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Preface 
Hortensio: Madam, before you touch the instrument

To learn the order of my fingering,

I must begin with rudiments of art

To teach you gamouth in a briefer sort,

More pleasant, pithy and effectual,

Than hath been taught by any of my trade;

And there it is in writing, fairly drawn.

— Shakespeare, The Taming of the Shrew, III, i, 62–68.

Preface to the Second Edition

Since the first edition of this book was published, the number of computer 
and information security incidents has increased dramatically, as has their 
seriousness. In 2010, a computer worm infected the software controlling a 
particular type of centrifuge used in uranium enrichment sites [1123, 1144]. 
In 2013, a security breach at Target, a large chain of stores in the United 
States, compromised 40 million credit cards [1504, 1755, 2252]. Also in 2013, 
Yahoo reported that an attack compromised more than 1 billion accounts
[783]. In 2017, attackers spread ransomware that crippled computers 
throughout the world, including computers used in hospitals and 
telecommunications companies [1892]. Equifax estimated that attackers also 
compromised the personal data of over 100,000,000 people [176].



These attacks exploit vulnerabilities that have their roots in vulnerabilities of
the 1980s, 1970s, and earlier. They seem more complex because systems have
become more complex, and thus the vulnerabilities are more obscure and
require more complex attacks to exploit. But the principles underlying the
attacks, the vulnerabilities, and the failures of the systems have not changed
— only the arena in which they are to be applied has.

Consistent with this philosophy, the second edition continues to focus on the
principles underlying the field of computer and information security. Many
newer examples show how these principles are applied, or not applied, today;
but the principles themselves are as true today as they were in 2002, and
earlier. Some have been updated to reflect a deeper understanding of people
and systems. Others have been applied in new and interesting ways. But they
still ring true.

That said, the landscape of security has evolved greatly in the years since this
book was first published. The explosive growth of the World Wide Web, and
the consequent explosion in its use, has made security a problem at the
forefront of our society. No longer can vulnerabilities, both human and
technological, be relegated to the background of our daily lives. It is one of
the elements at the forefront, playing a role in everyone’s life as one browses
the web, uses a camera to take and send pictures, and turns on an oven
remotely. We grant access to our personal lives through social media such as
Facebook, Twitter, and Instagram, and to our homes through the Internet of
Things and our connections to the Internet. To ignore security issues, or
consider them simply ancillary details that “someone will fix somehow” or
threats unlikely to be realized personally is dangerous at best, and potentially
disastrous at worst.

Ultimately, little has changed. The computing ecosystem of our day is badly
flawed. Among the manifestations of these technological flaws are that
security problems continue to exist, and continue to grow in magnitude of
effect. An interesting question to ponder is what might move the paradigm of



security away from the cycle of “patch and catch” and “let the buyer beware”
to a stable and safer ecosystem.

But we must continue to improve our understanding of, and implementation
of, security. Security nihilism — simply giving up and asserting that we
cannot make things secure, so why try — means we accept these invasions of
our privacy, our society, and our world. Like everything else, security is
imperfect, and always will be — meaning we can improve the state of the art.
This book is directed towards that goal.

Updated Roadmap

The dependencies of the chapters are the same as in the first edition (see p.
xxxv), with two new chapters added.

Chapter 7, which includes a discussion of denial of service attack models,
contains material useful for Chapters 23, 24, 27, and 28. Similarly, Chapter
27 draws on material from the chapters in Part III as well as chapters 23, 26,
25, and all of Part VIII.

In addition to the suggestions in the preface to the first edition on p. xxxvi
about topics for undergraduate classes, the material in Chapter 27 will
introduce undergraduates to how attacks occur, how they can be analyzed,
and what their effects are. Coupled with current examples drawn from the
news, this chapter should prove fascinating to undergraduates.

As for graduate classes, the new material in Chapter 7 will provide students
with some background on resilience, a topic increasing in importance.
Otherwise, the recommendations are the same as for the first edition (see p.
xxxvii).

Changes to the First Edition

The second edition has extensively revised many examples to apply the



concepts to technologies, methodologies, and ideas that have emerged since
the first edition was published. Here, the focus is on new material in the
chapters; changes to examples are mentioned only when necessary to
describe that material. In addition to what is mentioned here, much of the
text has been updated.

Chapter 1. This chapter is largely unchanged.

Chapter 2. Section 2.2.2, “Access Controlled by History” has been changed to
use the problem of preventing downloaded programs from accessing the
system in unauthorized ways, instead of updating a database Section 2.4.3,
“Principle of Attenuation of Privilege,” has been expanded slightly, and
exercises added to point out differing forms of the principle.

Chapter 3. Definition 3–1 has been updated to make clear that “leaking”
refers to a right being added to an element of the access control matrix that
did not contain it initially, and an exercise has been added to demonstrate the
difference between this definition and the one in the first edition. Section 3.6
discusses comparing security properties of models.

Chapter 4. Section 4.5.1, “High-Level Policy Languages,” now uses Ponder
rather than a Java policy constraint language. Section 4.6, “Example:
Academic Computer Security Policy,” has been updated to reflect changes in
the university policy.

Chapter 5. Section 5.3.1 discusses principles for declassifying information.

Chapter 6. Section 6.5 presents trust models.

Chapter 7. This chapter is new.

Chapter 8. Section 8.1.3 modifies one of the assumptions of the Chinese Wall
model that is unrealistic. Section 8.3.1 expands the discussion of ORCON to
include DRM. Section 8.4 adds a discussion of several types of RBAC models.



Chapter 9. This chapter adds Section 9.6, which presents side channels in the
context of deducibility.

Chapter 10. This chapter has been extensively revised. The discussion of the
DES (Section 10.2.3) has been tightened and the algorithm moved to
Appendix F. Discussions of the AES (Section 10.2.5) and elliptic curve
cryptography (Section 10.3.3) have been added, and the section on digital
signatures moved from Chapter 11 to Section 10.5. Also, the number of digits
in the integers used in examples for public key cryptography has been
increased from 2 to at least 4, and in many cases more.

Chapter 11. Section 11.4.3 discusses public key infrastructures. Section
11.5.1.4, “Other Approaches,” now includes a brief discussion of identity-
based encryption.

Chapter 12. Section 12.1, “Problems,” now includes a discussion of type flaw
attacks. Section 12.3 discusses authenticated encryption with associated data,
and presents the CCM and GCM modes of block ciphers. A new section,
Section 12.5.2, discusses the Signal Protocol. Section 12.5.3, “Security at the
Transport Layer: SSL and TLS,” has been expanded and focuses on TLS
rather than SSL. It also discusses cryptographic weaknesses in SSL, such as
the POODLE attack, that have led to the use of SSL being strongly
discouraged.

Chapter 13. A discussion of graphical passwords has been added as Section
13.3.4. Section 13.4.3 looks at quantifying password strength in terms of
entropy. The discussion of biometrics in Section 13.7 has been expanded to
reflect their increasing use.

Chapter 14. The principle of least authority follows the principle of least
privilege in Section 14.2.1, and the principle of least astonishment now
supersedes the principle of psychological acceptability in Section 14.2.8.

Chapter 15. Section 15.5, “Naming and Certificates,” now includes a



discussion of registration authorities (RAs). Section 15.6.1.3 adds a discussion
of the DNS security extensions (DNSSEC). Section 15.7.2 discusses onion
routing and Tor in the context of anonymity.

Chapter 16. Section 16.2.6 discusses sets of privileges in Linux and other
UNIX-like systems.

Chapter 17. In contrast to the confidentiality-based context of information
flow in the main part of this chapter, Section 17.5 presents information flow
in an integrity context. In Section 17.6, the SPI and SNSMG examples of the
first edition have been replaced by android cellphones (Section 17.6.1) and
firewalls (Section 17.6.2).

Chapter 18. Section 18.2 has been expanded to include library operating
systems (Section 18.2.1.2) and program modification techniques (Section
18.2.2).

Chapter 19. Section 19.2.3, which covers agile software development, has
been added.

Chapter 20. The example decomposition of Windows 2000 into components
has been updated to use Windows 10.

Chapter 21. A new section, Section 21.5, discusses functional programming
languages, and another new section, 1.6, discusses formally verified products.

Chapter 22. Sections 22.6, on FIPS 140, and 22.7, on the Common Criteria,
have been updated.

Chapter 23. Section 23.5 presents botnets, and Sections 23.6.3, 23.6.4, 23.6.5,
and 23.6.6 discuss adware and spyware, ransomware, and phishing. While
not malware, phishing is a common vector for getting malware onto a system
and so it is discussed here.

Chapter 24. Section 24.2.5 reviews several penetration testing frameworks



used commercially and based on the Flaw Hypothesis Methodology. Section
24.5 presents the widely used CVE and CWE standards.

Chapter 25. Section 25.3.3, which discusses sanitization, has been expanded.

Chapter 26. Section 26.3.1 has been expanded to include several widely used
machine learning techniques for anomaly detection. Incident response
groups are discussed in Section 27.3.

Chapter 27. This chapter is new.

Chapter 28. The discussion of what firewalls are has been moved to Section
17.6.2, but the discussion of how the Drib configures and uses them remains
in this chapter. The Drib added wireless networks, which are discussed in
Section 28.3.3.1. Its analysis of using the cloud is in Section 28.3.3.2. The rest
of the chapter has been updated to refer to the new material in previous
chapters.

Chapter 29. This chapter has been updated to refer to the new material in
previous chapters.

Chapter 30. Section 30.2.2 describes the two-factor authentication procedure
used by the Drib. The rest of the chapter has been updated to refer to the new
material in previous chapters.

Chapter 31. This chapter has been updated to refer to the new material in
previous chapters.

Two new appendices have been added. Appendix F presents the DES and AES
algorithms, and Appendix H collects the rules in Chapter 31 for easy
reference. In addition, Appendix D examines some hardware enhancements
to aid virtualization, and Appendix G contains the full academic security
policy discussed in Section 4.6.

Preface to the First Edition1



1 Chapter numbers have been updated to correspond to the chapters in the
second edition.

On September 11, 2001, terrorists seized control of four airplanes. Three were
flown into buildings, and a fourth crashed, with catastrophic loss of life. In
the aftermath, the security and reliability of many aspects of society drew
renewed scrutiny. One of these aspects was the widespread use of computers
and their interconnecting networks. The issue is not new. In 1988,
approximately 5,000 computers throughout the Internet were rendered
unusable within 4 hours by a program called a worm [848].2 While the
spread, and the effects, of this program alarmed computer scientists, most
people were not worried because the worm did not affect their lives or their
ability to do their jobs. In 1993, more users of computer systems were alerted
to such dangers when a set of programs called sniffers were placed on many
computers run by network service providers and recorded login names and
passwords [673].

2 Section 23.4 discusses computer worms.

After an attack on Tsutomu Shimomura’s computer system, and the
fascinating way Shimomura followed the attacker’s trail, which led to his
arrest [1746], the public’s interest and apprehension were finally aroused.
Computers were now vulnerable. Their once reassuring protections were now
viewed as flimsy.

Several films explored these concerns. Movies such as War Games and
Hackers provided images of people who can, at will, wander throughout
computers and networks, maliciously or frivolously corrupting or destroying
information it may have taken millions of dollars to amass. (Reality intruded
on Hackers when the World Wide Web page set up by MGM/United Artists
was quickly altered to present an irreverent commentary on the movie and to
suggest that viewers see The Net instead. Paramount Pictures denied doing
this [875].) Another film, Sneakers, presented a picture of those who test the
security of computer (and other) systems for their owners and for the



government.

Goals

This book has three goals. The first is to show the importance of theory to
practice and of practice to theory. All too often, practitioners regard theory as
irrelevant and theoreticians think of practice as trivial. In reality, theory and
practice are symbiotic. For example, the theory of covert channels, in which
the goal is to limit the ability of processes to communicate through shared
resources, provides a mechanism for evaluating the effectiveness of
mechanisms that confine processes, such as sandboxes and firewalls.
Similarly, business practices in the commercial world led to the development
of several security policy models such as the Clark-Wilson model and the
Chinese Wall model. These models in turn help the designers of security
policies better understand and evaluate the mechanisms and procedures
needed to secure their sites.

The second goal is to emphasize that computer security and cryptography are
different. Although cryptography is an essential component of computer
security, it is by no means the only component. Cryptography provides a
mechanism for performing specific functions, such as preventing
unauthorized people from reading and altering messages on a network.
However, unless developers understand the context in which they are using
cryptography, and unless the assumptions underlying the protocol and the
cryptographic mechanisms apply to the context, the cryptography may not
add to the security of the system. The canonical example is the use of
cryptography to secure communications between two low security systems. If
only trusted users can access the two systems, cryptography protects
messages in transit. But if untrusted users can access either system (through
authorized accounts or, more likely, by breaking in), the cryptography is not
sufficient to protect the messages. The attackers can read the messages at
either endpoint.



The third goal is to demonstrate that computer security is not just a science
but also an art. It is an art because no system can be considered secure
without an examination of how it is to be used. The definition of a “secure
computer” necessitates a statement of requirements and an expression of
those requirements in the form of authorized actions and authorized users. (A
computer engaged in work at a university may be considered “secure” for the
purposes of the work done at the university. When moved to a military
installation, that same system may not provide sufficient control to be
deemed “secure” for the purposes of the work done at that installation.) How
will people, as well as other computers, interact with the computer system?
How clear and restrictive an interface can a designer create without rendering
the system unusable while trying to prevent unauthorized use or access to the
data or resources on the system?

Just as an artist paints his view of the world onto canvas, so does a designer
of security features articulate his view of the world of human/machine
interaction in the security policy and mechanisms of the system. Two
designers may use entirely different designs to achieve the same creation, just
as two artists may use different subjects to achieve the same concept.

Computer security is also a science. Its theory is based on mathematical
constructions, analyses, and proofs. Its systems are built in accordance with
the accepted practices of engineering. It uses inductive and deductive
reasoning to examine the security of systems from key axioms and to discover
underlying principles. These scientific principles can then be applied to
untraditional situations and new theories, policies, and mechanisms.

Philosophy

Key to understanding the problems that exist in computer security is a
recognition that the problems are not new. They are old problems, dating
from the beginning of computer security (and, in fact, arising from parallel
problems in the non-computer world). But the locus has changed as the field



of computing has changed. Before the mid-1980s, mainframe and mid-level
computers dominated the market, and computer security problems and
solutions were phrased in terms of securing files or processes on a single
system. With the rise of networking and the Internet, the arena has changed.
Workstations and servers, and the networking infrastructure that connects
them, now dominate the market. Computer security problems and solutions
now focus on a networked environment. However, if the workstations and
servers, and the supporting network infrastructure, are viewed as a single
system, the models, theories, and problem statements developed for systems
before the mid-1980s apply equally well to current systems.

As an example, consider the issue of assurance. In the early period, assurance
arose in several ways: formal methods and proofs of correctness, validation of
policy to requirements, and acquisition of data and programs from trusted
sources, to name a few. Those providing assurance analyzed a single system,
the code on it, and the sources (vendors and users) from which the code could
be acquired to ensure that either the sources could be trusted or the programs
could be confined adequately to do minimal damage. In the later period, the
same basic principles and techniques apply, except that the scope of some has
been greatly expanded (from a single system and a small set of vendors to the
world-wide Internet). The work on proof-carrying code, an exciting
development in which the proof that a downloadable program module
satisfies a stated policy is incorporated into the program itself, is an example
of this expansion.3 It extends the notion of a proof of consistency with a
stated policy. It advances the technology of the earlier period into the later
period. But in order to understand it properly, one must understand the ideas
underlying the concept of proof-carrying code, and these ideas lie in the
earlier period.

3 Section 23.9.5.1 discusses proof-carrying code.

As another example, consider Saltzer and Schroeder’s principles of secure
design.4 Enunciated in 1975, they promote simplicity, confinement, and



understanding. When security mechanisms grow too complex, attackers can
evade or bypass them. Many programmers and vendors are learning this
when attackers break into their systems and servers. The argument that the
principles are old, and somehow outdated, rings hollow when the result of
their violation is a non-secure system.

4 Chapter 14 discusses these principles.

The work from the earlier period is sometimes cast in terms of systems that
no longer exist and that differ in many ways from modern systems. This does
not vitiate the ideas and concepts, which also underlie the work done today.
Once these ideas and concepts are properly understood, applying them in a
multiplicity of environments becomes possible. Furthermore, the current
mechanisms and technologies will become obsolete and of historical interest
themselves as new forms of computing arise, but the underlying principles
will live on, to underlie the next generation—indeed the next era—of
computing.

The philosophy of this book is that certain key concepts underlie all of
computer security, and that the study of all parts of computer security
enriches the understanding of all parts. Moreover, critical to an
understanding of the applications of security-related technologies and
methodologies is an understanding of the theory underlying those
applications. Advances in the theory of computer protection have illuminated
the foundations of security systems. Issues of abstract modeling, and
modeling to meet specific environments, lead to systems designed to achieve
a specific and rewarding goal. Theorems about composability of policies5 and
the undecidability of the general security question6 have indicated the limits
of what can be done. Much work and effort are continuing to extend the
borders of those limits.

5 See Chapter 9, “Noninterference and Policy Composition.”

6 See Section 3.2, “Basic Results.”



Application of these results has improved the quality of the security of the
systems being protected. However, the issue is how compatibly the
assumptions of the model (and theory) conform to the environment to which
the theory is applied. Although our knowledge of how to apply these
abstractions is continually increasing, we still have difficulty correctly
transposing the relevant information from a realistic setting to one in which
analyses can then proceed. Such abstraction often eliminates vital
information. The omitted data may pertain to security in non-obvious ways.
Without this information, the analysis is flawed.

The practitioner needs to know both the theoretical and practical aspects of
the art and science of computer security. The theory demonstrates what is
possible. The practical makes known what is feasible. The theoretician needs
to understand the constraints under which these theories are used, how their
results are translated into practical tools and methods, and how realistic are
the assumptions underlying the theories. Computer Security: Art and
Science tries to meet these needs.

Unfortunately, no single work can cover all aspects of computer security, so
this book focuses on those parts that are, in the author’s opinion, most
fundamental and most pervasive. The mechanisms exemplify the applications
of these principles.

Organization

The organization of this book reflects its philosophy. It begins with
mathematical fundamentals and principles that provide boundaries within
which security can be modeled and analyzed effectively. The mathematics
provides a framework for expressing and analyzing the requirements of the
security of a system. These policies constrain what is allowed and what is not
allowed. Mechanisms provide the ability to implement these policies. The
degree to which the mechanisms correctly implement the policies, and indeed
the degree to which the policies themselves meet the requirements of the



organizations using the system, are questions of assurance. Exploiting
failures in policy, in implementation, and in assurance comes next, as well as
mechanisms for providing information on the attack. The book concludes
with the applications of both theory and policy focused on realistic situations.
This natural progression emphasizes the development and application of the
principles existent in computer security.

Part I, “Introduction,” describes what computer security is all about and
explores the problems and challenges to be faced. It sets the context for the
remainder of the book.

Part II, “Foundations,” deals with basic questions such as how “security” can
be clearly and functionally defined, whether or not it is realistic, and whether
or not it is decidable. If it is decidable, under what conditions is it decidable,
and if not, how must the definition be bounded in order to make it decidable?

Part III, “Policy,” probes the relationship between policy and security. The
definition of “security” depends on policy. In Part III we examine several
types of policies, including the ever-present fundamental questions of trust,
analysis of policies, and the use of policies to constrain operations and
transitions.

Part IV, “Implementation I: Cryptography,” discusses cryptography and its
role in security. It focuses on applications and discusses issues such as key
management and escrow, key distribution, and how cryptosystems are used
in networks. A quick study of authentication completes Part III.

Part V, “Implementation II: Systems,” considers how to implement the
requirements imposed by policies using system-oriented techniques. Certain
design principles are fundamental to effective security mechanisms. Policies
define who can act and how they can act, and so identity is a critical aspect of
implementation. Mechanisms implementing access control and flow control
enforce various aspects of policies.



Part VI, “Assurance,” presents methodologies and technologies for
ascertaining how well a system, or a product, meets its goals. After setting the
background, to explain exactly what “assurance” is, the art of building
systems to meet varying levels of assurance is discussed. Formal verification
methods play a role. Part VI shows how the progression of standards has
enhanced our understanding of assurance techniques.

Part VII, “Special Topics,” discusses some miscellaneous aspects of computer
security. Malicious logic thwarts many mechanisms. Despite our best efforts
at high assurance, systems today are replete with vulnerabilities. Why? How
can a system be analyzed to detect vulnerabilities? What models might help
us improve the state of the art? Given these security holes, how can we detect
attackers who exploit them? A discussion of auditing flows naturally into a
discussion of intrusion detection—a detection method for such attacks.

Part VIII, “Practicum,” presents examples of how to apply the principles
discussed throughout the book. It begins with networks and proceeds to
systems, users, and programs. Each chapter states a desired policy and shows
how to translate that policy into a set of mechanisms and procedures that
support the policy. Part VIII tries to demonstrate that the material covered
elsewhere can be, and should be, used in practice.

Each chapter in this book ends with a summary, descriptions of some
research issues, and some suggestions for further reading. The summary
highlights the important ideas in the chapter. The research issues are current
“hot topics” or are topics that may prove to be fertile ground for advancing
the state of the art and science of computer security. Interested readers who
wish to pursue the topics in any chapter in more depth can go to some of the
suggested readings. They expand on the material in the chapter or present
other interesting avenues.

Roadmap



This book is both a reference book and a textbook. Its audience is
undergraduate and graduate students as well as practitioners. This section
offers some suggestions on approaching the book.

Dependencies

Chapter 1 is fundamental to the rest of the book and should be read first.
After that, however, the reader need not follow the chapters in order. Some of
the dependencies among chapters are as follows.

Chapter 3 depends on Chapter 2 and requires a fair degree of mathematical
maturity. Chapter 2, on the other hand, does not. The material in Chapter 3 is
for the most part not used elsewhere (although the existence of the first
section’s key result, the undecidability theorem, is mentioned repeatedly). It
can be safely skipped if the interests of the reader lie elsewhere.

The chapters in Part III build on one another. The formalisms in Chapter 5
are called on in Chapters 20 and 21, but nowhere else. Unless the reader
intends to delve into the sections on theorem proving and formal mappings,
the formalisms may be skipped. The material in Chapter 9 requires a degree
of mathematical maturity, and this material is used sparingly elsewhere. Like
Chapter 3, Chapter 9 can be skipped by the reader whose interests lie
elsewhere.

Chapters 10, 11, and 12 also build on one another in order. A reader who has
encountered basic cryptography will have an easier time with the material
than one who has not, but the chapters do not demand the level of
mathematical experience that Chapters 3 and 9 require. Chapter 13 does not
require material from Chapter 11 or Chapter 12, but it does require material
from Chapter 10.

Chapter 14 is required for all of Part V. A reader who has studied operating
systems at the undergraduate level will have no trouble with Chapter 16.
Chapter 15 uses the material in Chapters 10 and 11; Chapter 17 builds on



material in Chapters 5, 14, and 16; and Chapter 18 uses material in Chapters
4, 14, and 17.

Chapter 19 relies on information in Chapter 4. Chapter 20 builds on Chapters
5, 14, 16, and 19. Chapter 21 presents highly mathematical concepts and uses
material from Chapters 19 and 20. Chapter 22 is based on material in
Chapters 5, 19, and 20; it does not require Chapter 21. For all of Part VI, a
knowledge of software engineering is very helpful.

Chapter 23 draws on ideas and information in Chapters 5, 6, 10, 14, 16, and
18 (and for Section 23.8, the reader should read Section 3.1). Chapter 24 is
self-contained, although it implicitly uses many ideas from assurance. It also
assumes a good working knowledge of compilers, operating systems, and in
some cases networks. Many of the flaws are drawn from versions of the UNIX
operating system, or from Windows systems, and so a working knowledge of
either or both systems will make some of the material easier to understand.
Chapter 25 uses information from Chapter 4, and Chapter 26 uses material
from Chapter 25.

The practicum chapters are self-contained and do not require any material
beyond Chapter 1. However, they point out relevant material in other sections
that augments the information and (we hope) the reader’s understanding of
that information.

Background

The material in this book is at the advanced undergraduate level. Throughout,
we assume that the reader is familiar with the basics of compilers and
computer architecture (such as the use of the program stack) and operating
systems. The reader should also be comfortable with modular arithmetic (for
the material on cryptography). Some material, such as that on formal
methods (Chapter 21) and the mathematical theory of computer security
(Chapter 3 and the formal presentation of policy models), requires



considerable mathematical maturity. Other specific recommended
background is presented in the preceding section. Part IX, the appendices,
contains material that will be helpful to readers with backgrounds that lack
some of the recommended material.

Examples are drawn from many systems. Many come from the UNIX
operating system or variations of it (such as Linux). Others come from the
Windows family of systems. Familiarity with these systems will help the
reader understand many examples easily and quickly.

Undergraduate Level

An undergraduate class typically focuses on applications of theory and how
students can use the material. The specific arrangement and selection of
material depends on the focus of the class, but all classes should cover some
basic material—notably that in Chapters 1, 10, and 14, as well as the notion of
an access control matrix, which is discussed in Sections 2.1 and 2.2.

Presentation of real problems and solutions often engages undergraduate
students more effectively than presentation of abstractions. The special topics
and the practicum provide a wealth of practical problems and ways to deal
with them. This leads naturally to the deeper issues of policy, cryptography,
non-cryptographic mechanisms, and assurance. The following are sections
appropriate for non-mathematical undergraduate courses in these topics.

• Policy: Sections 4.1 through 4.4 describe the notion of policy. The instructor
should select one or two examples from Sections 5.1, 5.2.1, 6.2, 6.4, 8.1.1, and
8.2, which describe several policy models informally. Section 8.4 discusses
role-based access control.

• Cryptography: Key distribution is discussed in Sections 11.1 and 11.2, and a
common form of public key infrastructures (called PKIs) is discussed in
Section 11.4.2. Section 12.1 points out common errors in using cryptography.
Section 12.4 shows how cryptography is used in networks, and the instructor



should use one of the protocols in Section 12.5 as an example. Chapter 13
offers a look at various forms of authentication, including non-cryptographic
methods.

• Non-cryptographic mechanisms: Identity is the basis for many access
control mechanisms. Sections 15.1 through 15.4 discuss identity on a system,
and Section 15.6 discusses identity and anonymity on the Web. Sections 16.1
and 16.2 explore two mechanisms for controlling access to files, and Section
16.4 discusses the ring-based mechanism underlying the notion of multiple
levels of privilege. If desired, the instructor can cover sandboxes by using
Sections 18.1 and 18.2, but because Section 18.2 uses material from Section,
the instructor will need to go over those sections as well.

• Assurance: Chapter 19 provides a basic introduction to the often overlooked
topic of assurance.

Graduate Level

A typical introductory graduate class can focus more deeply on the subject
than can an undergraduate class. Like an undergraduate class, a graduate
class should cover Chapters 1, 10, and 14. Also important are the
undecidability results in Sections 3.1 and 3.2, which require that Chapter 2 be
covered. Beyond that, the instructor can choose from a variety of topics and
present them to whatever depth is appropriate. The following are sections
suitable for graduate study.

• Policy models: Part III covers many common policy models both informally
and formally. The formal description is much easier to understand once the
informal description is understood, so in all cases both should be covered.
The controversy in Section 5.4 is particularly illuminating to students who
have not considered the role of policy and the nature of a policy. Chapter 9 is
a highly formal discussion of the foundations of policy and is appropriate for
students with experience in formal mathematics. Students without such a



background will find it quite difficult.

• Cryptography: Part IV focuses on the applications of cryptography, not on
cryptography’s mathematical underpinnings.7 It discusses areas of interest
critical to the use of cryptography, such as key management and some basic
cryptographic protocols used in networking.

7 The interested reader will find a number of books covering aspects of this
subject [442, 792, 793, 920, 1099, 1100, 1325, 1837].

• Non-cryptographic mechanisms: Issues of identity and certification are
complex and generally poorly understood. Section 15.5 covers these
problems. Combining this with the discussion of identity on the Web (Section
15.6) raises issues of trust and naming. Chapters 17 and 18 explore issues of
information flow and confining that flow.

• Assurance: Traditionally, assurance is taught as formal methods, and
Chapter 21 serves this purpose. In practice, however, assurance is more often
accomplished by using structured processes and techniques and informal but
rigorous arguments of justification, mappings, and analysis. Chapter 20
emphasizes these topics. Chapter 22 discusses evaluation standards and relies
heavily on the material in Chapters 19 and 20 and some of the ideas in
Chapter 21.

• Miscellaneous Topics: Section 23.8 presents a proof that the generic
problem of determining if a generic program is a computer virus is in fact
undecidable. The theory of penetration studies in Section 24.2, and the more
formal approach in Section 24.6, illuminate the analysis of systems for
vulnerabilities. If the instructor chooses to cover intrusion detection (Chapter
26) in depth, it should be understood that this discussion draws heavily on
the material on auditing (Chapter 25).

• Practicum: The practicum (Part VIII) ties the material in the earlier part of
the book to real-world examples and emphasizes the applications of the



theory and methodologies discussed earlier.

Practitioners

Practitioners in the field of computer security will find much to interest them.
The table of contents and the index will help them locate specific topics. A
more general approach is to start with Chapter 1 and then proceed to Part
VIII, the practicum. Each chapter has references to other sections of the text
that explain the underpinnings of the material. This will lead the reader to a
deeper understanding of the reasons for the policies, settings, configurations,
and advice in the practicum. This approach also allows readers to focus on
those topics that are of most interest to them.



Part I: Introduction
Writers say “To write a good book, tell them what you are going to tell them,
then tell them, then tell them what you told them.” This is the “what we’re
going to tell you” part.

Chapter 1, “An Overview of Computer Security,” presents the underpinnings
of computer security and an overview of the important issues to place them in
context. It begins with a discussion of what computer security is and how
threats are connected to security services. The combination of desired
services makes up a policy, and mechanisms enforce the policy. All rely on
underlying assumptions, and the systems built on top of these assumptions
lead to issues of assurance. Finally, the operational and human factors affect
the mechanisms used as well as the policy.



Chapter 1. An Overview of
Computer Security
ANTONIO: Whereof what’s past is prologue, what to come In yours and my
discharge.

— The Tempest, II, i, 257–258.

This chapter presents the basic concepts of computer security. The remainder
of this book will elaborate on these concepts in order to reveal the logic
underlying the principles of these concepts.

We begin with basic security-related services that protect against threats to
the security of the system. The next section discusses security policies that
identify the threats and define the requirements for ensuring a secure system.
Security mechanisms detect and prevent attacks and recover from those that
succeed. Analyzing the security of a system requires an understanding of the
mechanisms that enforce the security policy. It also requires a knowledge of
the related assumptions and trust, which leads to the threats and the degree
to which they may be realized. Such knowledge allows one to design better
mechanisms and policies to neutralize these threats. This process leads to risk
analysis. Human beings are the weakest link in the security mechanisms of
any system. Therefore, policies and procedures must take people into
account. This chapter discusses each of these topics.

1.1 The Basic Components

Computer security rests on confidentiality, integrity, and availability. The
interpretations of these three aspects vary, as do the contexts in which they
arise. The interpretation of an aspect in a given environment is dictated by
the needs of the individuals, customs, and laws of the particular organization.

1.1.1 Confidentiality



Confidentiality is the concealment of information or resources. The need for
keeping information secret arises from the use of computers in institutions
with sensitive information such as government and industry. For example,
military and civilian institutions in the government often restrict access to
information to those who need that information. The first formal work in
computer security was motivated by the military’s attempt to implement
controls to enforce a “need to know” principle. This principle also applies to
industrial firms, which keep their proprietary designs secure lest their
competitors try to steal the designs. As a further example, all types of
institutions keep some types of personnel records secret.

Access control mechanisms support confidentiality. One access control
mechanism for preserving confidentiality is cryptography, which transforms
data to make it incomprehensible. A cryptographic key controls access to the
untransformed data, but then the cryptographic key itself becomes another
datum to be protected.

EXAMPLE: Enciphering an income tax return will prevent anyone without
the key from reading the taxable income on the return. If the owner needs to
see the return, it must be deciphered. Only the possessor of the cryptographic
key can enter it into a deciphering program. However, if someone else can
read the key when it is entered into the program and has access to the
enciphered return, the confidentiality of the tax return has been
compromised.

Other system-dependent mechanisms can prevent information from being
illicitly accessed. Data protected only by these controls can be read when the
controls fail or are bypassed. Then the controls’ advantage is offset by a
corresponding disadvantage. They can protect the secrecy of data more
completely than cryptography, but if they fail or are evaded, the data becomes
visible.

Confidentiality also applies to the existence of data, which is sometimes more



revealing than the data itself. The precise number of people who distrust a
politician may be less important than knowing that such a poll was taken by
the politician’s staff. How a particular government agency harassed citizens in
its country may be less important than knowing that such harassment
occurred. Access control mechanisms sometimes conceal the mere existence
of data, lest the existence itself reveal information that should be protected.

Resource hiding is another important aspect of confidentiality. Organizations
often wish to conceal their network configuration as well as what systems
they are using; organizations may not wish others to know about specific
equipment (because it could be used without authorization or in
inappropriate ways); and a company renting time from a service provider
may not want others to know what resources it is using. Access control
mechanisms provide these capabilities as well.

All the mechanisms that enforce confidentiality require supporting services
from the system. The assumption is that the security services can rely on the
kernel, and other agents, to supply correct data. Thus, assumptions and trust
underlie confidentiality mechanisms.

1.1.2 Integrity

Integrity refers to the trustworthiness of data or resources, and it is usually
phrased in terms of preventing improper or unauthorized change. Integrity
includes data integrity (the content of the information) and origin integrity
(the source of the data, often called authentication). The source of the
information may bear on its accuracy and credibility and on the trust that
people place in the information. This dichotomy illustrates the principle that
the aspect of integrity known as credibility is central to the proper
functioning of a system. We will return to this issue when discussing
malicious logic.

EXAMPLE: A newspaper may print information obtained from a leak at the
White House but attribute it to the wrong source. The information is printed



as received (preserving data integrity), but its source is incorrect (corrupting
origin integrity).

Integrity mechanisms fall into two classes: prevention mechanisms and
detection mechanisms.

Prevention mechanisms seek to maintain the integrity of the data by blocking
any unauthorized attempts to change the data or any attempts to change the
data in unauthorized ways. The distinction between these two types of
attempts is important. The former occurs when a user tries to change data
which she has no authority to change. The latter occurs when a user
authorized to make certain changes in the data tries to change the data in
other ways. For example, suppose an accounting system is on a computer.
Someone breaks into the system and tries to modify the accounting data.
Then an unauthorized user has tried to violate the integrity of the accounting
database. But if an accountant hired by the firm to maintain its books tries to
embezzle money by sending it overseas and hiding the transactions, a user
(the accountant) has tried to change data (the accounting data) in
unauthorized ways (by not entering the transfer of funds to a Swiss bank
account). Adequate authentication and access controls will generally stop the
break-in from the outside, but preventing the second type of attempt requires
very different controls.

Detection mechanisms do not try to prevent violations of integrity; they
simply report that the data’s integrity is no longer trustworthy. Detection
mechanisms may analyze system events (user or system actions) to detect
problems or (more commonly) may analyze the data itself to see if required or
expected constraints still hold. The mechanisms may report the actual cause
of the integrity violation (a specific part of a file was altered), or they may
simply report that the file is now corrupt.

Working with integrity is very different than working with confidentiality.
With confidentiality, the data is either compromised or it is not, but integrity
includes both the correctness and the trustworthiness of the data. The origin



of the data (how and from whom it was obtained), how well the data was
protected before it arrived at the current machine, and how well the data is
protected on the current machine all affect the integrity of the data. Thus,
evaluating integrity is often very difficult, because it relies on assumptions
about the source of the data and about trust in that source—two
underpinnings of security that are often overlooked.

1.1.3 Availability

Availability refers to the ability to use information or resources. Availability
is an important aspect of reliability as well as of system design because an
unavailable system is at least as bad as no system at all. The aspect of
availability that is relevant to security is that someone may deliberately
arrange to deny access to data or to a service by making it unavailable or
unusable. System designs usually assume a statistical model to analyze
expected patterns of use, and mechanisms ensure availability when that
statistical model holds. Someone may be able to manipulate use (or
parameters that control use, such as network traffic) so that the assumptions
of the statistical model are no longer valid. This means that the mechanisms
for keeping the resource or data available are working in an environment for
which they were not designed. As a result, they will often fail.

EXAMPLE: Suppose Anne has compromised a bank’s secondary system
server, which supplies bank account balances. When anyone else asks that
server for information, Anne can supply any information she desires.
Merchants validate checks by contacting the bank’s primary balance server. If
a merchant gets no response, the secondary server will be asked to supply the
data. Anne’s colleague prevents merchants from contacting the primary
balance server, so all merchant queries go to the secondary server. Anne will
never have a check turned down, regardless of her actual account balance.
Notice that if the bank had only one server (the primary one) and that server
were unavailable, this scheme would not work. The merchant would be
unable to validate the check.



Attempts to block availability, called denial of service (DoS) attacks, can be
the most difficult to detect, because the analyst must determine if the unusual
access patterns are attributable to deliberate manipulation of resources or of
environment. Complicating this determination is the nature of statistical
models. Even if the model accurately describes the environment, atypical
events simply contribute to the nature of the statistics. A deliberate attempt
to make a resource unavailable may look like, or be, an atypical event. In
some environments, it may not even appear atypical.

1.2 Threats

A threat is a potential violation of security. The violation need not actually
occur for there to be a threat. The fact that the violation might occur means
that those actions that could cause it to occur must be guarded against (or
prepared for). Those actions are called attacks. Those who execute such
actions, or cause them to be executed, are called attackers.

The three security services—confidentiality, integrity, and availability—
counter threats to the security of a system. Shirey [1749] divides threats into
four broad classes: disclosure, or unauthorized access to information;
deception, or acceptance of false data; disruption, or interruption or
prevention of correct operation; and usurpation, or unauthorized control of
some part of a system. These four broad classes encompass many common
threats. Because the threats are ubiquitous, an introductory discussion of
each one will present issues that recur throughout the study of computer
security.

Snooping or eavesdropping, the unauthorized interception of information, is
a form of disclosure. It is passive, suggesting simply that some entity is
listening to (or reading) communications or browsing through files or system
information. Passive wiretapping, is a form of snooping in which a network
is monitored. (It is called “wiretapping” because of the “wires” that compose
the network, although the term is used even if no physical wiring is involved.)



Confidentiality services seek to counter this threat.

Modification or alteration, an unauthorized change of information, covers
three classes of threats. The goal may be deception, in which some entity
relies on the modified data to determine which action to take, or in which
incorrect information is accepted as correct and is released. If the modified
data controls the operation of the system, the threats of disruption and
usurpation arise. Unlike snooping, modification is active; it results from an
entity changing information. Active wiretapping is a form of modification in
which data moving across a network is altered, new data injected, or parts of
the data deleted; the term “active” distinguishes it from snooping (“passive”
wiretapping). An example is the man-in-the-middle attack, in which an
intruder reads messages from the sender and sends (possibly modified)
versions to the recipient, in hopes that the recipient and sender will not
realize the presence of the intermediary. Integrity services seek to counter
this threat.

Masquerading or spoofing, an impersonation of one entity by another, is a
form of both deception and usurpation. It lures a victim into believing that
the entity with which it is communicating is a different entity. For example, if
a user tries to log into a computer across the Internet but instead reaches
another computer that claims to be the desired one, the user has been
spoofed. Similarly, if a user tries to read a web page, but an attacker has
arranged for the user to be given a different page, another spoof has taken
place. This may be a passive attack (in which the user simply accesses the web
page), but it is usually an active attack (in which the attacker issues responses
dynamically to mislead the user about the web page). Although masquerading
is primarily deception, it is often used to usurp control of a system by an
attacker impersonating an authorized manager or controller. Integrity
services (called “authentication services” in this context) seek to counter this
threat.

Some forms of masquerading may be allowed. Delegation occurs when one



entity authorizes a second entity to perform functions on its behalf. The
distinctions between delegation and masquerading are important. If Susan
delegates to Thomas the authority to act on her behalf, she is giving
permission for him to perform specific actions as though she were performing
them herself. All parties are aware of the delegation. Thomas will not pretend
to be Susan; rather, he will say, “I am Thomas and I have authority to do this
on Susan’s behalf.” If asked, Susan will verify this. On the other hand, in a
masquerade, Thomas will pretend to be Susan. No other parties (including
Susan) will be aware of the masquerade, and Thomas will say, “I am Susan.”
Should anyone discover that he or she is dealing with Thomas and ask Susan
about it, she will deny that she authorized Thomas to act on her behalf. Even
though masquerading is a violation of security, delegation is not.

Repudiation of origin, a false denial that an entity sent (or created)
something, is a form of deception. For example, suppose a customer sends a
letter to a vendor agreeing to pay a large amount of money for a product. The
vendor ships the product and then demands payment. The customer denies
having ordered the product and, according to a law in the customer’s state, is
therefore entitled to keep the unsolicited shipment without payment. The
customer has repudiated the origin of the letter. If the vendor cannot prove
that the letter came from the customer, the attack succeeds. A variant of this
is denial by a user that he created specific information or entities such as files.
Integrity mechanisms try to cope with this threat.

Denial of receipt, a false denial that an entity received some information or
message, is a form of deception. Suppose a customer orders an expensive
product, but the vendor demands payment before shipment. The customer
pays, and the vendor ships the product. The customer then asks the vendor
when he will receive the product. If the customer has already received the
product, the question constitutes a denial of receipt attack. The vendor can
defend against this attack only by proving that the customer did, despite his
denials, receive the product. Integrity and availability mechanisms attempt to
guard against these attacks.



Delay, a temporary inhibition of a service, is a form of usurpation, although it
can play a supporting role in deception. Typically, delivery of a message or
service requires some time t; if an attacker can force the delivery to take more
than time t, the attacker has successfully delayed delivery. This requires
manipulation of system control structures, such as network components or
server components, and hence is a form of usurpation. If an entity is waiting
for an authorization message that is delayed, it may query a secondary server
for the authorization. Even though the attacker may be unable to masquerade
as the primary server, she might be able to masquerade as that secondary
server and supply incorrect information. Availability mechanisms can often
thwart this threat.

Denial of service, a long-term inhibition of service, is a form of usurpation,
although it is often used with other mechanisms to deceive. The attacker
prevents a server from providing a service. The denial may occur at the source
(by preventing the server from obtaining the resources needed to perform its
function), at the destination (by blocking the communications from the
server), or along the intermediate path (by discarding messages from either
the client or the server, or both). Denial of service poses the same threat as an
infinite delay. Availability mechanisms seek to counter this threat.

Denial of service or delay may result from direct attacks or from problems
unrelated to security. From our point of view, the cause and result are
important; the intention underlying them is not. If delay or denial of service
compromises system security, or is part of a sequence of events leading to the
compromise of a system, then we view it as an attempt to breach system
security. But the attempt may not be deliberate; indeed, it may be a user
error, or the product of environmental characteristics, rather than specific
actions of an attacker.

1.3 Policy and Mechanism

Critical to our study of security is the distinction between policy and



mechanism:

Definition 1–1. A security policy is a statement of what is, and what is not,
allowed.

Definition 1–2. A security mechanism is a method, tool, or procedure for
enforcing a security policy.

Mechanisms can be non-technical, such as requiring proof of identity before
changing a password; in fact, policies often require some procedural
mechanisms that technology cannot enforce.

As an example, suppose a university’s computer science laboratory has a
policy that prohibits any student from copying another student’s homework
files. The computer system provides mechanisms for preventing others from
reading a user’s files. Anna fails to use these mechanisms to protect her
homework files, and Bill copies them. A breach of security has occurred,
because Bill has violated the security policy. Anna’s failure to protect her files
does not authorize Bill to copy them.

In this example, Anna could easily have protected her files. In other
environments, such protection may not be easy. For example, the Internet
provides only the most rudimentary security mechanisms, which are not
adequate to protect information sent over that network. Nevertheless, acts
such as the recording of passwords and other sensitive information violate an
implicit security policy of most sites (specifically, that passwords are a user’s
confidential property and cannot be recorded by anyone).

Policies may be presented mathematically, as a list of allowed (secure) and
disallowed (non-secure) states. For our purposes, we will assume that any
given policy provides an axiomatic description of secure states and non-
secure states. In practice, policies are rarely so precise; they normally
describe in English, or some other natural language, what users and staff are
allowed to do. The ambiguity inherent in such a description leads to states



that are not classified as “allowed” or “disallowed.” For example, consider the
homework policy discussed previously. If someone looks through another
user’s directory without copying homework files, is that a violation of
security? The answer depends on site custom, rules, regulations, and laws, all
of which are outside our focus and may change over time.

When two different sites communicate or cooperate, the entity they compose
has a security policy based on the security policies of the two entities. If those
policies are inconsistent, either or both sites must decide what the security
policy for the combined site should be. The inconsistency often manifests
itself as a security breach. For example, if proprietary documents were given
to a university, the policy of confidentiality in the corporation would conflict
with the more open policies of most universities. The university and the
company must develop a mutual security policy that meets both their needs
in order to produce a consistent policy. When the two sites communicate
through an independent third party, such as an Internet service provider, the
complexity of the situation grows rapidly.

1.3.1 Goals of Security

Given a security policy’s specification of “secure” and “non-secure” actions,
security mechanisms can prevent the attack, detect the attack, or recover
from the attack. The strategies may be used together or separately.

Prevention means that an attack will fail. For example, if one attempts to
break into a host over the Internet and that host is not connected to the
Internet, the attack has been prevented. Typically, prevention involves
implementation of mechanisms that restrict users to specific actions and that
are trusted to be implemented in a correct, unalterable way, so that an
attacker cannot defeat the mechanism by changing it. Preventative
mechanisms often are very cumbersome and interfere with system use to the
point that they hinder normal use of the system. But some simple
preventative mechanisms, such as passwords (which aim to prevent
unauthorized users from accessing the system), have become widely



accepted. Prevention mechanisms can prevent compromise of parts of the
system; once in place, the resource protected by the mechanism need not be
monitored for security problems, at least in theory.

Detection indicates the effectiveness of preventative measures, and is
especially useful when an attack cannot be prevented. Detection mechanisms
accept that an attack will occur; the goal is to determine that an attack is
under way, or has occurred, and report it. The attack may be monitored,
however, to provide data about its nature, severity, and results. Typical
detection mechanisms monitor various aspects of the system, looking for
actions or information indicating an attack. A good example of such a
mechanism is one that gives a warning when a user enters an incorrect
password three times. The login may continue, but an error message in a
system log reports the unusually high number of mistyped passwords.
Detection mechanisms do not prevent compromise of parts of the system,
which is a serious drawback. The resource protected by the detection
mechanism is continuously or periodically monitored for security problems.

Recovery has two forms. The first is to stop an attack and to assess and repair
any damage caused by that attack. As an example, if the attacker deletes a file,
one recovery mechanism would be to restore the file from backup media. In
practice, recovery is far more complex, because the nature of each attack is
unique. Thus, the type and extent of any damage can be difficult to
characterize completely. Moreover, the attacker may return, so recovery
involves identification and fixing of the vulnerabilities used by the attacker to
enter the system. In some cases, retaliation (by attacking the attacker’s
system or taking legal steps to hold the attacker accountable) is part of
recovery. In all these cases, the system’s functioning is inhibited by the attack.
By definition, recovery requires resumption of correct operation.

In a second form of recovery, the system continues to function correctly while
an attack is under way. This type of recovery is quite difficult to implement
because of the complexity of computer systems. It draws on techniques of



fault tolerance as well as techniques of security and is typically used in safety-
critical systems. It differs from the first form of recovery, because at no point
does the system function incorrectly. However, the system may disable non-
essential functionality. Of course, this type of recovery is often implemented
in a weaker form whereby the system detects incorrect functioning
automatically and then corrects (or attempts to correct) the error.

1.4 Assumptions and Trust

How do we determine if a policy correctly describes the required level and
type of security for the site? This question lies at the heart of all security,
computer and otherwise. Security rests on assumptions specific to the type of
security required and the environment in which it is to be employed.

EXAMPLE: Opening a door lock requires a key. The assumption is that the
lock is secure against lock picking. This assumption is treated as an axiom
and is made because most people would require a key to open a door lock. A
good lock picker, however, can open a lock without a key. Hence, in an
environment with a skilled, untrustworthy lock picker, the assumption is
wrong and the conclusion invalid.

If the lock picker is trustworthy, the assumption is still valid. The term
“trustworthy” implies that the lock picker will not pick a lock unless the
owner of the lock authorizes the lock picking. This is another example of the
role of trust. A well-defined exception to the rules provides a “back door”
through which the security mechanism (the locks) can be bypassed. The trust
resides in the belief that this back door will not be used except as specified by
the policy. If it is used, the trust has been misplaced and the security
mechanism (the lock) provides no security.

Like the lock example, a policy consists of a set of axioms that the policy
makers believe can be enforced. Designers of policies always make two
assumptions. First, the policy correctly and unambiguously partitions the set



of system states into “secure” and “non-secure” states. Second, the security
mechanisms prevent the system from entering a “non-secure” state. If either
assumption is erroneous, the system will be non-secure.

These two assumptions are fundamentally different. The first assumption
asserts that the policy is a correct description of what constitutes a “secure”
system.

EXAMPLE: A bank’s policy may state that officers of the bank are authorized
to shift money among accounts. If a bank officer puts $100,000 in his
account, has the bank’s security been violated? Given the aforementioned
policy statement, no, because the officer was authorized to move the money.
In the “real world,” that action would constitute embezzlement, something
any bank would consider a security violation.

The second assumption says that the security policy can be enforced by
security mechanisms. These mechanisms are either secure, precise, or broad.
Let P be the set of all possible states. Let Q be the set of secure states (as
specified by the security policy). Let the security mechanisms restrict the
system to some set of states R (thus, R ⊆ P). Then we have the following
definition.

Definition 1–3. A security mechanism is secure if R ⊆ Q; it is precise if R =
Q; and it is broad if there are states r such that r ∈ R and r ∉ Q.

Ideally, the union of all security mechanisms active on a system would
produce a single precise mechanism (that is, R = Q). In practice, security
mechanisms are broad; they allow the system to enter non-secure states. We
will revisit this topic when we explore policy formulation in more detail.

Trusting that mechanisms work requires several assumptions:

• Each mechanism is designed to implement one or more parts of the security
policy.



• The union of the mechanisms implements all aspects of the security policy.

• The mechanisms are tamperproof.

• The mechanisms are implemented, installed, and administered correctly.

Because of the importance and complexity of trust and of assumptions, we
will revisit this topic repeatedly and in various guises throughout this book.

1.5 Assurance

Trust cannot be quantified precisely. System specification, design, and
implementation can provide a basis for determining “how much” to trust a
system. This aspect of trust is called assurance. It is an attempt to provide a
basis for bolstering (or substantiating or specifying) how much one can trust
a system.

EXAMPLE: In the United States, aspirin from a nationally known and
reputable manufacturer, delivered to the drugstore in a safety-sealed
container, and sold with the seal still in place, is considered trustworthy by
most people. The bases for that trust are as follows.

• The testing and certification of the drug (aspirin) by the Food and Drug
Administration. The FDA has jurisdiction over many types of medicines and
allows medicines to be marketed only if they meet certain clinical standards
of usefulness.

• The manufacturing standards of the company and the precautions it takes to
ensure that the drug is not contaminated. National and state regulatory
commissions and groups ensure that the manufacture of the drug meets
specific acceptable standards.

• The safety seal on the bottle. To insert dangerous chemicals into a safety-
sealed bottle without damaging the seal is very difficult.



The three technologies (certification, manufacturing standards, and
preventative sealing) provide some degree of assurance that the aspirin is not
contaminated. The degree of trust the purchaser has in the purity of the
aspirin is a result of these three processes.

In the 1980s, drug manufacturers met two of the criteria above, but none
used safety seals.1 A series of “drug scares” arose when a well-known
manufacturer’s medicines were contaminated after manufacture but before
purchase. The manufacturer promptly introduced safety seals to assure its
customers that the medicine in the container was the same as when it was
shipped from the manufacturing plants.

1Many used childproof caps, but they prevented only some young children
(and some adults) from opening the bottles. They were not designed to
protect the medicine from malicious adults.

Assurance in the computer world is similar. It requires specific steps to
ensure that the computer will function properly. The sequence of steps
includes detailed specifications of the desired (or undesirable) behavior; an
analysis of the design of the hardware, software, and other components to
show that the system will not violate the specifications; and arguments or
proofs that the implementation, operating procedures, and maintenance
procedures will produce the desired behavior.

Definition 1–4. A system is said to satisfy a specification if the specification
correctly states how the system will function.

This definition also applies to design and implementation satisfying a
specification.

1.5.1 Specification

A specification is a (formal or informal) statement of the desired functioning
of the system. It can be highly mathematical, using any of several languages



defined for that purpose. It can also be informal, using, for example, English
to describe what the system should do under certain conditions. The
specification can be low-level, combining program code with logical and
temporal relationships to specify ordering of events. The defining quality is a
statement of what the system is allowed to do or what it is not allowed to do.

EXAMPLE: A company is purchasing a new computer. They need to trust the
system cannot be successfully compromised from the Internet. One of their
(English) specifications would read “The system cannot be successfully
compromised by an attack over the Internet.”

Specifications are used not merely in security but also in systems designed for
safety, such as medical technology. They constrain such systems from
performing acts that could cause harm. A system that regulates traffic lights
must ensure that pairs of lights facing the same way turn red, green, and
yellow at the same time and that at most one set of lights facing cross streets
at an intersection is green.

A major part of the derivation of specifications is determination of the set of
requirements relevant to the system’s planned use. Sections 1.6 and 1.7
discuss the relationship of operational and human requirements to security.

1.5.2 Design

The design of a system translates the specifications into components that will
implement them. The design is said to satisfy the specifications if, under all
relevant circumstances, the design will not permit the system to violate those
specifications.

EXAMPLE: A design of the computer system for the company mentioned
above had no network interface cards, no modem cards, and no network
drivers in the kernel. This design satisfied the specification because the
system would not connect to the Internet. Hence it could not be successfully
attacked over the Internet.



An analyst can determine whether a design satisfies a set of specifications in
several ways. If the specifications and designs are expressed in terms of
mathematics, the analyst must show that the design formulations are
consistent with the specifications. Although much of the work can be done
mechanically, a human must still perform some analyses and modify
components of the design that violate specifications (or, in some cases,
components that cannot be shown to satisfy the specifications). If the
specifications and design do not use mathematics, then a convincing and
compelling argument should be made. Most often, the specifications are
nebulous and the arguments are half-hearted and unconvincing or provide
only partial coverage. The design depends on assumptions about what the
specifications mean. This leads to vulnerabilities, as we will see.

1.5.3 Implementation

Given a design, the implementation creates a system that satisfies that
design. If the design also satisfies the specifications, then by transitivity the
implementation will also satisfy the specifications.

The difficulty at this step is the complexity of proving that a program
correctly implements the design and, in turn, the specifications.

Definition 1–5. A program is correct if its implementation performs as
specified.

Proofs of correctness require each line of source code to be checked for
mathematical correctness. Each line is seen as a function, transforming the
input (constrained by preconditions) into some output (constrained by
postconditions derived from the function and the preconditions). Each
routine is represented by the composition of the functions derived from the
lines of code making up the routine. Like those functions, the function
corresponding to the routine has inputs and outputs, constrained by
preconditions and postconditions, respectively. From the combination of
routines, programs can be built and formally verified. One can apply the same



techniques to sets of programs and thus verify the correctness of a system.

There are three difficulties in this process. First, the complexity of programs
makes their mathematical verification difficult. Aside from the intrinsic
difficulties, the program itself has preconditions derived from the
environment of the system. These preconditions are often subtle and difficult
to specify, but unless the mathematical formalism captures them, the
program verification may not be valid because critical assumptions may be
wrong. Second, program verification assumes that the programs are compiled
correctly, linked and loaded correctly, and executed correctly. Hardware
failure, buggy code, and failures in other tools may invalidate the
preconditions. A compiler that incorrectly compiles the assignment

x := x + 1

to the assembly language instructions

move contents of x to regA
subtract 1 from contents of regA
move contents of regA to x

would invalidate the proof statement that the value of x after the line of code
is 1 more than the value of x before the line of code. This would invalidate the
proof of correctness. Third, if the verification relies on conditions on the
input, the program must reject any inputs that do not meet those conditions.
Otherwise, the program is only partially verified.

Because formal proofs of correctness are so time-consuming, a posteriori
verification techniques known as testing have become widespread. During
testing, the tester executes the program (or portions of it) on data to
determine if the output is what it should be and to understand how likely the
program is to contain an error. Testing techniques range from supplying
input to ensure that all execution paths are exercised to introducing errors



into the program and determining how they affect the output to stating
specifications and testing the program to see if it satisfies the specifications.
Although these techniques are considerably simpler than the more formal
methods, they do not provide the same degree of assurance that formal
methods do. Furthermore, testing relies on test procedures and
documentation, errors in either of which could invalidate the testing results.

Although assurance techniques do not guarantee correctness or security, they
provide a firm basis for assessing what one must trust in order to believe that
a system is secure. Their value is in eliminating possible, and common,
sources of error and forcing designers to define precisely what the system is
to do.

1.6 Operational Issues

Any useful policy and mechanism must balance the benefits of the protection
against the cost of designing, implementing, and using the mechanism. This
balance can be determined by analyzing the risks of a security breach and the
likelihood of it occurring. Such an analysis is, to a degree, subjective, because
in very few situations can risks be rigorously quantified. Complicating the
analysis are the constraints that laws, customs, and society place on the
acceptability of security procedures and mechanisms; indeed, as these factors
change, so do security mechanisms and, possibly, security policies.

1.6.1 Cost-Benefit Analysis

Like any factor in a complex system, the benefits of computer security are
weighed against their total cost (including the additional costs incurred if the
system is compromised). If the data or resources cost less, or are of less value,
than their protection, adding security mechanisms and procedures is not
cost-effective because the data or resources can be reconstructed more
cheaply than the protections themselves. Unfortunately, this is rarely the
case.



EXAMPLE: A database provides salary information to a second system that
prints checks. If the data in the database is altered, the company could suffer
grievous financial loss; hence, even a cursory cost-benefit analysis would
show that the strongest possible integrity mechanisms should protect the
data in the database.

Now suppose the company has several branch offices, and every day the
database downloads a copy of the data to each branch office. The branch
offices use the data to recommend salaries for new employees. However, the
main office makes the final decision using the original database (not one of
the copies). In this case, guarding the integrity of the copies is not particularly
important, because branch offices cannot make any financial decisions based
on the data in their copies. Hence, the company cannot suffer any financial
loss from compromises of the data at the branch offices.

Both of these situations are extreme situations in which the analysis is clear-
cut. As an example of a situation in which the analysis is less clear, consider
the need for confidentiality of the salaries in the database. The officers of the
company must decide the financial cost to the company should the salaries be
disclosed, including potential loss from lawsuits (if any); changes in policies,
procedures, and personnel; and the effect on future business. These are all
business-related judgments, and determining their value is part of what
company officers are paid to do.

Overlapping benefits are also a consideration. Suppose the integrity
protection mechanism can be augmented very quickly and cheaply to provide
confidentiality. Then the cost of providing confidentiality is much lower. This
shows that evaluating the cost of a particular security service depends on the
mechanism chosen to implement it and on the mechanisms chosen to
implement other security services. The cost-benefit analysis should take into
account as many mechanisms as possible. Adding security mechanisms to an
existing system is often more expensive (and, incidentally, less effective) than
designing them into the system in the first place.



1.6.2 Risk Analysis

To determine whether an asset should be protected, and to what level,
requires analysis of the potential threats against that asset and the likelihood
that they will materialize. The level of protection is a function of the
probability of an attack occurring and the effects of the attack should it
succeed. If an attack is unlikely, protecting against it typically has a lower
priority than protecting against a likely one. But if the unlikely attack would
cause long delays in the company’s production of widgets but the likely attack
would be only a nuisance, then more effort should be put into preventing the
unlikely attack. The situations between these extreme cases are very
subjective.

Let’s revisit our company with the salary database that transmits salary
information over a network to a second computer that prints employees’
checks. The data is stored on the database system and then moved over the
network to the second system. Hence, the risk of unauthorized changes in the
data occurs in three places: on the database system, on the network, and on
the printing system. If the network is a local (company-wide) one and no wide
area networks are accessible, the threat of attackers entering the systems is
confined to untrustworthy internal personnel, contractors, and visitors. If,
however, the network is connected to the Internet, the risk of geographically
distant attackers attempting to intrude is substantial enough to warrant
consideration.

This example illustrates some finer points of risk analysis. First, risk is a
function of environment. Attackers from a foreign country are not a threat to
the company when the computer is not connected to the Internet. If foreign
attackers wanted to break into the system, they would need physically to
enter the company (and would cease to be “foreign” because they would then
be “local”). But if the computer is connected to the Internet, foreign attackers
become a threat because they can attack over the Internet. An additional, less
tangible issue is the faith in the company. If the company is not able to meet



its payroll because it does not know whom it is to pay, the company will lose
the faith of its employees. It may be unable to hire anyone, because the people
hired would not be sure they would get paid. Investors would not fund the
company because of the likelihood of lawsuits by unpaid employees. The risk
arises from the environments in which the company functions.

Second, the risks change with time. If a company’s network is not connected
to the Internet, there seems to be no risk of attacks from other hosts on the
Internet. However, despite any policies to the contrary, someone could
connect a wi-fi access point to one of the company computers and connect to
the Internet through that access point. Should this happen, any risk analysis
predicated on isolation from the Internet would no longer be accurate.
Although policies can forbid the connection of such a modem and procedures
can be put in place to make such connection difficult, unless the responsible
parties can guarantee that no such modem will ever be installed, the risks can
change.

Third, many risks are quite remote but still exist. In the wi-fi access point
example, the company has sought to minimize the risk of an Internet
connection. Hence, this risk is “acceptable” but not non-existent. As a
practical matter, one does not worry about acceptable risks; instead, one
worries that the risk will become unacceptable.

Finally, the problem of “analysis paralysis” refers to making risk analyses
with no effort to act on those analyses. To change the example slightly,
suppose the company performs a risk analysis. The executives decide that
they are not sure if all risks have been found, so they order a second study to
verify the first. They reconcile the studies then wait for some time to act on
these analyses. At that point, the security officers raise the objection that the
conditions in the workplace are no longer those that held when the original
risk analyses were done. The analysis is repeated. But the company cannot
decide how to ameliorate the risks, so it waits until a plan of action can be
developed, and the process continues. The point is that the company is



paralyzed and cannot act on the risks it faces.

1.6.3 Laws and Customs

Laws restrict the availability and use of technology and affect procedural
controls. Hence, any policy and any selection of mechanisms must take into
account legal considerations.

EXAMPLE: Until the year 2000, the United States controlled the export of
strong cryptographic hardware and software (considered munitions under
United States law). If a U.S. software company worked with a computer
manufacturer in London, the U.S. company could not send cryptographic
software to the manufacturer. The U.S. company first would have to obtain a
license to export the software from the United States. Any security policy that
depended on the London manufacturer’s using that cryptographic software
would need to take this into account.

EXAMPLE: Suppose the law makes it illegal to read a user’s file without the
user’s permission. An attacker breaks into the system and begins to download
users’ files. If the system administrators notice this and observe what the
attacker is reading, they will be reading the victims’ files without permission
and therefore will be violating the law themselves. For this reason, most sites
require users to give (implicit or explicit) permission for system
administrators to read their files. In some jurisdictions, an explicit exception
allows system administrators to access information on their systems without
permission in order to protect the quality of service provided or to prevent
damage to their systems.

Situations involving the laws of multiple jurisdictions—especially foreign
countries— complicate this issue.

EXAMPLE: In the 1990s, the laws involving the use of cryptography in France
were very different from those in the United States. The laws of France
required companies sending enciphered data out of the country to register



their cryptographic keys with the government. Security procedures involving
the transmission of enciphered data from a company in the United States to a
branch office in France had to take these differences into account.

EXAMPLE: If a policy called for prosecution of attackers and intruders came
from Russia to a system in the United States, prosecution would involve
asking the United States authorities to extradite the alleged attackers from
Russia. This undoubtedly would involve court testimony from company
personnel involved in handling the intrusion, possibly trips to Russia, and
more court time once the extradition was completed. The cost of prosecuting
the attackers might be considerably higher than the company would be
willing (or able) to pay.

Laws are not the only constraints on policies and selection of mechanisms.
Society distinguishes between legal and acceptable practices. It may be legal
for a company to require all its employees to provide DNA samples for
authentication purposes, but it is not socially acceptable. In the United States,
requiring the use of Social Security Numbers as passwords is often legal
(unless a state law forbids this or the computer is one owned by the U.S.
government) but also unacceptable. These practices provide security but at an
unacceptable cost, and they encourage users to evade or otherwise overcome
the security mechanisms.

The issue that laws and customs raise is a psychological one. A security
mechanism that would put users and administrators at legal risk would place
a burden on these people that few would be willing to bear; thus, such a
mechanism would not be used. An unused mechanism is worse than a non-
existent one, because it gives a false impression that a security service is
available. Hence, users may rely on that service to protect their data, when in
reality their data is unprotected.

1.7 Human Issues



Implementing computer security controls is complex, and in a large
organization procedural controls often become vague or cumbersome.
Regardless of the strength of the technical controls, if non-technical
considerations affect their implementation and use, the effect on security can
be severe. Moreover, if configured or used incorrectly, even the best security
control is useless at best and dangerous at worst. Thus, the designers,
implementers, and maintainers of security controls are essential to the
correct operation of those controls.

1.7.1 Organizational Problems

Security provides no direct financial rewards to the user. It limits losses, but
it also requires the expenditure of resources that could be used elsewhere.
Unless losses occur, organizations often believe they are wasting money and
effort related to security. After a loss, the value of these controls suddenly
becomes appreciated. Furthermore, security controls often add complexity to
otherwise simple operations. For example, if concluding a stock trade takes
two minutes without security controls and three minutes with security
controls, adding those controls results in a 50% loss of productivity.

Losses occur when security protections are in place, but such losses are
expected to be less than they would have been without the security
mechanisms. The key question is whether such a loss, combined with the
resulting loss in productivity, would be greater than a financial loss or loss of
confidence should one of the non-secured transactions suffer a breach of
security.

Compounding this problem is the question of who is responsible for the
security of the company’s computers. The authority to implement appropriate
controls must reside with those who are responsible; the consequence of not
doing so is that the people who can most clearly see the need for security
measures, and who are responsible for implementing them, will be unable to
do so. This is simply sound business practice; responsibility without power
causes problems in any organization, just as does power without



responsibility.

Once clear chains of responsibility and power have been established, the need
for security can compete on an equal footing with other needs of the
organization. One common problem security managers face is the lack of
people trained in the area of computer security. Another problem is that
knowledgeable people are overloaded with work. At many organizations, the
“security administrator” is also involved in system administration,
development, or some other secondary function. In fact, the security aspect of
the job is often secondary. The problem is that indications of security
problems often are not obvious and require time and skill to spot.
Preparation for an attack makes dealing with it less chaotic, but such
preparation takes enough time and requires enough attention so that treating
it as a secondary aspect of a job means that it will not be performed well, with
the expected consequences.

Lack of resources is another common problem. Securing a system requires
resources as well as people. It requires time to design a configuration that will
provide an adequate level of security, to implement the configuration, and to
administer the system. It requires money to purchase products that are
needed to build an adequate security system or to pay someone else to design
and implement security measures. It requires computer resources to
implement and execute the security mechanisms and procedures. It requires
training to ensure that employees understand the importance of security, how
to use the security tools, how to interpret the results, and how to implement
the non-technical aspects of the security policy.

1.7.2 People Problems

The heart of any security system is people. This is particularly true in
computer security, which deals mainly with technological controls that can
usually be bypassed by human intervention. For example, a computer system
authenticates a user by asking a human for a secret code; if the correct secret
code is supplied, the computer assumes that the human is the user, and



grants the appropriate access. If an authorized user tells another person his
secret code, the unauthorized user can masquerade as the authorized user
with small risk of detection.

People who might attack an organization and are not authorized to use that
organization’s systems are called outsiders and can pose a serious threat.
Experts agree, however, that a far more dangerous threat comes from
disgruntled employees and other insiders who are authorized to use the
computers. Insiders typically know the organization of the company’s systems
and what procedures the operators and users follow and often know enough
passwords to bypass many security controls that would detect an attack
launched by an outsider. Insider misuse of authorized privileges is a very
difficult problem to solve.

Untrained personnel also pose a threat to system security. As an example, one
operator did not realize that the contents of backup media needed to be
verified before the media was stored. When attackers deleted several critical
system files, she discovered that none of the backup media could be read.

System administrators who misread the output of security mechanisms, or do
not analyze that output, contribute to the probability of successful attacks
against their systems. Similarly, administrators who misconfigure security-
related features of a system can weaken the site security. Users can also
weaken site security by misusing security mechanisms (such as selecting
simple passwords that are easy to memorize — and easy to guess).

Lack of technical training is not the only problem. Many successful break-ins
have arisen from the art of social engineering. If operators will change
passwords based on telephone requests, all an attacker needs to do is to
determine the name of someone who uses the computer. A common tactic is
to pick someone fairly far above the operator (such as a vice president of the
company) and to feign an emergency (such as calling at night and saying that
a report to the president of the company is due the next morning) so that the
operator will be reluctant to refuse the request. Once the password has been



changed to one that the attacker knows, he can simply log in as a normal user.
Social engineering attacks are remarkably successful and often devastating.

