3 or MP4 file, we first import the
three libraries needed for this recipe: argparse, json, and mutagen. The json library
allows us to load definitions for the QuickTime MP4 metadata format used
later in this recipe.

from __future__ import print_function
import argparse
import json
import mutagen

This recipe's command-line handler takes one positional argument, AV_FILE,
which represents the path to the MP3 or MP4 file to process. After parsing the
user-supplied arguments, we use the mutagen.File() method to open a handle to
the file. Depending on the extension of the input file, we send this handle to the
appropriate function: handle_id3() or handle_mp4().

if __name__ == '__main__':
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("AV_FILE", help="File to extract metadata from")
 args = parser.parse_args()
 av_file = mutagen.File(args.AV_FILE)

 file_ext = args.AV_FILE.rsplit('.', 1)[-1]
 if file_ext.lower() == 'mp3':
 handle_id3(av_file)
 elif file_ext.lower() == 'mp4':
 handle_mp4(av_file)

The handle_id3() function is responsible for extracting metadata from MP3 files.
The MP3 format uses the ID3 standard for storing its metadata. In our ID3
parsing function, we first create a dictionary, called id3_frames, mapping the ID3
fields, as they are represented in the raw file, to human-readable strings. We
can add more fields to this definition to extend the information we extract.
Before we extract the embedded metadata, we print appropriate column
headers to the console.

def handle_id3(id3_file):
 # Definitions from http://id3.org/id3v2.4.0-frames
 id3_frames = {
 'TIT2': 'Title', 'TPE1': 'Artist', 'TALB': 'Album',
 'TXXX': 'Custom', 'TCON': 'Content Type', 'TDRL': 'Date released',
 'COMM': 'Comments', 'TDRC': 'Recording Date'}
 print("{:15} | {:15} | {:38} | {}".format("Frame", "Description",
 "Text", "Value"))
 print("-" * 85)

Next, we use a loop to extract the names and various values of each id3 frame.
We query the name of the frame against the id3_frames dictionary to extract the
human-readable version of it. Additionally, from each of the frames, we extract
the description, text, and value(s) (if they are present) using the getattr()
method. Finally, we print the pipe-delimited text to the console for review.
That takes care of MP3 files, now let's move onto MP4 files.

 for frames in id3_file.tags.values():
 frame_name = id3_frames.get(frames.FrameID, frames.FrameID)
 desc = getattr(frames, 'desc', "N/A")
 text = getattr(frames, 'text', ["N/A"])[0]
 value = getattr(frames, 'value', "N/A")
 if "date" in frame_name.lower():
 text = str(text)

 print("{:15} | {:15} | {:38} | {}".format(
 frame_name, desc, text, value))

The handle_mp4() function is responsible for processing MP4 files and follows a
similar workflow to the previous function. We begin by setting up the metadata
mappings in a dictionary, called qt_tag, using the Unicode value for the
copyright symbol (u"\u00A9") as a prepended character to the field names. This
mapping dictionary is designed so the tag name is the key and the human-
readable string is the value. We then use the json.load() method to bring in a
large list of definitions for types of media genres (Comedy, Podcasts, Country,
and so on). By storing the JSON data to the genre_ids variable, in this case, we
have a dictionary with genre look up values where keys are integers and their
values are different genres. These definitions are from http://www.sno.phy.queensu.ca/
~phil/exiftool/TagNames/QuickTime.html#GenreID.

def handle_mp4(mp4_file):
 cp_sym = u"\u00A9"
 qt_tag = {
 cp_sym + 'nam': 'Title', cp_sym + 'art': 'Artist',
 cp_sym + 'alb': 'Album', cp_sym + 'gen': 'Genre',
 'cpil': 'Compilation', cp_sym + 'day': 'Creation Date',
 'cnID': 'Apple Store Content ID', 'atID': 'Album Title ID',

http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/QuickTime.html#GenreID

 'plID': 'Playlist ID', 'geID': 'Genre ID', 'pcst': 'Podcast',
 'purl': 'Podcast URL', 'egid': 'Episode Global ID',
 'cmID': 'Camera ID', 'sfID': 'Apple Store Country',
 'desc': 'Description', 'ldes': 'Long Description'}
 genre_ids = json.load(open('apple_genres.json'))

Next, we iterate through the MP4 file's embedded metadata key-value pairs.
For each key, we use the qt_tag dictionary to look up the human-readable
version of the key. If the value is a list, we join all of its elements into a semi-
colon separated string. Alternatively, if the value is "geID", we use the genre_ids
dictionary to look up the integer and print the mapped genre for the user.

 print("{:22} | {}".format('Name', 'Value'))
 print("-" * 40)
 for name, value in mp4_file.tags.items():
 tag_name = qt_tag.get(name, name)
 if isinstance(value, list):
 value = "; ".join([str(x) for x in value])
 if name == 'geID':
 value = "{}: {}".format(
 value, genre_ids[str(value)].replace("|", " - "))
 print("{:22} | {}".format(tag_name, value))

Using a MP3 podcast as an example, the script shows additional details
otherwise unavailable. We now know the release date, what appears to be the
software used, and several identifiers that we can use for keywords to try and
identify the file elsewhere.

Let's look at another podcast, but this time, one that is an MP4. After running
the script, we are presenting with a great deal of information about the MP4
file's source and type of content. Again, we have several interesting identifiers,

source URLs, and other attribution details available to us due to this exercise.

There's more...
This script can be further improved. here's a recommendation:

Add additional support for other multimedia formats using the mutagen
library.

The big picture
Recipe Difficulty: Easy

Python Version: 2.7 or 3.5

Operating System: Any

Images can contain many metadata attributes, depending on the file format and
the device that was used to capture the image. Fortunately, most devices will
embed GPS information within the photos they take. Using third-party
libraries, we will extract GPS coordinates and plot them with Google Earth.
This script focuses exclusively on this task, however, the recipe can be easily
tweaked to extract all embedded Exchangeable Image File Format (EXIF)
metadata in JPEG and TIFF images as well.

Getting started
This recipe requires the installation of two third-party libraries: pillow and
simplekml. All other libraries used in this script are present in Python's standard
library. The pillow library provides a clean interface to the Python Imaging
Library (PIL) and can be used to extract embedded metadata from images:

pip install pillow==4.2.1

To learn more about the pillow library, visit https://pillow.readthedocs.
io/en/4.2.x/.

To add some extra flair to this recipe, we will be writing the GPS details to a
KML file, for use in a program like Google Earth. To handle this, we will use
the simplekml library, available for installation by executing the following
command:

pip install simplekml==1.3.0

To learn more about the simplekml library, visit http://www.simplekml.c
om/en/latest/.

https://pillow.readthedocs.io/en/4.2.x/
http://www.simplekml.com/en/latest/

How to do it...
We extract metadata from image files in the following steps:

1. Open the input photo with PIL.
2. Use PIL to extract all EXIF tags.
3. If GPS coordinates are found, create a Google Earth KML file.
4. Print the Google Maps URL to view the GPS data in the browser.

How it works...
We begin by importing argparse along with the newly installed simplekml and PIL
libraries. For this example, we will only need the Image and ExifTags.Tags classes
from PIL.

from __future__ import print_function
import argparse
from PIL import Image
from PIL.ExifTags import TAGS
import simplekml
import sys

This recipe's command-line handler accepts one positional argument,
PICTURE_FILE, which represents the file path to the photo to process.

parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(", ".join(__authors__), __date__)
)
parser.add_argument('PICTURE_FILE', help="Path to picture")
args = parser.parse_args()

After configuring these arguments, we specify two URLs, gmaps and open_maps,
that we will populate with coordinate information. Since the PIL library
provides coordinates as a tuple of tuples in the degrees minutes seconds
(DMS) format, we will need a function to convert them into decimal, which is
another commonly used format for expressing coordinates. Each of the three
elements in the provided tuple represents a different component of the
coordinate. Additionally, within each tuple, there are two elements: the first
element represents the value and the second is the scale that must be used to
convert the value into an integer.

For each component of the coordinate, we need to divide the first value in the
nested tuple by the second value. This structure is used for the second and third
tuple, which describe the minute and second values of the DMS coordinate.
Additionally, we need to ensure that the minutes and seconds are added
together properly by dividing each by the product of 60 to the power of the
current iteration count (which will be 1 and 2). While this won't change the first

value (as enumeration begins at zero), it will ensure the second and third
values are properly expressed.

The following code block highlights an example of the coordinate format
provided by the PIL library. Notice how the degree, minute, and second values
are grouped into their own tuples. The first element represents the value of the
coordinate and the second represents the scale. For example, for the seconds
element (the third tuple), we need to divide the integer by 1000 before
performing our other operations to ensure the value is represented correctly:

Latitude: ((41 , 1), (53 , 1), (23487 , 1000))
Longitude: ((12 , 1), (29 , 1), (10362 , 1000))
GPS coordinates: 41.8898575 , 12.486211666666666

gmaps = "https://www.google.com/maps?q={},{}"
open_maps = "http://www.openstreetmap.org/?mlat={}&mlon={}"

def process_coords(coord):
 coord_deg = 0
 for count, values in enumerate(coord):
 coord_deg += (float(values[0]) / values[1]) / 60**count
 return coord_deg

With the DMS to decimal coordinate conversion process configured, we open
the image using the Image.open() method to open a file by path as a PIL object. We
then use the _getexif() method to extract a dictionary containing EXIF data. If
PIL is unable to extract metadata from the photo, this variable will be None.

With the EXIF dictionary, we iterate through the keys and values to convert the
numeric value to a human-readable name. This uses the TAGS dictionary from
PIL, which maps the numeric value to a string representing the tag. The TAGS
object acts in a similar manner to the manually specified mappings in the prior
recipe.

img_file = Image.open(args.PICTURE_FILE)
exif_data = img_file._getexif()

if exif_data is None:
 print("No EXIF data found")
 sys.exit()

for name, value in exif_data.items():
 gps_tag = TAGS.get(name, name)

 if gps_tag is not 'GPSInfo':
 continue

Once the GPSInfo tag is found, we extract four values of interest, found within
the dictionary keys 1 through 4. In pairs, we store the GPS reference and
process the coordinates with the process_coords() method previously described.
By storing the reference as a Boolean, we can easily use an if statement to
determine whether the GPS decimal coordinates should be positive or
negative.

 lat_ref = value[1] == u'N'
 lat = process_coords(value[2])
 if not lat_ref:
 lat = lat * -1

 lon_ref = value[3] == u'E'
 lon = process_coords(value[4])
 if not lon_ref:
 lon = lon * -1

To add our KML support, we initiate a kml object from the simplekml library.
From there, we add a new point with a name and the coordinates. For the
name, we simply use the file's name. The coordinates are provided as a tuple
within a list where the first element is the longitude and the second is the
latitude. We could also provide a third element in this tuple to specify the zoom
level, though we omit it in this instance. To produce our KML file, we call the
save() method and write it to a .kml file with the same name as the input file.

 kml = simplekml.Kml()
 kml.newpoint(name=args.PICTURE_FILE, coords=[(lon, lat)])
 kml.save(args.PICTURE_FILE + ".kml")

With the processed GPS information, we can print the coordinates, KML file,
and URLs to the console. Notice how we nest the format strings, allowing us to
print a basic message along with the URL.

 print("GPS Coordinates: {}, {}".format(lat, lon))
 print("Google Maps URL: {}".format(gmaps.format(lat, lon)))
 print("OpenStreetMap URL: {}".format(open_maps.format(lat, lon)))
 print("KML File {} created".format(args.PICTURE_FILE + ".kml"))

When we run this script at the command line, we quickly see the coordinates,
two links to view the location on a map, and the path to the KML file.

Following the two links we generated, we can see the pins on the two maps
and share these links with others if so desired.

Lastly, we can use the KML file to store and reference the location found
within the image. Google Earth allows this file to be viewed through both the
web and desktop clients.

There's more...
This script can be further improved. We have provided one or more
recommendations as follows:

Integrate file recursion to process multiple photos to create larger KML
files that map many GPS coordinates.
Experiment with the simplekml library to add additional detail to each
point, such as a description, timestamp, coloring, and more.

Mining for PDF metadata
Recipe Difficulty: Easy

Python Version: 2.7 or 3.5

Operating System: Any

While PDF documents can represent a wide variety of media, including
images, text, and forms, they contain structured embedded metadata in the
Extensible Metadata Platform (XMP) format that can provide us with some
additional information. Through this recipe, we access a PDF using Python and
extract metadata describing the creation and lineage of the document.

Getting started
This recipe requires the installation of the third-party library PyPDF2. All other
libraries used in this script are present in Python's standard library. The PyPDF2
module provides us with bindings to read and write PDF files. In our case, we
will only use this library to read the metadata stored in the XMP format. To
install this library, run the following command:

pip install PyPDF2==1.26.0

To learn more about the PyPDF2 library, visit http://mstamy2.github.io/P
yPDF2/.

http://mstamy2.github.io/PyPDF2/

How to do it...
To handle PDFs for this recipe, we follow these steps:

1. Open the PDF file with PyPDF2 and extract embedded metadata.
2. Define a custom print function for different Python object types.
3. Print various embedded metadata properties.

How it works...
First, we import the argparse, datetime, and sys libraries along with the newly
installed PyPDF2 module.

from __future__ import print_function
from argparse import ArgumentParser, FileType
import datetime
from PyPDF2 import PdfFileReader
import sys

This recipe's command-line handler accepts one positional argument, PDF_FILE,
which represents the file path to the PDF to process. For this script, we need to
pass an open file object to the PdfFileReader class, so we use the argparse.FileType
handler to open the file for us.

parser = ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(", ".join(__authors__), __date__)
)
parser.add_argument('PDF_FILE', help='Path to PDF file',
 type=FileType('rb'))
args = parser.parse_args()

After providing the open file to the PdfFileReader class, we call the
getXmpMetadata() method to provide an object containing the available XMP
metadata. If this method returns None, we print a succinct message to the user
before exiting.

pdf_file = PdfFileReader(args.PDF_FILE)

xmpm = pdf_file.getXmpMetadata()
if xmpm is None:
 print("No XMP metadata found in document.")
 sys.exit()

With the xmpm object ready, we begin extracting and printing relevant values. We
extract a number of different values including the title, creator, contributor,
description, creation, and modification dates. These value definitions are from
http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMP%20SDK%20Release%20cc
-2016-08/XMPSpecificationPart1.pdf. Even though many of these elements are different
data types, we pass them to the custom_print() method in the same manner. Let's

http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/XMP%20SDK%20Release%20cc-2016-08/XMPSpecificationPart1.pdf

take a look at how this function works.

custom_print("Title: {}", xmpm.dc_title)
custom_print("Creator(s): {}", xmpm.dc_creator)
custom_print("Contributors: {}", xmpm.dc_contributor)
custom_print("Subject: {}", xmpm.dc_subject)
custom_print("Description: {}", xmpm.dc_description)
custom_print("Created: {}", xmpm.xmp_createDate)
custom_print("Modified: {}", xmpm.xmp_modifyDate)
custom_print("Event Dates: {}", xmpm.dc_date)

Since the XMP values stored may differ based on the software used to generate
the PDF, we use a custom print handling function, creatively called
custom_print(). This allows us, as presented here, to handle the conversion of
lists, dictionaries, dates, and other values into a readable format. This function
is portable and can be brought into other scripts as needed. The function,
through a series of if-elif-else statements, checks if the input value is a
supported object type using the built-in isinstance() method and handles them
appropriately. If the input value is an unsupported type, this is printed to the
console instead.

def custom_print(fmt_str, value):
 if isinstance(value, list):
 print(fmt_str.format(", ".join(value)))
 elif isinstance(value, dict):
 fmt_value = [":".join((k, v)) for k, v in value.items()]
 print(fmt_str.format(", ".join(value)))
 elif isinstance(value, str) or isinstance(value, bool):
 print(fmt_str.format(value))
 elif isinstance(value, bytes):
 print(fmt_str.format(value.decode()))
 elif isinstance(value, datetime.datetime):
 print(fmt_str.format(value.isoformat()))
 elif value is None:
 print(fmt_str.format("N/A"))
 else:
 print("warn: unhandled type {} found".format(type(value)))

Our next set of metadata includes more details about the document's lineage
and creation. The xmp_creatorTool attribute stores information about the software
used to create the resource. Separately, we can also deduce additional lineage
information based on the following two IDs:

The Document ID represents an identifier, usually stored as a GUID, that is
generally assigned when the resource is saved to a new file. For example,
if we create DocA.pdf and then save it as DocB.pdf, we would have two

different Document IDs.
Following the Document ID is the second identifier, Instance ID. This Instance
ID is usually generated once per save. An example of this identifier
updating is when we update DocA.pdf with a new paragraph of text and save
it with the same filename.

When editing the same PDF, you would expect the Document ID to remain the
same while the Instance ID would likely update, though this behavior can vary
depending on the software used.

custom_print("Created With: {}", xmpm.xmp_creatorTool)
custom_print("Document ID: {}", xmpm.xmpmm_documentId)
custom_print("Instance ID: {}", xmpm.xmpmm_instanceId)

Following this, we continue extracting other common XMP metadata, including
the language, publisher, resource type, and type. The resource type field should
represent a Multipurpose Internet Mail Extensions (MIME) value and the
type field should store a Dublin Core Metadata Initiative (DCMI) value.

custom_print("Language: {}", xmpm.dc_language)
custom_print("Publisher: {}", xmpm.dc_publisher)
custom_print("Resource Type: {}", xmpm.dc_format)
custom_print("Type: {}", xmpm.dc_type)

Lastly, we extract any custom properties saved by the software. Since this
should be a dictionary, we can print it without our custom_print() function.

if xmpm.custom_properties:
 print("Custom Properties:")
 for k, v in xmpm.custom_properties.items():
 print("\t{}: {}".format(k, v))

When we execute the script, we can quickly see many of the attributes stored
within the PDF. Notice how the Document ID does not match the Instance ID, this
suggests this document may have been modified from the original PDF.

There's more...
This script can be further improved. We have provided one or more
recommendations as follows:

Explore and integrate other PDF-related libraries, such as slate and pyocr:
The slate module, https://github.com/timClicks/slate, can extract text from a
PDF file.
The pyocr module, https://github.com/openpaperwork/pyocr, can be used to
OCR a PDF to capture handwritten text.

https://github.com/timClicks/slate
https://github.com/openpaperwork/pyocr

Reviewing executable metadata
Recipe Difficulty: Easy

Python Version: 2.7 or 3.5

Operating System: Any

During the course of an investigation, we may identify a potentially suspicious
or unauthorized portable executable file. This executable may be interesting
because of the time it was used on the system, its location on the system, or
other attributes specific to the investigation. Whether we are investigating it as
malicious software or an unauthorized utility, we need to have the capability to
learn more about it.

By extracting embedded metadata from Windows executable files, we can
learn about the components that make up the file. In this recipe, we will expose
the compilation date, useful Indicator of Compromise (IOC) data from the
section headers, and the imported and exported symbols.

Getting started
This recipe requires the installation of the third-party library pefile. All other
libraries used in this script are present in Python's standard library. The pefile
module saves us from needing to specify all of the structures of Windows
executable files. The pefile library can be installed like so:

pip install pefile==2017.8.1

To learn more about the pefile library, visit https://github.com/erocarr
era/pefile.

https://github.com/erocarrera/pefile

How to do it...
We extract metadata from executable files via the following steps:

1. Open the executable and dump the metadata with pefile.
2. If present, dynamically print metadata to the console.

How it works...
We begin by importing libraries to handle arguments, parsing dates, and
interacting with executable files. Notice that we specifically import the PE class
from pefile, allowing us to invoke the PE class attributes and methods directly
later in the recipe.

from __future__ import print_function
import argparse
from datetime import datetime
from pefile import PE

This recipe’s command-line handler takes one positional argument, EXE_FILE, the
path to the executable file we will be extracting metadata from. We will also
take one optional argument, v, to allow the user to decide if they would like
verbose or simplified output.

parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
parser.add_argument("EXE_FILE", help="Path to exe file")
parser.add_argument("-v", "--verbose", help="Increase verbosity of output",
 action='store_true', default=False)
args = parser.parse_args()

Using the PE class, we load the input executable file simply by providing it the
file's path. Using the dump_dict() method, we dump the executable data to a
dictionary object. This library allows us to explore the key-value pairs through
this ped dictionary or as properties of the pe object. We will demonstrate how to
extract embedded metadata using both techniques.

pe = PE(args.EXE_FILE)
ped = pe.dump_dict()

Let's start by extracting basic file metadata, such as the embedded authorship,
version, and compilation time. This metadata is stored within the StringTable in
the FileInfo object. Using for loops and if statements, we ensure the correct
values are extracted and assign the string "Unknown" to values that are None or
whose length is zero to better accommodate printing this data to the console.

With all key-value pairs extracted and printed to the console, we move onto
processing the executable's embedded compilation time, which is stored
elsewhere.

file_info = {}
for structure in pe.FileInfo:
 if structure.Key == b'StringFileInfo':
 for s_table in structure.StringTable:
 for key, value in s_table.entries.items():
 if value is None or len(value) == 0:
 value = "Unknown"
 file_info[key] = value
print("File Information: ")
print("==================")
for k, v in file_info.items():
 if isinstance(k, bytes):
 k = k.decode()
 if isinstance(v, bytes):
 v = v.decode()
 print("{}: {}".format(k, v))

The compilation timestamp is stored within the file and shows the date the
executable was compiled. The pefile library interprets the raw data for us,
whereas the Value key stores both the original hex value and an interpreted date
within square brackets. We can either interpret the hex value ourselves or,
more simply, convert the timestamp from the parsed date string into a datetime
object.

We extract the parsed date string in square brackets using the split() and strip()
methods to extract only the string contained within the brackets. An
abbreviated time zone (for example, UTC, EST, or PST) must also be
separated from the parsed date string prior to its conversion. Once the date
string is isolated, we use the datetime.strptime() method with datetime formatters
to properly convert and print the executable's embedded compilation date.

Compile time
comp_time = ped['FILE_HEADER']['TimeDateStamp']['Value']
comp_time = comp_time.split("[")[-1].strip("]")
time_stamp, timezone = comp_time.rsplit(" ", 1)
comp_time = datetime.strptime(time_stamp, "%a %b %d %H:%M:%S %Y")
print("Compiled on {} {}".format(comp_time, timezone.strip()))

The next element we extract is metadata about the executable's sections. This
time, rather than using the pe object and its attributes, we use the dictionary
object we created, ped, to iterate through the sections and display the section
name, address, sizes, and MD5 hash of its content. This data can be added to your

IOCs to assist with the identification of other malicious files on this and other
hosts in the environment.

Extract IOCs from PE Sections
print("\nSections: ")
print("==========")
for section in ped['PE Sections']:
 print("Section '{}' at {}: {}/{} {}".format(
 section['Name']['Value'], hex(section['VirtualAddress']['Value']),
 section['Misc_VirtualSize']['Value'],
 section['SizeOfRawData']['Value'], section['MD5'])
)

Another set of metadata within a portable executable file is a listing of its
imports and exports. Let's start with the import entries. First, we ensure that the
attribute exists before attempting to access this attribute of the pe variable. If it
is present, we use two for loops to step through the imported DLLs and, if the
user specified verbose output, each of the imports within the DLLs. If the user
did not specify verbose output, the innermost loop is skipped and only the DLL
names are presented to the console. From these loops, we extract the DLL
names, addresses, and import names. We can use the getattr() built-in function
to ensure we don't receive any errors in the instance where the attribute is not
present.

if hasattr(pe, 'DIRECTORY_ENTRY_IMPORT'):
 print("\nImports: ")
 print("=========")
 for dir_entry in pe.DIRECTORY_ENTRY_IMPORT:
 dll = dir_entry.dll
 if not args.verbose:
 print(dll.decode(), end=", ")
 continue

 name_list = []
 for impts in dir_entry.imports:
 if getattr(impts, "name", b"Unknown") is None:
 name = b"Unknown"
 else:
 name = getattr(impts, "name", b"Unknown")
 name_list.append([name.decode(), hex(impts.address)])
 name_fmt = ["{} ({})".format(x[0], x[1]) for x in name_list]
 print('- {}: {}'.format(dll.decode(), ", ".join(name_fmt)))
 if not args.verbose:
 print()

Lastly, let's review the code block related to export metadata. Because some
executable may not have exports, we use the hasattr() function to confirm the
DIRECTORY_ENTRY_EXPORT attribute is present. If it is, we iterate through each symbol

and print the names and addresses for each of the symbols in a bulleted list to
better distinguish them in the console.

Display Exports, Names, and Addresses
if hasattr(pe, 'DIRECTORY_ENTRY_EXPORT'):
 print("\nExports: ")
 print("=========")
 for sym in pe.DIRECTORY_ENTRY_EXPORT.symbols:
 print('- {}: {}'.format(sym.name.decode(), hex(sym.address)))

Using a Firefox installer as our example, we are able to extract a great deal of
embedded metadata attributes from the executable. This information shows us
a number of things, such as the compilation date; that this appears to be a
packed executable, likely with 7-Zip; and the hash values for the different
sections.

When we run this same script against a DLL, we see many of the same fields
from the executable run, in addition to the exports section. Due to the length of
the output, we've omitted some of the text in the following screenshot:

There's more...
This script can be further improved. We have provided one or more
recommendations as follows:

Using recipes that we develop in Chapter 5, Networking and Indicator of
Compromise Recipes, query the discovered hash values against online
resources, such as VirusTotal, and report on any matches from other
submissions.
Integrate pytz to allow the user to interpret dates in a local or otherwise
specified timezone

Reading office document metadata
Recipe Difficulty: Medium

Python Version: 2.7 or 3.5

Operating System: Any

Reading metadata from office documents can expose interesting information
about the authorship and history of those files. Conveniently, the 2007
formatted .docx, .xlsx, and .pptx files store metadata in XML. The XML tags can
be easily processed with Python.

Getting started
All libraries used in this script are present in Python's standard library. We use
the built-in xml library and the zipfile library to allow us access to the XML
documents within the ZIP container.

To learn more about the xml library, visit https://docs.python.org/3/libr
ary/xml.etree.elementtree.html.
To Learn more about the zipfile library, visit https://docs.python.org/
3/library/zipfile.html.

https://docs.python.org/3/library/xml.etree.elementtree.html
https://docs.python.org/3/library/zipfile.html
https://docs.python.org/3/library/xml.etree.elementtree.html

How to do it...
We extract embedded Office metadata by performing the following steps:

1. Confirm that the input file is a valid ZIP file.
2. Extract the core.xml and app.xml files from Office file.
3. Parse XML data and print embedded metadata.

How it works...
First, we import the argparse and datetime libraries, followed by xml.etree and
zipfile libraries. The ElementTree class allows us to read an XML string into an
object that we can iterate through and interpret.

from __future__ import print_function
from argparse import ArgumentParser
from datetime import datetime as dt
from xml.etree import ElementTree as etree
import zipfile

This recipe’s command-line handler takes one positional argument, Office_File,
the path to the office file we will be extracting metadata from.

parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(", ".join(__authors__), __date__)
)
parser.add_argument("Office_File", help="Path to office file to read")
args = parser.parse_args()

Following our argument handling, we check to make sure the input file is a
zipfile and raise an error if it is not. If it is, we open the valid ZIP file using the
ZipFile class before accessing the two XML documents containing the metadata
we are interested in. Though there are other XML files containing data
describing the document, the two with the most metadata are named core.xml and
app.xml. We will open the two XML files from the ZIP container with the read()
method and send the returned string directly to the etree.fromstring() XML
parsing method.

Check if input file is a zipfile
zipfile.is_zipfile(args.Office_File)

Open the file (MS Office 2007 or later)
zfile = zipfile.ZipFile(args.Office_File)

Extract key elements for processing
core_xml = etree.fromstring(zfile.read('docProps/core.xml'))
app_xml = etree.fromstring(zfile.read('docProps/app.xml'))

With the prepared XML objects, we can start extracting data of interest. We set
up a dictionary, called core_mapping, to specify the fields we want to extract, as

key names, and the value we want to display them as. This method allows us to
easily print only the values important to us, if present, with a friendly title.
This XML file contains great information about the authorship of the file. For
instance, the two authorship fields, creator and lastModifiedBy, can show
scenarios where one account modified a document created by another user
account. The date values show us information about creation and modification
of the document. Additionally, metadata fields like revision can give some
indication to the number of versions of this document.

Core.xml tag mapping
core_mapping = {
 'title': 'Title',
 'subject': 'Subject',
 'creator': 'Author(s)',
 'keywords': 'Keywords',
 'description': 'Description',
 'lastModifiedBy': 'Last Modified By',
 'modified': 'Modified Date',
 'created': 'Created Date',
 'category': 'Category',
 'contentStatus': 'Status',
 'revision': 'Revision'
}

In our for loop, we iterate over the XML using the iterchildren() method to
access each of the tags within the XML root of the core.xml file. Using the
core_mapping dictionary, we can selectively output specific fields if they are
found. We have also added logic to interpret date values using the strptime()
method.

for element in core_xml.getchildren():
 for key, title in core_mapping.items():
 if key in element.tag:
 if 'date' in title.lower():
 text = dt.strptime(element.text, "%Y-%m-%dT%H:%M:%SZ")
 else:
 text = element.text
 print("{}: {}".format(title, text))

The next set of column mappings focuses on the app.xml file. This file contains
statistical information about the contents of the document, including total edit
time and counts of words, pages, and slides. It also contains information about
the company name registered with the software and hidden elements. To print
these values to the console, we use a similar set of for loops as we did with the
core.xml file.

app_mapping = {
 'TotalTime': 'Edit Time (minutes)',
 'Pages': 'Page Count',
 'Words': 'Word Count',
 'Characters': 'Character Count',
 'Lines': 'Line Count',
 'Paragraphs': 'Paragraph Count',
 'Company': 'Company',
 'HyperlinkBase': 'Hyperlink Base',
 'Slides': 'Slide count',
 'Notes': 'Note Count',
 'HiddenSlides': 'Hidden Slide Count',
}
for element in app_xml.getchildren():
 for key, title in app_mapping.items():
 if key in element.tag:
 if 'date' in title.lower():
 text = dt.strptime(element.text, "%Y-%m-%dT%H:%M:%SZ")
 else:
 text = element.text
 print("{}: {}".format(title, text))

When we run the script with a sample word document, as the following shows,
a number of details about the document are in question.

Separately, we can use the script on a PPTX document and review format-
specific metadata associated with PPTX files:

Integrating our metadata extractor
with EnCase
Recipe Difficulty: Medium

Python Version: 2.7 or 3.5

Operating System: Windows

The embedded metadata extracting recipes we have designed work against
loose files, not with files found within a forensic image. Annoyingly, this adds
an extra step in our process, requiring us to export the files of interest from the
image for this type of review. We show in this recipe, how to connect our
scripts to a forensic tool, EnCase, and execute them without needing to export
the files from a forensic image.

Getting started
With EnCase installed, we need to create a case and add in the evidence file,
as we would for any other case. This recipe demonstrates the steps required to
perform this in EnCase V6, although the same techniques can be applied to
later versions.

Before starting, we will also need to ensure Python 2.7 or 3.5, the script we
wish to use, and the required dependencies are installed on the machine.

How to do it...
We integrate the metadata recipes with EnCase via the following steps:

1. Open EnCase V6 and add evidence to a case.
2. Use the View file viewer menu to configure a custom file viewer with the

EXIF metadata extractor.
3. Extract embedded GPS coordinates from a photo within EnCase using the

newly created file viewer.

How it works...
With the open case, we can look at the hex of a photo of interest to confirm we
can see the EXIF header within the file. Following this header are the raw
values processed by the script. With a good candidate identified, let's look at
how we can configure EnCase to run the script.

Under the View menu, we select the File Viewers option. This opens a tab
listing the available viewers. The instance of EnCase we used does not have
any viewers and so we must add any we wish to use first.

In this tab, right-click on the top-level File Viewers element and select New... to
create our custom viewer.

A new window, shown in the following screenshot, allows us to specify the
parameters to execute the script. In this example, we are implementing the GPS
extraction script, though we can add others in this same manner. The first line
specifies the name of the viewer. We should name this something memorable as
it will be the only description available to us when selecting the file viewer
later. The second line is the path to the executable. In our instance, we will
launch the Command Prompt, since our Python script is not a standalone
executable. We need to provide the full path to cmd.exe for EnCase to accept this
parameter.

The last line is where we add in the script. This line allows us to specify the
arguments to pass to the Command Prompt. We start with /k to keep our
Command Prompt open after our script completes. This isn't required; although
if your code displays information to the console (as ours does), we should
implement this feature. Otherwise, the Command Prompt will close as soon as
the code completes. Following the /k argument, we provide the parameters to
launch the code. As shown here, this includes the Python executable and full
path to the script. The last element, [file], is a placeholder for EnCase that is
replaced by the file we want to view when the file viewer is executed.

The new file viewer entry is now displayed within the File Viewer tab and
shows us the name, executable, and arguments we specified. If everything
looks right, we can return to the photo of interest in the file entry tab.

Back on the file entry view, we can right-click on the photo of interest and
select the file viewer from the Send To submenu.

When we select this option, the command window appears and shows the

output from the script. Notice that the KML file is automatically placed in the
Temp directory for the case. This is because the file we are inspecting is cached
in this directory during the script's execution.

There's more...
This process can be further improved. We have provided one or more
recommendations as follows:

While not Python-related, look into EnScripting as another option to
automate and parse multiple files and display the output within the
EnCase Console tab.
Add the other recipes covered in this chapter to EnCase by following a
similar method. Since the information for these scripts is printed to the
console, we should use the /k argument or rework the logic to place the
output in a directory for us.

Networking and Indicators of
Compromise Recipes

The following recipes are covered in this chapter:

Getting a jump start with IEF
Coming into contact with IEF
It's a beautiful soup
Going hunting for viruses
Gathering intel
Totally passive

Introduction
Technology has come a long way and, with it, the extent to which tools are
made widely available has changed too. As a matter of fact, being cognizant of
the tools' existence is half the battle due to the sheer volume of tools available
on the internet. Some of these tools are publicly available and can be bent
toward forensic purposes. In this chapter, we will learn how to interact with
websites and identify malware through Python, including an automated review
of potentially malicious domains, IP addresses, or files.

We start out by taking a look at how to manipulate Internet Evidence Finder
(IEF) results and perform additional processing outside of the context of the
application. We also explore using services such as VirusShare, PassiveTotal,
and VirusTotal to create HashSets of known malware, query suspicious domain
resolutions, and identify known bad domains or files, respectively. Between
these scripts, you will become familiar with using Python to interact with
APIs.

The scripts in this chapter focus on solving particular problems and are
ordered by complexity:

Learning to extract data from IEF results
Processing cached Yahoo contacts data from Google Chrome
Preserving web pages with Beautiful Soup
Creating an X-Ways-compatible HashSet from VirusShare
Using PassiveTotal to automate the review of sketchy domains or IP
addresses
Automating identification of known bad files, domains, or IPs with
VirusTotal

Visit www.packtpub.com/books/content/support to download the code
bundle for this chapter.

http://www.packtpub.com/books/content/support

Getting a jump start with IEF
Recipe Difficulty: Easy

Python Version: 3.5

Operating System: Any

This recipe will act as a quick means of dumping all reports from IEF to a
CSV file and an introduction to interacting with IEF results. IEF stores data in
a SQLite database, which we explored rather thoroughly in Chapter 3, A Deep
Dive into Mobile Forensic Recipes. As IEF can be configured to scan specific
categories of information, it is not so simple as dumping out set tables for each
IEF database. Instead, we must determine this information dynamically and
then interact with said tables. This recipe will dynamically identify result
tables within the IEF database and dump them to respective CSV files. This
process can be performed on any SQLite database to quickly dump its contents
to a CSV file for review.

Getting started
All libraries used in this script are present in Python's standard library. For
this script, make sure to have an IEF results database generated after executing
the program. We used IEF version 6.8.9.5774 to generate the database used to
develop this recipe. After IEF finishes processing the forensic image, for
example, you should see a file named IEFv6.db. This is the database we will
interact with in this recipe.

How to do it...
We will employ the following steps to extract data from the IEF results
database:

1. Connect to the database.
2. Query the database to identify all tables.
3. Write result tables to an individual CSV file.

How it works...
First, we import the required libraries to handle argument parsing, writing
spreadsheets, and interacting with SQLite databases.

from __future__ import print_function
import argparse
import csv
import os
import sqlite3
import sys

This recipe's command-line handler is relatively straightforward. It accepts
two positional arguments, IEF_DATABASE and OUTPUT_DIR, representing the file path
to the IEFv6.db file and the desired output location, respectively.

if __name__ == '__main__':
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("IEF_DATABASE", help="Input IEF database")
 parser.add_argument("OUTPUT_DIR", help="Output DIR")
 args = parser.parse_args()

We perform the input validation steps as usual prior to calling the main()
function of the script. First, we check the output directory and create it if it
does not exist. Then, we confirm that the IEF database exists as expected. If all
is as expected, we execute the main() function and supply it with the two user-
supplied inputs:

 if not os.path.exists(args.OUTPUT_DIR):
 os.makedirs(args.OUTPUT_DIR)

 if os.path.exists(args.IEF_DATABASE) and \
 os.path.isfile(args.IEF_DATABASE):
 main(args.IEF_DATABASE, args.OUTPUT_DIR)
 else:
 print("[-] Supplied input file {} does not exist or is not a "
 "file".format(args.IEF_DATABASE))
 sys.exit(1)

The main() function starts out simply enough. We print a status message to the
console and create the sqlite3 connection to the database to execute the

necessary SQLite queries:

def main(database, out_directory):
 print("[+] Connecting to SQLite database")
 conn = sqlite3.connect(database)
 c = conn.cursor()

Next, we need to query the database to identify all tables present. Notice the
rather complex query we execute to perform this. If you are familiar with
SQLite, you may shake your head and wonder why we have not executed the
.table command. Unfortunately, in Python, this cannot be done so easily. Rather,
one must execute the following command to achieve the desired goal.

As we have seen previously, the Cursor returns results as a list of tuples. The
command we have executed returns a number of details about each table in the
database. In this case, we are only interested in extracting the name of the
table. We accomplish this using list comprehension by first fetching all results
from the cursor object and then appending the second element of each result to
the tables list if the name matches certain criteria. We have elected to ignore
table names that start with _ or end with _DATA. From a review of these tables,
they contained actual cached file content rather than the metadata IEF presents
for each record.

 print("[+] Querying IEF database for list of all tables to extract")
 c.execute("select * from sqlite_master where type='table'")
 # Remove tables that start with "_" or end with "_DATA"
 tables = [x[2] for x in c.fetchall() if not x[2].startswith('_') and
 not x[2].endswith('_DATA')]

With the list of table names in hand, we can now iterate through each one and
extract their contents into a variable. Prior to that, we print an update status
message to the console to inform the user of the current execution status of the
script. In order to write the CSVs, we need to first determine the column names
for a given table. This is performed, as we saw in Chapter 3, using the pragma
table_info command. With some simple list comprehension, we extract just the
names of the columns and store them in a variable for later.

With that accomplished, we execute the favorite and simplest SQL query and
select all (*) data from each table. Using the fetchall() method on the cursor
object, we store the list of tuples containing the table's data in its entirety in the

table_data variable:

 print("[+] Dumping {} tables to CSV files in {}".format(
 len(tables), out_directory))
 for table in tables:
 c.execute("pragma table_info('{}')".format(table))
 table_columns = [x[1] for x in c.fetchall()]
 c.execute("select * from '{}'".format(table))
 table_data = c.fetchall()

We can now begin to write the data for each table to its appropriate CSV file.
To keep things simple, the name of each CSV file is simply the table name and
an appended .csv extension. We use os.path.join() to combine the output
directory with the desired CSV name.

Next, we print a status update to the console and begin the process to write
each CSV file. This is accomplished by first writing the table column names as
the header of the spreadsheet followed by the contents of the table. We use the
writerows() method to write the list of tuples in one line rather than create an
unnecessary loop and execute writerow() repeatedly for each tuple.

 csv_name = table + '.csv'
 csv_path = os.path.join(out_directory, csv_name)
 print('[+] Writing {} table to {} CSV file'.format(table,
 csv_name))
 with open(csv_path, "w", newline="") as csvfile:
 csv_writer = csv.writer(csvfile)
 csv_writer.writerow(table_columns)
 csv_writer.writerows(table_data)

When we run this script, we can see the discovered artifacts and extract CSV
reports of the text information:

Once we have completed the script, we can see information about an artifact as

seen in the following snippet of a report:

Coming into contact with IEF
Recipe Difficulty: Medium

Python Version: 3.5

Operating System: Any

We can take further advantage of the IEF results in the SQLite database by
manipulating and gleaning, even more, information from artifacts that IEF does
not necessarily support. This can be particularly important when new artifacts
are discovered and are unsupported. As the internet, and many businesses
using the internet change constantly, it is unrealistic for software to keep up
with every new artifact. In this case, we will look at cached Yahoo Mail
contacts that get stored on the local system as a byproduct of using Yahoo Mail.

Getting started
All libraries used in this script are present in Python's standard library. Again,
as in the previous recipe, if you would like to follow along, you will need an
IEF results database. We used IEF version 6.8.9.5774 to generate the database
used to develop this recipe. In addition to that, you will likely need to generate
Yahoo Mail traffic to create the necessary situation where Yahoo Mail contacts
are cached. In this example, we used the Google Chrome browser to use Yahoo
Mail and will, therefore, be looking at Google Chrome cache data. This
recipe, while specific to Yahoo, illustrates how you can use the IEF results
database to further process artifacts and identify additional relevant
information.

How to do it...
The recipe follows these basic principles:

1. Connect to the input database.
2. Query the Google Chrome cache table for Yahoo Mail contact records.
3. Process contact cache JSON data and metadata.
4. Write all relevant data to a CSV.

How it works...
First, we import the required libraries to handle argument parsing, writing
spreadsheets, processing JSON data, and interacting with SQLite databases.

from __future__ import print_function
import argparse
import csv
import json
import os
import sqlite3
import sys

This recipe's command-line handler does not differ from the first recipe. It
accepts two positional arguments, IEF_DATABASE and OUTPUT_DIR, representing the
file paths to the IEFv6.db file and the desired output location, respectively.

if __name__ == '__main__':
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("IEF_DATABASE", help="Input IEF database")
 parser.add_argument("OUTPUT_CSV", help="Output CSV")
 args = parser.parse_args()

And again, we perform the same data validation steps as executed in the first
recipe of this chapter. If it ain't broke, why fix it? After validation, we execute
the main() function and supply it with the two validated inputs.

 directory = os.path.dirname(args.OUTPUT_CSV)
 if not os.path.exists(directory):
 os.makedirs(directory)

 if os.path.exists(args.IEF_DATABASE) and \
 os.path.isfile(args.IEF_DATABASE):
 main(args.IEF_DATABASE, args.OUTPUT_CSV)
 else:
 print(
 "[-] Supplied input file {} does not exist or is not a "
 "file".format(args.IEF_DATABASE))
 sys.exit(1)

The main() function starts again by creating a connection to the input SQLite
database (we promise this recipe isn't identical to the first one: keep reading).

def main(database, out_csv):
 print("[+] Connecting to SQLite database")
 conn = sqlite3.connect(database)
 c = conn.cursor()

We can now begin scouring the database for all instances of Yahoo Mail
contact cache records. Notice that the URL fragment we are looking for is
rather specific to our purpose. This should ensure that we do not get any false
positives. The percent sign (%) at the end of the URL is the SQLite wildcard
equivalent character. We execute the query in a try and except statement in the
event the input directory does not have the Chrome cache records table, is
corrupt, or is encrypted.

 print("[+] Querying IEF database for Yahoo Contact Fragments from "
 "the Chrome Cache Records Table")
 try:
 c.execute(
 "select * from 'Chrome Cache Records' where URL like "
 "'https://data.mail.yahoo.com"
 "/classicab/v2/contacts/?format=json%'")
 except sqlite3.OperationalError:
 print("Received an error querying the database -- database may be"
 "corrupt or not have a Chrome Cache Records table")
 sys.exit(2)

If we were able to execute the query successfully, we store the returned list of
tuples into the contact_cache variable. This variable serves as the only input to
the process_contacts() function, which returns a nested list structure convenient
for the CSV writer.

 contact_cache = c.fetchall()
 contact_data = process_contacts(contact_cache)
 write_csv(contact_data, out_csv)

The process_contacts() function starts by printing a status message to the console,
setting up the results list, and iterating through each contact cache record. Each
record has a number of metadata elements associated with it beyond the raw
data. This includes the URL, the location of the cache on the filesystem, and the
timestamps for the first visit, last visit, and last sync time.

We use the json.loads() method to store the JSON data extracted from the table
into the contact_json variable for further manipulation. The total and count keys
from the JSON data, store the total number of Yahoo Mail contacts and the
count of them present in the JSON cache data.

def process_contacts(contact_cache):
 print("[+] Processing {} cache files matching Yahoo contact cache "
 " data".format(len(contact_cache)))
 results = []
 for contact in contact_cache:
 url = contact[0]
 first_visit = contact[1]
 last_visit = contact[2]
 last_sync = contact[3]
 loc = contact[8]
 contact_json = json.loads(contact[7].decode())
 total_contacts = contact_json["total"]
 total_count = contact_json["count"]

Before we extract contact data from contact JSON, we need to ensure that it
has contacts in the first place. If it does not, we continue onto the next cache
record in the hopes that we find contacts there. If on the other hand, we do have
contacts, we initialize a number of variables to an empty string. This is
achieved in one line by bulk-assigning variables to a tuple of empty strings:

 if "contacts" not in contact_json:
 continue

 for c in contact_json["contacts"]:
 name, anni, bday, emails, phones, links = (
 "", "", "", "", "", "")

With these variables initialized, we begin looking for each of them in each of
the contacts. Sometimes the particular cache record will not retain full contact
details such as the "anniversary" key. For this reason, we initialized these
variables to avoid referring to variables that do not exist if that particular key
isn't present in a given cache record.

For the name, "anniversary", and "birthday" keys, we need to perform some string
concatenation so that they are in a convenient format. The emails, phones, and
links variables could have more than one result and we, therefore, use list
comprehension and the join() method to create a comma-separated list of those
respective elements. The great thing about that line of code is that if there is
only one email, phone number, or link, it will not place a comma after that one
element unnecessarily.

 if "name" in c:
 name = c["name"]["givenName"] + " " + \
 c["name"]["middleName"] + " " + c["name"]["familyName"]
 if "anniversary" in c:
 anni = c["anniversary"]["month"] + \
 "/" + c["anniversary"]["day"] + "/" + \

 c["anniversary"]["year"]
 if "birthday" in c:
 bday = c["birthday"]["month"] + "/" + \
 c["birthday"]["day"] + "/" + c["birthday"]["year"]
 if "emails" in c:
 emails = ', '.join([x["ep"] for x in c["emails"]])
 if "phones" in c:
 phones = ', '.join([x["ep"] for x in c["phones"]])
 if "links" in c:
 links = ', '.join([x["ep"] for x in c["links"]])

We handle the company, jobTitle, and notes sections differently by using the get()
method instead. Because these are simple key and value pairs, we do not need
to do any additional string processing on them. Instead, with the get() method,
we can extract the key's value or, if it isn't present, set the default value to an
empty string.

 company = c.get("company", "")
 title = c.get("jobTitle", "")
 notes = c.get("notes", "")

After we have processed the contact data, we append a list of the metadata and
extracted data elements to the results list. Once we have processed each
contact and each cache record, we return the results list back to the main()
function, which gets passed onto the CSV writer function.

 results.append([
 url, first_visit, last_visit, last_sync, loc, name, bday,
 anni, emails, phones, links, company, title, notes,
 total_contacts, total_count])
 return results

The write_csv() method takes the nested results list structure and the output file
path as its inputs. After we print a status message to the console, we employ
the usual strategy to write the results to the output file. Namely, we first write
the headers of the CSV followed by the actual contact data. Thanks to the
nested list structure, we can just use the writerows() method to write all of the
results to the file in one line.

def write_csv(data, output):
 print("[+] Writing {} contacts to {}".format(len(data), output))
 with open(output, "w", newline="") as csvfile:
 csv_writer = csv.writer(csvfile)
 csv_writer.writerow([
 "URL", "First Visit (UTC)", "Last Visit (UTC)",
 "Last Sync (UTC)", "Location", "Contact Name", "Bday",
 "Anniversary", "Emails", "Phones", "Links", "Company", "Title",
 "Notes", "Total Contacts", "Count of Contacts in Cache"])

 csv_writer.writerows(data)

This screenshot illustrates an example of the type of data that this script can
extract:

Beautiful Soup
Recipe Difficulty: Medium

Python Version: 3.5

Operating System: Any

In this recipe, we create a website preservation tool leveraging the Beautiful
Soup library. This is a library meant to process markup languages, such as
HTML or XML, and can be used to easily process these types of data
structures. We will use it to identify and extract all links from a web page in a
few lines of code. This script is meant to showcase a very simplistic example
of a website preservation script; it is by no means intended to replace existing
software out there on the market.

Getting started
This recipe requires the installation of the third-party library bs4. This module
can be installed via the following command. All other libraries used in this
script are present in Python's standard library.

pip install bs4==0.0.1

Learn more about the bs4 library; visit https://www.crummy.com/softwa
re/BeautifulSoup/bs4/doc/.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/

How to do it...
We will perform the following steps in this recipe:

1. Access index web page and identify all initial links.
2. Recurse through all known links to:

1. Find additional links and add them to the queue.
2. Generate SHA-256 hash of each web page.
3. Write and then verify web page output to the destination directory.

3. Log relevant activity and hash results.

How it works...
First, we import the required libraries to handle argument parsing, parsing
HTML data, parsing dates, hashing files, logging data, and interacting with
web pages. We also setup a variable used to later construct the recipe's logging
component.

from __future__ import print_function
import argparse
from bs4 import BeautifulSoup, SoupStrainer
from datetime import datetime
import hashlib
import logging
import os
import ssl
import sys
from urllib.request import urlopen
import urllib.error

logger = logging.getLogger(__name__)

This recipe's command-line handler takes two positional inputs, DOMAIN and
OUTPUT_DIR, which represent the website URL to preserve and the desired output
directory, respectively. The optional -l argument can be used to specify the
location of the log file path.

if __name__ == "__main__":
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("DOMAIN", help="Website Domain")
 parser.add_argument("OUTPUT_DIR", help="Preservation Output Directory")
 parser.add_argument("-l", help="Log file path",
 default=__file__[:-3] + ".log")
 args = parser.parse_args()

We will now setup the logging for the script, using the default or user-specified
path. Using the logging format in Chapter 1, we specify a file and stream
handler to keep the user in the loop and document the acquisition process.

 logger.setLevel(logging.DEBUG)
 msg_fmt = logging.Formatter("%(asctime)-15s %(funcName)-10s"
 "%(levelname)-8s %(message)s")
 strhndl = logging.StreamHandler(sys.stderr)

 strhndl.setFormatter(fmt=msg_fmt)
 fhndl = logging.FileHandler(args.l, mode='a')
 fhndl.setFormatter(fmt=msg_fmt)

 logger.addHandler(strhndl)
 logger.addHandler(fhndl)

After setting up the log, we log a few details about the execution context of the
script, including the supplied arguments and OS details.

 logger.info("Starting BS Preservation")
 logger.debug("Supplied arguments: {}".format(sys.argv[1:]))
 logger.debug("System " + sys.platform)
 logger.debug("Version " + sys.version)

We perform some additional input validation on the desired output directory.
After these steps, we call the main() function and pass it the website URL and
the output directory.

 if not os.path.exists(args.OUTPUT_DIR):
 os.makedirs(args.OUTPUT_DIR)

 main(args.DOMAIN, args.OUTPUT_DIR)

The main() function is used to perform a few tasks. First, it extracts the base
name of the website by removing any unnecessary elements before the actual
name. For example, https://google.com becomes google.com. We also create the set,
link_queue, which will hold all unique links found on the web page.

We perform some additional validation on the input URL. During development,
we ran into some errors when URLs were not preceded by https:// or http://,
so we check whether that is the case here and exit the script and inform the
user of the requirement if they are not present. If everything checks out, we are
ready to access the base web page. To do that, we create the unverified SSL
context to avoid errors when accessing the web page.

def main(website, output_dir):
 base_name = website.replace(
 "https://", "").replace("http://", "").replace("www.", "")
 link_queue = set()
 if "http://" not in website and "https://" not in website:
 logger.error(
 "Exiting preservation - invalid user input: {}".format(
 website))
 sys.exit(1)
 logger.info("Accessing {} webpage".format(website))
 context = ssl._create_unverified_context()

https://google.com
https://google.com

Next, in a try-except block, we open a connection to the website with the
unverified SSL context using the urlopen() method and read in the web page
data. If we receive an error when attempting to access the web page, we print
and log a status message prior to exiting the script. If we are successful, we log
a success message and continue script execution.

 try:
 index = urlopen(website, context=context).read().decode("utf-8")
 except urllib.error.HTTPError as e:
 logger.error(
 "Exiting preservation - unable to access page: {}".format(
 website))
 sys.exit(2)
 logger.debug("Successfully accessed {}".format(website))

With this first web page, we call the write_output() function to write it to the
output directory and the find_links() function to identify all links on the web
page. Specifically, this function attempts to identify all internal links on the
website. We will explore both of these functions momentarily.

After identifying links on the first page, we print two status messages to the
console and then call the recurse_pages() method to iterate through and discover
all links on the discovered web pages and add them to the queue set. That
completes the main() function; let's now take a look at the supporting cast of
functions, starting with the write_output() method.

 write_output(website, index, output_dir)
 link_queue = find_links(base_name, index, link_queue)
 logger.info("Found {} initial links on webpage".format(
 len(link_queue)))
 recurse_pages(website, link_queue, context, output_dir)
 logger.info("Completed preservation of {}".format(website))

The write_output() method takes a few arguments: the URL of the web page, its
page data, the output directory, and an optional counter argument. By default
this argument is set to zero if it is not supplied in the function call. The counter
argument is used to append a loop iteration number to the output file to avoid
writing over identically named files. We start by removing some unnecessary
characters in the name of the output file that may cause it to create unnecessary
directories. We also join the output directory with the URL directories and
create them with os.makedirs().

def write_output(name, data, output_dir, counter=0):

 name = name.replace("http://", "").replace("https://", "").rstrip("//")
 directory = os.path.join(output_dir, os.path.dirname(name))
 if not os.path.exists(directory) and os.path.dirname(name) != "":
 os.makedirs(directory)

Now, we log a few details about the web page we are writing. First, we log
the name and output destination for the file. Then, we log the hash of the data as
it was read from the web page with the hash_data() method. We create the path
variable for the output file and append the counter string to avoid overwriting
resources. We then open the output file and write the web page content to it.
Finally, we log the output file hash by calling the hash_file() method.

 logger.debug("Writing {} to {}".format(name, output_dir))
 logger.debug("Data Hash: {}".format(hash_data(data)))
 path = os.path.join(output_dir, name)
 path = path + "_" + str(counter)
 with open(path, "w") as outfile:
 outfile.write(data)
 logger.debug("Output File Hash: {}".format(hash_file(path)))

The hash_data() method is really quite simple. We read in the UTF-8 encoded
data and then generate the SHA-256 hash of it using the same methodology as seen
in previous recipes.

def hash_data(data):
 sha256 = hashlib.sha256()
 sha256.update(data.encode("utf-8"))
 return sha256.hexdigest()

The hash_file() method is just a little more complicated. Before we can hash the
data, we must first open the file and read its contents into the SHA-256 algorithm.
With this complete, we call the hexdigest() method and return the generated SHA-
256 hash. Let's now shift to the find_links() method and how we leverage
BeautifulSoup to quickly find all relevant links.

def hash_file(file):
 sha256 = hashlib.sha256()
 with open(file, "rb") as in_file:
 sha256.update(in_file.read())
 return sha256.hexdigest()

The find_links() method accomplishes a few things in its initial for loop. First of
all, we create a BeautifulSoup object out of the web page data. Secondly, while
creating that object, we specify that we only want to process part of the
document, specifically, <a href> tags. This helps limit CPU cycles and memory

usage and allows us to focus on only what is relevant. The SoupStrainer object is
a fancy name for a filter and, in this case, filters only <a href> tags.

With the list of links set up, we then create some logic to test whether they are
part of this domain. In this case, we accomplish this by checking whether the
website's URL is part of the link. Any link that passes that test must then not
start with a "#" symbol. During testing, on one of the websites, we found this
would cause internal page references, or named anchors, to get added as a
separate page, which was not desirable. After a link passes those tests, it is
added to the set queue (unless it is already present in the set object). After we
process all such links, the queue is returned to the calling function. The
recurse_pages() function makes multiple calls to this function to find all links in
every page we index.

def find_links(website, page, queue):
 for link in BeautifulSoup(page, "html.parser",
 parse_only=SoupStrainer("a", href=True)):
 if website in link.get("href"):
 if not os.path.basename(link.get("href")).startswith("#"):
 queue.add(link.get("href"))
 return queue

The recurse_pages() function takes as its inputs the website URL, current link
queue, the unverified SSL context, and the output directory. We start by creating
a processed list to keep track of the links we have already explored. We also
set up the loop counter, which we later pass into the write_output() function to
uniquely name the output files.

Next, we begin the dreaded while True loop, always a somewhat dangerous way
of iteration, but it is used in this instance to continue iterating over the queue,
which becomes progressively larger as we discover more pages. In this loop,
we increment the counter by 1, but more importantly, check whether the
processed list length matches the length of all found links. If that is the case,
this loop will be broken. However, until that scenario is met, the script will
continue iterating over all links, looking for more internal links and writing
them to the output directory.

def recurse_pages(website, queue, context, output_dir):
 processed = []
 counter = 0
 while True:

 counter += 1
 if len(processed) == len(queue):
 break

We start iterating through a copy of the queue to process each link. We use the
set copy() command so that we can update the queue without generating errors
during its iterative loops. If the link has already been processed, we continue
onto the next link to avoid performing redundant tasks. If this is the first time
the link is being processed, the continue command is not executed, and instead,
we append this link to the processed list so it will not be processed again in
the future.

 for link in queue.copy():
 if link in processed:
 continue
 processed.append(link)

We attempt to open and read in the data for each link. If we cannot access the
web page, we print and log that and continue executing the script. This way,
we preserve all of the pages that we can access and have a log with details on
links we were unable to access and preserve.

 try:
 page = urlopen(link, context=context).read().decode(
 "utf-8")
 except urllib.error.HTTPError as e:
 msg = "Error accessing webpage: {}".format(link)
 logger.error(msg)
 continue

Finally, for each link we are able to access, we write its output to a file by
passing the link name, page data, output directory, and the counter. We also set
the queue object equal to the new set, which will have all elements from the old
queue and any additional new links from the find_links() method. Eventually, and
it may take some time based on the size of the website, we will have processed
all items in the link queue and will exit the script after printing a status
message to the console.

 write_output(link, page, output_dir, counter)
 queue = find_links(website, page, queue)
 logger.info("Identified {} links throughout website".format(
 len(queue)))

When we execute this script, we provide the URL for the website, the output

folder, and a path to the log file as seen here:

We can then open the output file in a browser and view the preserved content:

There's more...
We can extend this script in many ways, including:

Collecting CSS, images, and other resources
Screenshotting rendered pages in a browser with selenium
Setting the user-agent to disguise collections

Going hunting for viruses
Recipe Difficulty: Medium

Python Version: 3.5

Operating System: Any

VirusShare is the largest privately owned collection of malware samples, with
over 29.3 million samples and counting. One of the great benefits of
VirusShare, besides the literal cornucopia of malware that is every malware
researcher's dream, is the list of malware hashes which is made freely
available. We can use these hashes to a create a very comprehensive hash set
and leverage that in casework to identify potentially malicious files.

To learn more about and use VirusShare, visit the website https://vir
usshare.com/.

In this recipe, we demonstrate how to automate downloading lists of hashes
from VirusShare to create a newline-delimited hash list. This list can be used
by forensic tools, such as X-Ways, to create a HashSet. Other forensic tools,
EnCase, for example, can use this list as well but require the use of an
EnScript to successfully import and create the HashSet.

https://virusshare.com/

Getting started
This recipe uses the tqdm third-party library to create an informative progress
bar. The tqdm module can be installed via the following command. All other
libraries used in this recipe are native to Python.

pip install tqdm==4.11.2

Learn more about the tqdm library; visit https://github.com/noamraph/t
qdm.

https://github.com/noamraph/tqdm

How to do it...
We will perform the following steps in this recipe:

1. Read the VirusShare hashes page and dynamically identify the most recent
hash list.

2. Initialize progress bar and download hash lists in the desired range.

How it works...
First, we import the required libraries to handle argument parsing, creating
progress bars, and interacting with web pages.

from __future__ import print_function
import argparse
import os
import ssl
import sys
import tqdm
from urllib.request import urlopen
import urllib.error

This recipe's command-line handler takes one positional argument, OUTPUT_HASH,
the desired file path for the hash set we will create. An optional argument, --
start, captured as an integer, is the optional starting location for the hash lists.
VirusShare maintains a page of links to malware hashes, where each link
contains a list of between 65,536 and 131,072 MD5 hashes. Rather than
downloading all hash lists (which can take some time), the user can specify the
desired starting location. For example, this may come in handy if an individual
has previously downloaded hashes from VirusShare and now wishes to
download the latest few hash lists that have been released.

if __name__ == '__main__':
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("OUTPUT_HASH", help="Output Hashset")
 parser.add_argument("--start", type=int,
 help="Optional starting location")
 args = parser.parse_args()

We perform the standard input validation steps to ensure the supplied inputs
will not cause any unexpected errors. We use the os.path.dirname() method to
separate the directory path from the file path and check that it exists. If it
doesn't, we create the directory now rather than encountering issues trying to
write to a directory that does not exist. Lastly, we use an if statement and
supply the main() function with the start argument as a keyword, if it was

supplied.

 directory = os.path.dirname(args.OUTPUT_HASH)
 if not os.path.exists(directory):
 os.makedirs(directory)

 if args.start:
 main(args.OUTPUT_HASH, start=args.start)
 else:
 main(args.OUTPUT_HASH)

The main() function is the only function in this recipe. While it is long, the task
is relatively straightforward, making additional functions somewhat
unnecessary. Notice the **kwargs argument in the definition of the function. This
creates a dictionary we can refer to support supplied keyword arguments.
Prior to accessing the VirusShare website, we set up a few variables and print
a status message to the console first. We use ssl._create_unverified_context() in
order to bypass an SSL verification error received in Python 3.X.

def main(hashset, **kwargs):
 url = "https://virusshare.com/hashes.4n6"
 print("[+] Identifying hash set range from {}".format(url))
 context = ssl._create_unverified_context()

We use a try and except block to open the VirusShare hashes page using the
urllib.request.urlopen() method with the unverified SSL context. We use the read()
method to read the page data and decode it to UTF-8. If we receive an error
attempting to access this page, we print a status message to the console and exit
the script accordingly.

 try:
 index = urlopen(url, context=context).read().decode("utf-8")
 except urllib.error.HTTPError as e:
 print("[-] Error accessing webpage - exiting..")
 sys.exit(1)

The first task with the downloaded page data is to identify the latest hash list.
We do this by looking for the last instance of an HTML href tag to a VirusShare
hash list. For instance, an example link may look like
"hashes/VirusShare_00288.md5". We use string slicing and methods to separate the
hash number (288 in the previous example) from the link. We now check the
kwargs dictionary to see whether the start argument was supplied. If it wasn't,
we set the start variable to zero to download the first hash list and all
intervening hash lists, up to and including the last one, to create the hash set.

 tag = index.rfind(r'<a href="hashes/VirusShare_')
 stop = int(index[tag + 27: tag + 27 + 5].lstrip("0"))

 if "start" not in kwargs:
 start = 0
 else:
 start = kwargs["start"]

Before we begin downloading the hash lists, we perform a sanity check and
validate the start variable. Specifically, we check whether it is less than zero
or greater than the latest hash list. We are using the start and stop variables to
initialize the for loop and progress bar and therefore must validate the start
variable to avoid unexpected outcomes. If the user supplied a bad start
argument, we print a status message to the console and exit the script.

After the last sanity check, we print a status message to the console and set the
hashes_downloaded counter to zero. We use this counter in a later status message to
record how many hashes were downloaded and written to the hash list.

 if start < 0 or start > stop:
 print("[-] Supplied start argument must be greater than or equal "
 "to zero but less than the latest hash list, "
 "currently: {}".format(stop))
 sys.exit(2)

 print("[+] Creating a hashset from hash lists {} to {}".format(
 start, stop))
 hashes_downloaded = 0

As discussed in Chapter 1, Essential Scripting and File Information Recipes,
we can use the tqdm.trange() method as a substitute for the built-in range() method
to create a loop and also a progress bar. We supply it with the desired start and
stop integers and set a scale and a description for the progress bar. We must
add 1 to the stop integer, due to the way range() works, to actually download the
last hash list.

In the for loop, we create a base URL and insert a five-digit number to specify
the appropriate hash list. We accomplish this by converting the integer to a
string and using zfill() to ensure the digit has five characters by prepending
zeroes to the front of the string until it is five digits long. Next, as before, we
use a try and except to open, read, and decode the hash list. We split on any new
line characters to quickly create a list of hashes. If we encounter an error
accessing the web page, we print a status message to the console and continue

executing rather than exiting from the script.

 for x in tqdm.trange(start, stop + 1, unit_scale=True,
 desc="Progress"):
 url_hash = "https://virusshare.com/hashes/VirusShare_"\
 "{}.md5".format(str(x).zfill(5))
 try:
 hashes = urlopen(
 url_hash, context=context).read().decode("utf-8")
 hashes_list = hashes.split("\n")
 except urllib.error.HTTPError as e:
 print("[-] Error accessing webpage for hash list {}"
 " - continuing..".format(x))
 continue

Once we have the hash list, we open the hash set text file in "a+" mode to
append to the bottom of the text file and create the file if it does not already
exist. Afterward, we only need to iterate through the downloaded hash list and
write each hash to the file. Note that each hash list starts with a few
commented lines (denoted by the # symbol) and so we implement logic to
ignore those lines in addition to empty lines. After all hashes have been
downloaded and written to the text file, we print a status message to the
console and indicate the number of hashes downloaded.

 with open(hashset, "a+") as hashfile:
 for line in hashes_list:
 if not line.startswith("#") and line != "":
 hashes_downloaded += 1
 hashfile.write(line + '\n')

 print("[+] Finished downloading {} hashes into {}".format(
 hashes_downloaded, hashset))

When we run this script the hashes start downloading locally and are stored in
the specified file as seen here:

When previewing the output file, we can see the MD5 hash values saved as plain
text. As previously mentioned, we can import this into the forensic tools either
directly, as with X-Ways, or through a script, as with EnCase (http://www.forensickb
.com/2014/02/enscript-to-create-encase-v7-hash-set.html).

http://www.forensickb.com/2014/02/enscript-to-create-encase-v7-hash-set.html

Gathering intel
Recipe Difficulty: Medium

Python Version: 3.5

Operating System: Any

In this recipe, we use VirusTotal, a free online virus, malware, and URL
scanner, to automate the review of potentially malicious websites or files.
VirusTotal maintains detailed documentation of their API on their website. We
will demonstrate how to perform basic queries against their system using their
documented API and store returned results into a CSV file.

Getting started
To follow this recipe, you need to first create an account with VirusTotal and
decide between the free public API or the private API. The public API has
request limitations, which the private API does not. For example, with the
public API, we are limited to 4 requests per minute and 178,560 requests per
month. More details about the different API types can be found on VirusTotal's
website. We will make these API calls with the requests library. This library
can be installed using:

pip install requests==2.18.4

To learn more about and use VirusTotal, visit the website at https://
www.virustotal.com/.
Learn more about the VirusTotal Public API; visit https://www.virusto
tal.com/en/documentation/public-api/.
Learn more about the VirusTotal Private API; visit https://www.virust
otal.com/en/documentation/private-api/.

To view your API key, which you will need for the script, click on your
account name in the top-right corner and navigate to My API key. Here you can
view details of your API key and request a private key. Take a look at the
following screenshot for additional details. All libraries used in this script are
present in Python's standard library.

https://www.virustotal.com/
https://www.virustotal.com/
https://www.virustotal.com/en/documentation/public-api/
https://www.virustotal.com/en/documentation/public-api/
https://www.virustotal.com/en/documentation/private-api/

How to do it...
We use the following methodology to accomplish our objective:

1. Read in the list of signatures, as either domains and IPs or file paths and
hashes, to research.

2. Query VirusTotal using the API for domain and IPs or files.
3. Flatten results into a convenient format.
4. Write results to a CSV file.

How it works...
First, we import the required libraries to handle argument parsing, creating
spreadsheets, hashing files, parsing JSON data, and interacting with web
pages.

from __future__ import print_function
import argparse
import csv
import hashlib
import json
import os
import requests
import sys
import time

This recipe's command-line handler is a little more complicated than normal. It
takes three positional arguments, INPUT_FILE, OUTPUT_CSV, and API_KEY, which
represent the input text file of domains and IPs or file paths, the desired output
CSV location, and a text file containing the API key to use, respectively. In
addition to this, there are a few optional arguments, -t (or --type) and --limit, to
specify the type of data in the input file and file paths or domains and to limit
requests to comply with public API limitations. By default, the type argument is
configured to the domain value. If the limit switch is added, it will have the
Boolean value of True; otherwise, it will be False.

if __name__ == '__main__':
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("INPUT_FILE",
 help="Text File containing list of file paths/"
 "hashes or domains/IPs")
 parser.add_argument("OUTPUT_CSV",
 help="Output CSV with lookup results")
 parser.add_argument("API_KEY", help="Text File containing API key")
 parser.add_argument("-t", "--type",
 help="Type of data: file or domain",
 choices=("file", "domain"), default="domain")
 parser.add_argument(
 "--limit", action="store_true",
 help="Limit requests to comply with public API key restrictions")
 args = parser.parse_args()

Next, we perform the standard data validation process on the input file and
output CSV. If the inputs pass the data validation steps, we pass all arguments
to the main() function or otherwise exit the script.

 directory = os.path.dirname(args.OUTPUT_CSV)
 if not os.path.exists(directory):
 os.makedirs(directory)

 if os.path.exists(args.INPUT_FILE) and os.path.isfile(args.INPUT_FILE):
 main(args.INPUT_FILE, args.OUTPUT_CSV,
 args.API_KEY, args.limit, args.type)
 else:
 print("[-] Supplied input file {} does not exist or is not a "
 "file".format(args.INPUT_FILE))
 sys.exit(1)

The main() function starts by reading the input file into a set called objects. A set
was used here to cut down on duplicate lines and duplicate calls to the API. In
this manner, we can try to prolong hitting the limitations of the public API
unnecessarily.

def main(input_file, output, api, limit, type):
 objects = set()
 with open(input_file) as infile:
 for line in infile:
 if line.strip() != "":
 objects.add(line.strip())

After we have read in the data, we check whether the type of data we read in is
in the domain and IP category or file paths. Depending on the type, we send the
set of data to the appropriate function, which will return VirusTotal query
results to the main() function. We will then send these results to the write_csv()
method to write the output. Let's look at the query_domain() function first.

 if type == "domain":
 data = query_domain(objects, api, limit)
 else:
 data = query_file(objects, api, limit)
 write_csv(data, output)

This function first performs additional input validation, this time on the API
key file, to ensure the file exists prior to trying to make calls with said key. If
the file does exist, we read it into the api variable. The json_data list will store
returned JSON data from the VirusTotal API calls.

def query_domain(domains, api, limit):
 if not os.path.exists(api) and os.path.isfile(api):
 print("[-] API key file {} does not exist or is not a file".format(
 api))
 sys.exit(2)

 with open(api) as infile:
 api = infile.read().strip()
 json_data = []

After we print a status message to the console, we begin to loop through each
domain or IP address in the set. For each item, we increment count by one to
keep track of how many API calls we have made. We create a parameter
dictionary and store the domain or IP to search and API key and set scan to 1.
By setting scan to 1, we will automatically submit the domain or IP for review if
it is not already in the VirusTotal database.

We make the API call with the requests.post() method, querying the appropriate
URL with the parameter dictionary to obtain the results. We use the json()
method on the returned requests object to convert it into easily manipulated
JSON data.

 print("[+] Querying {} Domains / IPs using VirusTotal API".format(
 len(domains)))
 count = 0
 for domain in domains:
 count += 1
 params = {"resource": domain, "apikey": api, "scan": 1}
 response = requests.post(
 'https://www.virustotal.com/vtapi/v2/url/report',
 params=params)
 json_response = response.json()

If the API call was successful and the data was found in the VirusTotal
database, we append the JSON data to the list. If the data was not present in
the VirusTotal database, we can use the API to retrieve the report after it has
been created. Here, for simplicity, we assume the data is already present in
their database and only add results if they were found rather than waiting for
the report to be generated if the item does not already exist.

 if "Scan finished" in json_response["verbose_msg"]:
 json_data.append(json_response)

Next, we check whether limit is True and the count variable is equal to 3. If so,
we need to wait a minute before continuing the queries to comply with the

public API limitations. We print status messages to the console so the user is
aware of what the script is doing and use the time.sleep() method to halt script
execution for a minute. After we have waited a minute, we reset the count back
to zero and begin querying the remaining domain or IPs in the list. Once we
have finished this process, we return the list of JSON results back to the main()
function.

 if limit and count == 3:
 print("[+] Halting execution for a minute to comply with "
 "public API key restrictions")
 time.sleep(60)
 print("[+] Continuing execution of remaining Domains / IPs")
 count = 0

 return json_data

The query_file() method is similar to the query_domain() method we just explored.
First, we validate that the API key file exists or exit the script otherwise. Once
validated, we read in the API key and store it in the api variable and instantiate
the json_data list to store the API JSON data.

def query_file(files, api, limit):
 if not os.path.exists(api) and os.path.isfile(api):
 print("[-] API key file {} does not exist or is not a file".format(
 api))
 sys.exit(3)

 with open(api) as infile:
 api = infile.read().strip()
 json_data = []

Unlike the query_domain() function, we need to perform some additional
validation and processing on each file path before we can use it. Namely, we
need to validate that each file path is valid and then we must hash each file, or
use the hash provided in the signatures file. We hash these files as this is how
we will look them up in the VirusTotal database. Recall that we are assuming
the file is already present in the database. We can use the API to submit
samples and retrieve reports after the file is scanned.

 print("[+] Hashing and Querying {} Files using VirusTotal API".format(
 len(files)))
 count = 0
 for file_entry in files:
 if os.path.exists(file_entry):
 file_hash = hash_file(file_entry)
 elif len(file_entry) == 32:
 file_hash = file_entry

 else:
 continue
 count += 1

Let's take a quick look at the file_hash function. The hash_file() method is
relatively straightforward. This function takes a file path as its only input and
returns the SHA-256 hash for the said file. We accomplish this, similar to how we
did so in Chapter 1, Essential Scripting and File Information Recipes, by
creating a hashlib algorithm object, reading the file data into it 1,024 bytes at a
time, and then calling the hexdigest() method to return the calculated hashes.
With that covered, let's look at the remainder of the query_file() method.

def hash_file(file_path):
 sha256 = hashlib.sha256()
 with open(file_path, 'rb') as open_file:
 buff_size = 1024
 buff = open_file.read(buff_size)

 while buff:
 sha256.update(buff)
 buff = open_file.read(buff_size)
 return sha256.hexdigest()

The query_file() method continues by creating a parameter dictionary with the
API key and file hash to look up. Again, we use the requests.post() and json()
methods to make the API call and convert it into JSON data, respectively.

 params = {"resource": file_hash, "apikey": api}
 response = requests.post(
 'https://www.virustotal.com/vtapi/v2/file/report',
 params=params)
 json_response = response.json()

If the API call was successful and the file was already present in the
VirusTotal database, we append the JSON data to the list. Once more, we
perform checks on the count and limit to ensure we comply with the public API
limitations. After we have completed all of the API calls, we return the list of
JSON data back to the main() function for output.

 if "Scan finished" in json_response["verbose_msg"]:
 json_data.append(json_response)

 if limit and count == 3:
 print("[+] Halting execution for a minute to comply with "
 "public API key restrictions")
 time.sleep(60)
 print("[+] Continuing execution of remaining files")
 count = 0

 return json_data

The write_csv() method first checks that the output data actually contains API
results. If it does not, the script will exit rather than write an empty CSV file.

def write_csv(data, output):
 if data == []:
 print("[-] No output results to write")
 sys.exit(4)

If we do have results, we print a status message to the console and begin by
flattening the JSON data into a convenient output format. We create a
flatten_data list, which will store each flattened JSON dictionary. The field list
maintains the list of keys in the flattened JSON dictionary and the desired
column headers.

We use a few for loops to get to the JSON data and append a dictionary with
this data to the list. After this process is completed, we will have a very
simple list of dictionary structures to work with. We can use the csv.DictWriter
class as we have previously to easily handle this type of data structure.

 print("[+] Writing output for {} domains with results to {}".format(
 len(data), output))
 flatten_data = []
 field_list = ["URL", "Scan Date", "Service",
 "Detected", "Result", "VirusTotal Link"]
 for result in data:
 for service in result["scans"]:
 flatten_data.append(
 {"URL": result.get("url", ""),
 "Scan Date": result.get("scan_date", ""),
 "VirusTotal Link": result.get("permalink", ""),
 "Service": service,
 "Detected": result["scans"][service]["detected"],
 "Result": result["scans"][service]["result"]})

With the data set ready for output, we open the CSV file and create the
DictWriter class instance. We supply it the file object and the list of headers in
the dictionary. We write the headers to the spreadsheet before writing each
dictionary to a row.

 with open(output, "w", newline="") as csvfile:
 csv_writer = csv.DictWriter(csvfile, fieldnames=field_list)
 csv_writer.writeheader()
 for result in flatten_data:
 csv_writer.writerow(result)

The following screenshot reflects when we run the script against files and
hashes, and a second for running against domains and IPs:

Looking at the output, we can learn about the malware classifications for the
files and hashes and the domain or IP ranking in CSV format:

Totally passive
Recipe Difficulty: Medium

Python Version: 3.5

Operating System: Any

This recipe explores the PassiveTotal API and how to use it to automate the
review of domains and IP addresses. This service is particularly useful in
viewing historical resolution details for a given domain. For example, you may
have a suspected phishing website and, based on historical resolution patterns,
can identify how long it has been active and what other domains used to share
that IP. This then gives you additional domains to review and search for, in
your evidence as you identify the different means and methods of how the
attackers maintained persistence as they compromised multiple users across
the environment.

Getting started
To use the PassiveTotal API, you need to first create a free account on their
website. Once you are logged in, you can view your API key by navigating to
your account settings and clicking on the User Show button under the API
ACCESS section. See the following screenshot for a visual representation of
this page.

All libraries used in this script are present in Python's standard library.
However, we do install the PassiveTotal Python API client and follow the
installation and setup instructions in the README found at https://github.com/passive
total/python_api or with pip install passivetotal==1.0.30. We do this to use the
PassiveTotal command-line pt-client application. In this script, we make the
API calls through this client rather than performing this at a more manual level
as we did in the previous recipe. More details on the PassiveTotal API,
especially if you are interested in developing something more advanced, can
be found on their website.

https://github.com/passivetotal/python_api

To learn more about and use PassiveTotal, visit the website https://
www.passivetotal.org.
Learn more about the PassiveTotal API; visit https://api.passivetotal.org
/api/docs.
Learn more about the PassiveTotal Python API; visit https://github.co
m/passivetotal/python_api.

https://www.passivetotal.org
https://www.passivetotal.org
https://api.passivetotal.org/api/docs
https://api.passivetotal.org/api/docs
https://github.com/passivetotal/python_api

How to do it...
We use the following methodology to accomplish our objective:

1. Read in the list of domains to review.
2. Call the command-line pt-client using subprocess and return results to our

script for each domain.
3. Write results to a CSV file.

How it works...
First, we import the required libraries to handle argument parsing, creating
spreadsheets, parsing JSON data, and spawning subprocesses.

from __future__ import print_function
import argparse
import csv
import json
import os
import subprocess
import sys

This recipe's command-line handler takes two positional arguments,
INPUT_DOMAINS and OUTPUT_CSV, for the input text file containing domains and/or IPs
and the desired output CSV, respectively.

if __name__ == '__main__':
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("INPUT_DOMAINS",
 help="Text File containing Domains and/or IPs")
 parser.add_argument("OUTPUT_CSV",
 help="Output CSV with lookup results")
 args = parser.parse_args()

We perform the standard input validation steps on each of the inputs to avoid
unexpected errors in the script. With the inputs validated, we called the main()
function and pass it the two inputs.

 directory = os.path.dirname(args.OUTPUT_CSV)
 if not os.path.exists(directory):
 os.makedirs(directory)

 if os.path.exists(args.INPUT_DOMAINS) and \
 os.path.isfile(args.INPUT_DOMAINS):
 main(args.INPUT_DOMAINS, args.OUTPUT_CSV)
 else:
 print(
 "[-] Supplied input file {} does not exist or is not a "
 "file".format(args.INPUT_DOMAINS))
 sys.exit(1)

The main() function is rather straightforward, and similar, to that in the previous

recipe. We again use a set to read in the objects in the input file. Once again,
this is to avoid redundant API calls to the PassiveTotal API as there are daily
limitations to the free API. After we read in these objects, we call the
query_domains() function, which uses the pt-client application to make API calls.
Once we have all of the returned JSON data from the API calls, we call the
write_csv() method to write the data to the CSV file.

def main(domain_file, output):
 domains = set()
 with open(domain_file) as infile:
 for line in infile:
 domains.add(line.strip())
 json_data = query_domains(domains)
 write_csv(json_data, output)

The query_domains() function starts by creating a json_data list to store the returned
JSON data and printing a status message to the console. We then begin to
iterate through each object in the input file and remove any "https://" or
"http://" substrings. While testing pt-client, it was observed to generate an
internal server error if that substring was present. For example, instead of https:/
/www.google.com, the query should just be www.google.com.

def query_domains(domains):
 json_data = []
 print("[+] Querying {} domains/IPs using PassiveTotal API".format(
 len(domains)))
 for domain in domains:
 if "https://" in domain:
 domain = domain.replace("https://", "")
 elif "http://" in domain:
 domain = domain.replace("http://", "")

With the domain or IP address ready to be queried, we use the subprocess.Popen()
method to open a new process and execute the pt-client application. Arguments
to be executed in this process are in a list. The command that will be executed,
if the domain is www.google.com, would look like pt-client pdns -q www.gooogle.com.
Supplying the stdout keyword argument as subprocess.PIPE creates a new pipe for
the process so that we can retrieve results from the query. We do exactly that in
the following line by calling the communicate() method and then converting the
returned data into a JSON structure that we can then store.

 proc = subprocess.Popen(
 ["pt-client", "pdns", "-q", domain], stdout=subprocess.PIPE)
 results, err = proc.communicate()
 result_json = json.loads(results.decode())

https://www.google.com
https://www.google.com
https://www.google.com

If the quota_exceeded message is in the JSON results, then we have exceeded the
daily API limit and print that to the console and continue executing. We
continue executing rather than exiting so that we can write any results we did
retrieve before exceeding the daily API quota.

 if "message" in result_json:
 if "quota_exceeded" in result_json["message"]:
 print("[-] API Search Quota Exceeded")
 continue

Next, we set the result_count and check if it is equal to zero. If results were
found for the query, we append the results to the JSON list. We return the
JSON list, after performing this operation on all domains and/or IPs in the
input file.

 result_count = result_json["totalRecords"]

 print("[+] {} results for {}".format(result_count, domain))
 if result_count == 0:
 pass
 else:
 json_data.append(result_json["results"])

 return json_data

The write_csv() method is pretty straightforward. Here we first check that we
have data to write to the output file. Then, we print a status message to the
console and create the list of headers and the order in which they should be
written.

def write_csv(data, output):
 if data == []:
 print("[-] No output results to write")
 sys.exit(2)

 print("[+] Writing output for {} domains/IPs with "
 "results to {}".format(len(data), output))
 field_list = ["value", "firstSeen", "lastSeen", "collected",
 "resolve", "resolveType", "source", "recordType",
 "recordHash"]

After we have created the list of headers, we use the csv.DictWriter class to set
up the output CSV file, write the header row, and iterate through each
dictionary in the JSON results and write them to their respective rows.

 with open(output, "w", newline="") as csvfile:
 csv_writer = csv.DictWriter(csvfile, fieldnames=field_list)
 csv_writer.writeheader()

 for result in data:
 for dictionary in result:
 csv_writer.writerow(dictionary)

Running the script provides insight to the number of responses per item in the
PassiveTotal lookup:

The CSV report displays the collected information as seen here:

Reading Emails and Taking Names
Recipes
The following recipes are covered in this chapter:

Parsing EML files
Viewing MSG files
Ordering Takeout
What’s in the box?
Parsing PST and OST mailboxes

Introduction
The he-said-she-said game is often thrown out the window once computer
evidence is added to the fray. The email plays a major role in most types of
investigations. The email evidence extends to both business and personal
devices, as it is widely used to send files, communicate with peers, and to
receive notifications from online services. By examining email, we can learn
what social media, cloud storage, or other sites are used by the custodian. We
can also look for data exfiltration outside of an organization or investigate the
source of a phishing scheme.