The problem of misconfiguration is aggravated by the complexity of many
security-related configuration files. For instance, a typographical error can
disable key protection features. Even worse, software does not always work as
advertised. One widely used system had a vulnerability that arose when an
administrator made too long a list that named systems with access to certain
files. Because the list was too long, the system simply assumed that the
administrator meant to allow those files to be accessed without restriction on
who could access them—exactly the opposite of what was intended.

1.8 Tying It All Together

The considerations discussed above appear to flow linearly from one to the
next (see Figure 1–1). Human issues pervade each stage of the cycle. In
addition, each stage of the cycle feeds back to the preceding stage, and
through that stage to all earlier stages. The operation and maintenance stage
is critical to the life cycle. Figure 1–1 breaks it out so as to emphasize the
impact it has on all stages. The following example shows the importance of
feedback.

EXAMPLE: A major corporation decided to improve its security. It hired
consultants, determined the threats, and created a policy. From the policy,
the consultants derived several specifications that the security mechanisms
had to meet. They then developed a design that would meet the
specifications.

During the implementation phase, the company discovered that employees
could connect modems to the telephones without being detected. The design
required all incoming connections to go through a firewall. The design had to
be modified to divide systems into two classes: systems connected to “the
outside,” which were put outside the firewall; and all other systems, which



were put behind the firewall. The design needed other modifications as well.

When the system was deployed, the operation and maintenance phase
revealed several unexpected threats. The most serious was that systems were
repeatedly misconfigured to allow sensitive data to be sent across the Internet
in the clear, because the implementation made using cryptographic software
very difficult. Once this problem had been remedied, the company discovered
that several “trusted” hosts (those allowed to log in without authentication)
were physically outside the control of the company. This violated policy, but
for commercial reasons the company needed to continue to use these hosts.
The policy element that designated these systems as “trusted” was modified.
Finally, the company detected proprietary material being sent to a competitor
over electronic mail. This added a threat that the company had earlier
discounted. The company did not realize that it needed to worry about insider
attacks.



Figure 1–1: The security life cycle

Feedback from operation is critical. Whether or not a program is tested or
proved to be secure, operational environments always introduce unexpected
problems or difficulties. If the assurance (specification, design,
implementation, and testing/proof) phase is done properly, the extra
problems and difficulties are minimal. The analysts can handle them, usually
easily and quickly. If the assurance phase has been omitted or done poorly,
the problems may require a complete reevaluation of the system. If the
assurance did not take into account the humans using or administering the
system, they may find its operation too complex or cumbersome and will
develop ways to circumvent the security controls. The tools used for the
operational feedback include auditing, in which the operation of the system is
recorded and analyzed so that the analyst can determine what the problems
are.

1.9 Summary

Computer security depends on many aspects of a computer system, its use,
and its environment. The threats that a site faces, and the level and quality of
the countermeasures, depend on the quality of the security services and
supporting procedures. The specific mix of these attributes is governed by the
site security policy, which is ideally created after careful analysis of the value
of the resources on the system or controlled by the system and of the risks
involved.

Underlying all this are key assumptions describing what the site and the
system accept as true or trustworthy; understanding these assumptions is the
key to analyzing the strength of the system’s security. This notion of “trust” is
the central notion for computer security. If trust is well placed, any system
can be made acceptably secure. If it is misplaced, the system cannot be secure
in any sense of the word.



Once this is understood, the reason that people consider security to be a
relative attribute is plain. Given enough resources, an attacker can often
evade the security procedures and mechanisms that are in place. Such a
desire is tempered by the cost of the attack, which in some cases can be very
expensive. If it is less expensive to regenerate the data than to launch the
attack, most attackers will simply regenerate the data.

This chapter has laid the foundation for what follows. All aspects of computer
security begin with the nature of threats and the security services that counter
them. In future chapters, we will build on these basic concepts.

1.10 Research Issues

Future chapters will explore research issues in the technical realm. However,
other, nontechnical issues affect the needs and requirements for technical
solutions, and research into these issues helps guide research into technical
areas.

A key question is how to quantify risk. The research issue is how to determine
the effects of a system’s vulnerabilities on its security. For example, if a
system can be compromised in any of 50 ways, how can a company compare
the costs of the procedures (technical and otherwise) needed to prevent the
compromises with the costs of detecting the compromises, countering them,
and recovering from them? Many methods assign weights to the various
factors, but these methods are ad hoc. A rigorous technique for determining
appropriate weights has yet to be found.

The relationships of computer security to the political, social, and economic
aspects of the world are not well understood. How does the ubiquity of the
Internet change a country’s borders? If someone starts at a computer in
France, transits networks that cross Switzerland, Germany, Poland, Norway,
Sweden, and Finland, and launches an attack on a computer in Russia, who
has jurisdiction? How can a country limit the economic damage caused by an



attack on its computer networks? How can attacks be traced to their human
origins?

This chapter has also raised many technical questions. Research issues
arising from them will be explored in future chapters.

1.11 Further Reading

Risk analysis arises in a variety of contexts. Molak [1376] presents essays on
risk management and analysis in a variety of fields. Laudan [1148] provides
an enjoyable introduction to the subject. Neumann [1451] discusses the risks
of technology and recent problems. Software safety (Leveson [1162]) requires
an understanding of the risks posed in the environment. Peterson [1525]
discusses many programming errors in a readable way. All provide insights
into the problems that arise in a variety of environments.

Many authors recount stories of security incidents. The earliest, Parker’s
wonderful book [1503], discusses motives and personalities as well as
technical details. Stoll recounts the technical details of uncovering an
espionage ring that began as the result of a 75¢ accounting error [1840,
1842]. Hafner and Markoff describe the same episode in a study of
“cyberpunks” [847]. The Internet worm [622, 847, 1608, 1807, 1808] brought
the problem of computer security into popular view. Numerous other
incidents [726, 847, 1206, 1746, 1774, 1833] have heightened public
awareness of the problem.

Several books [250, 444, 710, 1646] discuss computer security for the
layperson. These works tend to focus on attacks that are visible or affect the
end user (such as pornography, theft of credit card information, and
deception). They are worth reading for those who wish to understand the
results of failures in computer security. Other books [745, 1696, 1753, 1793,
1942] discuss the impact of computer and information security upon society.
Social engineering is also widely discussed [562, 1213, 1251, 1370, 1569].



1.12 Exercises

1. Classify each of the following as a violation of confidentiality, of integrity, of
availability, or of some combination thereof.

(a) John copies Mary’s homework.

(b) Paul crashes Linda’s system.

(c) Carol changes the amount of Angelo’s check from $100 to $1,000.

(d) Gina forges Roger’s signature on a deed.

(e) Rhonda registers the domain name “Pearson.com” and refuses to let the
publishing house buy or use that domain name.

(f) Jonah obtains Peter’s credit card number and has the credit card company
cancel the card and replace it with another card bearing a different account
number.

(g) Henry spoofs Julie’s IP address to gain access to her computer.

2. Identify mechanisms for implementing the following. State what policy or
policies they might be enforcing.

(a) A password-changing program will reject passwords that are less than five
characters long or that are found in the dictionary.

(b) Only students in a computer science class will be given accounts on the
depart-ment’s computer system.

(c) The login program will disallow logins of any students who enter their
passwords incorrectly three times.

(d) The permissions of the file containing Carol’s homework will prevent
Robert from cheating and copying it.



(e) When World Wide Web traffic climbs to more than 80% of the network’s
capacity, systems will disallow any further communications to or from Web
servers.

(f) Annie, a systems analyst, will be able to detect a student using a program
to scan her system for vulnerabilities.

(g) A program used to submit homework will turn itself off just after the due
date.

3. The aphorism “security through obscurity” suggests that hiding
information provides some level of security. Give an example of a situation in
which hiding information does not add appreciably to the security of a
system. Then give an example of a situation in which it does.

4. Give an example of a situation in which a compromise of confidentiality
leads to a compromise in integrity.

5. Show that the three security services—confidentiality, integrity, and
availability—are sufficient to deal with the threats of disclosure, disruption,
deception, and usurpation.

6. In addition to mathematical and informal statements of policy, policies can
be implicit (not stated). Why might this be done? Might it occur with
informally stated policies? What problems can this cause?

7. For each of the following statements, give an example of a situation in
which the statement is true.

(a) Prevention is more important than detection and recovery.

(b) Detection is more important than prevention and recovery.

(c) Recovery is more important than prevention and detection.

8. Is it possible to design and implement a system in which no assumptions



about trust are made? Why or why not?

9. Policy restricts the use of electronic mail on a particular system to faculty
and staff. Students cannot send or receive electronic mail on that host.
Classify the following mechanisms as secure, precise, or broad.

(a) The electronic mail sending and receiving programs are disabled.

(b) As each letter is sent or received, the system looks up the sender (or
recipient) in a database. If that party is listed as faculty or staff, the mail is
processed. Otherwise, it is rejected. (Assume that the database entries are
correct.)

(c) The electronic mail sending programs ask the user if he or she is a student.
If so, the mail is refused. The electronic mail receiving programs are disabled.

10. Consider a very high-assurance system developed for the military. The
system has a set of specifications, and both the design and implementation
have been proven to satisfy the specifications. What questions should school
administrators ask when deciding whether to purchase such a system for
their school’s use?

11. How do laws protecting privacy impact the ability of system
administrators to monitor user activity?

12. Computer viruses are programs that, among other actions, can delete files
without a user’s permission. A U.S. legislator wrote a law banning the
deletion of any files from computer disks. What was the problem with this law
from a computer security point of view? Specifically, state which security
service would have been affected if the law had been passed.

13. Users often bring in programs or download programs from the Internet.
Give an example of a site for which the benefits of allowing users to do this
outweigh the dangers. Then give an example of a site for which the dangers of
allowing users to do this outweigh the benefits.



14. A respected computer scientist has said that no computer can ever be
made perfectly secure. Why might she have said this?

15. An organization makes each lead system administrator responsible for the
security of the system he or she runs. However, the management determines
what programs are to be on the system and how they are to be configured.

(a) Describe the security problem(s) that this division of power would create.

(b) How would you fix them?

16. The president of a large software development company has become
concerned about competitors learning proprietary information. He is
determined to stop them. Part of his security mechanism is to require all
employees to report any contact with employees of the company’s
competitors, even if it is purely social. Do you believe this will have the
desired effect? Why or why not?

17. The police and the public defender share a computer. What security
problems does this present? Do you feel it is a reasonable cost-saving
measure to have all public agencies share the same (set of) computers?

18. Companies usually restrict the use of electronic mail to company business
but do allow minimal use for personal reasons.

(a) How might a company detect excessive personal use of electronic mail,
other than by reading it? (Hint: Think about the personal use of a company
telephone.)

(b) Intuitively, it seems reasonable to ban all personal use of electronic mail
on company computers. Explain why most companies do not do this.

19. Argue for or against the following proposition. Ciphers that the
government cannot cryptanalyze should be outlawed. How would your
argument change if such ciphers could be used provided that the users



registered the keys with the government?

20. For many years, industries and financial institutions hired people who
broke into their systems once those people were released from prison. Now,
such a conviction tends to prevent such people from being hired. Why you
think attitudes on this issue changed? Do you think they changed for the
better or for the worse?

21. A graduate student accidentally releases a program that spreads from
computer system to computer system. It deletes no files but requires much
time to implement the necessary defenses. The graduate student is convicted.
Despite demands that he be sent to prison for the maximum time possible (to
make an example of him), the judge sentences him to pay a fine and perform
community service. What factors do you believe caused the judge to hand
down the sentence he did? What would you have done were you the judge,
and what extra information would you have needed to make your decision?



Part II: Foundations
How hard is it to determine whether or not a given system satisfies a given
security policy? What is the most general system that we can prove to be
secure (or nonsecure)? This issue determines the level of abstraction at which
we can analyze security. If we can prove that a broad class of systems is
secure, then we can prove that a model of a system is secure by determining
that it falls into that class. More concretely, we can characterize systems that
we can prove to be secure.

In what follows, we use a generic security policy to determine under what
conditions we can prove systems to be secure. The results are disappointing
and incomplete, and current research focuses on tightening them, but this
work lays the theoretical foundation for all that follows, and understanding it
is critical to understanding the limits of what we can achieve.

This part of the book presents the underpinnings and theoretical foundations
of computer security and several key results.

Chapter 2, “Access Control Matrix,” describes a widely used representation of
access permissions. The representation is simple enough to capture any
access rules and therefore is a useful starting point for deriving theoretical
results.

Chapter 3, “Foundational Results,” studies the safety question of when
security is decidable. It presents three models: the Harrison-Ruzzo-Ullman
model, which looks at arbitrary systems; the Take-Grant Protection Model,
which looks at a specific system; and the Schematic Protection Model and its
descendants, which look at a specific class of systems. It also gives some
variants of these and other models, and shows how to compare them.



Chapter 2. Access Control Matrix
 
GRANDPRÉ: Description cannot suit itself in words To demonstrate the life of 
such a battle In life so lifeless as it shows itself.

— The Life of Henry the Fifth, IV, ii, 53–55.

A protection system describes the conditions under which a system is secure. 
This chapter presents a classical formulation of a protection system. The 
access control matrix model arose both in operating systems research and in 
database research; it describes allowed accesses using a matrix.

2.1 Protection State

The state of a system is the collection of the current values of all memory 
locations, all secondary storage, and all registers and other components of the 
system. The subset of this collection that deals with protection is the 
protection state of the system. An access control matrix is one tool that can 
describe the current protection state.

Consider the set of possible protection states P. Some subset Q of P consists of 
exactly those states in which the system is authorized to reside. So, whenever 
the system state is in Q, the system is secure. When the current state is in P – 
Q,1 the system is not secure. Our interest in representing the state is to 
characterize those states in Q, and our interest in enforcing security is to 
ensure that the system state is always an element of Q. Characterizing the 
states in Q is the function of a security policy; preventing the system from 
entering a state in P –Q is the function of a security mechanism. Recall from



Definition 1–3 that a mechanism that enforces this restriction is secure, and if
P = Q, the mechanism is precise.

1The notation P – Q means all elements of set P not in set Q.

The access control matrix model is the most precise model used to describe a
protection state. It characterizes the rights of each subject (active entity, such
as a user or a process) with respect to every other entity. The description of
elements of the access control matrix A form a specification against which the
current state can be compared. Specifications take many forms, and different
specification languages have been created to describe the characteristics of
allowable states.

As the system changes, the protection state changes. When a command
changes the state of the system, a state transition occurs. Very often,
constraints on the set of allowed states use these transitions inductively; a set
of authorized states is defined, and then a set of operations is allowed on the
elements of that set. The result of transforming an authorized state with an
operation allowed in that state is an authorized state. By induction, the
system will always be in an authorized state. Hence, both states and state
transitions are often constrained.

Figure 2–1: An access control matrix. The system has two
processes and two files. The set of rights is { read, write, execute,
append, own }.

In practice, any operation on a real system causes multiple state transitions;
the reading, loading, altering, and execution of any datum or instruction
causes a transition. We are concerned only with those state transitions that



affect the protection state of the system, so only transitions that alter the
actions a subject is authorized to take are relevant. For example, a program
that resets the value of a local counter variable in a loop to 0 (usually) does
not alter the protection state. However, if changing the value of a variable
causes the privileges of a process to change, then the process does alter the
protection state and needs to be accounted for in the set of transitions.

2.2 Access Control Matrix Model

The simplest framework for describing a protection system is the access
control matrix model, which describes the rights of subjects over all entities
in a matrix. Butler Lampson first proposed this model in 1971 [1139]; Graham
and Denning [550, 810] refined it, and we will use their version.

The set of all protected entities (that is, entities that are relevant to the
protection state of the system) is called the set of objects O. The set of subjects
S is the set of active objects, such as processes and users. In the access control
matrix model, the relationship between these entities is captured by a matrix
A with rights drawn from a set of rights R in each entry A[s, o], where s ∈ S, o
∈ O, and A[s, o] ∈ R. The subject s has the set of rights A[s, o] over the object
o. The set of protection states of the system is represented by the triple (S, O,
A). For example, Figure 2–1 shows the protection state of a system. Here,
process 1, which owns file 1, can read or write file 1 and can read file 2;
process 2 can append to file 1 and read file 2, which it owns. Process 1 can
communicate with process 2 by writing to it, and process 2 can read from
process 1. Each process owns itself and has read, write, and execute rights
over itself. Note that the processes themselves are treated as both subjects
(rows) and objects (columns). This enables a process to be the target of
operations as well as the operator.

Interpretation of the meaning of these rights varies from system to system.
Reading from, writing to, and appending to files is usually clear enough, but
what does “reading from” a process mean? Depending on the instantiation of



the model, it could mean that the reader accepts messages from the process
being read, or it could mean that the reader simply looks at the state of the
process being read (as a debugger does, for example). The meaning of the
right may vary depending on the object involved. The point is that the access
control matrix model is an abstract model of the protection state, and when
one talks about the meaning of some particular access control matrix, one
must always talk with respect to a particular implementation or system.

The own right is a distinguished right, which is a right that is treated
specially. In most systems, the owner of an object has special privileges: the
ability to add and delete rights for other users (and for the owner). In the
system shown in Figure 2–1, for example, process 1 could alter the contents of
A[x, file1], where x is any subject.

EXAMPLE: The UNIX system defines the rights read, write, and execute.
When a process reads, writes, or executes a file, these terms mean what one
would expect. With respect to a directory, however, read means to be able to
list the contents of the directory; write means to be able to create, rename, or
delete files or subdirectories in that directory; and execute means to be able
to access files or subdirectories in that directory. When a process interacts
with another process, read means to be able to receive signals, write means
to be able to send signals, and execute means to be able to execute the process
as a subprocess.

Moreover, the UNIX superuser can access any (local) file regardless of the
permissions the owner has granted. In effect, the superuser owns all objects
on the system. Even in this case however, the interpretation of the rights is
constrained. For example, the superuser cannot alter a directory using the
system calls and commands that alter files. The superuser must use specific
system calls and commands to alter the directory, for example by creating,
renaming, and deleting files.

Although the “objects” involved in the access control matrix are normally



thought of as files, devices, and processes, they could just as easily be
messages sent between processes, or indeed systems themselves. Figure 2–2
shows an example access control matrix for three systems on a local area
network (LAN). The rights correspond to various network protocols: own (the
ability to add servers), ftp (the ability to access the system using the File
Transfer Protocol, or FTP [1546]), nfs (the ability to access file systems using
the Network File System, or NFS, protocol [142]), and mail (the ability to
send and receive mail using the Simple Mail Transfer Protocol, or SMTP
[1075, 1545]). The subject telegraph is a personal computer with an FTP
client but no servers, so neither of the other systems can access it, but it can
FTP to them. The subject nob can access toadflax and nob itself using an NFS
client, and both systems will exchange mail with one another and can ftp to
each other.

Figure 2–2: Rights on a LAN. The set of rights is { ftp, mail, nfs,
own }.

Figure 2–3: Rights in a program. The set of rights is { +, –, call }.

At the micro level, access control matrices can model programming language
accesses; in this case, the objects are the variables and the subjects are the
procedures (or modules). Consider a program in which events must be
synchronized. A module provides functions for incrementing (inc_ctr) and
decrementing (dec_ctr) a counter private to that module. The routine



manager calls these functions. The access control matrix is shown in Figure
2–3. Note that “+” and “–” are the rights, representing the ability to add and
subtract, respectively, and call is the ability to invoke a procedure. The
routine manager can call itself; presumably, it is recursive.

In the examples above, entries in the access control matrix are rights.
However, they could as easily have been functions that determined the set of
rights at any particular state based on other data, such as a history of prior
accesses, the time of day, the rights another subject has over the object, and
so forth. A common form of such a function is a locking function used to
enforce the Bernstein conditions,2 so when a process is writing to a file, other
processes cannot access the file; but once the writing is done, the processes
can access the file once again.

2The Bernstein conditions ensure that data is consistent. They state that any
number of readers may access a datum simultaneously, but if a writer is
accessing the datum, no other writers or any reader can access the datum
until the current writing is complete [177].

2.2.1 Access Control by Boolean Expression Evaluation

Miller and Baldwin [1354] use an access control matrix to control access to
fields in a database. The values are determined by Boolean expressions. Their
objects are records and fields; the subjects are users authorized to access the
databases. Types of access are defined by the database and are called verbs;
for example, the Structured Query Language (SQL) would have the verbs
Insert and Update. Each rule, corresponding to a function, is associated with
one or more verbs. Whenever a subject attempts to access an object using a
right (verb) r, the Boolean expression (rule) associated with r is evaluated; if
it is true, access is allowed; if it is false, access is not allowed.

The Access Restriction Facility (ARF) program exemplifies this approach. It
defines subjects as having attributes such as a name, a level, a role,
membership in groups, and access to programs, but the user can assign any



meaning desired to any attribute. For example:

Verbs have a default rule, either “closed” (access denied unless explicitly
granted; represented by the 0 rule) or “open” (access granted unless explicitly
denied; represented by the 1 rule):

Associated with each object is a set of verbs, and each (object, verb) pair has
an associated rule:

The system also provides primitives such as time (which corresponds to the
current time of day), date (the current date), and temp (the current
temperature). This generates the following access control matrix between
midnight and 4 A.M.:

At other times, the entry A[matt, .shellrct] contains only read. The read



rights in the last row are omitted because, even though the default in general
is to allow read access, the default rule for the object oven.dev is to deny read
access:

2.2.2 Access Controlled by History

A common problem when running downloaded programs (such as web
applets or plug-ins) is that the program may access the system in
unauthorized ways, such as deleting or modifying configuration and control
files. Abadi and Fournet [3] address this by conditioning access rights of a
procedure upon the rights of those pieces of code that executed earlier in the
process.

They associate a set of rights (the “static rights”) with each piece of code and
another set of rights (the “current rights”) with each process as it executes.
When a piece of code runs, the rights of the executing code are the
intersection of the code’s static rights and the process’ current rights.3 Thus,
the specific rights that a process has at any point in time is a function of the
pieces of code it has executed, and is executing—its history.

3Under some conditions, a piece of code may request that its rights be
augmented, but it can only add rights to its set of static rights.

EXAMPLE: Consider the following brief program, in which an untrusted
routine (helper_proc) is loaded and used to find a file to delete:

// This routine has no filesystem access rights
// beyond those in a limited, temporary area
procedure helper_proc()
        return sys_kernel_file



// But this has the right to delete files
program main()
        sys_load_file (helper_proc)
        file = helper_proc()
        sys_delete_file(file)

The following access control matrix represents the static rights of the
program and routine. The file sys_kernel_file is the file containing the kernel
of the system, and tmp_file is a file in the limited, temporary area that
helper_proc can access:

When the program starts, its current rights are those of main.

After helper_proc is loaded, the current rights of the process is the
intersection of the static rights of helper_proc and the current rights of the
process:

As helper_proc cannot delete system files, neither can the executing process.
When it tries to do so, it fails, and a fault of some kind occurs.

2.3 Protection State Transitions



As processes execute operations, the state of the protection system changes.
Let the initial state of the system be X0 = (S0, O0, A0). The set of state
transitions is represented as a set of operations τ1, τ2, . . .. Successive states
are represented as X1, X2, . . ., where the notation

means that state transition τi+1 moves the system from state Xi to state Xi+1.
When a system starts at some state X and, after a series of zero or more state
transitions, enters state Y, we can write

The representation of the protection system as an access control matrix must
also be updated. In the model, sequences of state transitions are represented
as single commands, or transformation procedures, that update the access
control matrix. The commands state which entry in the matrix is to be
changed, and how; hence, the commands require parameters. Formally, let ck
be the kth command with formal parameters pk1, . . . , pkm. Then the ith
transition would be written as

Note the similarity in notation between the use of the command and the state
transition operations. This is deliberate. For every command, there is a
sequence of state transition operations that takes the initial state Xi to the
resulting state Xi+1. Using the command notation allows us to shorten the
description of the transformation as well as list the parameters (subjects and
objects) that affect the transformation operations.

We now focus on the commands themselves. Following Harrison, Ruzzo, and
Ullman [880], we define a set of primitive commands that alter the access
control matrix. In the following list, the protection state is (S, O, A) before the
execution of each command and (S′, O′, A′) after each command. The
preconditions state the conditions needed for the primitive command to be



executed, and the postconditions state the results.

1. Precondition: s ∉ S

Primitive command: create subject s

Postconditions: S′ = S ∪ {s}, O′ = O ∪ {s},

This primitive command creates a new subject s. Note that s must not exist as
a subject or an object before this command is executed. This operation does
not add any rights. It merely modifies the matrix.

2. Precondition: o ∉ O

Primitive command: create object o

Postconditions: S′ = S, O′ = O ∪ {o},

This primitive command creates a new object o. Note that o must not exist
before this command is executed. Like create subject, this operation does
not add any rights. It merely modifies the matrix.

3. Precondition: s ∈ S, o ∈ O, r ∈ R

Primitive command: enter r into a[s, o]

Postconditions: S′ = S, O′ = O, a′[s, o] = a[s, o] ∪ {r},

This primitive command adds the right r to the cell a[s, o]. Note that a[s, o]
may already contain the right, in which case the effect of this primitive



depends on the instantiation of the model.

4. Precondition: s ∈ S, o ∈ O, r ∈ R

Primitive command: delete r from a[s, o]

Postconditions: S′ = S, O′ = O, a′[s, o] = a[s, o] – {r},

This primitive command deletes the right r from the cell a[s, o]. Note that
a[s, o] need not contain the right, in which case this operation has no effect.

5. Precondition: s ∈ S

Primitive command: destroy subject s

Postconditions: S′ = S – {s}, O′ = O – {s},

This primitive command deletes the subject s. The column and row for s in A
are deleted also.

6. Precondition: o ∈ O

Primitive command: destroy object o

Postconditions: S′ = S, O′ = O – {o},

This primitive command deletes the object o. The column for o in A is deleted
also.

These primitive operations can be combined into commands, during which
multiple primitive operations may be executed.



EXAMPLE: In the UNIX system, if process p created a file f with owner read
(r) and write (w) permission, the command create·file capturing the resulting
changes in the access control matrix would be

command create·file(p, f)
        create object f;
        enter own into a[p, f];
        enter r into a[p, f];
        enter w into a[p, f];
end

Suppose the process p wishes to create a new process q. The following
command would capture the resulting changes in the access control matrix.

command spawn·process(p, q)
        create subject q;
        enter own into a[p, q];
        enter r into a[p, q];
        enter w into a[p, q];
        enter r into a[q, p];
        enter w into a[q, p];
end

The r and w rights enable the parent and child to signal each other.

The system can update the matrix only by using defined commands; it cannot
use the primitive commands directly. Of course, a command may invoke only
a single primitive; such a command is called mono-operational.

EXAMPLE: The command

command make·owner(p, f)
        enter own into a[p, f];
end

is a mono-operational command. It does not delete any existing owner rights.
It merely adds p to the set of owners of f. Hence, f may have multiple owners



after this command is executed.

2.3.1 Conditional Commands

The execution of some primitives requires that specific preconditions be
satisfied. For example, suppose a process p wishes to give another process q
the right to read a file f. In some systems, p must own f. The abstract
command would be

command grant·read·file·A(p, f, q)
        if own in a[p, f]
        then
                enter r into a[q, f];
end

Any number of conditions may be placed together using and. For example,
suppose a system has a distinguished right g that allows it to give rights it
possesses to another subject. So, if a subject has the rights r and g over an
object, it may give any other subject r rights over that object. Then

command grant·read·file·B(p, f, q)
        if r in a[p, f] and g in a[p, f]
        then
                enter r into a[q, f];
end

Commands with one condition are called monoconditional. Commands with
two conditions are called biconditional. The command grant·read·file·A is
monoconditional, and the command grant·read·file·B is biconditional.
Because both have one primitive command, both are mono-operational.

Note that all conditions are joined by and, and never by or. Because joining
conditions with or is equivalent to two commands each with one of the
conditions, the disjunction is unnecessary and thus is omitted. For example,
to achieve the effect of a command equivalent to



if own in a[p, f] or g in a[p, f]
then
        enter r into a[q, f];
end

define the following two commands:

command grant·read·file·C(p, f, q)
        if own in a[p, f]
        then
                enter r into a[q, f];
end
command grant·read·file·D(p, f, q)
        if g in a[p, f]
        then
                enter r into a[q, f];
end

and then say

grant·read·file·C(p, f, q);
grant·read·file·D(p, f, q);

Also, the negation of a condition is not permitted—that is, one cannot test for
the absence of a right within a command by the condition

if r not in a[p, f]

This has some interesting consequences, which we will explore in the next
chapter.

2.4 Copying, Owning, and the Attenuation of
Privilege

Two specific rights are worth discussing. The first augments existing rights
and is called the copy flag; the second is the own right. Both of these rights



are related to the principle of attenuation of privilege, which essentially says
that a subject may not give away rights it does not possess.

2.4.1 Copy Right

The copy right (often called the grant right) allows the possessor to grant
rights to another. By the principle of attenuation, only those rights the
grantor possesses may be copied. Whether the copier must surrender the
right, or can simply pass it on, is specific to the system being modeled. This
right is often considered a flag attached to other rights; in this case, it is
known as the copy flag.

EXAMPLE: In the Windows NTFS file system, the copy right corresponds to
the “change permission” right.

EXAMPLE: System R was a relational database developed by the IBM
Corporation. Its authorization model [654, 827] takes the database tables as
objects to be protected. Each table is a separate object, even if the same
records are used to construct the table (meaning that two different views of
the same records are treated as two separate objects). The users who access
the tables are the subjects. The database rights are read entries, which define
new views on an existing table; insert, delete, and update entries in a table;
and drop (to delete a table). Associated with each right is a grant option; if it
is set, the possessor of the privilege can grant it to another. Here, the grant
option corresponds to a copy flag.

EXAMPLE: Let c be the copy right, and suppose a subject p has r rights over
an object f. Then the following command allows p to copy r over f to another
subject q only if p has a copy right over f.

command grant·r·right(p, f, q)
        if r in a[p, f] and c in a[p, f]
        then
                enter r into a[q, f];
end



If p does not have c rights over f, this command will not copy the r rights to q.

2.4.2 Own Right

The own right is a special right that enables possessors to add or delete
privileges for themselves. It also allows the possessor to grant rights to
others, although to whom they can be granted may be system- or
implementation-dependent. The owner of an object is usually the subject that
created the object or a subject to which the creator gave ownership.

EXAMPLE: On UNIX and Linux systems, the owner may use the chown(1)
command to change the permissions that others have over an object. The
semantics of delegation of ownership vary among different versions of UNIX
and Linux systems. On some versions, the owner cannot give ownership to
another user, whereas on other versions, the owner can do so. In this case,
the object cannot be later reclaimed. All power passes to the new owner.

Whether a subject can delete an own right depends on the instantiation of the
model. Some systems allow an owner to “give away” an object, effectively
transferring the own right to another subject. Other systems forbid this.

2.4.3 Principle of Attenuation of Privilege

If a subject does not possess a right over an object, it should not be able to
give that right to another subject. For example, if Matt cannot read the file
xyzzy, he should not be able to grant Holly the right to read that file. This is a
consequence of the principle of attenuation of privilege.

The principle has several forms; the simplest is [535]:4

4See exercises 5 and 6 for other versions of this privilege.

Principle of Attenuation of Privilege. A subject may not increase its
rights, nor grant rights it does not possess to another subject.



On most systems, the owner of an object can give other subjects rights over
the object whether the owner has those rights enabled or not. At first glance,
this appears to violate the principle. In fact, on these systems, the owner can
grant itself any right over the object owned. Then the owner can grant that
right to another subject. Lastly, the owner can delete the right for itself. So,
this apparent exception actually conforms to the principle.

EXAMPLE: Suppose user matt owns the file /home/matt/xyz but does not
have read permission on it. He can issue the following command to enable
anyone to read the file, whether matt can read it or not.

chmod go+r /home/bishop/xyz

If user holly tries to execute the same command, the system will reject the
command, because holly cannot alter the permissions of a file she does not
own. If she has read permission, she can copy the file and make the copy
readable by everyone, thereby achieving the effect of making the contents of
the file at that time world-readable. Of course, should matt change the
contents of the original file, holly’s world-readable version will not reflect
those changes.

2.5 Summary

The access control matrix is the primary abstraction mechanism in computer
security. In its purest form, it can express any expressible security policy. In
practice, it is not used directly because of space requirements; most systems
have (at least) thousands of objects and could have thousands of subjects, and
the storage requirements would simply be too much. However, its simplicity
makes it ideal for theoretical analyses of security problems.

Transitions change the state of the system. Transitions are expressed in terms
of commands. A command consists of a possible condition followed by one or
more primitive operations. Conditions may involve ownership or the ability



to copy a right. The principle of attenuation of privilege constrains a subject
from giving a right it does not possess to any other subject.

2.6 Research Issues

The access control matrix is very general. Are there other models, simpler to
work with, but equally expressive? Chapter 3, “Foundational Results,”
explores some of these issues, especially the application of the notion of types
to expressive power. Similarly, examining the effects of different types of
rules may affect the expressive power of the models.

Database security is an example of a simple application of the access control
matrix model. The complexity arises because the elements of the matrix
entries are generated by functions with very complex parameter lists. How
can one conceal specific entries yet reveal meaningful statistics? How can one
conceal some statistics yet reveal others? How can one detect attempts to
subvert or circumvent controls?

2.7 Further Reading

The access control matrix is sometimes called an authorization matrix in
older literature [917].

In 1972, Conway, Maxwell, and Morgan [455], in parallel with Graham and
Denning, proposed a protection method for databases equivalent to the
access control model. Hartson and Hsiao [883] point out that databases in
particular use functions as described above to control access to records and
fields; for this reason, entries in the access control matrix for a database are
called decision procedures or decision rules. These entries are very similar to
the earlier formulary model [916], in which access procedures determine
whether to grant access and, if so, provide a mapping to virtual addresses and
any required encryption and decryption.

Various enhancements of the access control matrix have been proposed,



among them the typed access control matrix [1669] that adds a notion of type
to subjects and objects; the augmented typed access control matrix [43] that
adds the ability to check for the absence of rights in an element of the matrix;
and the attribute-based access control matrix [2105] that augments subjects
and objects with arbitrary attributes. Some of these are discussed in Chapter
3, “Foundational Results.”

2.8 Exercises

1. Consider a computer system with three users: Alice, Bob, and Cyndy. Alice
owns the file alicerc, and Bob and Cyndy can read it. Cyndy can read and
write the file bobrc, which Bob owns, but Alice can only read it. Only Cyndy
can read and write the file cyndyrc, which she owns. Assume that the owner
of each of these files can execute it.

(a) Create the corresponding access control matrix.

(b) Cyndy gives Alice permission to read cyndyrc, and Alice removes Bob’s
ability to read alicerc. Show the new access control matrix.

2. Consider the following change in the rules associated with each (object,
verb) pair in Miller and Baldwin’s model (see Section 2.2.1):

How does this change the access control matrices shown at the end of that
section?

3. Consider a mechanism that amplifies rights instead of reducing them.
Associate with each (system) routine a template of rights. When the routine



runs, the rights of the process are augmented by the rights in the associated
template, and when the routine exits, the rights added by the template are
deleted. Contrast this with the mechanism described in Section 2.2.2.

(a) What are some of the advantages and disadvantages of the amplification
mechanism?

(b) What are some of the advantages and disadvantages of the reducing
mechanism?

4. Consider the set of rights { read, write, execute, append, list, modify, own
}.

(a) Using the syntax in Section 2.3, write a command delete_all_rights(p, q,
o). This command causes p to delete all rights the subject q has over an object
o.

(b) Modify your command so that the deletion can occur only if p has modify
rights over o.

(c) Modify your command so that the deletion can occur only if p has modify
rights over o and q does not have own rights over o.

5. Let c be a copy flag and let a computer system have the same rights as in
Exercise 4.

(a) Using the syntax in Section 2.3, write a command copy_all_rights(p, q, s)
that copies all rights that p has over s to q.

(b) Modify your command so that only those rights with an associated copy
flag are copied. The new copy should not have the copy flag.

(c) In the previous part, what conceptually would be the effect of copying the
copy flag along with the right?

6. Suppose Alice has r and w rights over the file book. Alice wants to copy r



rights to book to Bob.

(a) Assuming there is a copy right c, write a command to do this.

(b) Now assume the system supports a copy flag; for example, the right r with
the copy flag would be written as rc. In this case, write a command to do the
copy.

(c) In the previous part, what happens if the copy flag is not copied?

7. Consider a system that allows multiple owners of an object. This system
allows an owner to grant rights to other subjects, and to delete them, except
that the owner cannot delete another own right.

(a) An object o has two owners, p and q. What happens if p deletes all of q’s
rights to the object? Specifically, does this prevent q from accessing the
object?

(b) Assume there are two types of own rights, an “original own” ownorig and
an “added own” ownadd. The own right ownorig cannot be copied or added,
whereas the ownadd right enables the possessor to add or delete rights (except
for the ownorig right). If p has ownorig and q has ownadd, how does your
answer to the first part change?

8. Peter Denning [551] formulated the principle of attenuation of privilege as
“a procedure cannot access an object passed as a parameter in ways that the
caller cannot.” Contrast this formulation to that of the Principle of
Attenuation of Privilege in Section 2.4.3. In particular, which is the “subject”
and which is the “other subject” in the earlier statement?

9. Minsky [1360, p. 256] states that “privileges should not be allowed to grow
when they are transported from one place in the system to another.” Does
this differ from the Principle of Attenuation of Privilege as stated in Section
2.4.3? If not, show they are the same; if so, how do they differ?



10. This exercise asks you to consider the consequences of not applying the
principle of attenuation of privilege to a computer system.

(a) What are the consequences of not applying the principle at all? In
particular, what is the maximal set of rights that subjects within the system
can acquire (possibly with the cooperation of other subjects)?

(b) Suppose attenuation of privilege applied only to access rights such as read
and write, but not to rights such as own and grant_rights. Would this
ameliorate the situation discussed in part 10a? Why or why not?

(c) Consider a restricted form of attenuation, which works as follows. A
subject q is attenuated by the maximal set of rights that q, or any of its
ancestors, has. So, for example, if any ancestor of q has r permission over a
file f, q can alsor f. How does this affect the spread of rights throughout the
access control matrix of the system? Develop an example matrix that includes
the ancestor right, and illustrate your answer.



Chapter 3. Foundational Results
MARIA: Ay, but you must confine yourself within the modest limits of order.

— Twelfth Night, I, iii, 8–9.

In 1976, Harrison, Ruzzo, and Ullman [880] proved that the security of 
computer systems was undecidable in the general case and explored some of 
the limits of this result. In that same year, Jones, Lipton, and Snyder [979] 
presented a specific system in which security was not only decidable, but 
decidable in time linear with the size of the system. Minsky [1361] suggested a 
third model to examine what made the general, abstract case undecidable but 
at least one specific case decidable. Sandhu [1666] devised a related model 
extending the decidability results to a large class of systems.

These models explore the most basic question of the art and science of 
computer security: under what conditions can a generic algorithm determine 
whether a system is secure? Understanding models and the results derived 
from them lays the foundations for coping with limits in policy and policy 
composition as well as applying the theoretical work.

3.1 The General Question

Given a computer system, how can we determine if it is secure? More simply, 
is there a generic algorithm that allows us to determine whether a computer 
system is secure? If so, we could simply apply that algorithm to any system; 
although the algorithm might not tell us where the security problems were, it 
would tell us whether any existed.



The first question is the definition of “secure.” What policy shall define
“secure”? For a general result, the definition should be as broad as possible.
We use the access control matrix to express our policy. However, we do not
provide any special rights such as copy or own, nor do we apply the principle
of attenuation of privilege.

Let R be the set of generic (primitive) rights of the system.

Definition 3–1. When a generic right r is added to an element of the access
control matrix that did not contain r initially, that right is said to be leaked.1

1Tripunitara and Li [1902] point out that this differs from the definition in
Harrison, Ruzzo, and Ullman [880], which defines “leaked” to mean that r is
added to any access control matrix entry in which r was not present in the
immediately previous state. But the proofs in that paper use Definition 3–1.
See exercise 2 for an exploration of the differences when the stated definition
in Harrison, Ruzzo, and Ullman is used.

Under this definition, if a system begins with a right r in A[s, o], deletes it,
and then adds it back, r has not leaked.

Our policy defines the authorized set of states A to be the set of states in
which no command c(x1, . . . , xn) can leak r. This means that no generic rights
can be added to the matrix.

We do not distinguish between the leaking of rights and an authorized
transfer of rights. In our model, there is no authorized transfer of rights. (If
we wish to allow such a transfer, we designate the subjects involved as
“trusted.” We then eliminate all trusted subjects from the matrix, because the
security mechanisms no longer apply to them.)

Let a computer system begin in protection state s0.

Definition 3–2. If a system can never leak the right r, the system (including
the initial state s0) is called safe with respect to the right r. If the system can



leak the right r (enter an unauthorized state), it is called unsafe with respect
to the right r.

We use these terms rather than secure and nonsecure because safety refers to
the abstract model and security refers to the actual implementation. Thus, a
secure system corresponds to a model safe with respect to all rights, but a
model safe with respect to all rights does not ensure a secure system.

EXAMPLE: A computer system allows the network administrator to read all
network traffic. It disallows all other users from reading this traffic. The
system is designed in such a way that the network administrator cannot
communicate with other users. Thus, there is no way for the right r of the
network administrator over the network device to leak. This system is safe.

Unfortunately, the operating system has a flaw. If a user specifies a certain
file name in a file deletion system call, that user can obtain access to any file
on the system (bypassing all file system access controls). This is an
implementation flaw, not a theoretical one. It also allows the user to read data
from the network. So this system is not secure.

The protection state of a system consists of the parts of the system state
relevant to protection. The safety question is: Does there exist an algorithm
to determine whether a given protection system with initial state s0 is safe
with respect to a generic right r?

3.2 Basic Results

The simplest case is a system in which the commands are mono-operational
(each consisting of a single primitive operation). In such a system, the
following theorem holds.

Theorem 3.1. [880] There exists an algorithm that will determine whether
a given mono-operational protection system with initial state s0 is safe with
respect to a generic right r.



Proof. Because all commands are mono-operational, we can identify each
command by the type of primitive operation it invokes. Consider the minimal
length sequence of commands c1, . . . , ck needed to leak the right r from the
system with initial state s0.

Because no commands can test for the absence of rights in an access control
matrix entry, we can omit the delete and destroy commands from the
analysis. They do not affect the ability of a right to leak.

Now suppose that multiple create commands occurred during the sequence
of commands, causing a leak. Subsequent commands check only for the
presence of rights in an access control matrix element. They distinguish
between different elements only by the presence (or lack of presence) of a
particular right. Suppose that two subjects s1 and s2 are created and the rights
in A[s1, o1] and A[s2, o2] are tested. The same test for A[s1, o1] and A[s1, o2] =
A[s1, o2] ∪A[s2, o2] will produce the same result. Hence, all create
commands are unnecessary except possibly the first (if there are no subjects
initially), and any commands entering rights into the new subjects are
rewritten to enter the new right into the lone created subject. Similarly, any
tests for the presence of rights in the new subjects are rewritten to test for the
presence of that right in an existing subject (or, if none initially, the first
subject created).

Let |S0| be the number of subjects and |O0| the number of objects in the
initial state. Let n be the number of generic rights. Then, in the worst case,
one new subject must be created (one command), and the sequence of
commands will enter every right into every element of the access control
matrix. After the creation, there are |S0| + 1 subjects and |O0| + 1 objects, and
(|S0| + 1)(|O0| + 1) elements. Because there are n generic rights, this leads to
n(|S0| + 1)(|O0| + 1) commands. Hence, k ≤ n(|S0| + 1)(|O0| + 1) + 1.

By enumerating all possible states we can determine whether the system is
safe. Clearly, this may be computationally infeasible, especially if many
subjects, objects, and rights are involved, but it is computable. (See Exercise



4.) Unfortunately, this result does not generalize to all protection systems.

To see this, we express a problem known to be undecidable in terms of the
access control matrix model. The halting problem is known to be
undecidable, so we develop a mapping between a Turning machine and the
access control matrix. Each Turing machine command moves the head and
possibly changes the symbols, so we devise commands in the access control
matrix model to do the equivalent to the access control matrix.

We now make this intuition rigorous. To begin, let us review the notation for
a Turing machine. A Turing machine T consists of a head and an infinite tape
divided into cells numbered 1, 2, . . . , from left to right. The machine also has
a finite set of states K and a finite set of tape symbols M. The distinguished
symbol b ∈ M is a blank and appears on all the cells of the tape at the start of
all computations; also, at that time T is in the initial state q0.

The tape head occupies one square of the tape, and can read and write
symbols on that cell of the tape, and can move into the cell to the left (L) or
right (R) of the cell it currently occupies. The function δ : K × M → K × M ×
{L, R} describes the action of T . For example, let p, q ∈ K and A, B ∈ M.
Then, if δ(p, A) = (q, B, R), when T is in state p and the head rests on a cell
with symbol A, the tape head changes the symbol in the cell to B, moves right
to the next cell (that is, if the head is in cell i, it moves to cell i + 1), and the
Turing machine enters state q. If δ(p, A) = (q, B, L), then the actions would be
the same except the head would move to the left unless it were already in the
leftmost square (because the head may never move off the tape).

Let the final state be qf; if T enters this state, it halts. The halting problem is
to determine whether an arbitrary Turing machine will enter the state qf, and
is known to be undecidable [641].

Given this, we can now present the following theorem.

Theorem 3.2. [880] It is undecidable whether a given state of a given



protection system is safe for a given generic right.

Proof. Proof by contradiction. We show that an arbitrary Turing machine can
be reduced to the safety problem, with the Turing machine entering a final
state corresponding to the leaking of a given generic right. Then, if the safety
problem is decidable, we can determine when the Turing machine halts,
showing that the halting problem is decidable, which (as we said above) is
false.

First, we construct a map from the states and symbols of T to rights in the
access control matrix model. Let the set of generic rights be the symbols in M
and a set of distinct symbols each representing an element in K; in other
words, the set of tape symbols and states are represented by generic rights,
one right for each symbol and one for each state.

The cells of the Turing machine tape are sequentially ordered. We consider
only the cells that the head has visited, so suppose T has scanned cells 1, 2, . . .
, n. To simulate this, we represent each cell as a subject and define a
distinguished right called own such that si owns si+1 for 1 ≤ i < k. If cell i
contains the symbol A, then subject si has A rights over itself. Furthermore,
the subject sk, which corresponds to the rightmost cell visited, has endrt
rights over itself; notice that sk+1 has not been created in this case. Finally, if
the head is in cell j and T is in state p, then subject sj has p rights over itself
also. (To keep the meanings of the rights unambiguous, we require the rights
corresponding to the symbols for the tape to be distinct from the rights
corresponding to the states.) Figure 3–1 shows an example of this mapping,
when the head has visited four cells.



Figure 3–1: The Turing machine (at left) is in state p. The
corresponding access control matrix is shown at right.

Next, we must translate the Turing machine function δ into access control
matrix commands. Suppose that δ(p, A) = (q, B, L) and the head is not in the
leftmost cell. Then, in terms of the access control matrix, the rights A and p
must be replaced by B in the entry a[si, si] and the right q must be added to
a[si–1, si–1]. The following access control matrix command, in which si
represents the subject corresponding to the current cell, captures this.

command cp,A(si, si–1)
        if own in a[si–1, si] and p in a[si, si] and A in a[si, si]
        then
                delete p from a[si, si];
                delete A from a[si, si];
                enter B into a[si, si];
                enter q into a[si–1, si–1];
end

If the head is in the leftmost cell of the tape, both si and si–1 are s1.

Now consider motion to the right, such as δ(p, A) = (q, B, R). If the head is
not in the rightmost cell k, by the same reasoning as for the left motion, we
have



command cp,A(si, si+1)
        if own in a[si, si+1] and p in a[si, si] and A in a[si, si]
        then
                delete p from a[si, si];
                delete A from a[si, si];
                enter B into a[si, si];
                enter q into a[si+1, si+1];
end

However, if the head is in the rightmost cell k, the command must create a
new subject sk+1. Then, to maintain the consistency of the access control
matrix, sk is given own rights over the new subject sk+1, sk+1 gets end rights
over itself, and sk’s end rights over itself must be removed. At that point, the
problem is reduced to the problem of regular right motion. So:

command crightmostp,A(sk, sk+1)
        if end in a[sk, sk] and p in a[sk, sk] and A in a[sk, sk]
        then
                delete end from a[sk, sk];
                delete p from a[sk, sk];
                delete A from a[sk, sk];
                enter B into a[sk, sk];
                create subject sk+1;
                enter own into a[sk, sk+1];
                enter end into a[sk+1, sk+1];
                enter q into a[sk+1, sk+1];
end

Clearly, only one right in any of the access control matrices corresponds to a
state, and there will be exactly one end right in the matrix (by the nature of
the commands simulating Turing machine actions). Hence, in each
configuration of the Turing machine, there is at most one applicable
command. Thus, the protection system exactly simulates the Turing machine,
given the representation above.

Assume that the Turing machine’s initial state is q0 ≠ qf. If the Turing
machine enters state qf, then the protection system has leaked the right qf;



otherwise, the protection system is safe for the generic right qf. But whether
the Turing machine will enter the (halting) state qf is undecidable, so whether
the protection system is safe must be undecidable also.

However, we can generate a list of all unsafe systems.

Theorem 3.3. [535] The set of unsafe systems is recursively enumerable.

Proof. See Exercise 6.

Assume that the create primitive is disallowed. Clearly, the safety question is
decidable (simply enumerate all possible sequences of commands from the
given state; as no new subjects or objects are created, at some point no new
rights can be added to any element of the access control matrix, so if the leak
has not yet occurred, it cannot occur). Thus, it needs only a polynomial
amount of space. Hence, we have the following theorem.

Theorem 3.4. [880] For protection systems without the create primitives,
the question of safety is complete in P-SPACE.

Proof. Consider a Turing machine bounded in polynomial space. A
construction similar to that of Theorem 3.2 reduces that Turing machine in
polynomial time to an access control matrix whose size is polynomial in the
length of the Turing machine input.

If deleting the create primitives makes the safety question decidable, would
deleting the delete and destroy primitives but not the create primitive also
make the safety question decidable? Such systems are called monotonic
because they only increase in size and complexity; they cannot decrease. But:

Theorem 3.5. [879] It is undecidable whether a given configuration of a
given monotonic protection system is safe for a given generic right.

Restricting the number of conditions in the commands to two does not help:



Theorem 3.6. [879] The safety question for biconditional monotonic
protection systems is undecidable.

But if at most one condition per command is allowed:

Theorem 3.7. [879] The safety question for monoconditional monotonic
protection systems is decidable.

This can be made somewhat stronger:

Theorem 3.8. [879] The safety question for monoconditional protection
systems with create, enter, and delete primitives (but no destroy
primitive) is decidable.

Thus, the safety question is undecidable for generic protection models but is
decidable if the protection system is restricted in some way. Two questions
arise. First, given a particular system with specific rules for transformation,
can we show that the safety question is decidable? Second, what are the
weakest restrictions on a protection system that will make the safety question
decidable in that system?

3.3 The Take-Grant Protection Model

Can the safety of a particular system, with specific rules, be established (or
disproved)? The answer, not surprisingly, is yes. Such a system is the Take-
Grant Protection Model.

The Take-Grant Protection Model represents a system as a directed graph.
Vertices are either subjects (represented by ) or objects (represented by 
). Vertices that may be either subjects or objects are represented by . Edges
are labeled, and the label indicates the rights that the source vertex has over
the destination vertex. Rights are elements of a predefined set R; R contains
two distinguished rights: t (for take) and g (for grant).

As the protection state of the system changes, so does the graph. The



protection state (and therefore the graph) changes according to four graph
rewriting rules:

Take rule: Let x, y, and z be three distinct vertices in a protection graph G0,
and let x be a subject. Let there be an edge from x to z labeled γ with t ∈ γ, an
edge from z to y labeled β, and α ⊆ β. Then the take rule defines a new graph
G1 by adding an edge to the protection graph from x to y labeled δ.
Graphically,

The rule is written “x takes (α to y) from z.”

Grant rule: Let x, y, and z be three distinct vertices in a protection graph
G0, and let z be a subject. Let there be an edge from z to x labeled γ with g ∈
γ, an edge from z to y labeled β, and α ⊆ β. Then the grant rule defines a new
graph G1 by adding an edge to the protection graph from x to y labeled α.
Graphically,

The rule is written “z grants (α to y) from x.”

Create rule: Let x be any subject in a protection graph G0 and let α ⊆ R.
Then the create rule defines a new graph G1 by adding a new vertex y to the
graph and an edge from x to y labeled α. Graphically,

The rule is written “x creates (α to new vertex) y.”

Remove rule: Let x and y be any distinct vertices in a protection graph G0
such that x is a subject. Let there be an edge from x to y labeled β, and let α ⊆



β. Then the remove rule defines a new graph G1 by deleting the α labels from
β. If β becomes empty as a result, the edge itself is deleted. Graphically,

The rule is written “x removes (α to) y.”

Because these rules alter the state of the protection graph, they are called de
jure (“by law” or “by right”) rules.

We demonstrate that one configuration of a protection graph can be derived
from another by applying the four rules above in succession. The symbol ├
means that the graph following it is produced by the action of a graph
rewriting rule on the graph preceding it; and the symbol ├* represents a
finite number of successive rule applications. Such a sequence of graph
rewriting rules is called a witness. A witness is often demonstrated by listing
the graph rewriting rules that make up the witness (usually with pictures).

A word about notation involving sets of rights will clarify what follows. In a
rule such as “vertex x grants (β to vertex y) to z”, we tacitly assume that there
is a single edge labeled β, and not multiple edges each labeled β1, . . . , βn, with

βi = β [1465].

3.3.1 Sharing of Rights

We first wish to determine if a given right α can be shared—that is, given a
protection graph G0, can a vertex x obtain α rights over another vertex y?
More formally:

Definition 3–3. The predicate can•share(α, x, y, G0) is true for a set of
rights α and two vertices x and y if and only if there exists a sequence of
protection graphs G1, . . . , Gn such that G0 ├* Gn using only de jure rules and
in Gn there is an edge from x to y labeled α.

To establish the conditions under which this predicate will hold, we must



define a few terms.

Definition 3–4. A tg-path is a nonempty sequence v0, . . . , vn of distinct
vertices such that for all i, 0 ≤ i < n, vi is connected to vi+1 by an edge (in
either direction) with a label containing t or g.

Definition 3–5. Vertices are tg-connected if there is a tg-path between
them.

We can now prove that any two subjects with a tg-path of length 1 can share
rights. Four such paths are possible. The take and grant rules in the preceding
section account for two of them. Lemmata 3.1 and 3.2 cover the other two
cases.

Lemma 3.1.

Proof. x creates (tg to new vertex) v.

z takes (g to v) from x.



z grants (α to y) to v.

x takes (α to y) from v.

This sequence of rule applications adds an edge labeled δ from x to y.

A similar proof establishes the following lemma.

Lemma 3.2.

Proof. See Exercise 8.

Thus, the take and grant rules are symmetric if the vertices on the tg-path
between x and y are subjects. This leads us to the following definition.

Definition 3–6. An island is a maximal tg-connected subject-only
subgraph.



Because an island is a maximal subgraph in which all edges have a label
containing t or g, a straightforward inductive proof shows that any right
possessed by any vertex in the island can be shared with any other vertex in
the island.

Transferring rights between islands requires that a subject in one island be
able to take the right from a vertex in the other island or that a subject be able
to grant the right to an intermediate object from which another subject in the
second island may take the right. This observation, coupled with the
symmetry of take and grant, leads to a characterization of paths between
islands along which rights can be transferred. To express it succinctly, we use
the following notation. With each tg-path, associate one or more words over
the alphabet in the obvious way. If the

path has length 0, then the associated word is the null word ν. The notation t*
means zero or more occurrences of the character t, so, for example, t* g
represents the sequence g, tg, ttg, . . ..

Definition 3–7. A bridge is a tg-path with endpoints v0 and vn both
subjects and the path’s associated word in

.

The endpoints of a bridge are both subjects, so the right can be transferred
from one endpoint of the bridge to the other.

Given this definition, and that every subject vertex is contained in an island
(consisting of only that subject vertex, perhaps), we have established
conditions under which rights can be shared between subjects in a protection
graph. In what follows, let δ represent a right.

Theorem 3.9. [1204] The predicate subject•can•share(α, x, y, G0) is true if



and only if x and y are both subjects and there is an edge from x to y in G0

labeled α, or if the following hold simultaneously:

a. There is a subject s ∈ G0 with an s-to-y edge labeled α;

b. There exist islands I1, . . . , In such that x is in I1, s is in In, and there is a
bridge from Ij to Ij+1 (1 ≤ j < n).

Objects complicate this result. Because subjects can act but objects cannot,
the transfer may begin with a right possessed by an object and conclude with
that right being given to another object. The following two definitions help.

Definition 3–8. A vertex x initially spans to y if x is a subject and there is a
tg-path between x and y with an associated word in

.

In other words, x initially spans to y if x can grant a right it possesses to y.

Definition 3–9. A vertex x terminally spans to y if x is a subject and there
is a tg-path between x and y with an associated word in

.

In other words, x terminally spans to y if x can take any right that y
possesses. Note that these two definitions imply that t and g are not
symmetric if either the source or destination vertex of the edge labeled t or g
is an object.

We can now state and prove necessary and sufficient conditions for a right δ
to be transferred from a vertex y to another vertex x.

Theorem 3.10. [979] The predicate can•share(α, x, y, G0) is true if and
only if there is an edge from x to y in G0 labeled α, or if the following hold



simultaneously:

a. There is a vertex s ∈ G0 with an s-to-y edge labeled α.

b. There exists a subject vertex x′ such that x′ = x or x′ initially spans to x.

c. There exists a subject vertex s′ such that s′ = s or s′ terminally spans to s.

d. There exist islands I1, . . . , In such that x′ ∈ I1, s′ ∈ In, and there is a bridge
from Ij to Ij+1 (1 ≤ j < n).

The idea behind this theorem is simple. Because s′ terminally spans to s, s′
can acquire α rights to y. Given the definition of island, all subjects in In can
acquire those rights. They can be passed along the bridge to a subject in In–1,
which means that any subject in In–1 can acquire those same rights. This
continues until x′ ∈ I1 acquires those rights. Then, as x′ initially spans to x, x′
can pass the rights to x. Exercise 9 explores a possible alternative
representation of this result.

Corollary 3.1. [979] There is an algorithm of complexity O(|V| + |E|) that
tests the predicate can•share, where V is the set of vertices and E the set of
edges, in G0.

3.3.2 Interpretation of the Model

A model abstracts essential details from a situation to aid in its analysis. For
example, the question: “Can my competitor access my files?” presumes a
knowledge of the rules for sharing files on the computer system (or network).
The model must correctly capture these rules to be applicable.

The beauty of the access control matrix model is its malleability; by choosing
rights and rules appropriately, an analyst can use it to capture the essence of
any situation. The Take-Grant Protection Model presents specific rules and
distinguished rights and so can be applied only in specific situations.



The protection state of a system evolves as rules are applied to entities within
the system. The question of what states can evolve is thus of interest, because
that set of states defines what protection states the (real) system may assume.
So, consider the set of states of a particular system that the Take-Grant
Protection Model rules can generate. For simplicity, we consider those states
arising from a single entity, which (by the Take-Grant rules above) must be a
subject.

Theorem 3.11. [1788] Let G0 be a protection graph containing exactly one
subject vertex and no edges, and let R be a set of rights. Then G0 ├* G if and
only if G is a finite, directed, loop-free graph containing subjects and objects
only, with edges labeled from nonempty subsets of R and with at least one
subject having no incoming edges.

Proof. (⇒) By construction. Assume that G meets the requirements above.
Let x1, . . . , xn be the set of subjects in G, and without loss of generality let x1
have no incoming edges. Identify v with x1. The graph G′ can be constructed
from v using the Take-Grant Protection Model rules, as follows:

a. Perform “v creates (α ∪{g} to) new xi” for all xi, 2 ≤ i ≤ n, where α is the
union of all labels on the edges going into xi in G.

b. For all pairs of vertices xi and xj in G with xi having a rights over xj,
perform “v grants (α to xj) to xi.”

c. Let β be the set of rights labeling the edge from xi and xj in G (note that β
may be empty). Perform “v removes ((α ∪{g}) – β to) xj.”

The resulting graph G′ is the desired graph G.

(⇐) Let v be the initial subject, and let G0 ├* G. By inspection of the rules, G
is finite, loop-free, and a directed graph; furthermore, it consists of subjects
and objects only, and all edges are labeled with nonempty subsets of R.

Because no rule allows the deletion of vertices, v is in G. Because no rule



allows an incoming edge to be added to a vertex without any incoming edges,
and v has no incoming edges, it cannot be assigned any.

Corollary 3.2 [1788] A k-component, n-edge protection graph can be
constructed from m rule applications, where 2(k – 1) + n ≤ m ≤ 2(k – 1) +
3n.

Using the Take-Grant Protection Model, Snyder [1788] showed how some
common protection problems could be solved. For example, suppose two
processes p and q communicate through a shared buffer b controlled by a
trusted entity s (for example, an operating system). The configuration in
Figure 3–2(a) shows the initial protection state of the system. Because s is a
trusted entity, the assumption that it has g rights over p and q is reasonable.
To create b, and to allow p and q to communicate through it, s does the
following:

Figure 3–2: (a) The initial state of the system: s, a trusted entity,
can grant rights to untrusted processes p and q. Each process p
and q controls its own private information (here represented by
files u and v). (b) The trusted entity has created a buffer b shared
by the untrusted processes.

a. s creates ({r, w} to new object) b.

b. s grants ({r, w} to b) to p.

c. s grants ({r, w} to b) to q.



This creates the configuration in Figure 3–2(b). The communication channel
is two-way; if it is to be one-way, the sender would have write rights and the
receiver would have read rights. This configuration also captures the ability of
the trusted entity to monitor the communication channel or interfere with it
(by altering or creating messages)—a point we will explore in later sections.

3.3.3 Theft in the Take-Grant Protection Model

The proof of the conditions necessary and sufficient for can•share requires
that all subjects involved in the witness cooperate. This is unrealistic. If
Professor Olson does not want any students to read her grade file, the notion
of “sharing” fails to capture the unwillingness to grant access. This leads to a
notion of stealing, in which no owner of any right over an object grants that
right to another.

Figure 3–3: The take-grant rules to the right of the graph are a
witness to a theft in that graph in which the owner, u, of the stolen
right, α, grants other rights to another subject (t rights to v are
granted to s).

Definition 3–10. Let G0 be a protection graph, let x and y be distinct
vertices in G0, and let α ∈ R. The predicate can•steal(α, x, y, G0) is true when
there is no edge from x to y labeled α in G0 and there exists a sequence of
protection graphs G1, . . . , Gn for which the following hold simultaneously:

a. There is an edge from x to y labeled α in Gn.



b. There is a sequence of rule applications ρ1, . . . , ρn such that Gi–1 ├ Gi
using ρi.

c. For all vertices v and w in Gi–1, 1 ≤ i < n, if there is an edge from v to y in
G0 labeled α, then ρi is not of the form “v grants (α to y) to w.”

Part c also excludes sequences of rules at least one of which is a grant rule
that culminate in α to y being granted to z. Specifically, this excludes the
sequence of rules for i = 1, . . . , n, “vertex x grants (αi to vertex y) to z”, where

[1465].

This definition disallows owners of the α right to y from transferring that
right. It does not disallow those owners from transferring other rights.
Consider Figure 3–3. The given witness exhibits can•steal(α, s, w, G0). In
step (1), the owner of the α right to w grants other rights (specifically, t rights
to v) to a different subject, s. Without this step, the theft cannot occur. The
definition only forbids grants of the rights to be stolen. Other rights may be
granted. One justification for this formulation is the ability of attackers to
trick others into surrendering rights. While the owner of the target right
would be unlikely to grant that right, the owner might grant other rights. This
models the Trojan horse (see Section 23.2), in which the owner of the rights is
unaware she is giving them away.

Making the target of the theft a subject complicates this situation. According
to Definition 3–10, the target may give away any rights as well. In this case,
the owner is acting as a moderator between the target and the source and
must restrain the transfer of the right through it. This models the case of
mandatory access controls.

Theorem 3.12. [1788] The predicate can•steal(alpha, x, y, G0) is true if
and only if the following hold simultaneously:

a. There is no edge from x to y labeled α in G0.



b. There exists a subject vertex x′ such that x′ = x or x′ initially spans to x.

c. There exists a vertex s with an edge labeled α to y in G0 and for which
can•share(t, x, s, G0) holds.

Proof. (⇒) Assume that the three conditions above hold. If x is a subject, then
x need merely obtain t rights to s and then use the take rule to obtain α rights
to y. By definition, this satisfies can•steal(α, x, y, G0).

Suppose x is an object. Then by Theorem 3.10, because can•share(t, x, s, G0)
holds, there exists a subject vertex x′ that tg-initially spans to x and for which
the predicate can•share(t, x′, s, G0) is true. Without loss of generality,
assume that the tg-initial span is of length 1 and that x′ has t rights over s in
G0. If x′ does not have an edge labeled α to y in G0, then x′ takes α rights to y
and grants those rights to x, satisfying the definition. If x′ has an edge labeled
α to y in G0, then x′ will create a “surrogate” to which it can give t rights to s:

1. x′ creates (g to new subject) x″.

2. x′ grants (t to s) to x″.

3. x′ grants (g to x) to x″.

Now x″ has t rights over s and g rights over x, so the rule applications

1. x″ takes (α to y) from s.

2. x″ grants (α to y) to x.

satisfy the definition. Hence, can•steal(α, x, y, G0) holds if the three
conditions in the theorem hold.

(⇐) Assume that can•steal(α, x, y, G0) holds. Then condition (a) of the
theorem holds directly from Definition 3–10.

Condition (a) of Definition 3–10 implies can•share(α, x, y, G0). From



condition (b) of Theorem 3.10, we immediately obtain condition (a) of this
theorem.

Condition (a) of Theorem 3.10 ensures that the vertex s in condition (c) of
this theorem exists.

We must show that can•share(t, x, s, G0) holds. Let ρ be a sequence of rule
applications. Consider the minimal length sequence of rule applications
deriving Gn from G0. Let i be the least index such that Gi–1 ├ρi Gi and such
that there is an edge labeled α from some vertex p to y in Gi but not in Gi–1.
Then Gi is the first graph in which an edge labeled αto y is added.

Obviously, ρi is not a remove rule. It cannot be a create rule, because y
already existed. By condition (c) of Definition 3–10, and the choice of i
ensuring that all vertices with α rights to y in Gi are also in G0, ρi cannot be a
grant rule. Hence, ρi must be a take rule of the form for some vertex s in G0.
From this, can•share(t, p, s, G0) holds. By condition (c) of Theorem 3.10,
there is a subject s′ such that s′ = s or s′ terminally spans to s, and by
condition (d), there exists a sequence of islands I1, . . . , In such that x′ ∈ I1
and s′ ∈ In.

If s is an object (and thus s′ ≠ s), consider two cases. If s′ and p are in the
same island, then take p = s′. If they are in different islands, the derivation
cannot be of minimal length; choose s′ in the same island to exhibit a shorter
one. From this, the conditions of Theorem 3.10 have been met, and
can•share(t, x, s, G0) holds.

If s is a subject (s′ = s), then p ∈ In, and we must show that p ∈ G0 for
Theorem 3.10 to hold. If p ∉ G0, then there is a subject q in one of the islands
such that can•share(t, q, s, G0) holds. (To see this, note that s ∈ G0 and that



none of the de jure rules adds new labels to incoming edges on existing
vertices.) Because s is an owner of the α right to y in G0, we must derive a
witness for this sharing in which s does not grant (α to q). If s and q are
distinct, replace each rule application of the form

s grants (α to y) to q

with the sequence

p takes (α to y) from s

p takes (g to q) from s

p grants (α to y) to q

thereby transferring the right (α to y) to q without s granting. If s = q, then
the first rule application in this sequence suffices.

Hence, there exists a witness to can•share(t, x, s, G0) in which s does not
grant (α to y). This completes the proof.

3.3.4 Conspiracy

The notion of theft introduced the issue of cooperation: which subjects are
actors in a transfer of rights, and which are not? This raises the issue of the
number of actors necessary to transfer a right. More formally, what is the
minimum number of actors required to witness a given predicate
can•share(α, x, y, G0)?

Consider a subject vertex y. Then y can share rights from any vertex to which
it terminally spans and can pass those rights to any vertex to which it initially
spans.

Definition 3–11. The access set A(y) with focus y is the set of vertices y, all
vertices x to which y initially spans, and all vertices x′ to which y terminally
spans.



Of course, a focus must be a subject.

Consider two access sets with different foci y and y′ that have a vertex z in
common. If z ∈ A(y) because y initially spans to z, and z ∈ A(y′) because y′
initially spans to z, by the definition of initial span, no rights can be
transferred between y and y′ through z. A similar result holds if both y and y′
terminally span to z. However, if one focus initially spans to z and the other
terminally spans to z, rights can be transferred through z. Because we care
about the transfer of rights, we identify a set of vertices that can be removed
from the graph without affecting transfers:

Definition 3–12. The deletion set δ(y, y′) contains all vertices z in the set
A(y)∩A(y′) for which (a) y initially spans to z and y′ terminally spans to z,
(b) y terminally spans to z and y′ initially spans to z, (c) z = y, or (d) z = y′.