This chapter will cover recipes that expose this information for investigations,
including:

Reading the EML format using built-in libraries
Leveraging the win32com library to extract information from Outlook MSG
files
Preserving Google Gmail with Takeouts and parsing the preservation
Using built-in libraries to read from MBOX containers
Reading PST files with libpff

Visit www.packtpub.com/books/content/support to download the code
bundle for this chapter.

http://www.packtpub.com/books/content/support

Parsing EML files
Recipe Difficulty: Easy

Python Version: 2.7 or 3.5

Operating System: Any

The EML file format is widely used for storing email messages, as it is a
structured text file that is compatible across multiple email clients. This text
file stores email headers, body content, and attachment data as plain text, using
base64 to encode binary data and the Quoted-Printable (QP) encoding to store
content information.

Getting started
All libraries used in this script are present in Python's standard library. We
will use the built-in email library to read and extract key information from the
EML files.

To learn more about the email library, visit https://docs.python.org/3/li
brary/email.html.

https://docs.python.org/3/library/email.html

How to do it...
To create an EML parser, we must:

1. Accept an argument for an EML file.
2. Read values from the headers.
3. Parse information from each of the sections of the EML.
4. Display this information for ease of review in the console.

How it works...
We start by importing libraries for argument handling, EML processing, and
decoding base64 encoded data. The email library provides classes and methods
necessary to read EML files. We will use the message_from_file() function to
parse data from the provided EML file. Quopri is a new library to this book
which we use to decode the QP encoded values found in the HTML body and
attachments. The base64 library, as one might expect, allows us to decode any
base64 encoded data:

from __future__ import print_function
from argparse import ArgumentParser, FileType
from email import message_from_file
import os
import quopri
import base64

This recipe's command-line handler accepts one positional argument, EML_FILE,
which represents the path to the EML file we will process. We use the FileType
class to handle the opening of the file for us:

if __name__ == '__main__':
 parser = ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("EML_FILE",
 help="Path to EML File", type=FileType('r'))
 args = parser.parse_args()

 main(args.EML_FILE)

In the main() function, we read the file-like object into the email library using the
message_from_file() function. We can now use the resulting variable, emlfile, to
access the headers, body content, attachments, and other payload information.
Reading the email headers is simply a matter of iterating through a dictionary
provided by the library's _headers attribute. To handle the body content, we must
check if this message contains multiple payloads and, if so, pass each to the
designated processing function, process_payload():

def main(input_file):

 emlfile = message_from_file(input_file)

 # Start with the headers
 for key, value in emlfile._headers:
 print("{}: {}".format(key, value))

 # Read payload
 print("\nBody\n")
 if emlfile.is_multipart():
 for part in emlfile.get_payload():
 process_payload(part)
 else:
 process_payload(emlfile[1])

The process_payload() function begins by extracting extracting the MIME type of
the message using the get_content_type() method. We print this value to the
console and, on a newline, we print a number of "=" characters to distinguish
between this and the remainder of the message.

In one line, we extract the message body content using the get_payload() method
and decoding the QP encoded data with the quopri.decodestring() function. We
then check the there is a character set of the data and, if we do identify a
character set, use the decode() method on the content while specifying the
character set. If the encoding is unknown, we will try to decode the object with
UTF8, the default when leaving the decode() method empty, and Windows-1252:

def process_payload(payload):
 print(payload.get_content_type() + "\n" + "=" * len(
 payload.get_content_type()))
 body = quopri.decodestring(payload.get_payload())
 if payload.get_charset():
 body = body.decode(payload.get_charset())
 else:
 try:
 body = body.decode()
 except UnicodeDecodeError:
 body = body.decode('cp1252')

With our decoded data, we check the content MIME type to properly handle the
storage of the email. The first condition for HTML information, specified by
the text/html MIME type, is written to an HTML document in the same directory
as the input file. In the second condition, we handle binary data under the
Application MIME type. This data is conveyed as base64 encoded values, which
we decode before writing to a file in the current directory using the
base64.b64decode() function. The binary data has the get_filename() method, which
we can use to accurately name the attachment. Note that the output file must be

opened in "w" mode for the first type and "wb" mode for the second. If the MIME
type is other than what we have covered here, we print the body to the console:

 if payload.get_content_type() == "text/html":
 outfile = os.path.basename(args.EML_FILE.name) + ".html"
 open(outfile, 'w').write(body)
 elif payload.get_content_type().startswith('application'):
 outfile = open(payload.get_filename(), 'wb')
 body = base64.b64decode(payload.get_payload())
 outfile.write(body)
 outfile.close()
 print("Exported: {}\n".format(outfile.name))
 else:
 print(body)

When we execute this code, we see the header information first printed to the
console, followed by the various payloads. In this case, we have a text/plain
MIME content first, containing a sample message, followed by an
application/vnd.ms-excel attachment that we export, and another text/plain block
showing the initial message:

Viewing MSG files
Recipe Difficulty: Easy

Python Version: 2.7 or 3.5

Operating System: Windows

Email messages can come in many different formats. The MSG format is
another popular container for storing message content and attachments. In this
example, we will learn to parse MSG files using the Outlook API.

Getting started
This recipe requires the installation of the third-party library pywin32. This
means the script will only be compatible on Windows systems. We will also
need to install pywin32, as we did in Chapter 1, Essential Scripting and File
Information Recipes.

To install pywin32, we need to access its SourceForge page at https://sourceforge.net/pr
ojects/pywin32/ and download the version that matches your Python installation. To
check our Python version, we can import the sys module and call sys.version
within an interpreter. Both the version and the architecture are important when
selecting the correct pywin32 installer. We also want to confirm we have a valid
installation of Outlook that has been setup on our machine, as the pywin32
bindings rely on resources provided by Outlook. We are ready to create the
script after running the pywin32 installer.

https://sourceforge.net/projects/pywin32/

How to do it...
To create an MSG parser, we must:

1. Accept an argument for an MSG file.
2. Print general metadata about the MSG file to the console.
3. Print recipient-specific metadata to the console.
4. Export the message content to an output file.
5. Export any attachments embedded within the message to appropriate

output files.

How it works...
We begin by importing libraries for argument handling, argparse and os,
followed by the win32com library from pywin32. We also import the pywintypes
library to properly catch and handle pywin32 errors:

from __future__ import print_function
from argparse import ArgumentParser
import os
import win32com.client
import pywintypes

This recipe's command-line handler accepts two positional arguments, MSG_FILE
and OUTPUT_DIR, which represent the path to the MSG file to process and the
desired output folder, respectively. We check if the desired output folder exists
and create it if it does not. Afterwards, we pass the two inputs to the main()
function:

if __name__ == '__main__':
 parser = ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("MSG_FILE", help="Path to MSG file")
 parser.add_argument("OUTPUT_DIR", help="Path to output folder")
 args = parser.parse_args()
 out_dir = args.OUTPUT_DIR
 if not os.path.exists(out_dir):
 os.makedirs(out_dir)
 main(args.MSG_FILE, args.OUTPUT_DIR)

In the main() function we call the win32com library to set up the Outlook API
configuring it in such a way that allows access to the MAPI namespace. Using
this mapi variable, we can open an MSG file with the OpenSharedItem() method and
create an object we will use for the other functions in this recipe. These
functions include: display_msg_attribs(), display_msg_recipients(), extract_msg_body(),
and extract_attachments(). Let's now turn our attention to each of these functions,
in turn, to see how they work:

def main(msg_file, output_dir):
 mapi = win32com.client.Dispatch(
 "Outlook.Application").GetNamespace("MAPI")

 msg = mapi.OpenSharedItem(os.path.abspath(args.MSG_FILE))
 display_msg_attribs(msg)
 display_msg_recipients(msg)
 extract_msg_body(msg, output_dir)
 extract_attachments(msg, output_dir)

The display_msg_attribs() function allows us to display the various attributes of a
message (subject, to, BCC, size, and so on). Some of these attributes may not
be present in the message we are parsing, however, we attempt to export all
values regardless. The attribs list shows, in order, the attributes we try to
access from the message. As we iterate through each attribute, we use the built-
in getattr() method on the msg object and attempt to extract the relevant value, if
present, and "N/A" if not. We then print the attribute and its determined value to
the console. As a word of caution, some of these values may be present but
only set to a default value, such as the year 4501 for some dates:

def display_msg_attribs(msg):
 # Display Message Attributes
 attribs = [
 'Application', 'AutoForwarded', 'BCC', 'CC', 'Class',
 'ConversationID', 'ConversationTopic', 'CreationTime',
 'ExpiryTime', 'Importance', 'InternetCodePage', 'IsMarkedAsTask',
 'LastModificationTime', 'Links', 'OriginalDeliveryReportRequested',
 'ReadReceiptRequested', 'ReceivedTime', 'ReminderSet',
 'ReminderTime', 'ReplyRecipientNames', 'Saved', 'Sender',
 'SenderEmailAddress', 'SenderEmailType', 'SenderName', 'Sent',
 'SentOn', 'SentOnBehalfOfName', 'Size', 'Subject',
 'TaskCompletedDate', 'TaskDueDate', 'To', 'UnRead'
]
 print("\nMessage Attributes")
 print("==================")
 for entry in attribs:
 print("{}: {}".format(entry, getattr(msg, entry, 'N/A')))

The display_msg_recipients() function iterates through the message and displays
recipient details. The msg object provides a Recipients() method, which accepts
an integer argument to access recipients by index. Using a while loop, we try to
load and display values for available recipients. For each recipient found, as
in the prior function, we use of getattr() method with a list of attributes, called
recipient_attrib, to extract and print the relevant values or, if they are not
present, assign them the value "N/A". Though most Python iterables use zero as
the first index, the Recipients() method starts at 1. For this reason, the variable i
will start at 1 and be incremented until no further recipients are found. We will
continue to try and read these values until we receive a pywin32 error:

def display_msg_recipients(msg):

 # Display Recipient Information
 recipient_attrib = [
 'Address', 'AutoResponse', 'Name', 'Resolved', 'Sendable'
]
 i = 1
 while True:
 try:
 recipient = msg.Recipients(i)
 except pywintypes.com_error:
 break

 print("\nRecipient {}".format(i))
 print("=" * 15)
 for entry in recipient_attrib:
 print("{}: {}".format(entry, getattr(recipient, entry, 'N/A')))
 i += 1

The extract_msg_body() function is designed to extract the body content from the
message. The msg object exposes the body content in a few different formats; in
this recipe, we will export the HTML, using the HTMLBody() method, and
plaintext, using the Body() method, versions of the body. Since these objects are
byte strings, we must first decode them, which we do with the cp1252 code page.
With the decoded content, we open the output file for writing, in the user-
specified directory, and create the respective *.body.html and *.body.txt files:

def extract_msg_body(msg, out_dir):
 # Extract HTML Data
 html_data = msg.HTMLBody.encode('cp1252')
 outfile = os.path.join(out_dir, os.path.basename(args.MSG_FILE))
 open(outfile + ".body.html", 'wb').write(html_data)
 print("Exported: {}".format(outfile + ".body.html"))

 # Extract plain text
 body_data = msg.Body.encode('cp1252')
 open(outfile + ".body.txt", 'wb').write(body_data)
 print("Exported: {}".format(outfile + ".body.txt"))

Lastly, the extract_attachments() function exports attachment data from the MSG
file to the desired output directory. Using the msg object, we again create a list,
attachment_attribs, representing a series of attributes about an attachment.
Similar to the recipient function, we use a while loop and the Attachments()
method, which accepts an integer as an argument to select an attachment by
index, to iterate through each attachment. As we saw before with the
Recipients() method, the Attachments() method starts its index at 1. For this reason,
the variable i will start at 1 and be incremented until no further attachments are
found:

def extract_attachments(msg, out_dir):

 attachment_attribs = [
 'DisplayName', 'FileName', 'PathName', 'Position', 'Size'
]
 i = 1 # Attachments start at 1
 while True:
 try:
 attachment = msg.Attachments(i)
 except pywintypes.com_error:
 break

For each attachment, we print its attributes to the console. The attributes we
extract and print are defined in the attachment_attrib list at the beginning of this
function. After printing available attachment details, we write its content using
the SaveAsFile() method and supplying it with a string containing the output path
and desired name of the output attachment (which is obtained using the FileName
attribute). After this, we are ready to move onto the next attachment and so we
increment variable i and try to access the next attachment.

 print("\nAttachment {}".format(i))
 print("=" * 15)
 for entry in attachment_attribs:
 print('{}: {}'.format(entry, getattr(attachment, entry,
 "N/A")))
 outfile = os.path.join(os.path.abspath(out_dir),
 os.path.split(args.MSG_FILE)[-1])
 if not os.path.exists(outfile):
 os.makedirs(outfile)
 outfile = os.path.join(outfile, attachment.FileName)
 attachment.SaveAsFile(outfile)
 print("Exported: {}".format(outfile))
 i += 1

When we execute this code, we see the following output, along with several
files in the output directory. This includes the body as text and HTML, along
with any discovered attachments. The attributes of the message and its
attachments are displayed in the console window.

There’s more...
This script can be further improved. We have provided one or more
recommendations as follows:

Consider adding more fields to the parser by referencing the properties of
an MSG object on MSDN at https://msdn.microsoft.com/en-us/library/microsoft.office.int
erop.outlook.mailitem_properties.aspx

https://msdn.microsoft.com/en-us/library/microsoft.office.interop.outlook.mailitem_properties.aspx

See also
Other libraries for accessing MSG files exist, including the Redemption library.
This library provides handlers to access header information, along with many
of the same attributes shown in this example.

Ordering Takeout
Recipe Difficulty: Easy

Python Version: N/A

Operating System: Any

Google Mail, popularly known as Gmail, is one of the more widely-used
webmail services. Gmail accounts not only function as email addresses, but a
gateway into the slew of other services that Google offers. In addition to
providing access to mail through the web or Internet Message Access
Protocol (IMAP) and Post Office Protocol (POP) mail protocols, Google
has developed a system for the archival and acquisition of mail and other
associated data stored in a Gmail account.

Getting started
This recipe, believe it or not, actually does not involve any Python and instead
requires a browser and access to a Google account instead. The purpose of
this recipe is to acquire the Google account mailbox in the MBOX format
which we parse in the next recipe.

How to do it...
To initiate a Google Takeout, we follow these steps:

1. Login to the Google account in question.
2. Navigate to account settings and the Create Archive feature.
3. Select desired Google products to archive and begin the process.
4. Download the archived data.

How it works...
We start the Google Takeout process by logging into the account and selecting
the My Account option. We can also navigate to https://myaccount.google.com if the
My Account option is not present:

On the My Account dashboard, we select the Control your content link under
the Personal info & privacy section:

https://myaccount.google.com

Within the Control your content section, we are presented with an option to
CREATE ARCHIVE. This is where we start the Google Takeout collection:

When selecting this option, we are presented with an option to manage existing

archives or generate a new one. When generating a new one, we are presented
with check boxes for each Google product we wish to include. Drop-down
arrows provide sub-menus altering the export format or content. For example,
we can choose how Google Drive Documents are exported as Microsoft Word,
PDF, or plaintext formats. In this instance, we will leave the options as
defaults, ensuring the Mail option is set to collect All mail:

With the desired content selected, we can configure the format of the archive.
Google Takeout allows us to select both an archive file type and a maximum
segment size for ease of download and access. We can also select how we
would like to access the Takeout. This option can be set to send a download
link to the account being archived (the default option) or upload the archive to
the account's Google Drive or other third-party cloud services, which may
modify more information than necessary to preserve this data. We elect to
receive the email and then select Create archive to start the process!

And now we must wait. Depending on the size of the data being preserved this
can take a considerable amount of time, as Google has to gather, convert, and
compress all of the data for you.

When you receive the notification email, select the provided link to download
the archive. This archive is only available for a limited time, so it is important
to collect it as soon as you are notified.

After downloading the data, extract the archive's contents and look at the
internal folder structure and provided data. Each of the products selected is
given a folder containing the relevant content or folder structure for the
product. In this instance, we are most interested in mail, provided in the
MBOX format. In the next recipe, we will show how to parse this MBOX data
using Python.

There’s more...
If you prefer a more direct route for this acquisition, you can navigate to https://ta
keout.google.com/settings/takeout after logging into the account. From here you can
choose the products for export.

https://takeout.google.com/settings/takeout

What’s in the box?!
Recipe Difficulty: Medium

Python Version: 3.5

Operating System: Any

MBOX files are often found in association with UNIX systems, Thunderbird,
and Google Takeouts. These MBOX containers are text files with special
formatting that split messages stored within. Since there are several formats for
structuring MBOX files, our script will focus on those from Google Takeout,
using the output from the prior recipe.

Getting started
All libraries used in this script are present in Python's standard library. We use
the built-in mailbox library to parse the Google Takeout structured MBOX file.

To learn more about the mailbox library, visit https://docs.python.org/3
/library/mailbox.html.

https://docs.python.org/3/library/mailbox.html

How to do it...
To implement this script, we must:

1. Design arguments to accept a file path to the MBOX file and an output the
report its contents.

2. Develop a custom MBOX reader that handles encoded data.
3. Extract message metadata including attachment names.
4. Write attachments to the output directory.
5. Create an MBOX metadata report.

How it works...
We start by importing libraries for argument handling, followed by the os, time,
and csv libraries required for creating the script's output. Next, we import the
mailbox library to parse the MBOX message format and base64 to decode binary
data in attachments. Lastly, we bring in the tqdm library to provide a progress
bar related to the message parsing status:

from __future__ import print_function
from argparse import ArgumentParser
import mailbox
import os
import time
import csv
from tqdm import tqdm
import base64

This recipe's command-line handler accepts two positional arguments, MBOX and
OUTPUT_DIR, which represent the path to the MBOX file to process and the
desired output folder, respectively. Both of these arguments are passed to the
main() function to kick off the script:

if __name__ == '__main__':
 parser = ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("MBOX", help="Path to mbox file")
 parser.add_argument("OUTPUT_DIR",
 help="Path to output directory to write report "
 "and exported content")
 args = parser.parse_args()

 main(args.MBOX, args.OUTPUT_DIR)

The main() function starts with a call to the mailbox library’s mbox class. Using this
class, we can parse a MBOX file by providing the path to the file and an
optional argument for the factory, which in our case, is a custom reader
function. Using this library, we now have an iterable object containing message
objects we can interact with. We use the built-in len() method to print the
number of messages contained within the MBOX file. Let's first look at how
the custom_reader() function works:

def main(mbox_file, output_dir):
 # Read in the MBOX File
 print("Reading mbox file...")
 mbox = mailbox.mbox(mbox_file, factory=custom_reader)
 print("{} messages to parse".format(len(mbox)))

This recipe requires a number of functions to function (see what we did
there...), but the custom_reader() method is a bit different than the others. This
function is a reader method for the mailbox library. We need to create this
function due to the fact that the default reader does not handle encoding such as
cp1252. We can add other encodings into this reader, though ASCII and cp1252 are
the two most common encodings for MBOX files.

After using the read() method on the input data stream, it tries to decode the data
using the ASCII codepage. If this is unsuccessful, it instead relies on the cp1252
codepage to get the job done. Any errors that are encountered when decoding
with the cp1252 codepage are replaced by the replacement character U+FFFD by
supplying the decode() method with the errors keyword setting it to "replace". We
use the mailbox.mboxMessage() function to return the decoded content in the
appropriate format:

def custom_reader(data_stream):
 data = data_stream.read()
 try:
 content = data.decode("ascii")
 except (UnicodeDecodeError, UnicodeEncodeError) as e:
 content = data.decode("cp1252", errors="replace")
 return mailbox.mboxMessage(content)

Back in the main() function, we prepare a few variables before we begin
processing the messages. Namely, we set up the parsed_data results list, create
an output directory for attachments, and define the columns for the MBOX
metadata report. These columns will also be used to extract information from
the message using the get() method. Two of these columns will not extract
information from the message object and, instead, will contain data we assign
after processing attachments. For consistency, we will keep these values in the
columns list, as they will default to an "N/A" value anyways:

 parsed_data = []
 attachments_dir = os.path.join(output_dir, "attachments")
 if not os.path.exists(attachments_dir):
 os.makedirs(attachments_dir)
 columns = ["Date", "From", "To", "Subject", "X-Gmail-Labels",
 "Return-Path", "Received", "Content-Type", "Message-ID",

 "X-GM-THRID", "num_attachments_exported", "export_path"]

As we begin to iterate through the messages, we implement a tqdm progress bar
to track the iteration process. Since the mbox object has a length property, we do
not need to provide any additional arguments to tqdm. Inside of the loop, we
define the msg_data dictionary to store message results and then try to assign
message properties through a second for loop using the get() method to query
for columns keys in the header_data dictionary:

 for message in tqdm(mbox):
 # Preserve header information
 msg_data = dict()
 header_data = dict(message._headers)
 for hdr in columns:
 msg_data[hdr] = header_data.get(hdr, "N/A")

Next, in an if statement, we check if the message has a payload and, if it does,
we use the write_payload() method supplying it the message object and the output
attachments directory as its inputs. If no payloads exist for the message, the two
attachment-related columns will remain with the default "N/A" values.
Otherwise, we count the number of attachments found and join a list of their
paths together into a comma-separated list:

 if len(message.get_payload()):
 export_path = write_payload(message, attachments_dir)
 msg_data['num_attachments_exported'] = len(export_path)
 msg_data['export_path'] = ", ".join(export_path)

After each message is processed, its data is appended to the parsed_data list.
After every message has been processed, the create_report() method is called
and passed the parsed_data list and the desired output CSV name. Let's backtrack
a bit and look at the write_payload() method first:

 parsed_data.append(msg_data)

 # Create CSV report
 create_report(
 parsed_data, os.path.join(output_dir, "mbox_report.csv"), columns
)

Since messages can have a wide variety of payloads, we need to craft a
dedicated function to handle the various MIME types. The write_payload() method is
such a function. This function begins by extracting the payload with the
get_payload() method and performing a quick check to see if the payload content

consists of multiple parts. If it does, we call this function recursively to handle
each subsection, by iterating through the payloads and appending the output to
the export_path variable:

def write_payload(msg, out_dir):
 pyld = msg.get_payload()
 export_path = []
 if msg.is_multipart():
 for entry in pyld:
 export_path += write_payload(entry, out_dir)

If the payload is not multi-part, we determine its MIME type using the
get_content_type() method and creating logic to handle the data source
appropriately by category. Data types, including application, image, and video,
are generally represented as base64-encoded data, allowing binary information
to be transmitted as ASCII characters. For this reason, the majority of the
formats, including some within the text category, require us to decode the data
before providing it for writing. In other instances, the data already exists as a
string and can be written as-is to the file. Regardless, the method is generally
the same, the data is decoded (if necessary) and its contents are written to the
filesystem using the export_content() method. Lastly, a string representing the
path to the exported item is appended to the export_path list:

 else:
 content_type = msg.get_content_type()
 if "application/" in content_type.lower():
 content = base64.b64decode(msg.get_payload())
 export_path.append(export_content(msg, out_dir, content))
 elif "image/" in content_type.lower():
 content = base64.b64decode(msg.get_payload())
 export_path.append(export_content(msg, out_dir, content))
 elif "video/" in content_type.lower():
 content = base64.b64decode(msg.get_payload())
 export_path.append(export_content(msg, out_dir, content))
 elif "audio/" in content_type.lower():
 content = base64.b64decode(msg.get_payload())
 export_path.append(export_content(msg, out_dir, content))
 elif "text/csv" in content_type.lower():
 content = base64.b64decode(msg.get_payload())
 export_path.append(export_content(msg, out_dir, content))
 elif "info/" in content_type.lower():
 export_path.append(export_content(msg, out_dir,
 msg.get_payload()))
 elif "text/calendar" in content_type.lower():
 export_path.append(export_content(msg, out_dir,
 msg.get_payload()))
 elif "text/rtf" in content_type.lower():
 export_path.append(export_content(msg, out_dir,
 msg.get_payload()))

The else statement adds an additional if-elif statement to the payload to
determine if the export contains a filename. If it does, we treat it as the others,
however, if it does not, it is likely a message body stored as HTML or text.
While we could export each message body by modifying this section, it would
generate a large amount of data for this example and so we choose not to. Once
we have finished exporting data from the message, we return the list of paths
for the data exported to the main() function:

 else:
 if "name=" in msg.get('Content-Disposition', "N/A"):
 content = base64.b64decode(msg.get_payload())
 export_path.append(export_content(msg, out_dir, content))
 elif "name=" in msg.get('Content-Type', "N/A"):
 content = base64.b64decode(msg.get_payload())
 export_path.append(export_content(msg, out_dir, content))

 return export_path

The export_content() function starts by calling the get_filename() function, a
method that extracts the filename from the msg object. Additional processing is
performed on the filename to extract an extension, if present, though the generic
.FILE extension is used if none is found:

def export_content(msg, out_dir, content_data):
 file_name = get_filename(msg)
 file_ext = "FILE"
 if "." in file_name:
 file_ext = file_name.rsplit(".", 1)[-1]

Next, we perform additional formatting to create a unique filename by
integrating the time, represented as a Unix time integer, followed by the
determined file extension. This filename is then joined to the output directory
to form a full path for writing the output. This unique filename ensures that we
do not mistakenly overwrite already present attachments in the output
directory:

 file_name = "{}_{:.4f}.{}".format(
 file_name.rsplit(".", 1)[0], time.time(), file_ext)
 file_name = os.path.join(out_dir, file_name)

The last segment of code in this function handles the actual export of file
content. This if statement handles the different file modes ("w" or "wb"), based
on the source type. After writing the data, we return the file path used in the
export. This path will be added to our metadata report:

 if isinstance(content_data, str):
 open(file_name, 'w').write(content_data)
 else:
 open(file_name, 'wb').write(content_data)

 return file_name

The next function, get_filename(), extracts filenames from the message to
accurately represent the names of these files. The filenames can be found
within the "Content-Disposition" or "Content-Type" properties and are generally
found prepended with a "name=" or "filename=" string. For both properties, the
logic is largely the same. The function first replaces any newline characters
with one space and then splits the string on a semicolon and space. This
delimiter generally separates the values within these properties. Using list
comprehension, we identify which element contains a name= substring and use
that as the filename:

def get_filename(msg):
 if 'name=' in msg.get("Content-Disposition", "N/A"):
 fname_data = msg["Content-Disposition"].replace("\r\n", " ")
 fname = [x for x in fname_data.split("; ") if 'name=' in x]
 file_name = fname[0].split("=", 1)[-1]

 elif 'name=' in msg.get("Content-Type", "N/A"):
 fname_data = msg["Content-Type"].replace("\r\n", " ")
 fname = [x for x in fname_data.split("; ") if 'name=' in x]
 file_name = fname[0].split("=", 1)[-1]

If the two content properties are empty, we assign a generic NO_FILENAME and
continue preparing the filename. After we extract the potential filename, we
remove any characters that are not alphanumeric, a space, or a period to
prevent errors with writing the file to the system. With our filesystem-safe
filename ready, we return it for use in the previously discussed export_content()
method:

 else:
 file_name = "NO_FILENAME"

 fchars = [x for x in file_name if x.isalnum() or x.isspace() or
 x == "."]
 return "".join(fchars)

Lastly, we have reached the point where we are ready to discuss the CSV
metadata report. The create_report() function, is similar to what we have seen
variations of throughout this book, it creates a CSV report from a list of

dictionaries using the DictWriter class. Ta-da!

def create_report(output_data, output_file, columns):
 with open(output_file, 'w', newline="") as outfile:
 csvfile = csv.DictWriter(outfile, columns)
 csvfile.writeheader()
 csvfile.writerows(output_data)

This script creates a CSV report and directory full of attachments. The first
screenshot shows the first few columns and rows of the CSV report and how
the data is displayed to the user:

This second screenshot displays the last few columns of these same rows and
reflects how attachment information is reported. These file paths can be
followed to access the corresponding attachments:

Parsing PST and OST mailboxes
Recipe Difficulty: Hard

Python Version: 2.7

Operating System: Linux

The Personal Storage Table (PST) file is commonly found on many systems
and provides access to archived email. These files, generally associated with
the Outlook application, contain message and attachment data. These files are
commonly found in the corporate setting, as many business environments
continue to leverage Outlook for internal and external email management.

Getting started
This recipe requires the installation of the libpff, and its Python bindings, pypff,
to function. Available on GitHub, this library provides tools, and Python
bindings, to handle and extract data from PST files. We will set up this library
in Ubuntu 16.04 with bindings for Python 2 for ease of development. This
library can be built for Python 3 as well, though we will use the Python 2
bindings for this section.

We must install a number of dependencies before installing the required
library. Using the Ubuntu apt package manager, we will install the following
eight packages. You may want to keep this Ubuntu environment handy as we
will use it extensively Chapter 8, Working with Forensic Evidence Container
Recipes and onwards:

sudo apt-get install automake autoconf libtool pkg-config autopoint git python-dev

With the dependencies installed, navigate to the GitHub repository and
download the desired release for the library. This recipe was developed using
the libpff-experimental-20161119 release of the pypff library. Next, once the contents
of the release are extracted, open a terminal and navigate to the extracted
directory and execute the following commands for the release:

./synclibs.sh

./autogen.sh
sudo python setup.py install

To learn more about the pypff library, visit https://github.com/libyal/lib
pff.

Lastly, we can check the library installation by opening a Python interpreter,
importing pypff, and running the pypff.get_version() method to ensure we have the
correct release version.

https://github.com/libyal/libpff

How to do it...
We extract PST message content following these steps:

1. Create a handle for the PST file using pypff.
2. Iterate through all folders and messages within the PST.

3. Store relevant metadata for each message.
4. Create a metadata report based on the contents of the PST.

How it works...
This script begins by importing libraries for argument handling, writing
spreadsheets, performing regular expression searches, and processing PST
files:

from __future__ import print_function
from argparse import ArgumentParser
import csv
import pypff
import re

This recipe's command-line handler accepts two positional arguments, PFF_FILE
and CSV_REPORT, which represent the path to the PST file to process and the
desired output CSV path, respectively. We forego a main() function in this
recipe and immediately begin by using the pypff.file() object to instantiate the
pff_obj variable. Following that, we use the open() method and attempt to access
the user-supplied PST. We pass this PST to the process_folders() method and
store the returned list of dictionaries in the parsed_data variable. After using the
close() method on the pff_obj variable, we write the PST metadata report using
the write_data() function by passing it the desired output CSV path and
processed data dictionary:

if __name__ == '__main__':
 parser = ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("PFF_FILE", help="Path to PST or OST File")
 parser.add_argument("CSV_REPORT", help="Path to CSV report location")
 args = parser.parse_args()

 # Open file
 pff_obj = pypff.file()
 pff_obj.open(args.PFF_FILE)

 # Parse and close file
 parsed_data = process_folders(pff_obj.root_folder)
 pff_obj.close()

 # Write CSV report
 write_data(args.CSV_REPORT, parsed_data)

This recipe consists of several functions that handle different elements of the
PST file. The process_folders() function handles the folder processing and
iteration. As we process these folders, we print their names, the number of
subfolders, and the number of messages within that folder to the console. This
can be accomplished by calling the number_of_sub_folders and number_of_sub_messages
attributes on the pff_folder object:

def process_folders(pff_folder):
 folder_name = pff_folder.name if pff_folder.name else "N/A"
 print("Folder: {} (sub-dir: {}/sub-msg: {})".format(folder_name,
 pff_folder.number_of_sub_folders,
 pff_folder.number_of_sub_messages))

Following these print messages, we setup up the data_list which is responsible
for storing processed message data. As we iterate through the messages within
the folder, we call the process_message() method to create the dictionary object
with the processed message data. Immediately afterward, we add the folder
name to the dictionary before appending it to the list of results.

The second loop iterates through subfolders, recursively calling the
process_folders() function and passing it the subfolder to process and appending
the resulting list of dictionaries to the data_list. This allows us to walk through
the PST and extract all of the data before we return the data_list and write the
CSV report:

 # Process messages within a folder
 data_list = []
 for msg in pff_folder.sub_messages:
 data_dict = process_message(msg)
 data_dict['folder'] = folder_name
 data_list.append(data_dict)

 # Process folders within a folder
 for folder in pff_folder.sub_folders:
 data_list += process_folders(folder)

 return data_list

The process_message() function is responsible for accessing the various attributes
of the message, including the email header information. As seen in previous
recipes, we use a list of object attributes to build a dictionary of results. We
then iterate through the attribs dictionary and, using the getattr() method,
append the appropriate key-value pairs to the data_dict dictionary. Lastly, if

email headers are present, which we determine by using the transport_headers
attribute, we update the data_dict dictionary with additional values extracted
from the process_headers() function:

def process_message(msg):
 # Extract attributes
 attribs = ['conversation_topic', 'number_of_attachments',
 'sender_name', 'subject']
 data_dict = {}
 for attrib in attribs:
 data_dict[attrib] = getattr(msg, attrib, "N/A")

 if msg.transport_headers is not None:
 data_dict.update(process_headers(msg.transport_headers))

 return data_dict

The process_headers() function ultimately returns a dictionary containing
extracted email header data. This data is displayed as key-value pairs,
delimited by a colon and space. Since content within a header may be stored
on a new line, we use regular expression to check that there is a key at the start
of the line followed by a value. If we do not find a key matching the pattern
(any number of letters or a dash character followed by a colon), we will
append the new value to the prior key, as the header displays information in a
sequential fashion. At the end of this function, we have some specific lines of
code, using isinstance(), to handle the dictionary value assignments. This code
checks the key type to ensure that values are assigned to keys in a manner that
will not overwrite any data already associated with a given key:

def process_headers(header):
 # Read and process header information
 key_pattern = re.compile("^([A-Za-z\-]+:)(.*)$")
 header_data = {}
 for line in header.split("\r\n"):
 if len(line) == 0:
 continue

 reg_result = key_pattern.match(line)
 if reg_result:
 key = reg_result.group(1).strip(":").strip()
 value = reg_result.group(2).strip()
 else:
 value = line

 if key.lower() in header_data:
 if isinstance(header_data[key.lower()], list):
 header_data[key.lower()].append(value)
 else:
 header_data[key.lower()] = [header_data[key.lower()],
 value]

 else:
 header_data[key.lower()] = value
 return header_data

Lastly, the write_data() method is responsible for creating the metadata report.
Since we may have a great number column names from the email header
parsing, we iterate through the data and extract distinct column names if they
are not already defined in the list. Using this method, we ensure that dynamic
information from the PST is not excluded. In the for loop, we are also
reassigning values from data_list into formatted_data_list, primarily to convert
list values into a string to more easily write the data to the spreadsheet. The csv
library does a nice job ensuring that commas within a cell are escaped and
handled appropriately by our spreadsheet application:

def write_data(outfile, data_list):
 # Build out additional columns
 print("Writing Report: ", outfile)
 columns = ['folder', 'conversation_topic', 'number_of_attachments',
 'sender_name', 'subject']
 formatted_data_list = []
 for entry in data_list:
 tmp_entry = {}

 for k, v in entry.items():
 if k not in columns:
 columns.append(k)

 if isinstance(v, list):
 tmp_entry[k] = ", ".join(v)
 else:
 tmp_entry[k] = v
 formatted_data_list.append(tmp_entry)

Using the csv.DictWriter class, we open the file, write the header, and each of the
rows to the output file:

 # Write CSV report
 with open(outfile, 'wb') as openfile:
 csvfile = csv.DictWriter(openfile, columns)
 csvfile.writeheader()
 csvfile.writerows(formatted_data_list)

When this script runs, a CSV report is generated which should look similar to
the one shown as shown in the following screenshot. While scrolling
horizontally, we can see the columns specified at the top in the header row;
especially with the email header columns, the majority of these columns only
containing a handful of values. As you run this code against more email

containers in your environment, make note of the columns that are most useful
and commonly found in the PSTs you process to expedite analysis:

There’s more...
This process can be further improved. We have provided one or more
recommendations as follows:

This library also handles Offline Storage Table (OST) files, which are
generally associated with Outlook’s offline storage of mail content. Find
and test this script on an OST file and, if necessary, modify it to support
this other common mail format.

See also
In this instance, we could also leverage the Redemtion library for accessing
information within Outlook.

Log-Based Artifact Recipes
The following recipes are covered in this chapter:

About time
Parsing IIS weblogs with RegEx
Going spelunking
Interpreting the daily out log
Adding daily.out parsing to Axiom
Scanning for indicators with YARA

Introduction
These days it is not uncommon to encounter modern systems equipped with
some form of event or activity monitoring software. This software may be
implemented to assist with security, debugging, or compliance requirements.
Whatever the situation, this veritable treasure trove of information can be, and
commonly is, leveraged in all types of cyber investigations. A common issue
with log analysis can be the huge amount of data one is required to sift through
for the subset of interest. Through the recipes in this chapter, we will explore
various logs with great evidentiary value and demonstrate ways to quickly
process and review them. Specifically, we will cover:

Converting different timestamp formats (UNIX, FILETIME, and so on) to
human-readable formats
Parsing web server access logs from an IIS platform
Ingesting, querying, and exporting logs with Splunk's Python API
Extracting drive usage information from macOS daily.out logs
Executing our daily.out log parser from Axiom
A bonus recipe for identifying files of interest with YARA rules

Visit www.packtpub.com/books/content/support to download the code
bundle for this chapter.

http://www.packtpub.com/books/content/support

About time
Recipe Difficulty: Easy

Python Version: 2.7 or 3.5

Operating System: Any

One important element of any good log file is the timestamp. This value
conveys the date and time of the activity or event noted in the log. These date
values can come in many formats and may be represented as numbers or
hexadecimal values. Outside of logs, different files and artifacts store dates in
different manners, even if the data type remains the same. A common
differentiating factor is the epoch value, which is the date that the format counts
time from. A common epoch is January 1, 1970, though other formats count
from January 1, 1601. Another factor that differs between formats is the
interval used for counting. While it is common to see formats that count
seconds or milliseconds, some formats count blocks of time, such as the
number of 100-nanoseconds since the epoch. Because of this, the recipe
developed here can take the raw datetime input and provide a formatted
timestamp as its output.

Getting started
All libraries used in this script are present in Python's standard library.

How to do it...
To interpret common date formats in Python, we perform the following:

1. Set up arguments to take the raw date value, the source of the date, and the
data type.

2. Develop a class that provides a common interface for data across
different date formats.

3. Support processing of Unix epoch values and Microsoft FILETIME dates.

How it works...
We begin by importing libraries for argument handling and parsing dates.
Specifically, we need the datetime class from the datetime library to read the raw
date values and the timedelta class to specify timestamp offsets.

from __future__ import print_function
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from datetime import datetime as dt
from datetime import timedelta

This recipe's command-line handler takes three positional arguments,
date_value, source, and type, which represent the date value to process, the source
of date value (UNIX, FILETIME, and so on), and the type (integer or
hexadecimal value), respectively. We use the choices keyword for the source
and type arguments to limit the options the user can supply. Notice, that the
source argument uses a custom get_supported_formats() function rather than a
predefined list of supported date formats. We then take these arguments and
initiate an instance of the ParseDate class and call the run() method to handle the
conversion process before printing its timestamp attribute to the console.

if __name__ == '__main__':
 parser = ArgumentParser(
 description=__description__,
 formatter_class=ArgumentDefaultsHelpFormatter,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("date_value", help="Raw date value to parse")
 parser.add_argument("source", help="Source format of date",
 choices=ParseDate.get_supported_formats())
 parser.add_argument("type", help="Data type of input value",
 choices=('number', 'hex'), default='int')
 args = parser.parse_args()

 date_parser = ParseDate(args.date_value, args.source, args.type)
 date_parser.run()
 print(date_parser.timestamp)

Let's look at how the ParseDate class works. By using a class, we can easily
extend and implement this code in other scripts. From the command-line
arguments, we accept arguments for the date value, date source, and the value
type. These values and the output variable, timestamp, are defined in the __init__

method:

class ParseDate(object):
 def __init__(self, date_value, source, data_type):
 self.date_value = date_value
 self.source = source
 self.data_type = data_type
 self.timestamp = None

The run() method is the controller, much like the main() function of many of our
recipes, and selects the correct method to call based on the date source. This
allows us to easily extend the class and add new support with ease. In this
version, we only support three date types: Unix epoch second, Unix epoch
millisecond, and Microsoft's FILETIME. To reduce the number of methods we
would need to write, we will design the Unix epoch method to handle both
second - and millisecond - formatted timestamps.

 def run(self):
 if self.source == 'unix-epoch':
 self.parse_unix_epoch()
 elif self.source == 'unix-epoch-ms':
 self.parse_unix_epoch(True)
 elif self.source == 'windows-filetime':
 self.parse_windows_filetime()

To help those wanting to use this library in the future, we add a method for
viewing what formats are supported. By using the @classmethod decorator, we
expose this function without needing to initialize the class first. This is the
reason we can use the get_supported_formats() method in the command-line
handler. Just remember to update this as new features are added!

 @classmethod
 def get_supported_formats(cls):
 return ['unix-epoch', 'unix-epoch-ms', 'windows-filetime']

The parse_unix_epoch() method handles processing Unix epoch time. We specify
an optional argument, milliseconds, to switch this method between processing
second and millisecond values. First we must determine if the data type is "hex"
or "number". If it is "hex", we convert it to an integer and if it is a "number" we
convert it to a float. If we do not recognize or support the data type for this
method, such as a string, we throw an error to the user and exit the script.

After converting the value, we evaluate if this should be treated as a

millisecond value and, if so, divide it by 1,000 before handling it further.
Following this, we use the fromtimestamp() method of the datetime class to convert
the number to a datetime object. Lastly, we format this date to a human-readable
format and store this string in the timestamp property.

 def parse_unix_epoch(self, milliseconds=False):
 if self.data_type == 'hex':
 conv_value = int(self.date_value)
 if milliseconds:
 conv_value = conv_value / 1000.0
 elif self.data_type == 'number':
 conv_value = float(self.date_value)
 if milliseconds:
 conv_value = conv_value / 1000.0
 else:
 print("Unsupported data type '{}' provided".format(
 self.data_type))
 sys.exit('1')

 ts = dt.fromtimestamp(conv_value)
 self.timestamp = ts.strftime('%Y-%m-%d %H:%M:%S.%f')

The parse_windows_filetime() class method handles the FILETIME format, commonly
stored as a hex value. Using a similar block of code as before, we convert the
"hex" or "number" value into a Python object and raise an error for any other
provided formats. The one difference is that we divide the date value by 10
rather than 1,000 before processing them further.