Given the deletion set, we construct an undirected graph, called the
conspiracy graph and represented by H, from G0:

1. For each subject vertex x in G0, there is a corresponding vertex h(x) in H
with the same label.

2. If δ(y, y′) ≠ Ø in G0, there is an edge between h(y) and h(y′) in H.

The conspiracy graph represents the paths along which subjects can transfer
rights. The paths are unidirectional because the rights can be transmitted in
either direction. Furthermore, each vertex in H represents an access set focus
in G0.

EXAMPLE: In Figure 3–4, the access sets are:

The vertex z is not in A(e) because the path from e to z is neither a terminal
nor an initial span. For the same reason, the vertex y is not in A(h). Using



these sets gives the following nonempty deletion sets:

Although A(e) ∩ A(h) = {i}, the vertex i is in A(e) because e initially spans to
i, and i is in A(h) because h initially spans to i. Hence, δ(e, h) = Ø and there
is no edge between h(e) and h(h) in G0.

The conspiracy graph exhibits the paths along which rights can be
transmitted. Let the set I(p) contain the vertex h(p) and the set of all vertices
h(p′) such that p′ initially spans to p; let the set T (q) contain the vertex h(q)
and the set of all vertices h(q′) such that q′ terminally spans to q. Then:

Theorem 3.13. [1788] can•share(α, x, y, G0) is true if and only if there is a
path from some h(p) ∈ I(x) to some h(q) ∈ T (y).

Furthermore:

Theorem 3.14. [1788] Let n be the number of vertices on a shortest path
between h(p) and h(q), with p and q as in Theorem 3.13. Then n
conspirators are necessary and sufficient to produce a witness to can•share(
α, x, y, G0).



Figure 3–4: (a) A Take-Grant protection graph. (b) The
corresponding conspiracy graph.

EXAMPLE: In Figure 3–4, the shortest path between h(e) and h(x) has four
vertices (h(x), h(b), h(c), and h(e)), so four conspirators are necessary and
sufficient to witness can•share(r, x, z, G0). Such a witness is

1. e grants (r to z) to d.

2. c takes (r to z) from d.

3. c grants (r to z) to b.

4. b grants (r to z) to a.

5. x takes (r to z) from a.

and the conspirators are e, c, b, and x. To see that this is minimal, note that
both x and b must act to transfer the right through a, e must act to transfer
the right to another vertex, and in order to pass the right from d to b, c must
act.



3.3.5 Summary

The Take-Grant Protection Model is a counterpoint to the Harrison-Ruzzo-
Ullman (HRU) result. It demonstrates that, for a specific system, the safety
question is not only decidable but decidable in linear time with respect to the
size of the graph. It also explores ancillary issues such as theft and
conspiracy.

3.4 Closing the Gap: the Schematic Protection Model

Given that in specific systems we can answer the safety question, why can’t
we answer it about generic systems? What is it about the Harrison-Ruzzo-
Ullman (HRU) model that makes the safety question undecidable? What
characteristics distinguish a model in which the safety question is decidable
from a model in which the safety question is not decidable? A series of elegant
papers have explored this issue.

The first paper introduced a model called the Schematic Send-Receive (SSR)
Protection Model [1665]. The Schematic Protection Model (SPM) [1666]
generalizes these results.

The key notion of the Schematic Protection Model, also called the SPM, is the
protection type. This is a label for an entity that determines how control
rights affect that entity. For example, if the Take-Grant Protection Model is
viewed as an instance of a scheme under the SPM, the protection types are
subject and object because the control rights take, grant, create, and remove
affect subject entities differently than they do object entities. Moreover, under
SPM, the protection type of an entity is set when the entity is created, and
cannot change thereafter.

In SPM, a ticket is a description of a single right. An entity has a set of tickets
(called a domain) that describe what rights it has over another entity. A ticket
consists of an entity name and a right symbol; for example, the ticket X/r
allows the possessor of the ticket to apply the right r to the entity X. Although



a ticket may contain only one right, if an entity has multiple tickets X/r, X/s,
and X/t, we abbreviate them by writing X/rst.

Rights are partitioned into a set of inert rights (RI) or control rights (RC).
Applying an inert right does not alter the protection state of the system. For
example, reading a file does not modify which entities have access to the
document, so read is an inert right. But in the Take-Grant Protection Model,
applying the take rule does change the protection state of the system (it gives
a subject a new right over an object). Hence, the take right is a control right.
SPM ignores the effect of applying inert rights, but not the effect of applying
control rights.

The attribute c is a copy flag; every right r has an associated copyable right rc.
A ticket with the copy flag can be copied to another domain. The notation r:c
means r or rc, with the understanding that all occurrences of r:c are read as r
or all are read as rc.

We partition the set of types T into a subject set T S and an object set T O. The
type of an entity X is written τ(X). The type of a ticket X/r:c is τ(X/r:c),
which is the same as τ(X)/r:c. More formally, let E be the set of entities; then
τ : E → T and τ : E × R → T × R.

The manipulation of rights is controlled by two relationships: a link predicate
and a filter function. Intuitively, the link predicate determines whether the
source and target of the transfer are “connected” (in a mathematical sense),
and the filter function determines whether the transfer is authorized.

3.4.1 Link Predicate

A link predicate is a relation between two subjects. It is local in the sense that
its evaluation depends only on the tickets that the two subjects possess.
Formally:

Definition 3–13. Let dom(X) be the set of tickets that X possesses. A link



predicate linki(X, Y) is a conjunction or disjunction (but not a negation) of
the following terms, for any right z ∈ RC:

1. X/z ∈ dom(X)

2. X/z ∈ dom(Y)

3. Y/z ∈ dom(X)

4. Y/z ∈ dom(Y)

5. true

A finite set of link predicates {linki | i = 1, . . . , n} is called a scheme. If only
one link predicate is defined, we omit the subscript i.

EXAMPLE: The link predicate corresponding to the Take-Grant Protection
Model rules take and grant is

Here, X and Y are connected if X has g rights over Y or Y has t rights over X,
which corresponds to the model in the preceding section.

EXAMPLE: The link predicate

connects X to every other entity Y provided that X has b rights over itself.
With respect to networks, b would correspond to a broadcast right. However,
X does not yet have the right to broadcast to all Y because predicates do not
endow the ability to exercise that right. Similarly, the predicate

corresponds to a pull connection between all entities X and Y. Again, this is
not sufficient for Y to exercise the pull right, but it is necessary.



EXAMPLE: The universal link depends on no entity’s rights:

This link holds even when X and Y have no tickets that refer to each other.

3.4.2 Filter Function

A filter function imposes conditions on when transfer of tickets can occur.
Specifically, a filter function is a function fi : T S × TS → 2T×R that has as its
range the set of copyable tickets. For a copy to occur, the ticket to be copied
must be in the range of the appropriate filter function.

Combining this requirement with the others, a ticket X/r:c can be copied
from dom(Y) to dom(Z) if and only if, for some i, the following are true:

1. X/rc ∈ dom(Y)

2. linki(Y, Z)

3. τ(X)/r:c ∈ fi(τ(Y), τ(Z))

One filter function is defined for each link predicate. As with the link
predicates, if there is only one filter function, we omit the subscripts.

EXAMPLE: Let f(τ(Y), τ(Z)) = T × R. Then any tickets are transferable,
assuming that the other two conditions are met. However, if f(τ(Y), τ(Z)) = T
× RI, then only inert rights are transferable; and if f(τ(Y), τ(Z)) = Ø, no rights
can be copied.

3.4.3 Putting It All Together

Let us take stock of these terms by considering two examples: an owner-
based policy and the Take-Grant Protection Model.

In an owner-based policy, a subject U can authorize another subject V to
access an object F if and only if U owns F. Here, the set of subjects is the set



of users and the set of objects is the set of files. View these as types. Then:

In this model, ownership is best viewed as copy attributes—that is, if U owns
F, all its tickets for F are copyable. Under this interpretation, the set of
control rights is empty because no rights are required to alter the state of the
protection graph. All rights are inert. For our example, assume that the r
(read), w (write), a (append), and x (execute) rights are defined. Then:

Because the owner can give the right to any other subject, there is a
connection between each pair of subjects and the link predicate is always
true:

Finally, tickets can be copied across these connections:

EXAMPLE: Suppose a user Peter wishes to give another user Paul execute
permissions over a file called doom. Then τ(Peter) = user, τ(doom) = file, and
doom/xc ∈ dom(Peter). Because any user can give rights away to any other
user, all users are “connected” in that sense, so link(Peter, Paul) = true.
Finally, because τ(doom) = file, and τ(Paul) = user, we have τ(doom)/xc ∈
f(τ(Peter), τ(Paul)). Thus, Peter can copy the ticket doom/x to Paul.

The Take-Grant Protection Model can be formulated as an instance of SPM.
The set of subjects and objects in the Take-Grant model corresponds to the
set of subjects and objects in SPM:

The control rights are t (take) and g (grant), because applying them changes
the protection state of the graph. All other rights are inert; for our example,



we will take them to be r (read) and w (write). All rights can be copied (in
fact, the Take-Grant Protection Model implicitly assumes this), so:

Rights can be transferred along edges labeled t or g, meaning that one vertex
on the edge has take or grant rights over the other. Let p and q be subjects.
Then the link predicate is

Finally, any right can be transferred, so the filter function is simply

We now explore how the transfer of tickets occurs in SPM.

3.4.4 Demand and Create Operations

The demand function d : TS → 2T×R authorizes a subject to demand a right
from another entity. Let a and b be types. Then a/r : c ∈ d(b) means that
every subject of type b can demand a ticket X/r:c for all X such that τ(X) = a.
This is a generalization of the take rule in the Take-Grant model. The take
rule refers to an individual subject. The demand function refers to all subjects
of a particular type (here, of type b).

EXAMPLE: In the owner-based policy, no user can force another to give
rights; hence, the range of the demand function is empty: d(user) = Ø. In the
Take-Grant Protection Model, there is also no demand function. Although the
take right is similar, to treat it as the demand right would require the creation
of additional types to distinguish between those vertices directly connected by
take edges to subjects and all other vertices. This complicates the system
unnecessarily. Hence, d(subject) = Ø.

Sandhu [1667] has demonstrated that a sophisticated construction eliminates
the need for the demand operation. Thus, although the demand rule is



present in SPM, that rule is omitted from the models that followed SPM.

Creating a new entity requires handling not only the type of the new entity
but also the tickets added by the creation. The type of the new entity is
specified by the relation can-create (cc): cc ⊆ T S × T ; a subject of type a can
create entities of type b if and only if cc(a, b) holds.

In practice, the rule of acyclic creates limits the membership in this relation.
Represent the types as vertices, and let a directed edge go from a to b if cc(a,
b). The relation cc is acyclic if this graph has no loops except possibly a loop
from one vertex to itself (the loop is not considered a cycle in this context).
Figure 3–5 gives an example of both cyclic and acyclic can-create relations.
The rationale for this rule is to eliminate recursion in cc; if a subject of type a
can create a subject of type b, none of the descendents of the subject can
create a subject of type a. This simplifies the analysis without unduly limiting
the applicability of the model.

Figure 3–5: The rule of acyclic creates. (a) The can-create relation
cc = {(a, b), (b, c), (b, d), (d, c)}. Because there are no cycles in the
graph, cc satisfies the rule of acyclic creates. (b) Same as (a),
except that the can-create relation is cc′ = cc ∪∪ {(c, a)}, which
creates a cycle; hence, cc′ does not follow the rule of acyclic
creates.

Let A be a subject of type a = τ(A) and let B be an entity of type b = τ(B). The
create-rule cr(a, b) specifies the tickets introduced when a subject of type a
creates an entity of type b.



If B is an object, the rule specifies the tickets for B to be placed in dom(A) as
a result of the creation. Only inert tickets can be created, so cr(a, b) ∈ {b/r:c |
r ∈ RI}, and A gets B/r:c if and only if b/r:c ∈ cr(a, b).

If B is a subject, the rule also specifies that the tickets for A be placed in
dom(B) as a result of the creation. Assume that types a and b are distinct. Let
crp(a, b) be the set of tickets the creation adds to dom(A), and let crc(a, b) be
the set of tickets the creation adds to dom(B). Then A gets the ticket B/r:c if
b/r:c ∈ crp(a, b) and B gets the ticket A/r:c if a/r :c ∈ crc(a, b). We write
cr(a, b) = {a/r :c, b/r :c | r :c ∈ R}. If the types a and b are not distinct, then
do the types refer to the creator or the created? To avoid this ambiguity, if a =
b, we define self /r : c to be tickets for the creator and a/r : c to be tickets for
the created, and we say that cr(a, a) = {a/r :c, self /r :c | r :c ∈ R}. crp(a, b)
and crc(a, b) are subsets of cr(a, a), as before.

Recall that the principle of attenuation of privilege (see Section 2.4.3) states
that no entity may have more rights than its creator. The attenuating create-
rule captures this notion:

Definition 3–14. A create-rule cr(a, a) = crp(a, b) | crc(a, b) is attenuating
if:

1. crc(a, b) ⊆ crp(a, b) and

2. a/r:c ∈ crc(a, b) ⇒ self /r:c ∈ crp(a, b).

A scheme is attenuating if, for all types a such that cc(a, a), then cr(a, a) is
attenuating. If the graph for cc is constructed as above and has no loops, the
scheme is attenuating.

EXAMPLE: The can-create relation for the owner-based policy says that
users can create files; hence, cc(user) = {file}. The creator of the file can give
itself any inert rights over the file; hence, cr(user, file) = {file/r:c | r ∈ RI}.
Figure 3–6 shows the graph that this can-create relation induces; it is clearly



acyclic and loop-free, so the scheme is attenuating.

In the Take-Grant Protection Model, a subject can create either a subject or
an object; hence, cc = {(subject, subject), (subject, object)}. A subject can give
itself any rights over the vertices it creates, but it does not give the created
subject any rights (although the creator may subsequently apply the grant
rule to do so). Hence, crc(a, b) = Ø and crp(a, b) = {subject/tc, subject/gc,
subject/rc, subject/wc}, so:

Figure 3–6 also shows the graph that this cc induces. It, too, is acyclic, but not
loop-free. Because no self tickets are provided (the Take-Grant Protection
Model rules are not reflexive), condition (2) of Definition 3–14 fails and the
scheme is not attenuating.

Only dom(A) and dom(B) are affected by create-rule; no other entity has its
domain changed. Thus, the create-rule is local; this means that creation has
only a local impact on the state of the system and again mimics real systems.

3.4.5 Safety Analysis

The goal of this model is to identify types of policies that have tractable safety
analyses. Our approach will be to derive a maximal state in which any
additional entities or rights do not affect the safety analysis. We then analyze
this state.

First, we introduce a flow function that captures the flow of tickets around a
particular state of the system being modeled.

Definition 3–15. A legal transition is a change in state caused by an
operation that is authorized. A history is a sequence of legal transitions. A
derivable state is a state obtainable by beginning at some initial state and
applying a history.



Figure 3–6: Graph (a) corresponds to the cc for the owner-based
policy. Graph (b) corresponds to the Take-Grant Protection Model.
Both are acyclic; graph (a) is loop-free, but graph (b) contains a
loop from one vertex to that same vertex.

In simpler terms, a system begins at an initial state. An authorized operation
(such as the copying of a ticket) causes a legal transition. Suppose a sequence
of legal transitions moves the system into a (final) state. Then that sequence
forms a history, and the final state is derivable from the history and the initial
state.

We represent states by a superscript h. The set of subjects in state h is SUBh,
the set of entities is ENTh, and the link and dom relations in the context of
state h are

and domh.

Definition 3–16. If there are two entities X and Y, and either:

a. for some i,

or

b. there is a sequence of subjects X0, . . . , Xn such that

, and for k = 1, . . . , n,



then there is a pathh from X to Y.

In other words, a pathh from X to Y means that either a single link or a
sequence of links connects X and Y. We write this as pathh(X, Y). Multiple
pathhs may connect X and Y; in that case, we enumerate them as

, j = 1, . . . , m.

The following algorithm defines the set of the tickets that can flow over a
pathh from X to Y. This set is called the capacity, or cap(pathh(X, Y)).

1. If

, then cap(pathh(X, Y)) = fi(τ(X), τ(Y)).

2. Otherwise, cap(pathh(X, Y)) = {τ(Y)/r:c | τ(Y)/rc ∈ f0(τ(X), τ(X0))⋀[(∀k
= 1, . . . , n) τ(Y)/rc ∈ fk(τ(Xk–1), τ(Xk))] ⋀ τ(Y)/r:c ∈ fn(τ(Xn), τ(Y))}.

In this set, the tickets for all but the final link must be copyable. If they are,
any tickets in the last link will be in the capacity, whether or not they are
copyable.

Now we can define the flow function as the union (sum) of all the capacities
between two entities.

Definition 3–17. Let there be m pathhs between subjects X and Y in state h.
The flow function flowh : SUBh × SUBh → 2T×R is defined as

.

Sandhu [1666] has shown that the flow function requires O(|T × R||SUBh|3),
and hence the computation’s time complexity is polynomial in the number of
subjects in the system.



This definition allows us to sharpen our intuition of what a “maximal state” is
(and will ultimately enable us to define that state formally). Intuitively, a
maximal state maximizes flow between all pairs of subjects. Call the maximal
state * and the flow function corresponding to this state flow*; then if a ticket
is in flow*(X, Y), there exists a sequence of operations that can copy the
ticket from X to Y. This brings up two questions. First, is a maximal state
unique? Second, does every system have a maximal state?

We first formally define the notion of maximal state using a relation named
≤0.

Definition 3–18. The relation g ≤0 h is true if and only if, for all pairs of
subjects X and Y in SUB0, flowg(X, Y) ⊆ flowh(X, Y). If g ≤0 h and h ≤0 g, g
and h are equivalent.

In other words, the relation ≤0 induces a set of equivalence classes on the set
of derivable states.

Definition 3–19. For a given system, a state m is maximal if and only if h ≤0
m for every derivable state h.

In a maximal state, the flow function contains all the tickets that can be
transferred from one subject to another. Hence, all maximal states are in the
same equivalence class and thus are equivalent. This answers our first
question.

To show that every system has a maximal state, we first show that for any
state in a finite collection of derivable states, there is a maximal state.

Lemma 3.3. Given an arbitrary finite collection H of derivable states, there
exists a derivable state m such that, for all h ∈ H, h ≤0 m.

Proof. By induction on |H|.

BASIS: Take H = Ø and m to be the initial state. The claim is trivially true.



INDUCTION HYPOTHESIS: The claim holds when |H| = n.

INDUCTION STEP: Let |H′| = n + 1, where H′ = G ∪ {h}; thus, |G| = n. Choose
g ∈ G such that, for every state x ∈ G, x ≤0 g; such a state’s existence is
guaranteed by the induction hypothesis.

Consider the states g and h, defined above. Each of these states is established
by a history. Let M be an interleaving of these histories that preserves the
relative order of transitions with respect to g and h, and with only the first
create operation of duplicate create operations in the two histories. Let M
attain state m. If either pathg(X, Y) for X, Y ∈ SUBg or pathh(X, Y) for X, Y
∈ SUBh, then pathm(X, Y), as g and h are ancestor states of m and SPM is
monotonic. Thus, g ≤0 m and h ≤0 m, so m is a maximal state in H′. This
concludes the induction step and the proof.

Take one state from each equivalence class of derivable states. To see that this
is finite, consider each pair of subjects in SUB0. The flow function’s range is
2T×R, so that function can take on at most 2|T×R| values. Given that there are
|SUB0|2 pairs of subjects in the initial state, there can be at most 2|T ×
R||SUB0|2 distinct equivalence classes.

Theorem 3.15. There exists a maximal state * for every system.

Proof. Take K to be the collection of derivable states that contains exactly one
state from each equivalence class of derivable states. From above, this set is
finite. The theorem follows from Lemma 3.3.

In this model, the safety question now becomes: Is it possible to have a
derivable state with X/r:c in dom(A), or does there exist a subject X with
ticket X/rc in the initial state or which can demand X/rc and τ(X)/r:c in
flow*(B, A)?

To answer this question, we need to construct a maximal state and test.
Generally, this will require the creation of new subjects. In the general case,



this is undecidable. But in special cases, this question is decidable. We now
consider an important case—that of acyclic attenuating schemes—and
determine how to construct the maximal state.

Consider a state h. Intuitively, generating a maximal state m from h will
require all three types of operations (create, demand, and copy). Define u to
be a state corresponding to h but with a minimal number of new entities
created such that m can be derived from u without any create operations.
(That is, begin in state h. Use create operations to create as few new entities
as possible such that state m can be derived from the new state after the
entities are created. The state after the entities are created, but before any
other operations occur, is u.) For example, if in the history from h to m,
subject X creates two entities of type y, in u there would be only one entity of
type y. That entity would act as a surrogate for the two entities that X created.
Because m can be derived from u in polynomial time, if u can be created by
adding to h a finite number of subjects, the safety question is decidable in
polynomial time for such a system.

We now make this formal.

Definition 3–20. [1666, p. 425] Given any initial state 0 of an acyclic
attenuating scheme, the fully unfolded state u is the state derived by the
following algorithm.

(* delete any loops so it ’s loop–free *)
cc′ = cc – { (a, a) | a ∈ TS }
(* mark all subjects as unfolded *)
folded = Ø
for X ∈ SUB0 do
        folded = folded ∪ { X }
(* if anything is folded, it has to be unfolded *)
while folded ≠ Ø do begin
    (* subject X is going to be unfolded *)
    folded = folded – { X }
    (* for each type X can create, create one entity of *)
    (* that type and mark it as folded; this will force *)
    (* the new entity to be unfolded *)



    for y ∈ TS do begin
      if cc′(τ(X), y) then
        X creates Y of type y
        (* system is in state g here *)
        if Y ∈ SUBg then
          folded = folded ∪ { Y }
    end
end
(* now account for the loops; the system is in state h here *)
for X ∈ SUBh do
    if cc (τ(X), τ(X)) then
      X creates Y of type τ(X)
(* currently in desired state u *)

The while loop will terminate because the system is acyclic and attenuating,
hence the types of the created entities must all be different—and T S is a finite
set.

Definition 3–21. Given any initial state of an acyclic attenuating scheme,
for every derivable state h define the surrogate function σ : ENTh → ENTu by

It is easy to show that τ(σ(A)) = τ(A).

If τ(X) = τ(Y), then σ(X) = σ(Y). If τ(X) ≠ τ(Y), then in the construction of u,
σ(X) creates σ(Y) (see the while loop of Definition 3–20). Also, in this
construction, σ(X) creates entities X′ of type τ(X′) = τ(σ(X)) (see the last for
loop of Definition 3–20). So, by Definition 3–14, we have the following
lemma.

Lemma 3.4. For a system with an acyclic attenuating scheme, if X creates
Y, then tickets that would be introduced by pretending that σ(X) creates
σ(Y) are in domu(σ(X)) and domu(σ(Y)).

Now, let H be a legal history that derives a state h from the initial state of an



acyclic attenuating system. Without loss of generality, we may assume that
H’s operations are ordered such that all create operations come first, followed
by all demand operations, followed by all copy operations. Replace the
transitions in H as follows, while preserving their relative order.

1. Delete all create operations.

2. Replace “X demands Y/r:c” with “σ(X) demands σ(Y))/r:c.”

3. Replace “Z copies X/r:c from Y” with “σ(Z) copies σ(X)/r:c from σ(Y).”

Call the new history G. Then:

Lemma 3.5. Every transition in G is legal, and if X/r : c ∈ domh(Y), then
σ(X)/r : c ∈ domg(σ(Y)).

Proof. By induction on the number of copy operations in H.

BASIS: Assume that H consists only of create and demand operations. Then G
consists only of demand operations. By construction, and because σ preserves
type, every demand operation in G is legal. Furthermore, X/r:c can appear in
domh(Y) in one of three ways. If X/r :c ∈ dom0(Y), then X, Y ∈ ENT0 and
σ(X)/r :c ∈ domg(σ(Y)) trivially holds. If a create operation in H put X/r:c ∈
domh(Y), σ(X)/r : c ∈ domg(σ(Y)) by Lemma 3.4. And if a demand operation
put X/r:c ∈ domh(Y), then σ(X)/r:c ∈ domg(σ(Y)) follows from the
corresponding demand operation in G. This establishes both parts of the
claim.

INDUCTION HYPOTHESIS: Assume that the claim holds for all histories with k
copy operations, and consider a history H with k + 1 copy operations. Let H′
be the initial sequence of H composed of k copy operations, and let h′ be the
state derived from H′.

INDUCTION STEP: Let G′ be the sequence of modified operations
corresponding to H′. By the induction hypothesis, G′ is a legal history. Let g′



be the state derived from G′. Suppose the final operation of H is “Z copies
X/r:c from Y.” By construction of G, the final operation of G is “σ(Z) copies
σ(X)/r:c from σ(Y).” Now, h differs from h′ by at most X/r:c ∈ domh(Z).
However, the construction causes the final operation of G to be σ(X)/r:c ∈
domh(σ(Z)), proving the second part of the claim.

Because H′ is legal, for H to be legal the following conditions must hold.

1. X/rc ∈ domh′(Y)

2.

3. τ(X/r:c) ∈ fi(τ(Y), τ(Z))

The induction hypothesis, the first two conditions above, and X/r : c ∈
domh′(Y) mean that σ(X)/rc ∈ domg′(σ(Y)) and

. Because σ preserves type, the third condition and the induction hypothesis
imply τ(σ(X)/r : c) ∈ fi(τ(σ(Y)), τ(σ(Z))). G′ is legal, by the induction
hypothesis; so, by these conditions, G is legal. This establishes the lemma.

Corollary 3.3. For every i, if

, then

.

We can now present the following theorem.

Theorem 3.16. For a system with an acyclic attenuating scheme, for every
history H that derives h from the initial state, there exists a history G
without create operations that derives g from the fully unfolded state u such



that

Proof. It suffices to show that for every pathh from X to Y there is a pathg

from σ(X) to σ(Y) for which cap(pathh(X, Y)) = cap(pathg(σ(X), σ(Y)).
Induct on the number of links.

BASIS: Let the length of the pathh from X to Y be 1. By Definition 3–16,

. So, by Corollary 3.3,

. Then cap(pathh(X, Y)) = cap(pathg(σ(X), σ(Y)) as σ preserves type,
verifying the claim.

INDUCTION HYPOTHESIS: Assume that the claim holds for every pathh of
length k.

INDUCTION STEP: Consider a pathh from X to Y of length k+1. Then there
exists an entity Z with a pathh from X to Z of length k, and

. By the induction hypothesis, there is a pathg from σ(X) to σ(Z) with the
same capacity as the pathh from X to Z. By Corollary 3.3, we have

. Because σ preserves type, there is a pathg from X to Y with cap(pathh(X,
Y)) = cap(pathg(σ(X), σ(Y)), proving the induction step and therefore the
theorem.

Thus, any history derived from an initial state u can be simulated by a
corresponding history applied to the fully unfolded state v derived from u.
The maximal state corresponding to v is #u; the history deriving this state has
no creates. From Theorem 3.16, for every history that derives h from the



initial state,

For X ∈ SUB0, σ(X) = X; therefore, (∀ X, Y ∈ SUB0)[flowh(X, Y) ⊆
flow#u(X, Y)]. This demonstrates the following corollary.

Corollary 3.4. The state #u is a maximal state for a system with an acyclic
attenuating scheme.

Not only is #u derivable from u, it is derivable in time polynomial with
respect to |SUBu| (and therefore to |SUB0|). Moreover, the straightforward
algorithm for computing flow#u will be exponential in |T S| in the worst case.
This means that for acyclic attenuating schemes, the safety question is
decidable.

The situation for cyclic schemes is different. Sandhu has shown that, in
general, safety in schemes with cycles of length 2 or greater in can-create is
undecidable. But with cycles of length 1, safety is decidable [1670]. Thus, the
dividing line between decidability and undecidability in SPM is whether the
scheme is an acyclic attenuating one.

3.5 Expressive Power and the Models

The HRU and SPM models present different aspects of the answer to the
safety question. The obvious issue is the relationship between these models.
For example, if SPM and HRU are equivalent, then SPM provides a more
specific answer to the safety question than the HRU analysis does (that is,
safety in acyclic attenuating schemes is decidable). If HRU can describe some
systems that SPM cannot, then SPM’s answer applies only to a limited set of
systems. This bears some examination.

3.5.1 Brief Comparison of HRU and SPM

Sandhu [1660] has used SPM to represent multilevel security models,



integrity models, and the Take-Grant Protection Model, so SPM subsumes
those models. But the HRU model is central to safety analysis problems, and
we explore its relationship to SPM in more detail.

How does SPM compare with the HRU model? If the two models are
equivalent, then any safety analysis of SPM also applies to HRU and SPM
offers some significant advantages over HRU for such analyses.

First, SPM is a higher-level model than HRU. This allows policies to be
expressed very succinctly and at a more abstract level than in the access
control matrix model. Hence, safety analyses can focus on the limits of the
model and not on the details of representation. By way of contrast, safety
analyses using the HRU model usually require a detailed mapping of the
policy to the model, followed by an analysis.

However, the HRU model allows rights to be revoked and entities to be
deleted (the delete, destroy subject, and destroy object rules). The SPM
model has no revocation rule. The justification is exactly the same as for the
Take-Grant Protection Model analyses that ignore that model’s remove rule:
what is removed can be replaced. So, in some sense, comparing HRU and
SPM directly is unfair. A better comparison is one between SPM and a
monotonic HRU scheme, in which there are no revocation rules, and we will
use that model for further comparison.

In terms of comprehensiveness, HRU allows multiconditional commands.
For example, suppose a system has a parent right, similar to the create right
but requiring two subjects to have those rights over one another. Then either
subject can execute a multicreate command that creates a new object and
gives both subjects r rights over the new object. The multicreate command
would be:

command multicreate(s0, s1, o)
        if p in a[s0, s1] and p in a[s1, s0]
        then



                create object o;
                enter r into a[s0, o];
                enter r into a[s1, o];
end

However, SPM cannot express this command easily because the can-create
function allows creators to have at most one type. If s0 and s1 have different
types, SPM has no mechanism for creating o. This suggests that SPM is less
expressive than HRU.

3.5.2 Extending SPM

Ammann and Sandhu [42, 1660, 1668] revisited the notion of creation in
SPM. Implicit in all models discussed so far is the assumption of a single
parent. This assumption is not common in nature. (Consider humans, who
have two parents.) It is more common in computer science, but (as we shall
see) changing paradigms often simplifies solutions.

Consider two users, Anna and Bill, who must cooperate to perform a task but
who do not trust each other. This problem of mutual suspicion is one of the
oldest problems in security [810] and arises in multiuser computing systems.
The usual solution is for Anna to define a proxy and give it only those rights
she wishes Bill to have and for Bill to define a proxy similarly. Then Anna
gives Bill’s proxy the privileges to invoke Anna’s proxy, and Bill gives Anna’s
proxy similar privileges. Working indirectly, the two proxies can work
together and perform the task. Multiple indirection is disallowed (or else
Anna’s proxy could give her rights to Bill’s proxy to a third party). Hence, the
way the proxies use rights must be restricted, leading to a complex set of
rights and manipulations.

Multiple parenting simplifies this model. Anna and Bill jointly create a proxy.
Each then gives the proxy only those rights needed to perform the task.
Neither parent is allowed to copy rights from the proxy. At this point, the
copy operation must embody all restrictions on the manipulation of proxy



rights and abilities, which is simpler than restricting the particular
application of rights (as must be done in the preceding solution).

The Extended Schematic Protection Model (or ESPM) adds multiple
parenting to SPM. The joint creation operation includes the SPM creation
operation as a special case. The can-create function becomes

The create rules for the parents in a joint creation operation can allow the
parents to get one anothers’ rights to the child as well as their own, but this is
equivalent to a creation rule in which parent rights are not copied, followed
by applications of the copy rule. For simplicity, we require that each parent be
given tickets only for its own rights over the new child, and not for rights of
other parents.

Let X1, . . . , Xn be the n subject parents and let Y be the created entity. We
represent the sets of rights with R1,i, R2,i, R3, R4,i ⊆ R for i = 1, . . . , n. Each
creation rule has i components, each of which provides the tickets to the ith
parent and the child; for example, the ith rule is

The child also has a rule of the form

These rules are analogous to the single-parent creation rules, but with one for
each parent.

EXAMPLE: To expand on this concept, let’s revisit Anna’s and Bill’s situation.
Anna and Bill are equals, so for modeling purposes they have the same type a.
The proxy is of type p; because the proxy has delegated authority, a and p
may be different. We model the rights that proxy has by the right x ∈ R. Thus:



Then the proxy can use the right x to transfer whatever set of privileges the
proxy requires.

Considering two-parent joint creation operations is sufficient for modeling
purposes. To demonstrate this, we show how the two-parent joint creation
operation can implement a three-parent joint creation operation.

Let P1, P2, and P3 be three subjects; they will create a (child) entity C. With a
three-parent joint creation operation, can-create will be

and the type of the child is τ(C) ∈ T . The creation rules are

Our demonstration requires that we use the two-parent joint creation rule,
not the three-parent rule. At the end of the demonstration, the parents and
the child should have exactly the same tickets for one another. We will create
additional entities and types, but they cannot interact with any other entities
(in effect, they do not exist for the rest of the entities). Finally, if the creation
fails, the parents get no new tickets.

For convenience, and to simplify the notation, we assume that the parents
and child are all of different types.

Define four new entities A1, A2, A3, and S; each Ai, of type ai = τ(Ai), will act
as an agent for the corresponding parent Pi, and S, of type s = τ(S), will act as



an agent for the child. Let the type t represent parentage—that is, an entity
with the ticket X/t has X as a parent. Again, without loss of generality, we
assume that a1, a2, a3, s, and t are all new types.

During the construction, each agent will act as a surrogate for its parent; this
agent obtains tickets on behalf of the parent, and only after the child is
created does the agent give the parent the ticket. That way, if the construction
fails, the parent has no new tickets.

Augment the can-create rules as follows:

These rules enable the parents to create the agents. The final agent can create
the agent for the child, which subsequently creates the child. Note that the
second agent has two parents (P2 and A1), as does the third agent (P3 and
A2); these rules are the two-parent joint creation operation.

On creation, the create rules dictate the new tickets given to the parent and
the child. The following rules augment the existing rules.

Here, crPfirst and crPsecond indicate the tickets given to the first and second
parents, respectively.



The link predicates indicate over which links rights can flow; essentially, no
tickets can flow to the parents until the child is created. The following links
restrain flow to the parents by requiring each agent to have its own “parent”
right.

The filter functions dictate which tickets are copied from one entity to
another:

Now we begin the construction. The creations proceed in the obvious order;
after all are completed, we have

• P1 has no relevant tickets.



• P2 has no relevant tickets.

• P3 has no relevant tickets.

• A1 has P1/Rtc.

• A2 has P2/Rtc ∪ A1/tc.

• A3 has P3/Rtc ∪ A2/tc.

• S has A3/tc ∪ C/Rtc.

• C has C/R3t.

We now apply the links and filter functions to copy rights. The only link
predicate that is true is link2(S, A3), so we apply f2; then A3’s set of tickets
changes, as follows:

• A3 has P3/Rtc ∪ A2/tc ∪ A3/t ∪ C/Rtc.

Now link1(A3, A2) is true, so applying f1 yields

• A2 has P2/Rtc ∪ A1/tc ∪ A2/t ∪ C/Rtc.

Now link1(A2, A1) is true, so applying f1 again yields

• A1 has P1/Rtc ∪ A1/t ∪ C/Rtc.

At this point, all link3s in this construction hold, so

• C has C/R3 ∪ P1/R4,1 ∪ P2/R4,2 ∪ P3/R4,3.

Then the filter functions associated with link4, all of which are also true,
finish the construction:

• P1 has C/R1,1 ∪ P1/R2,1.

• P2 has C/R1,2 ∪ P2/R2,2.



• P3 has C/R1,3 ∪ P3/R2,3.

This completes the construction. As required, it adds no tickets to P1, P2, P3,
and C except those that would be added by the three-parent joint creation
operation. The intermediate entities, being of unique types, can have no effect
on other entities. Finally, if the creation of C fails, no tickets can be added to
P1, P2, and P3 because none of the link predicates in this construction is true;
hence, no filter functions apply.

Generalizing this construction to n parents leads to the following theorem.

Theorem 3.17. [1660] The two-parent joint creation operation can
implement an n-parent joint creation operation with a fixed number of
additional types and rights, and augmentations to the link predicates and
filter functions.

A logical question is the relationship between ESPM and HRU; Ammann and
Sandhu show that the following theorem holds.

Theorem 3.18. [1660] The monotonic ESPM model and the monotonic
HRU model are equivalent.

Furthermore, the safety analysis is similar to that of SPM; the only difference
is in the definition of the state function σ. The corresponding function σ′
takes the joint creation operation into account; given this, the nature of the
unfolding algorithm is roughly analogous to that of SPM. This leads to the
equivalent of Theorem 3.16:

Theorem 3.19. [1660] For an ESPM system with an acyclic attenuating
scheme, for every history H that derives h from the initial state there exists a
history G without create operations that derives g from the fully unfolded
state u such that



Because the proof is analogous to that of Theorem 3.16, we omit it.

What is the benefit of this alternative representation? If SPM and ESPM
model the same systems, the addition of n-parent joint creation operations is
not at all interesting. But if ESPM can represent systems that SPM cannot,
the addition is very interesting. More generally, how can we compare
different models?

3.5.3 Simulation and Expressiveness

Ammann, Sandhu, and Lipton [44] use a graph-based representation to
compare different models. An abstract machine represents an access control
model; as usual, that machine has a set of states and a set of transformations
for moving from one state to another. A directed graph represents a state of
this machine. A vertex is an entity; it has an associated type that is static.
Each edge corresponds to a right and, like a vertex, has a static type
determined on creation. The source of the edge has some right(s) over the
target. The allowed operations are as follows.

1. Initial state operations, which simply create the graph in a particular state;

2. Node creation operations, which add new vertices and edges with those
vertices as targets; and

3. Edge adding operations, which add new edges between existing vertices.

As an example, we simulate the three-parent joint creation operation with
two-parent joint creation operations. As before, nodes P1, P2, and P3 are the
parents; they create a new node C of type c with edges of type e. First, P1
creates A1, which is of type a, and an edge from P1 to A1 of type e′. Both a and
e′ are used only in this construction.



Then A1 and P2 create a new node A2, which is of type a, and A2 and P3 create
a new node A3, with type a, and edges of type e′ as indicated:

Next, A3 creates a new node S, which is of type a, which in turn creates a new
node C, of type c:

Finally, an edge adding operation depending on the presence of edges P1 →
A1, A1 → A2, A2 → A3, A3 → S, and S → C adds an edge of type e from P1 to
C. An edge adding operation depending on the presence of edges P2 → A2, A2
→ A3, A3 → S, and S → C adds an edge of type e from P2 to C. A last edge
adding operation depending on the presence of edges P3 → A3, A3 → S, and
S → C adds an edge of type e from P3 to C:



This completes the simulation. Exercise 14 suggests a simpler simulation.

The formal definition of simulation relies on two other notions: a scheme and
a correspondence between schemes.

Definition 3–22. A scheme is an abstract finite-state machine that defines
finite sets of node types, edge types, initial state operations, node creation
operations, and edge adding operations. A model is a set of schemes.

Definition 3–23. Let NT (X) and ET (X) be the sets of node types and edge
types, respectively, in scheme X. Then scheme A and scheme B correspond if
and only if the graph defining the state in scheme A is identical to the
subgraph obtained by taking the state in scheme B and deleting all nodes not
in NT (A) and all edges not in ET (A).

Consider the simulation of a scheme SC3 with a three-parent joint creation
operation by a scheme SC2 with a two-parent joint creation operation, as was
done earlier. After the three-parent joint creation operation, the SC3 state
would be as follows:

Contrasting this with the result of the SC2 construction, and the fact that the
types a and e′ do not exist in SC3, this state in SC3 clearly corresponds to the
state resulting from the construction in SC2.

Intuitively, scheme A simulates scheme B if every state reachable by A
corresponds to a state reachable by B. Because A may have more edge types
and node types than B, simulation implies that if A can enter a state a, either
there is a corresponding state reachable by B or, if not, A can transition to



another state a′ from a and there is a state reachable by B that corresponds to
a′. The last condition means that if scheme A has a halting state, then scheme
B must have a corresponding halting state; otherwise, the simulation is
incorrect.

Definition 3–24. Scheme A simulates scheme B if and only if both of the
following are true.

a. For every state b reachable by scheme B, there exists some corresponding
state a reachable by scheme A; and

b. For every state a reachable by scheme A, either the corresponding state b is
reachable by scheme B or there exists a successor state a′ reachable by
scheme A that corresponds to a state reachable by scheme B.

Now we can contrast the expressive power of models.

Definition 3–25. If there is a scheme in model MA that no scheme in model
MB can simulate, then model MB is less expressive than model MA. If every
scheme in model MA can be simulated by a scheme in model MB, then model
MB is as expressive as model MA. If MA is as expressive as MB and MB is as
expressive as MA, the models are equivalent.

EXAMPLE: Consider a model M with one scheme A that defines three nodes
called X1, X2, and X3 and a two-parent joint creation operation. A has one
node type and one edge type. The two-parent joint creation operation creates
a new node and adds edges from both parents to the child. A has no edge
adding operations. A’s initial state is simply X1, X2, and X3, with no edges.
Now, consider a model N with one scheme B that is the same as scheme A
except that scheme B has a one-parent creation operation instead of a two-
parent joint creation operation. Both A and B begin at the identical initial
state. Which, if either, is more expressive?

Clearly, scheme A can simulate scheme B by having the two parents be the



same node. Hence model M is as expressive as model N.

How might scheme B simulate the creation operation of scheme A? Suppose
X1 and X2 jointly create a new node Y in scheme A; then there are edges from
X1 and X2 to Y, but no edge from X3 to Y. Scheme B can use its single-parent
creation operation to create a node Y with parent X1. However, an edge
adding operation must allow the edge from X2 to Y to be added. Consider
what this edge adding operation must allow. Because there is only one type of
node, and one type of edge, the edge adding operation must allow an edge to
be added between any two nodes.

Because edges can be added only by using the two-parent joint creation
operation in scheme A, all nodes in scheme A have even numbers of incoming
edges. But given the edge adding rule in scheme B, because we can add an
edge from X2 to Y, we can also add an edge from X3 to Y. Thus, there is a
state in scheme B containing a node with three incoming edges. Scheme A
cannot enter this state. Furthermore, because there is no remove rule and
only one edge type, scheme B cannot transition from this state to a state in
which Y has an even number of incoming edges. Hence, scheme B has
reached a state not corresponding to any state in scheme A, and from which
no state corresponding to a state in scheme A can be reached. Thus, scheme B
cannot simulate scheme A, and so model N is less expressive than model M.

Given these definitions, Ammann, Lipton, and Sandhu prove the following
theorem.

Theorem 3.20. [44] Monotonic single-parent models are less expressive
than monotonic multiparent models.

Proof. Begin with scheme A in the preceding example. We show by
contradiction that this scheme cannot be simulated by any monotonic scheme
B with only a single-parent creation operation. (The example does not show
this because we are removing the requirement that scheme B begin in the
same initial state as scheme A.)



Consider a scheme B that simulates scheme A. Let nodes X1 and X2 in A
create node Y1 with edges from X1 and X2 to Y1. Then in scheme B there is a
node W that creates Y1 with a single incoming edge from W. The simulation
must also use edge adding operations to add edges from X1 to Y1 and from X2
to Y1 (assuming that W ≠ X1 and W ≠ X2).

Let W invoke the single-parent creation operation twice more to create nodes
Y2 and Y3 and use the edge adding rules to add edges from X1 to Y1, Y2, and
Y3 and from X2 to Y1, Y2, and Y3. The resulting state clearly corresponds to a
state in scheme A.

Because scheme A has exactly one node type, Y1, Y2, and Y3 are
indistinguishable as far as the application of the node creation and edge
adding rules is concerned. So proceed as in the example above: in scheme A,
let Y1 and Y2 create Z. In the simulation, without loss of generality, let Y1
create Z using a single-parent creation operation. Then scheme B uses an
edge adding operation to add an edge from Y2 to Z—but that same edge
adding rule can be used to add one more edge into Z from Y3. Thus, there are
three edges coming into Z, which (as we saw earlier) is a state that scheme A
cannot reach, and from which no future state in scheme B that corresponds to
a state in scheme A can be reached. Hence, scheme B does not simulate
scheme A, which contradicts the hypothesis.

Thus, no such scheme B can exist.

This theorem answers the question posed earlier: because ESPM has a
multiparent joint creation operation and SPM has a single-parent creation
operation, ESPM is indeed more expressive than SPM.

3.5.4 Typed Access Matrix Model

The strengths of SPM and ESPM appear to derive from the notion of “types.”
In particular, monotonic ESPM and monotonic HRU are equivalent, but the
safety properties of ESPM are considerably stronger than those of HRU.



Sandhu expanded the access control matrix model by adding a notion of
“type” and revisited the HRU results. This model, called the Typed Access
Matrix (TAM) Model [1669], has safety properties similar to those of ESPM
and supports the notion that types are critical to the safety problem’s
analysis.

TAM augments the definitions used in the access control matrix model by
adding types.

Definition 3–26. There is a finite set of types T, containing a subset of types
T S for subjects.

The type of an entity is fixed when the entity is created (or in the initial state)
and remains fixed throughout the lifetime of the model. The notion of
protection state is similarly augmented.

Definition 3–27. The protection state of a system is (S, O, τ, A), where S is
the set of subjects, O is the set of objects, A is the access control matrix, and τ
: O → T is a type function that specifies the type of each object. If x ∈ S, then
τ(x) ∈ T S, and if x ∈ O, then τ(x) ∈ T – T S.

The TAM primitive operations are the same as for the access control matrix
model, except that the create operations are augmented with types.

1. Precondition: s ∉ S

Primitive command: create subject s of type ts

Postconditions: S′ = S ∪ {s}, O′ = O ∪ {s},

In other words, this primitive command creates a new subject s. Note that s
must not exist as a subject or object before this command is executed.



2. Precondition: o ∉ O

Primitive command: create object o of type to

Postconditions: S′ = S, O′ = O ∪ {o},

In other words, this primitive command creates a new object o. Note that o
must not exist before this command is executed.

These primitive operations are combined into commands defined as in the
access control matrix model. Commands with conditions are called
conditional commands; commands without conditions are called
unconditional commands.

Finally, we define the models explicitly.

Definition 3–28. A TAM authorization scheme consists of a finite set of
rights R, a finite set of types T, and a finite collection of commands. A TAM
system is specified by a TAM authorization scheme and an initial state.

Definition 3–29. The Monotonic Typed Access Matrix (MTAM) Model is
the TAM Model without the delete, destroy subject, and destroy object
primitive operations.

Definition 3–30. Let α(x1:t1, . . . , xk:tk) be a creating command, where x1, . .
. , xk ∈ O and τ(x1) = t1, . . . , τ(xk) = tk. Then ti is a child type in α(x1:t1, . . . ,
xk:tk) if any of create subject xi of type ti or create object xi of type ti occurs in
the body of α(x1:t1, . . . , xk:tk). Otherwise, ti is a parent type in α(x1:t1, . . . ,
xk:tk).

From this, we can define the notion of acyclic creations.

Definition 3–31. The creation graph of an MTAM scheme is a directed



graph with vertex set V and an edge from u ∈ V to v ∈ V if and only if there is
a creating command in which u is a parent type and v is a child type. If the
creation graph is acyclic, the MTAM system is said to be acyclic; otherwise,
the MTAM system is said to be cyclic.

As an example, consider the following command, where s and p are subjects
and f is an object.

command cry•havoc (s:u, p:u, f:v, q:w)
        create subject p of type u;
        create object f of type v;
        enter own into a[s, p];
        enter r into a[q, p];
        enter own into a[p, f];
        enter r into a[p, f];
        enter w into a[p, f];
end

Here, u and v are child types and u and w are parent types. Note that u is
both a parent type and a child type. The creation graph corresponding to the
MTAM scheme with the single command cry•havoc has the edges (u, u), (u,
w), (v, u), and (v, w). Thus, this MTAM scheme is cyclic. Were the create
subject p of type u deleted from the command, however, u would no longer
be a child type, and the resulting MTAM scheme would be acyclic.

Sandhu has proven the following theorem.

Theorem 3.21. [1669] Safety is decidable for systems with acyclic MTAM
schemes.

The proof is similar in spirit to the proof of Theorem 3.16.

Furthermore, because MTAM subsumes monotonic mono-operational HRU
systems, a complexity result follows automatically:

Theorem 3.22. [1669] Safety is NP -hard for systems with acyclic MTAM



schemes.

However, Sandhu has also developed a surprising result. If all MTAM
commands are limited to three parameters, the resulting model (called
“ternary MTAM”) is equivalent in expressive power to MTAM. Further:

Theorem 3.23. [1669] Safety for the acyclic ternary MTAM model is
decidable in time polynomial in the size of the initial access control matrix.

3.6 Comparing Security Properties of Models

A more general question is whether two models have the same security
properties. So far, the safety question has been the security property of
interest. But in many cases, other questions such as bounds on determining
safety or the notion of confinement, in which one determines what actions a
specific subject can take (see Chapter 18), are also of interest. The previous
section showed ESPM is more expressive than SPM; but can one express in
ESPM all the security properties that SPM can express? That states
correspond does not ensure they have the same security properties. The
specific transformation used to compare the models does.

This section presents a general theory of comparison. We then use it to
compare TAM and a variant, the Augmented Typed Matrix Model.

3.6.1 Comparing Schemes and Security Properties

Tripunitara and Li [1901] examined the question of whether two access
control models have the same security properties. They view access requests
as queries that ask whether a subject has the right to perform an action on an
object. To do this, we examine an alternate definition of “scheme.”

Definition 3–32. Let Σ be a set of states, Q a set of queries, e : Σ × Q →
{true, false} the entailment relation, and T a set of state transition rules.
Then the system (Σ, Q, e, T) is an access control scheme.



Suppose a subject requests access to an object. This request corresponds to a
query q ∈ Q. If the access is allowed in the state σ ∈ Σ, then e(σ, q) = true;
otherwise, e(σ, q) = false. As before, τ ∈ T is a relation defining a state
transition, and we would write τ changing the system from state σ0 ∈ Σ to σ1
∈ Σ as σ0 ├ σ1. However, in this type of analysis, we want to know if τ allows
the state to change from σ0 to σ1; if so, we write σ0 ↦τ σ1 to emphasize we are
looking at permissions and not the results of the transition. Similarly, if τ
allows a sequence of changes that would take the system from state σ0 to σn ∈
Σ, then we write

, and we say σn is τ-reachable from σ0.

EXAMPLE: The Take-Grant Protection Model is an example of an access
control scheme. In it:

• Σ is the set of all possible protection graphs.

• Q is the set of queries { can•share(α, v1, v2, G0) | α ∈ R, v1, v2 ∈ G0 }, where
v1 and v2 are vertices and G0 the initial protection graph.

• e is defined as: e(σ0, q) = true if q holds and e(σ0, q) = false otherwise.

• T is the set composed of sequences of take, grant, create, and remove rules.

We use this structure to frame the question of whether a scheme has a
particular security property:

Definition 3–33. Let (Σ, Q, e, T) be an access control scheme. Then a
security analysis instance is a tuple (σ, q, τ, Π), where σ ∈ Σ, q ∈ Q, τ ∈ T,
and Π is one of the quantifiers ∀ or ∃.

If Π is ∃, then the security analysis instance is called existential, and asks
whether there exists a state σ′ such that



and e(σ′, q) = true. Similarly, if Π is ∀, then the security analysis instance is
called universal, and asks whether for every state σ′ such that

e(σ′, q) = true.

EXAMPLE: The safety question is an example of a security analysis instance.
In the Take-Grant Protection Model, the state σ0 is G0, the query q is
can•share(r, x, y, G0), the state transition τ is a sequence of take-grant rules,
and Π is the existential quantifier ∃. Then the security analysis instance
examines whether x has r rights over y in the graph with initial state G0.

The next definition generalizes this to a number of queries.

Definition 3–34. Let (Σ, Q, e, T) be an access control scheme. Then a
compositional security analysis instance is a tuple (σ, ø, τ, Π), where σ, τ,
and Π are as in Definition 3–33, and ø is a propositional logic formula of
queries drawn from Q.

The comparison of two models requires that one be mapped onto another.

Definition 3–35. Let A = (ΣA, QA, eA, TA) and B = (ΣB, QB, eB, TB) be two
access control schemes. A mapping from A to B is a function f : (ΣA × TA) ∪
QA → (ΣB × TB) ∪ QB.

The idea here is that each query in A corresponds to a query in B, and each
state and state transition pair in A corresponds to a state and state transition
pair in B. We now formalize the notion of preserving security properties in
two ways, first for security analysis instances and then for compositional
security analysis instances.

Definition 3–36. Let f be a mapping from A to B. The image of a security
analysis instance (σA, qA, τA, Π) under f is (σB, qB, τB, Π), where f((σA, τA)) =
(σB, τB) and f(qA) = qB. The mapping f is security-preserving if every security
analysis instance in A is true if and only if its image is true.



This definition says that given a security instance analysis in B and a mapping
f from A to B, then one can solve the security analysis instance in A. However,
because of the focus on individual queries, it does not cover composition of
queries. The next definition does so. For notational convenience, let f(øA) = øB

be shorthand for replacing every query qA in øA with f(qB).

Definition 3–37. Let f be a mapping from A to B. The image of a
compositional security analysis instance (σA, øA, τA, Π) under f is (σB, øB, τB,
Π), where f((σA, τA)) = (σB, τB) and f(øA) = øB . The mapping f is strongly
security-preserving if every compositional security analysis instance in A is
true if and only if its image is true.

Our interest is in mappings that preserve security properties. Consider two
models with a map between them. Security properties deal with answers to
queries about states and transitions; so, given two corresponding states and
two corresponding sequences of state transitions, corresponding queries
must give the same answer. The next definition formalizes this notion.

Definition 3–38. Let A = (ΣA, QA, eA, TA) and B = (ΣB, QB, eB, TB) be two
access control schemes and let f be a mapping from A to B. The states σA and
σB are equivalent under the mapping f when eA(σA, qA) = eB(σB, qB). The
mapping f is a state-matching reduction if, for every σA ∈ ΣA and τA ∈ TA, (σB,
τB) = f((σA, τA)) has the following properties:

1. For every state σ′A in scheme A such that

, there is a state σ′B, in scheme B such that

, and σ′A and σ′B are equivalent under the mapping f.

2. For every state σ′B in scheme B such that



, there is a state σ′A, in scheme A such that

, and σ′A and σ′B are equivalent under the mapping f.

This definition says that, for every sequence of states and transitions in model
A, there exists a corresponding sequence of states and transitions in B, and
vice versa. The sequences need not be the same number of steps, and indeed
the intermediate states and transitions need not correspond. But the initial
and terminal states must be equivalent. In other words, for every reachable
state in one model, a matching state in the other model gives the same answer
for every query—as we desire.

We now show this definition precisely characterizes maps that are strongly
security-preserving.

Theorem 3.24. [1901] A mapping f from scheme A to scheme B is strongly
security-preserving if and only if f is a state-matching reduction.

Proof. (⇒) Let f be a state-matching reduction from A to B. Let (σA, øA, τA, Π)
be a compositional security analysis instance in A and (σB, øB, τB, Π) be a
compositional security analysis instance in B. We must show that (σA, øA, τA,
Π) is true if and only if (σB, øB, τB, Π) is true.

We first consider existential compositional security analysis, that is, where Π
is ∃. Assume there is a τA-reachable state σ′A from σA in which øA is true. By
the first property of Definition 3–38, there exists a state σ′B that corresponds
to σ′A in which øB holds. This means that (σB, øB, τB, Π) is true. A similar
argument, but using the second property in Definition 3–38 rather than the
first, shows that if there is a τB-reachable state σ′B from σB in which øB is true,
then (σA, øA, τA, Π) is true.

Next, consider universal compositional security analysis, that is, where Π is
∀. Assume there is a τA-reachable state σ′A from σA in which øA is false. By the
first property of Definition 3–38, there exists a state σ′B that corresponds to



σ′A in which øB is also false. This means that (σB, øB, τB, Π) is false. Similarly,
by the second property of Definition 3–38, if a compositional security
instance in B is false, the corresponding instance in A is false.

(⇐) Let f be a mapping from A to B that is not a state-matching reduction.
Then there are σA ∈ ΣA and τA ∈ TA such that f((σA, τA)) = (σB, τB) that violate
at least one of the properties in Definition 3–38.

Assume the first does not hold, and let σA and σB be corresponding states in
instances in A and B, respectively. There is a τA-reachable state σ′A from σA

no state τB-reachable state from σB is equivalent to σ′B. We now generate a
query øA, and corresponding query øB, for which the existential compositional
security analysis instance in A is true but in B is false. To construct øA, begin
with øA being empty. Then, examine each query qA in QA. If e(σ′A, qA) is true,
conjoin qA to øA. If not, conjoin ¬qA to øA. From this construction, e(σ′A, øA)
is true; but for øB = f(øA) and all states σ′B τB-reachable from σB, e(σ′B , ffiB) is
false. Thus by Definition 3–37, f is not strongly security-preserving.

A similar argument shows that, when the second does not hold, f is not
strongly security-preserving.

We can now define “expressive power” in terms of state-matching reductions:

Definition 3–39. If access control model MA has a scheme that cannot be
mapped into a scheme in access control model MB using a state-matching
reduction, then model MB is less expressive than model MA. If every scheme
in model MA can be mapped into a scheme in model MB using a state-
matching reduction, then model MB is as expressive as model MA. If MA is
as expressive as MB, and MB is as expressive as MA, the models are
equivalent.

Contrast this with Definition 3–25, which defines simulation in monotonic
schemes. Definition 3–39 does not assume monotonicity; in the language of
state-matching reductions, a query may initially be true, but then at a later



time be false. This is not possible in a monotonic scheme.

Simulation may be defined in other ways as well. For example, Sandhu and
Ganta [1671] use a definition that requires the simulating model to grant
access when the simulated model grants access, but the simulating model
need not deny access when the simulated model does. This is suitable for
safety analysis, but does not preserve other security properties.

It is to those more general policies we now turn.

3.6.2 Augmented Typed Access Matrix Model

The Augmented Typed Access Matrix Model (ATAM) [43] adds the ability to
test for the absence of rights to TAM. As an example, consider the following
command, where s is a subject and f is an object.

command add•right(s:u, f:v)
        if own in a[s, f] and r not in a[s, f]
        then
                enter r into a[s, f]
end

This adds the right for s to r f if s owns f and does not have the r right over f.
Under ATAM, the expression “r not in a[s, f]” is true if r ∉ a[s, f]. But such a
test is disallowed by the semantics of TAM.

An interesting question is how the augmentation of TAM affects its use in
answering the safety question. Sandhu and Gupta demonstrate that TAM and
ATAM are equivalent in that sense by developing a mapping from ATAM to
TAM [1671]. But a more general question, that of whether there is a mapping
that will preserve security properties, shows a difference—there is no
mapping from ATAM to TAM that is strongly security-preserving.

Consider TAM as an access control model. Let S, O, R, and T be the set of
subjects, objects, rights, and types, respectively, and let Sσ, Oσ, Rσ, Tσ, and aσ



be the subjects, objects, rights, types, and access control matrix for state σ,
respectively. The function t : Sσ ∪ Oσ → Tσ gives the type of each subject or
object in state σ. Then, a state σ ∈ Σ is defined as σ = (Sσ, Oσ, aσ, Rσ, Tσ, t). A
state transition rule is simply a command, so T is the set of possible
commands. The TAM model allows queries of the form “is r ∈ a[s, o]?” and
for state σ ∈ Σ, e(σ,r ∈ a[s, o]) = true if and only if all of s ∈ Sσ, o ∈ Oσ, r ∈ Rσ,
and r ∈ aσ[s, o] are true.

The access control model of ATAM is the same as that of TAM, except that an
additional type of query is allowed. ATAM also allows queries of the form “is r
∉ a[s, o]?”, and the function e(σ, r ∉ a[s, o]) = true is defined appropriately.

Theorem 3.25. [1901] A state-matching reduction from ATAM to TAM
does not exist.

Proof. By contradiction. Assume f is a state-matching reduction from ATAM
to TAM. We consider a simple ATAM scheme. The initial state σ0 is empty
(no subjects or objects). All entities are of the same type t, and there is only
one right r. The state transition rule consists of two commands. The first
creates a subject:

command make•subj(s:t)
        create subject s of type t;
end

The second adds a right to an access control matrix entry:

command add•right(x:t, y:t)
        enter r into a[x, y];
end

Queries in ATAM take one of two forms. Write qi,j = r ∈ a[si, sj] for a query
about whether an element of the access control matrix contains the right r,
and



for a query about whether a right r is not in the element of the access control
matrix.

For convenience, we use a superscript T to designate components of the TAM
system. So, for example, the initial state of the TAM system is written

, and the state transition rule is written τT = f(τ).

Two observations will prove useful. First, by Definition 3–38, how f maps
queries does not depend on the initial state or state transitions of a model.
Second, for two distinct queries p and q in ATAM, if p ≠ q in ATAM, then pT ≠
qT in TAM.

Consider the corresponding command schema τT in TAM. As commands
execute, they can change the value of a query. A query in TAM is of the form r
∈ a[x, y]. We can determine an upper bound m on the number of queries that
such a command can change the value of; in the worst case, simply count the
number of enter primitive operations in each command, and take m to be
the maximum. Note m does not depend upon the query, but upon σT and τT .
Choose some n > m.

Consider the state σk in ATAM such that

and

. This means that e(σk, qi,j) = false and

for all i, j such that 1 ≤ i ≤ n and 1 ≤ j ≤ n. In other words, no query that asks if
a right r is in an access control matrix element is true, and all queries that ask
if a right r is not in an access control element are true. To construct such a



state from σ0, simply execute the make•subj command n times, once for each
of s1, . . . , sn.

As f is a state-matching reduction, there is a state  in TAM that causes the
corresponding queries to be answered in the same way. Consider the
sequence of state transitions

. Choose the first state  that satisfies

for all i, j such that 1 ≤ i ≤ n and 1 ≤ j ≤ n. Such a state exists, as  is such a
state.

As  is not such a state, there also exists a state

for which

, where 1 ≤ v ≤ n and 1 ≤ w ≤ n. Now, a state σ in ATAM for which

is one in which either sv or sw (or both) do not exist. Thus, in that state, one of
the following two compositional queries also holds:

1.

2.

Therefore, in TAM,



.

Now, consider what happens in the state transition from

to . The command must change the values of at least n queries in  or 
from false to true. But we showed above that each command can change at
most m queries from false to true, and m < n.

Thus, no such state-matching reduction exists.

This shows that ATAM can express security properties that TAM cannot.
Therefore, ATAM is more expressive than TAM, in the sense of Definition 3–
39.

3.7 Summary

The safety problem is a rich problem that has led to the development of
several models and analysis techniques. Some of these models are useful in
other contexts. These models provide insights into the boundary line between
decidability and undecidability, which speaks to the degree of generality of
analysis. Ultimately, however, security (the analogue of safety) is analyzed for
a system or for a class of systems, and the models help us understand when
such analysis is tractable and when it is not.

The notions of “expressiveness” deal both with the safety question, and more
generally with security properties, of models. This notion allows us to
compare the models to determine which models encompass other models,
and to compare the security properties of models.

3.8 Research Issues

The critical research issue is the characterization of the class of models for



which the safety question is decidable. The SRM results state sufficiency but
not necessity. A set of characteristics that are both necessary and sufficient
would show exactly what causes the safety problem to become undecidable,
which is an open issue.

Related questions involve the expressive power of the various models. The
models allow policies to be expressed more succinctly than in the access
control matrix model. Can these more sophisticated models express the same
set of policies that the access control matrix model can express? Are there
other models that are easy to work with yet allow all protection states of
interest to be expressed?

3.9 Further Reading

Tripunitara and Li [1900,1902] discuss different meanings of “safety” and
critiques the HRU result. Fischer and Kühnhauser [685] discuss efficiently
checking safety of an HRU model.

Soshi, Maekawa, and Okamoto [1803] present the Dynamic-Typed Access
Matrix Model, which is essentially TAM except that the types of objects can
change dynamically. They show that, under certain restrictions, the safety
problem in this model is decidable; with additional restrictions, it becomes
NP-hard. Zhang, Li, and Nalla [2105] examine the safety question for an
access control matrix model that associates attributes with objects.

Biskup [235] presents some variants on the Take-Grant Protection Model.
Shahriari and Jalili [1731] apply a variant of the Take-Grant Protection Model
to analyze network vulnerabilities. Conrad, Alves-Foss, and Lee [450] embed
uncertainty in the application of Take-Grant by using a Monte Carlo
simulation to model the relevant parameters.

Budd [311] analyzes safety properties of grammatical protection schemes,
which he and Lipton defined earlier [1203]. Motwani, Panigraphy, Saraswat,
and Venkatasubramanian [1396] generalizes these schemes.



Sandhu has presented interesting work on the representation of models, and
has unified many of them with his transform model [1661, 1672, 1673].

Amthor, Kühnhauser, and Pölck [48] examine heuristics for analyzing safety
problems, presenting a heuristic algorithm to analyze safety. Kleiner and
Newcomb [1074] develop an alternate model of access control that focuses on
the commands rather than the entities, and use a first-order temporal logic to
study decidability and other safety properties of that model. Koch, Mancini,
and Parisi-Presicce [1090] use a graphical representation of security policies
to study conditions under which safety of those policies is decidable.

Several extensions to the access control matrix model have been studies.
Zhang and Li [2105] study safety of the attribute-based access control matrix
model, in which each entity is augmented with metadata called attributes.
Soshi, Maekawa, and Okamoto [1803] modify TAM to allow the type of an
entity to change dynamically, and develop conditions under which safety in
this Dynamic Typed Access Matrix (DTAM) model is decidable.

Amthor, Kühnhauser, and Pölck [47] map SELinux security policy
mechanisms onto the HRU model, providing a way to analyze safety and
other properties of that system. Li and Tripunitara [1173] examine the
decidability of safety in an alternate model of access control, the Graham-
Denning model [810].

3.10 Exercises

1. The proof of Theorem 3.1 states the following: Suppose two subjects s1 and
s2 are created and the rights in A[s1, o1]and A[s2, o2] are tested. The same test
for A[s1, o1] and A[s1, o2] = A[s1, o2]∪A[s2, o2] will produce the same result.
Justify this statement. Would it be true if one could test for the absence of
rights as well as for the presence of rights?

2. The proof of Theorem 3.1 states that we can omit the delete and destroy
commands as they do not affect the ability of a right to leak when no



command can test for the absence of rights. Justify this statement. If such
tests were allowed, would delete and destroy commands affect the ability of
a right to leak?

3. Suppose “leaked” were defined so that adding a generic right r to an
element of the access control matrix that does not contain it. This means that
a right leaks if the right was present initially, then deleted, and then added
back. Note the difference between this definition and Definition 3–1, in which
generic right r is said to be leaked when it is added to an element of the access
control matrix that did not contain r in the initial state. This differs from
Definition 3–1 because if A[s, o] contains r in the initial state, a later
transition deletes r from that element, and a succeeding transition enters r in
A[s, o], then the right is said to leak, whereas under Definition 3–1, it is not
leaked.

(a) Is it true that the delete and destroy commands do not affect the ability
of a right to leak? Why or why not?

Now we consider how to modify the proof to show that Theorem 3.1 still
holds. As in the proof of the theorem, we can identify each command by the
type of primitive operation it invokes. Consider the minimal length sequence
of commands c1, . . . , ck needed to leak the right r from the system with initial
state σ0. Assume the last command ck leaks r into A[si, oi], and look at the
first create command in the sequence. Five cases exist, and if in all cases k is
bounded, the claim holds. The following are the cases:

(b) Suppose there is no such create command. Show that k ≤ n|S0||O0|.

(c) Suppose the command is create subject s, where s ∈ S0. Show that k
≤n|S0||O0| + 2.

(d) Suppose the command is create subject s, where s ∈ S0. Show that k ≤
n(|S0| + 1)(|O0| + 1) + 2.



(e) Suppose the command is create object o, where o ∈ O0. Show that k ≤
n(|S0| + 1)(|O0| + 1) + 4.

(f) Suppose the command is create object o, where o ∈ O0. Show k ≤ n(|S0|
+ 1)(|O0| + 2) + 4.

From [1902].

4. Assume “leaked” is defined as in exercise 3. How does this affect the proof
of Theorem 3.2?

5. Someone asks, “Since the Harrison-Ruzzo-Ullman result says that the
security question is undecidable, why do we waste our time trying to figure
out how secure the UNIX operating system is?” Please give an answer
justifying the analysis of the security of the UNIX system (or any system, for
that matter) in light of the HRU result.

6. Prove Theorem 3.3. (Hint: Use a diagonalization argument to test each
system as the set of protection systems is enumerated. Whenever a protection
system leaks a right, add it to the list of unsafe protection systems.)

7. Prove or disprove: The claim of Lemma 3.1 holds when x is an object.

8. Prove Lemma 3.2.

9. Prove or give a counterexample:

The predicate can•share(α, x, y, G0) is true if and only if there is an edge
from x to y in G0 labeled α, or if the following hold simultaneously.