While in the previous method the datetime library handled the epoch offset, we
need to handle this offset separately this time. Using the timedelta class, we
specify the millisecond value and add that to a datetime object representing the
FILETIME format's epoch. The resulting datetime object is now ready for us to
format and output for the user:

 def parse_windows_filetime(self):
 if self.data_type == 'hex':
 microseconds = int(self.date_value, 16) / 10.0
 elif self.data_type == 'number':
 microseconds = float(self.date_value) / 10
 else:
 print("Unsupported data type '{}' provided".format(
 self.data_type))
 sys.exit('1')

 ts = dt(1601, 1, 1) + timedelta(microseconds=microseconds)
 self.timestamp = ts.strftime('%Y-%m-%d %H:%M:%S.%f')

When we run this script, we can provide a timestamp and see the converted

value in an easy-to-read format, as shown here:

There's more...
This script can be further improved. We have provided one or more
recommendations as follows:

Add support for other types of timestamps (OLE, WebKit, and so on)
Add time zone support through pytz
Handle the formatting of hard-to-read dates with dateutil

Parsing IIS web logs with RegEx
Recipe Difficulty: Medium

Python Version: 3.5

Operating System: Any

Logs from web servers are very useful for generating user statistics, providing
us with insightful information about the devices used and the geographical
locations of the visitors. They also provide clarification to examiners looking
for users attempting to exploit the web server or otherwise unauthorized use.
While these logs store important details, they do so in a manner inconvenient to
analyze efficiently. If you were to attempt to do so manually, the field names
are specified at the top of the file and would require you to remember the order
of the fields as you read through the text file. Fortunately, there is a better way.
Using the following script, we show how to iterate through each line, map the
values to the fields, and create a spreadsheet of properly displayed results -
making it much easier to quickly analyze the dataset.

Getting started
All libraries used in this script are present in Python's standard library.

How to do it...
To properly form this recipe, we need to take the following steps:

1. Accept arguments for an input log file and output CSV file.
2. Define regular expression patterns for each of the log's columns.
3. Iterate through each line in the log and prepare each line in a manner that

we can parse individual elements and handle quoted space characters.
4. Validate and map each value to its respective column.
5. Write mapped columns and values to a spreadsheet report.

How it works...
We begin with by importing libraries for argument handling and logging,
followed by the built-in libraries we need to parse and validate the log
information. These include the re regular expression library and shlex lexical
analyzer library. We also include sys and csv for handling the output of log
messages and reports. We initialize the recipe's logging object by calling the
getLogger() method.

from __future__ import print_function
from argparse import ArgumentParser, FileType
import re
import shlex
import logging
import sys
import csv

logger = logging.getLogger(__file__)

Following the imports, we define patterns for the fields we will parse from the
logs. This information may vary a bit between logs, though the patterns
expressed here should cover most elements in a log.

You may need to add, remove, or reorder some of the patterns
defined as follows to properly parse the IIS log you are
working with. These patterns should cover the common
elements found in IIS logs.

We build these patterns as a list of tuples called iis_log_format, where the first
tuple element is the column name and the second is the regular expression
pattern to validate the expected content. By using a regular expression pattern,
we can define a set of rules that the data must follow in order to be valid. It is
critical that these columns are expressed in the order they appear in the log;
otherwise, the code won't be able to properly map values to columns.

iis_log_format = [
 ("date", re.compile(r"\d{4}-\d{2}-\d{2}")),
 ("time", re.compile(r"\d\d:\d\d:\d\d")),
 ("s-ip", re.compile(
 r"((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)(\.|$)){4}")),

 ("cs-method", re.compile(
 r"(GET)|(POST)|(PUT)|(DELETE)|(OPTIONS)|(HEAD)|(CONNECT)")),
 ("cs-uri-stem", re.compile(r"([A-Za-z0-1/\.-]*)")),
 ("cs-uri-query", re.compile(r"([A-Za-z0-1/\.-]*)")),
 ("s-port", re.compile(r"\d*")),
 ("cs-username", re.compile(r"([A-Za-z0-1/\.-]*)")),
 ("c-ip", re.compile(
 r"((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)(\.|$)){4}")),
 ("cs(User-Agent)", re.compile(r".*")),
 ("sc-status", re.compile(r"\d*")),
 ("sc-substatus", re.compile(r"\d*")),
 ("sc-win32-status", re.compile(r"\d*")),
 ("time-taken", re.compile(r"\d*"))
]

This recipe's command-line handler takes two positional arguments, iis_log and
csv_report, which represent the IIS log to process and the desired CSV path,
respectively. Additionally, this recipe also accepts an optional argument, l,
specifying the output path for the recipe's log file.

Next, we initialize the recipe's logging utility and configure it for console and
file-based logging. This is important as we should note in a formal manner
when we fail to parse a line for the user. In this manner, if something fails they
shouldn't be working under the mistaken assumption that all lines were parsed
successfully and are displayed in the resulting CSV spreadsheet. We also want
to record runtime messages, including the version of the script and the supplied
arguments. At this point, we are ready to call the main() function and kick off the
script. Refer to the logging recipe in Chapter 1, Essential Scripting and File
Information Recipes for a more detailed explanation of setting up a logging
object.

if __name__ == '__main__':
 parser = ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument('iis_log', help="Path to IIS Log",
 type=FileType('r'))
 parser.add_argument('csv_report', help="Path to CSV report")
 parser.add_argument('-l', help="Path to processing log",
 default=__name__ + '.log')
 args = parser.parse_args()

 logger.setLevel(logging.DEBUG)
 msg_fmt = logging.Formatter("%(asctime)-15s %(funcName)-10s "
 "%(levelname)-8s %(message)s")

 strhndl = logging.StreamHandler(sys.stdout)
 strhndl.setFormatter(fmt=msg_fmt)

 fhndl = logging.FileHandler(args.log, mode='a')
 fhndl.setFormatter(fmt=msg_fmt)

 logger.addHandler(strhndl)
 logger.addHandler(fhndl)

 logger.info("Starting IIS Parsing ")
 logger.debug("Supplied arguments: {}".format(", ".join(sys.argv[1:])))
 logger.debug("System " + sys.platform)
 logger.debug("Version " + sys.version)
 main(args.iis_log, args.csv_report, logger)
 logger.info("IIS Parsing Complete")

The main() function handles the bulk of the logic in this script. We create a list,
parsed_logs, to store the parsed lines before iterating over the lines in the log
file. Inside the for loop, we strip the line and create a storage dictionary,
log_entry, for the record. We speed up our processing, and prevent errors in
column matching, by skipping lines beginning with the comment (or pound)
character or if the line is empty.

While IIS logs are stored as space-delimited values, they use double quotes to
escape strings that contain spaces. For example, a useragent string is a single
value but generally, contains one or more spaces. Using the shlex module, we
can parse the line with the shlex() method, and handle quote escaped spaces
automatically by delimiting the data correctly on space values. This library can
slow down processing, so we only use it on lines containing a double-quote
character.

def main(iis_log, report_file, logger):
 parsed_logs = []
 for raw_line in iis_log:
 line = raw_line.strip()
 log_entry = {}
 if line.startswith("#") or len(line) == 0:
 continue
 if '\"' in line:
 line_iter = shlex.shlex(line_iter)
 else:
 line_iter = line.split(" ")

With the line properly delimited, we use the enumerate function to step through
each element in the record and extract the corresponding column name and
pattern. Using the pattern, we call the match() method on the value and, if it
matches, create an entry in the log_entry dictionary. If the value doesn't match
the pattern, we log an error and provide the whole line in the log file. After
iterating through each of the columns, we append the record dictionary to the

initial list of parsed log records and repeat this process for the remaining lines.

 for count, split_entry in enumerate(line_iter):
 col_name, col_pattern = iis_log_format[count]
 if col_pattern.match(split_entry):
 log_entry[col_name] = split_entry
 else:
 logger.error("Unknown column pattern discovered. "
 "Line preserved in full below")
 logger.error("Unparsed Line: {}".format(line))

 parsed_logs.append(log_entry)

Once all lines have been processed, we print a status message to the console
prior to preparing for the write_csv() method. We use a simple list
comprehension expression to extract the first element of each tuple, which
represents a column name, within the iis_log_format list. With the columns
extracted, let's look at the report writer.

 logger.info("Parsed {} lines".format(len(parsed_logs)))

 cols = [x[0] for x in iis_log_format]
 logger.info("Creating report file: {}".format(report_file))
 write_csv(report_file, cols, parsed_logs)
 logger.info("Report created")

The report writer creates a CSV file using the methods we have previously
explored. Since we stored the lines as a list of dictionaries, we can easily
create the report with four lines of code using the csv.DictWriter class.

def write_csv(outfile, fieldnames, data):
 with open(outfile, 'w', newline="") as open_outfile:
 csvfile = csv.DictWriter(open_outfile, fieldnames)
 csvfile.writeheader()
 csvfile.writerows(data)

When we look at the CSV report generated by the script, we see the following
fields in the sample output:

There's more...
This script can be further improved. Here is a recommendation:

While we can define regex patterns as seen at the start of the script, we
can make our lives easier using regular expression management libraries
instead. One example is the grok library, which is used to create variable
names for patterns. This allows us to organize and extend patterns with
ease, as we can express them by name instead of a string value. This
library is used by other platforms, such as the ELK stack, for management
and implementation of regular expressions.

Going spelunking
Recipe Difficulty: Medium

Python Version: 2.7

Operating System: Any

Log files can quickly become quite sizable due to the level of detail and time
frame preserved. As you may have noticed, the CSV report from the prior
recipe can easily become too large for our spreadsheet application to open or
browse efficiently. Rather than analyzing this data in a spreadsheet, one
alternative would be to load the data into a database.

Splunk is a platform that incorporates a NoSQL database with an ingestion and
query engine, making it a powerful analysis tool. Its database operates in a
manner like Elasticsearch or MongoDB, permitting the storage of documents or
structured records. Because of this, we do not need to provide records with a
consistent key-value mapping to store them in the database. This is what makes
NoSQL databases so useful for log analysis, as log formats can be variable
depending on the event type.

In this recipe, we learn to index the CSV report from the previous recipe into
Splunk, allowing us to interact with the data inside the platform. We also
design the script to run queries against the dataset and to export the resulting
subset of data responsive to the query to a CSV file. These processes are
handled in separate stages so we can independently query and export data as
needed.

Getting started
This recipe requires the installation of the third-party library splunk-sdk. All
other libraries used in this script are present in Python's standard library.
Additionally, we must install Splunk on the host operating system and, due to
limitations of the splunk-sdk library, run the script using Python 2.

To install Splunk, we need to navigate to Splunk.com, fill out the form, and select
the Splunk Enterprise free trial download. This enterprise trial allows us to
practice with the API and gives us the ability to upload 500 MB per day. Once
we have downloaded the application, we need to launch it to configure the
application. While there are a lot of configurations we could change, launch it
with the defaults, for now, to keep things simple and focus on the API. In doing
so, the default address for the server will be localhost:8000. By navigating to this
address in a browser, we can log in for the first time, set up accounts and
(please do this) change the administrator password.

The default username and password for a new Splunk install is
admin and changeme.

With the Splunk instance active, we can now install the API library. This
library handles the conversion from the REST API into Python objects. At the
time of writing of this book, the Splunk API is only available in Python 2. The
splunk-sdk library can be installed with pip:

pip install splunk-sdk==1.6.2

To learn more about the splunk-sdk library, visit http://dev.splunk.com/
python.

https://www.splunk.com/
http://dev.splunk.com/python

How to do it...
Now that the environment is properly configured, we can begin to develop the
code. This script will index new data to Splunk, run queries on that data, and
export subsets of data responsive to our queries to a CSV file. To accomplish
this, we need to:

1. Develop a robust argument-handling interface allowing the user to specify
these options.

2. Build a class to handle operations with the various properties' methods.
3. Create methods to handle the process of indexing new data and creating

the index for data storage.
4. Set up methods for running Splunk queries in a manner that allows for

informative reports.
5. Provide a mechanism for exporting reports to a CSV format.

How it works...
We begin by importing the required libraries for this script, including the
newly installed splunklib. To prevent unnecessary errors arising due to user
ignorance, we use the sys library to determine the version of Python executing
the script and raise an error if it is not Python 2.

from __future__ import print_function
from argparse import ArgumentParser, ArgumentError
from argparse import ArgumentDefaultsHelpFormatter
import splunklib.client as client
import splunklib.results as results
import os
import sys
import csv

if sys.version_info.major != 2:
 print("Invalid python version. Must use Python 2 due to splunk api "
 "library")

The next logical block to develop is the recipe's command-line argument
handler. As we have many options and operations to execute in this code, we
need to spend some extra time on this section. And because this code is class
based, we must set up some additional logic in this section.

This recipe's command-line handler takes one positional input, action, which
represents the action to run (index, query, or export). This recipe also supports
seven optional arguments: index, config, file, query, cols, host, and port. Let's start
looking at what all of these options do.

The index argument, which is actually a required argument, is used to specify
the name of the Splunk index to ingest, query, or export the data from. This can
be an existing or new index name. The config parameter refers to the
configuration file containing your username and password for the Splunk
instance. This file, as described in the argument's help, should be protected and
stored outside of the location where the code is executed. In an enterprise
environment, you may need to further protect these credentials.

if __name__ == '__main__':
 parser = ArgumentParser(

 description=__description__,
 formatter_class=ArgumentDefaultsHelpFormatter,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument('action', help="Action to run",
 choices=['index', 'query', 'export'])
 parser.add_argument('--index-name', help="Name of splunk index",
 required=True)
 parser.add_argument('--config',
 help="Place where login details are stored."
 " Should have the username on the first line and"
 " the password on the second."
 " Please Protect this file!",
 default=os.path.expanduser("~/.splunk_py.ini"))

The file parameter will be used to provide a path to the file to index into the
platform or be used to specify the filename to write the exported query data to.
For example, we will use the file parameter to point to the CSV spreadsheet
we wish to ingest from the previous recipe. The query parameter also serves a
dual purpose, it can be used to run a query from Splunk or to specify a query
ID to export as CSV. This means that the index and query actions require only one
of these parameters, but the export action requires both.

 parser.add_argument('--file', help="Path to file")
 parser.add_argument('--query', help="Splunk query to run or sid of "
 "existing query to export")

The last block of arguments allows the user to modify default properties of the
recipe. The cols argument, for example, can be used to specify what columns
from the source data to export and in what order. As we will be querying and
exporting IIS logs, we already know what columns are available and are of
interest to us. You may want to specify alternative default columns based on
what type of data is being explored. Our last two arguments include the host
and port parameters, each defaulting to a local server but can be configured to
allow you to interact with alternate instances.

 parser.add_argument(
 '--cols',
 help="Speficy columns to export. comma seperated list",
 default='_time,date,time,sc_status,c_ip,s_ip,cs_User_Agent')
 parser.add_argument('--host', help="hostname of server",
 default="localhost")
 parser.add_argument('--port', help="help", default="8089")
 args = parser.parse_args()

With our arguments specified, we can parse them and verify that all

requirements are met prior to executing the recipe. First, we must open and
read the config file containing the authentication credentials, where the username
is on the first line and the password is on the second line. Using this information,
we create a dictionary, conn_dict, containing the login details and server
location. This dictionary is passed to the splunklib client.connect() method.
Notice how we delete, using the del() method, the variables containing this
sensitive information. While the username and password are still accessible
through the service object, we want to limit the number of areas in which those
details are stored. Following the creation of the service variable, we test if any
applications are installed in Splunk, as by default there is at least one, and use
that as a test of successful authentication.

 with open(args.config, 'r') as open_conf:
 username, password = [x.strip() for x in open_conf.readlines()]
 conn_dict = {'host': args.host, 'port': int(args.port),
 'username': username, 'password': password}
 del(username)
 del(password)
 service = client.connect(**conn_dict)
 del(conn_dict)

 if len(service.apps) == 0:
 print("Login likely unsuccessful, cannot find any applications")
 sys.exit()

We continue processing the supplied arguments by converting the columns into
a list and creating the Spelunking class instance. To initialize the class, we must
supply it the service variable, the action to take, the index name, and the
columns. Using this, our class instance is now ready for use.

 cols = args.cols.split(",")
 spelunking = Spelunking(service, args.action, args.index_name, cols)

Next, we use a series of if-elif-else statements to handle the three various
actions we expect to encounter. If the user supplied the index action, we first
confirm that the optional file parameter is present, raising an error if it is not.
If we do find it, we assign the value to the corresponding property of the
Spelunking class instance. This type of logic is repeated for the query and export
actions, confirming that they also were used with the correct optional
arguments. Notice how we assign the absolute path of the file for the class
using the os.path.abspath() function. This allows splunklib to find the correct file
on the system. And, in what perhaps may be the longest argument handling

section in the book, we have completed the requisite logic and can now call
the class run() method to kick off the processing for the specific action
requested.

 if spelunking.action == 'index':
 if 'file' not in vars(args):
 ArgumentError('--file parameter required')
 sys.exit()
 else:
 spelunking.file = os.path.abspath(args.file)

 elif spelunking.action == 'export':
 if 'file' not in vars(args):
 ArgumentError('--file parameter required')
 sys.exit()
 if 'query' not in vars(args):
 ArgumentError('--query parameter required')
 sys.exit()
 spelunking.file = os.path.abspath(args.file)
 spelunking.sid = args.query

 elif spelunking.action == 'query':
 if 'query' not in vars(args):
 ArgumentError('--query parameter required')
 sys.exit()
 else:
 spelunking.query = "search index={} {}".format(args.index_name,
 args.query)

 else:
 ArgumentError('Unknown action required')
 sys.exit()

 spelunking.run()

With the arguments now behind us, let's dive into the class responsible for
handling the operations requested by the user. This class takes four arguments,
including the service variable, the action specified by the user, the Splunk index
name, and the columns to use. All other properties are set to None and, as seen
in the previous code block, will be appropriately initialized at the time of
execution if they were supplied. This is done to limit the number of arguments
required by the class and to handle the situations where certain properties are
unused. All of these properties are initialized at the start of our class to ensure
we have assigned default values.

class Spelunking(object):
 def __init__(self, service, action, index_name, cols):
 self.service = service
 self.action = action
 self.index = index_name
 self.file = None

 self.query = None
 self.sid = None
 self.job = None
 self.cols = cols

The run() method is responsible for obtaining the index object from the Splunk
instance using the get_or_create_index() method. It also checks which action was
specified at the command-line and calls the corresponding class instance
method.

 def run(self):
 index_obj = self.get_or_create_index()
 if self.action == 'index':
 self.index_data(index_obj)
 elif self.action == 'query':
 self.query_index()
 elif self.action == 'export':
 self.export_report()
 return

The get_or_create_index() method, as the name suggests, first tests whether the
specified index exists and makes a connection to it, or creates a new index if
none is found by that name. Since this information is stored in the indexes
property of the service variable as a dictionary-like object, we can easily test
for the existence of the index by name.

 def get_or_create_index(self):
 # Create a new index
 if self.index not in self.service.indexes:
 return service.indexes.create(self.index)
 else:
 return self.service.indexes[self.index]

To ingest the data from a file, such as a CSV file, we can use a one-line
statement to send information to the instance in the index_data() method. This
method uses the upload() method of the splunk_index object to send the file to
Splunk for ingestion. While a CSV file is a simplistic example of how we can
import data, we could also use some of the logic from the previous recipe to
read the raw log into the Splunk instance without the intermediate CSV step.
For that, we would want to use a different method of the index object that would
allow us to send each parsed event individually.

 def index_data(self, splunk_index):
 splunk_index.upload(self.file)

The query_index() method is a little more involved, as we first need to modify
the query provided from the user. As seen in the following snippet, we need to
add the columns specified by the user to the initial query. This will make fields
not used in the query available during the export stage. Following this
modification, we create a new job in the Splunk system with the
service.jobs.create() method and record the query SID. This SID will be used in
the exporting phase to export the results of the specific query job. We print this
information, along with the time before the job expires from the Splunk
instance. By default, this time-to-live value is 300 seconds, or five minutes.

 def query_index(self):
 self.query = self.query + "| fields + " + ", ".join(self.cols)
 self.job = self.service.jobs.create(self.query, rf=self.cols)
 self.sid = self.job.sid
 print("Query job {} created. will expire in {} seconds".format(
 self.sid, self.job['ttl']))

As previously alluded to, the export_report() method uses the SID mentioned in
the prior method to check whether the job is complete and to retrieve the data
for export. in order to do this, we iterate through the available jobs, and if ours
is not present, raise a warning. If the job is found, but the is_ready() method
returns False, the job is still processing and not ready to export results.

 def export_report(self):
 job_obj = None
 for j in self.service.jobs:
 if j.sid == self.sid:
 job_obj = j

 if job_obj is None:
 print("Job SID {} not found. Did it expire?".format(self.sid))
 sys.exit()

 if not job_obj.is_ready():
 print("Job SID {} is still processing. "
 "Please wait to re-run".format(self.sir))

If the job passes these two tests, we extract the data from Splunk and write it to
a CSV file using the write_csv() method. Before we can do that, we need to
initialize a list to store the job results. Next, we retrieve the results, specifying
the columns of interest, and read this raw data into the job_results variable.
Luckily, splunklib provides a ResultsReader that converts the job_results variable
into a list of dictionaries. We iterate through this list and append each of these
dictionaries to the export_data list. Finally, we provide the file path, column

names, and dataset to export to the CSV writer.

 export_data = []
 job_results = job_obj.results(rf=self.cols)
 for result in results.ResultsReader(job_results):
 export_data.append(result)

 self.write_csv(self.file, self.cols, export_data)

The write_csv() method in this class is a @staticmethod. This decorator allows us
to use a generalized method in the class without needing to specify an instance.
This method will no doubt look familiar to those used elsewhere in the book,
where we open the output file, create a DictWriter object, then write the column
headers and data to file.

 @staticmethod
 def write_csv(outfile, fieldnames, data):
 with open(outfile, 'wb') as open_outfile:
 csvfile = csv.DictWriter(open_outfile, fieldnames,
 extrasaction="ignore")
 csvfile.writeheader()
 csvfile.writerows(data)

In our hypothetical use case, the first stage will be to index the data contained
in the CSV spreadsheet from the previous recipe. As seen in the following
snippet, we supply the CSV file from our previous recipe and add it to the
Splunk index. Next, we look for all entries where the user agent is an iPhone.
Finally, the last stage involves taking the output from the query and creating a
CSV report.

With these three commands successfully executed, we can open and review the
filtered output:

There's more...
This script can be further improved. We have provided one or more
recommendations as shown here:

The Splunk API for Python (and in general) has many other features.
Additionally, more advanced querying techniques can be used to generate
data that we can manipulate into graphics for technical and non-technical
end users alike. Learn more about the many features that the Splunk API
affords you.

Interpreting the daily.out log
Recipe Difficulty: Medium

Python Version: 3.5

Operating System: Any

Operating system logs generally reflect events for software, hardware, and
services on the system. These details can assist us in our investigations as we
look into an event, such as the use of removable devices. One example of a log
that can prove useful in identifying this activity is daily.out log found on macOS
systems. This log records a lot of information, including what drives are
connected to the machine and the amount of storage available and used daily.
While we can also learn about shutdown times, network states, and other
information from this log, we will focus on drive usage over time.

Getting started
All libraries used in this script are present in Python's standard library.

How to do it...
This script will leverage the following steps:

1. Set up arguments to accept the log file and a path to write the report.
2. Build a class that handles the parsing of the log's various sections.
3. Create a method to extract the relevant section and pass it for further

processing.
4. Extract disk information from these sections.
5. Create a CSV writer to export the extracted details.

How it works...
We begin by importing libraries necessary for argument handling, date
interpretation, and the writing spreadsheets. One of the great things about
processing text files in Python is that you rarely need a third-party library.

from __future__ import print_function
from argparse import ArgumentParser, FileType
from datetime import datetime
import csv

This recipe's command-line handler accepts two positional arguments, daily_out
and output_report, which represent the path to the daily.out log file and the
desired output path for the CSV spreadsheet, respectively. Notice how we pass
an open file object for processing through the argparse.FileType class. Following
this, we initialize the ProcessDailyOut class with the log file and call the run()
method and store the returned results in the parsed_events variable. We then call
the write_csv() method to write the results to a spreadsheet in the desired output
directory using defined columns from the processor class object.

if __name__ == '__main__':
 parser = ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("daily_out", help="Path to daily.out file",
 type=FileType('r'))
 parser.add_argument("output_report", help="Path to csv report")
 args = parser.parse_args()

 processor = ProcessDailyOut(args.daily_out)
 parsed_events = processor.run()
 write_csv(args.output_report, processor.report_columns, parsed_events)

In the ProcessDailyOut class, we set up the properties supplied by the user and
define the columns used for the report. Notice how we add two different sets
of columns: the disk_status_columns and the report_columns. The report_columns are
simply the disk_status_columns with two additional fields to identify the entry date
and time zone.

class ProcessDailyOut(object):

 def __init__(self, daily_out):
 self.daily_out = daily_out
 self.disk_status_columns = [
 'Filesystem', 'Size', 'Used', 'Avail', 'Capacity', 'iused',
 'ifree', '%iused', 'Mounted on']
 self.report_columns = ['event_date', 'event_tz'] + \
 self.disk_status_columns

The run() method begins by iterating over the provided log file. After stripping
whitespace characters from the start and end of each line, we validate the
content to identify breaks in sections. The "-- End of daily output --" string
breaks each entry in the log file. Each entry contains several sections of data
broken up by new lines. For this reason, we must use several blocks of code to
split and process each section separately.

In this loop, we gather all lines from a single event and pass it to the
process_event() method and append the processed results to the parsed_events list
that is eventually returned.

 def run(self):
 event_lines = []
 parsed_events = []
 for raw_line in self.daily_out:
 line = raw_line.strip()
 if line == '-- End of daily output --':
 parsed_events += self.process_event(event_lines)
 event_lines = []
 else:
 event_lines.append(line)
 return parsed_events

In the process_event() method, we will define variables that will allow us to split
sections of an event for further processing. To better understand this next
segment of code, please take a moment to review the following example of an
event:

Within this event, we can see that the first element is the date value and time
zone, followed by a series of subsections. Each of the subsection headers is a
line that ends with a colon; we use this to split the various data elements within
this file, as seen in the following code. We create a dictionary, event_data, using
the section headers as a key and their content, if present, as the value before
further processing each subsection.

 def process_event(self, event_lines):
 section_header = ""
 section_data = []
 event_data = {}
 for line in event_lines:
 if line.endswith(":"):
 if len(section_data) > 0:
 event_data[section_header] = section_data
 section_data = []
 section_header = ""

 section_header = line.strip(":")

If the section header line does not end with a colon, we check if there are
exactly two colons in the line. If so, we try to validate this line as a date value.
To handle this date format with built-in libraries, we need to extract the time
zone separately from the rest of the date as there is a known bug in versions of
Python 3 with parsing time zones with the %Z formatter. For the curious, more

information on this bug can be found at https://bugs.python.org/issue22377.

To separate the time zone from the date value, we delimit the string on the
space value, place the time zone value (element 4 in this example) in its own
variable, then join the remaining time values into a new string that we can
parse with the datetime library. This may raise an IndexError if the string does not
have a minimum of 5 elements or a ValueError if the datetime format string is
invalid. If either of these error types are not raised, we assign the date to the
event_data dictionary. If we do receive either of these errors, the line will be
appended to the section_data list and the next loop iteration will continue. This
is important as a line may contain two colons and not be a date value, and so
we wouldn't want to then disregard the line by removing it from the script's
consideration.

 elif line.count(":") == 2:
 try:
 split_line = line.split()
 timezone = split_line[4]
 date_str = " ".join(split_line[:4] + [split_line[-1]])
 try:
 date_val = datetime.strptime(
 date_str, "%a %b %d %H:%M:%S %Y")
 except ValueError:
 date_val = datetime.strptime(
 date_str, "%a %b %d %H:%M:%S %Y")
 event_data["event_date"] = [date_val, timezone]
 section_data = []
 section_header = ""
 except ValueError:
 section_data.append(line)
 except IndexError:
 section_data.append(line)

The last piece of this conditional appends any line that has content to the
section_data variable for further processing as needed. This prevents blank lines
from finding their way in and allows us to capture all information between two
section headers.

 else:
 if len(line):
 section_data.append(line)

We close this function by calling to any subsection processors. At this time, we
only handle the disk information subsection, with the process_disk() method,
though one could develop code to extract other values of interest. This method

https://bugs.python.org/issue22377

accepts as its input the event information and the event date. The disk
information is returned as a list of processed disk information elements which
we return to the run() method and add the values to the processed event list.

 return self.process_disk(event_data.get("Disk status", []),
 event_data.get("event_date", []))

To process a disk subsection, we iterate through each of the lines, if there are
any, and extract the relevant event information. The for loop starts by checking
the iteration number and skipping row zero as it contains the data's column
headers. For any other line, we use list comprehension and split the line on a
single space, strip whitespace, and filter out any fields that are blank.

 def process_disk(self, disk_lines, event_dates):
 if len(disk_lines) == 0:
 return {}

 processed_data = []
 for line_count, line in enumerate(disk_lines):
 if line_count == 0:
 continue
 prepped_lines = [x for x in line.split(" ")
 if len(x.strip()) != 0]

Next, we initialize a dictionary, disk_info, that holds the event information with
the date and time zone details for this snapshot. The for loop uses the enumerate()
function to map values to their column names. If the column name contains
"/Volumes/" (the standard mount point for drive volumes), we will join the
remainder of the split items. This ensures that volumes with spaces in their
names are preserved appropriately.

 disk_info = {
 "event_date": event_dates[0],
 "event_tz": event_dates[1]
 }
 for col_count, entry in enumerate(prepped_lines):
 curr_col = self.disk_status_columns[col_count]
 if "/Volumes/" in entry:
 disk_info[curr_col] = " ".join(
 prepped_lines[col_count:])
 break
 disk_info[curr_col] = entry.strip()

The innermost for loop ends by appending the disk information to the
processed_data list. Once all lines in the disk section have been processed, we
return the processed_data list to the parent function.

 processed_data.append(disk_info)
 return processed_data

Lastly, we briefly touch on the write_csv() method, which uses the DictWriter
class to open the file and write the header rows and the content to the CSV file.

def write_csv(outfile, fieldnames, data):
 with open(outfile, 'w', newline="") as open_outfile:
 csvfile = csv.DictWriter(open_outfile, fieldnames)
 csvfile.writeheader()
 csvfile.writerows(data)

When we run this script, we can see the extracted details in the CSV report. An
example of this output is shown here:

Adding daily.out parsing to Axiom
Recipe Difficulty: Easy

Python Version: 2.7

Operating System: Any

Using the code we just developed to parse macOS daily.out logs, we add this
functionality into Axiom, developed by Magnet Forensics, for the automatic
extraction of these events. As Axiom supports the processing of forensic
images and loose files, we can either provide it a full acquisition or just an
export of the daily.out log for this example. Through the API made available by
this tool, we can access and process files found by its engine and return results
for review directly within Axiom.

Getting started
The Magnet Forensics team developed an API for both Python and XML to add
support for creating custom artifacts within Axiom. The Python API, at of the
writing of this book, is only available through IronPython running Python version
2.7. While we have developed our code outside of this platform, we can easily
integrate it into Axiom following the steps laid out in this recipe. We used
Axiom version 1.1.3.5726 to test and develop this recipe.

We first need to install Axiom in a Windows instance and ensure that our code
is stable and portable. Additionally, our code needs to be sandbox friendly.
The Axiom sandbox limits the use of third-party libraries and access to some
Python modules and functions that could cause code to interact with the system
outside of the application. For this reason, we designed our daily.out parser to
only use built-in libraries that are safe in the sandbox to demonstrate the ease
of develop with these custom artifacts.

How to do it...
To develop and implement a custom artifact, we will need to:

1. Install Axiom in on a Windows machine.
2. Import the script we developed.
3. Create the Artifact class and define the parser metadata and columns.
4. Develop the Hunter class to handle the artifact processing and result

reporting.

How it works...
For this script, we import the axiom library and the datetime library. Notice, we
have removed the previous argparse and csv imports are they are unnecessary
here.

from __future__ import print_function
from axiom import *
from datetime import datetime

Next, we must paste in the ProcessDailyOut class from the prior recipe, not
including the write_csv or argument handling code, to use in this script. Since the
current version of the API does not allow imports, we have to bundle all the
code we need into a single script. To save pages and avoid redundancy, we
will omit the code block in this section (though it exists as you'd expect in the
code file bundled with this chapter).

The next class is the DailyOutArtifact, a subclass of the Artifact class provided by
the Axiom API. We call the AddHunter() method, providing our (not yet shown)
hHunter class, before defining the plugin's name within the GetName() method.

class DailyOutArtifact(Artifact):
 def __init__(self):
 self.AddHunter(DailyOutHunter())

 def GetName(self):
 return 'daily.out parser'

The last method of this class, CreateFragments(), specifies how to handle a single
entry of the processed daily.out log results. A fragment, with respect to the
Axiom API, is the term used to describe a single entry of an artifact. This code
block allows us to add custom column names and assign the proper categories
and data types for those columns. The categories include date, location, and
other special values defined by the tool. The majority of columns for our
artifact will be in the None category, as they don't display a specific kind of
information.

One important categorical difference is DateTimeLocal versus DateTime: the DateTime

will present the date as a UTC value to the user, so we need to be conscious
about selecting the proper date category. Because we extracted the time zone
from the daily.out log entries, we use the DateTimeLocal category in this recipe.
The FragmentType property is a string for all of the values, as the class does not
convert values from strings into another data type.

 def CreateFragments(self):
 self.AddFragment('Snapshot Date - LocalTime (yyyy-mm-dd)',
 Category.DateTimeLocal, FragmentType.DateTime)
 self.AddFragment('Snapshot Timezone', Category.None,
 FragmentType.String)
 self.AddFragment('Volume Name',
 Category.None, FragmentType.String)
 self.AddFragment('Filesystem Mount',
 Category.None, FragmentType.String)
 self.AddFragment('Volume Size',
 Category.None, FragmentType.String)
 self.AddFragment('Volume Used',
 Category.None, FragmentType.String)
 self.AddFragment('Percentage Used',
 Category.None, FragmentType.String)

The next class is our Hunter. This parent class is used to run the processing code
and, as you will see, specifies the platform and content that will be provided to
the plugin by the Axiom engine. In this instance, we only want to run this
against the computer platform and a file that goes by a single name. The
RegisterFileName() method is one of several options for specifying what files will
be requested by the plugin. We can also use regular expressions or file
extensions to select the files we would like to process.

class DailyOutHunter(Hunter):
 def __init__(self):
 self.Platform = Platform.Computer

 def Register(self, registrar):
 registrar.RegisterFileName('daily.out')

The Hunt() method is where the magic happens. To start, we get a temporary
path where the file can be read within the sandbox and assign it to the
temp_daily_out variable. With this open file, we hand the file object to the
ProcessDailyOut class and use the run() method to parse the file, just like in the
last recipe.

 def Hunt(self, context):
 temp_daily_out = open(context.Searchable.FileCopy, 'r')

 processor = ProcessDailyOut(temp_daily_out)

 parsed_events = processor.run()

After gathering the parsed event information, we are ready to "publish" the
data to the software and display it to the user. In the for loop, we first initiate a
Hit() object to add data to a new fragment using the AddValue() method. Once we
have assigned the event values to a hit, we publish the hit to the platform with
the PublishHit() method and continue the loop until all parsed events have been
published:

 for entry in parsed_events:
 hit = Hit()
 hit.AddValue(
 "Snapshot Date - LocalTime (yyyy-mm-dd)",
 entry['event_date'].strftime("%Y-%m-%d %H:%M:%S"))
 hit.AddValue("Snapshot Timezone", entry['event_tz'])
 hit.AddValue("Volume Name", entry['Mounted on'])
 hit.AddValue("Filesystem Mount", entry["Filesystem"])
 hit.AddValue("Volume Size", entry['Size'])
 hit.AddValue("Volume Used", entry['Used'])
 hit.AddValue("Percentage Used", entry['Capacity'])
 self.PublishHit(hit)

The last bit of code checks to see if the file is not None and will close it if so.
This is the end of the processing code, which may be called again if another
daily.out file is discovered on the system!

 if temp_daily_out is not None:
 temp_daily_out.close()

The last line registers our hard work with Axiom's engine to ensure it is
included and called by the framework.

RegisterArtifact(DailyOutArtifact())

To use the newly developed artifact in Axiom, we need to take a few more
steps to import and run the code against an image. First, we need to launch
Axiom Process. This is where we will load, select, and run the artifact against
the provided evidence. Under the Tools menu, we select the Manage custom
artifacts option:

Within the Manage custom artifacts window, we will see any existing custom
artifacts and can import new ones as seen here:

We will add our custom artifact and the updated Manage custom artifacts
window should show the name of the artifact:

Now we can press OKAY and continue through Axiom, adding the evidence
and configuring our processing options. When we reach the COMPUTER
ARTIFACTS selection, we want to confirm that the custom artifact is selected
to run. It probably goes without saying: we should only run this artifact if the
machine is running macOS or has a macOS partition on it:

After completing the remaining configuration options, we can start processing
the evidence. With processing complete, we run Axiom Examine to review the
processed results. As seen in the following screenshot, we can navigate to the
CUSTOM pane of the artifact review and see the parsed columns from the
plugin! These columns can be sorted and exported using the standard options in
Axiom, without any additional code on our part:

Scanning for indicators with YARA
Recipe Difficulty: Medium

Python Version: 3.5

Operating System: Any

As a bonus section, we will leverage the powerful Yet Another Recursive
Algorithm (YARA) regular-expression engine to scan for files of interest and
indicators of compromise. YARA is a pattern-matching utility designed for use
in malware identification and incident response. Many tools use this engine as
the backbone for identification of likely malicious files. Through this recipe,
we learn how to take YARA rules, compile them, and match them across one or
more folders or files. While we will not cover the steps required to form a
YARA rule, one can learn more about the process from their documentation at h
ttp://yara.readthedocs.io/en/latest/writingrules.html.

http://yara.readthedocs.io/en/latest/writingrules.html

Getting started
This recipe requires the installation of the third-party library yara. All other
libraries used in this script are present in Python's standard library. This
library can be installed with pip:

pip install yara-python==3.6.3

To learn more about the yara-python library, visit https://yara.readthe
docs.io/en/latest/.

We can also use projects such as YaraRules (http://yararules.com) and use pre-built
rules from the industry and VirusShare (http://virusshare.com) to use real malware
samples for analysis.

https://yara.readthedocs.io/en/latest/
http://yararules.com
http://virusshare.com

How to do it...
This script has four main developmental steps:

1. Set up and compile YARA rules.
2. Scan a single file.
3. Iterate through directories to process individual files.
4. Export results to CSV.

How it works...
This script imports the required libraries to handle argument parsing, file and
folder iteration, writing CSV spreadsheets, and the yara library to compile and
scan for the YARA rules.

from __future__ import print_function
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
import os
import csv
import yara

This recipe's command-line handler accepts two positional arguments,
yara_rules and path_to_scan, which represent the path to the YARA rules and the
file or folder to scan, respectively. This recipe also accepts one optional
argument, output, which, if supplied, writes the results of the scan to a
spreadsheet as opposed to the console. Lastly, we pass these values to the
main() method.

if __name__ == '__main__':
 parser = ArgumentParser(
 description=__description__,
 formatter_class=ArgumentDefaultsHelpFormatter,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument(
 'yara_rules',
 help="Path to Yara rule to scan with. May be file or folder path.")
 parser.add_argument(
 'path_to_scan',
 help="Path to file or folder to scan")
 parser.add_argument(
 '--output',
 help="Path to output a CSV report of scan results")
 args = parser.parse_args()

 main(args.yara_rules, args.path_to_scan, args.output)

In the main() function, we accept the path to the yara rules, the files or folders to
scan, and the output file (if any). Since the yara rules can be a file or directory,
we use the ios.isdir() method to determine if we use the compile() method on a
whole directory or, if the input is a file, pass it to the method using the filepath
keyword. The compile() method reads the rule file or files and creates an object

that we can match against objects we scan.

def main(yara_rules, path_to_scan, output):
 if os.path.isdir(yara_rules):
 yrules = yara.compile(yara_rules)
 else:
 yrules = yara.compile(filepath=yara_rules)

Once the rules are compiled, we perform a similar if-else statement to process
the path to scan. If the input to scan is a directory, we pass it to the
process_directory() function and, otherwise, we use the process_file() method.
Both take the compiled YARA rules and the path to scan and return a list of
dictionaries containing any matches.

 if os.path.isdir(path_to_scan):
 match_info = process_directory(yrules, path_to_scan)
 else:
 match_info = process_file(yrules, path_to_scan)

As you may guess, we will ultimately convert this list of dictionaries to a CSV
report if the output path was specified, using the columns we define in the
columns list. However, if the output argument is None, we write this data to the
console in a different format instead.

 columns = ['rule_name', 'hit_value', 'hit_offset', 'file_name',
 'rule_string', 'rule_tag']

 if output is None:
 write_stdout(columns, match_info)
 else:
 write_csv(output, columns, match_info)

The process_directory() function essentially iterates through a directory and
passes each file to the process_file() function. This decreases the amount of
redundant code in the script. Each processed entry that is returned is added to
the match_info list, as the returned object is a list. Once we have processed each
file, we return the complete list of results to the parent function.

def process_directory(yrules, folder_path):
 match_info = []
 for root, _, files in os.walk(folder_path):
 for entry in files:
 file_entry = os.path.join(root, entry)
 match_info += process_file(yrules, file_entry)
 return match_info

The process_file() method uses with the match() method of the yrules object. The
returned match object is an iterable containing one or more hits against the
rules. From the hit, we can extract the rule name, any tags, the offset in the file,
the string value of the rule, and the string value of the hit. This information,
plus the file path, will form an entry in the report. Collectively, this
information is useful in identifying whether the hit is a false positive or is of
significance. It can also be helpful when fine-tuning YARA rules to ensure only
relevant results are presented for review.

def process_file(yrules, file_path):
 match = yrules.match(file_path)
 match_info = []
 for rule_set in match:
 for hit in rule_set.strings:
 match_info.append({
 'file_name': file_path,
 'rule_name': rule_set.rule,
 'rule_tag': ",".join(rule_set.tags),
 'hit_offset': hit[0],
 'rule_string': hit[1],
 'hit_value': hit[2]
 })
 return match_info

To write_stdout() function reports match information to the console if the user
does not specify an output file. We iterate through each entry in the match_info
list and print each column name and its value from the match_info dictionary in a
colon-delimited, newline-separated format. After each entry, we print 30 equals
signs to visually separate the entries from each other.

def write_stdout(columns, match_info):
 for entry in match_info:
 for col in columns:
 print("{}: {}".format(col, entry[col]))
 print("=" * 30)

The write_csv() method follows the standard convention, using the DictWriter
class to write the headers and all of the data into the sheet. Notice how this
function is adjusted to handle CSV writing in Python 3, using the 'w' mode and
newline parameter.

def write_csv(outfile, fieldnames, data):
 with open(outfile, 'w', newline="") as open_outfile:
 csvfile = csv.DictWriter(open_outfile, fieldnames)
 csvfile.writeheader()
 csvfile.writerows(data)

Using this code, we can provide the appropriate arguments at the command-
line and generate a report of any matches. The following screenshot shows the
custom rules for detecting Python files and keyloggers:

These rules are shown in the output CSV report, or console if a report is not
specified, as seen here:

Working with Forensic Evidence
Container Recipes
In this chapter, we will cover the following recipes:

Opening acquisitions
Gathering acquisition and media information
Iterating through files
Processing files within the container
Searching for hashes

Introduction
The Sleuth Kit, and its Python bindings pytsk3, is perhaps the most well-known
Python forensic library. This library offers rich support for accessing and
manipulating filesystems. And with the help of supporting libraries, such as
pyewf, they can be used to work with common forensic containers such as
EnCase's popular E01 format. Without these libraries (and many others), we
would be inherently more limited by what can be accomplished with Python in
forensics. Due to its lofty goal as an all-in-one filesystem analysis tool, pytsk3
is perhaps the most complicated library we will work with in this book.

For this reason, we have dedicated a number of recipes exploring the
fundamentals of this library. Up to this point, recipes have been mainly focused
on loose file support. That convention ends here. We will routinely use this
library going forward to interact with forensic evidence. Understanding how to
interact with forensic containers will take your Python forensic capabilities to
the next level.

In this chapter, we will learn how to install pytsk3 and pyewf, two libraries that
will allow us to leverage the Sleuth Kit and E01 image support, respectively.
Additionally, we will learn how to perform basic tasks, such as accessing and
printing a partition table, iterating through a filesystem, exporting files by
extension, and searching for known bad hashes in an evidence container. You
will learn about:

Installing and setting up pytsk3 and pyewf
Opening forensic acquisitions such as raw and E01 files
Extracting partition table data and E01 metadata
Recursing through active files and creating an active file listing
spreadsheet
Exporting files from the evidence container by file extension
Searching for known bad hashes in an evidence container

Visit www.packtpub.com/books/content/support to download the code

http://www.packtpub.com/books/content/support

bundle for this chapter.

Opening acquisitions
Recipe Difficulty: Medium

Python Version: 2.7

Operating System: Linux

With pyewf and pytsk3 comes a whole new set of tools and operations we must
first learn. In this recipe, we will start with the basics: opening an evidence
container. This recipe supports raw and E01 images. Note that unlike our
previous scripts, these recipes will use Python 2.X due to some bugs found
while working with the Python 3.X version of these libraries. That said, the
main logic would not differ between the two versions and could easily be
ported. Before we learn to open the container, we need to set up our
environment. We will explore this in the next section.

Getting started
Excluding a few scripts, we have been OS agnostic for the majority of this
cookbook. Here, however, we will specifically provide instructions for
building on Ubuntu 16.04.2. With a fresh install of Ubuntu, execute the
following commands to install necessary dependencies:

sudo apt-get update && sudo apt-get -y upgrade
sudo apt-get install python-pip git autoconf automake autopoint libtool pkg-config

Beyond the two previously mentioned libraries (pytsk3 and pyewf), we will also
be using the third-party module tabulate to print tables to the console. As that is
the easiest module to install, let's complete that task first by executing the
following:

pip install tabulate==0.7.7

To learn more about the tabulate library, visit https://pypi.python.or
g/pypi/tabulate.

Believe it or not, we can install pytsk3 using pip as well:

pip install pytsk3==20170802

To learn more about the pytsk3 library, visit https://github.com/py4n6/
pytsk.

Lastly, for pyewf, we must take a slightly more circuitous route and install it
from its GitHub repository, https://github.com/libyal/libewf/releases. These recipes were
written using the libewf-experimental-20170605 release, and we recommend you
install that version here. Once the package has been downloaded and extracted,
open a Command Prompt in the extracted directory and execute the following:

./synclibs.sh

./autogen.sh
sudo python setup.py build
sudo python setup.py install

https://pypi.python.org/pypi/tabulate
https://github.com/py4n6/pytsk
https://github.com/libyal/libewf/releases

To learn more about the pyewf library, visit : https://github.com/libyal/l
ibewf.

It goes without saying that for this script you will need a raw or E01 evidence file
to run these recipes against. For the first script, we recommend using a logical
image, such as fat-img-kw.dd from http://dftt.sourceforge.net/test2/index.html. The reason is
that this first script will lack some necessary logic to handle physical disk
images and their partitions. We will introduce this functionality in the
Gathering acquisition and media information recipe.

https://github.com/libyal/libewf
http://dftt.sourceforge.net/test2/index.html

How to do it...
We employ the following methodology to open forensic evidence containers:

1. Identify if the evidence container is a raw image or an E01 container.
2. Access the image using pytsk3.
3. Print a table of the root-level folders and files to the console.

How it works...
We import a number of libraries to assist with argument parsing, handling
evidence containers and filesystems, and creating tabular console data.

from __future__ import print_function
import argparse
import os
import pytsk3
import pyewf
import sys
from tabulate import tabulate

This recipe's command-line handler takes two positional arguments,
EVIDENCE_FILE and TYPE, which represent the path to the evidence file and the type
of evidence file (that is, raw or ewf). Note that for segmented E01 files, you only
need to supply the path to the first E01 (with the assumption that the other splits
are in the same directory). After performing some input validation on the
evidence file, we supply the main() function with the two provided inputs and
begin executing the script.

if __name__ == '__main__':
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("EVIDENCE_FILE", help="Evidence file path")
 parser.add_argument("TYPE",
 help="Type of evidence: raw (dd) or EWF (E01)",
 choices=("raw", "ewf"))
 parser.add_argument("-o", "--offset",
 help="Partition byte offset", type=int)
 args = parser.parse_args()

 if os.path.exists(args.EVIDENCE_FILE) and \
 os.path.isfile(args.EVIDENCE_FILE):
 main(args.EVIDENCE_FILE, args.TYPE, args.offset)
 else:
 print("[-] Supplied input file {} does not exist or is not a "
 "file".format(args.EVIDENCE_FILE))
 sys.exit(1)

In the main() function, we first check what type of evidence file we are working
with. If it is an E01 container, we need to first use pyewf to create a handle before
we can access its contents with pytsk3. With a raw image, we can directly access

its contents with pytsk3 without needing to perform this intermediate step first.

The pyewf.glob() method is used here to combine all segments of the E01
container, if there are any, and store the segment names in a list. Once we have
the list of filenames, we can create the E01 handle object. We can then use this
object to open the filenames.

def main(image, img_type, offset):
 print("[+] Opening {}".format(image))
 if img_type == "ewf":
 try:
 filenames = pyewf.glob(image)
 except IOError:
 _, e, _ = sys.exc_info()
 print("[-] Invalid EWF format:\n {}".format(e))
 sys.exit(2)
 ewf_handle = pyewf.handle()
 ewf_handle.open(filenames)

Next, we must pass the ewf_handle to the EWFImgInfo class, which will create the
pytsk3 object. The else statement here is for raw images that can use the
pytsk3.Img_Info function to achieve the same task. Let's now look at the EWFImgInfo
class to understand how EWF files are processed slightly differently.

 # Open PYTSK3 handle on EWF Image
 img_info = EWFImgInfo(ewf_handle)
 else:
 img_info = pytsk3.Img_Info(image)

The code for this component of the script is from the Combining pyewf with
pytsk3 section of the Python development page for pyewf.

Learn more about pyewf functions, visit https://github.com/libyal/libewf/
wiki/Development.

This EWFImgInfo class inherits from the pytsk3.Img_Info base class and is of the type
TSK_IMG_TYPE_EXTERNAL. It is important to note that the three functions defined next,
close(), read(), and get_size(), are all required by pytsk3 to interact with the
evidence container appropriately. With this simple class created, we can now
use pytsk3 with any supplied E01 file.

class EWFImgInfo(pytsk3.Img_Info):
 def __init__(self, ewf_handle):

https://github.com/libyal/libewf/wiki/Development

 self._ewf_handle = ewf_handle
 super(EWFImgInfo, self).__init__(url="",
 type=pytsk3.TSK_IMG_TYPE_EXTERNAL)

 def close(self):
 self._ewf_handle.close()

 def read(self, offset, size):
 self._ewf_handle.seek(offset)
 return self._ewf_handle.read(size)

 def get_size(self):
 return self._ewf_handle.get_media_size()

Back in the main() function, we have successfully created our pytsk3 handler for
either raw or E01 images. We can now begin accessing the filesystem. As
mentioned, this script is designed to work with logical images and not physical
images. We will introduce support for physical images in the next recipe.
Accessing the filesystem is really simple; we do so by calling the FS_Info()
function on the pytsk3 handle.

 # Get Filesystem Handle
 try:
 fs = pytsk3.FS_Info(img_info, offset)
 except IOError:
 _, e, _ = sys.exc_info()
 print("[-] Unable to open FS:\n {}".format(e))
 exit()

With access to the filesystem, we can iterate through the folders and files in the
root directory. First, we access the root using the open_dir() method on the
filesystem and specifying the root directory, /, as the input. Next, we create a
nested list structure that will hold the table content, which we will later print
to the console using tabulate. The first element of this list is the headers of that
table.

Following that, we'll begin to iterate through the image as we would with any
Python iterable object. There are a variety of attributes and functions for each
object, and we begin to use them here. First, we extract the name of the object
using the f.info.name.name attribute. We then check if we are dealing with a
directory or a file using the f.info.meta.type attribute. If this is equal to the built-
in TSK_FS_META_TYPE_DIR object, then we set the f_type variable to DIR; otherwise, to
FILE.

Lastly, we use a few more attributes to extract the directory or file size and

create and modify timestamps. Be aware that object timestamps are stored in
Unix time and must be converted if you would like to display them in a human-
readable format. With these attributes extracted, we append the data to the table
list and continue on to the next object. Once we have finished processing all
objects in the root folder, we use tabulate to print the data to the console. This
is accomplished in one line by supplying the tabulate() method with the list and
setting the headers keyword argument to firstrow to indicate that the first element
in the list should be used as the table header.

 root_dir = fs.open_dir(path="/")
 table = [["Name", "Type", "Size", "Create Date", "Modify Date"]]
 for f in root_dir:
 name = f.info.name.name
 if f.info.meta.type == pytsk3.TSK_FS_META_TYPE_DIR:
 f_type = "DIR"
 else:
 f_type = "FILE"
 size = f.info.meta.size
 create = f.info.meta.crtime
 modify = f.info.meta.mtime
 table.append([name, f_type, size, create, modify])
 print(tabulate(table, headers="firstrow"))

When we run the script, we can learn about the files and folders at the root of
the evidence container as seen in the following screenshot:

Gathering acquisition and media
information
Recipe Difficulty: Medium

Python Version: 2.7

Operating System: Linux

In this recipe, we learn how to view and print the partition table using tabulate.
Additionally, for E01 containers, we will print E01 acquisition and container
metadata stored in the evidence file. Oftentimes, we will be working with a
physical disk image of a given machine. In pretty much any process going
forward, we will need to iterate through the different partitions (or a user-
selected partition) to get a handle on the filesystem and its files. Therefore, this
recipe is of critical importance as we build upon our burgeoning understanding
of the Sleuth Kit and its bevy of features.

Getting started
Refer to the Getting started section in the Opening Acquisitions recipe for
information on the build environment and setup details for pytsk3, pyewf, and
tabulate. All other libraries used in this script are present in Python's standard
library.

How to do it...
The recipe follows these basic steps:

1. Identify if the evidence container is a raw image or an E01 container.
2. Access the image using pytsk3.
3. If applicable, print E01 metadata to the console.
4. Print partition table data to the console.

How it works...
We import a number of libraries to assist with argument parsing, handling
evidence containers and filesystems, and creating tabular console data.

from __future__ import print_function
import argparse
import os
import pytsk3
import pyewf
import sys
from tabulate import tabulate

This recipe's command-line handler takes two positional arguments,
EVIDENCE_FILE and TYPE, which represent the path to the evidence file and the type
of evidence file. Additionally, if the user is experiencing difficulties with the
evidence file, they can use the optional p switch to manually supply the
partition. This switch should not be necessary for the most part but has been
added as a precaution. After performing input validation checks, we pass the
three arguments to the main() function.

if __name__ == '__main__':
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("EVIDENCE_FILE", help="Evidence file path")
 parser.add_argument("TYPE", help="Type of Evidence",
 choices=("raw", "ewf"))
 parser.add_argument("-p", help="Partition Type",
 choices=("DOS", "GPT", "MAC", "SUN"))
 args = parser.parse_args()

 if os.path.exists(args.EVIDENCE_FILE) and \
 os.path.isfile(args.EVIDENCE_FILE):
 main(args.EVIDENCE_FILE, args.TYPE, args.p)
 else:
 print("[-] Supplied input file {} does not exist or is not a "
 "file".format(args.EVIDENCE_FILE))
 sys.exit(1)

The main() function is substantially similar, at least initially, to the previous
recipe. We must first create the pyewf handle and then use the EWFImgInfo class to
create, as shown previously in the pytsk3 handle. If you would like to learn

more about the EWFImgInfo class, refer to the Opening Acquisitions recipe.
However, note that we have added an additional line calling the e01_metadata()
function to print E01 metadata to the console. Let's explore that function now.

def main(image, img_type, part_type):
 print("[+] Opening {}".format(image))
 if img_type == "ewf":
 try:
 filenames = pyewf.glob(image)
 except IOError:
 print("[-] Invalid EWF format:\n {}".format(e))
 sys.exit(2)

 ewf_handle = pyewf.handle()
 ewf_handle.open(filenames)
 e01_metadata(ewf_handle)

 # Open PYTSK3 handle on EWF Image
 img_info = EWFImgInfo(ewf_handle)
 else:
 img_info = pytsk3.Img_Info(image)

The e01_metadata() function primarily relies on the get_header_values() and
get_hash_values() methods to acquire E01-specific metadata. The get_header_values()
method returns a dictionary of key-value pairs for various types of acquisition
and media metadata. We use a loop to iterate through this dictionary and print
the key-value pairs to the console.

Similarly, we use a loop with the hashes dictionary to print stored acquisition
hashes of the image to the console. Lastly, we call an attribute and a few
functions to print acquisition size metadata.

def e01_metadata(e01_image):
 print("\nEWF Acquisition Metadata")
 print("-" * 20)
 headers = e01_image.get_header_values()
 hashes = e01_image.get_hash_values()
 for k in headers:
 print("{}: {}".format(k, headers[k]))
 for h in hashes:
 print("Acquisition {}: {}".format(h, hashes[h]))
 print("Bytes per Sector: {}".format(e01_image.bytes_per_sector))
 print("Number of Sectors: {}".format(
 e01_image.get_number_of_sectors()))
 print("Total Size: {}".format(e01_image.get_media_size()))

With that covered, we can now return to the main() function. Recall that in the
first recipe of this chapter, we did not create support for physical acquisitions
(which was totally on purpose). Now, however, we add that support in using

the Volume_Info() function. While pytsk3 can be daunting at first, appreciate the
consistency in naming conventions used in the major functions we have
introduced so far: Img_Info, FS_Info, and Volume_Info. These three functions are
vital in order to access the contents of the evidence container. In this recipe,
we will not be using the FS_Info() function as the purpose here is to only print
out the partition table.

We attempt to access the volume info in a try-except block. First, we check if
the p switch was supplied by the user and, if so, assign the attribute for that
partition type to a variable. Then we supply that, along with the pytsk3 handle,
in the Volume_Info method. Otherwise, if no partition was specified, we call the
Volume_Info method and supply it with just the pytsk3 handle object. If we receive
an IOError attempting to do this, we catch the exception as e and print it to the
console before exiting. If we are able to access the volume info, we pass this
onto the part_metadata() function to print the partition data to the console.

 try:
 if part_type is not None:
 attr_id = getattr(pytsk3, "TSK_VS_TYPE_" + part_type)
 volume = pytsk3.Volume_Info(img_info, attr_id)
 else:
 volume = pytsk3.Volume_Info(img_info)
 except IOError:
 _, e, _ = sys.exc_info()
 print("[-] Unable to read partition table:\n {}".format(e))
 sys.exit(3)
 part_metadata(volume)

The part_metadata() function is relatively light on logic. We create a nested list
structure, as seen in the previous recipe, with the first element representing the
eventual table header. Next, we iterate through the volume object and append
the partition address, type, offset, and length to the table list. Once we have
iterated through the partitions, we use tabulate to print a table of this data to the
console using firstrow as the table header.

def part_metadata(vol):
 table = [["Index", "Type", "Offset Start (Sectors)",
 "Length (Sectors)"]]
 for part in vol:
 table.append([part.addr, part.desc.decode("utf-8"), part.start,
 part.len])
 print("\n Partition Metadata")
 print("-" * 20)
 print(tabulate(table, headers="firstrow"))

When running this code, we can review information about the acquisition and
partition information in the console, if present:

Iterating through files
Recipe Difficulty: Medium

Python Version: 2.7

Operating System: Linux

In this recipe, we learn how to recurse through the filesystem and create an
active file listing. Oftentimes, one of the first questions we, as the forensic
examiner, are often asked is "What data is on the device?". An active file
listing comes in handy here. Creating a file listing of loose files is a very
straightforward task in Python. However, this will be slightly more
complicated because we are working with a forensic image rather than loose
files. This recipe will be a cornerstone for future scripts as it will allow us to
recursively access and process every file in the image. As you may have
noticed, this chapter's recipes are building upon each other as each function we
develop it becomes necessary to explore the image further. In a similar way,
this recipe will become integral in future recipes to iterate through directories
and process files.

Getting started
Refer to the Getting started section in the Opening Acquisitions recipe for
information on the build environment and setup details for pytsk3 and pyewf. All
other libraries used in this script are present in Python's standard library.

How to do it...
We perform the following steps in this recipe:

1. Identify if the evidence container is a raw image or an E01 container.
2. Access the forensic image using pytsk3.
3. Recurse through all directories in each partition.
4. Store file metadata in a list.
5. Write the active file list to CSV.

How it works...
We import a number of libraries to assist with argument parsing, parsing dates,
creating CSV spreadsheets, and handling evidence containers and filesystems.

from __future__ import print_function
import argparse
import csv
from datetime import datetime
import os
import pytsk3
import pyewf
import sys

This recipe's command-line handler takes three positional arguments,
EVIDENCE_FILE, TYPE, and OUTPUT_CSV, which represent the path to the evidence file,
the type of evidence file, and the output CSV file, respectively. Similar to the
previous recipe, the optional p switch can be supplied to specify a partition
type. We use the os.path.dirname() method to extract the desired output directory
path for the CSV file and, with the os.makedirs() function, create the necessary
output directories if they do not exist.

if __name__ == '__main__':
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("EVIDENCE_FILE", help="Evidence file path")
 parser.add_argument("TYPE", help="Type of Evidence",
 choices=("raw", "ewf"))
 parser.add_argument("OUTPUT_CSV",
 help="Output CSV with lookup results")
 parser.add_argument("-p", help="Partition Type",
 choices=("DOS", "GPT", "MAC", "SUN"))
 args = parser.parse_args()

 directory = os.path.dirname(args.OUTPUT_CSV)
 if not os.path.exists(directory) and directory != "":
 os.makedirs(directory)

Once we have validated the input evidence file by checking that it exists and is
a file, the four arguments are passed to the main() function. If there is an issue
with initial validation of the input, an error is printed to the console before the
script exits.

 if os.path.exists(args.EVIDENCE_FILE) and \
 os.path.isfile(args.EVIDENCE_FILE):
 main(args.EVIDENCE_FILE, args.TYPE, args.OUTPUT_CSV, args.p)
 else:
 print("[-] Supplied input file {} does not exist or is not a "
 "file".format(args.EVIDENCE_FILE))
 sys.exit(1)

In the main() function, we instantiate the volume variable with None to avoid
errors referencing it later in the script. After printing a status message to the
console, we check if the evidence type is an E01 to properly process it and
create a valid pyewf handle, as demonstrated in more detail in the Opening
Acquisitions recipe. Refer to that recipe for more details as this part of the
function is identical. The end result is the creation of the pytsk3 handle, img_info,
for the user-supplied evidence file.

def main(image, img_type, output, part_type):
 volume = None
 print("[+] Opening {}".format(image))
 if img_type == "ewf":
 try:
 filenames = pyewf.glob(image)
 except IOError:
 _, e, _ = sys.exc_info()
 print("[-] Invalid EWF format:\n {}".format(e))
 sys.exit(2)

 ewf_handle = pyewf.handle()
 ewf_handle.open(filenames)

 # Open PYTSK3 handle on EWF Image
 img_info = EWFImgInfo(ewf_handle)
 else:
 img_info = pytsk3.Img_Info(image)

Next, we attempt to access the volume of the image using the pytsk3.Volume_Info()
method by supplying it with the image handle. If the partition type argument
was supplied, we add its attribute ID as the second argument. If we receive an
IOError when attempting to access the volume, we catch the exception as e and
print it to the console. Notice, however, that we do not exit the script as we
often do when we receive an error. We'll explain why in the next function.
Ultimately, we pass the volume, img_info, and output variables to the open_fs()
method.

 try:
 if part_type is not None:
 attr_id = getattr(pytsk3, "TSK_VS_TYPE_" + part_type)
 volume = pytsk3.Volume_Info(img_info, attr_id)
 else:

 volume = pytsk3.Volume_Info(img_info)
 except IOError:
 _, e, _ = sys.exc_info()
 print("[-] Unable to read partition table:\n {}".format(e))

 open_fs(volume, img_info, output)

The open_fs() method tries to access the filesystem of the container in two ways.
If the volume variable is not None, it iterates through each partition and, if that
partition meets certain criteria, attempts to open it. If, however, the volume
variable is None, it instead tries to directly call the pytsk3.FS_Info() method on the
image handle, img. As we saw, this latter method will work and give us
filesystem access for logical images, whereas the former works for physical
images. Let's look at the differences between these two methods.

Regardless of the method, we create a recursed_data list to hold our active file
metadata. In the first instance, where we have a physical image, we iterate
through each partition and check whether it is greater than 2,048 sectors and
does not contain the words Unallocated, Extended, or Primary Table in its
description. For partitions meeting these criteria, we attempt to access their
filesystem using the FS_Info() function by supplying the pytsk3 img object and the
offset of the partition in bytes.

If we are able to access the filesystem, we use the open_dir() method to get the
root directory and pass that, along with the partition address ID, the filesystem
object, two empty lists, and an empty string, to the recurse_files() method. These
empty lists and string will come into play in recursive calls to this function, as
we will see shortly. Once the recurse_files() method returns, we append the
active file metadata to the recursed_data list. We repeat this process for each
partition.

def open_fs(vol, img, output):
 print("[+] Recursing through files..")
 recursed_data = []
 # Open FS and Recurse
 if vol is not None:
 for part in vol:
 if part.len > 2048 and "Unallocated" not in part.desc and \
 "Extended" not in part.desc and \
 "Primary Table" not in part.desc:
 try:
 fs = pytsk3.FS_Info(
 img, offset=part.start * vol.info.block_size)
 except IOError:

 _, e, _ = sys.exc_info()
 print("[-] Unable to open FS:\n {}".format(e))
 root = fs.open_dir(path="/")
 data = recurse_files(part.addr, fs, root, [], [], [""])
 recursed_data.append(data)

We employ a similar method for the second instance, where we have a logical
image, where the volume is None. In this case, we attempt to directly access the
filesystem and, if successful, we pass that to the recurseFiles() method and
append the returned data to our recursed_data list. Once we have our active file
list, we send it and the user-supplied output file path to the csvWriter() method.
Let's dive into the recurseFiles() method, which is the meat of this recipe.

 else:
 try:
 fs = pytsk3.FS_Info(img)
 except IOError:
 _, e, _ = sys.exc_info()
 print("[-] Unable to open FS:\n {}".format(e))
 root = fs.open_dir(path="/")
 data = recurse_files(1, fs, root, [], [], [""])
 recursed_data.append(data)
 write_csv(recursed_data, output)

The recurse_files() function is based on an example of the FLS tool (https://github.co
m/py4n6/pytsk/blob/master/examples/fls.py) and David Cowen's tool DFIR Wizard (https://g
ithub.com/dlcowen/dfirwizard/blob/master/dfirwizard-v9.py). To start this function, we append
the root directory inode to the dirs list. This list is used later to avoid unending
loops. Next, we begin to loop through each object in the root directory and
check whether it has certain attributes we would expect and that its name is not
either "." or "..".

def recurse_files(part, fs, root_dir, dirs, data, parent):
 dirs.append(root_dir.info.fs_file.meta.addr)
 for fs_object in root_dir:
 # Skip ".", ".." or directory entries without a name.
 if not hasattr(fs_object, "info") or \
 not hasattr(fs_object.info, "name") or \
 not hasattr(fs_object.info.name, "name") or \
 fs_object.info.name.name in [".", ".."]:
 continue

If the object passes that test, we extract its name using the info.name.name
attribute. Next, we use the parent variable, which was supplied as one of the
function's inputs, to manually create the file path for this object. There is no
built-in method or attribute to do this automatically for us.

https://github.com/py4n6/pytsk/blob/master/examples/fls.py
https://github.com/dlcowen/dfirwizard/blob/master/dfirwizard-v9.py

We then check if the file is a directory or not and set the f_type variable to the
appropriate type. If the object is a file, and it has an extension, we extract it
and store it in the file_ext variable. If we encounter an AttributeError when
attempting to extract this data, we continue onto the next object.

 try:
 file_name = fs_object.info.name.name
 file_path = "{}/{}".format(
 "/".join(parent), fs_object.info.name.name)
 try:
 if fs_object.info.meta.type == pytsk3.TSK_FS_META_TYPE_DIR:
 f_type = "DIR"
 file_ext = ""
 else:
 f_type = "FILE"
 if "." in file_name:
 file_ext = file_name.rsplit(".")[-1].lower()
 else:
 file_ext = ""
 except AttributeError:
 continue

Similar to the first recipe in this chapter, we create variables for the object
size and timestamps. However, notice that we pass the dates to a convert_time()
method. This function exists to convert the Unix timestamps into a human-
readable format. With these attributes extracted, we append them to the data
list using the partition address ID to ensure we keep track of which partition
the object is from.

 size = fs_object.info.meta.size
 create = convert_time(fs_object.info.meta.crtime)
 change = convert_time(fs_object.info.meta.ctime)
 modify = convert_time(fs_object.info.meta.mtime)
 data.append(["PARTITION {}".format(part), file_name, file_ext,
 f_type, create, change, modify, size, file_path])

If the object is a directory, we need to recurse through it to access all of its
subdirectories and files. To accomplish this, we append the directory name to
the parent list. Then, we create a directory object using the as_directory()
method. We use the inode here, which is for all intents and purposes a unique
number, and check that the inode is not already in the dirs list. If that were the
case, then we would not process this directory as it would have already been
processed.

If the directory needs to be processed, we call the recurse_files() method on the
new sub_directory and pass it current dirs, data, and parent variables. Once we

have processed a given directory, we pop that directory from the parent list.
Failing to do this will result in false file path details as all of the former
directories will continue to be referenced in the path unless removed.

Most of this function was in a large try-except block. We pass on any IOError
exception generated during this process. Once we have iterated through all of
the subdirectories, we return the data list to the open_fs() function.

 if f_type == "DIR":
 parent.append(fs_object.info.name.name)
 sub_directory = fs_object.as_directory()
 inode = fs_object.info.meta.addr

 # This ensures that we don't recurse into a directory
 # above the current level and thus avoid circular loops.
 if inode not in dirs:
 recurse_files(part, fs, sub_directory, dirs, data,
 parent)
 parent.pop(-1)

 except IOError:
 pass
 dirs.pop(-1)
 return data

Let's briefly look at the convert_time() function. We've seen this type of function
before: if the Unix timestamp is not 0, we use the datetime.utcfromtimestamp()
method to convert the timestamp into a human-readable format.

def convert_time(ts):
 if str(ts) == "0":
 return ""
 return datetime.utcfromtimestamp(ts)

With the active file listing data in hand, we are now ready to write it to a CSV
file using the write_csv() method. If we did find data (that is, the list is not
empty), we open the output CSV file, write the headers, and loop through each
list in the data variable. We use the csvwriterows() method to write each nested
list structure to the CSV file.

def write_csv(data, output):
 if data == []:
 print("[-] No output results to write")
 sys.exit(3)

 print("[+] Writing output to {}".format(output))
 with open(output, "wb") as csvfile:
 csv_writer = csv.writer(csvfile)
 headers = ["Partition", "File", "File Ext", "File Type",

 "Create Date", "Modify Date", "Change Date", "Size",
 "File Path"]
 csv_writer.writerow(headers)
 for result_list in data:
 csv_writer.writerows(result_list)

The following screenshot demonstrates the type of data this recipe extracts
from forensic images:

There's more...
This script can be further improved. We have provided one or more
recommendations as follows:

Use tqdm, or another library, to create a progress bar to inform the user of
the current execution progress
Learn about the additional metadata values that can be extracted from
filesystem objects using pytsk3 and add them to the output CSV file

Processing files within the container
Recipe Difficulty: Medium

Python Version: 2.7

Operating System: Linux

Now that we can iterate through a filesystem, let's look at how we can create
file objects as we have been accustomed to doing. In this recipe, we create a
simple triage script that extracts files matching specified file extensions and
copies them to an output directory while preserving their original file path.

Getting started
Refer to the Getting started section in the Opening Acquisitions recipe for
information on the build environment and setup details for pytsk3 and pyewf. All
other libraries used in this script are present in Python's standard library.

How to do it...
We will perform the following steps in this recipe:

1. Identify if the evidence container is a raw image or an E01 container.
2. Access the image using pytsk3.
3. Recurse through all directories in each partition.
4. Check if the file extension matches those supplied.
5. Write responsive files with the preserved folder structure to the output

directory.

How it works...
We import a number of libraries to assist with argument parsing, creating CSV
spreadsheets, and handling evidence containers and filesystems.

from __future__ import print_function
import argparse
import csv
import os
import pytsk3
import pyewf
import sys

This recipe's command-line handler takes four positional arguments:
EVIDENCE_FILE, TYPE, EXT, and OUTPUT_DIR. These are the evidence file itself, the type
of evidence file, a comma-delimited list of extensions to extract, and the
desired output directory, respectively. We also have the optional p switch to
manually specify the partition type.

if __name__ == '__main__':
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("EVIDENCE_FILE", help="Evidence file path")
 parser.add_argument("TYPE", help="Type of Evidence",
 choices=("raw", "ewf"))
 parser.add_argument("EXT",
 help="Comma-delimited file extensions to extract")
 parser.add_argument("OUTPUT_DIR", help="Output Directory")
 parser.add_argument("-p", help="Partition Type",
 choices=("DOS", "GPT", "MAC", "SUN"))
 args = parser.parse_args()

Before calling the main() function, we create any necessary output directories
and perform our standard input-validation steps. Once we have validated the
input, we pass the supplied arguments onto the main() function.

 if not os.path.exists(args.OUTPUT_DIR):
 os.makedirs(args.OUTPUT_DIR)

 if os.path.exists(args.EVIDENCE_FILE) and \
 os.path.isfile(args.EVIDENCE_FILE):
 main(args.EVIDENCE_FILE, args.TYPE, args.EXT, args.OUTPUT_DIR,
 args.p)
 else:

 print("[-] Supplied input file {} does not exist or is not a "
 "file".format(args.EVIDENCE_FILE))
 sys.exit(1)

The main() function, EWFImgInfo class, and the open_fs() function, have been
covered in previous recipes. Recall that this chapter takes a more iterative
approach to our recipes as we build upon the previous ones. Refer to those
previous recipes for a more detailed description of each function and the
EWFImgInfo class. Let's briefly show the two functions again so as to avoid
jumping around logically.

In the main() function, we check whether the evidence file is a raw file or an E01
file. Then, we perform the necessary steps to ultimately create a pytsk3 handle
on the evidence file. With this handle, we attempt to access the volume, using
the manually supplied partition type if supplied. If we are able to open the
volume, we pass pytsk3 handle and volume to the open_fs() method.

def main(image, img_type, ext, output, part_type):
 volume = None
 print("[+] Opening {}".format(image))
 if img_type == "ewf":
 try:
 filenames = pyewf.glob(image)
 except IOError:
 _, e, _ = sys.exc_info()
 print("[-] Invalid EWF format:\n {}".format(e))
 sys.exit(2)

 ewf_handle = pyewf.handle()
 ewf_handle.open(filenames)

 # Open PYTSK3 handle on EWF Image
 img_info = EWFImgInfo(ewf_handle)
 else:
 img_info = pytsk3.Img_Info(image)

 try:
 if part_type is not None:
 attr_id = getattr(pytsk3, "TSK_VS_TYPE_" + part_type)
 volume = pytsk3.Volume_Info(img_info, attr_id)
 else:
 volume = pytsk3.Volume_Info(img_info)
 except IOError:
 _, e, _ = sys.exc_info()
 print("[-] Unable to read partition table:\n {}".format(e))

 open_fs(volume, img_info, ext, output)

In the open_fs() function, we use logic to support accessing the filesystem for
both logical and physical acquisitions. For logical acquisitions, we can simply

attempt to access the root of the filesystem on the pytsk3 handle. On the other
hand, for physical acquisitions, we must iterate through each partition and
attempt to access the filesystem for those meeting certain criteria. Once we
have access to the filesystem, we call the recurse_files() method to iterate
through all of the files in the filesystem.

def open_fs(vol, img, ext, output):
 # Open FS and Recurse
 print("[+] Recursing through files and writing file extension matches "
 "to output directory")
 if vol is not None:
 for part in vol:
 if part.len > 2048 and "Unallocated" not in part.desc \
 and "Extended" not in part.desc \
 and "Primary Table" not in part.desc:
 try:
 fs = pytsk3.FS_Info(
 img, offset=part.start * vol.info.block_size)
 except IOError:
 _, e, _ = sys.exc_info()
 print("[-] Unable to open FS:\n {}".format(e))
 root = fs.open_dir(path="/")
 recurse_files(part.addr, fs, root, [], [""], ext, output)
 else:
 try:
 fs = pytsk3.FS_Info(img)
 except IOError:
 _, e, _ = sys.exc_info()
 print("[-] Unable to open FS:\n {}".format(e))
 root = fs.open_dir(path="/")
 recurse_files(1, fs, root, [], [""], ext, output)

Stop skimming here! The new logic for this recipe is contained in the
recurse_files() method. This is sort of a blink-and-you'll-miss-it recipe. We've
done the heavy lifting with the previous recipes, and we can now essentially
treat these files like we would any other file with Python. Let's look at how this
works.

Admittedly, the first part of this function is still the same as before, with one
exception. On the first line of the function, we use list comprehension to split
each comma-delimited extension supplied by the user and remove any white
spaces and normalize the string to lowercase. As we iterate through each
object, we check whether the object is a directory or a file. If it is a file, we
separate and normalize the file's extension to lower case and store it in a
file_ext variable.

def recurse_files(part, fs, root_dir, dirs, parent, ext, output):

 extensions = [x.strip().lower() for x in ext.split(',')]
 dirs.append(root_dir.info.fs_file.meta.addr)
 for fs_object in root_dir:
 # Skip ".", ".." or directory entries without a name.
 if not hasattr(fs_object, "info") or \
 not hasattr(fs_object.info, "name") or \
 not hasattr(fs_object.info.name, "name") or \
 fs_object.info.name.name in [".", ".."]:
 continue
 try:
 file_name = fs_object.info.name.name
 file_path = "{}/{}".format("/".join(parent),
 fs_object.info.name.name)
 try:
 if fs_object.info.meta.type == pytsk3.TSK_FS_META_TYPE_DIR:
 f_type = "DIR"
 file_ext = ""
 else:
 f_type = "FILE"
 if "." in file_name:
 file_ext = file_name.rsplit(".")[-1].lower()
 else:
 file_ext = ""
 except AttributeError:
 continue

Next, we check if the extracted file's extension is in our user supplied list. If it
is, we pass the file object itself and its name, extension, path, and the desired
output directory to the file_writer() method to output. Notice that this operation,
we have logic, discussed in the previous recipe, to recursively process any
subdirectories to identify more potential files matching the extension criteria.
So far, so good; let's now take a look at this last function.

 if file_ext.strip() in extensions:
 print("{}".format(file_path))
 file_writer(fs_object, file_name, file_ext, file_path,
 output)
 if f_type == "DIR":
 parent.append(fs_object.info.name.name)
 sub_directory = fs_object.as_directory()
 inode = fs_object.info.meta.addr
 if inode not in dirs:
 recurse_files(part, fs, sub_directory, dirs,
 parent, ext, output)
 parent.pop(-1)
 except IOError:
 pass
 dirs.pop(-1)

The file_writer() method relies on the file object's read_random() method to access
the file content. Before we do that, however, we first set up the output path for
the file by combining the user-supplied output with the extension and the path
of the file. We then create these directories if they do not already exist. Next,

we open the output file in "w" mode and are now ready to write the file's
content to the output file. As used here, the read_random() function takes two
inputs: the byte offset within the file to start reading from and the number of
bytes to read. In this case, since we want to read the entire file, we use the
integer 0 as the first argument and the file's size as the second argument.

We supply this directly to the write() method, although note that going forward,
if we were to perform any processing to this file, we could instead read it into
a variable and work with the file from there. Also, note that for evidence
containers with large files, this process of reading the entire file into memory
may not be ideal. In that scenario, you would want to read and write to this file
in chunks rather than all at once.

def file_writer(fs_object, name, ext, path, output):
 output_dir = os.path.join(output, ext,
 os.path.dirname(path.lstrip("//")))
 if not os.path.exists(output_dir):
 os.makedirs(output_dir)
 with open(os.path.join(output_dir, name), "w") as outfile:
 outfile.write(fs_object.read_random(0, fs_object.info.meta.size))

When we run this script, we see responsive files based on the supplied
extensions:

Additionally, we can review these files within the defined structure as shown
in the following screenshot:

Searching for hashes
Recipe Difficulty: Hard

Python Version: 2.7

Operating System: Linux

In this recipe, we create another triage script, this time focused on identifying
files matching provided hash values. This script takes a text file containing MD5,
SHA-1, or SHA-256 hashes, separated by a newline, and searches for those hashes
within the evidence container. With this recipe, we will be able to quickly
process evidence files, locate files of interest, and alert the user by printing the
file path to the console.

Getting started
Refer to the Getting started section in the Opening Acquisitions recipe for
information on the build environment and setup details for pytsk3 and pyewf. All
other libraries used in this script are present in Python's standard library.

How to do it...
We use the following methodology to accomplish our objective:

1. Identify if the evidence container is a raw image or an E01 container.
2. Access the image using pytsk3.
3. Recurse through all directories in each partition.
4. Send each file to be hashed using the appropriate hashing algorithm.
5. Check if the hash matches one of those provided and if so, print to the

console.

How it works...
We import a number of libraries to assist with argument parsing, creating CSV
spreadsheets, hashing files, handling evidence containers and filesystems, and
creating progress bars.

from __future__ import print_function
import argparse
import csv
import hashlib
import os
import pytsk3
import pyewf
import sys
from tqdm import tqdm

This recipe's command-line handler takes three positional arguments,
EVIDENCE_FILE, TYPE, and HASH_LIST, which represent the evidence file, the type of
evidence file, and the newline delimited list of hashes to search for,
respectively. As always, the user can also manually supply the partition type
using the p switch if necessary.

if __name__ == '__main__':
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("EVIDENCE_FILE", help="Evidence file path")
 parser.add_argument("TYPE", help="Type of Evidence",
 choices=("raw", "ewf"))
 parser.add_argument("HASH_LIST",
 help="Filepath to Newline-delimited list of "
 "hashes (either MD5, SHA1, or SHA-256)")
 parser.add_argument("-p", help="Partition Type",
 choices=("DOS", "GPT", "MAC", "SUN"))
 parser.add_argument("-t", type=int,
 help="Total number of files, for the progress bar")
 args = parser.parse_args()

After we parse the inputs, we perform our typical input-validation checks on
both the evidence file and the hash list. If those pass, we call the main() function
and supply it with the user-supplied inputs.

 if os.path.exists(args.EVIDENCE_FILE) and \
 os.path.isfile(args.EVIDENCE_FILE) and \

 os.path.exists(args.HASH_LIST) and \
 os.path.isfile(args.HASH_LIST):
 main(args.EVIDENCE_FILE, args.TYPE, args.HASH_LIST, args.p, args.t)
 else:
 print("[-] Supplied input file {} does not exist or is not a "
 "file".format(args.EVIDENCE_FILE))
 sys.exit(1)

As in the previous recipe, the main() function, EWFImgInfo class, and the open_fs()
function are nearly identical to the previous recipes. For a more detailed
explanation of these functions, refer to the previous recipes. One new addition
to the main() function is the first line, where we call the read_hashes() method.
This method reads the input hash list and returns a list of hashes and the type of
hash (that is, MD5, SHA-1, or SHA-256).

Other than that, the main() function proceeds as we are accustomed to seeing it.
First, it determines what type of evidence file it is working with in order to
create a pytsk3 handle on the image. Then, it uses that handle and attempts to
access the image volume. Once this process has completed, the variables are
sent to the open_fs() function for further processing.

def main(image, img_type, hashes, part_type, pbar_total=0):
 hash_list, hash_type = read_hashes(hashes)
 volume = None
 print("[+] Opening {}".format(image))
 if img_type == "ewf":
 try:
 filenames = pyewf.glob(image)
 except IOError:
 _, e, _ = sys.exc_info()
 print("[-] Invalid EWF format:\n {}".format(e))
 sys.exit(2)

 ewf_handle = pyewf.handle()
 ewf_handle.open(filenames)

 # Open PYTSK3 handle on EWF Image
 img_info = EWFImgInfo(ewf_handle)
 else:
 img_info = pytsk3.Img_Info(image)

 try:
 if part_type is not None:
 attr_id = getattr(pytsk3, "TSK_VS_TYPE_" + part_type)
 volume = pytsk3.Volume_Info(img_info, attr_id)
 else:
 volume = pytsk3.Volume_Info(img_info)
 except IOError:
 _, e, _ = sys.exc_info()
 print("[-] Unable to read partition table:\n {}".format(e))

 open_fs(volume, img_info, hash_list, hash_type, pbar_total)

Let's quickly look at one of the new functions, the read_hashes() method. First,
we instantiate the hash_list and hash_type variables as an empty list and None
object, respectively. Next, we open and iterate through the input hash list and
add each hash to our list. As we do this, if the hash_type variable is still None, we
check the length of the line as a means of identifying the type of hash algorithm
we should use.