(a) There is a vertex with an s-to-y edge labeled α.

(b) There is a subject vertex x′ such that x′ = x or x′ initially spans to x.

(c) There is a subject vertex x′ such that s′ = s or s′ terminally spans to s.



(d) There is a sequence of subjects x1, . . . , xn with x1 = x′, xn = s′, and xi and
xi+1 (1 ≤ i < n) being connected by an edge labeled t, an edge labeled g, or a
bridge.

10. Reverse the edge between d and e in Figure (a) so there is an edge labeled
g from d to e. Is can•share(r, x, z, G0) still true? If so, please show a witness;
if not, please prove it does not hold.

11. The Take-Grant Protection Model provides two rights, take and grant,
that enable the transfer of other rights. SPM’s demand right, in many ways
analogous to take, was shown to be unnecessary. Could take similarly be
dropped from the Take-Grant Protection Model?

12. The discussion of acyclic creates imposes constraints on the types of
created subjects but not on the types of created objects. Why not?

13. Consider the construction of the three-parent joint creation operation
from the two-parent joint creation operation shown in Section 3.5.2. In [44],
crC(s, c) = c/R3 and link2(S, A3) = A3/t ∈ dom(S). Why is this not sufficient
to derive the three-parent joint creation operation from the two-parent joint
creation operation?

14. The simulation of three-parent creation by two-parent creation using the
Ammann, Lipton, and Sandhu scheme mimics the simulation using SPM.
Present a simpler, more direct simulation using the Ammann, Lipton, and
Sandhu scheme that requires only five operations.

15. In Theorem 3.25, show that for two distinct queries p and q in ATAM, if p
≠ q in ATAM, then pT ≠ qT in TAM. (Hint: Show that, if this is false, then
there is a state σ such that

and e(σ, p ⋀ ¬q) = true.)



Part III: Policy
Security analysts organize the needs of a site in order to define a security
policy. From this policy, analysts develop and implement mechanisms for
enforcing the policy. The mechanisms may be procedural, technical, or
physical. Part III describes the notion of policy and how it can be expressed
and formalized, and how different types of policies affect accesses.

Chapter 4, “Security Policies,” presents the abstract notion of a security policy
and some ways to represent policies. Policy languages abstract some of the
common elements of policies and allow expression of policies both at abstract
levels and in terms of the properties of the particular systems under
consideration.

Chapter 5, “Confidentiality Policies,” discusses policies designed primarily for
confidentiality. Many government organizations, especially the military, must
keep information secret, as described by these policies. Chapter 5 focuses on
the Bell-LaPadula security policy.

Chapter 6, “Integrity Policies,” discusses policies designed primarily for
integrity. Banks, insurance companies, and other commercial and industrial
firms worry more about data and programs being corrupted than about them
being read, and use these policies.

Chapter 7, “Availability Policies,” considers policies that govern the ability to
access resources, and the quality of service that defines “access.” With the
growth of the Internet and the sharing of systems on a wide scale, especially
as epitomized by the idea of “cloud computing,” the ability to access resources
as intended is critical for computing.

Chapter 8, “Hybrid Policies,” presents policies that are hybrids of
confidentiality and integrity security policies. One comes from the world of
stock brokerage, and another from medical systems. Other types of policy



models discussed here are originator controlled models and role-based
models.

Chapter 9, “Noninterference and Policy Composition,” discusses the
noninterference and nondeducibility models of security policies and the
composition of security policies in general.



Chapter 4. Security Policies
PORTIA: Of a strange nature is the suit you follow; Yet in such rule that the
Venetian law Cannot impugn you as you do proceed. [To Antonio.] You stand
within his danger, do you not?

— The Merchant of Venice, IV, i, 177–180.

A security policy defines “secure” for a system or a set of systems. Security
policies can be informal or highly mathematical in nature. After defining a
security policy precisely, we expand on the nature of “trust” and its
relationship to security policies. We also discuss different types of policy
models.

4.1 The Nature of Security Policies

Consider a computer system to be a finite-state automaton with a set of
transition functions that change state. Then:

Definition 4–1. A security policy is a statement that partitions the states of
the system into a set of authorized, or secure, states and a set of
unauthorized, or nonsecure, states.

A security policy sets the context in which we can define a secure system.
What is secure under one policy may not be secure under a different policy.
More precisely:

Definition 4–2. A secure system is a system that starts in an authorized
state and cannot enter an unauthorized state.



Figure 4–1: A simple finite-state machine.

Consider the finite-state machine in Figure 4–1. It consists of four states and
five transitions. The security policy partitions the states into a set of
authorized states A = {s1, s2} and a set of unauthorized states UA = {s3, s4}.
This system is not secure, because regardless of which authorized state it
starts in, it can enter an unauthorized state. However, if the edge from s1 to s3
were not present, the system would be secure, because it could not enter an
unauthorized state from an authorized state.

Definition 4–3. A breach of security occurs when a system enters an
unauthorized state.

We informally discussed the three basic properties relevant to security in
Section 1.1. We now define them precisely.

Definition 4–4. Let X be a set of entities and let I be some information.
Then I has the property of confidentiality with respect to X if no member of X
can obtain information about I.

Confidentiality implies that information must not be disclosed to some set of
entities. It may be disclosed to others. The membership of set X is often
implicit—for example, when we speak of a document that is confidential.
Some entity has access to the document. All entities not authorized to have
such access make up the set X.

Definition 4–5. Let X be a set of entities and let I be some information or a
resource. Then I has the property of integrity with respect to X if all members
of X trust I.

This definition is deceptively simple. In addition to trusting the information
itself, the members of X also trust that the conveyance and storage of I do not
change the information or its trustworthiness (this aspect is sometimes called
data integrity). If I is information about the origin of something, or about an



identity, the members of X trust that the information is correct and
unchanged (this aspect is sometimes called origin integrity or, more
commonly, authentication). Also, I may be a resource rather than
information. In that case, integrity means that the resource functions
correctly (meeting its specifications). This aspect is called assurance and will
be discussed in Part VI, “Assurance.” As with confidentiality, the membership
of X is often implicit.

Definition 4–6. Let X be a set of entities and let I be a resource. Then I has
the property of availability with respect to X if all members of X can access I.

The exact definition of “access” in Definition 4–6 varies depending on the
needs of the members of X, the nature of the resource, and the use to which
the resource is put. If a book-selling server takes up to 1 hour to service a
request to purchase a book, that may meet the client’s requirements for
“availability.” If a server of medical information takes up to 1 hour to service a
request for information regarding an allergy to an anesthetic, that will not
meet an emergency room’s requirements for “availability.”

A security policy considers all relevant aspects of confidentiality, integrity,
and availability. With respect to confidentiality, it identifies those states in
which information leaks to those not authorized to receive it. This includes
the leakage of rights and the illicit transmission of information without
leakage of rights, called information flow. Also, the policy must handle
changes of authorization, so it includes a temporal element. For example, a
contractor working for a company may be authorized to access proprietary
information during the lifetime of a nondisclosure agreement, but when that
nondisclosure agreement expires, the contractor can no longer access that
information. This aspect of the security policy is often called a confidentiality
policy.

With respect to integrity, a security policy identifies authorized ways in which
information may be altered and entities authorized to alter it. Authorization
may derive from a variety of relationships, and external influences may



constrain it; for example, in many transactions, a principle called separation
of duties forbids an entity from completing the transaction on its own. Those
parts of the security policy that describe the conditions and manner in which
data can be altered are called the integrity policy.

With respect to availability, a security policy describes what services must be
provided. It may present parameters within which the services will be
accessible—for example, that a browser may download Web pages but not
Java applets. It may require a level of service— for example, that a server will
provide authentication data within 1 minute of the request being made. This
relates directly to issues of quality of service.

The statement of a security policy may formally state the desired properties of
the system. If the system is to be provably secure, the formal statement will
allow the designers and implementers to prove that those desired properties
hold. If a formal proof is unnecessary or infeasible, analysts can test that the
desired properties hold for some set of inputs. Later chapters will discuss
both these topics in detail.

In practice, a less formal type of security policy defines the set of authorized
states. Typically, the security policy assumes that the reader understands the
context in which the policy is issued—in particular, the laws, organizational
policies, and other environmental factors. The security policy then describes
conduct, actions, and authorizations defining “authorized users” and
“authorized use.”

EXAMPLE: A university disallows cheating, which is defined to include
copying another student’s homework assignment (with or without
permission). A computer science class requires the students to do their
homework on the department’s computer. One student notices that a second
student has not read protected the file containing her homework and copies
it. Has either student (or have both students) breached security?

The second student has not, despite her failure to protect her homework. The



security policy requires no action to prevent files from being read. Although
she may have been too trusting, the policy does not ban this; hence, the
second student has not breached security.

The first student has breached security. The security policy disallows the
copying of homework, and the student has done exactly that. Whether the
security policy specifically states that “files containing homework shall not be
copied” or simply says that “users are bound by the rules of the university” is
irrelevant; in the latter case, one of those rules bans cheating. If the security
policy is silent on such matters, the most reasonable interpretation is that the
policy disallows actions that the university disallows, because the computer
science department is part of the university.

The retort that the first user could copy the files, and therefore the action is
allowed, confuses mechanism with policy. The distinction is sharp:

Definition 4–7. A security mechanism is an entity or procedure that
enforces some part of the security policy.

EXAMPLE: In the preceding example, the policy is the statement that no
student may copy another student’s homework. One mechanism is the file
access controls; if the second student had set permissions to prevent the first
student from reading the file containing her homework, the first student
could not have copied that file.

EXAMPLE: Another site’s security policy states that information relating to a
particular product is proprietary and is not to leave the control of the
company. The company stores its backup tapes in a vault in the town’s bank
(this is common practice in case the computer installation is completely
destroyed). The company must ensure that only authorized employees have
access to the backup tapes even when the tapes are stored off-site; hence, the
bank’s controls on access to the vault, and the procedures used to transport
the tapes to and from the bank, are considered security mechanisms. Note
that these mechanisms are not technical controls built into the computer.



Procedural, or operational, controls also can be security mechanisms.

Security policies are often implicit rather than explicit. This causes confusion,
especially when the policy is defined in terms of the mechanisms. This
definition may be ambiguous— for example, if some mechanisms prevent a
specific action and others allow it. Such policies lead to confusion, and sites
should avoid them.

EXAMPLE: The UNIX operating system, initially developed for a small
research group, had mechanisms sufficient to prevent users from accidentally
damaging one another’s files; for example, the user ken could not delete the
user dmr’s files (unless dmr had set the files and the containing directories to
allow this). The implied security policy for this friendly environment was “do
not delete or corrupt another’s files, and any file not protected may be read.”

When the UNIX operating system moved into academic institutions and
commercial and government environments, the previous security policy
became inadequate; for example, some files had to be protected from
individual users (rather than from groups of users). Not surprisingly, the
security mechanisms were inadequate for those environments.

The difference between a policy and an abstract description of that policy is
crucial to the analysis that follows.

Definition 4–8. A policy model is a model that represents a particular
policy or class of policies.

A model abstracts details relevant for analysis. Analyses rarely discuss
particular policies; they usually focus on specific characteristics of policies,
because many policies exhibit these characteristics; and the more policies
with those characteristics, the more useful the analysis. By the HRU result
(see Theorem 3.2), no single nontrivial analysis can cover all policies, but
restricting the class of security policies sufficiently allows meaningful analysis
of that class of policies.



4.2 Types of Security Policies

Each site has its own requirements for the levels of confidentiality, integrity,
and availability, and the site policy states these needs for that particular site.

Definition 4–9. A military security policy (also called a governmental
security policy) is a security policy developed primarily to provide
confidentiality.

The name comes from the military’s need to keep some information secret,
such as the date that a troop ship will sail. Although integrity and availability
are important, organizations using this class of policies can overcome the loss
of either—for example, by using orders not sent through a computer network.
But the compromise of confidentiality would be catastrophic, because an
opponent would be able to plan countermeasures (and the organization may
not know of the compromise).

Confidentiality is one of the factors of privacy, an issue recognized in the laws
of many government entities (such as the Privacy Act of the United States
[1711, 2220] and similar legislation of the European Union [2213, 2214]).
Aside from constraining what information a government entity can legally
obtain from individuals, such acts place constraints on the disclosure and use
of that information. Unauthorized disclosure can result in penalties that
include jail or fines; also, such disclosure undermines the authority and
respect that individuals have for the government and inhibits them from
disclosing that type of information to the agencies so compromised.

Definition 4–10. A commercial security policy is a security policy
developed primarily to provide integrity.

The name comes from the need of commercial firms to prevent tampering
with their data, because they could not survive such compromises. For
example, if the confidentiality of a bank’s computer is compromised, a
customer’s account balance may be revealed. This would certainly embarrass



the bank and possibly cause the customer to take her business elsewhere. But
the loss to the bank’s “bottom line” would be minor. However, if the integrity
of the computer holding the accounts were compromised, the balances in the
customers’ accounts could be altered, with financially ruinous effects.

Some integrity policies use the notion of a transaction. Like database
specifications, they require that actions occur in such a way as to leave the
database in a consistent state. These policies, called transaction-oriented
integrity security policies, are critical to organizations that require
consistency of databases.

EXAMPLE: When a customer moves money from one account to another, the
bank uses a well-formed transaction. This transaction has two distinct parts:
money is first debited to the original account and then credited to the second
account. Unless both parts of the transaction are completed, the customer
will lose the money. With a well-formed transaction, if the transaction is
interrupted, the state of the database is still consistent—either as it was
before the transaction began or as it would have been when the transaction
ended. Hence, part of the bank’s security policy is that all transactions must
be well-formed.

The role of trust in these policies highlights their difference. Confidentiality
policies place no trust in objects; so far as the policy is concerned, the object
could be a factually correct report or a tale taken from Aesop’s Fables. The
policy statement dictates whether that object can be disclosed. It says nothing
about whether the object should be believed.

Integrity policies, to the contrary, indicate how much the object can be
trusted. Given that this level of trust is correct, the policy dictates what a
subject can do with that object. But the crucial question is how the level of
trust is assigned. For example, if a site obtains a new version of a program,
should that program have high integrity (that is, the site trusts the new
version of that program) or low integrity (that is, the site does not yet trust



the new program), or should the level of trust be somewhere in between
(because the vendor supplied the program, but it has not been tested at the
local site as thoroughly as the old version)? This makes integrity policies
considerably more nebulous than confidentiality policies. The assignment of a
level of confidentiality is based on what the classifier wants others to know,
but the assignment of a level of integrity is based on what the classifier
subjectively believes to be true about the trustworthiness of the information.

Two other terms describe policies related to security needs. Because they
appear elsewhere, we define them now.

Definition 4–11. A confidentiality policy is a security policy dealing only
with confidentiality.

Definition 4–12. An integrity policy is a security policy dealing only with
integrity.

Both confidentiality policies and military policies deal with confidentiality.
However, a confidentiality policy does not deal with integrity at all, whereas a
military policy may. A similar distinction holds for integrity policies and
commercial policies.

4.3 The Role of Trust

The role of trust is crucial to understanding the nature of computer security.
This book presents theories and mechanisms for analyzing and enhancing
computer security, but any theories or mechanisms rest on certain
assumptions. When someone understands the assumptions her security
policies, mechanisms, and procedures rest on, she will have a very good
understanding of how effective those policies, mechanisms, and procedures
are. Let us examine the consequences of this maxim.

A system administrator receives a security patch for her computer’s operating
system. She installs it. Has she improved the security of her system? She has



indeed, given the correctness of certain assumptions:

• She is assuming that the patch came from the vendor and was not tampered
with in transit, rather than from an attacker trying to trick her into installing
a bogus patch that would actually open security holes. Winkler [2023]
describes a penetration test in which this technique enabled attackers to gain
direct access to the computer systems of the target.

• She is assuming that the vendor tested the patch thoroughly. Vendors are
often under considerable pressure to issue patches quickly and sometimes
test them only against a particular attack. The vulnerability may be deeper,
however, and other attacks may succeed. When someone released an exploit
of one vendor’s operating system code, the vendor released a correcting patch
in 24 hours. Unfortunately, the patch opened a second hole, one that was far
easier to exploit. The next patch (released 48 hours later) fixed both problems
correctly.

• She is assuming that the vendor’s test environment corresponds to her
environment. Otherwise, the patch may not work as expected. As an example,
a vendor’s patch once enabled the host’s personal firewall, causing it to block
incoming connections by default. This prevented many programs from
functioning. The host had to be reconfigured to allow the programs to
continue to function [2268]. This assumption also covers possible conflicts
between different patches, such as patches from different vendors of software
that the system is using.

• She is assuming that the patch is installed correctly. Some patches are
simple to install, because they are simply executable files. Others are
complex, requiring the system administrator to reconfigure network-oriented
properties, add a user, modify the contents of a registry, give rights to some
set of users, and then reboot the system. An error in any of these steps could
prevent the patch from correcting the problems, as could an inconsistency
between the environments in which the patch was developed and in which the
patch is applied. Furthermore, the patch may claim to require specific



privileges, when in reality the privileges are unnecessary and in fact
dangerous.

These assumptions are fairly high-level, but invalidating any of them makes
the patch a potential security problem.

Assumptions arise also at a much lower level. Consider formal verification
(see Chapter 21), an oft-touted panacea for security problems. The important
aspect is that formal verification provides a formal mathematical proof that a
given program P is correct—that is, given any set of inputs i, j, k, the program
P will produce the output x that its specification requires. This level of
assurance is greater than most existing programs provide, and hence makes P
a desirable program. Suppose a security-related program S has been formally
verified for the operating system O. What assumptions would be made when
it was installed?

1. The formal verification of S is correct—that is, the proof has no errors.
Because formal verification relies on automated theorem provers or other
formal methods as well as human analysis, the theorem provers must be
programmed correctly.

2. The assumptions made in the formal verification of S are correct;
specifically, the preconditions hold in the environment in which the program
is to be executed. These preconditions are typically fed to the theorem provers
as well as the program S. An implicit aspect of this assumption is that the
version of O in the environment in which the program is to be executed is the
same as the version of O used to verify S.

3. The program will be transformed into an executable whose actions
correspond to those indicated by the source code; in other words, the
compiler, linker, loader, and any libraries are correct. An experiment with
one version of the UNIX operating system demonstrated how devastating a
rigged compiler could be [1886]. Some attack tools replace libraries with
others that perform additional functions, thereby increasing security risks



[309, 355, 420].

4. The hardware will execute the program as intended. A program that relies
on floating point calculations would yield incorrect results on some computer
CPU chips, regardless of any formal verification of the program, owing to a
flaw in these chips [433]. Similarly, a program that relies on inputs from
hardware assumes that specific conditions cause those inputs.

The point is that any security policy, mechanism, or procedure is based on
assumptions that, if incorrect, destroy the superstructure on which it is built.
Analysts and designers (and users) must bear this in mind, because unless
they understand what the security policy, mechanism, or procedure is based
on, they jump from an unwarranted assumption to an erroneous conclusion.

4.4 Types of Access Control

A security policy may use two types of access controls, alone or in
combination. In one, access control is left to the discretion of the owner. In
the other, the operating system controls access, and the owner cannot
override the controls.

The first type is based on user identity and is the most widely known:

Definition 4–13. If an individual user can set an access control mechanism
to allow or deny access to an object, that mechanism is a discretionary access
control (DAC), also called an identity-based access control (IBAC).

Discretionary access controls base access rights on the identity of the subject
and the identity of the object involved. Identity is the key; the owner of the
object constrains who can access it by allowing only particular subjects to
have access. The owner states the constraint in terms of the identity of the
subject, or the owner of the subject.

EXAMPLE: Suppose a child keeps a diary. The child controls access to the



diary, because she can allow someone to read it (grant read access) or not
allow someone to read it (deny read access). The child allows her mother to
read it, but no one else. This is a discretionary access control because access
to the diary is based on the identity of the subject (mom) requesting read
access to the object (the diary).

The second type of access control is based on fiat, and identity is irrelevant:

Definition 4–14. When a system mechanism controls access to an object
and an individual user cannot alter that access, the control is a mandatory
access control (MAC), occasionally called a rule-based access control.

The operating system enforces mandatory access controls. Neither the subject
nor the owner of the object can determine whether access is granted.
Typically, the system mechanism will check attributes associated with both
the subject and the object to determine whether the subject should be allowed
to access the object. Rules describe the conditions under which access is
allowed.

EXAMPLE: The law allows a court to access driving records without the
owners’ permission. This is a mandatory control, because the owner of the
record has no control over the court’s accessing the information.

Definition 4–15. An originator controlled access control (ORCON or
ORGCON) bases access on the creator of an object (or the information it
contains).

The goal of this control is to allow the originator of the file (or of the
information it contains) to control the dissemination of the information. The
owner of the file has no control over who may access the file. Section 8.3
discusses this type of control in detail.

EXAMPLE: Bit Twiddlers, Inc., a company famous for its embedded systems,
contracts with Microhackers Ltd., a company equally famous for its



microcoding abilities. The contract requires Microhackers to develop a new
microcode language for a particular processor designed to be used in high-
performance embedded systems. Bit Twiddlers gives Microhackers a copy of
its specifications for the processor. The terms of the contract require
Microhackers to obtain permission before it gives any information about the
processor to its subcontractors. This is an originator controlled access
mechanism because, even though Microhackers owns the file containing the
specifications, it may not allow anyone to access that information unless the
creator of that information, Bit Twiddlers, gives permission.

4.5 Policy Languages

A policy language is a language for representing a security policy. High-level
policy languages express policy constraints on entities using abstractions.
Low-level policy languages express constraints in terms of input or invocation
options to programs existing on the systems.

4.5.1 High-Level Policy Languages

A policy is independent of the mechanisms. It describes constraints placed on
entities and actions in a system. A high-level policy language is an
unambiguous expression of policy. Such precision requires a mathematical or
programmatic formulation of policy; common English is not precise enough.

One such language is Ponder [498, 1229, 1896], a declarative language for
specifying security and management policies. It provides support for several
different types of policies: authorization policies, delegation policies,
information filtering policies, obligation policies, and refrain policies.

EXAMPLE: In Ponder, entities are organized into hierarchical domains. Let
network administrators be users in the domain /NetAdmins, developers for
network infrastructure be in the domain /NetDevelopers, and network
engineers be in the domain /NetEngineers. Network engineer trainees are a
subdomain, /NetEngineers/Trainees. The routers in a local area network are



in the domain /localnetwork/routers, and that network also has a testbed for
net routers, the domain /localnetwork/testbed/routers.

Authorization policy specifications, enforced by controllers associated with
the objects that are the targets of actions, fall into two classes. The first
defines allowed actions; the second, disallowed actions. The following states
that network administrators can enable and disable routers on the local
network; they can also reconfigure them, and cause them to dump the
configuraion.

inst auth+ switchAdmin {
        subject /NetAdmins;
        target  /localnetwork/routers;
        action  enable(), disable(), reconfig(), dumpconfig();
}

However, network engineer trainees cannot run performance tests on these
routers during the day:

inst  auth– testOps {
    subject /NetEngineers/trainees;
    target  /localnetwork/routers;
    action  testperformance();
    when Time.between(“0800”, “1700”);
}

Delegation policy specifications describe the delegation of rights. Here, the
network engineers are delegated the authority to enable, disable, and
reconfigure routers in the testbed. The delegation comes from the network
administrators, and is good for 8 hours:

inst deleg+ (switchAdmin) delegSwitchAdmin {
    grantee  /NetEngineers;
    target   /localnetwork/testNetwork/routers;
    action   enable(), disable(), reconfig();
    valid    Time.duration(8);}



The key item in this policy specification is “grantee”, which designates the
subjects (or subject domain) being delegated the authorization to carry out
actions in the relevant authorization policy. The above specification delegates
authorizations from the policy switchAdmin shown above. Only the
authorization for actions enable, disable. and reconfig are delegated. When
a delegation under this policy occurs, it is valid for 8 hours, after which it is
automatically revoked.

Information filtering policy specifications control the dissemination of
information. They differ from authorization policies in that the the operation
is performed first, and then the policy is applied to determine whether the
results should be (possibly transformed and then) returned to the subject.
Thus, the policy

inst auth+ switchOpsFilter {
    subject  /NetAdmins;
    target   /localnetwork/routers;
    action   dumpconfig(what)
             { in partial = “config”; }          // default filter
             if (Time.between (“2000”, “0500”)){ in partial = “all”; }
}

says that network administrators can dump everything from the local
network routers between 8:00pm and 5:00am, and the configuration
information from the routers on the local network at any time.

Refrain policy specifications are similar to the authorization denial policy
specifications, except that they are enforced by the subjects, not the target
controllers. The following specification says that network engineers cannot
send test results to nework developers while those tests are in progress
(presumably, because it might cause them to take actions that would affect
the testing):

inst refrain testSwitchOps {
     subject  s=/NetEngineers;



     target   /NetDevelopers;
     action   sendTestResults();
     when        s.teststate=“in progress”
}

The name s represents the domain of network engineers. The when constraint
holds when the state of the test is “in progress”, and when that constraint
holds, the policy specification requires that the network engineers refrain
from taking the action sendTestResults with the network developers as the
target.

Finally, the obligation policy specification requires that specific actions be
taken when certain events occur. For example, consider what happens when
three consecutive login attempts to a network administrator’s account fail:

inst oblig loginFailure {
    on       loginfail(userid, 3);
    subject  s=/NetAdmins/SecAdmins;
    target   t=/NetAdmins/users ^ (userid);
    do       t.disable() –> s.log(userid);
}

On the third failure (loginfail(userid, 3)), the network security
administrators (who are a subset of the network administrators) will disable
the account (t.disable) and then make a log entry into the log using an
operation in the network security administrator’s domain (s.log(userid).

As an example of how Ponder can be used, consider a policy requiring
separation of duty in the issuance of checks. The policy, which is to be
enforced dynamically, requires that two different members of the
/Accounting domain approve the check. The Ponder policy specification for
this is:

inst auth+ separationOfDuty {
    subject  s=/Accountants;
    target   t=checks;



    action   approve(), issue();
    when     s.id <> t.issuerid;
}

Here, the when constraint requires that the userid associated with the check
issuance (t.userid) cannot be the accountant who approves the issuance
(s.id).

In addition to these specifications, Ponder allows the grouping of policies for
easy organization, and the use of roles. Role inheritance and role hierarchies
are also supported, as are representations of management structure and
classes of policies. Its flexibility and use of domains of subjects and objects
make it able to express a variety of policies.

Another policy specification language, the domain-type enforcement
language (DTEL) [111] grew from an observation of Boebert and Kain [253]
that access could be based on types; they confine their work to the types
“data” and “instructions.” This observation served as the basis for a firewall
[1888] and for other secure system components. DTEL uses implementation-
level constructs to express constraints in terms of language types, but not as
arguments or input to specific system commands. Hence, it combines
elements of low-level and high-level languages. Because it describes
configurations in the abstract, it is a high-level policy language.

EXAMPLE: DTEL associates a type with each object and a domain with each
subject. The constructs of the language constrain the actions that a member
of a domain can perform on an object of a specific type. For example, a
subject cannot execute a text file, but it can execute an object file.

Consider a policy that restricts all users from writing to system binaries. Only
subjects in the administrative domain can alter system binaries. A user can
enter this domain only after rigorous authentication checks. In the UNIX
world, this can be described using four distinct subject domains:



• d_user, the domain for ordinary users

• d_admin, the domain for administrative users (who can alter system
binaries)

• d_login, the domain for the authentication processes that comply with the
domain-type enforcement

• d_daemon, the domain for system daemons (including those that spawn
login)

The login program (in the d_login domain) controls access between d_user
and d_admin. The system begins in the d_daemon domain because the init
process lies there (and init spawns the login process whenever anyone tries to
log in).

We consider these five object types:

• t_sysbin, the type for executable files

• t_readable, the type for readable files

• t_writable, the type for writable files

• t_dte, the type for data used by the domain-type enforcement mechanisms

• t_generic, for data generated from user processes

For our purposes, consider these types to be partitions. In practice, objects
can be both readable and writable; we ignore this for purposes of exposition.
DTEL represents this as

type t_readable, t_writable, t_sysbin, t_dte, t_generic;

Characterize each domain as a sequence. The first component is a list of the
programs that begin in this domain. The other elements of the sequence



consist of a set of rights, an arrow, and a type. Each element describes the set
of rights that members of the domain have over the named type.

EXAMPLE: Consider the d_daemon domain. When the init program begins,
it starts in this domain. It can create (c), read (r), write (w), and do a directory
search (d) of any object of type t_writable. It can read, search, and execute
(x) any object of type t_sysbin. It can read and search anything of type
t_generic, t_readable, or t_dte. Finally, when the init program invokes the
login program, the login program transitions into the d_login domain
automatically (auto). Putting this together, we have

domain d_daemon = (/sbin/init),
                  (crwd–>t_writable),
                  (rd–>t_generic, t_readable, t_dte),
                  (rxd–>t_sysbin),
                  (auto–>d_login);

An important observation is that, even if a subject in the domain d_daemon
is compromised, the attacker cannot alter system binaries (files of type
t_sysbin), because that domain has no write rights over files of that type. This
implements separation of privilege (see Section 14.2.6) and was a motive
behind the development of this policy.

EXAMPLE: As a second example, the policy requires that only administrative
subjects (do-main d_admin) be able to write system executables (of type
t_sysbin). The administrator uses an ordinary UNIX command interpreter.
Subjects in d_admin can read, write, execute, and search objects of types
t_readable, t_writable, t_dte, and t_sysbin. If the type is not specified at
creation, the new object is assigned the t_generic type. Finally, a subject in
this domain can suspend processes executing in the d_daemon domain using
the sigtstp signal. This means

domain d_admin = (/usr/bin/sh, /usr/bin/csh, /usr/bin/ksh),
                 (crwxd–>t_generic),
                 (rwxd–>t_readable, t_writable, t_dte, t_sysbin),



                 (sigtstp –>d_daemon);

The user domain must be constrained similarly. Here, users can write only
objects of type t_writable, can execute only objects of type t_sysbin, can
create only objects of type t_writable or t_generic, and can read and search
all domains named.

domain d_user = (/usr/bin/sh, /usr/bin/csh, /usr/bin/ksh),
                (crwxd–>t_generic),
                (rxd–>t_sysbin),
                (crwd–>t_writable),
                (rd–>t_readable, t_dte);

Because no user commands imply a transition out of the domain, the final
component is empty.

The d_login domain controls access to the d_user and d_admin domains.
Because this is its only function, no subject in that domain should be able to
execute another program. It also is authorized to change the user ID (hence,
it has the right setauth). Access to the domain is to be restricted to the login
program. In other words,

domain d_login = (/usr/bin/login),
                 (crwd–>t_writable),
                 (rd–>t_readable, t_generic, t_dte),
                 setauth,
                 (exec–>d_user, d_admin);

Initially, the system starts in the d_daemon state:

initial_domain = d_daemon;

A series of assign statements sets the initial types of objects. For example,

assign –r t_generic /;



assign –r t_writable /usr/var, /dev,/tmp;
assign –r t_readable /etc;
assign –r –s t_dte /dte;
assign –r –s t_sysbin /sbin, /bin, /usr/bin, /usr/sbin

The -r flag means that the type is applied recursively; the -s flag means that
the type is bound to the name, so if the object is deleted and a new object is
created with the same name, the new object will have the same type as the
deleted object. The assign lines are processed in order, with the longest path
name taking precedence. So, everything on the system without a type
assigned by the last four lines is of type t_generic (because of the first line).

If a user process tries to alter a system binary, the enforcement mechanisms
will check to determine if something in the domain d_user is authorized to
write to an object of type t_sysbin. Because the domain description does not
allow this, the request is refused.

Now augment the policy above to prevent users from modifying system logs.
Define a new type t_log for the log files. Only subjects in the d_admin
domain, and in a new domain d_log, can alter the log files. The set of
domains would be extended as follows.

type t_readable, t_writable, t_sysbin, t_dte, t_generic, t_log;
domain d_daemon = (/sbin/init),
                  (crwd–>t_writable),
                  (rxd–>t_sysbin),
                  (rd–>t_generic, t_dte, t_readable),
                  (auto–>d_login, d_log);
domain d_log = (/usr/sbin/syslogd),
               (crwd–>t_log),
               (rwd–>t_writable),
               (rd–>t_generic, t_readable);
assign –r t_log/usr/var/log;
assign t_writable/usr/var/log/wtmp,/usr/var/log/utmp;

If a process in the domain d_daemon invokes the syslogd process, the
syslogd process enters the d_log domain. It can now manipulate system logs



and can read and write writable logs but cannot access system executables. If
a user tries to manipulate a log object, the request is denied. The d_user
domain gives its subjects no rights over t_log objects.

4.5.2 Low-Level Policy Languages

A low-level policy language is simply a set of inputs or arguments to
commands that set, or check, constraints on a system.

EXAMPLE: The UNIX-based windowing system X11 provides a language for
controlling access to the console (on which X11 displays its images). The
language consists of a command, xhost, and a syntax for instructing the
command to allow access based on host name (IP address). For example,

xhost +groucho -chico

sets the system so that connections from the host groucho are allowed but
connections from chico are not.

EXAMPLE: File system scanning programs check conformance of a file
system with a stated policy. The policy consists of a database with desired
settings. Each scanning program uses its own little language to describe the
settings desired.

One such program, tripwire [1060], assumes a policy of constancy. It records
an initial state (the state of the system when the program is first run). On
subsequent runs, it reports files whose settings have changed.

The policy language consists of two files. The first, the tw.config file, contains
a description of the attributes to be checked. The second, the database,
contains the values of the attributes from a previous execution. The database
is kept in a readable format but is very difficult to edit (for example, times of
modification are kept using base 64 digits). Hence, to enforce conformance
with a specific policy, an auditor must ensure that the system is in the desired



state initially and set up the tw.config file to ignore the attributes not relevant
to the policy.

The attributes that tripwire can check are protection, file type, number of
links, file size, file owner, file group, and times of creation, last access, and
last modification. Tripwire also allows the cryptographic checksumming of
the contents of the file. An example tripwire configuration file looks like

/usr/mab/tripwire-1.1  +gimnpsu012345678-a

This line states that all attributes are to be recorded, including all nine
cryptographic checksums, but that the time of last access (the “a”) is to be
ignored (the “-”). This applies to the directory and to all files and
subdirectories contained in it. After tripwire is executed, the database entry
for a README file might be

/usr/mab/tripwire-1.1/README 0 ..../. 100600 45763 1 917
10 33242 .gtPvf .gtPvY .gtPvY 0 .ZD4cc0Wr8i21ZKaI..LUOr3
.0fwo5:hf4e4.8TAqd0V4ubv ?...... ...9b3
1M4GX01xbGIX0oVuGo1h15z3 ?:Y9jfa04rdzM1q:eqt1APgHk
?.Eb9yo.2zkEh1XKovX1:d0wF0kfAvC
?1M4GX01xbGIX2947jdyrior38h15z3 0

Clearly, administrators are not expected to edit the database to set attributes
properly. Hence, if the administrator wishes to check conformance with a
particular policy (as opposed to looking for changes), the administrator must
ensure that the system files conform to that policy and that the configuration
file reflects the attributes relevant to the policy.

EXAMPLE: The RIACS file system checker [216] was designed with different
goals. It emphasized the ability to set policy and then check for conformance.
It uses a database file and records fixed attributes (with one exception—the
cryptographic checksum). The property relevant to this discussion is that the
database entries are easy to understand and edit:



/etc/pac 0755 1 root root 16384 12 22341 Jan 12, 1987 at 12:47:54

The attribute values follow the file name and are permissions, number of
links, owner and group, size (in bytes), checksum, and date and time of last
modification. After generating such a file, the analyst can change the values
as appropriate (and replace those that are irrelevant with a wild card “*”). On
the next run, the file system state is compared with these values.

4.6 Example: Academic Computer Security Policy

Security policies can have few details, or many. The explicitness of a security
policy depends on the environment in which it exists. A research lab or office
environment may have an unwritten policy. A bank needs a very explicit
policy. In practice, policies begin as generic statements of constraints on the
members of the organization. These statements are derived from an analysis
of threats, as described in Chapter 1, “An Overview of Computer Security.” As
questions (or incidents) arise, the policy is refined to cover specifics. As an
example, we present part of an academic security policy that focuses on
electronic communications. The full electronic communications policy is
presented in Appendix G, “Example Academic Security Policy.”

4.6.1 General University Electronic Communications Policy

The University of California consists of 10 campuses, each headed by a
Chancellor and a Provost. Overseeing all the campuses is the University of
California Office of the President (UCOP). UCOP issues policies that apply to
all campuses, and each campus then implements the policy consistent with
directions from UCOP.

The basic electronic communications policy (see Section G.2), issued by
UCOP and last revised on August 18, 2013, begins with a statement of the
importance of electronic communications, which includes email, voice, and
video as well as other means of electronic communications. It then states the



purposes of the policy and to whom the policy applies. Interestingly, the
policy applies to electronic communication records in electronic form, and
cautions explicitly that it does not apply to printed copies of those records or
communications.

As noted above, this policy applies to the University of California system, but
not to the U.S. Department of Energy laboratories that the University
manages, or to users who are agents or employees of the Department of
Energy. It gives general guidelines for campus’ implementation of the policy,
for example “procedures shall include information on . . . authorized users,
procedures for restricting or denying use of its electronic communications
services, adjudication of complaints, network monitoring practices, . . . ”.1 It
also points out that certain abuses not only violate the policy but also the law,
and that violators of the policy may be subject to University disciplinary
procedures as well as legal penalties.

1See Section G.2.2.D.2.

The next section discusses the allowable uses of University electronic
communications resources. The policy emphasizes the desire of the
University not to deal with the contents of electronic communications, and
that all communications relating to the administration of the University are
public records under the California Public Records Act. Other
communications may also be public records. It then identifies the allowable
users—University faculty, staff, students, and others associated with the
University, and others authorized by the Chancellor or UCOP, or who are
participating in programs sponsored by the University.

Allowable uses are more complex. Basically, electronic communications
cannot be used for commercial purposes such as endorsements; illegal
activities; for running personal businesses; or for any purpose that violates
University or campus policies or rules. Users cannot claim to represent the
University unless they are properly authorized to do so, and may not interfere
with others’ use or put an “excessive strain” on electronic communications



resources. This rules out using those resources for spamming and denial of
service attacks, for example. Incidental personal use is allowed providing that
it does not interfere with other uses of electronic communications resources;
but, as noted above, those communications may be examined to determine if
they are public records within the meaning of the Public Records Act.
Further, anonymous communications are also allowed subject to campus
guidelines, but the use of false identities is forbidden. The section concludes
with an admonition to respect intellectual property laws, and that in
accordance with the U.S. Digital Millenium Copyright Act, the University may
suspend or terminate accounts of users who repeatedly violate copyright laws.

The policy then discusses the privacy and confidentiality of electronic
communications. Privacy of electronic communications is respected in the
same way as for paper communications. The policy forbids the reading or
disclosing of these communications without permission of the holder, except
in specific enumerated circumstances:

• when required by law;

• when there is reliable evidence that the law or University policies are being
violated;

• when not doing so may result in significant harm, loss of significant
evidence of violations of law or University policy, or significant liability to the
University or the members of its community; and

• when not doing so would seriously hamper the administrative or teaching
obligations of the University.

In general, access without consent of the holder requires written permission
of a senior administrator (such as a Vice Chancellor or Senior Vice President,
Business and Finance) designated to give this permission. Exceptions are in
response to a subpoena or search warrant. If immediate access is require to
deal with an emergency, approval must be obtained as soon as possible after



the access. Further, in any of these circumstances, those affected by the
disclosure must be notified of the action and the reasons for the action, as
soon as possible.

This section then discusses privacy protections and the laws and other
University policies that apply. It also notes that privacy has some limits,
specifically that some electronic communications may constitute public
records and therefore may become public; that electronic communications
may be captured on backups; and that during the course of system
monitoring to ensure reliability and security, system and network
administrators may see electronic communications; however, they are
instructed to respect the privacy of those communications. If, during the
course of their normal work, they come across “improper governmental
activity (including violations of law or University policy)”, they may report it
consistent with the University’s Whistleblower Policy.2

2See Section G.2.4.C.2.b.

The penultimate section covers security. This section describes the security
services and practices, such as permitting routine monitoring, the need to
maintain authentication, authorization, and other mechanisms
commensurate with University policies. Recovery and audit mechanisms are
to be used to ensure reliability and detect security problems.

The policy concludes with some comments on the retention of electronic
communications.

Appendix A, “Definitions,”3 raises an interesting point in its definition of
“Electronic Communications,” which it defines as: “[a]ny transfer of signals,
writings, images, sounds, data or intelligence that is, created, sent, forwarded,
replied to, transmitted, distributed, broadcast, stored, held, copied,
downloaded, displayed, viewed, read, or printed by one or several electronic
communications systems.” When read in conjunction with the definition of
“Transactional Information,” which include e-mail headers, senders, and



recipients, this appears to encompass the network packets used to carry the e-
mail from one host to another. The policy states explicitly that transmissions
are monitored for security and reliability purposes, resolving an ambiguity in
an earlier version of the policy [2165]. But this illustrates a problem with
policies expressed in natural languages. The language is often imprecise. This
motivates the use of more mathematical languages, such as DTEL, for
specifying policies.

3See Section G.2.7.

4.6.1.1 Attachment: User Advisories

Because a policy can be confusing to ordinary users, UCOP has added an
attachment designed for the general University community.4 This advisory
reiterates the main points of the Electronic Communication Policy, and adds
some cautions. For example, it reminds readers that in general what is
forbidden in the physical world is also forbidden in the digital world.

4See Section G.3.

It also encourages users of electronic communications to think of others. In
particular, it suggests treating electronic communications like any other form
of communication, and show others the same courtesy and consideration in
both environments. It points out that laws governing the privacy of electronic
communications are not as mature as laws governing privacy in other areas
(the example given is telephonic communications), so users should assume a
lesser degree of privacy—and, if broadcasting a message or posting to a web
site, assume little to no privacy. Also, it reviews various government and
University policies applying to personal information and student and
University records.

Finally, the advisory states limits on what the University provides. The
University does not provide routine encryption of electronic communications,
but users can use various technologies to do so. Similarly, the University does



not routinely provide authentication mechanisms for electronic
communication, and the advisory notes it is easy to falsify the sender of a
message (although it is a violation of University policy to do so). Electronic
communications are backed up for reliability purposes, but the University
does not guarantee that these backups will be available to users, or even be
maintained for any given time.

4.6.2 Implementation at UC Davis

UC Davis describes the implementation of the Electronic Communications
Policy in the Policy and Procedure Manual, Section 310-23, “Electronic
Communications—Allowable Use”.5 It is augmented by an additional exhibit,
the “Acceptable Use Policy”.6

5See Section G.4.

6See Section G.1.

The goal of electronic communication is to support the University’s mission
of teaching, research, and community service. The policy emphasizes that
they incorporate the UC Davis Principles of Community: that people have
inherent dignity, the right of freedom of expression, the obligation to respect
and be courteous to others, and to cherish the differences that makes the
community so rich. This means that users must respect the rights of others
when using electronic communication resources. Using these resources in
pursuit of education, university business, or university-related activities is
encouraged.

The policy identifies the allowed users more specifically than the Electronic
Communications Policy, specifically UCD students, staff, faculty, and other
academic appointees and affiliated people; the latter must be sponsored by a
department and must fill out a temporary affiliate form. It further covers
people leaving UCD; email may be forwarded, provided that the recipient
agrees to return to the department any email pertaining to University



business.

The allowable uses section goes into details specific to the UC Davis campus;
for example, only Chancellor-approved charitable activities may use
electronic communication resources. Using them in a way that creates a
hostile educational or work environment (for example, for harassment) or
that violates obscenity laws is forbidden. Beyond these restrictions, it
reiterates that incidental personal use is permitted under the conditions given
in the Electronic Communications Policy.

The policy details unacceptable conduct. Users must respect copyrights and
license agreements, and the integrity of electronic communication resources.
Thus, creating computer worms or viruses is strictly forbidden unless (a) it is
done as part of an academic research or instruction program supervised by
academic personnel and (b) it does not compromise the University’s
electronic communication resources. Users are required to protect passwords
for University resources, and must comply with all laws and University
policies pertinent to electronic communications.

This interpretation adds campus-specific requirements and procedures to the
university’s policy. The local augmentation amplifies the system policy; it
does not contradict it or limit it. Indeed, what would happen if the campus
policy conflicted with the system’s policy? In general, the higher (system-
wide) policy would prevail. The advantage of leaving implementation to the
campuses is that they can take into account local variations and customs, as
well as any peculiarities in the way the administration and the Academic
Senate govern that campus.

4.7 Security and Precision

Chapter 1 presented definitions of security and precision in terms of states of
systems. Can one devise a generic procedure for developing a mechanism that
is both secure and precise? Jones and Lipton [978] explored this question for



confidentiality policies; similar results hold for integrity policies. For this
analysis, they view programs as abstract functions.

Definition 4–16. Let p be a function p : I1 × . . . × In → R. Then P is a
program implementing p with n inputs ik ∈ Ik, 1 ≤ k ≤ n, and one output r ∈
R.

The observability postulate makes one assumption of what follows explicit.

Axiom 4.1 (Observability Postulate). The output of a function p(i1, . . . , in)
encodes all available information about i1, . . . , in.

Consider a program that does not alter information on the system, but merely
provides a “view” of its inputs. Confidentiality policies seek to control what
views are available; hence the relevant question is whether the value of p(i1, . .
. , in) contains any information that it should not contain.

This postulate is needed because information can be transmitted by
modulating shared resources such as runtime, file space used, and other
channels such as covert channels (see Chapter 18) and side channels (see
Section 9.6). Even though these channels are not intended to be used for
sending information, that they are shared enables violation of confidentiality
policies. From an abstract point of view, covert channels are part of the
output (result) of the program’s execution, and hence the postulate is
appropriate. But as a matter of implementation, these channels may be
observable even when the program’s output is not.

EXAMPLE: Consider a program that asks for a user name and a password. If
the user name is illegal, or is not associated with the password, the program
prints “Bad.” If the user name has the given password, it prints “Good.” The
inputs are the user name, the password, and the database of associations, so
the inputs are in the set of all strings. The output is in the set { “Bad”, “Good”
}.



If the user name is illegal, the program does not access the password database
(because there can be no valid password for the user), and it immediately
prints “Bad.” But if the user name is valid, the program must access the
password database, which takes a noticeable amount of time. This means that
the time that the computation takes is an output of the function. So the
observability postulate says that analysts must consider the delay in
computing the response as an output of the computation. This makes sense.
If the program immediately prints “Bad,” the observer concludes that the user
name is unknown. If a delay occurs before the program prints “Bad,” the
observer concludes that the user is known but the password is incorrect.

Let E be the set of outputs from a program p that indicate errors.

Definition 4–17. Let p be a function p : I1 × . . . × In → R. A protection
mechanism m is a function m : I1 × . . . × In → R ∪ E for which, when ik ∈ Ik, 1
≤ k ≤ n, either

1. m(i1, . . . , in) = p(i1, . . . , in) or

2. m(i1, . . . , in) ∈ E.

Informally, this definition says that every legal input to m produces either the
same value as for p or an error message. The set of output values from p that
are excluded as outputs from m are the set of outputs that would impart
confidential information.

EXAMPLE: Continuing the example above, E might contain the messages
“Password Database Missing” and “Password Database Locked.” Then, if the
program could not access the password database, it would print one of those
messages (and case 2 of the definition would apply); otherwise, it would print
“Good” or “Bad” and case 1 would apply.

Now we define a confidentiality policy.

Definition 4–18. A confidentiality policy for the program p : I1 × . . . × In →



R is a function c : I1 × . . . × In → A, where A ⊆ I1 × . . . × In.

In this definition, A corresponds to the set of inputs that may be revealed. The
complement of A with respect to I1 ×. . .× In corresponds to the confidential
inputs. In some sense, the function c filters out inputs that are to be kept
confidential. For all inputs I1, . . . , In, the symbol v ∈ Ii means that no input
from Ii is given.

The next definition captures how well a security mechanism conforms to a
stated confidentiality policy.

Definition 4–19. Let c : I1 × . . . × In → A be a confidentiality policy for a
program p. Let m : I1 × . . . × In → R ∪ E be a security mechanism for the
same program p. Then the mechanism m is secure if and only if there is a
function m′ : A → R ∪ E such that, for all ik ∈ Ik, 1 ≤ k ≤ n, m(i1, . . . , in) = m′
(c(i1, . . . , in)).

In other words, given any set of inputs, the protection mechanism m returns
values consistent with the stated confidentiality policy c. Here, the term
“secure” is a synonym for “confidential.” We can derive analogous results for
integrity policies.

EXAMPLE: If c(i1, . . . , in) is a constant vector, the policy’s intent is to deny
the observer any information, because the output does not vary with the
inputs. But if c(i1, . . . , in) = (i1, . . . , in), and m′ = m, then the policy’s intent is
to allow the observer full access to the information. As an intermediate policy,
if c(i1, . . . , in) = (i1, v, . . . ,v), then the policy’s intent is to allow the observer
information about the first input but no information about other inputs.

The distinguished policy allow : I1 ×. . .× In → A generates a selective
permutation of its inputs. By “selective,” we mean that it may omit inputs.
Hence, the function c(i1, . . . , in) = i1 is an example of allow, because its
output is a permutation of some of its inputs. More generally, for k ≤ n,



where

is a permutation of any k of i1, . . . , in.

EXAMPLE: Revisit the program that checks user name and password
association. Let U be the set of potential user names, P the set of potential
passwords, and D the set of authentication databases. As a function, auth : U
× P × D′ → {T, F}. T and F represent true and false, respectively. Then for u ∈
U, p ∈ P, and d ∈ D, auth(u, p, d) = T if and only if the pair (u, p) ∈ d. Under
the policy allow(i1, i2, i3) = (i1, i2, v), there is no function auth′ such that

for all d because auth′ has no access to elements of D. So auth is not secure as
an enforcement mechanism.

EXAMPLE: Consider a program q with k non-negative integer inputs; it
computes a single non-negative integer. A Minsky machine [1359] can
simulate this program by starting with the input ij ∈ Ij in register j (for 1 ≤ j ≤
k). The output may disclose information about one or more inputs. For
example, if the program is to return the third input as its output, it is
disclosing information. Fenton [667] examines these functions to determine
if the output contains confidential information.

The observability postulate does not hold for the program q above, because q
ignores runtime. The computation may take more time for certain inputs,
revealing information about them. This is an example of a covert channel (see
Section 18.3). It also illustrates the need for precise modeling. The policy does
not consider runtime as an output when, in reality, it is an output.

As an extreme example, consider the following program.

if x = null then halt;



Fenton does not define what happens if x is not null. If an error message is
printed, the resulting mechanism may not be secure. To see this, consider the
program

y := 0;
if x = 0 then begin
        y := 1;
        halt;
end;
halt;

Here, the value of y is the error message. It indicates whether or not the value
of x is 0 when the program terminates. If the security policy says that
information about x is not to be revealed, then this mechanism is not secure.

A secure mechanism ensures that the policy is obeyed. However, it may also
disallow actions that do not violate the policy. In that sense, a secure
mechanism may be overly restrictive. The notion of precision measures the
degree of overrestrictiveness.

Definition 4–20. Let m1 and m2 be two distinct protection mechanisms for
the program p under the policy c. Then m1 is as precise as m2 (m1 ≈ m2)
provided that, for all inputs (i1, . . . , in), if m2(i1, . . . , in) = p(i1, . . . , in), then
m1(i1, . . . , in) = p(i1, . . . , in). We say that m1 is more precise than m2 (m1 ~
m2) if there is an input

such that

and

.

An obvious question is whether or not two protection mechanisms can be



combined to form a new mechanism that is as precise as the two original
ones. To answer this, we need to define “combines,” which we formalize by
the notion of “union.”

Definition 4–21. Let m1 and m2 be protection mechanisms for the program
p. Then their union m3 = m1 ∪ m2 is defined as

This definition says that for inputs on which m1 or m2 returns the same value
as p, their union does also. Otherwise, that mechanism returns the same
value as m1. From this definition and the definitions of secure and precise, we
have:

Theorem 4.1. Let m1 and m2 be secure protection mechanisms for a
program p and policy c. Then m1∪m2 is also a secure protection mechanism
for p and c. Furthermore, m1∪m2 ≈ m1 and m1 ∪ m2 ≈ m2.

Generalizing, we have:

Theorem 4.2. For any program p and security policy c, there exists a
precise, secure mechanism m* such that, for all secure mechanisms m
associated with p and c, m* ≈ m.

Proof. Immediate by induction on the number of secure mechanisms
associated with p and c. 

This “maximally precise” mechanism m* is the mechanism that ensures
security while minimizing the number of denials of legitimate actions. If there
is an effective procedure for determining this mechanism, we can develop
mechanisms that are both secure and precise. Unfortunately:

Theorem 4.3. There is no effective procedure that determines a maximally



precise, secure mechanism for any policy and program.

Proof. Let the policy c be the constant function—that is, no information about
any of the inputs is allowed in the output. Let p be a program that computes
the value of some total function T (x) and assigns it to the variable z. We may
without loss of generality take T (0) = 0.

Let q be a program of the following form:

p;
if z = 0 then y := 1 else y := 2;
halt;

Now, consider the value of the protection mechanism m(0). From the above
program, either m(0) = 1 (if p, and hence q, completes) or it is undefined (if p
halts before the “if” statement). As the policy c is the constant function, m
must also be constant.

If, for all inputs x, T (x) = 0, then m(x) = 1 (because m is secure). So assume
there is an input x′ for which T (x′) ≠ 0. Then, either m(x′) = 2 (again,
because m is secure) or is undefined (if p halts before the assignment). From
the definition of T, as T (0) = 0, so m(0) = 1. But this means m has different
values for different inputs, and so is not a constant function. Thus, m(0) = 1 if
and only if T (x) = 0 for all x.

If we can effectively determine m, we can effectively determine whether T (x)
= 0 for all x. But this is clearly equivalent to solving the halting problem. 

There is no general procedure for devising a mechanism that conforms
exactly to a specific security policy and yet allows all actions that the policy
allows. It may be possible to do so in specific cases, especially when a
mechanism defines a policy, but there is no general way to devise a precise
and secure mechanism.



4.8 Summary

Security policies define “security” for a system or site. They may be implied
policies defined by the common consensus of the community, or they may be
informal policies whose interpretations are defined by the community. Both
of these types of policies are usually ambiguous and do not precisely define
“security.” A policy may be formal, in which case ambiguities arise either
from the use of natural languages such as English or from the failure to cover
specific areas.

Formal mathematical models of policies enable analysts to deduce a rigorous
definition of “security” but do little to improve the average user’s
understanding of what “security” means for a site. The average user is not
mathematically sophisticated enough to read and interpret the mathematics.

Trust underlies all policies and enforcement mechanisms. Policies themselves
make assumptions about the way systems, software, hardware, and people
behave. At a lower level, security mechanisms and procedures also make such
assumptions. Even when rigorous methodologies (such as formal
mathematical models or formal verification) are applied, the methodologies
themselves simply push the assumptions, and therefore the trust, to a lower
level. Understanding the assumptions and the trust involved in any policies
and mechanisms deepens one’s understanding of the security of a system.

This brief overview of policy, and of policy expression, lays the foundation for
understanding the more detailed policy models used in practice.

4.9 Research Issues

The critical issue in security policy research is the expression of policy in an
easily understood yet precise form. The development of policy languages
focuses on supplying mathematical rigor that is intelligible to humans. A
good policy language allows not only the expression of policy and its
maintenance over time but also the analysis of a system to determine if it



conforms to that policy. The latter may require that the policy language be
compiled into an enforcement program (to enforce the stated policy, as DTEL
does) or into a verification program (to verify that the stated policy is
enforced, as tripwire does). Balancing enforcement with requirements is also
an important area of research, particularly in real-time environments.

The underlying role of trust is another crucial issue in policy research.
Development of methodologies for exposing underlying assumptions and for
analyzing the effects of trust and the results of belief is an interesting area of
formal mathematics as well as a guide to understanding the safety and
security of systems. Design and implementation of tools to aid in this work
are difficult problems on which research will continue for a long time to
come.

4.10 Further Reading

Much of security analysis involves definition and refinement of security
policies. Wood [2033] has published a book of templates for policies, and
includes several example policies. That book justifies each part and allows
readers to develop policies by selecting the appropriate parts from a large set
of possibilities. Essays by Bailey [115] and Abrams and Bailey [8] discuss
management of security issues and explain why different members of an
organization interpret the same policy differently. Sterne’s wonderful paper
[1834] discusses the nature of policy in general. Schneider [1691]
characterizes security policies that can be enforced by monitoring the
execution of (components of) systems.

Jajodia and his colleagues [965] present a “little language” for expressing
authorization policies. They show that their language can express many
aspects of existing policies and argue that it allows elements of these policies
to be combined into authorization schemes. Some policy languages target
specific environments such as distributed infrastructure management [25],
cognitive radios [629], the release of information requiring the approval of



several domains [1593, 1884], user privacy [26], network routing policies
[1843], web services [49], firewall configurations [132,1549], and describing
attacks [617,1338,1562]. Ponder is flexible enough to be used to describe
policy for mobile agents [1381] and for differentiated services [1232];
extensions to it include Ponder2, designed for autonomous pervasive
environments [1919], and PonderFlow, for OpenFlow environments [137].
Others such as KAoS [1926,1927], PDL [1209], PMAC [24], and Rei [993] are
general enough to use in many different settings.

Fraser and Badger [722] have used DTEL to enforce many policies. Cholvy
and Cuppens [411] describe a method of checking policies for consistency and
determining how they apply to given situations. Similar techniques have been
used for firewall configurations [1207,2083, 2098].

The extensible markup language XML is the basis for several policy languages
such as XACML [1597], and various extensions [66, 195, 1281] apply those
languages to particular domains. Nordbotten’s tutorial [1466] discusses
several XML-based standards.

Son, Chaney, and Thomlinson [1799] discuss enforcement of partial security
policies in real-time databases to balance real-time requirements with
security. Their idea of “partial security policies” has applications in other
environments. Zurko and Simon [1765, 2125] present an alternative focus for
policies.

4.11 Exercises

1. In Figure 4–1, suppose that edge t3 went from s1 to s4. Would the resulting
system be secure?

2. Revisit the example of one student copying another student’s homework
assignment. Describe three other ways the first student could copy the second
student’s homework assignment, even assuming that the file access control
mechanisms are set to deny him permission to read the file.



3. A noted computer security expert has said that without integrity, no system
can provide confidentiality.

(a) Assume the system provides no integrity controls. Do you agree with the
noted computer security expert? Justify your answer.

(b) Now suppose the system has no confidentiality controls. Can this system
provide integrity without confidentiality? Again, justify your answer.

4. A cryptographer once claimed that security mechanisms other than
cryptography were unnecessary because cryptography could provide any
desired level of confidentiality and integrity. Ignoring availability, either
justify or refute the cryptographer’s claim.

5. Classify each of the following as an example of a mandatory, discretionary,
or originator controlled policy, or a combination thereof. Justify your
answers.

(a) The file access control mechanisms of the UNIX operating system

(b) A system in which no memorandum can be distributed without the
creator’s consent

(c) A military facility in which only generals can enter a particular room

(d) A university registrar’s office, in which a faculty member can see the
grades of a particular student provided that the student has given written
permission for the faculty member to see them.

6. Write a Ponder instance authorization to allow a professor to read an
assignment submitted to a drop box between 7:00am and noon.

7. Use DTEL to create a domain d_guest composed of processes executing the
restricted shell “/usr/bin/restsh”. These processes cannot create any files.
They can read and execute any object of type t_sysbin. They can read and



search any object of type t_guest.

8. When using tripwire, system administrators typically exclude a check for
the time of last access (the a).

(a) Why?

(b) Suppose a system administrator wanted to know if the file
/usr/mab/tripwire-1.1/PRIVATE has been accessed in the past day. How
could the administrator arrange to do this without tripwire indicating
whether other files had been accessed?

9. Consider the UC Davis policy on reading electronic mail. A research group
wants to obtain raw data from a network that carries all network traffic to the
Department of Political Science.

(a) Discuss the impact of the electronic mail policy on the collection of such
data.

(b) How would you change the policy to allow the collection of this data
without abandoning the principle that electronic mail should be protected?

10. Prove Theorem 4.1. Show all elements of your proof.

11. Expand the proof of Theorem 4.2 to show the statement, and the proof, of
the induction.



Chapter 5. Confidentiality
Policies 
SHEPHERD: Sir, there lies such secrets in this fardel and box which none must 
know but the king; and which he shall know within this hour, if I may come to 
the speech of him.

— The Winter’s Tale, IV, iv, 785–788.

Confidentiality policies emphasize the protection of confidentiality. The 
importance of these policies lies in part in what they provide, and in part in 
their role in the development of the concept of security. This chapter explores 
one such policy—the Bell-LaPadula Model—and the controversy it 
engendered.

5.1 Goals of Confidentiality Policies

A confidentiality policy, also called an information flow policy, prevents the 
unauthorized disclosure of information. Unauthorized alteration of 
information is secondary. For example, the navy must keep confidential the 
date on which a troop ship will sail. If the date is changed, the redundancy in 
the systems and paperwork should catch that change. But if the enemy knows 
the date of sailing, the ship could be sunk. Because of extensive redundancy in 
military communications channels, availability is also less of a problem.

The term “governmental” covers several requirements that protect citizens’ 
privacy. In the United States, the Privacy Act requires that certain personal 
data be kept confidential. Income tax returns are legally confidential and are 
available only to the Internal Revenue Service or to legal authorities with a



court order. The principle of “executive privilege” and the system of
nonmilitary classifications suggest that the people working in the government
need to limit the distribution of certain documents and information.
Governmental models represent the policies that satisfy these requirements.

5.2 The Bell-LaPadula Model

The Bell-LaPadula Model [149, 150] corresponds to military-style
classifications. It has influenced the development of many other models and
indeed much of the development of computer security technologies.

Figure 5–1: At the left is the basic confidentiality classification
system. The four security levels are arranged with the most
sensitive at the top and the least sensitive at the bottom. In the
middle are individuals grouped by their security clearances, and at
the right is a set of documents grouped by their security levels.

5.2.1 Informal Description

The simplest type of confidentiality classification is a set of security
clearances arranged in a linear (total) ordering (see Figure 5–1). These
clearances represent sensitivity levels. The higher the security clearance, the
more sensitive the information (and the greater the need to keep it
confidential). A subject has a security clearance. In the figure, Claire’s
security clearance is C (for CONFIDENTIAL), and Thomas’ is TS (for TOP
SECRET). An object has a security classification; the security classification of
the electronic mail files is S (for SECRET), and that of the telephone list files
is UC (for UNCLASSIFIED). (When we refer to both subject clearances and
object classifications, we use the term “classification.”) The goal of the Bell-



LaPadula security model is to prevent information flowing from objects at a
security classification higher than a subject’s clearance to that subject.

The Bell-LaPadula security model combines mandatory and discretionary
access controls. In what follows, “S has discretionary read (or write) access to
O” means that the access control matrix entry for S and O corresponding to
the discretionary access control component contains a read (or write) right.
In other words, were the mandatory controls not present, S would be able to
read (or write) O.

Let L(S) = ls be the security clearance of subject S, and let L(O) = lo be the
security classification of object O. For all security classifications li, i = 0, ..., k
– 1, li < li+1:

*-Simple Security Condition, Preliminary Version: S can read O if
and only if lo ≤ ls and S has discretionary read access to O.

In Figure 5–1, for example, Claire and Clarence cannot read personnel files,
but Tamara and Sally can read the activity log files (and, in fact, Tamara can
read any of the files, given her clearance), assuming that the discretionary
access controls allow it.

Should Tamara decide to copy the contents of the personnel files into the
activity log files and set the discretionary access permissions appropriately,
Claire could then read the personnel files. Thus, for all practical purposes,
Claire could read the files at a higher level of security. A second property
prevents this:

*-Property (Star Property), Preliminary Version: S can write O if
and only if lo ≥ ls and S has discretionary write access to O.

Because the activity log files are classified C and Tamara has a clearance of
TS, she cannot write to the activity log files.



Figure 5–2: Lattice generated by the categories NUC, EUR, and US.
The lines represent the ordering relation induced by ⊆⊆.

If both the simple security condition, preliminary version, and the *-property,
preliminary version, hold, call the system a secure system. A straightforward
induction establishes the following theorem.

Theorem 5.1. Basic Security Theorem, Preliminary Version: Let S
be a system with a secure initial state s0, and let T be a set of state
transformations. If every element of T preserves the simple security
condition, preliminary version, and the *-property, preliminary version,
then every state si, i ≥ 0, is secure.

Expand the model by adding a set of categories to each security classification.
Each category describes a kind of information. Objects placed in multiple
categories have the kinds of information in all of those categories. These
categories arise from the “need to know” principle, which states that no
subject should be able to read objects unless reading them is necessary for
that subject to perform its functions. The sets of categories to which a person
may have access is simply the power set of the set of categories. For example,
if the categories are NUC, EUR, and US, someone can have access to any of
the following sets of categories: Ø (none), { NUC }, { EUR }, { US }, { NUC,
EUR }, { NUC, US }, { EUR, US }, and { NUC, EUR, US }. These sets of
categories form a lattice under the operation ⊆ (subset of); see Figure 5–2.
(Appendix A, “Lattices,” discusses the mathematical nature of lattices.)



Each security clearance or classification and category forms a security level.1

As before, we say that subjects have clearance at (or are cleared into, or are
in) a security level and that objects are at the level of (or are in) a security
level. For example, William may be cleared into the level (SECRET, { EUR })
and George into the level (TOP SECRET, { NUC, US }). A document may be
classified as (CONFIDENTIAL, { EUR }).

1This terminology is not fully agreed upon. Some call security levels
“compartments.” However, other use this term as a synonym for “categories.”
We follow the terminology of the unified exposition [150].

Security levels change access. Because categories are based on a “need to
know,” someone with access to the category set { NUC, US } presumably has
no need to access items in the category EUR. Hence, read access should be
denied, even if the security clearance of the subject is higher than the security
classification of the object. But if the desired object is in any security level
with category sets Ø, { NUC }, { US }, or { NUC, US } and the subject’s
security clearance is no less than the document’s security classification,
access should be granted because the subject is cleared into the same category
set as the object. This suggests a new relation for capturing the combination
of security classification and category set. Define the relation dom
(dominates) as follows.

Definition 5–1. The security level (L, C) dominates the security level (L′,
C′), written (L, C) dom(L′, C′), if and only if L′ ≤ L and C′ ⊆ C.

We write (L, C) ¬dom(L′, C′) when (L, C) dom(L′, C′) is false. This relation
also induces a lattice on the set of security levels [536].

EXAMPLE: George is cleared into security level (SECRET, { NUC, EUR }),
DocA is classified as (CONFIDENTIAL, { NUC }), DocB is classified as
(SECRET, { EUR, US }), and DocC is classified as (SECRET, { EUR }). Then:

• George dom DocA as CONFIDENTIAL ≤ SECRET and { NUC } ⊆ { NUC,



EUR }

• George ¬dom DocB as { EUR, US } ⊈ { NUC, EUR }

• George dom DocC as SECRET ≤ SECRET and { EUR } ⊆ { NUC, EUR }

Let C(S) be the category set of subject S, and let C(O) be the category set of
object O. The simple security condition, preliminary version, is modified in
the obvious way:

Simple Security Condition: S can read O if and only if S dom O and S has
discretionary read access to O.

In the previous example, George can read DocA and DocC but not DocB
(again, assuming that the discretionary access controls allow such access).

Suppose Paul is cleared into security level (SECRET, { EUR, US, NUC }) and
has discretionary read access to DocB. Paul can read DocB; were he to copy
its contents to DocA and set its access permissions accordingly, George could
then read DocB. The modified *-property prevents this:

*-Property: S can write to O if and only if O dom S and S has discretionary
write access to O.

DocA dom Paul is false (because C(P aul) ⊈ C(DocA)), so Paul cannot write to
DocA.

The simple security condition is often described as “no reads up” and the *-
property as “no writes down.”

Redefine a secure system to be a system in which both the simple security
property and the *-property hold. The analogue to the Basic Security
Theorem, preliminary version, can also be established by induction.

Theorem 5.2. Basic Security Theorem: Let S be a system with a secure
initial state s0, and let T be a set of state transformations. If every element of



T preserves the simple security condition and the *-property, then every
state si, i ≥ 0, is secure.

At times, a subject must communicate with another subject at a lower level.
This requires the higher-level subject to write into a lower-level object that
the lower- level subject can read.

EXAMPLE: A colonel with (SECRET, { NUC, EUR }) clearance needs to send
a message to a major with (SECRET, { EUR }) clearance. The colonel must
write a document that has at most the (SECRET, { EUR }) classification. But
this violates the *-property, because (SECRET, {NUC, EUR}) dom (SECRET,
{EUR}).

The model provides a mechanism for allowing this type of communication. A
subject has a maximum security level and a current security level. The
maximum security level must dominate the current security level. A subject
may (effectively) decrease its security level from the maximum in order to
communicate with entities at lower security levels.

EXAMPLE: The colonel’s maximum security level is (SECRET, { NUC, EUR
}). She changes her current security level to (SECRET, { EUR }). This is valid,
because the maximum security level dominates the current security level. She
can then create the document at the major’s clearance level and send it to
him.