At the end of this process, if for whatever reason the hash_type variable is still
None, then the hash list must be made up of hashes we do not support, and so we
exit the script after printing the error to the console.

def read_hashes(hashes):
 hash_list = []
 hash_type = None
 with open(hashes) as infile:
 for line in infile:
 if hash_type is None:
 if len(line.strip()) == 32:
 hash_type = "md5"
 elif len(line.strip()) == 40:
 hash_type == "sha1"
 elif len(line.strip()) == 64:
 hash_type == "sha256"
 hash_list.append(line.strip().lower())
 if hash_type is None:
 print("[-] No valid hashes identified in {}".format(hashes))
 sys.exit(3)

 return hash_list, hash_type

The open_fs() method function is identical to that of previous recipes. It tries to
use two different methods to access both physical and logical filesystems.
Once successful, it passes these filesystems onto the recurse_files() method. As
with the previous recipe, the magic happens within this function. We are also
incorporating a progress bar with tqdm to provide feedback to the user, as it
may take a while to hash all of the files within an image.

def open_fs(vol, img, hashes, hash_type, pbar_total=0):
 # Open FS and Recurse
 print("[+] Recursing through and hashing files")
 pbar = tqdm(desc="Hashing", unit=" files",
 unit_scale=True, total=pbar_total)
 if vol is not None:
 for part in vol:
 if part.len > 2048 and "Unallocated" not in part.desc and \
 "Extended" not in part.desc and \
 "Primary Table" not in part.desc:
 try:
 fs = pytsk3.FS_Info(

 img, offset=part.start * vol.info.block_size)
 except IOError:
 _, e, _ = sys.exc_info()
 print("[-] Unable to open FS:\n {}".format(e))
 root = fs.open_dir(path="/")
 recurse_files(part.addr, fs, root, [], [""], hashes,
 hash_type, pbar)
 else:
 try:
 fs = pytsk3.FS_Info(img)
 except IOError:
 _, e, _ = sys.exc_info()
 print("[-] Unable to open FS:\n {}".format(e))
 root = fs.open_dir(path="/")
 recurse_files(1, fs, root, [], [""], hashes, hash_type, pbar)
 pbar.close()

Within the recurse_files() method, we iterate through all subdirectories and hash
each file. We skip the . and .. directory entries and check that the fs_object has
the correct properties. If so, we build the file path for use in our output.

def recurse_files(part, fs, root_dir, dirs, parent, hashes,
 hash_type, pbar):
 dirs.append(root_dir.info.fs_file.meta.addr)
 for fs_object in root_dir:
 # Skip ".", ".." or directory entries without a name.
 if not hasattr(fs_object, "info") or \
 not hasattr(fs_object.info, "name") or \
 not hasattr(fs_object.info.name, "name") or \
 fs_object.info.name.name in [".", ".."]:
 continue
 try:
 file_path = "{}/{}".format("/".join(parent),
 fs_object.info.name.name)

As we perform each iteration, we determine which objects are files versus
directories. For each file discovered, we send it to the hash_file() method along
with its path, the list of hashes, and the hash algorithm. The remainder of the
recurse_files() function logic is specifically designed to handle directories and
makes recursive calls to this function for any sub-directories to ensure the
whole tree is walked and files are not missed.

 if getattr(fs_object.info.meta, "type", None) == \
 pytsk3.TSK_FS_META_TYPE_DIR:
 parent.append(fs_object.info.name.name)
 sub_directory = fs_object.as_directory()
 inode = fs_object.info.meta.addr

 # This ensures that we don't recurse into a directory
 # above the current level and thus avoid circular loops.
 if inode not in dirs:
 recurse_files(part, fs, sub_directory, dirs,
 parent, hashes, hash_type, pbar)

 parent.pop(-1)
 else:
 hash_file(fs_object, file_path, hashes, hash_type, pbar)

 except IOError:
 pass
 dirs.pop(-1)

The hash_file() method first checks which type of hash algorithm instance to
create based on the hash_type variable. With that decided and an update of the
file size to the progress bar, we read the file's data into the hash object using
the read_random() method. Again, we read the entire file's contents by starting our
read at the first byte and reading the entire file's size. We generate the hash of
the file using the hexdigest() function on the hash object and then check whether
that hash is in our list of supplied hashes. If it is, we alert the user by printing
the file path, using pbar.write() to prevent progress bar display issues, and name
to the console.

def hash_file(fs_object, path, hashes, hash_type, pbar):
 if hash_type == "md5":
 hash_obj = hashlib.md5()
 elif hash_type == "sha1":
 hash_obj = hashlib.sha1()
 elif hash_type == "sha256":
 hash_obj = hashlib.sha256()
 f_size = getattr(fs_object.info.meta, "size", 0)
 pbar.set_postfix(File_Size="{:.2f}MB".format(f_size / 1024.0 / 1024))
 hash_obj.update(fs_object.read_random(0, f_size))
 hash_digest = hash_obj.hexdigest()
 pbar.update()

 if hash_digest in hashes:
 pbar.write("[*] MATCH: {}\n{}".format(path, hash_digest))

By running the script we are presented with a nice progress bar showing the
hashing status and a list of files that match the list of provided hashes, as seen
in the following screenshot:

There's more...
This script can be further improved. We have provided one or more
recommendations as follows:

Rather than printing matches, create a CSV of matching files with
metadata for review
Add an optional switch to dump matching files to an output directory
(with the folder path preserved)

Exploring Windows Forensic
Artifacts Recipes - Part I
The following recipes will be covered in this chapter:

One man's trash is a forensic examiner's treasure
A sticky situation
Reading the registry
Gathering user activity
The missing link
Searching high and low

Introduction
Windows has long reigned supreme as the operating system of choice in the PC
market. In fact, Windows makes up approximately 47 percent of the users
visiting government websites, with the second most popular PC operating
system, macOS, making up only 8.5 percentage. There is no reason to suspect
that this will be changing anytime soon, especially with the warm reception
that Windows 10 has received. Therefore, it is exceedingly likely that future
investigations will continue to require the analysis of Windows artifacts.

This chapter covers many types of artifacts and how to interpret them with
Python, using various first and third-party libraries, directly from forensic
evidence containers. We will leverage the framework we developed in Chapter
8, Working with Forensic Evidence Container Recipes to process these
artifacts directly from forensic acquisitions. In this manner, we can provide
captured raw or EWF images to our code and not worry about the process of
extracting the required files or mounting the image prior to processing the data.
Specifically, we will cover:

Interpreting $I files to learn more about files sent to the Recycle Bin
Reading content and metadata from Sticky Notes on Window 7 systems
Extracting values from the registry to learn about the operating system
version and other configuration details
Revealing user activity related to searches, typed paths, and run
commands
Parsing LNK files to learn about historical and recent file access
Examining Windows.edb for information about indexed files, folders, and
messages

To view more interesting metrics, visit https://analytics.usa.gov/.

Visit www.packtpub.com/books/content/support to download the code
bundle for this chapter.

https://analytics.usa.gov/
http://www.packtpub.com/books/content/support

One man's trash is a forensic
examiner's treasure
Recipe difficulty: Medium

Python version: 2.7

Operating system: Linux

While that may not be the exact saying, forensic examination of deleted files
residing in the Recycle Bin is an important step in most investigations. The
non-technical custodian likely does not understand that these files sent to the
Recycle Bin are still present and that we can learn a good deal about the
original file, such as its original file path and the time that it was sent to the
Recycle Bin. While the specific artifacts vary between versions of Windows,
this recipe focuses on the Windows 7 version of the Recycle Bin's $I and $R
files.

Getting started
This recipe requires the installation of three third-party modules to function:
pytsk3, pyewf, and unicodecsv. Refer to Chapter 8, Working with Forensic Evidence
Container Recipes for a detailed explanation of installing the pytsk3 and pyewf
modules. All other libraries used in this script are present in Python's standard
library

Because we are developing these recipes in Python 2.x, we are likely to
encounter Unicode encode and decode errors. To account for that, we use the
unicodecsv library to write all CSV output in this chapter. This third-party
module takes care of Unicode support, unlike Python 2.x's standard csv module,
and will be put to great use here. As usual, we can use pip to install unicodecsv:

pip install unicodecsv==0.14.1

To learn more about the unicodecsv library, visit https://github.com/jdu
nck/python-unicodecsv.

In addition to these, we'll continue to use the pytskutil module developed from
Chapter 8, Working with Forensic Evidence Container recipes, to allow
interaction with forensic acquisitions. This module is largely similar to what
we previously wrote, with some minor changes to better suit our purposes. You
can review the code by navigating to the utility directory within the code
package.

https://github.com/jdunck/python-unicodecsv
https://cdp.packtpub.com/python_digital_forensics_cookbook/wp-admin/post.php?post=260&action=edit#post_218

How to do it...
To parse the $I and $R files from a Windows 7 machine, we will need to:

1. Recurse through the $Recycle.bin folder in the evidence file, selecting all
files starting with $I.

2. Read the contents of the files and parse the available metadata structures.
3. Search for the associated $R file and check if it is a file or folder.
4. Write the results into a CSV file for review.

How it works...
We import the argparse, datetime, os, and struct built-in libraries to assist with
running the script and interpreting the binary data within these files. We also
bring in our Sleuth Kit utilities for handling the evidence files, reading the
content, and iterating through folders and files. Lastly, we import the unicodecsv
library to assist with writing the CSV report:

from __future__ import print_function
from argparse import ArgumentParser
import datetime
import os
import struct

from utility.pytskutil import TSKUtil
import unicodecsv as csv

This recipe's command-line handler takes three positional arguments,
EVIDENCE_FILE, IMAGE_TYPE, and CSV_REPORT, which represent the path to the evidence
file, the type of evidence file, and the desired output path to the CSV report,
respectively. These three arguments are passed to the main() function.

if __name__ == '__main__':
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument('EVIDENCE_FILE', help="Path to evidence file")
 parser.add_argument('IMAGE_TYPE', help="Evidence file format",
 choices=('ewf', 'raw'))
 parser.add_argument('CSV_REPORT', help="Path to CSV report")
 args = parser.parse_args()
 main(args.EVIDENCE_FILE, args.IMAGE_TYPE, args.CSV_REPORT)

The main() function handles the necessary interactions with the evidence file to
identify and provide any $I files for processing. To access the evidence file,
one must provide the path to the container and the image type. This initiates the
TSKUtil instance, which we use to search for files and folders within the image.
To find the $I files, we call the recurse_files() method on the tsk_util instance,
specifying the file name pattern to look for, the path to start the search in, and
the string logic used to find the filename. The logic keyword argument accepts

the following values which correspond to string operations: startswith, endswith,
contains, and equals. These dictate the string operation used to search for our $I
pattern within the scanned file and folder names.

If any $I files are found, we pass this list to the process_dollar_i() function along
with the tsk_util object. After they are all processed, we write the extracted
metadata to a CSV report with the write_csv() method:

def main(evidence, image_type, report_file):
 tsk_util = TSKUtil(evidence, image_type)

 dollar_i_files = tsk_util.recurse_files("$I", path='/$Recycle.bin',
 logic="startswith")

 if dollar_i_files is not None:
 processed_files = process_dollar_i(tsk_util, dollar_i_files)

 write_csv(report_file,
 ['file_path', 'file_size', 'deleted_time',
 'dollar_i_file', 'dollar_r_file', 'is_directory'],
 processed_files)
 else:
 print("No $I files found")

The process_dollar_i() function accepts as its input, the tsk_util object and the list
of discovered $I files. We iterate through this list and inspect each of these
files. Each element within the dollar_i_files list is itself a list of tuples, where
each tuple element contains (in order) the file's name, relative path, handle to
access the file's content, and filesystem identifier. With these available
attributes, we will call our read_dollar_i() function and provide it the third tuple,
the file object handle. If this is a valid $I file, this method returns a dictionary
of extracted metadata from the raw file, otherwise, it returns None. If the file is
valid, we continue processing it by adding the file path to the $I file to the
file_attribs dictionary:

def process_dollar_i(tsk_util, dollar_i_files):
 processed_files = []
 for dollar_i in dollar_i_files:
 # Interpret file metadata
 file_attribs = read_dollar_i(dollar_i[2])
 if file_attribs is None:
 continue # Invalid $I file
 file_attribs['dollar_i_file'] = os.path.join(
 '/$Recycle.bin', dollar_i[1][1:])

Next, we search for the associated $R file within the image. In preparation of

this, we join base path to the $I file (including the $Recycle.bin and the SID
folders) to reduce the amount of time required to search for the corresponding
$R file. On Windows 7, the $I and $R files have a similar file name, where the
first two letters are $I and $R, respectively, followed by a shared identifier. By
using that identifier in our search and specifying the specific folder we expect
to find the $R file, we have reduced the likelihood of false positives. Using
these patterns, we query our evidence file again with the startswith logic:

 # Get the $R file
 recycle_file_path = os.path.join(
 '/$Recycle.bin',
 dollar_i[1].rsplit("/", 1)[0][1:]
)
 dollar_r_files = tsk_util.recurse_files(
 "$R" + dollar_i[0][2:],
 path=recycle_file_path, logic="startswith"
)

If the search for the $R files is unsuccessful, we try to query for a directory with
the same information. If this query is also unsuccessful, we append dictionary
values that the $R file was not found and that we are unsure if it was a file or
directory. If, however, we do find a matching directory, we log the path of the
directory and set the is_directory attribute to True:

 if dollar_r_files is None:
 dollar_r_dir = os.path.join(recycle_file_path,
 "$R" + dollar_i[0][2:])
 dollar_r_dirs = tsk_util.query_directory(dollar_r_dir)
 if dollar_r_dirs is None:
 file_attribs['dollar_r_file'] = "Not Found"
 file_attribs['is_directory'] = 'Unknown'
 else:
 file_attribs['dollar_r_file'] = dollar_r_dir
 file_attribs['is_directory'] = True

If the search for the $R file returned one or more hits, we create a list of the
matched files, using list comprehension, to store in the CSV, delimited by
semicolons, and mark the is_directory attribute as False.

 else:
 dollar_r = [os.path.join(recycle_file_path, r[1][1:])
 for r in dollar_r_files]
 file_attribs['dollar_r_file'] = ";".join(dollar_r)
 file_attribs['is_directory'] = False

Prior to exiting the loop, we append the file_attribs dictionary to the
processed_files list which stores all $I processed dictionaries. This list of

dictionaries is returned to the main() function where it is used in the reporting
process.

 processed_files.append(file_attribs)
 return processed_files

Let's briefly look at the read_dollar_i() method, used to parse metadata from the
binary file with struct. We start by checking the file header, using the Sleuth
Kit's read_random() method to read the signature's first eight bytes. If the signature
does not match, we return None to alert that the $I failed validation and is an
invalid file format.

def read_dollar_i(file_obj):
 if file_obj.read_random(0, 8) != '\x01\x00\x00\x00\x00\x00\x00\x00':
 return None # Invalid file

If we detect a valid file, we continue to read and unpack values from the $I
file. The first is the file size attribute, which is located at byte offset 8 and is 8
bytes long. We unpack this with struct and store the integer in a temporary
variable. The next attribute, deletion time, is stored at byte offset 16 and 8 bytes
long. This is a Windows FILETIME object and we will borrow some old code to
later process it into a human-readable timestamp. The last attribute is the
former file path, which we read from byte 24 to the end of the file:

 raw_file_size = struct.unpack('<q', file_obj.read_random(8, 8))
 raw_deleted_time = struct.unpack('<q', file_obj.read_random(16, 8))
 raw_file_path = file_obj.read_random(24, 520)

With these values extracted, we interpret the integers into human-readable
values. We use the sizeof_fmt() function to convert the file size integer into a
human-readable size, containing size prefixes such as MB or GB. Next, we
interpret the timestamp using the logic from our date parsing recipe from Chapter
7, Log-Based Artifact Recipes (after adapting the function to work only with
integers). Lastly, we decode the path as UTF-16 and remove null-byte values.
These refined details are then returned as a dictionary to the calling function:

 file_size = sizeof_fmt(raw_file_size[0])
 deleted_time = parse_windows_filetime(raw_deleted_time[0])
 file_path = raw_file_path.decode("utf16").strip("\x00")
 return {'file_size': file_size, 'file_path': file_path,
 'deleted_time': deleted_time}

Our sizeof_fmt() function is borrowed from StackOverflow.com, a site filled with
many solutions to programming problems. While we could have drafted our
own, this code is well formed for our purpose. It takes the integer num and
iterates through the listed unit suffixes. If the number is less than 1024, the
number, unit, and suffix are joined into a string and returned; otherwise, the
number is divided by 1024 and run through the next iteration. If the number is
larger than a zettabyte, it returns the information in terms of yottabytes. For
your sake, we hope the number is never that large.

def sizeof_fmt(num, suffix='B'):
 # From https://stackoverflow.com/a/1094933/3194812
 for unit in ['', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi']:
 if abs(num) < 1024.0:
 return "%3.1f%s%s" % (num, unit, suffix)
 num /= 1024.0
 return "%.1f%s%s" % (num, 'Yi', suffix)

Our next support function is parse_windows_filetime(), adapted from the previous
date-parsing recipe in Chapter 7, Log-Based Artifact Recipes. We borrow the
logic and condense the code to only interpret integers into a formatted date that
is then returned to the calling function. Generic functions, like the two we just
discussed, are handy to keep in your arsenal as you never know when you may
need this logic.

def parse_windows_filetime(date_value):
 microseconds = float(date_value) / 10
 ts = datetime.datetime(1601, 1, 1) + datetime.timedelta(
 microseconds=microseconds)
 return ts.strftime('%Y-%m-%d %H:%M:%S.%f')

Finally, we are ready to write the processed results to a CSV file. As you have
no doubt come to expect, this function is similar to all of our other CSV
functions. The only difference is that it is using the unicodecsv library under the
hood, though the method and function names used here are the same:

def write_csv(outfile, fieldnames, data):
 with open(outfile, 'wb') as open_outfile:
 csvfile = csv.DictWriter(open_outfile, fieldnames)
 csvfile.writeheader()
 csvfile.writerows(data)

In the following two screenshots, we can see examples of the type of data this
recipe extracts from $I and $R files:

https://stackoverflow.com/

A sticky situation
Recipe difficulty: Medium

Python version: 2.7

Operating system: Linux

Computers have replaced pen and paper. We have transferred many processes
and habits, one relegated solely to the confines of paper, to these machines,
including taking notes and making lists. One feature that replicates a real-
world habit is Windows Sticky Notes. These sticky notes allow persistent
notes to float on the desktop, with options for color, fonts, and more. This
recipe will allow us to explore these sticky notes and add them to our
investigative workflow.

Getting started
This recipe requires the installation of four third-party modules to function:
olefile, pytsk3, pyewf, and unicodecsv. Refer to Chapter 8, Working with Forensic
Evidence Container Recipes for a detailed explanation of installing the pytsk3
and pyewf modules. Likewise, refer to the Getting started section in the One
man's trash is a forensic examiner's treasure recipe for details on installing
unicodecsv. All other libraries used in this script are present in Python's standard
library.

The Windows Sticky Note file is stored as an OLE file. Therefore, we will
leverage the olefile library to interact with and extract data from Windows
Sticky Notes. The olefile library can be installed with pip:

pip install olefile==0.44

To learn more about the olefile library, visit https://olefile.readthedoc
s.io/en/latest/index.html.

https://olefile.readthedocs.io/en/latest/index.html

How to do it...
To properly form this recipe, we need to take the following steps:

1. Open the evidence file and find all StickyNote.snt files across the user
profiles.

2. Parse metadata and content from the OLE streams.
3. Write the RTF content to files.
4. Create a CSV report of the metadata.

How it works...
This script, like the others, begins with import statements of the libraries
required for its execution. The two new libraries here are olefile which, as we
discussed, parses the Windows Sticky Note OLE streams and StringIO, a built-
in library used to interpret a string of data as a file-like object. This library
will be used to convert the pytsk file object into a stream the olefile library can
interpret:

from __future__ import print_function
from argparse import ArgumentParser
import unicodecsv as csv
import os
import StringIO

from utility.pytskutil import TSKUtil
import olefile

We specify a global variable, REPORT_COLS, which represent the report columns.
These static columns will be used across several functions.

REPORT_COLS = ['note_id', 'created', 'modified', 'note_text', 'note_file']

This recipe's command-line handler takes three positional arguments,
EVIDENCE_FILE, IMAGE_TYPE, and REPORT_FOLDER, which represent the path to the
evidence file, the type of evidence file, and the desired output directory path,
respectively. This is similar to the previous recipe, with the exception of the
REPORT_FOLDER, which is a directory that we will write the Sticky Note RTF files
to:

if __name__ == '__main__':
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument('EVIDENCE_FILE', help="Path to evidence file")
 parser.add_argument('IMAGE_TYPE', help="Evidence file format",
 choices=('ewf', 'raw'))
 parser.add_argument('REPORT_FOLDER', help="Path to report folder")
 args = parser.parse_args()
 main(args.EVIDENCE_FILE, args.IMAGE_TYPE, args.REPORT_FOLDER)

Our main function starts similarly to the last, by handling the evidence file and
searching for the files we seek to parse. In this case, we are looking for the
StickyNotes.snt file, which is found within each user's AppData directory. For this
reason, we limit the search to the /Users folder and look for a file matching the
exact name:

def main(evidence, image_type, report_folder):
 tsk_util = TSKUtil(evidence, image_type)
 note_files = tsk_util.recurse_files('StickyNotes.snt', '/Users',
 'equals')

We then iterate through the resulting files, splitting out the user's home
directory name and setting up the file-like object required for processing by the
olefile library. Next, we call the parse_snt_file() function to process the file and
return a list of results to iterate through. At this point, if the note_data is not None,
we write the RTF file with the write_note_rtf() method. Additionally, we append
the processed the processed data from the prep_note_report() to the report_details
list. Once the for loop completes, we write the CSV report with the write_csv()
method by providing the report name, report columns, and the list we have
built of the sticky note information.

 report_details = []
 for note_file in note_files:
 user_dir = note_file[1].split("/")[1]
 file_like_obj = create_file_like_obj(note_file[2])
 note_data = parse_snt_file(file_like_obj)
 if note_data is None:
 continue
 write_note_rtf(note_data, os.path.join(report_folder, user_dir))
 report_details += prep_note_report(note_data, REPORT_COLS,
 "/Users" + note_file[1])
 write_csv(os.path.join(report_folder, 'sticky_notes.csv'), REPORT_COLS,
 report_details)

The create_file_like_obj() function takes our pytsk file object and reads the size
of the file. This size is used in the read_random() function to read the entire sticky
note content into memory. We feed the file_content into the StringIO() class to
convert it into a file-like object the olefile library can read before returning it
to the parent function:

def create_file_like_obj(note_file):
 file_size = note_file.info.meta.size
 file_content = note_file.read_random(0, file_size)
 return StringIO.StringIO(file_content)

The parse_snt_file() function accepts the file-like object as its input and is used
to read and interpret the sticky note file. We begin by validating that the file-
like object is an OLE file, returning None if it is not. If it is, we open the file-
like object using the OleFileIO() method. This provides a list of streams,
allowing us to iterate through each element of each sticky note. As we iterate
over the list, we check if the stream contains three dashes, as this suggests that
the stream contains a unique identifier for a sticky note. This file can contain
one or more sticky notes, each identified by the unique IDs. The sticky note
data is either read directly as RTF data or UTF-16 encoded data based on the
value of the element in the first index of the stream.

We also read the created and modified information from the stream using the
getctime() and getmtime() functions, respectively. Next, we extract the sticky note
RTF or UTF-16 encoded data to the content variable. Note, we must decode the
UTF-16 encoded data prior to storing it. If there is content to save, we add it to
the note dictionary and continue processing all remaining streams. Once all
streams are processed, the note dictionary is returned to the parent function:

def parse_snt_file(snt_file):
 if not olefile.isOleFile(snt_file):
 print("This is not an OLE file")
 return None
 ole = olefile.OleFileIO(snt_file)
 note = {}
 for stream in ole.listdir():
 if stream[0].count("-") == 3:
 if stream[0] not in note:
 note[stream[0]] = {
 # Read timestamps
 "created": ole.getctime(stream[0]),
 "modified": ole.getmtime(stream[0])
 }

 content = None
 if stream[1] == '0':
 # Parse RTF text
 content = ole.openstream(stream).read()
 elif stream[1] == '3':
 # Parse UTF text
 content = ole.openstream(stream).read().decode("utf-16")

 if content:
 note[stream[0]][stream[1]] = content

 return note

To create the RTF files, we pass the dictionary of note data to the

write_note_rtf() function. If the report folder does not exist, we use the os library
to create it. At this point, we iterate through the note_data dictionary, splitting
the note_id keys from stream_data values. The note_id is used to create the output
RTF filename prior to opening it.

The data stored in stream zero is then written to the ouput RTF file before it is
closed and the next sticky note is handled:

def write_note_rtf(note_data, report_folder):
 if not os.path.exists(report_folder):
 os.makedirs(report_folder)
 for note_id, stream_data in note_data.items():
 fname = os.path.join(report_folder, note_id + ".rtf")
 with open(fname, 'w') as open_file:
 open_file.write(stream_data['0'])

With the content of the sticky notes written, we now move onto the CSV report
itself which is handled a little differently by the prep_note_report() function. This
translates the nested dictionary into a flat list of dictionaries that are more
conducive and appropriate for a CSV spreadsheet. We flatten it by including
the note_id key and naming the fields using the keys specified in the global
REPORT_COLS list.

def prep_note_report(note_data, report_cols, note_file):
 report_details = []
 for note_id, stream_data in note_data.items():
 report_details.append({
 "note_id": note_id,
 "created": stream_data['created'],
 "modified": stream_data['modified'],
 "note_text": stream_data['3'].strip("\x00"),
 "note_file": note_file
 })
 return report_details

Lastly, in the write_csv() method, we create a csv.Dictwriter object to create an
overview report of the sticky note data. This CSV writer also uses the
unicodecsv library and writes the list of dictionaries to the file, using the
REPORT_COLS list of columns as the fieldnames.

def write_csv(outfile, fieldnames, data):
 with open(outfile, 'wb') as open_outfile:
 csvfile = csv.DictWriter(open_outfile, fieldnames)
 csvfile.writeheader()
 csvfile.writerows(data)

We can then view the output as we have a new directory containing the
exported sticky notes and report:

Opening our report, we can view the note metadata and gather some of the
internal content, though most spreadsheet viewers have difficulty with non-
ASCII character interpretations:

Lastly, we can open the output RTF files and view the raw content:

Reading the registry
Recipe Difficulty: Medium

Python Version: 2.7

Operating System: Linux

The Windows registry contains many important details related to the operating
system configuration, user activity, software installation and usage, and so
much more. These files are often heavily scrutinized and researched due to the
number of artifacts they contain and their relevance to Windows systems.
Parsing registry files gives us access to the keys and values that can reveal
basic operating system information, access to folders and files, application
usage, USB devices, and more. In this recipe, we focus on accessing common
baseline information from the SYSTEM and SOFTWARE hives.

Getting started
This recipe requires the installation of three third-party modules to function:
pytsk3, pyewf, and Registry. Refer to Chapter 8, Working with Forensic Evidence
Container Recipes, for a detailed explanation of installing the pytsk3 and pyewf
modules. All other libraries used in this script are present in Python's standard
library.

In this recipe, we use the Registry module to interact with registry hives in an
object-oriented manner. Critically, this module can be used to interact with
external and standalone registry files. The Registry module can be installed with
pip:

pip install python-registry==1.0.4

To learn more about the Registry library, visit https://github.com/willib
allenthin/python-registry.

https://github.com/williballenthin/python-registry

How to do it...
To build our registry system overview script, we will need to:

1. Find the registry hives to process by name and path.
2. Open these files using the StringIO and Registry modules.
3. Process each hive, printing the parsed values to the console for

interpretation.

How it works...
The imports overlap with the other recipes in this chapter. These modules
allow us to handle argument parsing, date manipulation, read our files into
memory for the Registry library, and unpack and interpret binary data we extract
from registry values. We also import the TSKUtil() class and the Registry module
to process registry files.

from __future__ import print_function
from argparse import ArgumentParser
import datetime
import StringIO
import struct

from utility.pytskutil import TSKUtil
from Registry import Registry

This recipe's command-line handler takes two positional arguments,
EVIDENCE_FILE and IMAGE_TYPE, which represent the path to the evidence file and the
type of evidence file, respectively:

if __name__ == '__main__':
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument('EVIDENCE_FILE', help="Path to evidence file")
 parser.add_argument('IMAGE_TYPE', help="Evidence file format",
 choices=('ewf', 'raw'))
 args = parser.parse_args()
 main(args.EVIDENCE_FILE, args.IMAGE_TYPE)

The main() function starts by creating a TSKUtil object from the evidence and
searches for the SYSTEM and SOFTWARE hives within the /Windows/System32/config
folder. We create Registry() class instances of these hives with the
open_file_as_reg() function before they are passed to their respective processing
functions.

def main(evidence, image_type):
 tsk_util = TSKUtil(evidence, image_type)
 tsk_system_hive = tsk_util.recurse_files(
 'system', '/Windows/system32/config', 'equals')
 tsk_software_hive = tsk_util.recurse_files(
 'software', '/Windows/system32/config', 'equals')

 system_hive = open_file_as_reg(tsk_system_hive[0][2])
 software_hive = open_file_as_reg(tsk_software_hive[0][2])

 process_system_hive(system_hive)
 process_software_hive(software_hive)

To open the registry files, we need to gather the size of the file from the pytsk
metadata and read the entire file, from byte zero to the end of the file into a
variable. We then provide this variable to a StringIO() instance which allows us
to open the file-like object with the Registry() class. We return the Registry class
instance to the calling function for further processing:

def open_file_as_reg(reg_file):
 file_size = reg_file.info.meta.size
 file_content = reg_file.read_random(0, file_size)
 file_like_obj = StringIO.StringIO(file_content)
 return Registry.Registry(file_like_obj)

Let's start with the SYSTEM hive processing. This hive holds the majority of its
information within control sets. The SYSTEM hive generally has two or more
control sets that act as a backup system for the configurations they store. For
simplicity, we will only read the current control set. To identify the current
control set, we get our foothold within the hive with the root key and use the
find_key() method to get the Select key. Within this key, we read the Current value,
using the value() method to select it and the value() method on the value object to
present the content of the value. While the method naming is a little ambiguous,
the values within a key are named, so we first need to select them by name
before then calling out the content that they hold. Using this information, we
select the current control set key, passing an appropriately padded integer for
the current control set (such as ControlSet0001). This object will be used through
the remainder of the function to navigate to specific subkeys and values:

def process_system_hive(hive):
 root = hive.root()
 current_control_set = root.find_key("Select").value("Current").value()
 control_set = root.find_key("ControlSet{:03d}".format(
 current_control_set))

The first piece of information we will extract from the SYSTEM hive is the
shutdown time. We read the Control\Windows\ShutdownTime value from the current
control set and pass the hexadecimal value into struct to convert it to a 64-bit
integer. We then provide this integer to the Windows FILETIME parser to obtain a

human-readable date string which we print to the console.

 raw_shutdown_time = struct.unpack(
 '<Q', control_set.find_key("Control").find_key("Windows").value(
 "ShutdownTime").value()
)
 shutdown_time = parse_windows_filetime(raw_shutdown_time[0])
 print("Last Shutdown Time: {}".format(shutdown_time))

Next, we will ascertain the time zone information for the machine. This is
found within the Control\TimeZoneInformation\TimeZoneKeyName value. This returns a
string value that we can print directly to the console:

 time_zone = control_set.find_key("Control").find_key(
 "TimeZoneInformation").value("TimeZoneKeyName").value()
 print("Machine Time Zone: {}".format(time_zone))

Following that, we gather the machine's hostname. This is found under the
Control\ComputerName\ComputerName key in the ComputerName value. The extracted value
is a string that we can print to the console:

 computer_name = control_set.find_key(
 "Control").find_key("ComputerName").find_key(
 "ComputerName").value("ComputerName").value()
 print("Machine Name: {}".format(computer_name))

Pretty easy so far, right? Lastly, for the System hive, we parse information about
the last access timestamp configuration. This registry key determines if the
NTFS volume's last access timestamp is maintained, and is generally disabled
by default on systems. To confirm this, we look for the NtfsDisableLastAccessUpdate
value in the Control\FileSystem key and see if it is equal to 1. If it is, the last
access timestamp is not maintained and marked as disabled before printing to
the console. Notice the one-liner if-else statement, while perhaps a little more
difficult to read it does have its uses:

 last_access = control_set.find_key("Control").find_key(
 "FileSystem").value("NtfsDisableLastAccessUpdate").value()
 last_access = "Disabled" if last_access == 1 else "enabled"
 print("Last Access Updates: {}".format(last_access))

Our Windows FILETIME parser borrows logic from our former date-parsing
recipe, accepting an integer that we convert into a human-readable date string.
We also borrowed the logic for the Unix epoch date parser from the same date-
parsing recipe and will use it to interpret dates from the Software hive.

def parse_windows_filetime(date_value):
 microseconds = float(date_value) / 10
 ts = datetime.datetime(1601, 1, 1) + datetime.timedelta(
 microseconds=microseconds)
 return ts.strftime('%Y-%m-%d %H:%M:%S.%f')

def parse_unix_epoch(date_value):
 ts = datetime.datetime.fromtimestamp(date_value)
 return ts.strftime('%Y-%m-%d %H:%M:%S.%f')

Our last function processes the SOFTWARE hive, presenting information to users in
the console window. This function also begins by gathering the root of the hive
and then selecting the Microsoft\Windows NT\CurrentVersion key. This key contains
values about OS installation metadata and other useful subkeys. In this
function, we will extract the ProductName, CSDVersion, CurrentBuild number,
RegisteredOwner, RegisteredOrganization, and InstallDate values. While most of these
values are strings we can print directly to the console, we need to use the Unix
epoch converter to interpret the installation date value prior to printing it.

def process_software_hive(hive):
 root = hive.root()
 nt_curr_ver = root.find_key("Microsoft").find_key(
 "Windows NT").find_key("CurrentVersion")

 print("Product name: {}".format(nt_curr_ver.value(
 "ProductName").value()))
 print("CSD Version: {}".format(nt_curr_ver.value(
 "CSDVersion").value()))
 print("Current Build: {}".format(nt_curr_ver.value(
 "CurrentBuild").value()))
 print("Registered Owner: {}".format(nt_curr_ver.value(
 "RegisteredOwner").value()))
 print("Registered Org: {}".format(nt_curr_ver.value(
 "RegisteredOrganization").value()))

 raw_install_date = nt_curr_ver.value("InstallDate").value()
 install_date = parse_unix_epoch(raw_install_date)
 print("Installation Date: {}".format(install_date))

When we run this script, we can learn about the information stored in the keys
we interpreted:

There's more...
This script can be further improved. We have provided one or more
recommendations as follows:

Add logic to handle the situation where the SYSTEM or SOFTWARE hives are not
found in the initial search
Consider adding support for NTUSER.DAT files, pulling basic information
about mount points and shell bags queries
List basic USB device information from the System hive
Parse the SAM hive to show user and group information

Gathering user activity
Recipe Difficulty: Medium

Python Version: 2.7

Operating System: Linux

Windows stores a plethora of information about user activity, and like other
registry hives, the NTUSER.DAT file is a great resource to be relied upon during an
investigation. This hive lives within each user's profile and stores information
and configurations as they relate to the specific user's on the system.

In this recipe, we cover multiple keys within NTUSER.DAT that throw light on the
actions of a user on a system. This includes the prior searches run in Windows
Explorer, paths typed into Explorer's navigation bar, and the recently used
statements in the Windows run command. These artifacts better illustrate how
the user interacted with the system and may give insight into what normal, or
abnormal, usage of the system looked like for the user.

Getting started
This recipe requires the installation of four third-party modules to function:
jinja2, pytsk3, pyewf, and Registry. Refer to Chapter 8, Working with Forensic
Evidence Container Recipes, for a detailed explanation of installing the pytsk3
and pyewf modules. Likewise, refer to the Getting started section in the
Reading the registry recipe for details on installing Registry. All other libraries
used in this script are present in Python's standard library.

We will reintroduce jinja2, first introduced in Chapter 2, Creating Artifact
Report Recipes, to build an HTML report. This library is a template language
that allows us to build text files programmatically using a Pythonic syntax. As
a reminder, we can use pip to install this library:

pip install jinja2==2.9.6

How to do it...
To extract these values from NTUSER.DAT files within the image, we must:

1. Search for all NTUSER.DAT files across the system.
2. Parse the WordWheelQuery key for each NTUSER.DAT file.
3. Read the TypedPath key for each NTUSER.DAT file.
4. Extract the RunMRU key for each NTUSER.DAT file.
5. Write each of the processed artifacts to an HTML report.

How it works...
Our imports start in the same manner as our prior recipe, adding in the jinja2
module:

from __future__ import print_function
from argparse import ArgumentParser
import os
import StringIO
import struct

from utility.pytskutil import TSKUtil
from Registry import Registry
import jinja2

This recipe's command-line handler takes three positional arguments,
EVIDENCE_FILE, IMAGE_TYPE, and REPORT, which represent the path to the evidence file,
the type of evidence file, and the desired output path to the HTML report,
respectively. These three arguments are passed to the main() function.

if __name__ == '__main__':
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument('EVIDENCE_FILE',
 help="Path to evidence file")
 parser.add_argument('IMAGE_TYPE',
 help="Evidence file format",
 choices=('ewf', 'raw'))
 parser.add_argument('REPORT',
 help="Path to report file")
 args = parser.parse_args()
 main(args.EVIDENCE_FILE, args.IMAGE_TYPE, args.REPORT)

The main() function begins by reading the evidence file and searching for all
NTUSER.DAT files. Following this, we set up a dictionary object, nt_rec, which,
while complex, is designed in a manner that eases the HTML report generation
process. We then begin iterating through the discovered hives and parse out the
username from the path for reference in the processing functions.

def main(evidence, image_type, report):
 tsk_util = TSKUtil(evidence, image_type)
 tsk_ntuser_hives = tsk_util.recurse_files('ntuser.dat',
 '/Users', 'equals')

 nt_rec = {
 'wordwheel': {'data': [], 'title': 'WordWheel Query'},
 'typed_path': {'data': [], 'title': 'Typed Paths'},
 'run_mru': {'data': [], 'title': 'Run MRU'}
 }
 for ntuser in tsk_ntuser_hives:
 uname = ntuser[1].split("/")[1]

Next, we pass the pytsk file handle to be opened as a Registry object. This
resulting object is used to gather the root key in common with all of the desired
values (Software\Microsoft\Windows\CurrentVersion\Explorer). If this key path is not
found, we continue to the next NTUSER.DAT file.

 open_ntuser = open_file_as_reg(ntuser[2])
 try:
 explorer_key = open_ntuser.root().find_key(
 "Software").find_key("Microsoft").find_key(
 "Windows").find_key("CurrentVersion").find_key(
 "Explorer")
 except Registry.RegistryKeyNotFoundException:
 continue # Required registry key not found for user

If they key is found, we call the three processing functions responsible for each
artifact and provide the shared key object and username. The returned data is
stored in the respective data key within the dictionary. We can easily extend the
number of artifacts parsed by the code by expanding the storage object
definition and adding a new function with the same profile as the others shown
here:

 nt_rec['wordwheel']['data'] += parse_wordwheel(
 explorer_key, uname)
 nt_rec['typed_path']['data'] += parse_typed_paths(
 explorer_key, uname)
 nt_rec['run_mru']['data'] += parse_run_mru(
 explorer_key, uname)

After iterating through the NTUSER.DAT files, we set up the headers for each of the
record types by extracting the key list of the first item on our data list. Since all
of the dictionary objects in our data list have uniform keys, we can use this
method to reduce the number of arguments or variables passed around. These
statements are also easily extensible.

 nt_rec['wordwheel']['headers'] = \
 nt_rec['wordwheel']['data'][0].keys()

 nt_rec['typed_path']['headers'] = \
 nt_rec['typed_path']['data'][0].keys()

 nt_rec['run_mru']['headers'] = \
 nt_rec['run_mru']['data'][0].keys()

Lastly, we take our completed dictionary object and pass it, along with the path
to the report file, to our write_html() method:

 write_html(report, nt_rec)

We've seen the open_file_as_reg() method before in the previous recipe. As a
reminder, it takes the pytsk file handle and reads it into the Registry class via the
StringIO class. The returned Registry object allows us to interact and read the
registry in an object-oriented manner.

def open_file_as_reg(reg_file):
 file_size = reg_file.info.meta.size
 file_content = reg_file.read_random(0, file_size)
 file_like_obj = StringIO.StringIO(file_content)
 return Registry.Registry(file_like_obj)

The first processing function handles the WordWheelQuery key, which stores
information about searches run by a user within Windows Explorer. We can
parse this artifact by accessing the key by name from our explorer_key object. If
the key does not exist, we will return an empty list as we do not have any
values to extract.

def parse_wordwheel(explorer_key, username):
 try:
 wwq = explorer_key.find_key("WordWheelQuery")
 except Registry.RegistryKeyNotFoundException:
 return []

On the other hand, should the key exist, we iterate through the MRUListEx value,
which holds a list of integers that contain the order of the searches. Each
number in the list matches a value of the same number in the key. For this
reason, we read the order of the list and interpret the remaining values in the
order they appear. Each value name is stored as a two-byte integer, and so we
split this list into two-byte chunks and read the integers with struct. We then
append this value to the list after checking that it does not exist. If it does exist
in the list, and is \x00 or \xFF, we have reached the end of the MRUListEx data and
break out of the loop:

 mru_list = wwq.value("MRUListEx").value()

 mru_order = []
 for i in xrange(0, len(mru_list), 2):
 order_val = struct.unpack('h', mru_list[i:i + 2])[0]
 if order_val in mru_order and order_val in (0, -1):
 break
 else:
 mru_order.append(order_val)

Using our ordered value list, we iterate through it to extract the search terms in
the order they were run. Since we know the order of use, we can associate the
last write time of the WordWheelQuery key as the timestamp for the search term.
This timestamp is only associated with the most recently run search. All other
searches are given the value of N/A.

 search_list = []
 for count, val in enumerate(mru_order):
 ts = "N/A"
 if count == 0:
 ts = wwq.timestamp()

Afterwards, we build out the dictionary within the append statement, adding the
time value, username, order (as the count integer), the value's name, and the
search content. To properly display the search content, we will need to provide
the key name as a string and decode the text as UTF-16. This text, once
stripped of null termination, is ready for the report. The list is built out until all
values are processed and then ultimately returned.

 search_list.append({
 'timestamp': ts,
 'username': username,
 'order': count,
 'value_name': str(val),
 'search': wwq.value(str(val)).value().decode(
 "UTF-16").strip("\x00")
 })
 return search_list

The next processing function handles the typed paths key, taking the same
arguments as the prior processing function. We access the key in the same
manner and return the empty list in case the TypedPaths subkey is not found.

def parse_typed_paths(explorer_key, username):
 try:
 typed_paths = explorer_key.find_key("TypedPaths")
 except Registry.RegistryKeyNotFoundException:
 return []

This key does not have an MRU value ordering the typed paths, so we read all
of its values and add them directly to the list. We can gather the value's name
and path from this key, adding the username value for additional context. We
finish this function by returning the list of dictionary values to the main()
function.

 typed_path_details = []
 for val in typed_paths.values():
 typed_path_details.append({
 "username": username,
 "value_name": val.name(),
 "path": val.value()
 })
 return typed_path_details

Our last processing function handles the RunMRU key. If it does not exist in the
explorer_key, we return an empty list as seen before.

def parse_run_mru(explorer_key, username):
 try:
 run_mru = explorer_key.find_key("RunMRU")
 except Registry.RegistryKeyNotFoundException:
 return []

Since this key can be empty, we first check if there are values for us to parse
and, if there are not, return an empty list to prevent any unnecessary
processing.

 if len(run_mru.values()) == 0:
 return []

Similar to the WordWheelQuery, this key also has an MRU value, which we process
to learn the correct order of the other values. This list stores items differently,
as its values are letters as opposed to integers. This makes our job quite
simple as we directly query for the necessary values using these characters
without additional processing. We append the order of values to a list and
move on.

 mru_list = run_mru.value("MRUList").value()
 mru_order = []
 for i in mru_list:
 mru_order.append(i)

As we iterate through the order of values, we begin to build out our dictionary
of results. First, we handle the timestamps in the same manner as our

WordWheelQuery processor, by assigning a default N/A value and updating it with the
key's last written time if it is the first entry in our ordered list. Following this,
we append a dictionary containing the relevant entries, such as the username,
the value order, value name, and value content. This list of dictionaries is
returned once we have processed all remaining values in the Run key.

 mru_details = []
 for count, val in enumerate(mru_order):
 ts = "N/A"
 if count == 0:
 ts = run_mru.timestamp()
 mru_details.append({
 "username": username,
 "timestamp": ts,
 "order": count,
 "value_name": val,
 "run_statement": run_mru.value(val).value()
 })

 return mru_details

The last function handles the creation of the HTML report. This function starts
by preparing the path of the code and the jinja2 environment class. This class is
used to store shared resources within the library, and we use it to point the
library to the directory it should search for template files. In our case, we want
it to look for template HTML files in the current directory, so we use the os
library to get the current working directory and provide it to the
FileSystemLoader() class.

def write_html(outfile, data_dict):
 cwd = os.path.dirname(os.path.abspath(__file__))
 env = jinja2.Environment(loader=jinja2.FileSystemLoader(cwd))

With the environment configured, we call the template we would like to use
and then the render() method to create an HTML file with our passed dictionary.
The render function returns a string representing the rendered HTML output with
the results of the processed data inserted which we write to the output file.

 template = env.get_template("user_activity.html")
 rendering = template.render(nt_data=data_dict)
 with open(outfile, 'w') as open_outfile:
 open_outfile.write(rendering)

Let's look at the template file, it starts as any HTML document with the html,
head, and body tags. While we've included scripts and style sheets in our head tag,

we have omitted the unrelated material here. This information is available for
review in full in the code bundle.

We start the HTML document with a div that holds the processed data tables
and section headers. To simplify the amount of HTML we need to write, we
use a for loop to gather each of the nested dictionaries from the nt_data values.
The jinja2 template language allows us to still use Python loops as long as they
are wrapped in curly brackets, a percentage symbol, and a space character. We
can also reference properties and methods of objects, allowing us to iterate
through the values of the nt_data dictionary without extra code.

The other commonly used template syntax is shown within the h2 tag, where we
access the title attribute we set in the main() function. Variables we would like
the jinja2 engine to interpret (versus show as literal strings) need to be
enclosed in double curly brackets and a space character. This will now print
the section header for each section in our nt_data dictionary.

<html>
<head>...</head>
<body>
 <div class="container">
 {% for nt_content in nt_data.values() %}
 <h2>{{ nt_content['title'] }}</h2>

Within this loop, we set up our data table using the data tag and create a new
row to hold the table headers. To generate the headers, we step through each of
the headers we gathered and assign the value in a nested for loop. Notice how
we need to specify the end of the loop with the endfor statement; this is required
by the templating engine, as (unlike Python) it is not sensitive to indents:

 <table class="table table-hover table-condensed">
 <tr>
 {% for header in nt_content['headers'] %}
 <th>{{ header }}</th>
 {% endfor %}
 <tr/>

Following the table headers, we enter a separate loop to iterate through each
dictionary in our data list. Inside each table row, we use similar logic as the
table headers to create another for loop to write each value into a cell in the
row:

 {% for entry in nt_content['data'] %}
 <tr>
 {% for header in nt_content['headers'] %}
 <td>{{ entry[header] }}</td>
 {% endfor %}
 </tr>

Now that the HTML data table is populated, we close the for loop for the
current data point: we draw a horizontal line and start writing the next artifact's
data table. Once we completely iterate through those, we close the outer for
loop and the tags we opened at the start of the HTML report.

 {% endfor %}
 </table>

 <hr />

 {% endfor %}
 </div>
</body>
</html>

Our generated report is as follows:

There's more...
This script can be further improved. We have provided one or more
recommendations as follows:

Add additional NTUser or other easy to review artifacts to the dashboard to
provide more useful information at a glance
Add charts, a timeline, or other interactive elements to this dashboard
using various JavaScript and CSS elements
Provide export options from the dashboard into CSV or Excel
spreadsheets with additional JavaScript

The missing link
Recipe Difficulty: Medium

Python Version: 2.7

Operating System: Linux

Shortcut files, also known as link files, are common across operating system
platforms. They enable the user to use one file to reference another, located
elsewhere on the system. On the Windows platform, these link files also record
historical access to the files they reference. Generally, the creation time of a
link file represents the first access time of a file with that name, and the
modification time represents the most recent access time of the file with that
name. Using this, we can extrapolate a window of activity and learn about
how, and where, these files were accessed.

Getting started
This recipe requires the installation of three third-party modules to function:
pytsk3, pyewf, and pylnk. Refer to Chapter 8, Working with Forensic Evidence
Container Recipes for a detailed explanation of installing the pytsk3 and pyewf
modules. All other libraries used in this script are present in Python's standard
library.

Navigate to the GitHub repository and download the desired release of the
pylnk library. This recipe was developed using the pylnk-alpha-20170111 release.
Next, once the contents of the release are extracted, open a terminal and
navigate to the extracted directory and execute the following commands:

./synclibs.sh

./autogen.sh
sudo python setup.py install

To learn more about the pylnk library, visit https://github.com/libyal/lib
lnk.

Lastly, we can check our library's installation by opening a Python interpreter,
importing pylnk, and running the gpylnk.get_version() method to ensure we have
the correct release version.

https://github.com/libyal/liblnk

How to do it...
This script will leverage the following steps:

1. Search for all lnk files within the system.
2. Iterate through discovered lnk files and extract relevant attributes.
3. Write all artifacts to a CSV report.

How it works...
Starting with the imports, we bring in the Sleuth Kit utilities and pylnk library.
We also bring in libraries for argument parsing, writing the CSV reports, and
StringIO to read the Sleuth Kit objects as files:

from __future__ import print_function
from argparse import ArgumentParser
import csv
import StringIO

from utility.pytskutil import TSKUtil
import pylnk

This recipe's command-line handler takes three positional arguments,
EVIDENCE_FILE, IMAGE_TYPE, and CSV_REPORT, which represent the path to the evidence
file, the type of evidence file, and the desired output path to the CSV report,
respectively. These three arguments are passed to the main() function.

if __name__ == '__main__':
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument('EVIDENCE_FILE', help="Path to evidence file")
 parser.add_argument('IMAGE_TYPE', help="Evidence file format",
 choices=('ewf', 'raw'))
 parser.add_argument('CSV_REPORT', help="Path to CSV report")
 args = parser.parse_args()
 main(args.EVIDENCE_FILE, args.IMAGE_TYPE, args.CSV_REPORT)

The main() function begins with creating the TSKUtil object used to interpret the
evidence file and iterate through the filesystem to find files ending in lnk. If
there are not any lnk files found on the system, the script alerts the user and
exits. Otherwise, we specify columns representing the data attributes we want
to store for each of the lnk files. While there are other attributes available,
these are some of the more relevant ones we extract in this recipe:

def main(evidence, image_type, report):
 tsk_util = TSKUtil(evidence, image_type)
 lnk_files = tsk_util.recurse_files("lnk", path="/", logic="endswith")
 if lnk_files is None:
 print("No lnk files found")
 exit(0)

 columns = [
 'command_line_arguments', 'description', 'drive_serial_number',
 'drive_type', 'file_access_time', 'file_attribute_flags',
 'file_creation_time', 'file_modification_time', 'file_size',
 'environmental_variables_location', 'volume_label',
 'machine_identifier', 'local_path', 'network_path',
 'relative_path', 'working_directory'
]

Next, we iterate through the discovered lnk files, opening each as a file using
the open_file_as_lnk() function. The returned object is an instance of the pylnk
library, ready for us to read the attributes from. We initialize the attribute
dictionary with the file's name and path and then iterate through the columns we
specified in the main() function. For each of the columns, we try to read the
specified attribute value, and, if we are unable to, store an "N/A" value
otherwise. These attributes are stored in the lnk_data dictionary which is
appended to the parsed_lnks list once all attributes are extracted. After this
process completes for each lnk file, we pass this list, along with the output
path, and column names, to the write_csv() method.

 parsed_lnks = []
 for entry in lnk_files:
 lnk = open_file_as_lnk(entry[2])
 lnk_data = {'lnk_path': entry[1], 'lnk_name': entry[0]}
 for col in columns:
 lnk_data[col] = getattr(lnk, col, "N/A")
 lnk.close()
 parsed_lnks.append(lnk_data)

 write_csv(report, columns + ['lnk_path', 'lnk_name'], parsed_lnks)

To open our pytsk file object as a pylink object, we use the open_file_as_lnk()
function which operates like other similarly named functions throughout this
chapter. This function reads the entire file, using the read_random() method and
file size property, into a StringIO buffer that is then passed into a pylnk file
object. Reading in this manner allows us to read the data as a file without
needing to cache it to the disk. Once we have loaded the file into our lnk
object, we return it to the main() function:

def open_file_as_lnk(lnk_file):
 file_size = lnk_file.info.meta.size
 file_content = lnk_file.read_random(0, file_size)
 file_like_obj = StringIO.StringIO(file_content)
 lnk = pylnk.file()
 lnk.open_file_object(file_like_obj)
 return lnk

The last function is the common CSV writer, which uses the csv.DictWriter class
to iterate through the data structure and write the relevant fields to a
spreadsheet. The order of the columns list defined in the main() function
determines their order here as the fieldnames argument. One could change that
order, if desired, to modify the order in which they are displayed in the
resulting spreadsheet.

def write_csv(outfile, fieldnames, data):
 with open(outfile, 'wb') as open_outfile:
 csvfile = csv.DictWriter(open_outfile, fieldnames)
 csvfile.writeheader()
 csvfile.writerows(data)

After running the script, we can view the results in a single CSV report as seen
in the following two screenshots. Since there are many visible columns, we
have elected to display only a few for the readability sake:

There's more...
This script can be further improved. We have provided one or more
recommendations as follows:

Add checks to see if the target file still exists
Identify target locations on remote or removable volumes
Add support for parsing jumplists

Searching high and low
Recipe difficulty: Hard

Python version: 2.7

Operating system: Linux

Most modern operating systems maintain an index of files and other data
content stored on the system. These indexes allow for more efficient searches
across file formats, emails, and other content found on the system's volumes.
On Windows, such an index is found in the Windows.edb file. This database is
stored in the Extensible Storage Engine (ESE) file format and found within
the ProgramData directory. We will leverage another library from the libyal
project to parse this file to extract information about the indexed content on the
system.

Getting started
This recipe requires the installation of four third-party modules to function:
pytsk3, pyewf, pyesedb, and unicodecsv. Refer to Chapter 8, Working with Forensic
Evidence Container Recipes for a detailed explanation on installing the pytsk3
and pyewf modules. Likewise, refer to the Getting started section in the One
man's trash is a forensic examiner's treasure recipe for details on installing
unicodecsv. All other libraries used in this script are present in Python's standard
library.

Navigate to the GitHub repository and download the desired release for each
library. This recipe was developed using the libesedb-experimental-20170121
release. Once the contents of the release are extracted, open a terminal,
navigate to the extracted directory, and execute the following commands:

./synclibs.sh

./autogen.sh
sudo python setup.py install

To learn more about the pyesedb library, visit https://github.com/libyal/l
ibesedb.

Lastly, we can check our library's installation by opening a Python interpreter,
importing pyesedb, and running the epyesedb.get_version() method to ensure we
have the correct release version.

https://github.com/libyal/libesedb

How to do it...
To draft this script we will need to:

1. Recurse the ProgramData directory to search for the Windows.edb file.
2. Iterate through discovered Windows.edb files (though there should really only

be one) and open the files using the pyesedb library.
3. Process each of the files to extract key columns and attributes.
4. Write these key columns and attributes to the report.

How it works...
The imports here include those libraries we've used for most recipes in the
chapter for argument parsing, string buffer file-like objects, and the TSK utilities.
We also import the unicodecsv library to handle any Unicode objects in the CSV
report, the datetime library to assist with timestamp parsing, and the struct
module to help make sense of the binary data we read. Additionally, we define
a global variable, COL_TYPES, that aliases the column types from the pyesedb
library, used to help identify the types of data that we will extract later in the
code:

from __future__ import print_function
from argparse import ArgumentParser
import unicodecsv as csv
import datetime
import StringIO
import struct

from utility.pytskutil import TSKUtil
import pyesedb

COL_TYPES = pyesedb.column_types

This recipe's command-line handler takes three positional arguments,
EVIDENCE_FILE, IMAGE_TYPE, and CSV_REPORT, which represent the path to the evidence
file, the type of evidence file, and the desired output path to the CSV report,
respectively. These three arguments are passed to the main() function.

if __name__ == '__main__':
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument('EVIDENCE_FILE', help="Path to evidence file")
 parser.add_argument('IMAGE_TYPE', help="Evidence file format",
 choices=('ewf', 'raw'))
 parser.add_argument('CSV_REPORT', help="Path to CSV report")
 args = parser.parse_args()
 main(args.EVIDENCE_FILE, args.IMAGE_TYPE, args.CSV_REPORT)

The main() function opens the evidence and searches for the Windows.edb file
within the ProgramData directory. If one or more files are found, we iterate
through the list and open each ESE database for further processing with the

process_windows_search() function. This function returns the spreadsheet column
headers to use and a list of dictionaries containing the data to include in the
report. This information is then written to the output CSV for review by the
write_csv() method:

def main(evidence, image_type, report):
 tsk_util = TSKUtil(evidence, image_type)
 esedb_files = tsk_util.recurse_files(
 "Windows.edb",
 path="/ProgramData/Microsoft/Search/Data/Applications/Windows",
 logic="equals"
)
 if esedb_files is None:
 print("No Windows.edb file found")
 exit(0)

 for entry in esedb_files:
 ese = open_file_as_esedb(entry[2])
 if ese is None:
 continue # Invalid ESEDB
 report_cols, ese_data = process_windows_search(ese)

 write_csv(report, report_cols, ese_data)

Reading the responsive ESE database requires the open_file_as_esedb() function.
This code block uses similar logic to the previous recipes to read the file into
a StringIO object and open the file-like object with the library. Note, this could
cause errors on your system if the file is rather large or your machine has
lower amounts of memory. You can use the built-in tempfile library to cache the
file to a temporary location on disk, reading from there if you would prefer.

def open_file_as_esedb(esedb):
 file_size = esedb.info.meta.size
 file_content = esedb.read_random(0, file_size)
 file_like_obj = StringIO.StringIO(file_content)
 esedb = pyesedb.file()
 try:
 esedb.open_file_object(file_like_obj)
 except IOError:
 return None
 return esedb

Our process_windows_search() function starts with column definitions. While our
previous recipe used a simple list of columns, the pyesedb library takes a
column index as an input to retrieve a value from a row within a table. For this
reason, our column list must consist of tuples, where the first element is a
number (the index) and the second is the string description. Since the
description isn't used in the function to select columns, we name these in the

manner we would like them displayed in the report. For this recipe, we have
defined the following column indexes and names:

def process_windows_search(ese):
 report_cols = [
 (0, "DocID"), (286, "System_KindText"),
 (35, "System_ItemUrl"), (5, "System_DateModified"),
 (6, "System_DateCreated"), (7, "System_DateAccessed"),
 (3, "System_Size"), (19, "System_IsFolder"),
 (2, "System_Search_GatherTime"), (22, "System_IsDeleted"),
 (61, "System_FileOwner"), (31, "System_ItemPathDisplay"),
 (150, "System_Link_TargetParsingPath"),
 (265, "System_FileExtension"), (348, "System_ComputerName"),
 (34, "System_Communication_AccountName"),
 (44, "System_Message_FromName"),
 (43, "System_Message_FromAddress"), (49, "System_Message_ToName"),
 (47, "System_Message_ToAddress"),
 (62, "System_Message_SenderName"),
 (189, "System_Message_SenderAddress"),
 (52, "System_Message_DateSent"),
 (54, "System_Message_DateReceived")
]

After we define the columns of interest, we access the SystemIndex_0A table,
which contains the indexed file, mail, and other entries. We iterate through the
records within the table, building a record_info dictionary of the column values
for each record that will eventually be appended to the table_data list. A second
loop iterates through the columns we defined earlier and attempts to extract the
value and value type for each column in the record.

 table = ese.get_table_by_name("SystemIndex_0A")
 table_data = []
 for record in table.records:
 record_info = {}
 for col_id, col_name in report_cols:
 rec_val = record.get_value_data(col_id)
 col_type = record.get_column_type(col_id)

Using the COL_TYPES global variable we defined earlier, we can reference the
various data types and ensure we are interpreting the values correctly. The
logic in the following code block focuses on interpreting the values correctly
based on their data type. First, we handle dates, which may be stored as
Windows FILETIME values. We attempt to convert the FILETIME value, if possible,
or present the date value in hexadecimal if not. The next statement checks for
text values, interpreting the value with the pyesedb get_value_data_as_string()
function or as a UTF-16 big-endian and replacing any unrecognized character
for completeness.

We then individually handle integer and Boolean data type interpretation using
the pyesedb get_value_data_as_integer() function and a simple comparison statement,
respectively. Specifically, we check if the rec_val is equal to "\x01" and allow
rec_val to be set True or False based on that comparison. If none of these data
types are valid, we interpret the value as hex and store it with the associated
column name before appending the value to the table:

 if col_type in (COL_TYPES.DATE_TIME, COL_TYPES.BINARY_DATA):
 try:
 raw_val = struct.unpack('>q', rec_val)[0]
 rec_val = parse_windows_filetime(raw_val)
 except Exception:
 if rec_val is not None:
 rec_val = rec_val.encode('hex')

 elif col_type in (COL_TYPES.TEXT, COL_TYPES.LARGE_TEXT):
 try:
 rec_val = record.get_value_data_as_string(col_id)
 except Exception:
 rec_val = rec_val.decode("utf-16-be", "replace")

 elif col_type == COL_TYPES.INTEGER_32BIT_SIGNED:
 rec_val = record.get_value_data_as_integer(col_id)

 elif col_type == COL_TYPES.BOOLEAN:
 rec_val = rec_val == '\x01'

 else:
 if rec_val is not None:
 rec_val = rec_val.encode('hex')

 record_info[col_name] = rec_val
 table_data.append(record_info)

We then return a tuple to our calling function, where the first element is the list
of names of the columns in the report_cols dictionary and the second is a list of
data dictionaries.

 return [x[1] for x in report_cols], table_data

Borrowing our logic from our date-parsing recipe in Chapter 7, Log-Based
Artifact Recipes, we implement a function to parse the Windows FILETIME value
into a human-readable state. This accepts an integer value as input and returns
a human-readable string:

def parse_windows_filetime(date_value):
 microseconds = float(date_value) / 10
 ts = datetime.datetime(1601, 1, 1) + datetime.timedelta(
 microseconds=microseconds)
 return ts.strftime('%Y-%m-%d %H:%M:%S.%f')

The last function is the CSV report writer, which writes the columns and the
rows of collected information to the open CSV spreadsheet using the DictWriter
class. While we selected a subset of the available columns at the outset, there
are many more to choose from that may be useful in varying case types.
Therefore, we recommend taking a look at all available columns to better
understand this recipe and what columns may or may not be useful for you.

def write_csv(outfile, fieldnames, data):
 with open(outfile, 'wb') as open_outfile:
 csvfile = csv.DictWriter(open_outfile, fieldnames)
 csvfile.writeheader()
 csvfile.writerows(data)

After running the recipe, we can review the output CSV shown here. As there
are many columns to this report, we have highlighted a few interesting ones in
the following two screenshots:

There's more...
This script can be further improved. We have provided one or more
recommendations as follows:

Add support to check for the existence of referenced files and folders
Write our Windows.edb file to a temporary location to relieve memory
pressure when parsing large databases with the Python tempfile library
Add more columns or create separate (targeted) reports using more of the
over 300 available columns in the table

Exploring Windows Forensic
Artifacts Recipes - Part II
In this chapter, the following recipes will be covered:

Parsing prefetch files
A series of fortunate events
Indexing internet history
Shadow of a former self
Dissecting the SRUM database

Introduction
Microsoft Windows is one of the most common operating systems found on
machines during forensic analysis. This has led to a large effort in the
community over the past two decades to develop, share, and document artifacts
deposited by this operating system for use in forensic casework.

In this chapter, we continue to look at various Windows artifacts and how to
process them using Python. We will leverage the framework we developed in C
hapter 8, Working with Forensic Evidence Container Recipes to process these
artifacts directly from forensic acquisitions. We'll use various libyal libraries
to handle the underlying processing of various files, including pyevt, pyevtx,
pymsiecf, pyvshadow, and pyesedb. We'll also explore how to process prefetch files
using struct and a file format table of offsets and data types of interest. Here's
what we'll learn to do in this chapter:

Parsing prefetch files for application execution information
Searching for event logs and extract events to a spreadsheet
Extracting internet history from index.dat files
Enumerating and creating file listings of volume shadow copies
Dissecting the Windows 10 SRUM database

For a full listing of libyal repositories, visit https://github.com/libyal.
Visit www.packtpub.com/books/content/support to download the code
bundle for this chapter.

https://github.com/libyal
http://www.packtpub.com/books/content/support

Parsing prefetch files
Recipe difficulty: Medium

Python version: 2.7

Operating system: Linux

Prefetch files are a common artifact to rely on for information about
application execution. While they may not always be present, they are
undoubtedly worth reviewing in scenarios where they exist. Recall that
prefetching can be enabled to various degrees or disabled based upon the
value of the PrefetchParameters subkey in the SYSTEM hive. This recipe searches for
files with the prefetch extension (.pf) and processes them for valuable
application information. We will only demonstrate this process for Windows
XP prefetch files; however, be aware that the underlying process we use is
similar to other iterations of Windows.

Getting started
Because we have decided to build out the Sleuth Kit and its dependencies on
an Ubuntu environment, we continue development on that operating system for
ease of use. This script will require the installation, if they are not already
present, of three additional libraries: pytsk3, pyewf, and unicodecsv. All other
libraries used in this script are present in Python's standard library.

Refer to Chapter 8, Working with Forensic Evidence Container Recipes for a
detailed explanation of installing the pytsk3 and pyewf modules. Because we are
developing these recipes in Python 2.x, we are likely to encounter Unicode
encode and decode errors. To account for that, we use the unicodecsv library to
write all CSV output in this chapter. This third-party module takes care of
Unicode support, unlike Python 2.x's standard csv module, and will be put to
great use here. As usual, we can use pip to install unicodecsv:

pip install unicodecsv==0.14.1

In addition to these, we'll continue to use the pytskutil module developed from
Chapter 8, Working with Forensic Evidence Container Recipes, to allow
interaction with forensic acquisitions. This module is largely similar to what
we previously wrote, with some minor changes to better suit our purposes. You
can review the code by navigating to the utility directory within the code
package.

https://cdp.packtpub.com/python_digital_forensics_cookbook/wp-admin/post.php?post=260&action=edit#post_218

How to do it...
We process prefetch files following these basic principles:

1. Scan for files ending with the .pf extension.
2. Eliminate false positives through signature verification.
3. Parse the Windows XP prefetch file format.
4. Create a spreadsheet of parsed results to the current working directory.

How it works...
We import a number of libraries to assist with argument parsing, parsing dates,
interpreting binary data, writing CSVs, and the custom pytskutil module.

from __future__ import print_function
import argparse
from datetime import datetime, timedelta
import os
import pytsk3
import pyewf
import struct
import sys
import unicodecsv as csv
from utility.pytskutil import TSKUtil

This recipe's command-line handler takes two positional arguments,
EVIDENCE_FILE and TYPE, which represent the path to the evidence file and the type
of evidence file (that is, raw or ewf). Most of the recipes featured in this chapter
will only feature the two positional inputs. The output from these recipes will
be spreadsheets created in the current working directory. This recipe has an
optional argument, d, which specifies the path to scan for prefetch files. By
default, this is set to the /Windows/Prefetch directory, although users can elect to
scan the entire image or a separate directory if desired. After performing some
input validation on the evidence file, we supply the main() function with the
three inputs and begin executing the script:

if __name__ == "__main__":
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("EVIDENCE_FILE", help="Evidence file path")
 parser.add_argument("TYPE", help="Type of Evidence",
 choices=("raw", "ewf"))
 parser.add_argument("OUTPUT_CSV", help="Path to write output csv")
 parser.add_argument("-d", help="Prefetch directory to scan",
 default="/WINDOWS/PREFETCH")
 args = parser.parse_args()

 if os.path.exists(args.EVIDENCE_FILE) and \
 os.path.isfile(args.EVIDENCE_FILE):
 main(args.EVIDENCE_FILE, args.TYPE, args.OUTPUT_CSV, args.d)
 else:
 print("[-] Supplied input file {} does not exist or is not a "

 "file".format(args.EVIDENCE_FILE))
 sys.exit(1)

In the main() function, we first create the TSKUtil object, tsk_util, which
represents the pytsk3 image object. With the TSKUtil object, we can call a number
of helper functions to directly interact with the evidence file. We use the
TSKUtil.query_directory() function to confirm that the specified directory exists. If
it does, we use the TSKUtil.recurse_files() method to recurse through the
specified directory and identify any file that ends with the .pf extension. This
method returns a list of tuples, where each tuple contains a number of
potentially useful objects, including the filename, path, and object itself. If no
such files are found, None is returned instead.

def main(evidence, image_type, output_csv, path):
 # Create TSK object and query path for prefetch files
 tsk_util = TSKUtil(evidence, image_type)
 prefetch_dir = tsk_util.query_directory(path)
 prefetch_files = None
 if prefetch_dir is not None:
 prefetch_files = tsk_util.recurse_files(
 ".pf", path=path, logic="endswith")

If we do find files matching the search criteria, we print a status message to the
console with the number of files found. Next, we set up the prefetch_data list,
which will be used to store the parsed prefetch data from each valid file. As
we iterate through each hit in the search, we extract the file object, the second
index of the tuple, for further processing.

Before we do anything with the file object, we validate the file signature of the
potential prefetch file with the check_signature() method. If the file does not
match the known prefetch file signature, None is returned as the pf_version
variable, preventing further processing from occurring for this particular file.
Before we delve any further into the actual processing of the file, let's look at
how this check_signature() method functions.

 if prefetch_files is None:
 print("[-] No .pf files found")
 sys.exit(2)

 print("[+] Identified {} potential prefetch files".format(
 len(prefetch_files)))
 prefetch_data = []
 for hit in prefetch_files:
 prefetch_file = hit[2]
 pf_version = check_signature(prefetch_file)

The check_signature() method takes the file object as its input and returns either
the prefetch version or, if the file is not a valid prefetch file, returns None. We
use struct to extract two little-endian 32-bit integers from the first 8 bytes of the
potential prefetch file. The first integer represents the file version, while the
second integer is the file's signature. The file signature should be 0x53434341,
whose decimal representation is 1,094,927,187. We compare the value we
extracted from the file to that number to determine whether the file signatures
match. If they do match, we return the prefetch version to the main() function.
The prefetch version tells us what type of prefetch file we are working with
(Windows XP, 7, 10, and so on). We return this value back to dictate how to
process the file as prefetch files have changed slightly in different versions of
Windows. Now, back to the main() function!

To learn more about prefetch versions and file formats, visit http
://www.forensicswiki.org/wiki/Windows_Prefetch_File_Format.

def check_signature(prefetch_file):
 version, signature = struct.unpack(
 "<2i", prefetch_file.read_random(0, 8))

 if signature == 1094927187:
 return version
 else:
 return None

Back in the main() function, we check that the pf_version variable is not None,
indicating it was successfully validated. Following that, we extract the name of
the file to the pf_name variable, which is stored at the zero index of the tuple.
Next, we check which version of prefetch file we are working with. A
breakdown of prefetch versions and their related operating systems can be
viewed here:

Prefetch version Windows desktop operating system

17 Windows XP

http://www.forensicswiki.org/wiki/Windows_Prefetch_File_Format

23 Windows Vista, Windows 7

26 Windows 8.1

30 Windows 10

This recipe has only been developed to process Windows XP prefetch files
using the file format as recorded on the previously referenced forensics wiki
page. However, there are placeholders to add in the logic to support the other
prefetch formats. They are largely similar, with the exception of Windows 10,
and can be parsed by following the same basic methodology used for Windows
XP. Windows 10 prefetch files are MAM compressed and must be
decompressed first before they can be processed--other than that, they can be
handled in a similar manner. For version 17 (Windows XP format), we call the
parsing function, providing the TSK file object and name of the prefetch file:

 if pf_version is None:
 continue

 pf_name = hit[0]
 if pf_version == 17:
 parsed_data = parse_pf_17(prefetch_file, pf_name)
 parsed_data.append(os.path.join(path, hit[1].lstrip("//")))
 prefetch_data.append(parsed_data)

We begin processing the Windows XP prefetch file by storing the create and
modify timestamps of the file itself into local variables. These Unix timestamps
are converted using the convertUnix() method, which we have worked with
before. Besides Unix timestamps, we also encounter FILETIME timestamps
embedded within the prefetch file themselves. Let's look at these functions
briefly to get them out of the way before continuing our discussion of the main()
method:

def parse_pf_17(prefetch_file, pf_name):
 # Parse Windows XP, 2003 Prefetch File
 create = convert_unix(prefetch_file.info.meta.crtime)
 modify = convert_unix(prefetch_file.info.meta.mtime)

Both functions rely on the datetime module to appropriately convert the

timestamps into a human-readable format. Both functions check whether the
supplied timestamp string is equal to "0" and return an empty string if that is the
case. Otherwise, for the convert_unix() method, we use the utcfromtimestamp()
method to convert the Unix timestamp to a datetime object and return that. For the
FILETIME timestamp, we add the number of 100 nanoseconds elapsed since
January 1, 1601, and return the resulting datetime object. With our brief
dalliance with time complete, let's get back to the main() function.

def convert_unix(ts):
 if int(ts) == 0:
 return ""
 return datetime.utcfromtimestamp(ts)

def convert_filetime(ts):
 if int(ts) == 0:
 return ""
 return datetime(1601, 1, 1) + timedelta(microseconds=ts / 10)

Now that we have extracted the file metadata, we start using struct to extract
the data embedded within the prefetch file itself. We read in 136 bytes from the
file using the pytsk3.read_random() method and struct and unpack that data into
Python variables. Specifically, in those 136 bytes, we extract five 32-bit integers
(i), one 64-bit integer (q), and a 60-character string (s). In parentheses in the
preceding sentence are the struct format characters related to those data types.
This can also be seen in the struct format string "<i60s32x3iq16xi", where the
number preceding the struct format character instructs struct how many there
are (for example, 60s tells struct to interpret the next 60 bytes as a string).
Likewise, the "x" struct format character is a null value. If struct receives 136
bytes to read, it must also receive format characters accounting for each of
those 136 bytes. Therefore, we must supply these null values to ensure we
appropriately account for the data we are reading in and ensure we are
interpreting the values at the appropriate offsets. The "<" character at the
beginning of the string ensures all values are interpreted as little-endian.

Right, that was maybe a bit much, but we probably all have a better
understanding of struct now. After struct interprets the data, it returns a tuple of
unpacked data types in the order in which they were unpacked. We assign these
to a series of local variables including the prefetch file size, application name,
last executed FILETIME, and the execution count. The application's name variable,

the 60-character string we extracted, needs to be UTF-16 decoded, and we
need to remove all x00 values padding the string. Notice that one of the values
we extracted, vol_info, is the pointer to where volume information is stored
within the prefetch file. We extract this information next:

 pf_size, name, vol_info, vol_entries, vol_size, filetime, \
 count = struct.unpack("<i60s32x3iq16xi",
 prefetch_file.read_random(12, 136))

 name = name.decode("utf-16", "ignore").strip("/x00").split("/x00")[0]

Let's look at a simpler example with struct. We read 20 bytes, starting from the
vol_info pointer, and extract three 32-bit integers and one 64-bit integer. These
are the volume name offset and length, the volume serial number, and the
volume creation date. Most forensic programs display the volume serial
number as two four-character hex values separated by a dash. We do the same
by converting the integer to hex and removing the prepended "0x" value to
isolate just the eight-character hex value. Next, we append a dash halfway
between the volume serial number using string slicing and concatenation.

Finally, we use the volume name offset and length we extracted to pull out the
volume name. We use string formatting to insert the volume name length in the
struct format string. We must multiply the length by two to extract the full string.
Similar to the application name, we must decode the string as UTF-16 and
remove any "/x00" values present. We append the extracted elements from the
prefetch file to the list. Notice how we perform a few last-minute operations
while doing so, including converting two FILETIME timestamps and joining the
prefetch path with the name of the file. Note that if we do not remove the
prepended "/" character from the filename, the os.path.join() method will not
combine these two strings correctly. Therefore, we use lstrip() to remove it
from the beginning of the string:

 vol_name_offset, vol_name_length, vol_create, \
 vol_serial = struct.unpack("<2iqi",
 prefetch_file.read_random(vol_info, 20))

 vol_serial = hex(vol_serial).lstrip("0x")
 vol_serial = vol_serial[:4] + "-" + vol_serial[4:]

 vol_name = struct.unpack(
 "<{}s".format(2 * vol_name_length),
 prefetch_file.read_random(vol_info + vol_name_offset,
 vol_name_length * 2)

)[0]

 vol_name = vol_name.decode("utf-16", "ignore").strip("/x00").split(
 "/x00")[0]

 return [
 pf_name, name, pf_size, create,
 modify, convert_filetime(filetime), count, vol_name,
 convert_filetime(vol_create), vol_serial
]

As we discussed at the beginning of this recipe, we currently only support
Windows XP-format prefetch files. We have left placeholders to support the
other format types. Currently, however, if these formats are encountered, an
unsupported message is printed to the console and we continue onto the next
prefetch file:

 elif pf_version == 23:
 print("[-] Windows Vista / 7 PF file {} -- unsupported".format(
 pf_name))
 continue
 elif pf_version == 26:
 print("[-] Windows 8 PF file {} -- unsupported".format(
 pf_name))
 continue
 elif pf_version == 30:
 print("[-] Windows 10 PF file {} -- unsupported".format(
 pf_name))
 continue

Recall back to the beginning of this recipe how we checked if the pf_version
variable was None. If that is the case, the prefetch file does not pass signature
verification, and so we print a message to that effect and continue onto the next
file. Once we have finished processing all prefetch files, we send the list
containing the parsed data to the write_output() method:

 else:
 print("[-] Signature mismatch - Name: {}\nPath: {}".format(
 hit[0], hit[1]))
 continue

 write_output(prefetch_data, output_csv)

The write_output() method takes the data list we created and writes that data out
to a CSV file. We use the os.getcwd() method to identify the current working
directory, where we write the CSV file. After printing a status message to the
console, we create our CSV file, write the names of our columns, and then use
the writerows() method to write all of the lists of parsed prefetch data within the

data list.

def write_output(data, output_csv):
 print("[+] Writing csv report")
 with open(output_csv, "wb") as outfile:
 writer = csv.writer(outfile)
 writer.writerow([
 "File Name", "Prefetch Name", "File Size (bytes)",
 "File Create Date (UTC)", "File Modify Date (UTC)",
 "Prefetch Last Execution Date (UTC)",
 "Prefetch Execution Count", "Volume", "Volume Create Date",
 "Volume Serial", "File Path"
])
 writer.writerows(data)

When we run this script, we generate a CSV document with the following
columns:

Scrolling left, we can see the following columns for the same entries (the file
path column is not shown due to its size).

There's more...
This script can be further improved. We have provided one or more
recommendations here:

Add support for other Windows prefetch file formats. Starting with
Windows 10, prefetch files now have MAM compression and must first
be decompressed prior to parsing the data with struct
Check out the libscca (https://github.com/libyal/libscca) library and its Python
bindings, pyscca, which was developed to process prefetch files

https://github.com/libyal/libscca

A series of fortunate events
Recipe Difficulty: Hard

Python Version: 2.7

Operating System: Linux

Event logs, if configured appropriately, contain a wealth of information useful
in any cyber investigation. These logs retain historical user activity
information, such as logons, RDP access, Microsoft Office file access, system
changes, and application-specific events. In this recipe, we use the pyevt and
pyevtx libraries to process both legacy and current Windows event log formats.

Getting started
This recipe requires the installation of five third-party modules to function:
pytsk3, pyewf, pyevt, pyevtx, and unicodecsv. Refer to Chapter 8, Working with
Forensic Evidence Container Recipes for a detailed explanation of installing
the pytsk3 and pyewf modules. Likewise, refer to the Getting started section in
the Parsing prefetch files recipe, for details on installing unicodecsv. All other
libraries used in this script are present in Python's standard library. When it
comes to installing the Python bindings of most libyal libraries, they follow a
very similar path.

Navigate to the GitHub repository and download the desired release for each
library. This recipe was developed using the libevt-alpha-20170120 and libevtx-
alpha-20170122 releases of the pyevt and pyevtx libraries, respectively. Next, once
the contents of the release are extracted, open a terminal and navigate to the
extracted directory and execute the following commands for each release:

./synclibs.sh

./autogen.sh
sudo python setup.py install

To learn more about the pyevt library, visit https://github.com/libyal/lib
evt.
To learn more about the pyevtx library, visit https://github.com/libyal/li
bevtx.

Lastly, we can check the libraries installation by opening a Python interpreter,
importing pyevt and pyevtx, and running their respective get_version() methods to
ensure we have the correct release versions.

https://github.com/libyal/libevt
https://github.com/libyal/libevtx

How to do it...
We extract event logs with these basic steps:

1. Search for all event logs matching the input argument.
2. Eliminate false positives with file signature verification.
3. Process each event log found with the appropriate library.
4. Output a spreadsheet of all discovered events to the current working

directory.

How it works...
We import a number of libraries to assist with argument parsing, writing CSVs,
processing event logs, and the custom pytskutil module.

from __future__ import print_function
import argparse
import unicodecsv as csv
import os
import pytsk3
import pyewf
import pyevt
import pyevtx
import sys
from utility.pytskutil import TSKUtil

This recipe's command-line handler takes three positional arguments,
EVIDENCE_FILE, TYPE, and LOG_NAME, which represents the path to the evidence file,
the type of evidence file, and the name of the event log to process.
Additionally, the user may specify the directory within the image to scan with
the "d" switch and enable fuzzy searching with the "f" switch. If the user does
not supply a directory to scan, the script defaults to the "/Windows/System32/winevt"
directory. The fuzzy search, when comparing file names, will check whether
the suppled LOG_NAME is a substring of the filename rather than equal to the
filename. This capability allows a user to search for a very specific event log
or any file with an .evt or .evtx extension, and anything in between. After
performing input validation checks, we pass the five arguments to the main()
function:

if __name__ == "__main__":
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("EVIDENCE_FILE", help="Evidence file path")
 parser.add_argument("TYPE", help="Type of Evidence",
 choices=("raw", "ewf"))
 parser.add_argument("LOG_NAME",
 help="Event Log Name (SecEvent.Evt, SysEvent.Evt, "
 "etc.)")
 parser.add_argument("-d", help="Event log directory to scan",
 default="/WINDOWS/SYSTEM32/WINEVT")
 parser.add_argument("-f", help="Enable fuzzy search for either evt or"
 " evtx extension", action="store_true")

 args = parser.parse_args()

 if os.path.exists(args.EVIDENCE_FILE) and \
 os.path.isfile(args.EVIDENCE_FILE):
 main(args.EVIDENCE_FILE, args.TYPE, args.LOG_NAME, args.d, args.f)
 else:
 print("[-] Supplied input file {} does not exist or is not a "
 "file".format(args.EVIDENCE_FILE))
 sys.exit(1)

In the main() function, we create our TSKUtil object, which we will be interacting
with to query the existence of the user-supplied path. If the path exists and is
not None, we then check whether fuzzy searching has been enabled. Regardless,
we call the same function, recurse_files(), and pass it the log to search for and
the directory to scan. If fuzzy searching was enabled, we supply the
recurse_files() method an additional optional argument by setting logic to
"equal". Without specifying this optional argument, the function will check
whether the log is a substring of a given file rather than an exact match. We
store any resulting hits in the event_log variable.

def main(evidence, image_type, log, win_event, fuzzy):
 # Create TSK object and query event log directory for Windows XP
 tsk_util = TSKUtil(evidence, image_type)
 event_dir = tsk_util.query_directory(win_event)
 if event_dir is not None:
 if fuzzy is True:
 event_log = tsk_util.recurse_files(log, path=win_event)
 else:
 event_log = tsk_util.recurse_files(
 log, path=win_event, logic="equal")

If we do have hits for the log, we set up the event_data list, which will hold the
parsed event log data. Next, we begin iterating through each discovered event
log. For each hit, we extract its file object, which is the second index of the
tuple returned by the recurse_files() method, and send that to be temporarily
written to the host filesystem with the write_file() method. This will be a
common practice in further recipes so that these third-party libraries can more
easily interact with the file.

 if event_log is not None:
 event_data = []
 for hit in event_log:
 event_file = hit[2]
 temp_evt = write_file(event_file)

The write_file() method is rather simplistic. All it does is open a Python File

object in "w" mode with the same name and write the entire contents of the input
file to the current working directory. We return the name of this output file back
to the main() method.

def write_file(event_file):
 with open(event_file.info.name.name, "w") as outfile:
 outfile.write(event_file.read_random(0, event_file.info.meta.size))
 return event_file.info.name.name

Back in the main() method, we use the pyevt.check_file_signature() method to check
whether the file we just cached is a valid evt file. If it is, we use the pyevt.open()
method to create our evt object. After printing a status message to the console,
we iterate through all of the records within the event log. The record can have
a number of strings, and so we iterate through those and ensure they are added
to the strings variable. We then append a number of event log attributes to the
event_data list, including the computer name, the SID, the creation and written
time, the category, source name, event ID, event type, the strings, and the file
path.