How this policy is instantiated in different environments depends on the
requirements of each environment. The conventional use is to define “read”
as “allowing information to flow from the object being read to the subject
reading,” and “write” as “allowing information to flow from the subject
writing to the object being written.” Thus, “read” usually includes “execute”
(because by monitoring the instructions executed, one can determine the
contents of portions of the file) and “write” includes “append” (as the
information is placed in the file, it does not overwrite what is already in the
file, however). Other actions may be included as appropriate; however, those



who instantiate the model must understand exactly what those actions are.
Chapter 9, “Noninterference and Policy Composition,” and Chapter 18,
“Confinement Problem,” will discuss this subject in considerably more detail.

5.2.2 Example: Trusted Solaris

Trusted Solaris [2153, 2256, 2259–2261] is based on a non-interference
policy model (see Chapter 9), which appears as a Bell-LaPadula model for
user and process interactions. The mandatory access control policy is based
on labels of subjects and objects.

Labels consist of a classification and a set of categories. The security
administrator defines the set of valid labels. A sensitivity label of a subject
and an object is used for mandatory access control. A clearance is the least
upper bound of all the sensitivity labels of a subject; the clearance need not be
a valid label, though. All system objects that are available to users have the
distinguished label ADMIN_LOW, which any other label dominates; the
privileged administrative objects such as logs and configuration files have the
distinguished label ADMIN_HIGH, which dominates any other label.

Each subject S has a controlling user US. In addition to a clearance and a
sensitivity label SL, a subject also has an attribute privileged(S, P) indicating
whether S can override or bypass part of a security policy P , and another
attribute asserted(S, P) indicating whether S is currently asserting
privileged(S, P).

The model defined six rules. In the following, a named object O has
sensitivity label OL, and CL is the clearance of subject S. The policy elements
involved are P1, which is “change SL”, P2, which is “change OL”, P3, which is
“override O’s mandatory read access contol”, and P4, which is “override O’s
mandatory write access control”.

• If ¬privileged(S, P1), then no sequence of operations can change SL to a
value that it has not previously assumed.



• If ¬privileged(S, P1), then asserted(S, P1) is always false.

• If ¬privileged(S, change SL), then no value of SL can be outside the
clearance of US.

• For all subjects S and named objects O, if ¬privileged(S, P2), then no
sequence of operations can change OL to a value that it has not previously
assumed.

• For all subjects S and named objects O, if ¬privileged(S, P3), then write
access to O is granted only if SL dom OL. This is the instantiation of the Bell-
LaPadula simple security condition.

• For all subjects S and named objects O, if ¬privileged(S, P4), then read
access to O is granted only if OL dom SL and CL dom OL. This is the
instantiation of the Bell-LaPadula *-property.

When a user logs into a Trusted Solaris system, the system determines
whether the user’s session is to be a single-level session. Each account is
assigned a label range; the upper bound of the range is the user’s clearance
and the lower bound is the user’s minimum label. If the two are the same, the
user is given a single level session with that label. If not, the user is asked
whether the session is to be a single-level or multilevel session, and if the
latter the user can specify the session clearance (which must not be
dominated by the user’s minimum label, and must be dominated by the user’s
clearance). During a multilevel session, the user can change to any label in
the range from the user’s minimum label to the session clearance. This is
helpful when a single user will define several workspaces, each with its own
sensitivity level. Of course, the session clearance must dominate the
sensitivity labels of all workspaces used during that session.

Unlike in the Bell-LaPadula model, writing is allowed only when the labels of
the subject and the object are equal, or when the file is in a special
downgraded directory that the administrator can create. In that case, the



following must all be true for a subject S with sensitivity label SL and
clearance CL to write to a file O with sensitivity label OL, which is in a
directory D with sensitivity label DL:

• SL dom DL;

• S has discretionary read and search access to D;

• OL dom SL and OL ≠ SL;

• S has discretionary write access to O; and

• CL dom OL.

Note that the subject cannot read the object.

EXAMPLE: A process has clearance CL and label SL, a file has sensitivity label
FL, and the file is in a directory with sensitivity label DL. The process has
discretionary access to read and write the file and to read and search the
directory. If SL dom FL, then the process can read the file. If SL = FL, then the
process can write the file.

If the administrator creates a special case to allow writing up, as SL dom DL,
FL dom SL, FL ≠ SL, and CL dom FL, then the process can write the file. Note
that, as SL ¬ dom FL, the process cannot read the file in this case.

In all cases, the discretionary access controls must allow the accesses shown
for the process to be able to read or write the file.

When a process creates a file, the file is given the process’ label.

5.2.2.1 Directories and Labels

Suppose a process tries to create a file at level L2 in a directory that contains a
file with label L1 (L1 dom L2) exists. The create will fail, and now the process
knows that an “invisible” file at a level it does not dominate exists in this



directory. Two mechanisms have been developed to handle this situation.

Trusted Solaris uses a multilevel directory (MLD) to hold files of different
sensitivity levels [2259, 2261]. Initially, all home directories and many
directories for spool and temporary files are MLDs, and new directories can
be created as MLDs. An MLD contains directories at single sensitivity levels
called single level directories or SLDs. These in turn contain ordinary UNIX
directories, files, and file system objects. If a process creates a file in an MLD
and no SLD with the corresponding label exists, that SLD will be created.

MLDs allow two types of file references. The first, a regular reference, simply
names a file in the directory. The operating system automatically maps that
name into a name in the SLD with the same sensitivity label as the process.2

The second, a reference using adornment, enables the process to name a file
in a specific SLD by giving the full (“adorned”) name of the MLD and
identifying the specific SLD in it. This enables a process, for example, to list
all SLDs in an MLD with the same sensitivity label as the process.

2If necessary, for example when creating the file, the system would create the
SLD.

EXAMPLE: A process references an MLD by its name, for example mydir.
This was a transparent reference; an adorned reference, giving the actual
directory name, would have the prefix “.MLD.”. thus .MLD.mydir.

Suppose that MLD contained three SLDs, with distinct labels L1, L2, and L3.
The SLDs would be called .SLD.1, .SLD.2, and .SLD.3, respectively.

If process p had sensitivity label L2, p could read, write, create, and delete
objects in the SLD with label L2 (that is, .SLD.2), because they are at the same
level. Whenever p referred to a file in mydir, Trusted Solaris translated the
path name to refer to the file in .MLD.mydir/.SLD.2.

To read a file f in .SLD.3 (which has label L3), p specified the name of the file



to be read. Thus, it would have opened the file .MLD.mydir/.SLD.3/f. If p
had specifies the unadorned name, mydir/f, that would have been translated
into the file name .MLD.mydir/.SLD.1/f, which would have referred to a
different file.

The information that a process obtained about a MLD depends on the
particular system call used.

EXAMPLE: When a process executed the following system call:

res = mldstat (“/tmp”, &stbuf)

the structure stbuf was filled with information about the MLD /tmp. But if it
executed the following system call:

res = stat (“/tmp”, &stbuf)

then that structure would be filled with information about the SLD in /tmp
corresponding to the sensitivity label of the process, and not its containing
MLD /tmp.

Of course, the mandatory and discretionary permissions must be set
appropriately so the calls can be made.

An alternate technique, called labeled zones (or, more simply, zones), provide
a different method of handling directories. Solaris Trusted Extensions, which
support non-Trusted Solaris systems, uses this technique, as do other
multilevel secure systems [652, 2256].

A zone is a virtual environment tied to a unique label. It provides isolation
among processes, because by default each process can only access objects
within its zone. A distinguished global zone encompasses everything on the
system, and thus has the label ADMIN_HIGH. Only administrators can
access this zone.



A zone has a unique root directory. When this is mounted, all objects within
the file system have the zone’s label. Other filesystems can be imported, or
mounted, from another zone. They retain their original label. Before the
import, the kernel checks the relationships between the two zone’s labels.

• If the import is to be read-only, the importing zone’s label must dominate
the label of the zone of the filesystem being imported. This enforces the
simple security property.

• If the import is to be read-write, the zone labels must be equal. As each zone
has a unique label, the zones are the same; thus, no import is needed.

Labels are checked only at the time of import. Because of the nature of zones,
this ensures that a process can access an object only when the multilevel
security constraints allow.

Imported file systems have names distinct from files in the importing zone. In
Solaris Trusted Extensions, an imported file system is mounted at the
directory “/zone/label”. Executables from system areas, which are in the
global zone, are mounted using a special loopback option that makes them
appear to be at ADMIN_LOW. This same option is used to mount file systems
read-only when that system is mounted in a zone the label of which
dominates that of the file system.

EXAMPLE: Figure 5–3 shows a Solaris Trusted Extensions system global
zone, at level ADMIN_HIGH, containing three other labeled zones, labeled
L1, L2, and L3. Each zone has a root directory with an export and zone
subdirectories. As L1 dom L2, L1’s zone subdirectory itself has a subdirectory
L2 upon which the contents of L2’s export subdirectory is mounted. This
enables a process in L1 to read files with L2’s classification that L1 has
discretionary permission to read. Further, to allow access to system
executables, configuration files, and other necessary system elements, the
system directories are mounted as subdirectories under L1’s root directory
using the loopback option. A process in L1 can only read a file in zone L2 if



that file is in the export subdirectory and discretionary permissions are set
appropriately. As L3 dom L2, the L3 zone is structured similarly. As L1 and L3
are disjoint (that is, neither dominates the other), they do not share any files.

In addition, each zone has system directories imported from the global zone.
These are mounted at the level ADMIN_LOW, and thus can only be read.

Figure 5–3: An example Solaris Trusted Extensions file system.
Three labeled zones (L1, L2, and L3) are configured to make their
export subdirectories visible. Only zones whose labels dominate L2
can see those directories. Further, the system directories such as
/usr are mounted in each zone so processes can execute system
programs. The solid lines are normal mounts; the dotted lines are
loopback mounts.

5.2.3 Formal Model

Let S be the set of subjects of a system and let O be the set of objects. Let P be
the set of rights r for read, a for write, w for read/write, and e for empty.3 Let
M be a set of possible access control matrices for the system. Let C be the set
of classifications (or clearances), let K be the set of categories, and let L = C ×



K be the set of security levels. Finally, let F be the set of 3-tuples (fs, fo, fc),
where fs and fc associate with each subject maximum and current security
levels, respectively, and fo associates with each object a security level. The
relation dom from Definition 5–1 is defined here in the obvious way.

3The right called “empty” here is called “execute” in Bell and LaPadula [150].
However, they define “execute” as “neither observation nor alteration” (and
note that it differs from the notion of “execute” that most systems
implement). For clarity, we changed the e right’s name to the more
descriptive “empty.”

The system objects may be organized as a set of hierarchies (trees and single
nodes). Let H represent the set of hierarchy functions h : O → P(O).4 These
functions have two properties. Let oi, oj, ok ∈ O. Then:

4

(O) is the power set of O—that is, the set of all possible subsets of O.

• If oi ≠ oj, then h(oi) ∩ h(oj) = Ø.

• There is no set {o1, o2, ..., ok} ⊆ O such that oi+1 ∈ h(oi) for each i = 1, ..., k,
and ok+1 = o1.

(See Exercise 5.)

A state v ∈ V of a system is a 4-tuple (b, m, f, h), where b ∈ P(S × O × P)
indicates which subjects have access to which objects, and what those access
rights are; m ∈ M is the access control matrix for the current state; f ∈ F is the
3-tuple indicating the current subject and object clearances and categories;
and h ∈ H is the hierarchy of objects for the current state. The difference
between b and m is that the rights in m may be unusable because of
differences in security levels; b contains the set of rights that may be
exercised, and m contains the set of discretionary rights.



R denotes the set of requests for access. The form of the requests affects the
instantiation, not the formal model, and is not discussed further here. Four
outcomes of each request are possible: y for yes (allowed), n for no (not
allowed), i for illegal request, and o for error (multiple outcomes are
possible). D denotes the set of outcomes. The set W ⊆ R×D×V ×V is the set of
actions of the system. This notation means that an entity issues a request in
R, and a decision in D occurs, moving the system from one state in V to
another (possibly different) state in V . Given these definitions, we can now
define the history of a system as it executes.

Let N be the set of positive integers. These integers represent times. Let X =
RN be a set whose elements x are sequences of requests, let Y = DN be a set
whose elements y are sequences of decisions, and let Z = VN be a set whose
elements z are sequences of states. The i-th components of x, y, and z are
represented as xi, yi, and zi, respectively. The interpretation is that for some t
∈ N, the system is in state zt–1 ∈ V; a subject makes request xt ∈ R, the system
makes a decision yt ∈ D, and as a result the system transitions into a (possibly
new) state zt ∈ V.

A system is represented as an initial state and a sequence of requests,
decisions, and states. In formal terms, Σ(R, D, W, z0) ⊆ X × Y × Z represents
the system, and z0 is the initial state of the system. (x, y, z) ∈ Σ(R, D, W, z0) if
and only if (xt, yt, zt, zt–1) ∈ W for all t ∈ N. (x, y, z) is an appearance of Σ(R,
D, W, z0)).

EXAMPLE: Consider a system with two levels (HIGH and LOW), one
category (ALL), one subject s, one object o, and two rights, read (r) and write
(w). Then:

For every function f ∈ F , fc(s) is either (LOW, { ALL }) or (HIGH, { ALL }),
and fo(o) is either (LOW, { ALL }) or (HIGH, { ALL }). Now, suppose b1 = {(s,
o, r)}, m1 ∈ M gives s read access over o, and for f1 ∈ F, fc,1(s) = (HIGH,



{ALL}) and fo,1(o) = (LOW, {ALL}). This describes a state of the system in
which s has read rights to o, so v0 = (b1, m1, f1) ∈ V .

Now suppose S = {s, s′}, fs,1(s′) = (LOW, {ALL}), and m1 gives s′ write access
over o as well as giving s read access over o. Because s′ has not yet written o,
b1 is unchanged. Take z0 = (b1, m1, f1) and consider the system Σ(R, D, W, z0).
If s′ makes the request r1 to write to o, the system will decide d1 = y (yes), and
will transition to the state v1 = (b2, m1, f1) ∈ V , where b2 = {(s, o, r), (s′, o,
w)}. In this case, x = (r1), y = (y), and z = (v0, v1).

The next request r2 is for s to write to o; however, this is disallowed (d2 = n,
or no). The resulting state is the same as the preceding one. Now x = (r1, r2), y
= (y, n), and z = (v0, v1, v2), where v2 = v1.

5.2.3.1 Basic Security Theorem

The Basic Security Theorem combines the simple security condition, the *-
property, and a discretionary security property. We now formalize these three
properties.

Formally, the simple security condition is:

Definition 5–2. (s, o, p) ∈ S × O × P satisfies the simple security condition
relative to f (written ssc rel f) if and only if one of the following holds:

(a) p = e or p = a

(b) p = r or p = w, and fs(s) dom fo(o)

This definition says that, to satisfy the simple security condition, either s
cannot read o or the security level of s must dominate that of o. A state (b, m,
f, h) satisfies the simple security condition if all elements of b satisfy ssc rel f.
A system satisfies the simple security condition if all its states satisfy the
simple security condition.



Let s ∈ S and p1, . . . , pn ∈ R. Define b(s : p1, . . . , pn) to be the set of all
objects that s has p1, . . . , pn access to:

If a subject can write to an object, the object’s classification must dominate
the subject’s clearance (“write up”); if the subject can also read the object, the
subject’s clearance must be the same as the object’s classification (“equality
for read”). More formally,

Definition 5–3. A state (b, m, f, h) satisfies the *-property if and only if, for
each s ∈ S, the following hold:

(a) b(s : a) ≠ Ø ⇒ [∀o ∈ b(s : a)[fo(o) dom fc(s)]]

(b) b(s : w) ≠ Ø ⇒ [∀o ∈ b(s : w)[fo(o) = fc(s)]]

(c) b(s : r) ≠ Ø ⇒ [∀o ∈ b(s : r)[fc(s) dom fo(o)]]

This prevents a higher level subject from writing information where a lower-
level subject can (then) read it. A system satisfies the *-property if all its
states satisfy the *-property. In many systems, only a subset S′ of subjects
satisfy the *-property; in this case, we say that the *-property is satisfied
relative to S′ ⊆ S.

Definition 5–4. A state (b, m, f, h) satisfies the discretionary security
property (ds-property) if and only if, for each triple (s, o, p) ∈ b, p ∈ m[s, o].

The access control matrix allows the controller of an object to condition
access based on identity. The model therefore supports both mandatory and
discretionary controls, and defines “secure” in terms of both. A system
satisfies the discretionary security property if all its states satisfy the
discretionary security property.

Definition 5–5. A system is secure if it satisfies the simple security
condition, the *-property, and the discretionary security property.



The notion of an action, or a request and decision that moves the system from
one state to another, must also be formalized, as follows.

Definition 5–6. (r, d, v, v′) ∈ R×D×V×V is an action of Σ(R, D, W, z0) if
and only if there is an (x, y, z) ∈ Σ(R, D, W, z0) and a t ∈ N such that (r, d, v,
v′) = (xt, yt, zt, zt–1).

Thus, an action is a request/decision pair that occurs during the execution of
the system. We now can establish conditions under which the three
properties hold.

Theorem 5.3. Σ(R, D, W, z0) satisfies the simple security condition for any
secure state z0 if and only if, for every action (r, d, (b, m, f, h), (b′, m′, f′, h′)),
W satisfies the following:

(a) Every (s, o, p) ∈ b – b′ satisfies ssc rel f.

(b) Every (s, o, p) ∈ b′ that does not satisfy ssc rel f is not in b.

Proof. Let (x, y, z) ∈ Σ(R, D, W, z0) and write zt = (bt, mt, ft, ht) for t ∈ N.

(⇒) By contradiction. Without loss of generality, take b = bt and b′ = bt–1.
Assume that Σ(R, D, W, z0) satisfies the simple security condition for some
secure state z0, and that either some (s, o, p) ∈ b – b′ = bt – bt–1 does not
satisfy ssc rel ft or some (s, o, p) ∈ b′ = bt–1 that does not satisfy ssc rel ft is in
b = bt. If the former, there is some (s, o, p) ∈ bt that does not satisfy ssc rel ft,
because bt – bt–1 ⊆ bt. If the latter, there is some (s, o, p) ∈ bt–1 that does not
satisfy ssc rel ft but that is in bt. In either case, there is some (s, o, p) ∈ bt that
does not satisfy the simple security condition relative to ft, which means that
Σ(R, D, W, z0) does not satisfy the simple security condition for some secure
state z0, contradicting the hypothesis.

(⇐) By induction on t.

BASIS: z0 = (b0, m0, f0, h0) is secure, by the hypothesis of the claim.



INDUCTION HYPOTHESIS: zi–1 = (bi–1, mi–1, fi–1, hi–1) is secure, for i < t.

INDUCTION STEP: Let (xt, yt, zt, zt–1) ∈ W . By ((a)), every (s, o, p) ∈ bt – bt–1

satisfies ssc rel ft. Let

. By ((b)),

; so,

. This means that if (s, o, p) ∈ bt ∩ bt–1, then (s, o, p) ∉ bt–1 and so (s, o, p)
satisfies ssc rel ft. Hence, if (s, o, p) ∈ bt, then either (s, o, p) ∈ bt ∩ bt–1 or (s,
o, p) ∈ bt – bt–1. In the first case, the induction hypothesis ensures that (s, o,
p) satisfies the simple security condition. In the second case, ((a)) ensures
that (s, o, p) satisfies the simple security condition. Hence, zt = (bt, mt, ft, ht)
is secure. This completes the proof. 

Theorem 5.4. Σ(R, D, W, z0) satisfies the *-property relative to S′ ⊆ S for
any secure state z0 if and only if, for every action (r, d, (b, m, f, h), (b′, m′, f′,
h′)), W satisfies the following for every s ∈ S′:

(a) Every (s, o, p) ∈ b – b′ satisfies the *-property with respect to S′.

(b) Every (s, o, p) ∈ b′ that does not satisfy the *-property with respect to S′
is not in b.

Proof. See Exercise 7. 

Theorem 5.5. Σ(R, D, W, z0) satisfies the ds-property for any secure state
z0 if and only if, for every action (r, d, (b, m, f, h), (b′, m′, f′, h′)), W satisfies
the following:

(a) Every (s, o, p) ∈ b – b′ satisfies the ds-property.



(b) Every (s, o, p) ∈ b′ that does not satisfy the ds-property is not in b.

Proof. See Exercise 8. 

Theorems 5.3, 5.4, and 5.5 combine to give us the Basic Security Theorem:

Theorem 5.6. Basic Security Theorem: Σ(R, D, W, z0) is a secure
system if z0 is a secure state and W satisfies the conditions of Theorems 5.3,
5.4, and 5.5.

Proof. Immediate from Theorems 5.3, 5.4, and 5.5. 

5.2.3.2 Rules of Transformation

A rule is a function ρ : R × V → D × V . Intuitively, a rule takes a state and a
request, and determines if the request meets the conditions of the rule (the
decision). If so, it moves the system to a (possibly different) state. The idea is
that a rule captures the means by which a system may transition from one
state to another.

Of course, the rules affect the security of a system. For example, a rule that
changes all read rights so that a subject has the ability to read objects with
classifications higher than the subject’s clearance may move the system from
a secure state to a nonsecure state. In this section we develop constraints that
rules must meet to preserve security, and we give an example rule.

Definition 5–7. A rule ρ is ssc-preserving if, for all (r, v) ∈ R × V and v
satisfying ssc rel f, ρ(r, v) = (d, v′) means that v′ satisfies ssc rel f′.

Similar definitions hold for the *-property and the ds-property. If a rule is
ssc-preserving, *-property-preserving, and ds-property-preserving, the rule is
said to be security-preserving.

We define a relation with respect to a set of rules ω = {ρ1, ..., ρm} in such a
way that each type of request is handled by at most one rule; this eliminates



ambiguity and ensures that the mapping from R × V to D × V is one-to-one.

Definition 5–8. Let ω = {ρ1, ..., ωm} be a set of rules. For request r ∈ R,
decision d ∈ D, and states v, v′ ∈ V , (r, d, v, v′) ∈ W (ω) if and only if d ≠ i
and there is a unique integer i, 1 ≤ i ≤ m, such that ρi(r, v′) = (d, v).

This definition says that if the request is legal and there is only one rule that
will change the state of the system from v to v′, the corresponding action is in
W (ω).

The next theorem presents conditions under which a set of rules preserves
the simple security condition.

Theorem 5.7. Let ω be a set of ssc-preserving rules, and let z0 be a state
satisfying the simple security condition. Then Σ(R, D, W, z0) satisfies the
simple security condition.

Proof. By contradiction. Let (x, y, z) ∈ Σ(R, D, W (ω), z0) be a state that does
not satisfy the simple security property. Without loss of generality, choose t ∈
N such that (xt, yt, zt) is the first appearance of Σ(R, D, W (ω), z0) that does
not satisfy the simple security property. Because (xt, yt, zt, zt–1) ∈ W (ω), there
is a unique rule ρ ∈ ω such that ρ(xt, zt–1) = (yt, zt), and yt ≠ i. Because ρ is
ssc-preserving, and zt–1 satisfies the simple security condition, by Definition
5–7, zt must meet the simple security condition. This contradicts our choice
of t, and the assumption that (x, y, z) does not meet the simple security
property. Hence, the theorem is proved. 

When does adding a state preserve the simple security property?

Theorem 5.8. Let v = (b, m, f, h) satisfy the simple security condition. Let
(s, o, p) ∉ b, b′ = b ∪ {(s, o, p)}, and v′ = (b′, m, f, h). Then v′ satisfies the
simple security condition if and only if either of the following conditions is
true.

(a) Either p = e or p = a.



(b) Either p = r or p = w, and fs(s) dom fo(o).

Proof. For (a), the theorem follows from Definition 5–2 and v′ satisfying ssc
rel f. For (b), if v′ satisfies the simple security condition, then, by definition,
fs(s) dom fo(o). Moreover, if fs(s) dom fo(o), then (s, o, p) ∈ b′ satisfies ssc rel
f; hence, v′ is secure. 

Similar theorems hold for the *-property:

Theorem 5.9. Let ω be a set of *-property-preserving rules, and let z0 be a
state satisfying the *-property. Then Σ(R, D, W, z0) satisfies the *-property.

Proof. See Exercise 8. 

Theorem 5.10. Let v = (b, m, f, h) satisfy the *-property. Let (s, o, p) ∈ b, b′
= b ∪ {(s, o, p)}, and v′ = (b′, m, f, h). Then v′ satisfies the *-property if and
only if one of the following conditions holds:

(a) p = a and fo(o) dom fc(s)

(b) p = w and fo(o) = fc(s)

(c) p = r and fc(s) dom fo(o)

Proof. If v′ satisfies the *-property, then the claim follows immediately from
Definition 5–3. Conversely, assume that condition (a) holds. Let (s′, o′, p′) ∈
b′. If (s′, o′, p′) ∈ b, the assumption that v satisfies the *-property means that
v′ also satisfies the *-property. Otherwise, (s′, o′, p′) = (s, o, p) and, by
condition (a), the *-property holds. The proof for each of the other two
conditions is similar. Thus, v′ satisfies the *-property. 

Theorem 5.11. Let ω be a set of ds-property-preserving rules, and let z0 be
a state satisfying the ds-property. Then Σ(R, D, W (ω), z0) satisfies the ds-
property.

Proof. See Exercise 8. 



Theorem 5.12. Let v = (b, m, f, h) satisfy the ds-property. Let (s, o, p) ∉ b,
b′ = b ∪ {(s, o, p)}, and v′ = (b′, m, f, h). Then v′ satisfies the ds-property if
and only if p ∈ m[s, o].

Proof. If v′ satisfies the ds-property, then the claim follows immediately from
Definition 5–4. Conversely, assume that p ∈ m[s, o]. Because (s′, o′, p′) ∈ b′,
the ds-property holds for v′. Thus, v′ satisfies the ds-property. 

Finally, we present the following theorem.

Theorem 5.13. Let ρ be a rule and ρ(r, v) = (d, v′), where v = (b, m, f, h)
and v′ = (b′, m′, f′, h′). Then:

(a) If b′ ⊆ b, f′ = f, and v satisfies the simple security condition, then v′
satisfies the simple security condition.

(b) If b′ ⊆ b, f′ = f, and v satisfies the *-property, then v′ satisfies the *-
property.

(c) If b′ ⊆ b, m[s, o] ⊆ m′[s, o] for all s ∈ S and o ∈ O, and v satisfies the ds-
property, then v′ satisfies the ds-property.

Proof. Suppose that v satisfies the simple security property. Because b′ ⊆ b,
(s, o, r) ∈ b′ implies (s, o, r) ∈ b, and (s, o, w) ∈ b′ implies (s, o, w) ∈ b. So
fs(s) dom fo(o). But f′ = f. Thus,

. So v′ satisfies the simple security condition.

The proofs of the other two parts are analogous. 

5.2.4 Example Model Instantiation: Multics

We now examine the modeling of specific actions. The Multics system [150,
1484] has 11 rules affecting the rights on the system. These rules are divided
into five groups. Let the set Q contain the set of request operations (such as



get, give, and so forth). Then:

• R(1) = Q×S×O×M. This is the set of requests to request and release access.
The rules are get-read, get-append, get-execute, get-write, and release-
read/execute/write/append. These rules differ in the conditions necessary
for the subject to be able to request the desired right. The rule get-read is
discussed in more detail in Section 5.2.4.1.

• R(2) = S × Q × S × O × M. This is the set of requests to give access to and
remove access from a different subject. The rules are give-
read/execute/write/append and rescind-read/execute/write/append. Again,
the rules differ in the conditions needed to acquire and delete the rights, but
within each rule, the right being added or removed does not affect the
conditions. Whether the right is being added or deleted does affect them. The
rule give-read/execute/write/append is discussed in more detail in Section
5.2.4.2.

• R(3) = Q × S × O × L. This is the set of requests to create and reclassify
objects. It contains the create-object and change-object-security-level rules.
The object’s security level is either assigned (create-object) or changed
(change-object-security-level).

• R(4) = S × O. This is the set of requests to remove objects. It contains only
the rule delete-object-group, which deletes an object and all objects beneath
it in the hierarchy.

• R(5) = S × L. This is the set of requests to change a subject’s security level. It
contains only the rule change-subject-current-security-level, which changes
a subject’s current security level (not the maximum security level).

Then, the set of requests is R = R(1) ∪ R(2) ∪ R(3) ∪ R(4) ∪ R(5).

The Multics system includes the notion of trusted users. The system does not
enforce the *-property for this set of subjects ST ⊆ S; however, members of ST



are trusted not to violate that property.

For each rule ρ, define Δ(ρ) as the domain of the request (that is, whether or
not the components of the request form a valid operand for the rule).

We next consider two rules in order to demonstrate how to prove that the
rules preserve the simple security property, the *-property, and the
discretionary security property.

5.2.4.1 The get-read Rule

The get-read rule enables a subject s to request the right to read an object o.
Represent this request as ρ = (get, s, o, r) ∈ R(1), and let the current state of
the system be v = (b, m, f, h). Then get-read is the rule ρ1(r, v):

if (r ∉ Δ(ρ1)) then ρ1(r, v) = (i, v);

else if (fs(s) dom fo(o) and (s ∈ ST or fc(s) dom fo(o)) and r ∈ m[s, o])

then ρ1(r, v) = (y, b ∪ {(s, o, r)}, m, f, h));

else ρ1(r, v) = (n, v);

The first if tests the parameters of the request; if any of them are incorrect,
the decision is “illegal” and the system state remains unchanged. The second
if checks three conditions. The simple security property for the maximum
security level of the subject and the classification of the object must hold.
Either the subject making the request must be trusted, or the *-property must
hold for the current security level of the subject (this allows trusted subjects
to read information from objects above their current security levels but at or
below their maximum security levels; they are trusted not to reveal the
information inappropriately). Finally, the discretionary security property
must hold. If these three conditions hold, so does the Basic Security Theorem.
The decision is “yes” and the system state is updated to reflect the new access.
Otherwise, the decision is “no” and the system state remains unchanged.



We now show that if the current state of the system satisfies the simple
security condition, the *-property, and the ds-property, then after the get-
read rule is applied, the state of the system also satisfies those three
conditions.

Theorem 5.14. The get-read rule ρ1 preserves the simple security
condition, the *-property, and the ds-property.

Proof. Let v satisfy the simple security condition, the *-property, and the ds-
property. Let ρ1(r, v) = (d, v′). Either v′ = v or v′ = (b ∪ {(s2, o, r)}, m, f, h), by
the get-read rule. In the former case, because v satisfies the simple security
condition, the *-property, and the ds-property, so does v′. So let v′ = (b ∪ (s2,
o, r), m, f, h).

Consider the simple security condition. From the choice of v′, either b′ – b =
Ø or b′ – b = {(s2, o, r)}. If b′ – b = Ø, then {(s2, o, r)} ∈ b, so v = v′, proving
that v′ satisfies the simple security condition. Otherwise, because the get-
read rule requires that fs(s) dom fo(o), Theorem 5.8 says that v′ satisfies the
simple security condition.

Consider the *-property. From the definition of the get-read rule, either s ∈
ST or fc(s) dom fo(o). If s ∈ ST , then s is trusted and the *-property holds by
the definition of ST . Otherwise, by Theorem 5.10, because fc(s) dom fo(o), v′
satisfies the *-property.

Finally, consider the ds-property. The condition in the get-read rule requires
that r ∈ m[s, o] and b′ – b = Ø or b′ – b = {(s2, o, r)}. If b′ – b = Ø, then {(s2,
o, r)} ∈ b, so v = v′, proving that v′ satisfies the ds-property. Otherwise, {(s2,
o, r)} ∉ b, which meets the conditions of Theorem 5.12. From that theorem, v′
satisfies the ds-property. 

Hence, the get-read rule preserves the security of the system.

5.2.4.2 The give-read Rule



The give-read rule5 enables a subject s to give subject s2 the (discretionary)
right to read an object o. Conceptually, a subject can give another subject read
access to an object if the giver can alter (write to) the parent of the object. If
the parent is the root of the hierarchy containing the object, or if the object
itself is the root of the hierarchy, the subject must be specially authorized to
grant access.

5Actually, the rule is give-read/execute/write/append. The generalization is
left as an exercise for the reader.

Some terms simplify the definitions and proofs. Define root(o) as the root
object of the hierarchy h containing o, and define parent(o) as the parent of o
in h. If the subject is specially authorized to grant access to the object in the
situation just mentioned, the predicate canallow(s, o, v) is true. Finally,
define m ⋀ m[s, o] ← r as the access control matrix m with the right r added
to entry m[s, o].

Represent the give-read request as r = (s1, give, s2, o, r) ∈ R(2), and let the
current state of the system be v = (b, m, f, h). Then, give-read is the rule ρ6(r,
v):

if (r ∉ Δ(ρ6)) then ρ6(i, v) = (i, v);

else if ([o ≠ root(o) and parent(o) ≠ root(o) and parent(o) ∈ b(s1 : w)]

or [parent(o) = root(o) and canallow(s1, o, v)]

or [o = root(o) and canallow(s1, root(o), v])

then ρ6(r, v) = (y, (b, m ⋀ m[s2, o] ←r, f, h));

else ρ6(r, v) = (n, v);

The first if tests the parameters of the request; if any of them are incorrect,
the decision is “illegal” and the system state remains unchanged. The second



if checks several conditions. If neither the object nor its parent is the root of
the hierarchy containing the object, then s1 must have write rights to the
parent. If the object or its parent is the root of the hierarchy, then s1 must
have special permission to give s2 the read right to o. The decision is “yes”
and the access control matrix is updated to reflect the new access. Otherwise,
the decision is “no” and the system state remains unchanged.

We now show that if the current state of the system satisfies the simple
security condition, the *-property, and the ds-property, then after the give-
read rule is applied, the state of the system also satisfies those three
conditions.

Theorem 5.15. The give-read rule ρ6 preserves the simple security
condition, the *-property, and the ds-property.

Proof. Let v satisfy the simple security condition, the *-property, and the ds-
property. Let ρ6(r, v) = (d, v′). Either v′ = v or v′ = (b, m ⋀ m[s, o] ←r, f, h),
by the give-read rule. In the former case, because v satisfies the simple
security condition, the *-property, and the ds-property, so does v′. So, let v′ =
(b, m ⋀ m[s, o] ←r, f, h).

Here, b′ = b, f′ = f, and m[x, y] = m′[x, y] for all x ∈ S and y ∈ O such that x ≠
s and y ≠ o. In that case, m[s, o] ⊆ m′[s, o]. Hence, by Theorem 5.13, v′
satisfies the simple security condition, the *-property, and the ds-property. 

Hence, the get-read rule preserves the security of the system.

5.3 Tranquility

The principle of tranquility states that subjects and objects may not change
their security levels once they have been instantiated. Suppose that security
levels of objects can be changed, and consider the effects on a system with
one category and two security clearances, HIGH and LOW. If an object’s
security classification is raised from LOW to HIGH, then any subjects cleared



to only LOW can no longer read that object. Similarly, if an object’s
classification is dropped from HIGH to LOW, any subject can now read that
object.

Both situations violate fundamental restrictions. Raising the classification of
an object means that information that was available is no longer available;
lowering the classification means that information previously considered
restricted is now available to all.

Raising the classification of an object blocks further access to that object by
some subjects. The model does not define how to determine the appropriate
classification of information. It merely describes how to manipulate an object
containing the information once that object has been assigned a
classification. Information in an object with a particular classification is
assumed to be known to all who can access that object, and so raising its
classification will not achieve the desired goal (preventing access to the
information). The information has already been accessed.

EXAMPLE: In 1978, James Bamford requested documents about the U.S.
Department of Justice’s investigation of illegal wiretapping by the U. S.
National Security Agency. After some delay, the Department of Justice
provided 250 pages of newly-declassified information, over the National
Security Agency’s objections. Two years later, the National Security Agency
prevailed upon a different U. S. Attorney General to retroactively classify the
pages, thereby raising their classification. Despite a demand that he return
the pages and not publish information in them, Mr. Bamford did so in his
book The Puzzle Palace. He was not prosecuted [7].

Lowering the classification level is another matter entirely and is known as
the declassification problem. In essence, the LOW subjects either have, or
have had, access to HIGH information, in violation of the simple security
condition. Because this makes information available to subjects who did not
have access to it before, it is in effect a “write down” that violates the *-



property. The typical solution is to define a set of trusted entities or subjects
that will remove all sensitive information from the HIGH object before its
classification is changed to LOW. How those entities are defined depends on
policy.

EXAMPLE: In some systems, the owners of each object are trusted to
determine how to release it. The JFlow language [1414] is an extension to
Java that uses labels consisting of a set of owners and, for each owner, a list of
“readers” that each trusts. The set of readers that all owners of an object
trusts is called the effective reader set, and consists of those subjects with the
ability to access (read) the information. By adding readers to its own list, an
owner can effectively declassify the information in the object.

The tranquility principle actually has two forms:

Definition 5–9. The principle of strong tranquility states that security
levels do not change during the lifetime of the system.

Strong tranquility eliminates the need for trusted declassifiers, because no
declassification can occur. Moreover, no raising of security levels can occur.
This eliminates the problems discussed above. However, stong tranquility is
also inflexible and in practice is usually too strong a requirement.

Definition 5–10. The principle of weak tranquility states that security
levels do not change in a way that violates the rules of a given security policy.

Weak tranquility moderates the restriction to allow harmless changes of
security levels. It is more flexible, because it allows changes, but it disallows
any violations of the security policy (in the context of the Bell-LaPadula
Model, the simple security condition and *-property).

EXAMPLE: In Trusted Solaris, the security administrator must provide
specific authorization for a user to be able to change the MAC label of a file
[2259]. The authorizations are “downgrade file label” and “upgrade file label”.



If the user is not the owner of the file whose label is to be changed, the
additional authorization “act as file owner” is required.

5.3.1 Declassification Principles

Sabelfeld and Sands [1644] present some principles for declassification.
Although intended to describe information flow in programs,6 these
principles apply equally well to systems. Those parts of the security policy
governing declassification are called the declassification policy, and in the
context of these principles, “secure” means that the classification of
information only changes to a lower level in accordance with the
declassification policy.

6See Chapter 17.

The principle of semantic consistency says that, as long as the semantics of
the parts of the system not involved in declassification do not change, those
parts of the system may be altered without affecting the security of the
system. Thus, changing a component in the system that does not do
declassification will not cause the classification of information to be lowered.
The requirement that the semantics not change eliminates possible “leaking”
due to semantic incompatibilities. For example, the notion of delimited
release allows information to be declassified and released only through
specific channels, called escape hatches [1642]. Semantic consistency
requires that the inputs to, or function of, the escape hatches not be changed
by changes to other parts of the system. Otherwise, an attacker may be able to
obtain information that is not covered by the declassification policy due to the
changes.

Now consider a system that releases information not covered by the
declassification policy. The declassification mechanisms must not conceal
these leaks of information. This principle of occlusion says that a
declassification operation cannot conceal the improper lowering of security
levels. As an example, the property of robust declassification [1419,2093]



states that an attacker cannot use declassification channels (such as the
escape hatches) to obtain information that was not properly declassified. A
system that meets this property also satisfies the principle of occlusion,
because because the declassification mechanisms do not conceal that
information can be leaked. Information may still leak, of course, but the
ability to detect this fact is unrelated to declassification.

The principle of conservativity simply says that, absent any declassification,
the system is secure. The basis for this principle is the observation that a
system in which classifications of information never change to a lower level is
secure under the above definition. Similarly, when declassification is
performed in an authorized manner by authorized subjects, the system
remains secure—the principle of monotonicity of release. Put another way,
declassifying information in accord with the declassification policy does not
make the system less secure. In essence, a system with no declassification
provides a baseline against which the same system, but with a declassification
policy, can be measured. This view treats declassification as exceptions to the
security policy (although authorized ones). A government agency that never
declassifies any information might be considered secure; should it declassify
information, though, there is the potential for information that should remain
confidential to be declassified by accident—making the system non-secure.
Thus, in some sense, declassification creates a potential “hole” in the system
security policy, and weakens the system.

Tranquility plays an important role in the Bell-LaPadula Model, because it
highlights the trust assumptions in the model. It raises other problems in the
context of integrity that we will revisit in the next chapter.

5.4 The Controversy over the Bell-LaPadula Model

The Bell-LaPadula Model became the target of inquiries into the foundations
of computer security. The controversy led to a re-examination of security
models and a deeper appreciation of the complexity of modeling real systems.



5.4.1 McLean’s †-Property and the Basic Security Theorem

In a 1985 paper [1303], McLean argued that the “value of the [Basic Security
Theorem] is much overrated since there is a great deal more to security than
it captures. Further, what is captured by the [Basic Security Theorem] is so
trivial that it is hard to imagine a realistic security model for which it does not
hold” [1303, p. 67]. The basis for McLean’s argument was that, given
assumptions known to be nonsecure, the Basic Security Theorem could prove
a nonsecure system to be secure. He defined a complement to the *-property:

Definition 5–11. A state (b, m, f, h) satisfies the †-property if and only if,
for each s ∈ S, the following hold:

(a) b(s : a) ≠ Ø ⇒ [∀o ∈ b(s : a)[fc(o) dom fo(s)]]

(b) b(s : w) ≠ Ø ⇒ [∀o ∈ b(s : w)[fc(o) = fo(s)]]

(c) b(s : r) ≠ Ø ⇒ [∀o ∈ b(s : r)[fc(o) dom fc(c)]]

In other words, the †-property holds for a subject s and an object o if,
whenever s has w rights over o, the clearance of s dominates the classification
of o. This is exactly the reverse of the *-property, which holds that the
classification of o would dominate the clearance of s. A state satisfies the †-
property if and only if, for every triplet (s, o, p), where the right p involves
writing (that is, p = a or p = w), the †-property holds for s and o.

McLean then proved the analogue to Theorem 5.4:

Theorem 5.16. Σ(R, D, W, z0) satisfies the †-property relative to S′ ⊆ S for
any secure state z0 if and only if, for every action (r, d, (b, m, f, h), (b′, m′, f′,
h′)), W satisfies the following for every s ∈ S′:

(a) Every (s, o, p) ∈ b – b′ satisfies the †-property with respect to S′.

(b) Every (s, o, p) ∈ b′ that does not satisfy the †-property with respect to S′



is not in b.

Proof. See Exercise 5, with “*-property” replaced by “†-property.” 

From this theorem, and from Theorems 5.3 and 5.5, the analogue to the Basic
Security Theorem follows.

Theorem 5.17. McLean’s Basic Security Theorem: Σ(R, D, W, z0) is a
secure system if and only if z0 is a secure state and W satisfies the conditions
of Theorems 5.3, 5.16, and 5.5.

However, the system Σ(R, D, W, z0) is clearly nonsecure, because a subject
with HIGH clearance can write information to an object with LOW
classification. Information can flow down, from HIGH to LOW. This violates
the basic notion of security in the confidentiality policy.

Consider the role of the Basic Security Theorem in the Bell-LaPadula Model.
The goal of the model is to demonstrate that specific rules, such as the get-
read rule, preserve security. But what is security? The model defines that
term using the Basic Security Theorem: an instantiation of the model is
secure if and only if the initial state satisfies the simple security condition, the
*-property, and the ds-property, and the transition rules preserve those
properties. In essence, the theorems are assertions about the three properties.

The rules describe the changes in a particular system instantiating the
model. Showing that the system is secure, as defined by the analogue of
Definition 5–3, requires proving that the rules preserve the three properties.
Given that they do, McLean’s Basic Security Theorem asserts that reachable
states of the system will also satisfy the three properties. The system will
remain secure, given that it starts in a secure state.

LaPadula pointed out that McLean’s statement does not reflect the
assumptions of the Basic Security Theorem [1145]. Specifically, the Bell-
LaPadula Model assumes that a transition rule introduces no changes that



violate security, but does not assume that any existing accesses that violate
security are eliminated. The rules instantiating the model do no elimination
(see the get-read rule, Section 5.2.4.1, as an example).

Furthermore, the nature of the rules is irrelevant to the model. The model
accepts a definition of “secure” as axiomatic. The specific policy defines
“security” and is an instantiation of the model. The Bell-LaPadula Model uses
a military definition of security: information may not flow from a dominating
entity to a dominated entity. The *-property captures this requirement. But
McLean’s variant uses a different definition: rather than meet the *-property,
his policy requires that information not flow from a dominated entity to a
dominating entity. This is not a confidentiality policy. Hence, a system
satisfying McLean’s policy will not satisfy a confidentiality policy.

However, the sets of properties in both policies (the confidentiality policy and
McLean’s variant) are inductive, and both Basic Security Theorems hold. The
properties may not make sense in a real system, but this is irrelevant to the
model. It is very relevant to the interpretation of the model, however. The
confidentiality policy requires that information not flow from a dominating
subject to a dominated object. McLean substitutes a policy that allows this.
These are alternative instantiations of the model.

McLean makes these points by stating problems that are central to the use of
any security model. The model must abstract the notion of security that the
system is to support. For example, McLean’s variant of the confidentiality
policy does not provide a correct definition of security for military purposes.
An analyst examining a system could not use this variant to show that the
system implemented a confidentiality classification scheme. The Basic
Security Theorem, and indeed all theorems, fail to capture this, because the
definition of “security” is axiomatic. The analyst must establish an
appropriate definition. All the Basic Security Theorem requires is that the
definition of security be inductive.

McLean’s second observation asks whether an analyst can prove that the



system being modeled meets the definition of “security.” Again, this is beyond
the province of the model. The model makes claims based on hypotheses. The
issue is whether the hypotheses hold for a real system.

5.4.2 McLean’s System Z and More Questions

In a second paper [1304], McLean sharpened his critique. System transitions
can alter any system component, including b, f, m, and h, as long as the new
state does not violate security. McLean used this property to demonstrate a
system, called System Z, that satisfies the model but is not a confidentiality
security policy. From this, he concluded that the Bell-LaPadula Model is
inadequate for modeling systems with confidentiality security policies.

System Z has the weak tranquility property and supports exactly one action.
When a subject requests any type of access to any object, the system
downgrades all subjects and objects to the lowest security level, adds access
permission to the access control matrix, and allows the access.

Let System Z’s initial state satisfy the simple security condition, the *-
property, and the ds-property. It can be shown that successive states of
System Z also satisfy those properties and hence System Z meets the
requirements of the Basic Security Theorem. However, with respect to the
confidentiality security policy requirements, the system clearly is not secure,
because all entities are downgraded.

McLean reformulated the notion of a secure action. He defined an alternative
version of the simple security condition, the *-property, and the discretionary
security property. Intuitively, an action satisfies these properties if, given a
state that satisfies the properties, the action transforms the system into a
(possibly different) state that satisfies these properties, and eliminates any
accesses present in the transformed state that would violate the property in
the initial state. From this, he shows:

Theorem 5.18. Σ(R, D, W, z0) is a secure system if z0 is a secure state and



each action in W satisfies the alternative versions of the simple security
condition, the *-property, and the discretionary security property.

Proof. See [1304]. 

Under this reformulation, System Z is not secure because this rule is not
secure. Specifically, consider an instantiation of System Z with two security
clearances, (HIGH, { ALL }) and (LOW, { ALL }) (LOW < HIGH). The initial
state has a subject s and an object o. Take fc(s) = (LOW, {ALL}), fo(o) =
(HIGH, {ALL}), m[s, o] = {w}, and b = {(s, o, w)}. When s requests read
access to o, the rule transforms the system into a state wherein

, (s, o, r) ∈ b′, and m′[s, o] = {r, w}. However, because (s, o, r) ∈ b′–b and
fo(o) dom fs(s), an illegal access has been added. Yet, under the traditional
Bell-LaPadula formulation, in the final state

, so the read access is legal and the state is secure, hence the system is secure.

McLean’s conclusion is that proving that states are secure is insufficient to
prove the security of a system. One must consider both states and transitions.

Bell [148] responded by exploring the fundamental nature of modeling.
Modeling in the physical sciences abstracts a physical phenomenon to its
fundamental properties. For example, Newtonian mathematics coupled with
Kepler’s laws of planetary motion provide an abstract description of how
planets move. When observers noted that Uranus did not follow those laws,
they calculated the existence of another, trans-Uranean planet. Adams and
Lavoisier, observing independently, confirmed its existence. Refinements
arise when the theories cannot adequately account for observed phenomena.
For example, the precession of Mercury’s orbit suggested another planet
between Mercury and the sun. But none was found.7 Einstein’s theory of
general relativity, which modified the theory of how planets move, explained
the precession, and observations confirmed his theory.



7Observers reported seeing this planet, called Vulcan, in the mid-1800s. The
sighting was never officially confirmed, and the refinements discussed above
explained the precession adequately. Willy Ley’s book [1167] relates the
charming history of this episode.

Modeling in the foundations of mathematics begins with a set of axioms. The
model demonstrates the consistency of the axioms. A model consisting of
points, lines, planes, and the axioms of Euclidean geometry can demonstrate
the consistency of those axioms. Attempts to prove the inconsistency of a
geometry created without the Fifth Postulate8 failed; eventually, Riemann
replaced the plane with a sphere, replaced lines with great circles, and using
that model demonstrated the consistency of the axioms (which became
known as “Riemannian geometry”). Gödel demonstrated that consistency
cannot be proved using only axioms within a system (hence Riemannian
geometry assumes the consistency of Euclidean geometry, which in turn
assumes the consistency of another axiomatizable system, and so forth). So
this type of modeling has natural limits.

8The Fifth Postulate of Euclid states that given a line and a point, there is
exactly one line that can be drawn through that point parallel to the existing
line. Attempts to prove this postulate failed. In the 1800s, Riemann and
Lobachevsky demonstrated the axiomatic nature of the postulate by
developing geometries in which the postulate does not hold [1458].

The Bell-LaPadula Model was developed as a model of existing phenomena,
namely the existing classification scheme. Bell pointed out that McLean’s
work presumed a purely mathematical model, with axioms that differ from
the existing classification scheme.

In the physical science sense of modeling, the Bell-LaPadula Model is a tool
for demonstrating certain properties of rules. Whether the properties of
System Z are desirable is an issue the model cannot answer. If no rules should
change security compartments of entities, the system should enforce the
principle of strong tranquility. System Z clearly violates this principle, and



hence would be considered not secure. (The principle of tranquility adds
requirements to state transitions, so given that principle, the Bell-LaPadula
Model actually constrains both states and state transitions.)

In the foundations of mathematics sense, Bell pointed out that the two
models (the original Bell-LaPadula Model and McLean’s variant) define
security differently. Hence, that System Z is not secure under one model, but
secure under the other, is not surprising. As an example, consider the
following definitions of prime number.

Definition 5–12. A prime number is an integer n > 1 that has only 1 and
itself as divisors.

Definition 5–13. A prime number is an integer n > 0 that has only 1 and
itself as divisors.

Both definitions, from a mathematical point of view, are acceptable and
consistent with the laws of mathematics. So, is the integer 1 prime? By
Definition 5–12, no; by Definition 5–13, yes. Neither answer is “right” or
“wrong” in an absolute sense.9

9By convention, mathematicians use Definition 5–13. The integer 1 is neither
prime nor composite.

5.5 Summary

The influence of the Bell-LaPadula Model permeates all policy modeling in
computer security. It was the first mathematical model to capture attributes
of a real system in its rules. It formed the basis for several standards,
including the Department of Defense’s Trusted Computer System Evaluation
Criteria (the TCSEC or the “Orange Book” discussed in Chapter 22) [2254].
Even in controversy, the model spurred further studies in the foundations of
computer security.



Other models of confidentiality arise in practical contexts. They may not form
lattices. In this case, they can be embedded into a lattice model. Still other
confidentiality models are not multilevel in the sense of Bell-LaPadula. These
models include integrity issues, and Chapter 8, “Hybrid Policies,” discusses
several.

Confidentiality models may be viewed as models constraining the way
information moves about a system. The notions of noninterference and
nondeducibility provide an alternative view that in some ways matches reality
better than the Bell-LaPadula Model; Chapter 9, “Noninterference and Policy
Composition,” discusses these models.

McLean’s questions and observations about the Bell-LaPadula Model raised
issues about the foundations of computer security, and Bell and LaPadula’s
responses fueled interest in those issues.

5.6 Research Issues

Research issues in confidentiality arise in the application of multilevel
security models. One critical issue is the inclusion of declassification within
the model (as opposed to being an exception, allowed by a trusted user such
as the system security officer). A second such issue is how to abstract the
details of the system being modeled to a form about which results can be
proved; databases and multilevel networks are often the targets of this. A
third issue is the relationship of different formulations of the model. What is
their expressive power? Which allows the most accurate description of the
system being modeled?

Another issue is that of models of information flow. The confidentiality
models usually speak in terms of channels designed to move information
(such as reading and writing). But information can flow along other channels.
How to integrate these channels into models, and how to show that models
correctly capture them, are critical research issues.



Determining what information is safe to declassify, and how to do so without
inadvertently making other confidential data available in some form, is also a
critical problem. Research in this area usually focuses on information flow in
programs, but much of this work can be generalized to systems.

Yet another issue is how to apply confidentiality policies to a collection of
systems implementing slightly different variations of the policy and with
different security interfaces. How can the systems be merged to meet the
policy? How does one derive the wrapper specifications needed to allow the
systems to connect securely, and how does one validate that the resulting
policy is “close enough” to the desired policy in practice?

5.7 Further Reading

The developers of the ADEPT-50 system presented a formal model of the
security controls that predated the Bell-LaPadula Model [1191, 2004].
Landwehr [1140] explored aspects of formal models for computer security.
Denning and her colleagues used the Bell-LaPadula Model in SeaView [542,
546], a database designed with security features. The model forms the basis
for several other models, including the database model of Jajodia and Sandhu
[966], the military message system model of Landwehr and his colleagues
[1143], the MLS-PCA model for avionics [2007]. The latter are excellent
examples of how models are applied in practice.

Dion [575] extended the Bell-LaPadula Model to allow system designers and
implementers to use that model more easily. Sidhu and Gasser [1757]
designed a local area network to handle multiple security levels. Watson
[1993] applies the model to workflows in clouds.

Feiertag, Levitt, and Robinson [658] developed a multilevel model that has
several differences from the Bell-LaPadula Model. Taylor [1873] elegantly
compares them. Smith and Winslett [1778] use a mandatory model to model
databases that differ from the Bell-LaPadula Model. Gambel [736] discusses



efforts to apply a confidentiality policy similar to Bell-LaPadula to a system
developed from off-the-shelf components, none of which implemented the
policy precisely.

Irvine and Volpano [954] cast multilevel security in terms of a type subsystem
for a polymorphic programming language.

Myers [1415] summarizes the utility of information flow security policies for
programming. Papers by Myers and Liskov [1416, 1418] give more detail on
the decentralized label model and its implications. Chong and Myers [412]
also consider requirements for declassification and erasing together. Askarov
and Sabelfeld [86] present a policy unifying declassification, key release, and
encryption policies. Matos [1267] discusses the declassification problems
introduced by mobile code. Many papers discuss the non-technical aspects of
declassification. David [507] discusses problems of declassification faced by
the U. S. government, and also discusses the history of declassification in the
U. S. government’s observation of the earth from space [508].

Foley and Jacob discuss computer-supported collaborative working
confidentiality policies in the guise of specification [699]. Wiemer discusses
policy models in the context of sharing information with foreign governments
[2016].

In addition to Solaris, other systems such as SE-Linux, FreeBSD [1994], and
databases such as DB2 for z/OS [1405] implement multi-level security.

5.8 Exercises

1. Why is it meaningless to have compartments at the UNCLASSIFIED level
(such as (UNCLASSIFIED, { NUC }) and (UNCLASSIFIED, { EUR }))?

2. Given the security levels TOP SECRET, SECRET, CONFIDENTIAL, and
UNCLASSIFIED (ordered from highest to lowest), and the categories A, B,
and C, specify what type of access (read, write, both, or neither) is allowed in



each of the following situations. Assume that discretionary access controls
allow anyone access unless otherwise specified.

(a) Paul, cleared for (TOP SECRET, { A, C }), wants to access a document
classified (SECRET, { B, C }).

(b) Anna, cleared for (CONFIDENTIAL, { C }), wants to access a document
classified (CONFIDENTIAL, { B }).

(c) Jesse, cleared for (SECRET, { C }), wants to access a document classified
(CONFIDENTIAL, { C }).

(d) Sammi, cleared for (TOP SECRET, { A, C }), wants to access a document
classified (CONFIDENTIAL, { A }).

(e) Robin, who has no clearances (and so works at the UNCLASSIFIED level),
wants to access a document classified (CONFIDENTIAL, { B }).

3. What does Trusted Solaris placing system executables at ADMIN_LOW
prevent? Why is this important?

4. Administrative files containing information that users are not to read or
write have labels of ADMIN_HIGH in Trusted Solaris.

(a) Why does this users from reading the files?

(b) Why does this prevent users from writing the files?

5. Prove that the two properties of the hierarchy function (see Section 5.2.3)
allow only trees and single nodes as organizations of objects.

6. Declassification effectively violates the *-property of the Bell-LaPadula
Model. Would raising the classification of an object violate any properties of
the model? Why or why not?

7. Prove Theorem 5.4. (Hint: Proceed along lines similar to the proof of



Theorem 5.3.)

8. Prove Theorem 5.5.

9. Consider Theorem 5.6. Would the theorem hold if the requirement that z0
be a secure state were eliminated? Justify your answer.

10. Prove Theorems 5.9 and 5.11.

11. Consider McLean’s reformulation of the simple security condition, the *-
property, and the ds-property (see page 145).

(a) Does this eliminate the need to place constraints on the initial state of the
system in order to prove that the system is secure?

(b) Why do you believe Bell and LaPadula did not use this formulation?



Chapter 6. Integrity Policies
ISABELLA: Some one with child by him? My cousin Juliet?

LUCIO: Is she your cousin?

ISABELLA: Adoptedly; as school-maids change their names By vain, though 
apt affection.

— Measure for Measure, I, iv, 45–48.

An inventory control system may function correctly if the data it manages is 
released; but it cannot function correctly if the data can be randomly 
changed. So integrity, rather than confidentiality, is key. These policies are 
important because many commercial and industrial firms are more 
concerned with accuracy than disclosure. This chapter discusses the major 
integrity security policies and explores their design.

6.1 Goals

Commercial requirements differ from military requirements in their 
emphasis on preserving data integrity. Lipner [1200] identifies five 
commercial requirements:

1. Users will not write their own programs, but will use existing production
programs and databases.

2. Programmers will develop and test programs on a non-production system;
if they need access to actual data, they will be given production data via a



special process, but will use it on their development system.

3. A special process must be followed to install a program from the
development system onto the production system.

4. The special process in requirement 3 must be controlled and audited.

5. The managers and auditors must have access to both the system state and
the system logs that are generated.

These requirements suggest several principles of operation.

First comes separation of duty. The principle of separation of duty states that
if two or more steps are required to perform a critical function, at least two
different people should perform the steps. Moving a program from the
development system to the production system is an example of a critical
function. Suppose one of the application programmers made an invalid
assumption while developing the program. Part of the installation procedure
is for the installer to certify that the program works “correctly,” that is, as
required. The error is more likely to be caught if the installer is a different
person (or set of people) than the developer. Similarly, if the developer wishes
to subvert the production data with a corrupt program, the certifier either
must not detect the code to do the corruption, or must be in league with the
developer.

Next comes separation of function. Developers do not develop new programs
on production systems because of the potential threat to production data.
Similarly, the developers do not process production data on the development
systems. Depending on the sensitivity of the data, the developers and testers
may receive sanitized production data. Further, the development
environment must be as similar as possible to the actual production
environment.

Last comes auditing. Commercial systems emphasize recovery and



accountability. Auditing is the process of analyzing systems to determine
what actions took place and who performed them. Hence, commercial
systems must allow extensive auditing and thus have extensive logging (the
basis for most auditing). Logging and auditing are especially important when
programs move from the development system to the production system, since
the integrity mechanisms typically do not constrain the certifier. Auditing is,
in many senses, external to the model.

Even when disclosure is at issue, the needs of a commercial environment
differ from those of a military environment. In a military environment,
clearance to access specific categories and security levels brings the ability to
access information in those compartments. Commercial firms rarely grant
access on the basis of “clearance”; if a particular individual needs to know
specific information, he or she will be given it. While this can be modeled
using the Bell-LaPadula Model, it requires a large number of categories and
security levels, increasing the complexity of the modeling. More difficult is
the issue of controlling this proliferation of categories and security levels. In a
military environment, creation of security levels and categories is centralized.
In commercial firms, this creation would usually be decentralized. The former
allows tight control on the number of compartments, whereas the latter
allows no such control.

More insidious is the problem of information aggregation. Commercial firms
usually allow a limited amount of (innocuous) information to become public,
but keep a large amount of (sensitive) information confidential. By
aggregating the innocuous information, one can often deduce much sensitive
information. Preventing this requires the model to track what questions have
been asked, and this complicates the model enormously. Certainly the Bell-
LaPadula Model lacks this ability.

6.2 The Biba Model

In 1977, Biba [196] studied the nature of the integrity of systems. He



proposed three policies, one of which was the mathematical dual of the Bell-
LaPadula Model.

A system consists of a set S of subjects, a set O of objects, and a set I of
integrity levels.1 The levels are ordered. The relation < ⊆ I × I holds when the
second integrity level dominates the first. The relation ≤ ⊆ I × I holds when
the second integrity level either dominates or is the same as the first. The
function min : I × I → I gives the lesser of the two integrity levels (with
respect to ≤). The function i : S sup O → I returns the integrity level of an
object or a subject. The relation r ⊆ S ×O defines the ability of a subject to
read an object; the relation w ⊆ S × O defines the ability of a subject to write
to an object; and the relation x ⊆ S × S defines the ability of a subject to
invoke (execute) another subject.

1The original model did not include categories and compartments. The
changes required to add them are straightforward.

Some comments on the meaning of “integrity level” will provide intuition
behind the constructions to follow. The higher the level, the more confidence
one has that a program will execute correctly (or detect problems with its
inputs and stop executing). Data at a higher level is more accurate and/or
reliable (with respect to some metric) than data at a lower level. Again, this
model implicitly incorporates the notion of “trust”; in fact, the term
“trustworthiness” is used as a measure of integrity level. For example, a
process at a level higher than that of an object is considered more
“trustworthy” than that object.

Integrity labels, in general, are not also security labels. They are assigned and
maintained separately, because the reasons behind the labels are different.
Security labels primarily limit the flow of information; integrity labels
primarily inhibit the modification of information. They may overlap,
however, with surprising results (see Exercise 3).

Biba tests his policies against the notion of an information transfer path:



Definition 6–1. An information transfer path is a sequence of objects o1, . .
. , on+1 and a corresponding sequence of subjects s1, . . . , sn such that si r oi
and si w oi+1 for all i, 1 ≤ i ≤ n.

Intuitively, data in the object o1 can be transferred into the object on+1 along
an information flow path by a succession of reads and writes.

6.2.1 Low-Water-Mark Policy

Whenever a subject accesses an object, the low water mark policy [196]
changes the integrity level of the subject to the lower of the subject and the
object. Specifically:

1. s ∈ S can write to o ∈ O if and only if i(o) ≤ i(s).

2. If s ∈ S reads o ∈ O, then i′(s) = min(i(s), i(o)), where i′(s) is the subject’s
integrity level after the read.

3. s1 ∈ S can execute s2 ∈ S if and only if i(s2) ≤ i(s1).

The first rule prevents writing from one level to a higher level. This prevents a
subject from writing to a more highly trusted object. Intuitively, if a subject
were to alter a more trusted object, it could implant incorrect or false data
(because the subject is less trusted than the object). In some sense, the
trustworthiness of the object would drop to that of the subject. Hence, such
writing is disallowed.

The second rule causes a subject’s integrity level to drop whenever it reads an
object at a lower integrity level. The idea is that the subject is relying on data
less trustworthy than itself. Hence, its trustworthiness drops to the lesser
trustworthy level. This prevents the data from “contaminating” the subject or
its actions.

The third rule allows a subject to execute another subject provided the second
is not at a higher integrity level. Otherwise, the less trusted invoker could



control the execution of the invoked subject, corrupting it even though it is
more trustworthy.

This policy constrains any information transfer path:

Theorem 6.1. [196] If there is an information transfer path from object o1
∈ O to object on+1 ∈ O, then enforcement of the low-water-mark policy
requires that i(on+1) ≤ i(o1) for all n > 1.

Proof. If an information transfer path exists between o1 and on+1, then
Definition 6–1 gives a sequence of subjects and objects identifying the entities
on the path. Without loss of generality, assume that each read and write was
performed in the order of the indices of the vertices. By induction, for any 1 ≤
k ≤ n, i(sk) = min{i(oj) | 1 ≤ j ≤ k} after k reads. As the nth write succeeds, by
rule 1, i(on+1) ≤ i(sn). Thus, by transitivity, i(on+1) ≤ i(o1). 

This policy prevents direct modifications that would lower integrity labels. It
also prevents indirect modification by lowering the integrity label of a subject
that reads from an object with a lower integrity level.

The problem with this policy is that, in practice, the subjects change integrity
levels. In particular, the level of a subject is nonincreasing, which means that
it will soon be unable to access objects at a high integrity level. An alternative
policy is to decrease object integrity levels rather than subject integrity levels,
but this policy has the property of downgrading object integrity levels to the
lowest level.

6.2.2 Ring Policy

The ring policy [196] ignores the issue of indirect modification and focuses on
direct modification only. This solves the problems described above. The rules
are as follows.

1. Any subject may read any object, regardless of integrity levels.



2. s ∈ S can write to o ∈ O if and only if i(o) ≤ i(s).

3. s1 ∈ S can execute s2 ∈ S if and only if i(s2) ≤ i(s1).

The difference between this policy and the low-water-mark policy is simply
that any subject can read any object.

6.2.3 Biba’s Model (Strict Integrity Policy)

The strict integrity policy model [196] is the dual of the Bell-LaPadula Model,
and is most commonly called “Biba’s model.” Its rules are as follows.

1. s ∈ S can read to o ∈ O if and only if i(s) ≤ i(o).

2. s ∈ S can write to o ∈ O if and only if i(o) ≤ i(s).

3. s1 ∈ S can execute s2 ∈ S if and only if i(s2) ≤ i(s1).

Given these rules, Theorem 6.1 still holds, but its proof changes (see Exercise
1). Note that rules 1 and 2 imply that if both read and write are allowed, i(s) =
i(o).

Like the low-water-mark policy, this policy prevents indirect as well as direct
modification of entities without authorization. By replacing the notion of
“integrity level” with “integrity compartments,” and adding the notion of
discretionary controls, one obtains the full dual of Bell-LaPadula. Indeed, the
rules require “no reads down” and “no writes up” — the exact opposite of the
simple security condition and the *-property of the Bell-LaPadula Model.

EXAMPLE: Pozzo and Gray [1550, 1551] implemented Biba’s strict integrity
model on the distributed operating system LOCUS [1540]. Their goal was to
limit execution domains for each program to prevent untrusted software from
altering data or other software. Their approach was to make the level of trust
in software and data explicit. They have different classes of executable
programs. Their credibility ratings (Biba’s integrity levels) assign a measure



of trustworthiness on a scale from 0 (untrusted) to n (highly trusted),
depending on the source of the software. Trusted file systems contain only
executable files with the same credibility level. Associated with each user
(process) is a risk level that starts out set to the highest credibility level at
which that user can execute. Users may execute programs with credibility
levels at least as great as the user’s risk level. To execute programs at a lower
credibility level, a user must use the run-untrusted command. This
acknowledges the risk that the user is taking.

EXAMPLE: The FreeBSD system’s implementation of the Biba model [2200]
uses integers for both parts of an integrity label. The integrity level consists of
a grade, the values of which are linearly ordered, and a compartment, the set
of which is not ordered. A grade is represented by an integer value between 0
and 65536 inclusive, with higher grades having higher numbers. A category is
represented by an integer value between 0 and 255 inclusive. The labels are
written as “biba/100:29+64+130”, meaning the label has integrity grade 100
and is in integrity categories 29, 64, and 130. FreeBSD defines three
distinguished labels: “biba/low”, which is the lowest label; “biba/high”, which
is the highest label; and “biba/equal”, which is equal to all labels.

Objects have a single label. Line the Trusted Solaris implementation of the
Bell-LaPadula model, subjects have three. The first is the label at which the
subject is currently; the other two represent the low and high labels of a
range. The subject can change its current label to any label within that range.
So, a subject with label biba/75:29+64(50:29-150:29+64+130+150) can read
but not write to an object with label biba/100:29+64+130 as the object’s label
dominates the subject’s label. If the subject changed its label to
biba/100:29+64+130, it will be able to read from and write to the object.

6.3 Lipner’s Integrity Matrix Model

Lipner returned to the Bell-LaPadula Model and combined it with the Biba
model to create a model [1200] that conformed more accurately to the



requirements of a commercial policy. For clarity, we consider the Bell-
LaPadula aspects of Lipner’s model first, and then combine those aspects
with Biba’s model.

6.3.1 Lipner’s Use of the Bell-LaPadula Model

Lipner provides two security levels, in the following order (higher to lower):

Figure 6–1: Security levels for subjects

• Audit Manager (AM): system audit and management functions are at this
level.

• System Low (SL): any process can read information at this level.