You may notice the empty string added as the second-to-last item in the list.
This empty string is there due to a lack of an equivalent counterpart found in
.evtx files and is necessary to maintain proper spacing as the output
spreadsheet is designed to accommodate both .evt and .evtx results. That's all
we need to do to process the legacy event log format. Let's now move on to the
scenario where the log file is an .evtx file.

 if pyevt.check_file_signature(temp_evt):
 evt_log = pyevt.open(temp_evt)
 print("[+] Identified {} records in {}".format(
 evt_log.number_of_records, temp_evt))
 for i, record in enumerate(evt_log.records):
 strings = ""
 for s in record.strings:
 if s is not None:
 strings += s + "\n"

 event_data.append([
 i, hit[0], record.computer_name,
 record.user_security_identifier,
 record.creation_time, record.written_time,
 record.event_category, record.source_name,
 record.event_identifier, record.event_type,
 strings, "",
 os.path.join(win_event, hit[1].lstrip("//"))
])

Thankfully, both pyevt and pyevtx libraries handle similarly. We start by
validating the file signature of the log search hit using the
pyevtx.check_file_signature() method. As with its pyevt counterpart, this method
returns a Boolean True or False depending on the results of the file signature
check. If the file's signature checks out, we use the pyevtx.open() method to
create an evtx object, write a status message to the console, and begin iterating
through the records present in the event log:

After storing all strings into the strings variable, we append a number of event
log record attributes to the event log list. These include the computer name,
SID, written time, event level, source, event ID, strings, any XML strings, and
the event log path. Note there are a number of empty strings, which are present
to maintain spacing and fill gaps where an .evt equivalent is not fount. For
example, there is no creation_time timestamp as seen in the legacy .evt logs, and
therefore, an empty string replaced it instead.

 elif pyevtx.check_file_signature(temp_evt):
 evtx_log = pyevtx.open(temp_evt)
 print("[+] Identified {} records in {}".format(
 evtx_log.number_of_records, temp_evt))
 for i, record in enumerate(evtx_log.records):
 strings = ""
 for s in record.strings:
 if s is not None:
 strings += s + "\n"

 event_data.append([
 i, hit[0], record.computer_name,
 record.user_security_identifier, "",
 record.written_time, record.event_level,
 record.source_name, record.event_identifier,
 "", strings, record.xml_string,
 os.path.join(win_event, hit[1].lstrip("//"))
])

If the given log hit from the search cannot be validated as either a .evt or .evtx
log, we print a status message to the console, remove the cached file with the
os.remove() method, and continue onto the next hit. Note that we only remove
cached event logs if they could not be validated. Otherwise, we leave them in
the current working directory so as to allow the user the opportunity to process
them further with other tools if desired. After we have finished processing all
of the event logs, we write the parsed list of lists to a CSV with the
write_output() method. The two remaining else statements handle situations
where there are either no event log hits from our search or the directory we

scanned for does not exist in the evidence file:

 else:
 print("[-] {} not a valid event log. Removing temp "
 "file...".format(temp_evt))
 os.remove(temp_evt)
 continue
 write_output(event_data)
 else:
 print("[-] {} Event log not found in {} directory".format(
 log, win_event))
 sys.exit(3)

 else:
 print("[-] Win XP Event Log Directory {} not found".format(
 win_event))
 sys.exit(2)

The write_output() method behaves similarly to that discussed in the previous
recipe. We create a CSV in the current working directory and write all of the
parsed results to it using the writerows() method.

def write_output(data):
 output_name = "parsed_event_logs.csv"
 print("[+] Writing {} to current working directory: {}".format(
 output_name, os.getcwd()))
 with open(output_name, "wb") as outfile:
 writer = csv.writer(outfile)

 writer.writerow([
 "Index", "File name", "Computer Name", "SID",
 "Event Create Date", "Event Written Date",
 "Event Category/Level", "Event Source", "Event ID",
 "Event Type", "Data", "XML Data", "File Path"
])

 writer.writerows(data)

The following screenshot shows basic information about events in the
specified log files:

The second screenshot shows additional columns for these rows:

There's more...
This script can be further improved. We have provided one or more
recommendations here:

Enable loose file support
Add an event ID argument to selectively extract events only matching the
given event ID

Indexing internet history
Recipe Difficulty: Medium

Python Version: 2.7

Operating System: Linux

Internet history can be invaluable during an investigation. These records can
give insight into a user's thought process and provide context around other user
activity occurring on the system. Microsoft has been persistent in getting users
to use Internet Explorer as their browser of choice. As a result, it is not
uncommon to see internet history information present in index.dat files used by
Internet Explorer. In this recipe, we scour the evidence file for these index.dat
files and attempt to process them using pymsiecf.

Getting started
This recipe requires the installation of four third-party modules to function:
pytsk3, pyewf, pymsiecf, and unicodecsv. Refer to Chapter 8, Working with Forensic
Evidence Container Recipes, for a detailed explanation on installing the pytsk3
and pyewf modules. Likewise, refer to the Getting started section in the Parsing
prefetch files recipe for details on installing unicodecsv. All other libraries used
in this script are present in Python's standard library

Navigate to the GitHub repository and download the desired release of the
pymsiecf library. This recipe was developed using the libmsiecf-alpha-20170116
release. Once the contents of the release are extracted, open a terminal and
navigate to the extracted directory and execute the following commands:

./synclibs.sh

./autogen.sh
sudo python setup.py install

To learn more about the pymsiecf library, visit https://github.com/libyal
/libmsiecf.

Lastly, we can check our library's installation by opening a Python interpreter,
importing pymsiecf, and running the gpymsiecf.get_version() method to ensure we
have the correct release version.

https://github.com/libyal/libmsiecf

How to do it...
We follow these steps to extract Internet Explorer history:

1. Find and verify all index.dat files within the image.
2. Process the files for internet history.
3. Output a spreadsheet of the results to the current working directory.

How it works...
We import a number of libraries to assist with argument parsing, writing CSVs,
processing index.dat files, and the custom pytskutil module:

from __future__ import print_function
import argparse
from datetime import datetime, timedelta
import os
import pytsk3
import pyewf
import pymsiecf
import sys
import unicodecsv as csv
from utility.pytskutil import TSKUtil

This recipe's command-line handler takes two positional arguments,
EVIDENCE_FILE and TYPE, which represent the path to the evidence file and the type
of evidence file, respectively. Similar to the previous recipe, the optional d
switch can be supplied to specify a directory to scan. Otherwise, the recipe
starts scanning at the "/Users" directory. After performing input validation
checks, we pass the three arguments to the main() function.

if __name__ == "__main__":
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("EVIDENCE_FILE", help="Evidence file path")
 parser.add_argument("TYPE", help="Type of Evidence",
 choices=("raw", "ewf"))
 parser.add_argument("-d", help="Index.dat directory to scan",
 default="/USERS")
 args = parser.parse_args()

 if os.path.exists(args.EVIDENCE_FILE) and os.path.isfile(
 args.EVIDENCE_FILE):
 main(args.EVIDENCE_FILE, args.TYPE, args.d)
 else:
 print("[-] Supplied input file {} does not exist or is not a "
 "file".format(args.EVIDENCE_FILE))
 sys.exit(1)

The main() function starts by creating the now-familiar TSKUtil object and scans
the specified directory to confirm it exists within the evidence file. If it does

exist, we recursively scan from the specified directory for any file that is equal
to the string "index.dat". These files are returned from the recurse_files() method
as a list of tuples, where each tuple represents a particular file matching the
search criteria.

def main(evidence, image_type, path):
 # Create TSK object and query for Internet Explorer index.dat files
 tsk_util = TSKUtil(evidence, image_type)
 index_dir = tsk_util.query_directory(path)
 if index_dir is not None:
 index_files = tsk_util.recurse_files("index.dat", path=path,
 logic="equal")

If we do find potential index.dat files to process, we print a status message to
the console and set up a list to retain the parsed results of the said files. We
begin to iterate through hits; extract the index.dat file object, which is the second
index of the tuple; and write it out to the host filesystem using the write_file()
method:

 if index_files is not None:
 print("[+] Identified {} potential index.dat files".format(
 len(index_files)))
 index_data = []
 for hit in index_files:
 index_file = hit[2]
 temp_index = write_file(index_file)

The write_file() method was discussed in more detail in the previous recipe. It
is identical to what we previously discussed. In essence, this function copies
out the index.dat file in the evidence container to the current working directory
to allow processing by the third-party module. Once that output is created, we
return the name of the output file, which in this case is going to always be
index.dat, back to the main() function:

def write_file(index_file):
 with open(index_file.info.name.name, "w") as outfile:
 outfile.write(index_file.read_random(0, index_file.info.meta.size))
 return index_file.info.name.name

Similar to the other libyal libraries before, the pymsiecf module has a built-in
method, check_file_signature(), which we use to determine if the search hit is a
valid index.dat file. If it is, we use the pymsiecf.open() method to create an object
we can manipulate with the library. We print a status message to the console
and begin iterating through the items present in the .dat file. The very first thing

we attempt is to access the data attribute. This contains the bulk of information
we will be interested in but is not necessarily always available. If the attribute
is present, however, and is not None, we remove an appended "\x00" value:

 if pymsiecf.check_file_signature(temp_index):
 index_dat = pymsiecf.open(temp_index)
 print("[+] Identified {} records in {}".format(
 index_dat.number_of_items, temp_index))
 for i, record in enumerate(index_dat.items):
 try:
 data = record.data
 if data is not None:
 data = data.rstrip("\x00")

As alluded to before, there are scenarios where there will be no data attribute.
Two examples are the pymsiecf.redirected and pymsiecf.leak objects. These
objects, however, still have data that may potentially be relevant. Therefore, in
the exception, we check if the record is an instance of one of those two objects
and append what data is available to our list of parsed index.dat data. We
continue on to the next record after we have appended this data to our list or if
the record is not an instance of either of those types, except AttributeError:

 except AttributeError:
 if isinstance(record, pymsiecf.redirected):
 index_data.append([
 i, temp_index, "", "", "", "", "",
 record.location, "", "", record.offset,
 os.path.join(path, hit[1].lstrip("//"))
])

 elif isinstance(record, pymsiecf.leak):
 index_data.append([
 i, temp_index, record.filename, "",
 "", "", "", "", "", "", record.offset,
 os.path.join(path, hit[1].lstrip("//"))
])

 continue

In most scenarios, the data attribute is present and we can extract a number of
potentially relevant information points from the record. This includes the
filename, the type, a number of timestamps, the location, number of hits, and
the data itself. To be clear, the data attribute is often a URL of some sort
recorded as a result of browsing activity on the system:

 index_data.append([
 i, temp_index, record.filename,
 record.type, record.primary_time,

 record.secondary_time,
 record.last_checked_time, record.location,
 record.number_of_hits, data, record.offset,
 os.path.join(path, hit[1].lstrip("//"))
])

If the index.dat file cannot be validated, we remove the offending cached file
and continue iterating through all other search results. Likewise, this time we
elect to remove the index.dat cached file regardless of whether it was valid or
not after we finish processing the final one. Because all of these files will have
the same name, they will overwrite each other as they are being processed.
Therefore, it did mot make sense to keep only one in the current working
directory for further processing. If desired, however, one could do something a
bit more elaborate and cache each file to the host filesystem while preserving
its path. The remaining two else statements are reserved for situations where no
index.dat files are found and the directory to scan for does not exist in the
evidence file, respectively:

 else:
 print("[-] {} not a valid index.dat file. Removing "
 "temp file..".format(temp_index))
 os.remove("index.dat")
 continue

 os.remove("index.dat")
 write_output(index_data)
 else:
 print("[-] Index.dat files not found in {} directory".format(
 path))
 sys.exit(3)

 else:
 print("[-] Directory {} not found".format(win_event))
 sys.exit(2)

The write_output() method behaves like the other methods of the same name in
the previous recipes. We create a mildly descriptive output name, create the
output CSV in the current working directory, and then write the headers and
data to the file. With that, we have completed this recipe and can now add
processed index.dat files to our toolbox:

def write_output(data):
 output_name = "Internet_Indexdat_Summary_Report.csv"
 print("[+] Writing {} with {} parsed index.dat files to current "
 "working directory: {}".format(output_name, len(data),
 os.getcwd()))
 with open(output_name, "wb") as outfile:
 writer = csv.writer(outfile)

 writer.writerow(["Index", "File Name", "Record Name",
 "Record Type", "Primary Date", "Secondary Date",
 "Last Checked Date", "Location", "No. of Hits",
 "Record Data", "Record Offset", "File Path"])
 writer.writerows(data)

When we execute the script, we can review a spreadsheet containing data such
as the one shown here:

While this report has many columns, the following screenshot shows a snippet
of a few additional columns for the same rows:

There's more...
This script can be further improved. We have provided one or more
recommendations here:

Create summary metrics of available data (most and least popular domain
visited, average time-frame of internet usage, and so on)

Shadow of a former self
Recipe Difficulty: Hard

Python Version: 2.7

Operating System: Linux

Volume shadow copies can contain data from files that are no longer present on
the active system. This can give an examiner some historical information about
how the system changed over time and what files used to exist on the computer.
In this recipe, we will use the pvyshadow library to enumerate and access any
volume shadow copies present in the forensic image.

Getting started
This recipe requires the installation of five third-party modules to function:
pytsk3, pyewf, pyvshadow, unicodecsv, and vss. Refer to Chapter 8, Working with
Forensic Evidence Container Recipes for a detailed explanation on installing
the pytsk3 and pyewf modules. Likewise, refer to the Getting started section in
the Parsing prefetch files recipe for details on installing unicodecsv. All other
libraries used in this script are present in Python's standard library.

Navigate to the GitHub repository and download the desired release for the
pyvshadow library. This recipe was developed using the libvshadow-alpha-20170715
release. Once the contents of the release are extracted, open a terminal,
navigate to the extracted directory, and execute the following commands:

./synclibs.sh

./autogen.sh
sudo python setup.py install

Learn more about the pyvshadow library at https://github.com/libyal/libvs
hadow.

The pyvshadow module is designed to work only with raw images and does not
support other forensic image types out of the box. As noted in a blog post by
David Cowen at http://www.hecfblog.com/2015/05/automating-dfir-how-to-series-on_25.html, the
plaso project has created a helper library, vss, that can be integrated with
pyvshadow, which we will use here. The vss code can be found in the same blog
post.

Lastly, we can check our library's installation by opening a Python interpreter,
importing pyvshadow, and running the pyvshadow.get_version() method to ensure we
have the correct release version.

https://github.com/libyal/libvshadow
http://www.hecfblog.com/2015/05/automating-dfir-how-to-series-on_25.html

How to do it...
We access volume shadow copies using the following steps:

1. Access the volume of the raw image and identify all NTFS partitions.
2. Enumerate over each volume shadow copy found on valid NTFS

partitions.
3. Create a file listing of data within the snapshots.

How it works...
We import a number of libraries to assist with argument parsing, date parsing,
writing CSVs, processing volume shadow copies, and the custom pytskutil
module.

from __future__ import print_function
import argparse
from datetime import datetime, timedelta
import os
import pytsk3
import pyewf
import pyvshadow
import sys
import unicodecsv as csv
from utility import vss
from utility.pytskutil import TSKUtil
from utility import pytskutil

This recipe's command-line handler takes two positional arguments:
EVIDENCE_FILE and OUTPUT_CSV. These represent the path to the evidence file and the
file path for the output spreadsheet, respectively. Notice the conspicuous
absence of the evidence type argument. This script only supports raw image
files and does not work with E01s. To prepare an EWF image for use with the
script you may either convert it to a raw image or mount it with ewfmount, a tool
associated with libewf, and provide the mount point as the input.

if __name__ == "__main__":
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("EVIDENCE_FILE", help="Evidence file path")
 parser.add_argument("OUTPUT_CSV",
 help="Output CSV with VSS file listing")
 args = parser.parse_args()

After parsing the input arguments, we separate the directory from the OUTPUT_CSV
input and confirm that it exists or create it if it is not present. We also validate
the input file path's existence before passing the two positional arguments to
the main() function.

 directory = os.path.dirname(args.OUTPUT_CSV)

 if not os.path.exists(directory) and directory != "":
 os.makedirs(directory)

 if os.path.exists(args.EVIDENCE_FILE) and \
 os.path.isfile(args.EVIDENCE_FILE):
 main(args.EVIDENCE_FILE, args.OUTPUT_CSV)
 else:
 print("[-] Supplied input file {} does not exist or is not a "
 "file".format(args.EVIDENCE_FILE))
 sys.exit(1)

The main() function calls a few new functions within the TSKUtil object that we
have not explored yet. After we create our TSKUtil object, we extract its volume
using the return_vol() method. Interacting with an evidence file's volume, as we
have seen in previous recipes, is one of the requisite steps before we can
interact with the filesystem. However, this process has been previously
performed in the background when necessary. This time, however, we need
access to the pytsk3 volume object to iterate through each partition to identify
NTFS filesystems. The detect_ntfs() method returns a Boolean value if the
specific partition has an NTFS filesystem.

For each NTFS filesystem we encounter, we pass the evidence file, the offset
of the discovered NTFS partition, and the output CSV file to the explore_vss()
function. If the volume object is None, we print a status message to the console
to remind users that the evidence file must be a physical device image as
opposed to only a logical image of a specific partition.

def main(evidence, output):
 # Create TSK object and query path for prefetch files
 tsk_util = TSKUtil(evidence, "raw")
 img_vol = tsk_util.return_vol()
 if img_vol is not None:
 for part in img_vol:
 if tsk_util.detect_ntfs(img_vol, part):
 print("Exploring NTFS Partition for VSS")
 explore_vss(evidence, part.start * img_vol.info.block_size,
 output)
 else:
 print("[-] Must be a physical preservation to be compatible "
 "with this script")
 sys.exit(2)

The explore_vss() method starts by creating a pyvshadow.volume() object. We use
this volume to open the vss_handle object created from the vss.VShadowVolume()
method. The vss.VShadowVolume() method takes the evidence file and the partition
offset value and exposes a volume-like object that is compatible with the

pyvshadow library, which does not natively support physical disk images. The
GetVssStoreCount() function returns the number of volume shadow copies found in
the evidence.

If there are volume shadows, we open our vss_handle object with the pyvshadow
vss_volume and instantiate a list to hold our data. We create a for loop to iterate
through each volume shadow copy present and perform the same series of
steps. First, we use the pyvshadow get_store() method to access the particular
volume shadow copy of interest. Then, we use the vss helper library
VShadowImgInfo to create a pytsk3 image handle. Lastly, we pass the image handle
to the openVSSFS() method and append the returned data to our list. The openVSSFS()
method uses similar methods as discussed before to create a pytsk3 filesystem
object and then recurse through the directories present to return an active file
listing. After we have performed these steps on all of the volume shadow
copies, we pass the data and the output CSV file path to our csvWriter() method.

def explore_vss(evidence, part_offset, output):
 vss_volume = pyvshadow.volume()
 vss_handle = vss.VShadowVolume(evidence, part_offset)
 vss_count = vss.GetVssStoreCount(evidence, part_offset)
 if vss_count > 0:
 vss_volume.open_file_object(vss_handle)
 vss_data = []
 for x in range(vss_count):
 print("Gathering data for VSC {} of {}".format(x, vss_count))
 vss_store = vss_volume.get_store(x)
 image = vss.VShadowImgInfo(vss_store)
 vss_data.append(pytskutil.openVSSFS(image, x))

 write_csv(vss_data, output)

The write_csv() method functions as you would expect it to. It first checks if
there is any data to write. If there isn't, it prints a status message to the console
before exiting the script. Alternatively, it creates a CSV file using the user-
provided input, writes the spreadsheet headers, and iterates through each list,
calling writerows() for each volume shadow copy. To prevent the headers from
ending up several times in the CSV output, we will check to see if the CSV
already exists and add new data in for review. This allows us to dump
information after each volume is processed for volume shadow copies.

def write_csv(data, output):
 if data == []:
 print("[-] No output results to write")
 sys.exit(3)

 print("[+] Writing output to {}".format(output))
 if os.path.exists(output):
 append = True
 with open(output, "ab") as csvfile:
 csv_writer = csv.writer(csvfile)
 headers = ["VSS", "File", "File Ext", "File Type", "Create Date",
 "Modify Date", "Change Date", "Size", "File Path"]
 if not append:
 csv_writer.writerow(headers)
 for result_list in data:
 csv_writer.writerows(result_list)

After running this script, we can review the files found within each volume
shadow copy and learn about the metadata of each item:

There's more...
This script can be further improved. We have provided one or more
recommendations here:

Add support for logical acquisitions and additional forensic acquisition
types
Add support to process artifacts found within snapshots using previously
written recipes

Dissecting the SRUM database
Recipe Difficulty: Hard

Python Version: 2.7

Operating System: Linux

With the major release of popular operating systems, everyone in the cyber
community gets excited (or worried) about the potential new artifacts and
changes to existing artifacts. With the advent of Windows 10, we saw a few
changes (such as the MAM compression of prefetch files) and new artifacts as
well. One of these artifacts is the System Resource Usage Monitor (SRUM),
which can retain execution and network activity for applications. This includes
information such as when a connection was established by a given application
and how many bytes were sent and received by this application. Obviously,
this can be very useful in a number of different scenarios. Imagine having this
information on hand with a disgruntled employee who uploads many gigabytes
of data on their last day using the Dropbox desktop application.

In this recipe, we leverage the pyesedb library to extract data from the database.
We will also implement logic to interpret this data as the appropriate type.
With this accomplished, we will be able to view historical application
information stored within the SRUM.dat file found on Windows 10 machines.

To learn more about the SRUM database, visit https://www.sans.org/
summit-archives/file/summit-archive-1492184583.pdf.

https://www.sans.org/summit-archives/file/summit-archive-1492184583.pdf

Getting started
This recipe requires the installation of four third-party modules to function:
pytsk3, pyewf, pyesedb, and unicodecsv. Refer to Chapter 8, Working with Forensic
Evidence Container Recipes, for a detailed explanation on installing the pytsk3
and pyewf modules. Likewise, refer to the Getting started section in the Parsing
prefetch files recipe for details on installing unicodecsv. All other libraries used
in this script are present in Python's standard library.

Navigate to the GitHub repository and download the desired release for each
library. This recipe was developed using the libesedb-experimental-20170121
release. Once the contents of the release are extracted, open a terminal,
navigate to the extracted directory, and execute the following commands:

./synclibs.sh

./autogen.sh
sudo python setup.py install

To learn more about the pyesedb library, visit https://github.com/libyal/l
ibesedb.

Lastly, we can check our library's installation by opening a Python
interpreter, importing pyesedb, and running the gpyesedb.get_version()
method to ensure we have the correct release version.

https://github.com/libyal/libesedb

How to do it...
We use the following methodology to accomplish our objective:

1. Determine if the SRUDB.dat file exists and perform a file signature
verification.

2. Extract tables and table data using pyesedb.
3. Interpret extracted table data as appropriate data types.
4. Create multiple spreadsheets for each table present within the database.

How it works...
We import a number of libraries to assist with argument parsing, date parsing,
writing CSVs, processing the ESE database, and the custom pytskutil module:

from __future__ import print_function
import argparse
from datetime import datetime, timedelta
import os
import pytsk3
import pyewf
import pyesedb
import struct
import sys
import unicodecsv as csv
from utility.pytskutil import TSKUtil

This script uses two global variables during its execution. The TABLE_LOOKUP
variable is a lookup table matching various SRUM table names to a more
human-friendly description. These descriptions were pulled from Yogesh
Khatri's presentation, referenced at the beginning of the recipe. The
APP_ID_LOOKUP dictionary will store data from the SRUM SruDbIdMapTable table,
which assigns applications to an integer value referenced in other tables.

TABLE_LOOKUP = {
 "{973F5D5C-1D90-4944-BE8E-24B94231A174}": "Network Data Usage",
 "{D10CA2FE-6FCF-4F6D-848E-B2E99266FA86}": "Push Notifications",
 "{D10CA2FE-6FCF-4F6D-848E-B2E99266FA89}": "Application Resource Usage",
 "{DD6636C4-8929-4683-974E-22C046A43763}": "Network Connectivity Usage",
 "{FEE4E14F-02A9-4550-B5CE-5FA2DA202E37}": "Energy Usage"}

APP_ID_LOOKUP = {}

This recipe's command-line handler takes two positional arguments,
EVIDENCE_FILE and TYPE, which represent the evidence file and the type of
evidence file, respectively. After validating the provided arguments, we pass
these two inputs to the main() method, where the action kicks off.

if __name__ == "__main__":
 parser = argparse.ArgumentParser(
 description=__description__,
 epilog="Developed by {} on {}".format(
 ", ".join(__authors__), __date__)
)
 parser.add_argument("EVIDENCE_FILE", help="Evidence file path")

 parser.add_argument("TYPE", help="Type of Evidence",
 choices=("raw", "ewf"))
 args = parser.parse_args()

 if os.path.exists(args.EVIDENCE_FILE) and os.path.isfile(
 args.EVIDENCE_FILE):
 main(args.EVIDENCE_FILE, args.TYPE)
 else:
 print("[-] Supplied input file {} does not exist or is not a "
 "file".format(args.EVIDENCE_FILE))
 sys.exit(1)

The main() method starts by creating a TSKUtil object and creating a variable to
reference the folder which contains the SRUM database on Windows 10
systems. Then, we use the query_directory() method to determine if the directory
exist. If it does, we use the recurse_files() method to return the SRUM database
from the evidence (if present):

def main(evidence, image_type):
 # Create TSK object and query for Internet Explorer index.dat files
 tsk_util = TSKUtil(evidence, image_type)
 path = "/Windows/System32/sru"
 srum_dir = tsk_util.query_directory(path)
 if srum_dir is not None:
 srum_files = tsk_util.recurse_files("SRUDB.dat", path=path,
 logic="equal")

If we do find the SRUM database, we print a status message to the console and
iterate through each hit. For each hit, we extract the file object stored in the
second index of the tuple returned by the recurse_files() method and use the
write_file() method to cache the file to the host filesystem for further
processing:

 if srum_files is not None:
 print("[+] Identified {} potential SRUDB.dat file(s)".format(
 len(srum_files)))
 for hit in srum_files:
 srum_file = hit[2]
 srum_tables = {}
 temp_srum = write_file(srum_file)

The write_file() method, as seen before, simply creates a file of the same name
on the host filesystem. This method reads the entire contents of the file in the
evidence container and writes it to the temporary file. After this has
completed, it returns the name of the file to the parent function.

def write_file(srum_file):
 with open(srum_file.info.name.name, "w") as outfile:
 outfile.write(srum_file.read_random(0, srum_file.info.meta.size))

 return srum_file.info.name.name

Back in the main() method, we use the pyesedb.check_file_signature() method to
validate the file hit before proceeding with any further processing. After the
file is validated, we use the pyesedb.open() method to create the pyesedb object
and print a status message to the console with the number of tables contained
within the file. Next, we create a for loop to iterate through all of the tables
within the database. Specifically, we look for the SruDbIdMapTable as we first
need to populate the APP_ID_LOOKUP dictionary with the integer-to-application
name pairings before processing any other table.

Once that table is found, we read each record within the table. The integer
value of interest is stored in the first index while the application name is stored
in the second index. We use the get_value_data_as_integer() method to extract and
interpret the integer appropriately. Using the get_value_data() method instead, we
can extract the application name from the record and attempt to replace any
padding bytes from the string. Finally, we store both of these values in the
global APP_ID_LOOKUP dictionary, using the integer as a key and the application
name as the value.

 if pyesedb.check_file_signature(temp_srum):
 srum_dat = pyesedb.open(temp_srum)
 print("[+] Process {} tables within database".format(
 srum_dat.number_of_tables))
 for table in srum_dat.tables:
 if table.name != "SruDbIdMapTable":
 continue
 global APP_ID_LOOKUP
 for entry in table.records:
 app_id = entry.get_value_data_as_integer(1)
 try:
 app = entry.get_value_data(2).replace(
 "\x00", "")
 except AttributeError:
 app = ""
 APP_ID_LOOKUP[app_id] = app

After creating the app lookup dictionary, we are ready to iterate over each table
(again) and this time actually extract the data. For each table, we assign its
name to a local variable and print a status message to the console regarding
execution progress. Then, within the dictionary that will hold our processed
data, we create a key using the table's name and a dictionary containing column
and data lists. The column list represents the actual column names from the

table itself. These are extracted using list comprehension and then assigned to
the column's key within our dictionary structure.

 for table in srum_dat.tables:
 t_name = table.name
 print("[+] Processing {} table with {} records"
 .format(t_name, table.number_of_records))
 srum_tables[t_name] = {"columns": [], "data": []}
 columns = [x.name for x in table.columns]
 srum_tables[t_name]["columns"] = columns

With the columns handle, we turn our attention to the data itself. As we iterate
through each row in the table, we use the number_of_values() method to create a
loop to iterate through each value in the row. As we do this, we append the
interpreted value to a list, which itself is later assigned to the data key within
the dictionary. The SRUM database stores a number of different types of data
(32-bit integers, 64-bit integers, strings, and so on). The pyesedb library does not
necessarily support each data type present using the various get_value_as
methods. We must interpret the data for ourselves and have created a new
function, convert_data(), to do just that. This function needs the value's raw data,
the column name, and the column's type (which correlates to the type of data
present). Let's focus on this method now.

If the search hit fails the file signature verification, we print a status message to
the console, delete the temporary file, and continue onto the next hit. The
remaining else statements handle scenarios where there are no SRUM
databases found and where the SRUM database directory does not exist,
respectively.

 for entry in table.records:
 data = []
 for x in range(entry.number_of_values):
 data.append(convert_data(
 entry.get_value_data(x), columns[x],
 entry.get_column_type(x))
)
 srum_tables[t_name]["data"].append(data)
 write_output(t_name, srum_tables)

 else:
 print("[-] {} not a valid SRUDB.dat file. Removing "
 "temp file...".format(temp_srum))
 os.remove(temp_srum)
 continue

 else:
 print("[-] SRUDB.dat files not found in {} "

 "directory".format(path))
 sys.exit(3)

 else:
 print("[-] Directory {} not found".format(path))
 sys.exit(2)

The convert_data() method relies on the column type to dictate how the data
should be interpreted. For the most part, we use struct to unpack the data as the
appropriate data types. This function is one large if-elif-else statement. In the
first scenario, we check if the data is None, and if it is, return an empty string. In
the first elif statement, we check if the column name is "AppId"; if it is, we
unpack the 32-bit integer representing the value from the SruDbIdMapTable, which
correlates to an application name. We return the proper application name using
the global APP_ID_LOOKUP dictionary created previously. Next, we create cases for
various column values to return the appropriate data types, such as 8-bit
unsigned integers, 16- and 32-bit signed integers, 32-bit floats, and 64-bit
doubles.

def convert_data(data, column, col_type):
 if data is None:
 return ""
 elif column == "AppId":
 return APP_ID_LOOKUP[struct.unpack("<i", data)[0]]
 elif col_type == 0:
 return ""
 elif col_type == 1:
 if data == "*":
 return True
 else:
 return False
 elif col_type == 2:
 return struct.unpack("<B", data)[0]
 elif col_type == 3:
 return struct.unpack("<h", data)[0]
 elif col_type == 4:
 return struct.unpack("<i", data)[0]
 elif col_type == 6:
 return struct.unpack("<f", data)[0]
 elif col_type == 7:
 return struct.unpack("<d", data)[0]

Continuing where the other paragraph left off, we have an OLE timestamp when
the column type is equal to 8. We must unpack the value as a 64-bit integer and
then use the convert_ole() method to convert this to a datetime object. Column
types 5, 9, 10, 12, 13, and 16 are returned as is without any additional processing.
Most of the other elif statements use different struct format characters to
interpret the data appropriately. Column type 15 can also be a timestamp or a

64-bit integer. Therefore, specific to the SRUM database, we check if the
column name is either "EventTimestamp" or "ConnectStartTime", in which case the
value is a FILETIME timestamp and must be converted. Regardless of the column
type, suffice to say that it is handled here and returned to the main() method as
the appropriate type.

Enough of this; let's go look at these timestamp conversion methods:

 elif col_type == 8:
 return convert_ole(struct.unpack("<q", data)[0])
 elif col_type in [5, 9, 10, 12, 13, 16]:
 return data
 elif col_type == 11:
 return data.replace("\x00", "")
 elif col_type == 14:
 return struct.unpack("<I", data)[0]
 elif col_type == 15:
 if column in ["EventTimestamp", "ConnectStartTime"]:
 return convert_filetime(struct.unpack("<q", data)[0])
 else:
 return struct.unpack("<q", data)[0]
 elif col_type == 17:
 return struct.unpack("<H", data)[0]
 else:
 return data

To learn more about the ESE database column types, visit https://
github.com/libyal/libesedb/blob/b5abe2d05d5342ae02929c26475774dbb3c3aa5d
/include/libesedb/definitions.h.in.

The convert_filetime() method takes an integer and attempts to convert it using
the tried-and-true method shown before. We have observed scenarios where
the input integer can be too large for the datetime method and have added some
error handling for that scenario. Otherwise, this method is similar to what has
been previously discussed.

def convert_filetime(ts):
 if str(ts) == "0":
 return ""
 try:
 dt = datetime(1601, 1, 1) + timedelta(microseconds=ts / 10)
 except OverflowError:
 return ts
 return dt

New to any of our recipes is the convert_ole() method. The OLE timestamp format
is a floating point number representing the number of days since midnight of

https://github.com/libyal/libesedb/blob/b5abe2d05d5342ae02929c26475774dbb3c3aa5d/include/libesedb/definitions.h.in

December 30, 1899. We take the 64-bit integer supplied to the function and
pack and unpack it into the appropriate format required for the date
conversion. Then, we use the familiar process, with datetime specifying our
epoch and timedelta to provide the appropriate offset. If we find this value to be
too large, we catch the OverflowError and return the 64-bit integer as is.

def convert_ole(ts):
 ole = struct.unpack(">d", struct.pack(">Q", ts))[0]
 try:
 dt = datetime(1899, 12, 30, 0, 0, 0) + timedelta(days=ole)
 except OverflowError:
 return ts
 return dt

To learn more about common timestamp formats (including ole),
visit https://blogs.msdn.microsoft.com/oldnewthing/20030905-02/?p=42653.

The write_output() method is called for every table in the database. We check the
dictionary and return the function if there are no results for the given table. As
long as we do have results, we create an output name to distinguish the SRUM
table and create it in the current working directory. We then open the
spreadsheet, create the CSV writer, and then write the columns and data to the
spreadsheet using the writerow() and writerows() methods, respectively.

def write_output(table, data):
 if len(data[table]["data"]) == 0:
 return
 if table in TABLE_LOOKUP:
 output_name = TABLE_LOOKUP[table] + ".csv"
 else:
 output_name = "SRUM_Table_{}.csv".format(table)
 print("[+] Writing {} to current working directory: {}".format(
 output_name, os.getcwd()))
 with open(output_name, "wb") as outfile:
 writer = csv.writer(outfile)
 writer.writerow(data[table]["columns"])
 writer.writerows(data[table]["data"])

After running the code, we can review the extracted values in the spreadsheets.
The following two screenshots display the first few values found in our
application resource usage report:

https://blogs.msdn.microsoft.com/oldnewthing/20030905-02/?p=42653

There's more...
This script can be further improved. We have provided one or more
recommendations here:

Further research the file format and extend support for other information
of interest via this recipe
Check out srum-dump by Mark Baggett (https://github.com/MarkBaggett/srum-dump)

https://github.com/MarkBaggett/srum-dump

Conclusion
Whether this was your first time using Python, or you have employed it
numerous times before, you can see how the correct code can make all the
difference in your investigative process. Python gives you the ability to
effectively sift through large datasets and more effectively find that proverbial
smoking gun in an investigation. As you continue developing, you'll find
automation becomes second nature and you're many times more productive
because of it.

The quote "While we teach, we learn", attributed to Roman philosopher
Seneca, is fitting here, even if a computer was not originally thought of as the
subject being taught at the quote's conception. But it is apropos, writing code
helps refine your knowledge of a given artifact by requiring you to understand
its structure and content at a deeper level.

We hope you have learned a lot and continue to do so. There are a plethora of
freely available resources worth checking out and open source projects to
work on to better hone your skills. If there's one thing you should have learned
from this book: how to write an amazing CSV writer. But, really, we hope
through these examples you've developed a better feel for when and how to use
Python to your advantage. Good luck cookin'.

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	Essential Scripting and File Information Recipes
	Introduction
	Handling arguments like an adult
	Getting started
	How to do it…
	How it works…
	There's more…

	Iterating over loose files
	Getting started
	How to do it…
	How it works…
	There's more…

	Recording file attributes
	Getting started
	How to do it…
	How it works…
	There's more…

	Copying files, attributes, and timestamps
	Getting started
	How to do it…
	How it works…
	There's more…

	Hashing files and data streams
	Getting started
	How to do it…
	How it works…
	There's more…

	Keeping track with a progress bar
	Getting started
	How to do it…
	How it works…
	There's more…

	Logging results
	Getting started
	How to do it…
	How it works…
	There’s more…

	Multiple hands make light work
	Getting started
	How to do it…
	How it works…
	There's more…

	Creating Artifact Report Recipes
	Introduction
	Using HTML templates
	Getting started
	How to do it...
	How it works...
	There's more...

	Creating a paper trail
	Getting started
	How to do it...
	How it works...
	There's more...

	Working with CSVs
	Getting started
	How to do it...
	How it works...
	There's more...

	Visualizing events with Excel
	Getting started
	How to do it...
	How it works...

	Auditing your work
	Getting started
	How to do it...
	How it works...
	There's more...

	A Deep Dive into Mobile Forensic Recipes
	Introduction
	Parsing PLIST files
	Getting started
	How to do it...
	How it works...
	There's more…

	Handling SQLite databases
	Getting started
	How to do it...
	How it works...

	Identifying gaps in SQLite databases
	Getting started
	How to do it...
	How it works...
	See also

	Processing iTunes backups
	Getting started
	How to do it...
	How it works...
	There's more...

	Putting Wi-Fi on the map
	Getting started
	How to do it...
	How it works...

	Digging deep to recover messages
	Getting started
	How to do it...
	How it works...
	There's more…

	Extracting Embedded Metadata Recipes
	Introduction
	Extracting audio and video metadata
	Getting started
	How to do it...
	How it works...
	There's more...

	The big picture
	Getting started
	How to do it...
	How it works...
	There's more...

	Mining for PDF metadata
	Getting started
	How to do it...
	How it works...
	There's more...

	Reviewing executable metadata
	Getting started
	How to do it...
	How it works...
	There's more...

	Reading office document metadata
	Getting started
	How to do it...
	How it works...

	Integrating our metadata extractor with EnCase
	Getting started
	How to do it...
	How it works...
	There's more...

	Networking and Indicators of Compromise Recipes
	Introduction
	Getting a jump start with IEF
	Getting started
	How to do it...
	How it works...

	Coming into contact with IEF
	Getting started
	How to do it...
	How it works...

	Beautiful Soup
	Getting started
	How to do it...
	How it works...
	There's more...

	Going hunting for viruses
	Getting started
	How to do it...
	How it works...

	Gathering intel
	Getting started
	How to do it...
	How it works...

	Totally passive
	Getting started
	How to do it...
	How it works...

	Reading Emails and Taking Names Recipes
	Introduction
	Parsing EML files
	Getting started
	How to do it...
	How it works...

	Viewing MSG files
	Getting started
	How to do it...
	How it works...
	There’s more...
	See also

	Ordering Takeout
	Getting started
	How to do it...
	How it works...
	There’s more...

	What’s in the box?!
	Getting started
	How to do it...
	How it works...

	Parsing PST and OST mailboxes
	Getting started
	How to do it...
	How it works...
	There’s more...
	See also

	Log-Based Artifact Recipes
	Introduction
	About time
	Getting started
	How to do it...
	How it works...
	There's more...

	Parsing IIS web logs with RegEx
	Getting started
	How to do it...
	How it works...
	There's more...

	Going spelunking
	Getting started
	How to do it...
	How it works...
	There's more...

	Interpreting the daily.out log
	Getting started
	How to do it...
	How it works...

	Adding daily.out parsing to Axiom
	Getting started
	How to do it...
	How it works...

	Scanning for indicators with YARA
	Getting started
	How to do it...
	How it works...

	Working with Forensic Evidence Container Recipes
	Introduction
	Opening acquisitions
	Getting started
	How to do it...
	How it works...

	Gathering acquisition and media information
	Getting started
	How to do it...
	How it works...

	Iterating through files
	Getting started
	How to do it...
	How it works...
	There's more...

	Processing files within the container
	Getting started
	How to do it...
	How it works...

	Searching for hashes
	Getting started
	How to do it...
	How it works...
	There's more...

	Exploring Windows Forensic Artifacts Recipes - Part I
	Introduction
	One man's trash is a forensic examiner's treasure
	Getting started
	How to do it...
	How it works...

	A sticky situation
	Getting started
	How to do it...
	How it works...

	Reading the registry
	Getting started
	How to do it...
	How it works...
	There's more...

	Gathering user activity
	Getting started
	How to do it...
	How it works...
	There's more...

	The missing link
	Getting started
	How to do it...
	How it works...
	There's more...

	Searching high and low
	Getting started
	How to do it...
	How it works...
	There's more...

	Exploring Windows Forensic Artifacts Recipes - Part II
	Introduction
	Parsing prefetch files
	Getting started
	How to do it...
	How it works...
	There's more...

	A series of fortunate events
	Getting started
	How to do it...
	How it works...
	There's more...

	Indexing internet history
	Getting started
	How to do it...
	How it works...
	There's more...

	Shadow of a former self
	Getting started
	How to do it...
	How it works...
	There's more...

	Dissecting the SRUM database
	Getting started
	How to do it...
	How it works...
	There's more...
	Conclusion