He similarly defined five categories:

• Development (D): production programs under development and testing, but
not yet in production use

• Production Code (PC): production processes and programs

• Production Data (PD): data covered by the integrity policy

• System Development (SD): system programs under development, but not
yet in production use

• Software Tools (T): programs provided on the production system not related
to the sensitive or protected data

Lipner then assigned users to security levels based on their jobs. Ordinary



users will use production code to modify production data; hence, their
clearance is (SL, { PC, PD }). Application developers need access to tools for
developing their programs, and to a category for the programs that are being
developed (the categories should be separate). Hence, application
programmers have (SL, { D, T }) clearance. System programmers develop
system programs and, like application programmers, use tools to do so;
hence, system programmers should have clearance (SL, { SD, T }). System
managers and auditors need system high clearance, because they must be
able to access all logs; their clearance is (AM, { D, PC, PD, SD, T }). Finally,
the system controllers must have the ability to downgrade code once it is
certified for production, so other entities cannot write to it; thus, the
clearance for this type of user is (SL, { D, PC, PD, SD, T }) with the ability to
downgrade programs. These security levels are summarized in Figure 6–1.

The system objects are assigned to security levels based on who should access
them. Objects that might be altered have two categories: that of the data itself
and that of the program that may alter it. For example, an ordinary user
needs to execute production code; hence, that user must be able to read
production code. Placing production code in the level (SL, { PC }) allows such
access by the simple security property of the Bell-LaPadula Model. Because
an ordinary user needs to alter production data, the *-property dictates that
production data be in (SL, { PC, PD }). Similar reasoning supplies the levels in
Figure 6–2.

Figure 6–2: Security levels for objects



All logs are append-only. By the *-property, their classes must dominate
those of the subjects that write to them. Hence, each log will have its own
categories, but the simplest way to prevent their being compromised is to put
them at a higher security level.

We now examine this model in light of the requirements in Section 6.1.

1. Because users do not have execute access to category T, they cannot write
their own programs, so requirement 1 is met.

2. Application programmers and system programmers do not have read or
write access to category PD, and hence cannot access production data. If they
do require production data to test their programs, the data must be
downgraded from PD to D, and cannot be upgraded (because the model has
no upgrade privilege). The downgrading requires intervention of system
control users, which is a special process within the meaning of requirement 2.
Thus, requirement 2 is satisfied.

3. The process of installing a program requires the downgrade privilege
(specifically, changing the category of the program from D to PC), which
belongs only to the system control users; hence, only those users can install
applications or system programs. The use of the downgrade privilege satisfies
requirement 3’s need for a special process.

4. The control part of requirement 4 is met by allowing only system control
users to have the downgrade privilege; the auditing part is met by requiring
all downgrading to be logged.

5. Finally, the placement of system management and audit users in AM
ensures that they have access both to the system state and to system logs, so
the model meets requirement 5.

Thus, the model meets all requirements. However, it allows little flexibility in
special-purpose software. For example, a program for repairing an



inconsistent or erroneous production database cannot be application-level
software. To remedy these problems, Lipner integrates his model with Biba’s
model.

Figure 6–3: Security and integrity levels for subjects

6.3.2 Lipner’s Full Model

Lipner then augmented the security classifications with three integrity
classifications (highest to lowest) [1200]:

• System Program (ISP): the classifications for system programs

• Operational (IO): the classifications for production programs and
development software

• System Low (ISL): the classifications at which users log in

Two integrity categories distinguish between production and development
software and data:

• Development (ID): development entities

• Production (IP): production entities

The security category T (tools) allowed application developers and system
programmers to use the same programs without being able to alter those
programs. The new integrity categories now distinguish between
development and production, so they serve the purpose of the security tools



category, which is eliminated from the model. We can also collapse
production code and production data into a single category. This gives us the
following security categories:

• Production (SP): production code and data

• Development (SD): same as (previous) security category Development (D)

• System Development (SSD): same as (previous) security category System
Development (SD)

The security clearances of all classes of users remain equivalent to those of
the model without integrity levels and categories. The integrity classes are
chosen to allow modification of data and programs as appropriate. For
example, ordinary users should be able to modify production data, so users of
that class must have write access to integrity category IP. Figure 6–3 shows
the integrity classes and categories of the classes of users.

Figure 6–4: Security and integrity levels for objects

The final step is to select integrity classes for objects. Consider the objects
Production Code and Production Data. Ordinary users must be able to write
the latter but not the former. By placing Production Data in integrity class
(ISL, { IP }) and Production Code in class (IO, { IP }), an ordinary user cannot
alter production code but can alter production data. Similar analysis leads to
the levels in Figure 6–4.



The repair class of users has the same integrity and security clearance as that
of production data, and so can read and write that data. It can also read
production code (same security classification and (IO, { IP }) dom (ISL, { IP
})), system programs ((SL, { SP })) dom (SL, { Ø }) and (ISP, { IP, ID }) dom
(ISL, { IP })), and repair objects (same security classes and same integrity
classes); it can write, but not read, the system and application logs (as (AM, {
SP }) dom (SL, { SP })) and (ISL, { IP }) dom (ISL, { Ø })). It cannot access
development code/test data (since the security categories are disjoint),
system programs in modification (since the integrity categories are disjoint),
or software tools (again, since the integrity categories are disjoint). Thus, the
repair function works as needed.

The reader should verify that this model meets Lipner’s requirements for
commercial models (see exercise 8).

6.3.3 Comparison with Biba

Lipner’s model demonstrates that the Bell-LaPadula Model can meet many
commercial requirements, even though it was designed for a very different
purpose. The resiliency of that model is part of its attractiveness; however,
fundamentally, the Bell-LaPadula Model restricts the flow of information.
Lipner notes this, suggesting that combining his model with Biba’s may be
the most effective.

6.4 Clark-Wilson Integrity Model

In 1987, David Clark and David Wilson developed an integrity model [425]
radically different from previous models. This model uses transactions as the
basic operation, which models many commercial systems more realistically
than previous models.

One main concern of a commercial environment, as discussed above, is the
integrity of the data in the system and of the actions performed on that data.
The data is said to be in a consistent state (or consistent) if it satisfies given



properties. For example, let D be the amount of money deposited so far today,
W the amount of money withdrawn so far today, Y B the amount of money in
all accounts at the end of yesterday, and T B the amount of money in all
accounts so far today. Then the consistency property is

Before and after each action, the consistency conditions must hold. A well-
formed transaction is a series of operations that transition the system from
one consistent state to another consistent state. For example, if a depositor
transfers money from one account to another, the transaction is the transfer;
two operations, the deduction from the first account and the addition to the
second account, make up this transaction. Each operation may leave the data
in an inconsistent state, but the well-formed transaction must preserve
consistency.

The second feature of a commercial environment relevant to an integrity
policy is the integrity of the transactions themselves. Who examines and
certifies that the transactions are performed correctly? For example, when a
company receives an invoice, the purchasing office requires several steps to
pay for it. First, someone must have requested a service, and determined the
account that would pay for the service. Next, someone must validate the
invoice (was the service being billed for actually performed?). The account
authorized to pay for the service must be debited, and the check must be
written and signed. If one person performs all these steps, that person could
easily pay phony invoices; however, if at least two different people perform
these steps, both must conspire to defraud the company. Requiring more
than one person to handle this process is an example of the principle of
separation of duty.

Computer-based transactions are no different. Someone must certify that the
transactions are implemented correctly. The principle of separation of duty
requires that the certifier and the implementors be different people. In order
for the transaction to corrupt the data (either by illicitly changing the data or



by leaving the data in an inconsistent state), two different people must either
make similar mistakes or collude to certify the well-formed transaction as
correct.

6.4.1 The Model

The Clark-Wilson model defines data constrained by its integrity controls as
constrained data items, or CDIs. Data not subject to the integrity controls are
called unconstrained data items, or UDIs. For example, in a bank, the
balances of accounts are CDIs since their integrity is crucial to the operation
of the bank, whereas the gifts selected by the account holders when their
accounts were opened would be UDIs, because their integrity is not crucial to
the operation of the bank. The set of CDIs and the set of UDIs partition the
set of all data in the system being modeled.

A set of integrity constraints (similar in spirit to the consistency constraints
discussed above) constrain the values of the CDIs. In the bank example, the
consistency constraint presented earlier would also be an integrity constraint.

The model also defines two sets of procedures. Integrity verification
procedures, or IVPs, test that the CDIs conform to the integrity constraints at
the time the IVPs are run. In this case, the system is said to be in a valid state.
Transformation procedures, or TPs, change the state of the data in the
system from one valid state to another; TPs implement well-formed
transactions.

Return to the example of bank accounts. The balances in the accounts are
CDIs; checking that the accounts are balanced, as described above, is an IVP.
Depositing money, withdrawing money, and transferring money between
accounts are TPs. To ensure that the accounts are managed correctly, a bank
examiner must certify that the bank is using proper procedures to check that
the accounts are balanced, to deposit money, to withdraw money, and to
transfer money. Furthermore, those procedures may apply only to deposit
and checking accounts; they might not apply to other types of accounts for



example, to petty cash. The Clark-Wilson model captures these requirements
in two certification rules:

Certification rule 1 (CR1): When any IVP is run, it must ensure that all
CDIs are in a valid state.

Certification rule 2 (CR2): For some associated set of CDIs, a TP must
transform those CDIs in a valid state into a (possibly different) valid state.

CR2 defines as certified a relation that associates a set of CDIs with a
particular TP. Let C be the certified relation. Then, in the bank example,

CR2 implies that a TP may corrupt a CDI if it is not certified to work on that
CDI. For example, the TP that invests money in the bank’s stock portfolio
would corrupt account balances even if the TP were certified to work on the
portfolio, because the actions of the TP make no sense on the bank accounts.
Hence, the system must prevent TPs from operating on CDIs for which they
have not been certified. This leads to the following enforcement rule:

Enforcement rule 1 (CR1): The system must maintain the certified
relations, and must ensure that only TPs certified to run on a CDI manipulate
that CDI.

Specifically, ER1 says that if a TP f operates on a CDI o, then (f, o) ∈ C.
However, in a bank, a janitor is not allowed to balance customer accounts.
This restriction implies that the model must account for the person
performing the TP, or user. The Clark-Wilson model uses an enforcement
rule for this:

Enforcement rule 2 (CR2): The system must associate a user with each
TP and set of CDIs. The TP may access those CDIs on behalf of the associated
user. If the user is not associated with a particular TP and CDI, then the TP
cannot access that CDI on behalf of that user.



This defines a set of triples (user, T P, {CDIset}) to capture the association of
users, TPs, and CDIs. Call this relation allowed A. Of course, these relations
must be certified:

Certification rule 3 (CR3): The allowed relations must meet the
requirements imposed by the principle of separation of duty.

Because the model represents users, it must ensure that the identification of a
user with the system’s corresponding user identification code is correct. This
suggests:

Enforcement rule 3 (CR3): The system must authenticate each user
attempting to execute a TP.

An interesting observation is that the model does not require authentication
when a user logs into the system, because the user may manipulate only
UDIs. But if the user tries to manipulate a CDI, the user can do so only
through a TP; this requires the user to be certified as allowed (per ER2),
which requires authentication of the user (per ER3).

Most transaction-based systems log each transaction so that an auditor can
review the transactions. The Clark-Wilson model considers the log simply as
a CDI, and every TP appends to the log; no TP can overwrite the log. This
leads to:

Certification rule 4 (CR4): All TPs must append enough information to
reconstruct the operation to an append-only CDI.

When information enters a system, it need not be trusted or constrained. For
example, when one deposits money into an automated teller machine (ATM),
one need not enter the correct amount. However, when the ATM is opened
and the cash or checks counted, the bank personnel will detect the
discrepancy and fix it before they enter the deposit amount into one’s
account. This is an example of a UDI (the stated deposit amount) being



checked, fixed if necessary, and certified as correct before being transformed
into a CDI (the deposit amount added to one’s account). The Clark-Wilson
model covers this situation with certification rule 5:

Certification rule 5 (CR5): Any TP that takes as input a UDI may perform
only valid transformations, or no transformations, for all possible values of
the UDI. The transformation either rejects the UDI or transforms it into a
CDI.

The final rule enforces the separation of duty needed to maintain the integrity
of the relations in rules ER2 and ER3. If a user could create a TP and
associate some set of entities and herself with that TP (as in ER3), she could
have the TP perform unauthorized acts that violated integrity constraints.
The final enforcement rule prevents this:

Enforcement rule 4 (CR4): Only the certifier of a TP may change the list
of entities associated with that TP. No certifier of a TP, or of an entity
associated with that TP, may ever have execute permission with respect to
that entity.

This rule requires that all possible values of the UDI be known, and that the
TP be implemented so as to be able to handle them. This issue arises again in
both vulnerabilities analysis and secure programming.

This model contributed two new ideas to integrity models. First, it captured
the way most commercial firms work with data. The firms do not classify data
using a multilevel scheme, and they enforce separation of duty. Second, the
notion of certification is distinct from the notion of enforcement, and each
has its own set of rules. Assuming correct design and implementation, a
system with a policy following the Clark-Wilson model will ensure that the
enforcement rules are obeyed. But the certification rules require outside
intervention, and the process of certification is typically complex and prone to
error or to incompleteness (because the certifiers make assumptions about
what can be trusted). This is a weakness in some sense, but it makes explicit



assumptions that other models do not.

6.4.1.1 A UNIX Approximation to Clark-Wilson

Polk describes an implementation of Clark-Wilson under the UNIX operating
system [1536]. He first defines “phantom” users that correspond to locked
accounts. No real user may assume the identity of a phantom user.

Now consider the triple (user, T P, {CDIset}). For each TP, define a phantom
user to be the owner. Place that phantom user into the group that owns each
of the CDIs in the CDI set. Place all real users authorized to execute the TP on
the CDIs in the CDI set into the group owner of the TP. The TPs are setuid to
the TP owner,2 and are executable by the group owner. The CDIs are owned
either by root or by a phantom user.

2That is, the TPs execute with the rights of the TP owner, and not of the user
executing the TP.

EXAMPLE: Suppose access to each CDI is constrained by user only—that is,
in the triple, T P can be any TP. In this case, the CDI is owned by a group
containing all users who can modify the CDI.

EXAMPLE: Now, suppose access to each CDI is constrained by TP only—that
is, in the triple, user can be any user. In this case, the CDIs allow access to the
owner, a phantom user u. Then each TP allowed to access the CDI is owned
by u, setuid to u, and world-executable.

Polk points out three problems. Two different users cannot use the same TP
to access two different CDIs. This requires two separate copies of the TP, one
for each user and associated CDI. Secondly, this greatly increases the number
of setuid programs, which increases the threat of improperly granted
privileges. Proper design and assignment to groups minimizes this problem.
Finally, the superuser can assume the identity of any phantom user. Without
radically changing the nature of the root account, this problem cannot be



overcome.

6.4.2 Comparison with the Requirements

We now consider whether the Clark-Wilson model meets the five
requirements in Section 6.1. We assume that production programs
correspond to TPs and that production data (and databases) are CDIs.

1. If users are not allowed to perform certifications of TPs, but instead only
“trusted personnel” are, then CR5 and ER4 enforce this requirement. Because
ordinary users cannot create certified TPs, they cannot write programs to
access production databases. They must use existing TPs and CDIs—that is,
production programs and production databases.

2. This requirement is largely procedural, because no set of technical controls
can prevent a programmer from developing and testing programs on
production systems. (The standard procedural control is to omit interpreters
and compilers from production systems.) However, the notion of providing
production data via a special process corresponds to using a TP to sanitize, or
simply provide, production data to a test system.

3. Installing a program from a development system onto a production system
requires a TP to do the installation and “trusted personnel” to do the
certification.

4. CR4 provides the auditing (logging) of program installation. ER3
authenticates the “trusted personnel” doing the installation. CR5 and ER4
control the installation procedure (the new program being a UDI before
certification and a CDI, as well as a TP in the context of other rules, after
certification).

5. Finally, because the log is simply a CDI, management and auditors can
have access to the system logs through appropriate TPs. Similarly, they also
have access to the system state.



Thus, the Clark-Wilson model meets Lipner’s requirements.

6.4.3 Comparison with Other Models

The contributions of the Clark-Wilson model are many. We compare it with
the Biba model to highlight these new features.

Recall that the Biba model attaches integrity levels to objects and subjects. In
the broadest sense, so does the Clark-Wilson model, but unlike the Biba
model, each object has two levels: constrained or high (the CDIs) and
unconstrained or low (the UDIs). Similarly, subjects have two levels: certified
(the TPs) and uncertified (all other procedures). Given this similarity, can the
Clark-Wilson model be expressed fully using the Biba model?

The critical distinction between the two models lies in the certification rules.
The Biba model has none; it asserts that “trusted” subjects exist to ensure
that the actions of a system obey the rules of the model. No mechanism or
procedure is provided to verify the trusted entities or their actions. But the
Clark-Wilson model provides explicit requirements that entities and actions
must meet; in other words, the method of upgrading an entity is itself a TP
that a security officer has certified. This underlies the assumptions being
made and allows for the upgrading of entities within the constructs of the
model (see ER4 and CR5). As with the Bell-LaPadula Model, if the Biba
model does not have tranquility, trusted entities must change the objects’
integrity levels, and the method of upgrading need not be certified.

Handling changes in integrity levels is critical in systems that receive input
from uncontrolled sources. For example, the Biba model requires that a
trusted entity, such as a security officer, pass on every input sent to a process
running at an integrity level higher than that of the input. This is not
practical. However, the Clark-Wilson model requires that a trusted entity
(again, perhaps a security officer) certify the method of upgrading data to a
higher integrity level. Thus, the trusted entity would not certify each data
item being upgraded; it would only need to certify the method for upgrading



data, and the data items could be upgraded. This is quite practical.

Can the Clark-Wilson model emulate the Biba model? The relations described
in ER2 capture the ability of subjects to act on objects. By choosing TPs
appropriately, the emulation succeeds (although the certification rules
constrain trusted subjects in the emulation, whereas the Biba model imposes
no such constraints). The details of the construction are left as an exercise for
the reader (see Exercise 12).

6.5 Trust Models

Integrity models deal with changes to entities. They state conditions under
which the changes preserve those properties that define “integrity.” However,
they do not deal with the confidence one can have in the initial values or
settings of that entity. Put another way, integrity models deal with the
preservation of trustworthiness, but not with the initial evaluation of
whether the contents can be trusted.

Trust models, on the other hand, deal with exactly that problem. They
provide information about the credibility of data and entities. Because trust is
subjective, trust models typically express the trustworthiness of one entity in
terms of another. Interestingly, the term “trust” is difficult to define, and
much work treats it as axiomatic.

We use the following definition:

Definition 6–2. [737] Anna trusts Bernard if Anna believes, with a level of
subjective probability, that Bernard will perform a particular action, both
before the action can be monitored (or independently of the capacity of being
able to monitor it) and in a context in which it affects Anna’s own action.

This defines trust in terms of actors, but it also can apply to the credibility of
information. Asking whether the data is “trusted” is really asking if a reader
of the data believes to some level of subjective probability that the entity



providing the data obtained it accurately and without error, and is providing
it accurately and without error. Hence, in the above definition, the reader is
entity A, the provider is entity B, and the “particular action” is that of
gathering and providing the data.

This definition captures three important points about trust [6]. First, it
includes the subjective nature of trust. Second, it captures the idea that trust
springs from belief in that which we do not, or cannot, monitor. Third, the
actions of those we trust affects our own actions. This also leads to the notion
of transitivity of trust.

Definition 6–3. Transitivity of trust means that, if a subject Anna trusts a
second subject Bernard, and Bernard trusts a third subject Charlene, then
Anna trusts Char-lene.

In practice, trust is not absolute, so whether trust is transitive depends on
Anna’s assessment of Bernard’s judgement. This leads to the notion of
conditional transitivity of trust [6], which says that Anna can trust Charlene
when:

• Bernard recommends Charlene to Anna;

• Anna trusts Bernard’s recommendations;

• Anna can make judgements about Bernard’s recommendations; and

• Based on Bernard’s recommendation, Anna may trust less Charlene less
than Bernard does.

If Anna establishes trust in Charlene based on her observations and other
interactions, the trust is direct. If it is established based on Anna’s acceptance
of Bernard’s recommendation of Charlene, then the trust is indirect. Indirect
trust may take a path involving many intermediate entities. This is called
trust propagation because the trust propagates among many entities.



Castelfranchi and Falcone [364] argue that trust is a cognitive property, so
only agents with goals and beliefs can trust another agent. This requires the
trusting agent, Anna, to estimate risk and then decide, based on her
willingness to accept (or not accept) the risk, whether to rely on the one to be
trusted, Bernard. This estimation arises from social and technological
sources, as well as Anna’s observations and her taking into account
recommendations. They identify several belief types:

• Competence belief : Anna believes Bernard to be competent to aid Anna in
reaching her goal;

• Disposition belief : Anna believes that Bernard will actually carry out what
Anna needs to reach her goal;

• Dependence belief : Anna believes she needs what Bernard will do, depends
on what Bernard will do, or that it is better for Anna to rely on Bernard than
not to rely on him;

• Fulfillment belief : Anna believes the goal will be achieved;

• Willingness belief : Anna believes that Bernard has decided to take the
action she desires;

• Persistence belief : Anna believes that Bernard will not change his mind
before carrying out the desired action; and

• Self-confidence belief : Anna believes that Bernard knows that he can take
the desired action.

Parsons et al. [1505] provide a set of schemes to evaluate arguments about
trust. Trust coming from experience will be based either on Anna’s personal
experience about Bernard (“direct experience”) or on her observation of
evidence leading her to conclude Bernard is reliable (“indirect experience”).
Trust coming from validation requires that, due to his particular knowledge
(“expert opinion”), position (“authority”), or reputation (“reputation”),



Bernard be considered an expert in the domain of the goals or actions that
Anna wants Bernard to perform to reach that goal. Trust can also come from
Anna’s observations about Bernard’s character (“moral nature”) or her belief
that Bernard’s being untrustworthy would be to Bernard’s disadvantage
(“social standing”). Finally, Anna can trust Bernard because of factors strictly
external to any knowledge of Bernard, for example that most people from
Bernard’s community are trustworthy (“majority behavior”), that not trusting
Bernard poses an unacceptable risk (“prudence”), or that it best serves Anna’s
current interests (“pragmatism”).

These humanistic traits have analogues in the technological world, but
ultimately the trust models frame the technology to provide evidence to
support the evaluation of arguments about trust. By using a set of
predetermined belief rules, much of the trust analysis can be automated.
However, the automation is an attempt to mimic the way the relevant
authority, whatever that may be, would evaluate the arguments based on the
belief types to determine the appropriate level of trust.

Trust management systems provide a mechanism for instantiating trust
models. They use a language to express relationships about trust, often
involving assertions or claims about the properties of trust in the model. They
also have an evaluation mechanism or engine that takes data and the trust
relationships (called the query), and provides a measure of the trust in an
entity, or determines whether an entity should be trusted or an action taken.
The result of the evaluation is rarely complete trust or complete distrust;
more often, it is somewhere between.

We distinguish between two basic types of trust models: policy-based models
and recommendation-based models.

6.5.1 Policy-Based Trust Management

Policy-based trust models use credentials to instantiate policy rules that
determine whether to trust an entity, resource, or information. The



credentials themselves are information, so they too may be input to these
rules. Trusted third parties often vouch for these credentials. For example,
Kerberos (see Section 11.2.2) allows users to verify identity, effectively
producing an identity credential. Similarly, certificates (see Section 11.4)
encode information about identity and other attributes of the entity, and are
often used as credentials. Complicating this is that many agents are
automated, particularly web-based agents, and they act on behalf of users to
access services and take other actions. In order to do so, they must decide
which servers to use and which actions to perform. Thus, trust models
generally assume that the agents will act autonomously.

The statement of policies requires a language in which to express those
policies. The differing goals of trust models have led to different languages.
Some, particularly those intended for the Semantic Web, include negotiation
protocols; others focus simply supply a language to express the rules. The
expressiveness of a language determines the range of policies it can express.
Usability of the language speaks to the ease of users defining polices in that
language, as well as the ability to analyze policies. The languages should also
be easily mapped into enforcement mechanisms, so the policies they describe
can be enforced.

EXAMPLE: The Keynote trust management system [246] is based on
PolicyMaker [247], but is extended to support applications that use public
keys. It is designed for simplicity, expressivity, and to be extensible. Its basic
units are the assertion and the action environment.

Assertions are either policy assertions or credential assertions. Policy
assertions make statements about policy; credential assertions make
statements about credentials, and these assertions describe the actions
allowed to possessors of the stated credentials. An action environment is a set
of attributes that describe an action associated with a set of credentials. An
evaluator takes a set of policy assertions describing a local policy, a set of
credentials, and an action environment, and determines whether a proposed



action is consistent with the local policy by applying the assertions to the
action environment.

An assertion is composed of a set of fields listed in Figure 6–5. The “KeyNote-
Version” must appear first if it present; similarly, the “Signature” field must
come last, if present. If the value of the Authorizer field is “POLICY”, the
assertion is a policy assertion. If that value is a credential, the assertion is a
credential assertion. The evaluator returns a result from a set of values called
the Compliance Values.

As an example, consider an email domain [245]. The following policy
authorizes the holder of credential mastercred for all actions:

Authorizer: “POLICY”
Licensees: “mastercred”

When the evaluator evaluates this policy and the credential assertion

KeyNote–Version: 2
Local–Constants: Alice=“cred1234”, Bob=“credABCD”
Authorizer: “authcred”
Licensees: Alice || Bob
Conditions: (app_domain == “RFC822–EMAIL”) &&
            (address ~=  “^.*@keynote\\.ucdavis\\.edu$”)
Signature: “signed”

the evaluator enables the entity with the credential identified by “authcred”
to trust the holders of either credential “cred1234” or credential “credABCD” to
issue credentials for users in the email domain (app_domain == “RFC822–
EMAIL”) when the address involved ends in “@keynote.ucdavis.edu”. So Alice
and Bob might be issuers of certificates for members of that domain, and the
holder of the credential “authcred” will trust them for those certificates. The
evaluator’s Compliance Values are { _MIN_TRUST, _MAX_TRUST }. If the action
environment is:



_ACTION_AUTHORIZERS=Alice
app_domain = “RFC822–EMAIL”
address = “snoopy@keynote.ucdavis.edu”

then the action satisfies the policy and the evaluator would return _MAX_TRUST
(meaning it is trusted because it satisfies the assertions). Conversely, the
action environment

_ACTION_AUTHORIZERS=Bob
app_domain = “RFC822–EMAIL”
address = “opus@admin.ucdavis.edu”

does not satisfy the policy, and the evaluator returns _MIN_TRUST (meaning it
is an un-trusted action).

As a second example, consider separation of duty for a company’s invoicing
system. The policy delegates authority for payment of invoices to the entity
with credential fundmgrcred:

Authorizer: “POLICY”
Licensee: “fundmgecred”
Conditions: (app_domain == “INVOICE” && @dollars < 10000)

To implement the separation of duty requirement, the following credential
assertion requires at least two signatures on any expenditure:

KeyNote–Version: 2
Comment: This credential specifies a spending policy
Authorizer: “authcred”
Licensees: 2–of (“cred1”, “cred2”, “cred3”, “cred4”, “cred5”)
Conditions: (app_domain==“INVOICE”)  # note nested clauses
                –> { (@dollars) < 2500) –> _MAX_TRUST;
                        (@dollars < 7500) –> “ApproveAndLog”;
                    };
Signature: “signed”



This says that the authorizer with credential “authcred” (probably a financial
officer of the company) allows any 2 people with any of the 5 listed
credentials to approve payment of invoices under $7,500, but the approval of
any invoice for $2,500 or more will be logged. So in this context, the
Compliance Value set is { “Reject”, “ApproveAndLog”, “Approve” }. Thus, if
the action environment is:

_ACTION_AUTHORIZERS = “cred1, cred4”
app_domain = “INVOICE”
dollars = “1000”

Figure 6–5: KeyNote fields and their meanings

then the evaluator returns “Approve” because it satisfies the policy. This
assertion

_ACTION_AUTHORIZERS = “cred1,cred2”
app_domain = “INVOICE”
dollars = “3541”

causes the evaluator to return “ApproveandLog”. And these assertions

_ACTION_AUTHORIZERS = “cred1”
app_domain = “INVOICE”
dollars = “1500”

and



_ACTION_AUTHORIZERS = “cred1,cred5”
app_domain = “INVOICE”
dollars = “8000”

cause the evaluator to return “Reject”.

The simplicity of the KeyNote language allows it to be used in a wide variety
of environments. This makes KeyNote very powerful, allowing the delegation
of trust as needed. By changing the evaluation engine, the assertions may be
augmented to express arbitrary conditions. Indeed, KeyNote’s predecessor,
PolicyMaker, allowed assertions to be arbitrary programs, so it supported
both the syntax used in KeyNote and a much more general tool.

Ponder (see Section 4.5.1) can be used to express trust relationships. Rei
[993] is a language for expressing trust in a pervasive computing
environment, and KAoS [1927] focuses on grid computing and web services.
Cassandra [144] is a trust management system tailored for electronic health
records.

6.5.2 Reputation-Based Trust Management

Reputation-based models use past behavior, especially during interactions,
and information gleaned from other sources to determine whether to trust an
entity. This may include recommendations from other entities.

Abdul-Rahman and Hailes [6] base trust on the recommendations of other
entities. They distinguish between direct trust relationships (where Amy
trusts Boris) and recommender trust relationships (where Amy trusts Boris to
make recommendations about another entity). Trust categories refine the
nature of the trust; for example, Amy may trust Boris to recommend
trustworthy web services, but not to vouch for another entity’s identity. Each
entity maintains its own list of relationships.



Figure 6–6: Trust value semantics for Abdul-Rahman and Hailes’
model. (Adapted from [6, p. 53].)

Trust is computed based on the protocol flow through the system. The direct
and recommender trust values have specific semantics, summarized in Figure
6–6. In that figure, “DT” stands for direct trust and “RT” for recommender
trust; many of the latter (represented by “*”) represent how close the
judgement of the recommender is to the entity being recommended to.
Together with an agent’s identification and trust category, this forms a
reputation. Formally, a recommendation is trust information that contains
one or more reputations.

EXAMPLE: Suppose Amy wants to get Boris’ recommendation about Danny,
specifically about his ability to write a program, because Amy needs to hire a
good programmer. Amy knows Boris and trusts his recommendations with
(recommender) trust value 2 (his judgement is somewhat close to hers). She
sends Boris a request for a recommendation about Danny’s programming
abilities. Boris does not know Danny, so he sends a similar request to Carole,
who does know Danny. Carole believes Danny is an above average
programmer, so she replies to Boris with a recommendation of 3 (more
trustworthy than most programmers). Bob adds his own name to the end of
the recommendation and forwards it to Amy.

Amy can now compute a trust value for the path used to find out about Danny
using the following formula:



where T is the entity about which information is sought (in this example,
Danny), P the path taken (here, the path nodes are Boris and Carole), tv(x) is
the trust value of x, and t the overall trust in the path.

The metrics or evaluating recommendations are critical; they are also poorly
understood. The previous formula, for example, “was derived largely by
intuition” [6, p. 57]. The advantage to a simple formula is that it is easily
understood; the disadvantage is that the recommendation score is very
coarse.

Recommendation systems use many different types of metrics. Statistical
models are common, as are belief models (in which the probabilities involved
may not sum up to 1, due to uncertainties of belief) and fuzzy models (in
which reasoning involves degrees of trustworthiness, rather than being
trustworthy or not trustworthy). Previous experience with interactions can
also be factored in.

EXAMPLE: The PeerTrust recommendation system [2049] uses a trust
metric based on complaints as feedback. Let u ∈ P be a node in a peer-to-peer
network P; let p(v, t) ∈ P be the node that u interacts with in transaction t.
Let S(u, t) be the amount of satisfaction u gets from p(u, t). Let I(u) be the
total number of transactions that u performs. Then the trust value of u
computed by the formula

Cr(v) is the credibility of node v’s feedback. One of the proposed measures for
it is:



The credibility of v therefore depends on its prior trust values.

6.6 Summary

Integrity models are gaining in variety and popularity. The problems they
address arise from industries in which environments vary wildly. They take
into account concepts (such as separation of privilege) from beyond the scope
of confidentiality security policies. This area will continue to increase in
importance as more and more commercial firms develop models or policies to
help them protect their data.

Although the policy and reputation trust models are presented separately,
trust management systems can combine them. The SULTAN system [815]
does this using four components. The specification editor and the analysis
tool provide policy-based analyses, and the risk and monitoring services feed
information about experience back into the system.

Underlying most trust models is some form of logic. Various logics such as
fuzzy logics and belief logics incorporate the lack of certainty in general trust
and enable reasoning about trust in the framework of that logic. The result is
very similar to reputation models, in that one obtains various metrics for
trust.

6.7 Research Issues

Central to the maintenance of integrity is an understanding of how trust
affects integrity. A logic for analyzing trust in a model or in a system would
help analysts understand the role of trust. The problem of constructing such a
logic that captures realistic environments is an open question.

The development of realistic integrity models is also an open research



question, as are the analysis of a system to derive models and the generation
of mechanisms to enforce them. Although these issues arise in all modeling,
integrity models are particularly susceptible to failures to capture the
underlying processes and entities on which systems are built.

Models for analyzing software and systems to determine whether they
conform to desired integrity properties is another critical area, and much of
the research on “secure programming” is relevant here. In particular, has the
integrity of a piece of software, or of data on which that software relies, been
compromised? In the most general form, this question is undecidable; in
particular cases, with software that exhibits specific properties, this question
is decidable.

The quantification of trust is an open problem. Part of the problem is an
understanding of exactly what “trust” means, as it depends not only on
environment but also on the psychological, organizational, and sociological
forces in the system being modeled. Even when the entities involved are
automated, a human or group of humans must provide the judgement on
which the trust metrics are based. Perhaps this is why policy-based models
are seen as more definitive — the rules of the policy give a straightforward
answer, whereas reputation-based trust modeling requires feedback to be
effective. But how to evaluate and integrate that feedback to produce results
deemed to be accurate is another complex, and open, problem.

6.8 Further Reading

Nash and Poland discuss realistic situations in which mechanisms are unable
to enforce the principle of separation of duty [1432]. Other studies of this
principle include its use in role-based access control [1118, 1174, 1765],
databases [1470], and multilevel security [1470]. Notargiacomo, Blaustein,
and McCollum [1468] present a generalization of Clark-Wilson suitable for
trusted database management systems that includes dynamic separation of
duty. Foley [698] presents two formal definitions of integrity and uses them



to reason about separation of duty and other mechanisms.

Integrity requirements arise in many contexts. The SELinux example policy
has been analyzed with respect to certain of the Clark-Wilson rules [961].
Saltman [1649] and Neumann [1453] provide an informative survey of the
requirements for secure electronic voting, and other papers discuss models
that provide integrity in voting [16, 391–393, 1328, 1603]. Chaum’s classic
paper on electronic payment [388] raises issues of confidentiality and shows
that integrity and anonymity can coexist; Bitcoin [1426] used his, and other,
ideas to develop a widely used instantiation of digital cash [1427]. Integrity in
databases is crucial to their correctness [93, 757, 817, 1978]. The analysis of
trust in software is also an issue of integrity [46, 101, 1386].

Chalmers compares commercial policies with governmental ones [374]. Lee
[1155] discusses an alternative to Lipner’s use of mandatory access controls
for implementing commercial policies. Another integrity model considers the
acceptance of all parties to the contents of a document [1970].

Trust modeling and management has become more important as the
Internet, and the use of automated agents, have grown. Several surveys
examine trust in various environments like the web [83,386,814,975], for
providing online services [982], for distributed systems [1170], and for social
networks [1125,1446,1973]. Other trust models include REFEREE [418],
which provides trust management for web applications, and Appleseed
[2118], which proposes trust metrics on the Semantic Web. KeyNote has been
used to manage policy efficiently in an Internet protocol [248]. Studies of
metrics provide guidance on their effectiveness in various environments [786,
787, 1004]. The transfer of trust in information integrity protocols has also
been explored [1763].

6.9 Exercises

1. Prove Theorem 6.1 for the strict integrity policy of Biba’s model.



2. Give an example that demonstrates that the integrity level of subjects
decreases in Biba’s low-water-mark policy. Under what conditions will the
integrity level remain unchanged?

3. Suppose a system used the same labels for integrity levels and categories as
for subject levels and categories. Under what conditions could one subject
read an object? Write to an object?

4. In Pozzo and Gray’s modification of LOCUS, what would be the effect of
omitting the run-untrusted command? Do you think this enhances or
degrades security?

5. Explain why the system controllers in Lipner’s model need a clearance of
(SL, { D, PC, PD, SD, T }).

6. Construct an access control matrix for the subjects and objects of Lipner’s
commercial model. The matrix will have entries for r (read) and w (write)
rights. Show that this matrix is consistent with the requirements listed in
Section 6.1.

7. Show how separation of duty is incorporated into Lipner’s model.

8. Verify that Liner’s integrity matrix model (Section 6.3) meets Lipner’s
requirements for commercial models (Section 6.1).

9. In the Clark-Wilson model, must the TPs be executed serially, or can they
be executed in parallel? If the former, why; if the latter, what constraints
must be placed on their execution?

10. Prove that applying a sequence of transformation procedures to a system
in a valid state results in the system being in a (possibly different) valid state.

11. The relations certified (see ER1) and allowed (see ER2) can be collapsed
into a single relation. Please do so and state the new relation. Why doesn’t the
Clark-Wilson model do this?



12. Show that the enforcement rules of the Clark-Wilson model can emulate
the Biba model.

13. One version of Polk’s implementation of Clark-Wilson on UNIX systems
requires transaction procedures to distinguish users in order to determine
which CDIs the user may manipulate. This exercise asks you to explore the
implementation issues in some detail.

(a) Polk suggests using multiple copies of a single TP. Show, with examples,
exactly how to set this up.

(b) Polk suggests that wrappers (programs that perform checks and then
invoke the appropriate TPs) could be used. Discuss, with examples, exactly
how to set this up. In particular, what checks would the wrapper need to
perform?

(c) An alternative implementation would be to combine the TPs and wrappers
into a single program. This new program would be a version of the TP that
would perform the checks and then transform the CDIs. How difficult would
such a combination be to implement? What would be its advantages and
disadvantages compared with multiple copies of a single TP? Compared with
the use of wrappers?

14. In KeyNote, write an assertion that would allow the second action
environment in the example on page 170 to satisfy the policy. For your
assertion, the evaluator is to return _MAX_TRUST.

15. Consider the KeyNote example for the company’s invoicing system. The
assertion requires 2 signatures on any invoice under $10,000. If the invoice is
under $500, the chief financial officer believes this is unnecessary; one
signature should suffice. Write a KeyNote assertion that says only one
signature is needed if the amount of the invoice is under $500.

16. Return to Amy’s problem of finding out if Danny is a good programmer in



the first example of Section 6.5.2. Amy does not know Carole, so she asks
Boris for a recommendation about Carole’s recommendation. Boris wants to
assign a (recommender) trust level of 3 to this. How would this change the
computation of Amy’s trust value for the path used to find out about Danny?

17. SULTAN uses separate modules to consider both policy-based and
reputation-based trust metrics. Devise a generic architecture of a trust
management system that integrates the two types of metrics. How do the
reputation trust values affect the evaluation of the policy rules, and how do
the results of evaluating the policy rules change the reputation trust values?

18. The text states that whether or not the integrity of a generic piece of
software, or of generic data on which that generic software relies, has been
compromised is undecidable. Prove that this is indeed the case.



Chapter 7. Availability Policies
LADY MACBETH: Alack, I am afraid they have awak’d, And ’tis not done. Th’ 
attempt and not the deed Confounds us. Hark! I laid their daggers ready; He 
could not miss ’em.

— Macbeth, II, ii, 10–13.

Confidentiality and integrity policies describe what can be done once a 
resource or information is accessed. Availability policies describe when, and 
for how long, the resource can be accessed. Violations of these policies may 
occur unintentionally or deliberately.

7.1 Goals of Availability Policies

An availability policy ensures that a resource can be accessed in some way in a 
timely fashion. This is often expressed in terms of “quality of service.” As an 
example, a commercial web site selling merchandise will need to display 
details of items for customer requests in a matter of seconds or, at worst, a 
minute. The goal of the customer is to see what the web site is selling, and the 
goal of the site is to make information available to the customer. However, the 
site does not want customers to alter prices displayed on the web site, so there 
is no availability for altering information. As another example, a web site 
enabling students to upload homework must allow some alterations
(students must be able to upload their homework, possibly multiple times per 
assignment) quickly and no access for the students to read other students’ 
assignments. As these examples show, an availability policy defines the type



of access and what a “timely fashion” means. These depend on the nature of
the resource and the goals of the accessing entity.

When a resource or service is not available, a denial of service occurs. This
problem is closely related to the problems of safety and liveness. A denial of
service that results from the service giving incorrect responses means the
service is not performing the functions that the client is expecting; this is a
safety property. Similarly, a denial of service that prevents users from
accessing the service is a liveness problem. But other problems can cause a
denial of service, such as assignment of inadequate resources to a process.

The difference between the mechanisms used to support availability in
general, and availability as a security requirement, lies in the assumptions
underlying the failures. In the general case, lack of accessibility can be
modeled using an average case model, in which this condition occurs
following a (known or unknown) statistical model. The failures occur
naturally. For example, the failure rates of disk drives depends upon many
factors such as the age, the manufacturer, and environment [1533] and can be
statistically modeled, although the precise model to be used is unclear [1702].
But the mechanisms used to support availability as a security requirement
use a worst-case model, in which an adversary deliberately tries to make the
resource or information unavailable. Because attackers induce this condition,
models used in computer security describe failures that are non-random, and
indeed may well be non-statistical.

7.2 Deadlock

Perhaps the simplest form of availability is that of disallowing deadlocks.

Definition 7–1. A deadlock is a state in which some set of processes block,
each waiting for another process in the set to take some action.

Deadlock can occur if four conditions hold simultaneously:



1. The resource is not shared (mutual exclusion);

2. An entity must hold the resource and block, waiting until another resource
becomes available (hold and wait);

3. A resource being held cannot be released (no preemption); and

4. A set of entities must be holding resources such that each entity is waiting
for a resource held by another entity in the set (circular wait).

There are three approaches to handling deadlock: preventing it, avoiding it,
or detecting and recovering from it.

EXAMPLE: Preventing deadlock requires that the system prevent at least one
of the above conditions from holding. Early methods required a process to
request and obtain all resources necessary to complete its task before
starting. An alternative method was to require the process to relinquish all
resources when it needed a new one; then it would simply request the new
one and all the resources it just released. These invalidated the hold and wait
condition, but both have many disadvantages (see Exercise A). Linearly
ordering resource types breaks the circular wait condition. In this scheme,
each resource type ri is assigned a number i. In order to acquire resources of
type ra, the process must first release all resources with a lower or equal
number. It can reacquire them by adding them to the request for ra. Mutual
exclusion is necessary for some resources, as is not preempting their use.

Dijkstra’s Banker’s Algorithm is an example of a deadlock avoidance
technique. A system can be in either a safe state, in which deadlock cannot
occur, or an unsafe state, which may (but need not) lead to deadlock.
Initially, each process states the maximum number and type of resources it
will need to complete. A process needing a resource requests it from the
resource manager. That manager applies the Banker’s Algorithm to
determine whether granting the request will place the system in an unsafe
state; if so, the process blocks until the request can be satisfied. The



algorithm guarantees that all requests will be satisfied in a finite time.
Further, the processes must release allocated resources in a finite time. But
the term “finite” is indefinite; it could be a very long time, but not infinite.
These and other considerations, such as the difficulty of knowing the
maximum number and type of resources a process will use, mean that the
algorithm is not used in practice.

Deadlock detection techniques allow deadlocks to occur, but detects them
and then recovers from them. Resource graphs represent processes and
resources as nodes, requests as directed edges from a process node to a
resource node, and an assignment as a directed edge from a resource node to
a process node. When cycles occur, the property of circular wait holds and the
processes are deadlocked. Recovery techniques include simply terminating
one of the processes, or suspending it and releasing its resources; either of
these methods breaks the cycle. Some systems such as distributed databases
periodically capture their current state as a checkpoint, and when deadlock
occurs they roll back to the most recent checkpoint. Other systems assume
deadlocks are infrequent, and rely on the user to detect them and initiate
recovery (usually by terminating a process).

Deadlock is a specific example of a situation in which a process is denied
service, such as access to a resource. It is usually not due to an attack. A
process can acquire multiple resources needed by other processes, and then
not release them. In this situation, the process is not blocked (although the
others are), so it is not a deadlock.

Denial of service models generalize this problem to include attacks.

7.3 Denial of Service Models

A basic requirement for the use of systems and networks is access. The access
must occur in a time frame suitable for the type of access and the use to which
the accessed resource, and any associated data, will be put.



Definition 7–2. [777] A denial of service occurs when a group of authorized
users of a service makes that service unavailable to a (disjoint) group of
authorized users for a period of time exceeding a defined maximum waiting
time.

The term “authorized user” here must be read expansively. If a user is not
authorized, then in theory access control mechanisms that protect the server
will block the unauthorized users from accessing the server. But in practice,
the access control mechanisms may be ineffective. An intruder may
compromise a user’s account to gain access to a server. The policy controlling
access to a network server may be unworkable, such as one stating that only
customers interested in the products sold may access the server — but the
access control mechanisms could not tell whether a remote user accessing the
server was interested in the products, or trying to block access by others.
Hence the first “group of authorized users” is simply the group of users with
access to the service, whether the security policy grants them access or not.

Underlying all models and mechanisms is the assumption that, in the absence
of other processes, there are sufficient resources to enable a process
requesting those resources to proceed. If those resources cannot be allocated
to the process, then the security problem is one of inadequate resources, a
management problem not dealt with here.

Denial of service models have two essential components. The first is a
waiting time policy. This controls the time between a request for a resource
and the allocation of that resource to the requesting process. A denial of
service occurs when the bound set by this policy is exceeded. The
environment in which the request is made influences the policy. The
acceptable waiting time for a pacemaker to take action affecting a patient’s
heart beating is considerably different than the acceptable waiting time for a
purchase from an Internet web site to be acknowledged.

The second is a user agreement that establishes constraints a process (“user”)
must meet in order to ensure service. These are designed to ensure that a



process will receive service within the waiting time. For example, a user
agreement for parallel processes accessing a mutually exclusive resource
would be that, once a process acquires the resource, it must (eventually)
release that resource and when released, there are enough unallocated
resources to enable a process waiting for those resources to proceed.

When combined, these two components ensure that a process meets the
conditions needed to receive the resources it needs and not create a denial of
service. It will receive those resources after an acceptable waiting time. Thus,
the process can proceed and not itself be denied service.

Two types of models, constraint-based models and state-based models,
formalize these notions.

7.3.1 Constraint-Based Model

Some models of denial of service rely on the enforcement of constraints to
ensure availability. The Yu-Gligor model of denial of service [2078] has two
parts, a user agreement and a finite waiting time policy. The former focuses
on undesirable invocation sequences, and the latter on the sharing policies
and mechanisms.

7.3.1.1 User Agreement

The goal of the user agreement is to describe the properties that the users of
the server must meet. It is not a part of the specification of a service because
it involves actions taken that do not involve the particular service. For
example, user interaction with multiple services requires an agreement
covering those services. An enforcement mechanism is necessary because
users may not follow the agreement, and indeed may be unaware of it. The
deadlock avoidance technique is an example of this.

Definition 7–3. [2078] A user agreement is a set of constraints designed to
prevent denial of service.



Let Sseq be the set of sequences of all possible invocations of a service, and
Useq the set sequences of all possible invocations by a user. The set Ui,seq is the
subset of Useq that user Ui can invoke. The use of a service involves
commands to consume a resource produced or controlled by that service.
This means there are two types of operations Let C be the set of operations
that user Ui performs to consume the service, and let P be the set of
operations that produce the resources consumed by user Ui. As resources
must be produced before they can be consumed, there is a partial ordering of
operations. The partial order relation p < c means that operation p must
precede operation c. Call Ai the set of allowed operations for user Ui. Then the
set Ri is the set of relations between every pair of allowed operations for that
user.

EXAMPLE: Consider the problem of a mutually exclusive resource, in which
only one process at a time may use the resource. The operations here are C =
{acquire} and P = {release}. Each process may execute both operations;
hence, for two processes p1 and p2, Ai = {acquirei, releasei} for i = 1, 2. Given
that a process must acquire the resource before it can release the resource, Ri
= {(acquirei < releasei} for i = 1, 2.

Next, let Ui(k) represent the initial subsequence of Ui of length k and let
no(Ui(k)) be the number of times operation o occurs in Ui(k). Then Ui(k) is
said to be safe if the following two conditions hold:

• if o ∈ Ui,seq, then o ∈ Ai; and

• for all k, if (o1 < o2) ∈ Ri, then no1(Ui(k)) ≥ no2(Ui(k)).

This simply says that if operation o is in the sequence of commands that user
Ui executes, it is an allowed operation, and that if one operation must precede
a second, the number of times the first operation is executed must be at least
as great as the number of times the second operation is executed.

Now consider the resources of all services. Let s ∈ Sseq be a possible



invocation sequence of a service. Operations in s may block, waiting for the
service to become available, to process a response, or for some other reason.
Call this condition c the service condition. Let

represent an operation oi that is blocked waiting for condition c to become
true. Once execution resumes, let oi(c) represent the operation. An important
point is that once c becomes true,

may not resume immediately because another operation waiting on the
condition may proceed first. Let s(0) be the initial subsequence of s up to the
blocked operation

, and let s(k) be the subsequence of operations in s between the k – 1st and
kth time condition c becomes true after

. The notation

means that oi is blocked waiting on condition c at the end of s(0) and
resumed operation at the end of s(k). Then Sseq is said to be live if, for every

there is a set of subsequences s(0), . . . , s(k) such that it is an initial
subsequence of some s ∈ Sseq and

.

EXAMPLE: Return to the mutually exclusive resource of the previous
example, and consider the sequence (acquirei, releasei, acquirei, acquirei,
releasei). The operations acquirei and releasei are both in Ai, and the relation
acquirei < releasei is in Ri. Take o1 = acquirei and o2 = releasei. The



subsequences Ui(k), and the corresponding no(k)s, are:

Ui(1) = (acquirei), so no1(Ui(1)) = 1, and no2(Ui(1)) = 0

Ui(2) = (acquirei, releasei), so no1(Ui(2)) = 1, and no2(Ui(2)) = 1

Ui(3) = (acquirei, releasei, acquirei), so no1(Ui(3)) = 2, and no2(Ui(3)) = 1

Ui(4) = (acquirei, releasei, acquirei, acquirei), so no1(Ui(4)) = 3, and
no2(Ui(4)) = 1

Ui(5) = (acquirei, releasei, acquirei, acquirei, releasei), so no1(Ui(5)) = 3, and
no2(Ui(5)) = 2

Thus, for all k = 1, . . . , 5, no1(Ui(k)) ≥ no2(Ui(k)). Hence the sequence is safe.

Next, let the service condition c be true whenever the resource can be
allocated; that is, initially and whenever a releasei operation is performed.
The sequence

is a live sequence because

for all k ≥ 1. Here, acquirek+1(c) occurs between releasek and releasek+1.

Temporal logic provides a mechanism for expressing user agreements. It
specifies the allowed operations, their order, and the invocation sequence
that users external to the service must obey. In the examples that follow, 
means “henceforth” (that is, the predicate is true and will remain true), and 
means “eventually” (that is, the predicate is either true now or will become
true in the future).1

1See Appendix E for more about predicate and temporal logic.

EXAMPLE:

Return to the example of acquiring and releasing a resource type. Here, the



user agreement must ensure that, once a process is blocked, waiting on an
acquire operation, that a sufficient number of release operations will occur to
release sufficient resources of that type to allow the blocked process to
proceed:

service   resource_allocator

user agreement

in(acquire)  (( (#active_release > 0) ⋁ (free ≥ acquire.n))

This says that, when a process issues an acquire operation, then at some later
time, at least one release operation will occur, and there will be sufficient
resources released so the blocked process can acquire the desired number of
resources.

7.3.1.2 Finite Waiting Time Policy

The goal of a finite waiting time policy is to ensure no user is excluded from
using the resource in question. It consists of three parts.

The fairness policy prevents starvation. It ensures that the process using a
resource will not be blocked indefinitely if the process is given opportunities
make progress. Thus, under a fairness policy, if two processes are vying for a
single resource that must be acquired and released, one process cannot
acquire and release the resource in such a way that the other process has no
chance to acquire the resource.

The simultaneity policy ensures progress by providing the opportunities the
process needs to use the resource. This complements the fairness policy by
providing all processes with opportunities to make progress. The fairness
policy then assures that the process will be able to take advantage of some of
those opportunities.

The user agreement has been discussed in the previous section. It can be



satisfied either by applying the service invocation constraints to ensure that
the sequence of invocations is in Sseq (and thus the users obey the user
agreements), or enforce the individual user agreements, which will ensure
that the sequences of user invocations are controlled before the actual
invocations occur.

If all three parts hold, then no process will wait an indefinite time before
accessing the resource. However, if at least one of these parts does not hold,
then the finite waiting time is not guaranteed, and a process may wait
indefinitely.

Specifying the parts of a finite waiting time policy is done as part of the
service specification.

EXAMPLE: Again using the example of acquiring and releasing a resource
type, this section of a service specification covers the finite waiting time
policy.

sharing policies

fairness

1. (at(acquire) ⋀  ((free ≥ acquire.n) ⋀ (#active = 0)))  after(acquire)

2. (at(release) ⋀ (#active = 0))  after(release)

simultaneity

1. (in(acquire) ⋀ (  (free ≥ acquire.n)) ⋀ ( (#active = 0)))  ((free ≥
acquire.n) ⋀ (#active = 0))

2. (in(release) ⋀ (#active_release > 0))  (free ≥ acquire.n)

In the “fairness” section, the first line says that, when an acquire operation
occurs, at some point in the future (and possibly when it occurs), if there are
sufficient resources free to satisfy the acquire request, and there are no other



active operations, then the process will acquire the resources. The second line
says that when a release operation occurs, and at some point in the future
there are no other active operations, the resource will be released. Both relate
to a process not blocking forever when there are opportunities to progress.

In the “simultaneity” section, the first condition says that whenever a process
blocks at an acquire operation, the conditions that enough resources are
available to satisfy the request and that there are no active operations will be
true infinitely often, and at some point both will be true simultaneously. The
second condition says that if a process blocks at an acquire operation, and in
the future some other processes release their resources, eventually enough
resources will be available to satisfy the request. These two conditions deal
with a process’ ability to make progress.

Combined with the user agreement specification above, these ensure that the
process will not block indefinitely on an acquire or release operation.

7.3.1.3 Service Specification

The service specification consists of interface operations, private operations
not available outside the service, resource and concurrency constraints, and
the finite waiting time policy. Thus, it depends on what the service is, and
how it is to be invoked.

EXAMPLE: Figure 7–1 shows the specification for the resource allocation
service. The interface operations define the entry points to the service. A
process may invoke the acquire operation to acquire some number of units,
but no more than the maximum it is allowed (quota[]textitid]); if it tries to,
an exception occurs. Similarly, if it attempts to release more units than it has
(own[id]) by invoking the release operation, an exception occurs.

The resource constraint section defines the conditions that must hold
throughout the operation of the service. Constraint 1 says that the number of
available units of the resource must always be non-negative and less than the



total number of resource units (size).

Figure 7–1: Example service specification for the resource
allocation service (from [2079, p. 589])

Constraint 2 says that a process must have a non-negative number of units
assigned, and the number of units assigned must be no greater than the
maximum the process is allowed to have. Constraint 3 says that the number



of unallocated resource units does not change until a successful acquire or
release operation occurs. The last constraint says that the number of
resources a process has does not change until a successful acquire or release
operation occurs. Taken together, these constrain both the assignment of
resources in general and the assignment to a particular process.

The concurrency constraints enforce mutual exclusion, so only one process at
a time may invoke the service. The first constraint says that at most one
process may use the service at a time; the second says that when a process
uses the service, it will eventually end its use of the service.

Combined with the sharing policies discussed above, these policies ensure
that no denial of service occurs when the user agreement is enforced.

The service specification policies and the user agreements prevent denial of
service if they are enforced. But they do not prevent a long wait time; merely
that the wait time is finite. A state-based model considers this problem.

7.3.2 State-Based Modes

Millen’s state transition model [1345] is similar to the Yu-Gligor model in the
previous section. It allows a maximum waiting time to be specified. The
model is based upon a resource allocation system and a denial of service
protection base that enforces its policies.

7.3.2.1 Model of a Resource Allocation System

Let R be a set of resource types, and assume the number of each is constant.
Each resource type r ∈ R has some fixed number of units, called the capacity
c(r) and a maximum holding time m(r) that a process can hold a resource.

Let P be a set of processes. A process can be in one of two states, running or
sleeping. When a process is allocated a resource, it is running. Multiple
processes may be running at a time. An upper bound limits the amount of
time a process can run without being interrupted, if only by the scheduler. So,



for example, if the system uses a round robin scheduler with a quantum of q,
then the process will be suspended after q units of time have passed. If the
CPU is considered a resource, then m(CPU) = q.

The function A : P × R → ℕ is the current allocation of resources of type r to
process p. It can be represented as a matrix. The notation Ap(r) is a vector of
the number of units of each resource type currently allocated to p. As no more
than c(ri) resources of type ri exist, no more than c(ri) units of the resource
can be allocated at any time. Thus:

(R1) The system cannot allocate more instances of a resource type than it has.
So:

The function T : P → ℕ represents the system time when the resource
assignment to the process was last changed. Its range is the number of time
units at which the change occurred. It can be represented as a vector, each
element corresponding to a process’ associated time.

Next come the requirements of the process with respect to resources. The
function QS : P × R → ℕ is the required allocation matrix for resources to
processes.

is the number of resources r beyond that which it is holding that p will need
simultaneously. As with A, the notation

means that process p will require up to

additional units of resource r. Similarly, the function QT : P × R → ℕ is a
matrix the entries of which show how much longer the process needs the



resources allocated. Like T , each entry is measured in time units and so all
values are non-negative.

Given this, let running(p) be true if process p is executing, and false
otherwise. Then p has all the resources it requires to proceed. Thus:

(R2) A currently running process must not require additional resources to
run:

The predicate asleep(p) is true when the process is not executing. This might
be because it needs resources (that is,

or because it is blocked for a reason unrelated to resource allocation.

This defines a current state of a system.

A state transition is represented as (A, T, QS, QT) → (A′, T′, QS′, QT′). For our
purposes, state transitions occur as a result of allocation and deallocation of
resources (that is, changes to A), or changes in resource requirements
(changes to QS or QT). The former may occur at anytime that the process
involved is not running (ie, running(p) = false), and the latter just before the
process enters the non-running state.

There are three types of transitions of interest.

• A deactivation transition is a transition running(p) → asleep′(p). The
process ceases to execute.

• An activation transition is a transition asleep(p) → running′(p). The
process begins or resumes execution.

• A reallocation transition is a transition in which a process p has resources
allocated or deallocated. It can only occur when asleep(p).



Consider a reallocation transition. A process must block for its resource
allocation to change. If a process is running both before and after the
transition, the reallocation cannot affect that process. Thus:

(R3) Resource reallocation does not affect the allocations of a running
process. So

A process makes progress when it runs for some period of time. This
execution must occur between changes in the allocation of resources.
However, T is changed only when a process blocks for resource allocation or
deallocation. Thus:

(R4) The time T (p) associated with a process p changes only when resources
are allocated to, or deallocated from, p. So

As a process can block for a variety of reasons, the difference in successive
time values indicates the time between changes in the allocation of resources
to a process, and not actual execution time. Further, as time runs forward, the
values in the vector are monotonically increasing between changes in the
allocation of the CPU:

(R5) Updates in a time vector increase the value of the element being
updated. So

When a process’ resource allocation changes, the values in the allocation
matrix QS must be updated. If the process updates the elements in the matrix
during its activation transition, then resources that are allocated may not be
properly accounted for, especially if the process does not immediately resume
execution after the change. This constraint requires that the system update
the matrix before the process resumes execution.



(R6) When a process p is reallocated resources, the allocation matrix
elements are updated before the process resumes execution. So

(R7) The time that the process needs the resources does not change. So

Finally, when a deactivation transition occurs, a process may or may not
change its resource requirements. But it will surrender the CPU.

(R8) When a process ceases to execute, the only resource it must surrender is
the CPU. So

A resource allocation system is a system in a state (A, T, QS, QT) satisfying
(R1) and (R2) and with state transitions being constrained to meet (R3)–
(R8).

7.3.2.2 Denial of Service Protection Base

In addition to the constraints on the resource allocation system, the denial of
service protection base further constrains resource allocation to meet a
specific policy.

Definition 7–4. [1345] A denial of service protection base (DPB) is a
mechanism that is tamperproof, cannot be prevented from operating, and
guarantees authorized access to the resources it controls.

A DPB has four parts: a resource allocation system, a resource monitor, a
waiting time policy, and a user agreement.

A resource monitor controls the allocation and deallocation of resources, and



their timing. For example, it may require that the allocation of resources to a
process that process’ requirement for more resources not exceed the total
number of resources of each type, and that the process will be assigned the
resources it needs before some maximum time..

(D1)  is called feasible if

.

(D2) Tp is called feasible if (∀i) [Tp(ri) ≤ max(ri)], where max(ri) is the
maximum time a process must wait for its needed allocation of resources of
type i.

A user agreement adds a (possibly empty) set of additional constraints on the
resource monitor. In this model, the constraints apply to changes in
allocation of resources when a process transitions from a running state to a
state in which it is not running.

A waiting time policy describes how long a process can wait for resources.
Several such policies are possible. Section 7.3.1.2 presents a finite waiting
time policy in the context of the Yu-Gligor model. In this model the waiting
time policy is expressed in terms of transitions. Let σ = (A, T, QS, QT). Then a
finite waiting time policy is:

This says that for every process p and every state σ, there is a successor state
in which p is executing and resources have been allocated to p. A maximum
waiting time policy is:

Other policies are possible.

In addition to these parts, a DPB must satisfy two constraints:



• Each process that satisfies the user agreement constraints will progress in a
way that satisfies the waiting time policy.

• No resource other than the CPU is deallocated from a process unless that
resource is no longer needed:

EXAMPLE: A DPB is designed to prevent denial of service attacks. The
system running it has only one CPU, and there is a maximum waiting time
policy in place. The user agreement has 3 parts:

(C1) The resource allocation and time requirements of the processes satisfy
(D1) and (D2)

(C2) A process in a running state executes for at least a minimum amount of
time before it transitions to a non-running state.

(C3) If the process requires a resource type, then the time it needs that
resource for when it enters a non-running state is the difference between the
time it needed that resource for when it entered the previous running state
and the time slice for which it just ran. More precisely,

Consider a system with n processes and a round robin scheduling algorithm
with quantum q. Initially, no process has any resources. The resource
monitor selects a process p to give resources to; when that process has the
resources it needs, it executes until its associated time vector

or the monitor concludes p does not satisfy (C1).

Figure 7–2: The TCP three-way handshake. The SYN packet is a
TCP packet with sequence number s (or t) and the SYN flag set.



Likewise, the ACK packet is a TCP packet with acknowledgment
number s + 1 (or t + 1) and the ACK flag set. The middle message is
a single TCP packet with both SYN and ACK flags set.

First, we show that no resource ri is deallocated from a process p that satisfies
(C1) until

. Before a process p is selected, no resources are allocated to any process.
Thus, the next process that satisfies (C1) is selected. It is activated and runs
for until the process enters the asleep state or q. The former means the
process has completed. When the latter occurs, the monitor simply gives the
process p another quantum of execution time. This repeats until

, at which point the process needs no more resources.

Let m(ri) be the the maximum time that any process will hold resources of
type ri. Take M = maxr m(r). Because p meets (C1), M is also an upper bound
for all elements of . Take d to be the lesser of q and the minimum amount
of time before the process transitions to a non-running state; by (C2), such a
minimum exists. By (C3), at the end of each quantum, m(ri) is reduced by d.
Thus, after

quanta, every element of  must be 0. Thus, no resources are deallocated
until

, as claimed.

Next, we show that there is a maximum time for each round robin cycle. Let
ta be the time between the resource monitor beginning the cycle the time
when it has allocated the required resources to the favored process p. Then
the resource monitor allocates the CPU resource to p; call this time tCPU. It



does this between each quantum When the process completes, the resource
monitor deallocates the resources given to p; this takes time td. Thus, as p
satisfies (C1), the time needed to run p and deallocate all resources is

. So the maximum time the cycle will take is

. Thus, there is a maximum time for each round robin cycle.

These two results will prevent a denial of service.

7.4 Example: Availability and Network Flooding

The SYN flood is the most common type of flooding attack. It is based on the
initiation of a connection using the TCP protocol (see Figure 7–2) [618]. The
attacker sends the SYN packet to the target, which replies with a SYN/ACK
message. But the target fails to receive the ACK packet. As a result, the
resources used to hold information about the (pending) connection are held
for a period of time before they are released.

The attacker can suppress the sending of the ACK in a number of ways. First,
the SYN packet might contain the (spoofed) source address of a non-existent
or non-responsive host, so the host either never receives the SYN/ACK packet
or never responds to it. The attacker could also use the IP address of a system
under the attacker’s control, so the attacker can block the ACK packet from
being sent. This is particularly attractive if the attacker controls a large
number of systems such as a botnet (see Section 23.5). If the packets come
from multiple sources but have the same destination, the attack is a
distributed denial of service attack.

In what follows, the term “legitimate handshake” refers to a connection
attempt that is not part of a SYN flood. If the client in a legitimate handshake
receives the SYN/ACK packet from the server, it will respond with the



appropriate ACK to complete the handshake and begin the connection. The
term “attack handshake,” on the other hand, refers to a connection attempt
that is part of a SYN flood. The client in an attack handshake will never send
an ACK packet to complete the handshake. When the first step in the
handshake completes, the server has a “pending connection.” and once the
handshake completes, the server opens a connection. A critical observation is
that the server cannot distinguish between a legitimate handshake and an
attack handshake. Both follow the same steps. The only difference lies in
whether the third part of the handshake is sent (and received).

7.4.1 Analysis

There are two aspects of SYN flooding. The first is the consumption of
bandwidth. If the flooding is more than the capacity of the physical network
medium, or of intermediate nodes, legitimate handshakes may be unable to
reach the target. The second is the use of resources—specifically, memory
space—on the target. If the flooding absorbs all the memory allocated for
half-open connections, then the target will discard the SYN packets from
legitimate handshake attempts.

Placing the SYN flood attack in the context of the models of denial of service
illuminates why the attack works, and how countermeasures compensate for
it. The key observation is that the waiting time policy has a maximum wait
time, which is the time that the sending process will wait for a SYN/ACK
message from the receiver. Specifically, the fairness policy component must
assure that a process waiting for the resources will acquire them. But this
does not hold; indeed, the point of the attack is to ensure this does not
happen. In terms of the Yu-Gligor model, the finite wait time does not hold;
in terms of the Millen model, requirement (D2) does not hold. Further, the
(implicit) user agreement that traffic from one client will not prevent that of
other clients from reaching the server, and that once begun the client will
complete the 3-way TCP handshake, is also violated. So in both models, the
user agreements are violated.



Countermeasures thus focus on ensuring the resources needed for the
legitimate handshake to complete are available, and every legitimate client
gets access to the server. But the focus of the countermeasures differ. Some
manipulate the opening of the connections at the end point; others control
which packets, or the rate at which packets, are sent to the destination. In the
latter case, the goal of the countermeasures is to ensure the implicit user
agreements are enforced. In the former, if the focus is ensuring that client’
connection attempts will succeed after some time, the focus is the waiting
time policy; otherwise, it is the user agreement.

Methods to provide these properties may involve intermediate systems, the
server, or both.

7.4.2 Intermediate Systems

This approach tries to reduce the consumption of resources on the target by
using routers to divert or eliminate illegitimate traffic. The key observation
here is that the SYN flood is handled before it reaches the firewall, at the
infrastructure level. The goal is to have only legitimate handshakes reach the
destinaton system.

EXAMPLE: Cisco routers can use “TCP intercept mode” to implement this
approach [2139]. When the router sees a SYN packet coming from the
Internet, it does not forward the packet to its destination. Instead, the router
responds, and tries to establish the connection. If the SYN packet is part of a
legitimate handshake and a connection is established, the router establishes a
connection with the intended destination and merges the two connections. If
the SYN packet is part of an attack handshake, the router never sees a
following ACK packet, and times the pending connection out without ever
contacting the putative destination. The router uses short time-outs to ensure
it does not run out of space for pending connections. The TCP intercept
feature may be set either on a per-host basis or for all hosts on the Internet.

An alternative is to have a system monitor the network traffic and track the



state of the three-way handshake.

EXAMPLE: Synkill [1704] is an active monitor that analyzes packets being
sent to some set of systems to be protected. It classifies IP addresses as never
seen (null), not flooding (good), flooding (bad), or unknown (new). Initially,
a set of IP addresses may be put into these classes. As synkill monitors the
network, it adds addresses to each class.

When synkill sees an SYN packet, it checks the IP address. If that address is
bad, synkill immediately sends an RST to the destination. This terminates the
pending connection. If the IP address is good, synkill ignores the packet. If
the IP address has not yet been seen, it is classified as new. A subsequent
ACK or RST packet from the new address will cause the address to be added
to the list of good addresses, because its behavior is correct, but if no such
packet is seen for a specified expiry period of time, the new address is
assumed to be attempting a SYN flood and is moved into the bad set of IP
addresses, and an RST is sent to the destination.

If no traffic from a good address is observed during a different time interval,
called the staleness time, the address is deleted from the list of good
addresses.

Experiments showed that the effects of using synkill enabled legitimate
connections to be completed. Delays grew as the rate of SYN packets from
different IP addresses grew, but the developers concluded that the delays
were acceptable given a powerful enough computer running synkill.

A third method is to place the intermediate systems as near to the probable
sources of the attack.

EXAMPLE: D-WARD [1362] is a defense against denial of service attacks that
relies on routers close to the sources (as opposed to the target networks),
reducing the congestion throughout the network and providing accurate
blocking of attack traffic without interfering with legitimate traffic. It is



placed at the gateway of networks, and examined packets leaving the
network, thereby entering the Internet.

D-WARD has three components. The observation component has a set of
legitimate internal addresses. It monitors packets leaving the network over
intervals of time, and gathers statistics on them. Any packets that have
addresses that are not legitimate are discarded. During each interval, it tracks
the number of simultaneous connections to each remote hosts; an unusually
large number may indicate an attack on a remote host from a system the
network. It also examines connections where there is a large amount of
outgoing traffic but little response traffic. For some protocols, this indicates
that the remote host is overwhelmed. It then aggregates traffic statistics to
each remote address, and classifies the flows as attack, suspicious, or normal.
If the statistics match a legitimate traffic model, the flow is normal; if not, it is
attack. Once the statistics of the flow begin to match a legitimate traffic model
(indicating the attack has ended), the flow becomes suspicious, and remains
so for a period of time. If the flow remains suspicious and not attack, then
after that time it becomes normal.

When an attack is detected, the rate-limiting component limits the amount of
packets that can be sent. This reduces the volume of traffic from the network
to the remote host. Unlike many systems, D-WARD bases how it limits the
rate upon its best guess of the amount of traffic the remote host can handle.
When the flow becomes normal, D-WARD raises the rate-limit until the
sending rate is as before.

The traffic-policing component obtains information from both the
observation and the rate-limiting components, and based on that decides
whether to drop packets. For example, packets for normal connections are
always forwarded. Packets for the other flows may be forwarded provided
doing so does not exceed the flow’s rate limit.

D-Ward was deployed on systems in a research laboratory for 4 months. A
large number of false alerts occurred during the first month. Tuning the D-



WARD parameters significantly reduced this number, and eliminated user
complaints about network problems.

The problem with these techniques is that they simply push the focus of the
attack back from the firewall onto infrastructure systems. They do not solve
the problem, but depending on how the intermediate systems are distributed,
they may ameliorate it sufficiently to allow legitimate connections to reach
their destinations.

7.4.3 TCP State and Memory Allocations

This approach springs from the way in which most TCP servers are
implemented. When a SYN packet is received, the server creates an entry in a
data structure of pending connections and then sends the SYN/ACK packet.
The entry remains until either a corresponding ACK is received or a time-out
occurs. In the former case, the connection is completed; in the latter case, a
new entry for the next SYN packet is created. Under a SYN flood, the pending
connections in the data structure never move to the connected state. As these
time out, new SYNs create new entries to continue the cycle.

The data structure contains the state of the pending connection. This
information typically includes the source IP address, a sequence number, and
other (internal) information. When the client replies with an ACK packet to
complete the handshake, the server uses this information to verify that the
ACK packet corresponds to the initial SYN packet. The SYN flood succeeds
because the space allocated to hold this state information is filled before any
three-way handshakes are completed. Legitimate handshakes cannot obtain
space in the data structure. However, if legitimate handshakes can be assured
space, to some level of probability, then legitimate handshakes have a
probability of successfully completing even in the face of a denial of service
attack.

Several techniques are used to make availability of space more likely [618].
One is to reduce the space used to store connection information.



EXAMPLE: The SYN cache technique allocates space for each pending
connection, but the space is much less than for a full connection [1157]. The
FreeBSD system implements this approach [2200]. On initialization, a hash
table (the syncache) is created. When a SYN packet arrives, the system
generates a hash value from the packet header and uses that hash to
determine which bucket to store the pending connection information in. If
the bucket is full, the oldest element is dropped. The system stores enough
information to be able to send a SYN/ACK, which it does. If the remote host
returns the appropriate ACK, the system removes the pending connection
entry from the hash table. It then uses this to create a connection, storing the
data associated with it in a different table. If an RST comes in, the system
searches the syncache for a corresponding entry and deletes it. If there is no
response, another SYN/ACK is sent after a short time interval. This is
repeated for a fixed number of times, and if there are no responses, the
pending connection is deleted from the table.

A second approach is to push the tracking of state to the client. For example,
if the state can be encoded in the initial sequence number of the ACK, the
server can re-derive the information from information in the client’s ACK
packet. Then no state needs to be kept on the server system. This approach is
called the SYN cookie approach [183]. The FreeBSD system also uses this
technique [2200].

EXAMPLE: When a SYN packet arrives, the kernel generates a number called
a syncookie. The system then sends a SYN/ACK to the remote host with the
cookie as the ACK sequence number. If a corresponding ACK packet is
received, the data in that packet enables the cookie to be recomputed and
compared to the sequence number in the ACK. If they match, a connection is
built; if not, the packet is ignored.

FreeBSD systems can use the SYN cookie technique to augment the use of the
SYN cache. In this configuration, if a pending connection cannot be inserted
into the syncache (for example, because there are too many incoming



connections), the system will use the SYN cookie technique.

The syncookie is constructed using a cryptographic hash function to hash
data from the source and destination addresses and ports, flags, a sequence
number, and one of two pieces of information generated by the FreeBSD
system that are changed every 15 seconds. The cookie consists of 24 bits from
the hash augmented by some control information, bringing it to 32 bits to
form the cookie. This construction makes the cookie much harder to guess
than an ordinary sequence number.

Combining the SYN cookie and SYN cache techniques overcomes one of the
problems of the SYN cache defense, that of the syncache being full. Should
that happen, the next handshake will either cause an existing entry to be
dropped, potentially interrupting a legitimate handshake, or the incoming
handshake will be ignored. SYN cookies introduce other problems. The
construction of the cookie omits certain fields from the initial SYN packet
that can provide parameters to make the connection more efficient. Further,
an attacker can attempt to forge an ACK with a valid cookie as the sequence
number. This would require a large number of packets (see Exercise 1), and
the attacker could not tell from the connection whether she succeeded.

A third technique assumes that there is a fixed amount of space for the state
of pending connections. A SYN flood causes attack handshakes to fill this
space. After some constant amount of time (usually 75 seconds), the server
deletes the state information associated with the attack handshake. This is
called the “time-out” of the pending connection. This approach simply varies
the times before the time-outs depending on the amount of space available
for new pending connections. As the amount of available space decreases, so
does the amount of time before the system begins to time out connections.
This approach is called adaptive time-out.

EXAMPLE: Freedman [725] modified the kernel of a SunOS system to
provide adaptive time-outs of pending connections. First, he shortened the



time-out period for pending connections from 75 to 15 seconds. He then
modified the formula for queuing pending connections. Suppose a process
allows up to b pending connections on a given port. Let a be the number of
completed connections that the process has not begun using.2 Let p be the
number of pending connections. Let c be a tunable parameter. When a + p >
cb, the current SYN message is dropped.

2Specifically, the number of connections that have completed the TCP three-
way handshake but are awaiting an accept system call from the process.

Adaptive time-outs run the risk of blocking legitimate handshakes as well as
attack handshakes, so the parameters must be chosen carefully.

These techniques improve the ability of systems to continue to be available
during flooding attacks. The first two techniques change the allocation of
space for pending connections by trading the space used to store the state
information of pending connections for extra computations to validate the
states of incoming ACKs. The third method times out pending connections
quickly to make more space available for the incoming handshakes.

7.4.4 Other Flooding Attacks

An attacker can use a relay to create flooding. A reflector attack is one in
which an attacker uses other systems to relay (reflect) attacks against a
victim. An amplification attack has the attacker send a small amount of traffic
to another system, which in turn sends much more traffic to the victim. One
such attack amplifies the number of packets received from the attacker.

EXAMPLE: The Smurf attack is a classic amplification attack. It relies on the
router forwarding ICMP packets to all hosts on its network. The attacker
sends an ICMP packet to the router with the destination address set to the
broadcast address of the network (the last octet of the IP address is always
255). The router then sends a copy of the packet to each host on the network.
By sending a steady stream of such packets, the attacker achieves the effect of



sending that stream to all hosts on that network even though there is really
only one stream of ICMP packets.

The countermeasure is to block the router from forwarding external ICMP
packets that have the broadcast address as the destination.

A second attack amplifies the size of the packet that the attacker sent.

EXAMPLE: A DNS amplification attack [2163] exploits DNS resolvers that are
configured to accept queries from any host rather than only hosts on their
own network. The attacker sends a packet with the source address set to that
of the victim. This packet contains a query that will cause the DNS resolver to
send a large amount of information to the victim. For example, a zone
transfer query results in the source being sent all the resource records for that
zone. A query is typically small; the records for the zone may comprise a large
amount of data. Thus, one small query results in a large amount of data being
sent to the victim. The data will be sent in multiple packets, each larger than
the query packet.

A reflector attack hides the identity of the host from which the attack
originates. The attack appears to come from the reflector system or systems.
If these systems are scattered throughout the Internet, then they can easily
overwhelm the victim, especially if the attack is an amplification attack. The
key is that the attacker must send a message that causes the reflector to
forward traffic to the victim — and if the message causes the reflector to
create much more traffic than the size of the message, or the number of
packets in the message, the attack will be more effective.

An interesting class of denial of service attacks send packets to the target in
pulses, each pulse being large enough to cause the target to miss incoming
packets. This pulsing denial-of-service attack [1228] may only degrade the
target’s performance, but if that drops below the stated quality of service, this
is a denial of service attack. This attack induces three anomalies in the traffic.
When the attack floods the victim, the ratio of the incoming TCP packets to



the outgoing ACKs increases dramatically, because the rate of incoming
packets is much higher than the system can send ACKs. When the attacker
reduces the number of packets it sends to the victim, the number of ACKs will
drop; coupling this with an analysis of the distribution of the incoming packet
interarrival time, which will be anomalous, this indicates a pulsing denial of
service attack. The Vanguard detection scheme uses these characteristics to
detect this attack [1227].

7.5 Summary

Availability policies speak to the ability to access systems, data,, and other
resources. With respect to security, availability policies deal with malicious
processes that attempt to deny service to other processes.

Models of denial of service present conditions under which availability is not
guaranteed. They have two key components. A waiting time policy describes
the length of time a process can wait before a denial of service occurs. This
can be presented as a maximum waiting time, a finite waiting time, or some
other policy. A user agreement consists of constraints on the processes using
the resource to ensure they will receive service within the waiting time, and
not prevent other processes from receiving services. The Yu-Gligor model
presents these components as constraints. The Millen model uses constraints
on state transitions to ensure availability.

Networks provide examples of the instantiation of these models. The SYN
flood attack exploits the opening handshake to establish a TCP connection by
beginning but not completing the handshake. This violates the waiting time
policies with respect to non-attack connection establishment.
Countermeasures seek to ensure that the waiting time policy is met, for
example by winnowing out attacks at an intermediate host or by limiting the
amount of state, or not keeping state, at the server system. Once the
handshake completes, a connection is then established.



Reflector and amplification attacks hide the source of the attack.
Amplification attacks also cause the reflector to send much more traffic to the
victim than the reflector received from the attacker.

7.6 Research Issues

Characterizing the effects of denial of service attacks, and hence lack of
availability, leads to two types of models. The first type is statistical or
numerical and requires metrics appropriate for the environment being
studied. How to develop these metrics, and demonstrate they adequately
capture the quantification sought, is an area of active research. The second
type of model is formal, examining the causes of the lack of availability and
developing requirements to prevent those conditions from arising.

Preventing and recovering from denial of service attacks in networks is also
an area of active work. The way in which they are launched, the
intermediaries used to amplify or reflect the attacks, and vulnerabilities in
both system and infrastructure systems contribute all must be considered.
Bandwidth consumption leads to distributed detection and remediation to
prevent the consumption from growing too great. How to do this is complex
because of the multiplicity of entities on the Internet, and that different rules
and laws may control what they can (or are willing) to do. This makes
infrastructure defenses that depend upon components in different
organizations or jurisdictions a legal and political problem as well as a
technical one.

The nature of wireless environments exacerbate the problem. Enabling
wireless networks to function in the face of jamming or other attacks is
growing in importance as the Internet of Things also grows, because many
such devices communicate with their controller or with one another using
wireless protocols and mechanisms. With vehicular networks, where
autonomous automobiles communicate with one another to avoid crashes, an
effective denial of service could be catastrophic for the occupants of the car



and others nearby. Availability of the network components and end points
thus is critical, meaning how a lack of availability is handled is equally
critical.

When a previously unavailable system becomes available, service is restored
to an acceptable degree but possibly not to the desired degree. Resilience is
an aspect that describes this recovery. A resilient system is one that can
recover to the desired degree when a failure occurs. The security aspects of
resilience are based on availability or lack of availability, and deal with
recovery. Resilience in confidentiality inverts the problem: how does one
recover from the leaking of information, which is now widely available, when
that information should be available only to a small set of entities? Given the
leaking of secret corporate, government, and personal information, this
question is a fertile area for research.

7.7 Further Reading

Chang [384] and Peng et al. [1518] provide tutorials on network-based denial
of service attacks and countermeasures. Schneider [1690] uses a state
machine representation to describe protocols for different models of failure,
and how to tolerate these faults.

The quantification of lack of availability requires the development of metrics.
Mirkovic et al. [1363] develop a series of metrics from network traces to
characterize quality of service, and hence availability, at multiple network
layers. Data from SETI@home [971] enabled researchers to develop a method
to find sets of hosts with similar statistical properties with respect to
availability. This is essential to understand when a statistical model of
availability can be applied to analyze availability, and when a new model
must be developed. Ford et al. [701] use data from Google’s storage
infrastructure to characterize the availability of cloud-based storage systems.
Xie and Yu [2048] use statistical mechanisms in traffic patterns and
document accesses to detect denial of service attacks on web sites. Availability



of a software system has also been studied [1903], as has the quantification of
resilience of ad hoc networks to denial of service attacks [1].

PacketScore [1064] is a filtering mechanism that scores incoming packets
based on a variety of attributes, and uses that information to build a dynamic
model of incoming traffic. It then discards packets that exceed certain
thresholds that include a consideration of system load. The Nozzle [1849]
uses a set of layers that filter incoming traffic based on each layer’s policy and
on the level of congestion at that layer.

Various network architectures can inhibit the effectiveness of denial of service
attacks. The Traffic Validation Architecture [2057] puts a capability3 into the
SYN/ACK packet, and all subsequent packets must include that capability to
be passed on to the destination. Other architectures use puzzles to limit the
ability of attackers to flood [779]. This can be done at the initiation of a TCP
connection [1982, 1990] or at the IP level [666]. It can also be done at
intermediate filtering nodes [1242]. An approach based on the Cognitive
Packet Network infrastructure [761] has also been proposed.

3See Section 16.2.

Different models present different ways to think about lack of availability.
Meadows [1317] proposes developing protocols that are resistant to denial of
service attacks, and formalizes the principles for this. Aura et al. analyze
attempts to disable links within a network to isolate portions of that network
[98]. Myers and Liskov’s model of decentralized labeling for confidentiality
and integrity [1416] has been extended to availability [2103]. A fault-tree
based model has been applied in practice [239]. Taxonomies are derived from
defenses and attacks [401, 1813].

7.8 Exercises

1. Calculate the number of packets an attacker will need to generate and send
to have a 0.5 probability of creating a syncookie that works.



2. Consider an availability method that requires a client to present the
solution to a puzzle in order for the server to accept packets from it. Under
the Yu-Gligor constraint model, would the focus for this enforcement
mechanism be a waiting time policy, a user agreement, or both? Why?

3. Consider countermeasures for the SYN flood attack that are present on
intermediate systems and are designed to allow only legitimate handshakes
reach the destination system (see Section 7.4.2). Is the focus of this type of
countermeasure the waiting time policy, the user agreements, or both? Why?

4. Describe a mechanism that protects availability in a distributed system.
Rhe mechanisms you identify must provide enable the protected services to
provide correct responses as well as allow access to the service.

5. The problem of resilience in confidentiality poses an availability problem in
which availability is to be reduced and not expanded. Discuss how this might
be done, and what the implications of each proposed method are.

6. The “right to be forgotten” is a legal principle in the European Union
[2132]. It provides that, under certain circumstances, an individual can have
data about them removed from Internet search engines. This right is not
recognized in many countries. Given that, how does the right to be forgotten
affect availability?



Chapter 8. Hybrid Policies
JULIET: Come, vial. What if this mixture do not work at all? Shall I be marry’d 
then tomorrow morning? No, no! this shall forbid it, lie thou there.

— The Tragedy of Romeo and Juliet, IV, iii, 20–22.

Few organizations limit their security objectives to confidentiality, integrity, 
or availability only; most desire all, in some mixture. This chapter presents 
two such models. The Chinese Wall model is derived from the British laws 
concerning conflict of interest. The Clinical Information Systems security 
model is derived from medical ethics and laws about dissemination of patient 
data. Traducement was developed to model the recording of real estate 
transfers. Two other models present alternative views of information 
management. Originator controlled access control lets the creator determine 
(or assign) who should access the data and how. Role-based access control 
formalizes the more common notion of “groups” of users.

8.1 Chinese Wall Model

The Chinese Wall model [294] is a model of a security policy that refers 
equally to confidentiality and integrity. It describes policies that involve a 
conflict of interest in business, and is as important to those situations as the 
Bell-LaPadula Model is to the military. For example, British law requires the 
use of a policy similar to this, and correct implementation of portions of the 
model provides a defense in cases involving certain criminal charges
[2171,2230]. The environment of a stock exchange or investment house is the



most natural environment for this model. In this context, the goal of the
model is to prevent a conflict of interest in which a trader represents two
clients, and the best interests of the clients conflict, so the trader could help
one gain at the expense of the other.

8.1.1 Informal Description

Consider the database of an investment house. It consists of companies’
records about investment and other data that investors are likely to request.
Analysts use these records to guide the companies’ investments, as well as
those of individuals. Suppose Anthony counsels National Bank in its
investments. If he also counsels City Bank in its investments, he has a
potential conflict of interest, because the two banks’ investments may come
into conflict. Hence, Anthony cannot counsel both banks.

Figure 8–1: The Chinese Wall model database. It has two COI
classes. The one for banks contains three CDs. The other one, for
oil companies, contains four CDs. Susan may have access to no
more than one CD in each COI, so she could access City Bank’s CD
and Veg Oil Co.’s CD, but not City Bank’s CD and National Bank’s
CD.

The following definitions capture this:

Definition 8–1. The objects of the database are items of information related
to a company.



Definition 8–2. A company dataset (CD) contains objects related to a
single company.

Definition 8–3. A conflict of interest class (COI) contains the datasets of
companies in competition.

Let COI(O) represent the COI class that contains object O, and let CD(O) be
the company dataset that contains object O. The model assumes that each
object belongs to exactly one COI class.

Anthony has access to the objects in the CD of National Bank. Because the CD
of City Bank is in the same COI class as that of National Bank, Anthony
cannot gain access to the objects in City Bank’s CD. Thus, this structure of the
database provides the required ability. (See Figure 8–1.)

This implies a temporal element. Suppose Anthony first worked on National
Bank’s portfolio and was then transferred to City Bank’s portfolio. Even
though he is working only on one CD in the bank COI class at a time, much of
the information he learned from National Bank’s portfolio will be current.
Hence, he can guide City Bank’s investments using information about
National Bank—a conflict of interest. This leads to the following rule, where
PR(S) is the set of objects that S has read.

CW-Simple Security Condition, Preliminary Version: S can read O if
and only if either of the following is true:

1. There is an object O′ such that S has accessed O′ and CD(O′) = CD(O).

2. For all objects O′, O′ ∈ P R(S) ⇒ COI(O′) ≠ COI(O).

Initially, PR(S) = Ø, and the initial read request is assumed to be granted.
Given these assumptions, in the situation above, National Bank’s COI class
and City Bank’s COI class are the same, so the second part of the CW-simple
security condition applies, and Anthony cannot access an object in the
former, having already accessed an object in the latter.



Two immediate consequences of this rule affect subject rights. First, once a
subject reads any object in a COI class, the only other objects in that COI class
that the subject can read are in the same CD as the read object. So, if Susan
accesses some information in City Bank’s CD, she cannot later access
information in National Bank’s CD.

Second, the minimum number of subjects needed to access every object in a
COI class is the same as the number of CDs in that COI class. If the oil
company COI class has four CDs, then at least four analysts are needed to
access all information in the COI class. Thus, any trading house must have at
least four analysts to access all information in that COI class without creating
a conflict of interest.

In practice, companies have information they can release publicly, such as
annual stockholders’ reports and filings before government commissions. The
Chinese Wall model should not consider this information restricted, because
it is available to all. Hence, the model distinguishes between sanitized data
and unsanitized data; the latter falls under the CW-simple security condition,
preliminary version, whereas the former does not.

This means that sanitized objects must reside in a COI class with a single CD
consisting only of sanitized objects. (See Exercise 1.)

The CW-simple security condition can be reformulated to include this notion.

CW-Simple Security Condition: S can read O if and only if either of the
following is true:

1. There is an object O′ such that S has accessed O′ and CD(O′) = CD(O).

2. For all objects O′, O′ ∈ PR(S) ⇒ COI(O′) ≠ COI(O).

3. O is a sanitized object.

Suppose Anthony and Susan work in the same trading house. Anthony can



read objects in National Bank’s CD, and Susan can read objects in City Bank’s
CD. Both can read objects in Veg Oil’s CD. If Anthony can also write to objects
in Veg Oil’s CD, then he can read information from objects in National Bank’s
CD and write to objects in Veg Oil’s CD, and then Susan can read that
information; so, Susan can indirectly obtain information from National
Bank’s CD, causing a conflict of interest. The CW-simple security condition
must be augmented to prevent this.

CW-*-Property: A subject S may write to an object O if and only if both of
the following conditions hold:

1. The CW-simple security condition permits S to read O.

2. For all unsanitized objects O′, S can read O′ ⇒ CD(O′) = CD(O).

In the example above, Anthony can read objects in both National Bank’s CD
and Veg Oil’s CD. Thus, condition 1 is met. However, assuming that National
Bank’s CD contains unsanitized objects (a reasonable assumption), then
because Anthony can read those objects, condition 2 is false. Hence, Anthony
cannot write to objects in Veg Oil’s CD.

8.1.2 Formal Model

Let S be a set of subjects, O a set of objects, and L = C × D be a set of labels.
Define projection functions l1 : O → C and l2 : O → D. C corresponds to the set
of COI classes, and D to the set of CDs, in the informal exposition above. The
access matrix entry for s ∈ S and o ∈ O is H(s, o); that element is true if s has
read o, and is false otherwise. (Note that H is not an access control matrix,
because it does not reflect the allowed accesses, but merely the read accesses
that have occurred.) Finally, R(s, o) represents s’s request to read o.

The model’s first assumption is that a CD does not span two COI classes.
Hence, if two objects are in the same CD, they are in the same COI class.

Axiom 8.1. For all o, o′ ∈ O, if l2(o) = l2(o′), then l1(o) = l1(o′).



The contrapositive is as follows:

Lemma 8.1. For all o, o′ ∈ O, if l1(o) ≠ l1(o′), then l2(o) ≠ l2(o′).

So two objects in different COI classes are also in different CDs.

Axiom 8.2. A subject s can read an object o if and only if, for all o′ ∈ O such
that H(s, o′) = true, either l1(o′) ≠ l1(o) or l2(o′) = l2(o).

This axiom is the CW-simple security condition: a subject can read an object
if and only if it has not read objects in other datasets in the object’s COI class,
or if it has read objects in the object’s CD. However, this rule must also hold
initially for the state to be secure. So, the simplest state for which the CW-
simple security condition holds is that state in which no accesses have
occurred; and in that state, any requests for access should be granted. The
next two axioms state this formally.

Axiom 8.3. H(s, o) = false for all s ∈ S, and o ∈ O is an initially secure
state.

Axiom 8.4. If for some s ∈ S and for all o ∈ O, H(s, o) = false, then any
request R(s, o) is granted.

The following theorem shows that a subject can only read the objects in a
single dataset in a COI class.

Theorem 8.1. Suppose a subject s ∈ S has read an object o ∈ O. If s can
read o′ ∈ O, o′ ≠ o, then l1(o′) ≠ l1(o) or l2(o′) = l2(o).

Proof. By contradiction. Because s has read o, H(s, o) = true. Suppose s reads
o′; then H(s, o) = true. By hypothesis, l1(o′) = l1(o) and l2(o′) ≠ l2(o).
Summarizing this:

Without loss of generality, assume that s read o first. Then H(s, o) = true



when s read o′; by Axiom 8.2, either l1(o′) ≠ l1(o) or l2(o′) = l2(o). This leads
to:

which is equivalent to

However, because l1(o′) ≠ l1(o) ⋀ l1(o′) = l1(o) is false, and l2(o′) = l2(o) ⋀
l2(o′) ≠ l2(o) is also false, this expression is false, contradicting the
hypothesis. 

From this, it follows that a subject can access at most one CD in each COI
class.

Lemma 8.2. Suppose a subject s ∈ S can read an object o ∈ O. Then s can
read no o′ for which l1(o′) = l1(o) and l2(o′) ≠ l2(o).

Proof. Initially, s has read no object, so by Axioms 8.3 and 8.4, access will be
granted for any object o. This proves the lemma for the trivial case. Now,
consider another object o′. By Theorem 8.1, if s can read o′ ∈ O, o′ ≠ o, then
l1(o′) ≠ l1(o) or l2(o′) = l2(o). Conversely, if l1(o′) = l1(o) and l2(o′) ≠ l2(o), s
cannot read o′, proving the lemma in the general case. 

Suppose a single COI class has n CDs. Then at least n subjects are needed to
access every object. The following theorem establishes this requirement.

Theorem 8.2. Let c ∈ C and d ∈ D. Suppose there are n objects oi ∈ O, 1 ≤ i
≤ n, for which l1(oi) = c for 1 ≤ i ≤ n, and l2(oi) ≠ l2(oj), 1 ≤ i, j ≤ n, i ≠ j. Then
for all such o, there is an s ∈ S that can read o if and only if n ≤ |S|.

Proof. By Axiom 8.2, if any subject s can read an o ∈ O, it cannot read any
other o′ ∈ O. Because there are n such o, there must be at least n subjects to
meet the conditions of the theorem. 



We next add the notion of sanitizing data. Let v(o) be the sanitized version of
object o; so, for example, if v(o) = o, the object contains only public
information. All sanitized objects are in a special CD in a COI containing no
other CD.

Axiom 8.5. l1(o) = l1(v(o)) if and only if l2(o) = l2(v(o)).

Writing is allowed only if information cannot leak indirectly between two
subjects; for example, the object cannot be used as a kind of mailbox. The
next axiom captures this constraint.

Axiom 8.6. A subject s ≠ S can write to an object o ≠ O if and only if the
following conditions hold simultaneously.

1. H(s, o) = true.

2. There is no o′ ≠ O with H(s, o′) = true, l2(o) ≠ l2(o′), l2(o) ≠ l2(v(o)), l2(o′)
= l2(v(o)) and s can read o′.

The next definition captures the notion of “information flow” by stating that
information can flow from one object to another if a subject can access both
objects.

Definition 8–4. Information may flow from o ∈ O to o′ ∈ O if there exists a
subject s ∈ S such that H(s, o) = true and H(s, o′) = true. This is written (o,
o′).

Information flows even if the access is read-only, because then s can act on
information contained in both objects, so in some sense information has
flowed between them into a third entity (the subject).

The next theorem shows that unsanitized information is confined to its CD,
but sanitized information may flow freely about the system.

Theorem 8.3. For any given system, the set of all information flows is the



set

Proof. The set

is the set of all information flows in the system, by Definition 8–4. Let F* be
its transitive closure, which is the set of all information flows that may occur
as the system changes state.

The rules banning write access constrain which of these flows will be allowed.
The set of flows that Axiom 8.6 excludes are those in the set

The remaining information flows are

which, by propositional logic, is equivalent to

establishing the result. 

8.1.3 Aggressive Chinese Wall Model

Lin [1186,1187] observed that a basic assumption of the Chinese Wall model
was unrealistic. Specifically, the COI classes in the model are actually related
to business classes. Consider the COIs in Figure 8–1. It assumes that all
banks are in competition, and no bank competes with a oil company. But this
partition does not reflect the situation in which oil companies invest their
earnings in companies that will support them, which places them in
competition with banks; so the oil company spans both COIs. Similarly, one
bank may be a savings bank only; another, a brokerage house. As those two



serve different functions, the do not compete.

More precisely, Lin noted that the Chinese Wall model assumes one can
partition the set of objects O into COIs, and thence into CDs [1188]. Define
the conflict of interest relation (CIR) to be the relation induced by a COI, so
that for o1, o2 ∈ O, if o1 and o2 are in the same COI, then (o1, o2) ∈ CIR. This is
reflexive, symmetric, and transitive. Thus, CIR forms an equivalence relation,
and partitions the objects so that no object belongs to more than one class.

The problem is that in practice, CIR does not partition the objects, and hence
is not an equivalence class. For example, in practice, a company is not in
conflict with itself, so it is not reflexive, and (o, o) ∉ CIR. It also is not
transitive. Consider a bank B that does both savings and investments. A large
computer company C has its own private savings unit, to enable employees to
bank on the premises. An oil company G does investments. Thus, (C, B) ∈
CIR and (B, G) ∈ CIR. However, the computer company and the oil company
have no common interests, and hence (C, G) ∉ CIR.

Hence the assumption that O can be decomposed into partitions is false.

Lin [1186] developed a mathematical basis for a version of the Chinese Wall
model that defined COI classes not based on business classes. This model, the
Aggressive Chinese Wall Security Model, defines a relation that is similar to
CIR, but is both reflexive and transitive.

Definition 8–5. The generalized conflict of interest relation (GCIR) is the
reflexive, transitive closure of the relation CIR.

To create GCIR, first for all objects o ∈ O, add (o, o) to CIR. Then take the
transitive closure of the result. As GCIR is reflexive, symmetric, and
transitive, it defines the equivalence classes that the Chinese Wall model uses
to create the COI classes. Intuitively, (o, o′) ∈ CIR if there is a direct
information flow path between o and o′. GCIR generalizes this to (o, o′) ∈
GCIR if and only if there is an indirect information flow path between o and



o′.

If one now replaces the notion of conflict of interest classes induced by CIR to
generalized conflict of interest classes induced by GCIR, then the theorems
given above still hold.

8.1.4 Bell-LaPadula and Chinese Wall Models

The Bell-LaPadula Model and the Chinese Wall model are fundamentally
different. Subjects in the Chinese Wall model have no associated security
labels, whereas subjects in the Bell-LaPadula Model do have such labels.
Furthermore, the Bell-LaPadula Model has no notion of “access history,” but
this notion is central to the Chinese Wall model’s controls.

To emulate the Chinese Wall model using Bell-LaPadula, we assign a security
category to each (COI, CD) pair. We define two security levels, S (for
sanitized) and U (for unsanitized). By assumption, S dom U. Figure 8–2
illustrates this mapping for the system in Figure 8–1. Each object is
transformed into two objects, one sanitized and one unsanitized.

Each subject in the Chinese Wall model is then assigned clearance for the
compartments that do not contain multiple categories corresponding to CDs
in the same COI class. For example, if Susan can read the National Bank and
Veg Oil CDs, her processes would have clearance for compartment (U, {a, n}).
There are three possible clearances from the bank COI class, and four
possible clearances from the oil company COI class, combining to give 12
possible clearances for subjects. Of course, all subjects can read all sanitized
data.

The CW-simple security condition clearly holds. The CW-*-property also
holds, because the Bell-LaPadula *-property ensures that the category of
input objects is a subset of the category of output objects. Hence, input
objects are either sanitized or in the same category (that is, the same CD) as
that of the subject.



This construction shows that at any time the Bell-LaPadula Model can
capture the state of a system using the Chinese Wall model. But the Bell-
LaPadula Model cannot capture changes over time. For example, suppose
Susan falls ill, and Anna needs to access one of the datasets to which Susan
has access. How can the system know if Anna is allowed to access that
dataset? The Chinese Wall model tracks the history of accesses, from which
Anna’s ability to access the CD can be determined. But if the corresponding
category is not in Anna’s clearances, the Bell-LaPadula Model does not retain
the history needed to determine whether her accessing the category would
violate the Chinese Wall constraints.

Figure 8–2: The relevant parts of the Bell-LaPadula lattice induced
by the transformation applied to the system in Figure 8–1. For
example, a subject with security clearance in class (U, {a, s}) can
read objects with labels (U, {a}) and (U, {s}). The Bell-LaPadula
Model defines other compartments (such as (U, {a, b}), but
because these would allow access to different CDs in the same COI
class, the Chinese Wall model requires that compartment to be
empty.



A second, more serious problem arises when one considers that subjects in
the Chinese Wall model may choose which CDs to access; in other words,
initially a subject is free to access all objects. The Chinese Wall model’s
constraints grow as the subject accesses more objects. However, from the
initial state, the Bell-LaPadula Model constrains the set of objects that a
subject can access. This set cannot change unless a trusted authority (such as
a system security officer) changes subject clearances or object classifications.
The obvious solution is to clear all subjects for all categories, but this means
that any subject can read any object, which violates the CW-simple security
condition.

Hence, the Bell-LaPadula Model cannot emulate the Chinese Wall model
faithfully. This demonstrates that the two policies are distinct.

However, the Chinese Wall model can emulate the Bell-LaPadula Model; the
construction is left as an exercise for the reader. (See Exercise 3.)

8.1.5 Clark-Wilson and Chinese Wall Models

The Clark-Wilson model deals with many aspects of integrity, such as
validation and verification, as well as access control. Because the Chinese
Wall model deals exclusively with access control, it cannot emulate the Clark-
Wilson model fully. So, we consider only the access control aspects of the
Clark-Wilson model.

The representation of access control in the Clark-Wilson model is the second
enforcement rule, ER2. That rule associates users with transformation
procedures and constrained data items on which they can operate. If one
takes the usual view that “subject” and “process” are interchangeable, then a
single person could use multiple processes to access objects in multiple CDs
in the same COI class. Because the Chinese Wall model would view processes
independently of who was executing them, no constraints would be violated.
However, by requiring that a “subject” be a specific individual and including
all processes executing on that subject’s behalf, the Chinese Wall model is



consistent with the Clark-Wilson model.

8.2 Clinical Information Systems Security Policy

Medical records require policies that combine confidentiality and integrity,
but in a very different way than for brokerage firms. Conflicts of interest
among doctors treating patients are not normally a problem. Patient
confidentiality, authentication of both records and the personnel making
entries in those records, and assurance that the records have not been
changed erroneously are critical. Anderson [57] presents a model for such
policies that illuminates the combination of confidentiality and integrity to
protect patient privacy and record integrity.

Anderson defines three types of entities in the policy.

Definition 8–6. A patient is the subject of medical records, or an agent for
that person who can give consent for the person to be treated.

Definition 8–7. Personal health information is information about a
patient’s health or treatment enabling that patient to be identified.

In more common parlance, the “personal health information” is contained in
a medical record. We will refer to “medical records” throughout, under the
assumption that all personal health information is kept in the medical
records.

Definition 8–8. A clinician is a health-care professional who has access to
personal health information while performing his or her job.

The policy also assumes that personal health information concerns one
individual at a time. Strictly speaking, this is not true. For example,
obstetrics/gynecology records contain information about both the father and
the mother. In these cases, special rules come into play, and the policy does
not cover them.



The policy is guided by principles similar to the certification and enforcement
rules of the Clark-Wilson model. These principles are derived from the
medical ethics of several medical societies, and from the experience and
advice of practicing clinicians.1

1The principles are numbered differently in Anderson’s paper.

The first set of principles deals with access to the medical records themselves.
It requires a list of those who can read the records, and a list of those who can
append to the records. Auditors are given access to copies of the records, so
the auditors cannot alter the original records in any way. Clinicians by whom
the patient has consented to be treated can also read and append to the
medical records. Because clinicians often work in medical groups, consent
may apply to a set of clinicians. The notion of groups abstracts this set well.
Thus:

Access Principle 1: Each medical record has an access control list naming
the individuals or groups who may read and append information to the
record. The system must restrict access to those identified on the access
control list.

Medical ethics require that only clinicians and the patient have access to the
patient’s medical record. Hence:

Access Principle 2: One of the clinicians on the access control list (called
the responsible clinician) must have the right to add other clinicians to the
access control list.

Because the patient must consent to treatment, the patient has the right to
know when his or her medical record is accessed or altered. Furthermore, if a
clinician who is unfamiliar to the patient accesses the record, the patient
should be notified of the leakage of information. This leads to another access
principle:



Access Principle 3: The responsible clinician must notify the patient of the
names on the access control list whenever the patient’s medical record is
opened. Except for situations given in statutes, or in cases of emergency, the
responsible clinician must obtain the patient’s consent.

Erroneous information should be corrected, not deleted, to facilitate auditing
of the records. Auditing also requires that all accesses be recorded, along with
the date and time of each access and the name of each person accessing the
record.

Access Principle 4: The name of the clinician, the date, and the time of the
access of a medical record must be recorded. Similar information must be
kept for deletions.

The next set of principles concern record creation and information deletion.
When a new medical record is created, the clinician creating the record
should have access, as should the patient. Typically, the record is created as a
result of a referral. The referring clinician needs access to obtain the results of
the referral, and so is included on the new record’s access control list.

Creation Principle: A clinician may open a record, with the clinician and
the patient on the access control list. If the record is opened as a result of a
referral, the referring clinician may also be on the access control list.

How long the medical records are kept varies with the circumstances.
Normally, medical records can be discarded after 8 years, but in some cases—
notably cancer cases—the records are kept longer.

Deletion Principle: Clinical information cannot be deleted from a medical
record until the appropriate time has passed.

Containment protects information, so a control must ensure that data copied
from one record to another is not available to a new, wider audience. Thus,
information from a record can be given only to those on the record?s access



control list.

Confinement Principle: Information from one medical record may be
appended to a different medical record if and only if the access control list of
the second record is a subset of the access control list of the first.

A clinician may have access to many records, possibly in the role of an advisor
to a medical insurance company or department. If this clinician were corrupt,
or could be corrupted or blackmailed, the secrecy of a large number of
medical records would be compromised. Patient notification of the addition
limits this threat.

Aggregation Principle: Measures for preventing the aggregation of
patient data must be effective. In particular, a patient must be notified if
anyone is to be added to the access control list for the patients’s record and if
that person has access to a large number of medical records.

Finally, systems must implement mechanisms for enforcing these principles.

Enforcement Principle: Any computer system that handles medical
records must have a subsystem that enforces the preceding principles. The
effectiveness of this enforcement must be subject to evaluation by
independent auditors.

Anderson developed guidelines for clinical computer system based on his
model [54].

8.2.1 Bell-LaPadula and Clark-Wilson Models

Anderson notes that the Confinement Principle imposes a lattice structure on
the entities in this model, much as the Bell-LaPadula Model imposes a lattice
structure on its entities. Hence, the Bell-LaPadula protection model is a
subset of the Clinical Information Systems security model. But the Bell-
LaPadula Model focuses on the subjects accessing the objects (because there
are more subjects than security labels), whereas the Clinical Information



Systems model focuses on the objects being accessed by the subjects (because
there are more patients, and medical records, than clinicians). This difference
does not matter in traditional military applications, but it might aid detection
of “insiders” in specific fields such as intelligence.

The Clark-Wilson model provides a framework for the Clinical Information
Systems model. Take the constrained data items to be the medical records
and their associated access control lists. The transaction procedures are the
functions that update the medical records and their access control lists. The
integrity verification procedures certify several items:

• A person identified as a clinician is a clinician (to the level of assurance
required by the system).

• A clinician validates, or has validated, information in the medical record.

• When someone (the patient and/or a clinician) is to be notified of an event,
such notification occurs.

• When someone (the patient and/or a clinician) must give consent, the
operation cannot proceed until the consent is obtained.

Finally, the requirement of auditing (Clark-Wilson certification rule CR4) is
met by making all records append-only, and notifying the patient whenever
the access control list changes.

8.3 Originator Controlled Access Control

Mandatory and discretionary access controls (MACs and DACs) do not
handle environments in which the originators of documents retain control
over them even after those documents are disseminated. Graubart [818]
developed a policy called ORGCON or ORCON (for “ORiginator CONtrolled”)
in which a subject can give another subject rights to an object only with the
approval of the creator of that object.



EXAMPLE: The Secretary of Defense of the United States drafts a proposed
policy document and distributes it to her aides for comment. The aides are
not allowed to distribute the document any further without permission from
the secretary. The secretary controls dissemination; hence, the policy is
ORCON. The trust in this policy is that the aides will not release the
document illicitly—that is, without the permission of the secretary.

In practice, a single author does not control dissemination; instead, the
organization on whose behalf the document was created does. Hence, objects
will be marked as ORCON on behalf of the relevant organization. The
controller disseminating the object is called the originator, and the ones who
receive copies of the objects are the owners of those objects.

Suppose a subject s ∈ S marks an object o ∈ O as ORCON on behalf of
organization X. Organization X allows o to be disclosed to subjects acting on
behalf of a second organization, Y , subject to the following restrictions.

1. The object o cannot be released to subjects acting on behalf of other
organizations without X’s

2. Any copies of o must have the same restrictions placed on it.

Discretionary access controls are insufficient for this purpose, because the
owner of an object can set any permissions desired. Thus, X cannot enforce
condition 2.

Mandatory access controls are theoretically sufficient for this purpose, but in
practice have a serious drawback. Associate a separate category C containing
o, X, and Y and nothing else. If a subject y ∈ Y wishes to read o, x ∈ X makes
a copy o′ of o. The copy o′ is in C, so unless z ∈ Z is also in category C, y
cannot give z access to o′. This demonstrates adequacy.

Suppose a member w of an organization W wants to provide access to a
document d to members of organization Y , but the document is not to be



shared with members of organization X or Z. So, d cannot be in category C
because if it were, members x ∈ X and z ∈ Z could access d. Another category
containing d, W , and Y must be created. Multiplying this by several thousand
possible relationships and documents creates an unacceptably large number
of categories.

A second problem with mandatory access controls arises from the
abstraction. Organizations that use categories grant access to individuals on a
“need to know” basis. There is a formal, written policy determining who
needs the access based on common characteristics and restrictions. These
restrictions are applied at a very high level (national, corporate,
organizational, and so forth). This requires a central clearinghouse for
categories. The creation of categories to enforce ORCON implies local control
of categories rather than central control, and a set of rules dictating who has
access to each compartment.

ORCON abstracts none of this. ORCON is a decentralized system of access
control in which each originator determines who needs access to the data. No
centralized set of rules controls access to data; access is at the complete
discretion of the originator. Hence, the MAC representation of ORCON is not
suitable.

A solution is to combine features of the MAC and DAC models. The rules are:

1. The owner of an object cannot change the access controls of the object.

2. When an object is copied, the access control restrictions of that source are
copied and bound to the target of the copy.

3. The creator (originator) can alter the access control restrictions on a per-
subject and per-object basis.

The first two rules are from mandatory access controls. They say that the
system controls all accesses, and no one may alter the rules governing access



to those objects. The third rule is discretionary and gives the originator power
to determine who can access the object. Hence, this hybrid scheme is neither
MAC nor DAC.

The critical observation here is that the access controls associated with the
object are under the control of the originator and not the owner of the object.
Possession equates to only some control. The owner of the object may
determine to whom he or she gives access, but only if the originator allows
the access. The owner may not override the originator.

8.3.1 Digital Right Management

The owner of content, such as a movie or a book, may wish to control its
distribution. When the content is given to a purchaser, the owner of the
content may not want the purchaser to distribute it further without
permission. The ORCON model describes this situation.

Definition 8–9. Digital rights management (DRM) is the persistent
control of digital content.

This issue arises most often when dealing with copyrights. DRM technology
controls what the recipient of a copyrighted work can, and cannot, do with
that work.

EXAMPLE: A movie studio produces a new movie. It wishes to sell copies of
the movie over the web. If the studio simply allowed people to purchase and
download the movie from the studio’s web site, the purchaser could then
redistribute it freely. To prevent this, the studio uses a DRM scheme. That
scheme does not prevent the owner from further distributing the movie.
However, the people to whom she distributes the movie cannot play it.

A DRM scheme has several elements [1980]. The basic ones are:

• The content is the information being protected. It may be simple (as a single
movie or book) or composite (in which several pieces of content, from



different sources and with different rights, are combined).

• The license is the token that describes the uses to which the content may be
put.

• A grant is that part of a license that gives specific authorizations to one or
more entities. It may also include conditions that constrain the use of the
grant.

• The issuer is the entity that issues the license. It may be the creator or a
distributor.

• A principal is an identification of an entity. It is typically used in a license to
identify to whom the license applies.

• A device is a mechanism used to view the content. It manages the licenses,
principals, and any copies of the resource.

EXAMPLE: In the previous example, the content is the movie itself. The
license is the token binding the playing of that movie to the specific copy that
is downloaded. It includes a grant allowing the movie to be played on some
set of equipment, with the condition that geographically the equipment be
located within a particular country. The issuer is the movie studio or its
authorized distributor. The principal is the user who downloaded the movie.

DRM schemes provide relationships among these elements. These
relationships must satisfy three basic properties [1093]:

1. The system must implement controls on the use of the content. These
controls constrain what clients can do with the content, so for example simply
distributing the content encrypted and providing the keys to those authorized
to see the content is insufficient (see exercise 7).

2. The rules that constrain the users of the content must be associated with
the content itself, and not the users.



3. The controls and rules must persist throughout the life of the content, even
when the content is distributed in unauthorized ways or to unauthorized
recipients.

EXAMPLE: Some music and apps on the Apple iTunes Store are protected by
a DRM system called FairPlay.2 The scheme is based upon cryptographic
licensing of the system and the user.

2In 2007, Apple made some music available without DRM for a higher price.
It subsequently incorporated this feature into music on the Apple cloud.

The user must authorize that particular system to play music. The iTunes
program provides this capability. It first generates a globally unique number
for the computer system and sends that to Apple’s servers. The servers then
add it to the list of systems authorized to play music for that user. At most 5
computer systems can be authorized per user; when the limit is reached,
further authorizations are denied.

Suppose Sage purchases a song from the Apple Store for iTunes. The song file
is enciphered with the AES cipher (see Section 10.2.5) using a master key,
which is in turn locked by a randomly generated user key from iTunes. iTunes
then sends the user key to the Apple servers, which store it for future use. The
key is encrypted on both the Apple server and on the local computer.

When Sage plays the song, iTunes first decrypts the user key, and then uses
that to decipher the master key. It can then use the master key to decipher the
song file and play it. Note that iTunes need not contact the Apple servers for
authorization to play the song.

When Sage authorizes a new system, the Apple server sends that system all
the user keys stored on the server so it can immediately play the music
controlled by FairPlay. When she deauthorizes a system, it deletes all the
locally stored user keys and notifies Apple to delete its global unique ID from
the list of authorized computers.



When the content is protected, it can only be used on an authorized system. If
the content is copied to an unauthorized system, the user keys will not be
available and so the content cannot be used.

Conditions for use and for further distribution are stated using a rights
expression language. Vendors often develop their own proprietary language
to meet their needs. Other languages provide ways to express a wide variety
of policies [1980, 1981].

EXAMPLE: Microsoft’s PlayReady DRM [2202, 2203] uses a different model
than Apple’s FairPlay. It provides finer-grained control over use. The content
is first enciphered using the AES algorithm (see Section 10.2.5). The
cryptographic key is made available to a license server, and the content is
made available for distribution to clients. To play the content, the PlayReady
client downloads the content and requests a license from a PlayReady license
server. The license server authenticates the client and, if successful, returns a
license. The client then checks the constraints in the license, and if they allow
playback, the client uses the license key to decipher the content and play it.

The client’s request for a license includes both an identifier for the content to
be played and the client’s public key (see Section 10.3). The license server
authenticates the client and verifies both the user and client are authorized to
play the content. It then constructs a license containing the content key and
usage constraints, enciphers this using the client’s public key, and sends it to
the client. The client then decrypts the license with its private key.

The rights expression language supports several different types of
constraints. Temporal constraints allow the content to be viewed over a
specific period of time, enabling the renting of the content. They also allow a
validity period, after which the license must be renewed; this allows
subscription-based services. Purchasing constraints allow the consumer to
buy content, and the language provides means to express constraints on
copying, transferring, or converting the content. Some applications, such as



for streaming live television content, require constraints based on
geographical location and on availability (as for example when a sporting
event is not to be available near where the game is played). PlayReady
supports these constraints, too [2204].

Some DRM technologies create unanticipated problems, especially when the
software implementing the DRM modifies system programs or the kernel
without the user’s understanding of the effects of such modification. The
example of Sony’s DRM mechanism on page 684 serves as a warning of how
not to implement DRM.

8.4 Role-Based Access Control

The ability, or need, to access information may depend on one’s job functions.

EXAMPLE: Allison is the bookkeeper for the Department of Mathematics.
She is responsible for balancing the books and keeping track of all accounting
for that department. She has access to all departmental accounts. She moves
to the university’s Office of Admissions to become the head accountant (with
a substantial raise). Because she is no longer the bookkeeper for the
Department of Mathematics, she no longer has access to those accounts.
When that department hires Sally as its new bookkeeper, she will acquire full
access to all those accounts. Access to the accounts is a function of the job of
bookkeeper, and is not tied to any particular individual.

This suggests associating access with the particular job of the user [671].

Definition 8–10. A role is a collection of job functions. Each role r is
authorized to perform one or more transactions (actions in support of a job
function). The set of authorized transactions for r is written trans(r).

Definition 8–11. The active role of a subject s, written actr(s), is the role
that s is currently performing.



Definition 8–12. The authorized roles of a subject s, written authr(s), is the
set of roles that s is authorized to assume.

Definition 8–13. The predicate canexec(s, t) is true if and only if the subject
s can execute the transaction t at the current time.

Three rules reflect the ability of a subject to execute a transaction.

Axiom 8.7. Let S be the set of subjects and T the set of transactions. The
rule of role assignment is

This axiom simply says that if a subject can execute any transaction, then that
subject has an active role. This binds the notion of execution of a transaction
to the role rather than to the user.

Axiom 8.8. Let S be the set of subjects. Then the rule of role authorization is

This rule means that the subject must be authorized to assume its active role.
It cannot assume an unauthorized role. Without this axiom, any subject could
assume any role, and hence execute any transaction.

Axiom 8.9. Let S be the set of subjects and T the set of transactions. The
rule of transaction authorization is

This rule says that a subject cannot execute a transaction for which its current
role is not authorized.

The forms of these axioms restrict the transactions that can be performed.
They do not ensure that the allowed transactions can be executed. This
suggests that role-based access control (RBAC) is a form of mandatory access
control. The axioms state rules that must be satisfied before a transaction can



be executed. Discretionary access control mechanisms may further restrict
transactions.

EXAMPLE: Some roles subsume others. For example, a trainer can perform
all actions of a trainee, as well as others. One can view this as containment.
This suggests a hierarchy of roles, in this case the trainer role containing the
trainee role. As another example, many operations are common to a large
number of roles. Instead of specifying the operation once for each role, one
specifies it for a role containing all other roles. Granting access to a role R
implies that access is granted for all roles contained in R. This simplifies the
use of the RBAC model (and of its implementation).

If role ri contains role rj, we write ri > rj. Using our notation, the implications
of containment of roles may be expressed as

EXAMPLE: RBAC can model the separation of duty rule [1118]. Our goal is to
specify separation of duty centrally; then it can be imposed on roles through
containment, as discussed in the preceding example. The key is to recognize
that the users in some roles cannot enter other roles. That is, for two roles r1
and r2 bound by separation of duty (so the same individual cannot assume
both roles):

Capturing the notion of mutual exclusion requires a new predicate.

Definition 8–14. Let r be a role, and let s be a subject such that r ∈ auth(s).
Then the mutually exclusive authorization set meauth(r) is the set of roles
that s cannot assume because of the separation of duty requirement.

Putting this definition together with the above example, the principle of
separation of duty can be summarized as [1118]:



Sandhu et al. [1664] have developed a family of models for RBAC. RBAC0 is
the basic model. RBAC1 adds role hierarchies; RBAC2 adds constraints; and
RBAC3 adds both hierarchies and constraints by combining RBAC1 and
RBAC2.

Figure 8–3: An example of a private role.

RBAC0 has four entities. Users are principals, and roles are job functions. A
permission is an access right. A session is a user interaction with the system
during which the user may enter any roles that she is authorized to assume. A
user may be in multiple roles at one time. More formally:

Definition 8–15. RBAC0 has the following components:

• A set of users U, a set of roles R, as set of permissions P , and a set of
sessions S;

• A relation PA ⊂ P × R mapping permissions to roles;

• A relation UA ⊂ U × R mapping users to roles;

• A function user : S → U mapping each session s ∈ S to a user u ∈ U; and

• A function roles : S → 2R mapping each session s ∈ S to a set of roles
roles(s) ⊆ {r ∈ R|(user(s), r) ∈ UA}, and s has the permissions ⋃r∈roles(s){p ∈
P |(p, r) ∈ PA}.

The last means that when a user assumes role r during session s, r and hence
the user assuming r acquires a set of permissions associated with r.

RBAC1 adds role hierarchies. A hierarchy is a means for structuring roles
using containment, and each role is less powerful than those higher in the
hierarchy. Each interior role contains the job functions, and hence
permissions, of its subordinate roles. Formally:

Definition 8–16. RBAC1 makes the following changes to the definition of



RBAC0:

• Add a partial order RH ⊂ R × R called the role hierarchy; and

• Change the function roles : S ← 2R to map each session s ∈ S to a set of roles
roles(s) ⊂ {r ∈ R|(∃r′ ≥ r)(user(s), r′) ∈ UA}, and s has the permissions
⋃r∈roles(s){p ∈ P|(∃r″ ≥ r)(p, r″) ∈ PA}, where for r1, r2 ∈ R, r1 ≥ r2 means (r2,
r1) ∈ RH.

The last means that when user u assumes a role r with subordinate roles, u
can establish a session with any combination of the subordinate roles, and
that session receives the permissions it would acquire in RBAC0, plus any
permissions that subordinate roles have. So, in effect, the user gets the
permissions assigned to the role she assumes, as well as the permissions of all
roles subordinate to that role.

Role hierarchies can limit the inheritance of permissions through private
roles. Figure 8–3 shows a hierarchy where the employees report to line
management. But employees in this organization have the right to air
grievances to an ombudsman who does not answer to line management, and
indeed will not report to them. In this case, the ombudsman role is private
with respect to the line management.

RBAC2 is based on RBAC0, but adds constraints on the values that the
components can assume. For example, two roles may be mutually exclusive;
this constrains the values that can be in the sets UA and PA. Another example
is to constrain the function roles to allow a user to be in exactly one role at a
time. Formally:

Definition 8–17. RBAC2 adds to the RBAC0 model constraints that
determine allowable values for the relations and functions.

RBAC3 combines all three models. One can think of it as adding constraints to
RBAC2:



Definition 8–18. RBAC3 combines the RBAC1 and RBAC2 models,
providing both role hierarchies and constraints that determine allowable
values for the relations and functions.

An interesting use for RBAC is to manage the role assignments and privilege
assignments – in essence, have the model manage its own components. To do
this, a set of administrative roles AR and a set of administrative permissions
AP are disjoint from the ordinary roles R and permissions P . Constraints
allow non-administrative permissions to be assigned to non-administrative
roles only, and administrative permissions to be assigned to administrative
roles only. The ARBAC97 and the ARBAC02 models [1478, 1663] extend
RBAC3 to cover role-based administration of roles for RBAC.

EXAMPLE: Dresdner Bank developed an enterprise-wide role-based access
control system called FUB to manage access rights based upon a combination
of job function and position within the bank [1683]. When an employee
launches an application, the application transmits a request contains
identifying information for both the user and the application to the FUB. The
FUB returns the appropriate profile that contains the rights for that
application and that employee role.

Dresdner Bank has 65 official positions such as Clerk, Branch Manager, and
Member of the Board of Directors. There are 368 job functions. A role is
defined by the position and job function, but only about 1300 roles are in use.
The Human Resources Department creates the roles and the users, and
assigns users to roles. Thus, when a user leaves, part of the exit processing by
the Human Resources Department is to delete the user’s assignment to roles.
The Application Administrator assigns access rights to an application. These
rights are represented by numbers the meaning of which is known only to the
Application Administrator. The Application Administrator then passes the
numbers to the FUB administrator, who assigns the roles that can access the
application using the numbers.



In the definition of roles, the positions form a partial order. Thus, one role is
superior to another when the first role’s job function is higher than the
second’s, and the job functions are the same. An alternative approach is to
have the job functions be ordered hierarchically, for example by saying that
the function auditor includes the functions of an accountant. In this context,
the positions could be ignored, and the hierarchy based solely on the partial
ordering of job functions.

The analysis of the FUB system using RBAC as a model increased the Bank’s
confidence that their approach was sound.

A problem that often arises in practice is defining useful roles and
determining the permissions they need. This process is called role
engineering [474]. A similar, often more complex, problem arises when two
organizations that both use RBAC merge, as the roles each defines are rarely
compatible with the roles the other defines — yet many job functions will
overlap. Role mining is the process of analyzing existing roles’ and users’
permissions to determine an optimal assignment of permissions to roles. This
is an NP-complete problem in theory, but in practice near-optimal, or even
optimal, solutions can be produced [640, 717, 1217, 1928, 1929, 2101]

8.5 Break-the-Glass Policies

Sometimes security requirements conflict. Consider a health care policy that
controls access to medical records. In an emergency, doctors may need to
override restrictions to get immediate access to a patient’s medical record, for
example if the patient is unconscious and unable to give consent. Povey
[1547] proposed a control to handle this situation:

Definition 8–19. A break the glass policy allows access controls to be
overridden in a controlled manner.

The term comes from “breaking the glass” to activate an emergency alarm.
These policies are added to standard access control policies, and enable them



to be overridden. The overriding is logged for future analysis.

Break-the-glass schemes are invoked when a user attempts to access
information and the access is denied. The system either informs the user of
the break-the-glass option, or the user knows about it through external
sources. In either case, the user can override the denial. Should she do so, the
system immediately notifies those whom it is supposed to notify, and logs the
notification and the user’s actions [674].

EXAMPLE: The Rumpole policy [1259] implements a break-the-glass policy.
Evidential rules define how evidence is assembled to create the context in
which a break-the-glass request is made. Break-glass rules define
permissions, which may include constraints such as imposing an obligation to
justify the need for the break-the-glass action at a later time. Grant policies
define how the break-glass rules are combined to determine whether to grant
the override.

Rumpole’s enforcement model consists of a policy decision point and an
enforcement point. A break-the-glass request consists of a subject, the
desired action, the resource, and obligations that the subject will accept
should the override be granted. The decision point grants the request
unconditionally, denies the request, or returns the request with a set of
obligations that the subject must accept for the break-the-glass request to be
granted. The subject then sends a new request with the new obligations.

8.6 Summary

The goal of this chapter was to show that policies typically combine features
of both integrity and confidentiality policies. The Chinese Wall model
accurately captures requirements of a particular business (brokering) under
particular conditions (the British law). The Clinical Information Systems
model does the same thing for medical records. Both models are grounded in
current business and clinical practice.



ORCON and RBAC take a different approach, focusing on which entities will
access the data rather than on which entities should access the data. ORCON
allows the author (individual or corporate) to control access to the document;
RBAC restricts access to individuals performing specific functions. The latter
approach can be fruitfully applied to many of the models discussed earlier.

Break-the-glass policies provide conditions under which normal access
control rules are to be violated. They are useful in cases where unanticipated
situations requiring human intervention may occur.

8.7 Research Issues

Policies for survivable systems, which continue functioning in the face of
massive failures, are critical to the secure and correct functioning of many
types of banking, medical, and governmental systems. Of particular interest is
how to enable such systems to reconfigure themselves to continue to work
with a limited or changed set of components.

ORCON provides controls that are different from DAC and MAC. Are other
controls distinct enough to be useful in situations where DAC, MAC, and
ORCON don’t work? How can integrity and consistency be integrated into the
model?

Most DRM schemes are developed for the specific organization that wants to
use DRM. The multiplicity of these systems inhibits acceptance. For example,
a consumer who wishes to buy several digital movies and books from 4 movie
studios and 3 publishers may have to use 7 different DRM schemes, each with
its own user interface. Thus, the development of interoperable DRM schemes
is an area of active research. Another area is the usability of DRM
mechanisms, because they must balance this with the protection of the rights
of the content owners. This also introduces privacy concerns, another fertile
area of research.

Integrating roles into models appears straightforward: just use roles instead



of users. But the issues are more subtle, because if an individual can change
roles, information may flow in ways that should be disallowed. The issue of
integrating roles into existing models, as well as defining new models using
roles, is an area that requires much research.

8.8 Further Reading

Meadows [1313] discusses moving the Chinese Wall into a multilevel security
context. Atluri, Chun, and Mazzoleni [94] apply it to develop a model for
decentralized workflows.

Mišić and Mišić present an implementation of the CISSP model for wireless
sensor networks [1364].

Roberts [1607] discusses the tension between ORCON and the principle that
information should be made public. He proposes decentralizing the notion of
“originator” in ORCON to enable recipients of the information to weigh the
benefits and drawbacks of releasing the information.

McCollum, Messing, and Notargiacomo [1283] have suggested an interesting
variation of ORCON, called “Owner-Retained Access Control.” Unlike
ORCON, this model keeps a list of the originators and owners. Like ORCON,
the intersection of all sets controls access. Sandhu [1669] expresses ORCON
using the typed access matrix model (see section 3.5.4). Related to ORCON,
but different, are attribution models [230, 424, 943, 1594].

Li, Tripunitara, and Bizri [1174] examine the computational complexity of
enforcing static separation of duty policies. Chandramouli [381] provides a
framework for implementing many access control policies in CORBA and
discusses an RBAC policy as an example. He also presents a little language for
describing policies of interest. Several papers discuss languages to constrain
role-based authorizations [28, 476, 1765, 1790].

Various other forms of access control policies exist. Among them are



purpose-based access control [333, 334], task-based access control (TBAC)
[1883], task-role-based access control (T-RBAC) [1477], temporal role-based
access control (TRBAC) [186], generalized temporal role-based access control
(GTRBAC) [985], spatial role-based access control [869], coalition-based
access control (CBAC) [436], organization-based access control (ORBAC)
[625], team-based access control (TMAC) [37], and—most generally—
attribute-based access control [849,2082]. These policies typically focus on
some aspect of the entities involved, the environment or organization of those
entities, or some other characteristic of the entities.

Architectures and standards for DRM [968, 1630] have been developed to
provide inter-operability of DRM policies and mechanisms. Mohanty [1375]
combines watermarking and encryption to provide DRM from the source of
the content. Lan and Lewis examine the usability of the Microsoft Rights
Management application [1127]. The societal implications of DRM have also
been explored [59, 117, 1117, 1257, 1657]. Bellovin [161] discusses several
security implications of DRM mechanisms.

8.9 Exercises

1. Why must sanitized objects be in a single company dataset in their own
conflict of interest class, and not in the company dataset corresponding to the
institution producing the sanitized object?

2. Devise an algorithm that generates an access control matrix A for any given
history matrix H of the Chinese Wall model.

3. Develop a construction to show that a system implementing the Chinese
Wall model can support the Bell-LaPadula Model.

4. Call a relation an anti-equivalence relation if its complement is an
equivalence relation. This question asks you to look at CIR and its
complement, called IAR.



(a) Show that IAR is reflexive.

(b) Show that IAR is symmetric.

(c) If CIR is anti-transitive (that is, (x, y) ∈ CIR, (y, z) ∈ CIR ⇒ (x, z) ∉ CIR),
is IAR transitive?

(d) More generally, assuming CIR is not transitive, is IAR transitive?

5. Show that the Clinical Information System model’s principles implement
the Clark-Wilson enforcement and certification rules.

6. Consider using mandatory access controls and compartments to
implement an ORCON control. Assume that there are k different
organizations. Organization i will produce n(i, j) documents to be shared with
organization j.

(a) How many compartments are needed to allow any organization to share a
document with any other organization?

(b) Now assume that organization i will need to share nm(i, i1, . . . , im)
documents with organizations i1, . . . , im. How many compartments will be
needed?

7. A publisher wishes to implement a DRM scheme for its digital books.
Please explain why enciphering the contents of the books, and then
distributing the appropriate cryptographic keys, is insufficient to provide a
digital rights management scheme.

8. Someone once observed that “the difference between roles and groups is
that a user can shift into and out of roles, whereas that user has a group
identity (or identities) that are fixed throughout the session.”

(a) Consider a system such as a Berkeley-based UNIX system, in which users
have secondary group identities that remain fixed during their login sessions.



What are the advantages of roles with the same administrative functions as
the groups?

(b) Consider a system such as a System V-based UNIX system, in which a
process can have exactly one group identity. To change groups, users must
execute the newgrp command. Do these groups differ from roles? Why or
why not?

9. The Rumpole policy requires the user to resubmit a request for break-the-
glass access if the policy decision point returns a new set of obligations that
the subject must accept. Why does the policy decision point simply check the
obligations and, if they are a subset of the obligations in the request, grant the
request?

10. With the exception of the Break-the-Glass policy model, the models in this
chapter do not discuss availability. What unstated assumptions about that
service are they making?

11. A physician who is addicted to a pain-killing medicine can prescribe the
medication for herself. Please show how RBAC in general, and Definition 8–
14 specifically, can be used to govern the dispensing of prescription drugs to
prevent a physician from prescribing medicine for herself.



Chapter 9. Noninterference and
Policy Composition
GONERIL: Combine together against the enemy, For those domestic poor 
particulars Are not to question here.

— The Tragedy of King Lear, V, i, 29–31.

Organizations usually have multiple policy making units. If two different 
branches of an organization have conflicting policy needs, or even different 
policy needs, what policy should the organization as a whole adopt? If one of 
the policies requires six levels of security, and another three, how can they be 
composed into a coherent whole—or can they? The answers to these general 
questions come from information flow models that abstract the essence of 
security policies. Introduced in 1982, these models focus on each process’ 
view of the system to ensure that no high-level information is visible, or can 
be deduced, by a low-level process. We begin by reviewing the problem and 
introducing the notions of noninterference and unwinding. We then expand 
with variations of noninterference called “nondeducibility” and
“restrictiveness.” We conclude by studying the composition of security 
policies using these models.

9.1 The Problem

Return to the Bell-LaPadula Model for a moment. That model forbids reading 
of higher-level objects (the simple security condition) and writing to lower-



level objects (the *-property). However, writing can take many forms.

EXAMPLE: Suppose two users are sharing a single system. The users are
separated, each one having a virtual machine, and they cannot communicate
directly with one another. However, the CPU is shared on the basis of load. If
user Matt (cleared for SECRET) runs a CPU-intensive program, and user
Holly (cleared for CONFIDENTIAL) does not, Matt’s program will dominate
the CPU. This provides a covert channel through which Matt and Holly can
communicate. They agree on a time interval and a starting time (say,
beginning at noon, with intervals of 1 minute). To transmit a 1-bit, Matt runs
his program in the interval; to transmit a 0-bit, Matt does not. Every minute,
Holly tries to execute a program, and if the program runs, then Matt’s
program does not have the CPU and the bit is 0; if the program does not run
in that interval, Matt’s program has the CPU and the transmitted bit is 1.
Although not “writing” in the traditional sense, information is flowing from
Matt to Holly in violation of the Bell-LaPadula Model’s constraints.

This example demonstrates the difficulty of separating policy from
mechanism. In the abstract, the CPU is transmitting information from one
user to another. This violates the *-property, but it is not writing in any
traditional sense of the word, because no operation that alters bits on the disk
has occurred. So, either the model is insufficient to prevent Matt and Holly
from communicating, or the system is improperly abstracted and a more
comprehensive definition of “write” is needed. This is one problem, and in
what follows, exploring it will lead to the notions of noninterference and
nondeducibility.

9.1.1 Composition of Bell-LaPadula Models

The techniques of modular decomposition and bottom-up programming are
widely used throughout the disciplines of computer science, including
computer security. Many standards require secure components to be
connected to create a secure distributed or networked system. An obvious



question is whether or not the composition of two secure systems is itself
secure. For our purposes, we assume that the implementation of those
systems is precise with respect to the security policy, and we confine
ourselves to the issue of composition of security policies. If their composition
is not secure, then the composed system is not secure.

Consider two systems with policies that match the Bell-LaPadula Model.
These policies can be represented as lattices. The composed system is
therefore the composition of the lattices. The relevant issue is the relationship
among the labels (security levels and categories). If they are the same, the
composition is simply the lattice itself. If they differ, the new lattice must
reflect the relationship among the compartments.

EXAMPLE: Consider two systems with policies modeled by the Bell-LaPadula
Model. One system, windsor, has two security levels, LOW and HIGH, and
two categories, EAST and WEST. The other system, scout, has three security
levels, LOW, S, and TS, and two categories, EAST and SOUTH. Figure 9–1
shows the lattices of these two systems. We are told that the two EAST
categories have the same meaning, as do the two LOW security levels. So the
relevant issues are (1) how S and TS compare with HIGH and (2) how
SOUTH compares with EAST and WEST. Assume that HIGH corresponds to
a level between S and TS, and that SOUTH is a category disjoint from EAST
and WEST. Then the composed lattice has four security levels (LOW, S,
HIGH, and TS) and three categories (EAST, WEST, and SOUTH). Drawing
the resulting lattice is left as an exercise for the reader.

Assume that HIGH corresponds to a level between S and TS, and that SOUTH
is a category disjoint from EAST and WEST. Then the composed lattice has
four security levels (LOW, S, HIGH, and TS) and three categories (EAST,
WEST, and SOUTH). Drawing the resulting lattice is left as an exercise for the
reader.

The security policy of the composite system in the preceding example is a



composition of the two security policies of the component systems. If we can
change the policies that the components must meet, then composing multiple
secure systems to produce a single secure system becomes trivial. However, if
we must compose two components that meet a particular policy and show
that the resulting composition also meets that same policy, the problem
becomes quite difficult. We will explore this surprising fact at length
throughout the rest of this chapter.

Figure 9–1: The lattice on the left corresponds to the policy of
system windsor; the one on the right, to system scout.

An interesting question is how to compose systems with different policies to
produce a secure policy. Under these conditions, the notion of “security” is
not clear: which policy dominates? Gong and Qian [802, 803] suggest the
following guiding principles.

Axiom 9.1 (Principle of Autonomy). Any access allowed by the security
policy of a component must be allowed by the composition of the
components.

Axiom 9.2 (Principle of Security). Any access forbidden by the security
policy of a component must be forbidden by the composition of the
components.



The composite system therefore satisfies the security policies of its
components because the policies of the components take precedence over the
composite. Moreover, a “composition policy” handles the accesses not falling
under either principle. If a new access is neither allowed nor forbidden by
either principle, it should be disallowed unless it is explicitly permitted by the
composition policy.1

1This differs from Gong and Qian’s approach, in which they allow the access
unless the composition policy explicitly forbids it, but follows the Principle of
Fail-Safe Defaults (see Section 14.2.2).

Gong and Qian [802,803] show that, given these principles, the problem of
determining if an access is secure is of polynomial complexity. Their
algorithm is to compute the transitive closure of the allowed accesses under
each component’s policy and under the composition policy. Then all
forbidden accesses in this set are deleted. If the requested access is in the
remaining set, it is allowed; otherwise, it is denied.

EXAMPLE: Let X be a system in which Bob is forbidden to access Alice’s files.
Let system Y be a system with users Eve and Lilith, each of whom can access
each other’s files. The composition policy says that Bob can access Eve’s files,
and Lilith can access Alice’s files. The question is, can Bob access Lilith’s
files?

We write (a, b) to indicate that a can access b’s files and we write AS(x) to
denote the access set of x:

The transitive closure of the last set is



Deleting accesses that conflict with the access policies of the components
yields

So Bob can access Lilith’s files.

The dropping of the accesses that violate components’ restrictions after the
transitive closure has been computed eliminates accesses that are allowed by
the composition policy but forbidden by the components. This is dictated by
the principle of security. Without it, Bob could read Alice’s files in the
composition but not within the component.

Determining the minimum set of accesses that the composition policy must
forbid in order to enforce both principles is generally in NP .

9.2 Deterministic Noninterference

The example above suggests an alternative view of security phrased in terms
of interference. In essence, a system is secure if groups of subjects cannot
interfere with one another. In the first example in Section 9.1, the
“interference” would be Matt’s interfering with Holly’s acquiring the CPU for
her process. Intuitively, this notion is more inclusive than “writing” and
enables us to express policies and models more simply. Gougen and
Meseguer [785] used this approach to define security policies.

To begin, we view a system as a state machine consisting of a set Σ = {σ0, σ1, .
. .} of states, a set S = {s0, s1, . . .} of subjects, a set O = {o1, . . .} of outputs, and
a set Z = {z1, . . .} of commands. For notational convenience, we define a set of
state transition commands C = S × Z, because in what follows the clearance of
the subject executing the command affects the actual command that is
performed.

Definition 9–1. A state transition function T : C × Σ → Σ describes the
effect of executing command c when in state σ, and an output function P : C ×



S → O describes the output of the machine on executing command c in state
σ. Initially, the system is in state σ0.

We do not define any inputs, because either they select the specific
commands to be executed or they can be encoded in the set of state transition
commands. If the number x is to be input, we simply define a command that
corresponds to reading x. We can encode the initial state as a command; the
system begins at the empty state (and the first command moves it to σ0). This
notation simplifies the abstract system.

Figure 9–2: State transition function

In this system, the state transition commands produce outputs. The outputs
are therefore functions of the transition commands, and thus are functions of
the inputs and the initial state. We have also assumed that the system is
deterministic, since the state transition functions are functions, and time is
not considered. We will relax this restriction later.

EXAMPLE: Consider a machine with two bits of state information, H and L
(for “high” and “low,” respectively). The machine has two commands, xor0
and xor1, which exclusive-or both bits with 0 and 1, respectively. There are
two users: Holly (who can read high and low information) and Lucy (who can
read only low information). The system keeps two bits of state (H, L). For
future reference, this will be called the two-bit machine. For this example, the
operation affects both state bits regardless of whether Holly or Lucy executes
the instruction. (This is not a requirement of the two-bit machine and will be
varied later on.)

Let the set Σ = {(0, 0), (0, 1), (1, 0), (1, 1)}, the set S = {Holly, Lucy}, and the



set C = {xor0, xor1}. Figure 9–2 shows the result of the state transition
function. The output function for Holly is both bits; for Lucy, it is the L bit
only.

Next, let us relate outputs to state. Two observations will make the
formulation straightforward. First, T is inductive in the first argument as T
(c0, σ0) = σ1 and T (ci+1, σi+1) = T (ci+1, T (ci, σi)). This gives us the notion of
applying a sequence of commands to an initial state, so let C* be the set of
sequences of commands in C—that is, C* is the transitive closure of C under
composition. Then T* : C* × S → S, where

Second, the output function P is also inductive in the second argument. This
allows us to define a similar function P* : C* × S → O, which gives the
sequence of outputs resulting from a sequence of commands to a system
beginning at an initial state.

Given the assumptions above, the outputs provide a record of the system’s
functioning. The problem is that some subjects are restricted in the outputs
(and actions) they can see. In the first example in Section 9.1, Holly should
not have seen Matt’s outputs, but Matt could see any outputs from Holly. We
make this notion rigorous.

Definition 9–2. Let T*(cs, σi) be a sequence of state transitions for a system.
Let P*(cs, σi) be the corresponding outputs. Then proj(s, cs, σi) is the set of
outputs in P*(cs, σi) that subject s is authorized to see, in the same order as
those outputs appear in P*(cs, σi).

In this definition, each command may produce some output, but subjects
with insufficient clearance may not be able to see that output, lest they
deduce information about the previous state of the system. The function
proj(s, cs, σi) is simply the list of outputs resulting from removing the outputs
that s is not authorized to see.



This captures the notion that s may not see all outputs because the security
policy may restrict s’s access to them. However, s may not have knowledge of
all commands, either, and so we need a corresponding definition for them.

Definition 9–3. Let G ⊆ S be a group of subjects, and let A ⊆ Z be a set of
commands. Define πG(cs) as the subsequence of cs obtained by deleting all
elements (s, z) in cs with s ∈ G. Define πA(cs) as the subsequence of cs
obtained by deleting all elements (s, z) in cs with z ∈ A. Define πG,A(cs) as the
subsequence of cs obtained by deleting all elements (s, z) in cs such that both s
∈ G and z ∈ A.

This purge function π captures the notion that certain command executions
must be invisible to some subjects. Applying the purge function to an output
string generates the output string corresponding to those commands that the
subject is allowed to see. For a specific system, the desired protection
domains would dictate the membership of G and A.

EXAMPLE: In the two-bit machine, let σ0 = (0, 1). Holly applies the
command xor0, Lucy the command xor1, and Holly the command xor1 to the
state machine. The commands affect both state bits, and both bits are output
after each command. We take cs to be the sequence (Holly, xor0), (Lucy,
xor1), (Holly, xor1). The output is 011001 (where bits are written sequentially,
the H bit being first in each pair).

proj(Holly, cs, σ0) = 011001

proj(Lucy, cs, σ0) = 101

πLucy(cs) = πLucy,xor1(cs) = (Holly, xor0), (Holly, xor1)

πHolly(cs) = (Lucy, xor1)

πLucy,xor0(cs) = (Holly, xor0), (Lucy, xor1), (Holly, xor1)

πHolly,xor0(cs) = πxor0(cs) = (Lucy, xor1), (Holly, xor1)



πHolly,xor1(cs) = (Holly, xor0), (Lucy, xor1)

πxor1(cs) = (Holly, xor0)

Intuitively, if the set of outputs that any user can see corresponds to the set of
inputs that that user can see, then the system is secure. The following
definition formalizes this as “noninterference.”

Definition 9–4. Let G, G′ ⊆ S be distinct groups of subjects and let A ⊆ Z be
a set of commands. Users in G executing commands in A are noninterfering
with users in G′ (written A, G :| G′) if and only if, for all sequences cs with
elements in C*, and for all s ∈ G′, proj(s, cs, σi) = proj(s, πG,A(cs), σi).

If either A or G is not present, we handle it in the obvious way.

EXAMPLE: Consider the sequence cs = (Holly, xor0), (Lucy, xor1), (Holly,
xor1) in the twobit machine with operations affecting both state bits and both
bits being output after each command. Take G = {Holly}, G′ = {Lucy}, and A
= Z. Then πHolly(cs) = (Lucy, xor1), so proj(Lucy, πHolly(cs), σ0) = 1. This
means that the statement {Holly} :| {Lucy} is false, because proj(Lucy, cs, σ0)
= 101 ≠ proj(Lucy, πHolly(cs), σ0). Intuitively, this makes sense, because
commands issued to change the H bit also affect the L bit.

EXAMPLE: Modify the set of commands above so that Holly can alter only
the H bit and Lucy only the L bit. Consider the sequence cs = (Holly, xor0),
(Lucy, xor1), (Holly, xor1). Given an initial state of (0, 0), the output is
0H1L1H, where the subscripts indicate the security level of the output. Take G
= {Holly}, G′ = {Lucy}, and A = Z; so πHolly(cs) = (Lucy, xor1) and proj(Lucy,
πHolly(cs), σ0) = 1. Now we have proj(Lucy, cs, σ0) = 101 = proj(Lucy,
πHolly(cs), σ0), and {Holly} :| {Lucy}holds. Again, intuition suggests that it
should, because no action that Holly takes has an effect on the part of the
system that Lucy can observe.

We can now formulate an alternative definition of a security policy. By



Definition 4–1, a security policy describes states in which forbidden
interferences do not occur (authorized states). Viewed in this light [785], we
have:

Definition 9–5. A security policy is a set of noninterference assertions.

The set of noninterference relations defined in Definition 9–4 characterize
the security policy completely. An alternative, less common but more elegant,
approach begins with the notion of a security policy and characterizes
noninterference in terms of that definition [1634].

Consider a system X as a set of protection domains D = {d1, . . . , dn}.
Associated with X are states, commands, subjects, and transition commands.
Whenever a transition command c is executed, the domain in which it is
executed is written dom(c).

Definition 9–5A. Let r be a reflexive relation on D × D. Then r defines a
security policy.

The relation r defines how information can flow. If dirdj, then information
can flow from domain di to domain dj. Otherwise, it cannot. Because
information can flow within a protection domain, dirdi. Note that this
definition says nothing about the content of the security policy; it merely
defines what a “policy” is.

We can define a function π′ analogous to the π in Definition 9–3, but the
commands in A and the subjects in G and G′ are now part of the protection
domains, so we express π′ in terms of protection domains.

Definition 9–3A. Let d ∈ D, c ∈ C, and cs ∈ C*. Then

, where v is the empty sequence. If dom(c)rd, then



. Otherwise,

.

This says that if executing c will interfere with protection domain d, then c
will be “visible.” Otherwise, the resulting command sequence has the same
effect as if c were not executed.

Given this definition, defining noninterference security is immediate.

Definition 9–4A. Let a system consist of a set of domains D. Then it is
noninterference-secure with respect to the policy r if

.

Rather than defining a projection function (as in Definition 9–2), consider
the set of states related by an equivalence relation with respect to a domain of
a command.

Definition 9–2A. Let c ∈ C and dom(c) ∈ D, and let ~dom(c) be an
equivalence relation on the states of a system X. Then ~dom(c) is output-
consistent if σa ~dom(c) σb ⇒ P (c, σa) = P (c, σb).

In other words, two states are output-equivalent if, for the subjects in dom(c),
the projections of the outputs for both states after c is applied are the same.
This immediately leads to the following lemma.

Lemma 9.1. Let T*(cs, σ0) ~d T*(πd(cs), σ0) for c ∈ C. Then, if ~d is output-
consistent, X is noninterference-secure with respect to the policy r.

Proof. Take d = dom(c) for some c ∈ C. Applying Definition 9–2A to the
hypothesis of this claim,



. But this is the definition of noninterference-secure with respect to r (see
Definition 9–4A). 

Contrasting this approach with the more common first approach illuminates
the importance of the security policy. In the first approach, the security policy
was defined in terms of noninterference, but it arose from the conditions that
caused the particular set of subjects G and the commands A. So, in some
sense, Definition 9–5 is circular. The second approach eliminates this
circularity, because noninterference is characterized in terms of a defined
security policy. However, the second approach obscures the relationship
among subjects, commands, and noninterference requirements because of
the abstraction of “protection domains.” The notion of outputs characterizing
commands is crucial, because information flow is defined in terms of outputs.
So both characterizations have their places.

9.2.1 Unwinding Theorem

The unwinding theorem links the security of sequences of state transition
commands to the security of the individual state transition commands. The
name comes from “unwinding” the sequence of commands. This theorem is
central to the analysis of systems using noninterference, because it reduces
the problem of proving that a system design is multilevel-secure to proving
that if the system design matches the specifications from which certain
lemmata are derived, then the design is mathematically certain to provide
multilevel-security correctly.2

2This says nothing about the implementation of that design, of course. See
Part VI, “Assurance.”

We follow Rushby’s treatment [1634]. The next two definitions provide the
necessary background.

Definition 9–6. Let r be a policy. Then a system X locally respects r if
dom(c) being noninterfering with d ∈ D implies σa ~d T (c, σa).



If the command c does not have any effect on domain d under policy r, then
the result of applying c to the current state should appear to have no effect
with respect to domain d. When this is true, the system locally respects r.

Definition 9–7. Let r be a policy and d ∈ D. If σa ~d σb ⇒ T (c, σa) ~d T (c,
σb), the system X is transition-consistent under policy r.

Transition consistency simply means that states remain equivalent with
respect to d for all commands c.

Theorem 9.1 (Unwinding Theorem). Let r be a policy, and let X be a system
that is output consistent, transition consistent, and locally respects r. Then X
is non-interference secure with respect to the policy r.

Proof. The goal is to establish that

. We do this by induction on the length of cs.

BASIS: If cs = v, T*(cs, σa) = σa and

. The claim follows immediately.

INDUCTION HYPOTHESIS: Let cs = c1 . . . cn. Then

.

INDUCTION STEP: Consider cscn+1. We assume σa ~d σb. We must show the
consequent. We consider two distinct cases for

.

1. If (dom(cn+1), d) ∈ r, by definition of T* and definition 9–3A,



As X is transition consistent, if σa ~d σb, then T (cn+1, σa) ~d T (cn+1, σb). From
this and the induction hypothesis,

Substituting for the right side from the previous equality,

From the definition of T*, this becomes

proving the hypothesis.

2. If (dom(cn+1), d) ∉ r, by Definition 9–3A,

From the induction hypothesis, this means

As X locally respects r, σ ~d T (cn+1, σ) for any s. Then T (cn+1, σa) ~d σa, so

Substituting back, this becomes

verifying the hypotheses.

In either case, then, the hypothesis holds, completing the induction step.
Having completed the induction, take σa = σb = σ0. Then, by Lemma 9.1, if ~d

is output consistent, X is non-interference secure with respect to the policy r. 



The significance of Theorem 9.1 is that it provides a basis for analyzing
systems that purport to enforce a noninterference policy. Essentially, one
establishes the conditions of the theorem for a particular set of commands
and states with respect to some policy and a set of protection domains. Then
noninterference security with respect to r follows.

9.2.2 Access Control Matrix Interpretation

Rushby presented a simple example of the use of the unwinding theorem
[1634]. The goal is to apply the theorem to a system with a static access
control matrix. Our question is whether or not the given conditions are
sufficient to provide noninterference security.

We begin with a model of the system. As usual, it is composed of subjects and
objects. The objects are locations in memory containing some data. The
access control matrix controls the reading and writing of the data. The system
is in a particular state; the state encapsulates the values in the access control
matrix.

Specifically, let L = {11, . . . , lm} be the set of objects (locations) in memory or
on disk. Let V = v1, . . . , vn be the set of values that the objects may assume.
As usual, the set of states is Σ = {σ1, . . . , σk}. The set D = {d1, . . . , dj} is the set
of protection domains. We also define three functions for convenience.

1. value : L × Σ → V returns the value stored in the given object when the
system is in the given state.

2. read : D → P(V) returns the set of objects that can be observed under the
named domain3

3P(V) denotes the power set of V .

3. write : D → P(V) returns the set of objects that can be written under the
named domain.



Let s be a subject in the protection domain d, and let o be an object. The
functions represent the access control matrix A because the entry
corresponding to A[s, o] contains “read” if o ∈ read(d) and contains “write” if
o ∈ write(d). This also leads to a natural interpretation of the equivalence
relation in Definition 9–2A—namely, that two states are equivalent with
respect to a given protection domain if and only if the values of all objects
that can be read under that protection domain are the same. Symbolically,

The system X enforces the relevant access control policy r when the following
three conditions are met.

1. The output of some command c being executed within the protection
domain dom(c) depends only on the values for which subjects in dom(c) have
read access.

2. If command c changes the value in object li, then c can only use values in
objects in the set read(dom(c)) to determine the new value:

The second part of the disjunction ensures that if li ∈ read(dom(c)), the
values in li after c is applied to state σa and state σb may differ.

3. If command c changes the value in object li, then dom(c) provides the
subject executing c with write access to li:

These requirements are standard for access control mechanisms (in
particular, note that they are independent of any particular security policy,
although such a policy must exist). We now augment our system with two



more requirements for some security policy r.

4. Let u, v ∈ D. Then urv ⇒ read(u) ⊆ read(v).

This requirement says that if u can interfere with v, then every object that can
be read in protection domain u can also be read in protection domain v. This
follows from the need of v to read information from something in u. Given
this, if an object that could not be read in u could be read in v, but some other
object in u could be read in v, information could flow from the first object to
the second and hence out of domain u.

5. li ∈ read(u) and li ∈ write(v) ⇒ vru.

This simply says that if a subject can read an object in domain v, and another
subject can read that object in domain u, then domain v can interfere with
domain u.

Theorem 9.2. Let X be a system satisfying the five conditions above. Then
X is noninterference-secure with respect to the policy r.

Proof. Taking the equivalence relation to be ~d in Definition 9–2A, condition
1 and the definition of “output-consistent” are the same.

We use proof by contradiction to show that X locally respects r. Assume that
(dom(c), d) ∈ r but that σa ~d T (c, σa) does not hold. By the interpretation of
~d, this means that there is some object whose value is changed by c:

By condition 3, li ∈ write(dom(c)). Combining this with the selection of li,
both parts of condition 5 hold. By that condition, (dom(c), d) ∈ r. This
contradicts the hypothesis, so σa ~d T (c, σa) must hold and X locally respects
r.

We next consider transition consistency. Assume that σa ~d σb; we must show
that value(li, T (c, σa)) = value(li, T (c, σb)) for li ∈ read(d). We consider three



cases, each dealing with the change that c makes in li in states σa and σb.

1. Let value(li, T (c, σa)) ≠ value(li, σa). By condition 3, li ∈ write(dom(c)).
Because li ∈ read(d), condition 5 yields (dom(c), d) ∈ r. By condition 4,
read(dom(c)) ⊆ read(d). Because σa ~d σb, σa ~dom(c) σb. Condition 2 then
yields the desired result.

2. If value(li, T (c, σb)) ≠ value(li, σb), an argument similar to case 1 yields the
desired result.

3. Let value(li, T (c, σa)) = value(li, σa) and value(li, T (c, σb)) = value(li, σb).
The interpretation of σa ~d σb is that value(li, σa) = value(li, σb) for li ∈
read(d). The result follows immediately.

In all three cases, X is transition-consistent.

Under the stated conditions, X is output-consistent, locally respects r, and is
transition-consistent. By the unwinding theorem (Theorem 9.1), then, X is
noninterference-secure with respect to the policy r. 

All that remains is to verify that the five conditions hold for the system being
modeled.

9.2.3 Security Policies That Change over Time

We now extend the preceding noninterference analysis to include policies
that are not static. As an example of such a policy, consider an access control
matrix for a discretionary access control mechanism. Subjects may revoke
permissions, or add permissions, over objects they own. The analysis above
assumes that the matrix will be constant; in practice, the matrix rarely is.

EXAMPLE: Let w be the sequence of elements of C leading up to the current
state. Let cando(w, s, z) be true if the subject s has permission to execute the
command z in the current state. We condition noninterference for the system
on cando. In the current state, if cando(w, Holly, “readf″) is false, then Holly



cannot interfere with any other user by reading file f.

We now generalize the notion of noninterference to handle this case. First, we
must define a function analogous to πG,A(w).

Definition 9–8. Let G ⊆ S be a group of subjects and let A ⊆ Z be a set of
commands. Let p be a predicate defined over elements of C*. Let cs = c1, . . . ,
cn ∈ C*. Let v represent the empty sequence. Then π″(v) = v, and

where

if

and ci = (s, z) with s ∈ G and

otherwise.

The essence of the definition lies in the use of the predicate. Informally, π″
(cs) is cs; however, when the predicate p is true and an element of cs involves a
subject in G and a command in A, the corresponding element of cs is replaced
by v. This deletes that element. From this, the extension to noninterference is
straightforward.

Definition 9–9. Let G, G′ ⊆ S be groups of subjects and let A ⊆ Z be a set of
commands. Let Pbe a predicate defined over elements of C*. Users in G
executing commands in A are noninterfering with users in G′ under the
condition p (written A, G :| G′ if p) if and only if proj(s, cs, σi) = proj(s, π″(cs),
σi) for all sequences cs ∈ C*and all s ∈ G.

EXAMPLE: Return to the discretionary access control example. A very simple
security policy based on noninterference is



This says that if a subject cannot execute the command in any state, that
subject cannot use that command to interfere with any subject in the system.

EXAMPLE: Goguen and Meseguer [785] amplify this policy by considering
systems in which rights can be passed to other users. Define the command
pass(s, z), s ∈ S and z ∈ Z, to grant to s the right to execute command z. Let
wn = v1 . . . vn be a sequence of n elements, vi ∈ C*; then prev(wn) = wn–1 and
last(wn) = vn. Our policy will say that no subject s can use z to interfere if, in
the previous state, s did not have the right to z, and no subject having that
right gave it to s:

Suppose the user s1 ∈ S has the right to execute pass(s2, z), s2 ∈ S, z ∈ Z, so
for all sequences w, cando(w, s1, pass(s2, z)) is true. Initially, s2 does not have
the right to execute z; thus, cando(v, s2, z) is true. Now, let z′ ∈ Z be such that
(s3, z′), s3 ∈ S, is noninterfering with (s2, z); in other words, for each wn with
vn = (s3, z′), cando(wn, s2, z) = cando(wn–1, s2, z). Then this policy says that
for all s ∈ S:

So s2’s first execution of z does not affect any subject’s observation of the
system.

9.2.4 Composition of Deterministic Noninterference-Secure
Systems

As noted earlier, Gougen and Meseguer [785] assume that the output is a
function of the input. This implies determinism, because a nondeterministic
mapping (that is, one with two or more elements of the range corresponding



to one element of the domain) is not a function. It also implies
uninterruptibility, because differences in timing of interrupts can result in
differences in state, and hence in output. For example, suppose a user enters
a command to delete a file. This appears to take some time, so the user
interrupts the command. If the interrupt occurs before the deletion, the
system will be in a different state than if the interrupt occurs after the
deletion (but before the command can terminate properly).

McCullough [1287] has examined the implications of the determinism for
composing systems. Consider composing the following systems. Systems
louie and dewey compute at the LOW level. System hughie computes at the
HIGH level. The composed system has one output buffer, bL, which anyone
can read. It also has one input buffer, bH, which receives input from a HIGH
source. Three buffers connect the three systems. Buffer bLH connects louie to
hughie, and buffer bDH connects dewey to hughie. dewey and louie write to
these buffers, and hughie reads from them. Both dewey and louie can write to
the third buffer, bLDH, from which hughie can read. Figure 9–3 summarizes
this composition. Note that all three systems are noninterference-secure.
hughie never outputs anything, so its inputs clearly do not interfere with its
(nonexistent) outputs. Similarly, neither dewey nor louie input anything, so
their (nonexistent) inputs do not interfere with their outputs.

Figure 9–3: Composition of systems (from [1287, Figure 2])

If all buffers are of finite capacity, and blocking sends and receives are used,



the system is not noninterference-secure. Without loss of generality, assume
that buffers bDH and bLH have capacity 1. louie cycles through the following
algorithm.

1. louie sends a message to bLH. This fills the buffer.

2. louie sends a second message to bLH.

3. louie sends a 0 to buffer bL.

4. louie sends a message to bLDH to signal hughie that louie has completed a
cycle.

dewey follows the same algorithm, but uses bDH for bLH and writes a 1 to bL.
hughie reads a bit from bH, receives a message from bLH (if the bit read from
bH is 0) or from bDH (if the bit read from bH is 1), and finally does a receive on
bLDH (to wait for the buffer to be filled).

Suppose hughie reads a 0 from bH. It reads a message from bLH. At that point,
louie’s second message can go into the buffer and louie completes step 2.
louie then writes a 0 into bL. dewey, meanwhile, is blocked at step 1 and so
cannot write anything to bL. A similar argument shows that if hughie reads a 1
from bH, a 1 will appear in the buffer bL. Hence, a HIGH input is copied to a
LOW output.

So, even though the systems are noninterference-secure, their composition is
not. Exercise 4 examines the influence of the requirement that buffers be
finite and of the use of blocking sends and receives.

9.3 Nondeducibility

Gougen and Meseguer [785] characterize security in terms of state
transitions. If state transitions caused by high-level commands interfere with
a sequence of transitions caused by low-level commands, then the system is
not noninterference-secure. But their definition skirts the intent of what a



secure system is to provide. The point of security, in the Bell-LaPadula sense,
is to restrict the flow of information from a high-level entity to a low-level
entity. That is, given a set of low-level outputs, no low-level subject should be
able to deduce anything about the high-level outputs. Sutherland [1853]
reconsidered this issue in these terms.

Consider a system as a “black box” with two sets of inputs, one classified
HIGH and the other LOW. It also has two outputs, again, one HIGH and the
other LOW. This is merely a reformulation of the state machine model,
because the inputs drive the commands used to create state transitions and
generate output. However, the difference in view allows a more intuitive
definition of security.

If an observer cleared only for LOW can take a sequence of LOW inputs and
LOW outputs, and from them deduce information about the HIGH inputs or
outputs, then information has leaked from HIGH to LOW. The difference
between this notion and that of noninterference is subtle.

EXAMPLE: Revisit the two-bit system. When operations are executed by
HIGH, only the HIGH state bit changes, and the same is true for LOW. Let σ0
= (0, 0). The commands are (Holly, xor1), (Lucy, xor0), (Lucy, xor1), (Lucy,
xor0), (Holly, xor1), and (Lucy, xor0), and both bits are output after each
command. So, the output string (which includes the initial state) is
00101011110101, the even-numbered bits being LOW and the odd-numbered
bits being HIGH.

These functions are not noninterference-secure with respect to Lucy. Because
Lucy is cleared only for LOW, she sees the output string as 0001111. But
deleting the HIGH commands would produce the string 00111 for Lucy,
which is different (and thereby violates Definition 9–4).

However, given the string 00111, Lucy cannot deduce what instructions were
deleted because they do not affect the values in the output string; the
deletions only affect its length. Hence, this version of the two-bit system is



secure with respect to the property described above.

We now formalize this notion of “secure.” In what follows, it suffices to
consider the LOW user deducing information about the HIGH inputs,
because the HIGH inputs and LOW inputs define the HIGH outputs.4

4When outputs contain HIGH information that is not a function of the inputs,
high-level outputs need to be protected [846]. Such systems are not common,
so we explicitly exclude them from this analysis.

Definition 9–10. An event system is a 4-tuple (E, I, O, T), where E is a set
of events, I ⊆ E is a set of input events, O ⊆ E is a set of output events, and T
is the set of all possible finite sequences of events that are legal within the
system. The set E is also partitioned into H, the set of HIGH events, and L,
the set of LOW events.

The sets of HIGH inputs and outputs are H ∩ I and H ∩ O, respectively; the
sets of LOW inputs and outputs are L ∩ I and L ∩ O. Let TLOW contain the set
of all possible finite sequences of LOW events that are legal within the
system.

Define a projection function πL : T → TLOW that deletes all HIGH inputs from
a given trace. Then a LOW observer should be unable to deduce anything
about the set of HIGH inputs from a trace tLOW ∈ TLOW . In other words,
given any such tLOW , the trace t ∈ T that produced tLOW is equally likely to be
any trace such that π(t) = tLOW . More formally:

Definition 9–11. A system is deducibly secure if, for every trace tLOW ∈
TLOW , the corresponding set of high-level traces contains every possible trace
t ∈ T for which πL(t) = tLOW .

EXAMPLE: Consider the two-bit machine in Section 9.2, and assume that
xor0 and xor1 apply to both the HIGH and LOW bits and that both bits are
output after each command. For notational convenience, the first input at



each level is the initial state; successive inputs of 0 and 1 correspond to xor0
and xor1, respectively. The first two inputs will be at the HIGH and LOW
levels.

The sequence of inputs 1H010H10 occurs (where a subscript H indicates a
HIGH input and unsubscripted numbers indicate a LOW input). Then the
output will be 1001011010 (where the odd-numbered bits are LOW and the
even bits HIGH). Lucy will see this as 01100. She knows that the first input
was 0, the second was 1, and the third is not visible. However, the result is to
leave the 1 unchanged; knowing the operation of the system, Lucy deduces
that the HIGH input was 0 (because 1 xor 0 = 1 and 1 xor 1 = 0). Hence, this
system is not deducibly secure.

Now assume that the xor0 and xor1 apply only to the LOW or HIGH bits
depending on whether the user executing them is at the LOW or HIGH state,
respectively. Then the output sequence of the inputs above is 1011111011;
Lucy will see this as 01101. However, she can deduce nothing about the HIGH
inputs; any of the input sequences 0H010H10, 01H0101H10, 1H010H10, or
1H011H10 could have produced the LOW output sequence. Hence, this system
is deducibly secure.

9.3.1 Composition of Deducibly Secure Systems

In general, systems that are deducibly secure are not composable [1287].
However, the following modification eliminates the problem that arose
during composition of noninterference-secure systems.

Definition 9–12. Strong noninterference is the property of deducible
security augmented by the requirement that no HIGH-level output occurs
unless a HIGH-level input causes it.

EXAMPLE: The two-bit machine that applies operations only to the state bit
with the appropriate level, and outputs both HIGH and LOW state bits after
each operation, does not meet the strong noninterference property even



though it is deducibly secure. But if it only outputs the bit at the level of the
operation, it will meet the strong noninterference property.

Weber5 has shown that systems meeting the strong noninterference property
are composable. But this property is too restrictive, in the sense that it forbids
systems that are obviously secure.

5See [1287, p. 183].

EXAMPLE: The system up takes LOW inputs and emits them as HIGH
outputs. This is clearly deducibly secure, because the LOW user sees no
outputs (at either the HIGH or LOW level). However, it does not meet the
requirement of strong noninterference, because there are no HIGH inputs
[1287].

9.4 Generalized Noninterference

The preceding discussion of noninterference tacitly assumed that the systems
involved were deterministic. Specifically, input and output were synchronous.
Output depended only on commands triggered by input, and input was
processed one datum at a time. This does not model real systems, where
asynchronous events (inputs and commands) are the rule rather than the
exception.

McCullough [1286,1287] generalized noninterference to include
nondeterministic systems; such systems that meet the noninterference
property are said to meet the generalized noninterference-secure property.
McCullough also pointed out that noninterference security is more robust
than nondeducible security. Minor changes of assumptions can affect
whether or not a system is nondeducibly secure. The following example
illustrates this point.

EXAMPLE: Consider a system with two levels (HIGH and LOW), two users
(Holly, who is cleared for HIGH, and Lucy, who is at the LOW level), and one



text file at the HIGH level. This file has a fixed size, and the special text
symbol  marks those locations that are empty (unused). Holly can edit the
file. Lucy can execute a program that does the following (where
char_in_file[n] returns the n-th character in the file):

while true do begin
        n = read_integer_from_user;

        if n > file_length or char_in_file[n] ==  then
                print random_character;
        else
                printchar_in_file[n];
end;

This system is not noninterference-secure, because the HIGH inputs (the
changes that Holly makes to the text file) affect the LOW outputs. However,
the system is deducibly secure if Lucy cannot deduce the contents of the file
from the program outputs. If the output of the program is meaningful (for
example, “This book is interesting”) or can be made meaningful (for example,
“Thqs book ir interexting”), then the system is not nondeducibly secure;
otherwise, it is. This sensitivity to assumption requires that deducible security
be carefully defined in terms of allowed inferences, and that assumptions be
made explicit.

9.4.1 Composition of Generalized Noninterference Systems

Composing systems that meet the generalized noninterference-secure
property does not necessarily produce systems that meet this property.
McCullough’s demonstration [1287] provides insight into both the nature of
generalized nonrestrictiveness and the characteristics that make it
noncomposable.

Consider a machine cat, which has two levels, HIGH and LOW, of inputs and
outputs (see Figure 9–4). Inputs may come from the right or left, and outputs
may go to the right or left. The machine accepts HIGH inputs. The HIGH
inputs are output on the right, and after some number of inputs, the machine



emits two LOW outputs, the first a stop_count output and the second a 0 or a
1, the former if an even number of HIGH inputs and outputs occur, and the
latter if an odd number of HIGH inputs and outputs occur. Finally, cat
processes each input and generates either a HIGH or LOW output before the
next input is received.

Figure 9–4: The machine cat. Its HIGH input is copied to the
HIGH output.

Figure 9–5: The machine dog. Here, stop_count is an input that
stops counting.

Figure 9–6: The composition machine catdog. Both cat and dog
are noninterference-secure, but the somposition machine is not.

The machine cat is noninterference-secure. If there is an even number of
HIGH inputs, the output could be 0 (meaning an even number of outputs) or
1 (meaning an odd number of outputs). If there is an odd number of HIGH
inputs, the output could be 0 (meaning an odd number of outputs) or 1
(meaning an even number of outputs). So the high-level inputs do not affect
the output, as required.

Now define a machine dog to work like cat, with the following changes:

• Its HIGH outputs are to the left.

• Its LOW outputs of 0 or 1 are to the right.

• stop_count is an input from the left, causing dog to emit the 0 or 1.

This machine is summarized in Figure 9–5.



As with cat, dog is noninterference-secure. When stop_count arrives, there
may or may not be inputs for which there are not yet corresponding outputs.
Hence, the high-level inputs do not affect the low-level output, just as for the
machine cat.

Compose these two noninterference-secure machines. (See Figure 9–6.) We
require that once an output is transmitted from cat to dog (or vice versa), it
arrives. However, the stop_count message may arrive at dog before all input
messages have generated corresponding outputs. Suppose cat emits 0 and
dog emits 1. Then an even number of HIGH inputs and outputs have occurred
on cat, and an odd number on dog. Because every HIGH input on cat is sent
to dog, and vice versa, several scenarios arise:

1. cat has received an odd number of inputs and generated an odd number of
outputs, and dog has received an odd number of inputs and generated an
even number of outputs. However, because dog has sent an even number of
outputs to cat, cat must have had at least one input from the left.

2. cat has received an odd number of inputs and generated an odd number of
outputs, and dog has received an even number of inputs and generated an
odd number of outputs. But then an input message from cat has not arrived
at dog, which contradicts our assumption.

3. cat has received an even number of inputs and generated an even number
of outputs, and dog has received an even number of inputs and generated an
odd number of outputs. However, because dog has sent an odd number of
outputs to cat, cat must have had at least one input from the left.

4. cat has received an even number of inputs and generated an even number
of outputs, and dog has received an odd number of inputs and generated an
even number of outputs. But then an input message from dog has not arrived
at cat, which contradicts our assumption.

So, if the composite machine catdog emits a 0 to the left and a 1 to the right,



it must have received at least one input from the left. A similar result holds if
catdog emits a 1 to the left and a 0 to the right. It can also be shown (see
Exercise 8) that if there are no HIGH inputs, the outputs from both sides will
be the same. Thus, the HIGH inputs affect the LOW outputs, and so the
machine catdog is not noninterference-secure.

Zakinthinos and Lee [2088] proved some interesting results related to the
composition of noninterference-secure systems. They center their results on
the absence of feedback. Intuitively, once information flows from one
component to another, no information flows from the second component
back to the first.

Definition 9–13. Consider a system with n distinct components.
Components ci and cj are connected if any output of ci is an input to cj. If for
all ci connected to cj, cj is not connected to any ci, then the system is a
feedback-free system.

In other words, for all pairs of components, information can flow in only one
direction. Zakinthinos and Lee prove the following theorem.

Theorem 9.3. A feedback-free system composed of noninterference-secure
systems is itself noninterference-secure.

Proof. See [2088]. 

Feedback can be allowed under specific conditions. If at least one low-level
input or output occurs before any high-level output is translated into a high-
level input, then noninterference is preserved.

Lemma 9.2. A noninterference-secure system can feed a HIGH output o to
a HIGH input i if the arrival of o (at the input of the next component) is
delayed until after the next LOW input or output.

Proof. See [2088]. 



This lemma leads to the following theorem.

Theorem 9.4. A system with feedback as described in Lemma 9.2 and
composed of noninterference-secure systems is itself noninterference-secure.

Proof. See [2088]. 

9.5 Restrictiveness

The problem with the preceding composition is the need for a machine to act
the same way whether a LOW input is preceded by a HIGH input, a LOW
input, or no input. The machine dog does not meet this criterion. If the first
message to dog is stop_count, dog emits a 0. If a HIGH input precedes
stop_count, dog may emit either a 0 or a 1. McCullough used a state model to
capture the criteria [1287].

9.5.1 State Machine Model

Assume a state machine of the type discussed in Section 9.2. Let the machine
have two levels, LOW and HIGH.

Now consider such a system with the following properties.

1. For every input ik and state σj, there is an element cm ∈ C* such that T*(cm,
σj) = σn, where σn ≠ σj.

2. There exists an equivalence relation ≡ such that:

(a) if the system is in state σi and a sequence of HIGH inputs causes a
transition from σi to σj, then σi ≡ σj.

(b) if σi ≡ σj and a sequence of LOW inputs i1, . . . , in causes a system in state
σi to transition to state , then there is a state  such that

and the inputs i1, . . . , in cause a system in state σj to transition to state .



3. Let σi ≡ σj. If a sequence of HIGH outputs o1, . . . , on indicates a system in

state σi transitioned to state , then for some state  with

, a sequence of HIGH outputs

indicates a system in state σj transitioned to state .

4. Let σi ≡ σj, let c and d be HIGH output sequences, and let e be a LOW
output. If the output sequence ced indicates that a system in state σi

transitions to state , then there are HIGH output sequences c′ and d′ and a
state  such that c′ed′ indicates that a system in state σj transitions to state 

.

Property 1 says that T* is a total function and that inputs and commands
always move the system to a different state.

Property 2 defines an equivalence relation between two states. The
equivalence relation holds if the LOW projections of both states are the same.
The first part of this property says that two states are equivalent if either is
reachable from the other using only HIGH commands. The second part
concerns two different states with the same LOW projection. The states
resulting from giving the same LOW commands to the two equivalent,
original states have the same LOW projections. Taken together, the two parts
of property 2 say that if two states are equivalent, HIGH commands do not
affect the LOW projection of the states (which is, of course, the same). Only
LOW commands affect the LOW projections.

Property 3 says that HIGH outputs do not indicate changes in the LOW
projections of states. Property 4 states that intermingled LOW and HIGH
outputs cause changes in the LOW state that reflect the LOW outputs only.
Assume that two states have the same LOW projection. If there is an output
sequence leading from one of these states to a third state, then there is



another output sequence leading from the other state to a fourth state, and
the third and fourth states have the same LOW projection. Hence, the LOW
outputs indicate nothing about the HIGH state of the system; only the LOW
state is visible, and regardless of the output sequence, the LOW projections of
the two results are the same.

Definition 9–14. A system is restrictive if it meets the four properties
above.

9.5.2 Composition of Restrictive Systems

Intuitively, the problem with composition of generalized noninterference-
secure systems is that a HIGH output followed by a LOW output may not
have the same effect as the LOW input, as we have seen. However, by
properties 3 and 4, a restrictive system does not have this problem. Thus, the
composition of restrictive systems should be restrictive.

Consider the following composition. Let M1 and M2 be two systems, and let
the outputs of M1 be acceptable as inputs to M2. Let µ1i (1 ≤ i ≤ n1) be the
states of M1 and let µ2i (1 ≤ i ≤ n2) be the states of M2. The states of the
composite machine are pairs of the states of each component. Let e be an
event causing a transition. Then e causes the composite machine to change
state from (µ1a, µ2a) to (µ1b, µ2b) if any of the following conditions holds.

1. When M1 is in state µ1a and e occurs, M1 transitions to state µ1b; e is not an
event for M2; and µ2a = µ2b.

2. When M2 is in state µ2a and e occurs, M2 transitions to state µ2b; e is not an
event for M1; and µ1a = µ1b.

3. When M1 is in state µ1a and e occurs, M1 transitions to state µ1b; when M2 is
in state µ2a and e occurs, M2 transitions to state µ2b; and e is an input to one
machine and an output from the other.

Intuitively, these conditions state that an event causing a transition in the



composite system must cause a transition in at least one of the components.
Furthermore, if the transition occurs in exactly one of the components, the
event must not cause a transition in the other component system when it is
not connected to the composite system.

Definition 9–15. (σa, σb) ≡C (σc, σd) if and only if σa ≡ σc and σb ≡ σd.

The equivalence relation ≡C corresponds to the equivalence relation in
property 2 for the composite system.

From these, we can show:

Theorem 9.5. The system resulting from the composition of two restrictive
systems is itself restrictive.

Proof. See Exercise 9. 

Figure 9–7: A fast modular exponentiation routine. This routine
computes x = az mod n. The bits of z are zk–1 . . . z0.

9.6 Side Channels and Deducibility

An interesting use of non-deducibility arises from side channels.

Definition 9–16. A side channel is a set of characteristics of a system from
which an adversary can deduce confidential information about the system or
a computation.

In a side channel attack, consider the information to be derived as HIGH, and



the information obtained from the set of characteristics of the system to be
LOW. Then the attack deduces HIGH values from only the LOW values. So
the attack works on systems that are not deducibly secure.

EXAMPLE: Kocher’s timing attacks on cryptosystems illustrate this [1091].
Kocher notes that the instructions executed by implementations of
cryptosystems depend on the setting of bits in the key. For example, the
algorithm in Figure 9–7 implements a fast modular exponentiation function.
If a bit is 1, two multiplications occur; otherwise, one multiplication occurs.
The extra multiplication takes extra time. Kocher determines bits of the
confidential exponent by measuring computation time

Kocher’s attack derives information about the computation from the
characteristic of time. As a cryptographic key is confidential, this is a side
channel attack.

This is an example of a passive side channel attack, because results are
derived only from observations. The adversary simply monitors the system,
and can record and analyze the observations off line if needed. In an active
side channel attack, the adversary disrupts the system in some way, causing
it to react to the disruption. The adversary measures the reaction, and from
that deduces the desired information.

EXAMPLE: One active attack derives information about the computation
from the characteristic of memory accesses in a chip core [2061]. The Intel
x86 processor has several cores. Each core has two levels of caches (L1 and
L2), and the chip itself has a third cache (L3 or LLC). The caches are
hierarchical, so if there is a cache miss on the L1 cache, the core goes to the L2
cache; if that misses, L3 is checked, and if that is a miss, a memory fetch
occurs. The processors used here have inclusive caches, so the L3 cache has
copies of all data in the lower level caches. Finally, assume pages are shared
among processes. This set-up enables the attack.

In the first phase, the adversary flushes a set of bytes (a line) from the cache



— this is the disruption. This clears the data from all three levels of caches.
The second phase consists of the adversary waiting so that the victim has a
chance to access that memory line. The adversary, in the third phase, reloads
the line. If the victim did so already, the time required will be short as the
data will be fetched from the L3 cache. Otherwise, a memory fetch will be
necessary, increasing the time needed for the reload.

The researchers used this technique to trace the execution of GnuPG, and
were able to derive the bits of a 2,048 private key with a maximum of 190 bits
incorrect. Interestingly, when they experimented using a virtual machine
rather than a physical one, the rate of errors climbed; for example, on one
system, the average went from 1.41 erroneous bits to 26.55 bits, and on
another from 25.12 bits to 66.12. This emphasized how important the
environment is to a side channel attack. The virtual machines add processing,
and therefore use of the caches, to handle the virtualization, affecting the
results.

Standaert et al. [1825] propose a model of side channels that is illuminating.
Although their model is aimed specifically at recovering cryptographic keys, it
works equally well for any targeted information.

Definition 9–17. A primitive is the instantiation of a computation. A device
is the system on which the computation is performed. The output of the side
channel is called a physical observable. The leakage function captures the
characteristics of the side channel and the mechanisms to monitor the
resulting physical observables. An implementation function is the
instantiation of both the device and the leakage function. The side channel
adversary is an algorithm that can query the implementation to get outputs
from the leakage function.

This model has two implications for side channel attacks. First, devices on
which primitives are executed have characteristics that are affected by those
computations. The leakage function captures this effect. Secondly, an
adversary must have access sufficient to obtain the outputs of the leakage



function and to analyze them to determine the effects of the computation on
the output. That in turn means the adversary must experiment to determine
that effect.

EXAMPLE: In the first example, Kocher divided the outputs of the leakage
function into two parts. The signal was the variations in output due to the bit
in the exponent being derived, and the noise was the variations in output due
to other effects such as imprecision in measurements and timing variations
due to other causes. He uses statistical analysis to determine how many
readings (samples) are necessary to derive the bits of the exponent.

In the second example, the leakage function was affected by the noise
produced by the virtual machines. Data from the use of the physical machines
also differed; the experimenters concluded this was due to one chip using
more advanced optimizations than the other, and thus producing more noise.

Other side channels include acoustics [763], power [460, 623, 1247, 1333,
1385, 1557], and electromagnetic radiation emissions.

EXAMPLE: In 1985, van Eck reported on a study that decoded
electromagnetic radiation from CRT video display units [1934]. The radiation
produced by the device radiates as a broadband harmonic, and thus can be
easily captured. The key problem is that the TV receiver on which the images
are reconstructed does not receive the synchronization signals necessary to
stabilize the picture, so if the frequencies in the video display unit do not
match the those of the TV receiver, the picture is unstable and hard to read.
van Eck notes that an extension can easily be built that will capture the
synchronization signals, thus overcoming this problem.

van Eck then used a black-and-white TV, a directional antenna, and an
antenna amplifier to capture the electromagnetic radiation. He then used a
device containing two oscillators to generate the image for the TV, one for the
horizontal and one for the vertical synchronization signals. He noted that the
two synchronization frequencies are related by the number of display lines on



the screen, so only the oscillator generating the horizontal synchronization
signal need be adjusted. As a result, using his special equipment, he was able
to reconstruct the pictures on video display units in buildings.

A similar experiment took place in 2007. California Secretary of State Debra
Bowen tested electronic voting systems certified for use in California. During
the test of one system, the testers found that enabling audio so the ballot was
read to the voter (as would be necessary for a visually impaired voter)
produced interference with sound from a radio positioned nearby [2216].
This leads to an attack that violates voters’ privacy, and is an example of a
side channel consisting of electromagnetic radiation.

9.7 Summary

Noninterference is an alternative formulation of security policy models. It
asserts that a strict separation of subjects requires that all channels, not
merely those designed to transmit information, must be closed. The various
definitions of noninterference, generalized noninterference, nondeducibility,
and restrictiveness are attempts to determine under what conditions different
systems with the same security policy can be composed to produce a secure
system.

When policies of component systems differ, the issue becomes one of
reconciling policies or establishing a systemwide definition of “security” and
then demonstrating that the composition meets the definition. The composite
system should reflect the principles of security and autonomy. Although
establishing whether a particular action is to be allowed is easy, optimizing
the checking of accesses is not. Reconciling disparate policies also can be a
complex matter, involving technical analysis and politics to determine what
the managers of the autonomous components will allow.

9.8 Research Issues



Whenever a result is shown to be in NP , approximating the desired result
using an approach of polynomial complexity becomes an attractive area of
research. How can one approximate the minimum set of accesses that the
composite policy must forbid in order to enforce both the principles of
autonomy and security?

Models of noninterference, nondeducibility, generalized noninterference, and
restrictiveness assume a static protection system, although some basic work
on protection systems that change over time has been done for
noninterference. How would the composability of these properties, and the
results regarding containment of information flow, change if the protection
system were dynamic? How does nondeterminism affect these systems?
Generalized noninterference deals with nondeterministic systems, but do
those results carry into nondeducibility and restrictiveness? What effects
would the analogous results have?

Finally, suppose that a system is nondeducibly secure, but there are two
possible sets of HIGH actions that correspond to the LOW trace. The
probability of one set having occurred is 0.99; the probability of the other set
having occurred is 0.01. Although the system is nondeducibly secure by the
definition (because the LOW user cannot determine which of the two possible
sets was executed), it is very likely that the first set was executed. This
demonstrates that the nondeducible security model does not handle
probability; neither do the other models. Incorporating this sense of
“probable” is a viable research area.

9.9 Further Reading

Security policy composition arises in the cloud [71, 1862, 2121], distributed
systems [373, 1975], federated databases [313,1480,1891], government
[986,1431], and other networks [571] because of the interconnections among
multiple organizations. Gligor, Gavrila, and Ferraiolo [782] discuss
composition policies with a focus on separation of duty. McDaniel and



Prakash [1288] examine the complexity of reconciling multiple security
policies.

Studies of information flow include work on all of the models described in
this chapter. Graham-Cumming [811] discusses noninterference in the
context of CSP to illustrate its use. Allen [35] compares noninterference and
nondeducibility using the language CSP. Roscoe, Woodcock, and Wulf [1614]
develop an approach using process algebra to specify security properties and
show how to verify noninterference using it. McLean [1305] argues that a
trace-based analysis of noninterference offers some advantages over the
traditional state-based analysis technique because it allows a more abstract
analysis that is valid unless the user interface changes. However, Bevier and
Young [190] counter that a state machine model can provide a better link to
verification and specification work, and should be pursued. Van der Meyden
and Zhang [1931] compare the different frameworks and compare the
semantic models underlying each. Researchers have studied whether, and
how, software implements noninterference properties [198, 1124, 1641, 1643].

The results in this section assert that if components meet certain security
requirements, then their composition meets those requirements. The most
pessimistic properties of connections are assumed. McDermid and Shi [1289]
argue that a more realistic approach is to assert that if components meet
certain internal security requirements, and their connections meet certain
external security requirements, then the entire system is secure. As an
example, McLean [1306] developed a model, separability, that can be applied
to systems where low-level events cannot affect high-level events. For those
systems, separability is simpler than restrictiveness, and provides the same
assurances of security of composability. McLean also noted that security
properties can be defined by sets of sets of traces [1306]. Clarkson and
Schneider [430] extended this idea to develop security policies as sets of trace
properties.

Johnson and Thayer [976] have developed another definition of security,



called “forward correctibility,” that is also composable. It has some
advantages over the restrictiveness property. Millen [1346] has developed
and proved a version of the unwinding theorem for this model. Mantel [1253]
generalized Johnson’s and Thayer’s results to apply to other forms of
composition, and developed a variant of forward correctability that also
enables composition without restricting high-level outputs.

Gray [820] discusses the application of probability theory to these models; it
has since been extended to include reactive systems including cryptographic
computational primitives [108]. Focardi and Gorrieri [696] agree, pointing
out that the issue of nondeterminism is closely related.

An interesting application of noninterference and nondeducibility is to cyber-
physical systems; they have been used to analyze controllers of vehicles
[1238] and a simple power distribution network [735].

9.10 Exercises

1. Draw the lattice described in the first example in Section 9.1.1.

2. The system plugh has users Skyler, Matt, and David. Skyler cannot access
David’s files, and neither Skyler nor David can access Matt’s files. The system
xyzzy has users Holly, Sage, and Heidi. Sage cannot access either Holly’s or
Heidi’s files. The composition policy says that Matt and Holly can access one
another’s files, and Skyler can access Sage’s files. Apply the Principles of
Autonomy and Security to determine who can read whose fles in the
composition of xyzzy and plugh.

3. Consider the two bit machine in section 9.2. Suppose Lucy applies the
command xor0, then Holly the command xor0, then Holly the command
xor0, and finally Lucy the command xor1.

(a) Assuming a command affects both the HIGH and LOW bits, give the
values of proj(Holly, cs, σ0), proj(Lucy, cs, σ0), πLucy(cs), πHolly(cs),



πLucy,xor0(cs), πHolly,xor0(cs), πHolly,xor1(cs), and πxor1(cs).

(b) Assuming a command affects only the bit at the level of the user, give the
values of the functions above.

4. Consider the systems Louie and Dewey in Section 9.2.4.

(a) Suppose the sends and receives for the buffers are nonblocking. Is the
composition of Hughie, Dewey, and Louie still noninterference-secure?
Justify your answer.

(b) Suppose all buffers are unbounded. Is the composition of Hughie, Dewey,
and Louie still noninterference-secure? Justify your answer.

5. Modify the two-bit system in the first example in Section 9.3 as follows.
Whenever a HIGH operation is performed, the HIGH state bit is output.
Whenever a LOW operation is performed, the LOW state bit is output. The
initial state is not output (in contrast to the example). Is this version of the
two-bit system noninterference-secure with respect to Lucy? Why or why
not?

6. In the second example in Section 9.3, Lucy sees the output sequence as
011011. Given that she knows the low-level input sequence, list all possible
input sequences that match the known low-level input sequence and produce
the desired output.

7. Prove that a system that meets the definition of generalized
noninterference security also meets the definition of deducible security.

8. Suppose composite machine catdog (see Section 9.4.1) receives no HIGH
inputs. Show it emits the same value from the left and the right.

9. Prove Theorem 9.5.

10. [1465] In composite machine catdog (see Section 9.4.1), suppose cat can



accept a number of inputs before processing them — that is, cat’s input buffer
has a capacity greater than 1. This machine now emits the same value from
the left and the right. Is it still true that the composite machine has received
no inputs from the left?

11. Consider again the algorithm in Figure 9–7. The power used is another
side channel for most instantiations of this algorithm. Explain how this side
channel works. How might you add sufficient noise to it to render it
unusable?



Part IV: Implementation I:
Cryptography
Cryptography provides many mechanisms on which security techniques and
technologies are built. Part IV reviews the basics of cryptography and its use
in computer security. Chapter 10, “Basic Cryptography,” reviews the principle
elements of cryptosystems. It presents some classical ciphers, public key
ciphers, cryptographic hash functions, and digital signatures. This material is
the basis for Chapters 11, 12, and 13.

Chapter 11, “Key Management,” discusses the basics of managing
cryptographic keys. Authentication and key exchange protocols are often
combined, so this chapter includes authentication protocols that provide the
ability to generate a common cryptographic key for future use. Generating
keys is an intricate subject, full of traps for the unwary, and some basic
principles and techniques improve the strength of the keys generated.
Distributing fixed keys throughout the infrastructure leads to protocols for
public key interchange, including certificates and key escrow and recovery
protocols.

Chapter 12, “Cipher Techniques,” builds on the previous two chapters to
present cryptographic protocols used in practice. It includes a discussion of
stream and block ciphers and presents three Internet protocols as examples
of how protocols work.

Chapter 13, “Authentication,” discusses authentication in a single system
(although the system may be a remote one). As networking authentication
protocols increase in importance, and as smart cards and other hardware
become more common, the use of passwords as the sole authenticators is
deprecated. However, many of the protocols and mechanisms require a PIN
or other authentication data. This shifts the problem of authentication to a
new level. Even there, the systems require the principles of how to choose a



good password and how to identify oneself to the device or system from
which the protocol is launched.



Chapter 10. Basic Cryptography
YORK: Then, York, be still awhile, till time do serve: Watch thou and wake 
when others be asleep, To pry into the secrets of the state;

— The Second Part of King Henry the Sixth, I, i, 249–260.

Cryptography is a deep mathematical subject. Because this book focuses on 
system security, we view cryptography as a supporting tool. Viewed in this 
context, the reader needs only a brief overview of the major points of 
cryptography relevant to that use. This chapter provides such an overview.

Cryptographic protocols provide a cornerstone for secure communication. 
These protocols are built on ideas presented in this chapter and are discussed 
at length in later chapters.

10.1 Cryptography

The word cryptography comes from two Greek words meaning “secret 
writing” and is the art and science of concealing meaning. Cryptanalysis is 
the breaking of codes. The basic component of cryptography is a 
cryptosystem.

Definition 10–1. A cryptosystem is a 5-tuple

, where  is the set of plaintexts,  the set of keys,  is the set of ciphertexts,



is the set of enciphering functions, and

is the set of deciphering functions.

EXAMPLE: In the latter days of the Roman Republic, Julius Caesar was
preparing to invade Italy. His confidential communications with his secret
allies in Rome were enciphered using a cipher in which the letters are shifted
by 3 (so this type of cipher is called a shift cipher or a Caesar cipher). For
example, the letter “A” becomes “D”, “B” becomes “E”, and so forth, ending
with “Z” becoming “C”. So the word “HELLO” is enciphered as “KHOOR.”
Informally, this cipher is a cryptosystem with:

Representing each letter by its position in the alphabet (with “A” in position
0), “HELLO” is 7 4 11 11 14; if k = 3, the ciphertext is 10 7 14 14 17, or
“KHOOR.”

Each Dk simply inverts the corresponding Ek. We aslo have

because ε is clearly a set of onto functions.

The primary goal of cryptography is to keep enciphered information secret,
thereby countering the threat of disclosure (see Section 1.2). Cryptography
can also be used to provide integrity of both data and origin, thereby
countering the threats of modification and masquerading. It can also provide
non-repudiation, countering the threat of repudiation of origin. Thus, it is a
remarkably powerful mechanism that computer security techniques rely on
heavily.



Cryptosystems are based on two types of transformations [cite shannon]. The
first, onfusion, replaces parts of the plaintext message with other data, to hide
the original content. The second, diffusion, scrambles the plaintext message
so that the original content is spread throughout the message. These increase
the difficulty of uncovering the original plaintext message.

10.1.1 Overview of Cryptanalysis

Cryptanalysis is the analysis of cryptosystems in order to decipher the
messages. Kerckhoff’s Principle says that the security of a cryptosystem
cannot rely on an adversary’s not knowing the algorithms for encryption and
decryption [1837]. Thus, standard cryptographic practice is to assume that
she knows the algorithm used to encipher and decipher, and the set of
possible keys, but not the specific cryptographic key (in other words, she
knows , , and ε).

An adversary may use three types of attacks:

• In a ciphertext only attack, the adversary has only the ciphertext. Her goal is
to find the corresponding plaintext. If possible, she may try to find the key,
too.

• In a known plaintext attack, the adversary has the ciphertext and the
plaintext that was enciphered. Her goal is to find the key that was used.

• In a chosen plaintext attack, the adversary may ask that specific plaintexts
be enciphered. She is given the corresponding ciphertexts. Her goal is to find
the key that was used.

A good cryptosystem protects against all three.

Attacks use both mathematics and statistics. The mathematical methods
examine the assumptions of the problems upon which the security of the
ciphers rests. The statistical methods make assumptions about the statistics
of the plaintext language and examine the ciphertext to correlate its



properties with those assumptions. Those assumptions are collectively called
a model of the language. Common models of language are 1-gram models
(reflecting frequence of individual letters), 2-gram models (reflecting
frequencies of pairs of letters), Markov models, and word models.

10.2 Symmetric Cryptosystems

Symmetric cryptosystems (also called single key or secret key cryptosystems)
are cryptosystems that use the same key for encipherment and decipherment.
In these systems, for all

and

, there is a

such that Dk(Ek(m)) = m.

EXAMPLE: The shift cipher discussed earlier had a key of 3, so the
enciphering function was E3. To decipher “KHOOR,” we used the same key in
the decipherment function D3. Hence, the shift cipher is a symmetric cipher.

There are two basic types of symmetric ciphers: transposition ciphers that
diffuse the data in the plaintext and substitution ciphers that replace the data
in the plaintext.

10.2.1 Transposition Ciphers

A transposition cipher rearranges the characters in the plaintext to form the
ciphertext. The letters are not changed. Thus, each encryption key

indicates a permutation algorithm, and the set of encryption functions ε is
simply the set of permutations of m, and the set of decryption functions  is
the set of inverse permutations.



EXAMPLE: The rail fence cipher is composed by writing the plaintext in two
rows, proceeding down, then across, and reading the ciphertext across, then
down. For example, the plaintext “HELLO, WORLD” would be written as:

HLOOL
ELWRD

resulting in the ciphertext “HLOOLELWRD.”

Mathematically, the key to a transposition cipher is a permutation function.
Because the permutation does not alter the frequency of plaintext characters,
a transposition cipher can be detected by comparing character frequencies
with a model of the language. If, for example, character frequencies for 1-
grams match those of a model of English, but 2-gram frequencies do not
match the model, then the text is probably a transposition cipher.

Attacking a transposition cipher requires rearrangement of the letters of the
ciphertext. This process, called anagramming, uses tables of n-gram
frequencies to identify common n-grams. The cryptanalyst arranges the
letters in such a way that the characters in the ciphertext form some n-grams
with highest frequency. This process is repeated, using different n-grams,
until the transposition pattern is found.

EXAMPLE: Consider the ciphertext “HLOOLELWRD.” According to
Konheim’s digram table [1099, p. 19], the digram “HE” occurs with frequency
0.0305 in English. Of the other possible digrams beginning with “H,” the
frequency of “HO” is the next highest, at 0.0043, and the digrams “HL,”
“HW,” “HR,” and “HD” have frequencies of less than 0.0010. Furthermore,
the frequency of “WH” is 0.0026, and the digrams “EH,” “LH,” “OH,” “RH,”
and “DH” occur with frequencies of 0.0002 or less. This suggests that “E”
follows “H.” We arrange the letters so that each letter in the first block of five
letters (from ’“H” up to but not including the “E”) is adjacent to the
corresponding letter in the second block of five letters, as follows.



HE
LL
OW
OR
LD

Reading the letters across and down produces “HELLOWORLD.” Note that
the shape of the arrangement is different from that in the previous example.
However, the two arrangements are equivalent, leading to the correct
solution.

10.2.2 Substitution Ciphers

A substitution cipher changes characters in the plaintext to produce the
ciphertext.

EXAMPLE: The shift cipher discussed earlier had a key of 3, altering each
letter in the plaintext by mapping it into the letter three characters later in the
alphabet (and circling back to the beginning of the alphabet if needed). This is
a substitution cipher.

A shift cipher is susceptible to a statistical ciphertext-only attack.

Figure 10–1 presents a character-based, or 1-gram, model of English text;
others are 2-gram models (reflecting frequencies of pairs of letters), Markov
models, and word models. In what follows, we use the 1-gram model and
assume that the characters are chosen independently of one another.

EXAMPLE: Consider the ciphertext “KHOOR ZRUOG.” We first compute the
frequency of each letter in the ciphertext:

We now apply the character-based model. Let ø(i) be the correlation of the
frequency of each letter in the ciphertext with the character frequencies in
English (see Figure 10–1). Let ø(c) be the frequency of character c (expressed



as a fraction). The formula for this correlation for this ciphertext (with all
arithmetic being mod 26) is

Figure 10–1: Table of character frequencies in the English
language, from Denning [535, p. 65].

Figure 10–2: The value of ø(i) for 0 ≤ i ≤ 25 using the model in
Figure 10–1.

This correlation should be a maximum when the key k translates the
ciphertext into English. Figure 10–2 shows the values of this function for the
values of i. Trying the most likely key first, we obtain as plaintext “EBIIL
TLOIA” when i = 6, “AXEEH PHKEW” when i = 10, “HELLO WORLD” when
i = 3, and “WTAAD LDGAS” when i = 14.

The example above emphasizes the statistical nature of this attack. The
statistics indicated that the key was most likely 6, when in fact the correct key



was 3. So the attacker must test the results. The statistics simply reduce the
number of trials in most cases. Only three trials were needed, as opposed to
13 (the expected number of trials if the keys were simply tried in order).

EXAMPLE: Using Konheim’s model of single-character frequencies [1099, p.
16], the most likely keys (in order) are i = 6, i = 10, i = 14, and i = 3.
Konheim’s frequencies are different than Denning’s, and this accounts for the
change in the third most probable key.

A variant of the shift cipher, called an affine cipher, uses a multiplier in
addition to the shift. Exercise 4 examines this cipher.

10.2.2.1 Vigenere Cipher

The shift cipher maps every character into another character in one alphabet.
Such a cipher is a monoalphabetic cipher. As noted above, it preserves the
statistics of the underlying message, which a cryptanalyst can use to decipher
the message.

A polyalphabetic cipher uses multiple alphabets to generate the ciphertest,
thereby obscuring the statistics. The Vigenère cipher is such a cryptosystem.
In it, the key is a sequence of letters. The key letters are applied to successive
plaintext characters, and when the end of the key is reached, the key starts
over. The length of the key is called the period of the cipher. Figure 10–3
shows a tableau, or table, to implement this cipher efficiently. Because this
requires several different key letters, this type of cipher is called
polyalphabetic.

EXAMPLE: The first line of a limerick is enciphered using the key “BENCH,”
as follows.

Key                B ENCHBENC HBENC HBENCH BENCHBENCH

Plaintext        A LIMERICK PACKS LAUGHS ANATOMICAL



Ciphertext     B PVOLSMPM WBGXU SBYTJZ BRNVVNMPCS

Figure 10–3: The Vigenère tableau.

Figure 10–4: Indices of coincidences for different periods. From
Denning [535, p. 78]

For many years, the Vigenère cipher was considered unbreakable. Then a
Prussian cavalry officer, Major Kasiski, noticed that repetitions occur when
characters of the key appear over the same characters in the ciphertext. The
number of characters between the repetitions is a multiple of the period.
From this observation, he developed an effective attack.

EXAMPLE: Let the message be “THE BOY HAS THE BAG” and let the key be



“VIG”. Then:

Key               VIGVIGVIGVIGVIG

Plaintext       THEBOYHASTHEBAG

Ciphertext    OPKWWECIYOPKWIM

In the ciphertext, the string “OPKW” appears twice. Both are caused by the
key sequence “VIGV” enciphering the same ciphertext, “THEB”. The
ciphertext repetitions are nine characters apart. Hence, 9 is a multiple of the
period (which is 3 here).

The first step in the Kasiski method is to determine the length of the key. The
index of coincidence (IC) measures the differences in the frequencies of the
letters in the ciphertext. It is defined as the probability that two letters
randomly chosen from the ciphertext will be the same. The lower this value,
the less variation in the characters of the ciphertext and, from our models of
English, the longer the period of the cipher.

Let Fc be the frequency of cipher character c, and let N be the length of the
ciphertext. Then the index of coincidence IC can be shown to be (see Exercise
6):

We examine the ciphertext for multiple repetitions and tabulate their length
and the number of characters between successive repetitions. The period is
likely to be a factor of the number of characters between these repetitions.
From the repetitions, we establish the probable period, using the index of
coincidence to check our deduction. We then tabulate the characters for each
key letter separately and solve each as a shift cipher.

EXAMPLE: Consider the Vigenère cipher:



ADQYS MIUSB OXKKT MIBHK IZOOO EQOOG IFBAG KAUMF VVTAA CIDTW MOCIO EQOOG
BMBFV ZGGWP CIEKQ HSNEW VECNE DLAAV RWKXS VNSVP HCEUT QOIOF MEGJS WTPCH
AJMOC HIUIX

Could this be a shift cipher (which is a Vigenère cipher with a key length of
1)? We find that the index of coincidence is 0.043, which indicates a key of
length 5 or more. So we assume that the key is of length greater than 1, and
apply the Kasiski method. Repetitions of length 2 are likely coincidental ,so
we look for repetitions of length 3 or more:

The longest repetition is six characters long; this is unlikely to be a
coincidence. The gap between the repetitions is 30. The next longest
repetition, “MOC”, is three characters long and has a gap of 72. The greatest
common divisor of 30 and 72 is 6. So let us try 6.

To verify that this is reasonable, we compute the index of coincidence for each
alphabet. We first arrange the message into six rows, one for each alphabet:

A I K H O I A T T O B G E E E R N E O S A I
D U K K E F U A W E M G K W D W S U F W J U
Q S T I Q B M A M Q B W Q V L K V T M T M I
Y B M Z O A F C O O F P H E A X P Q E P O X
S O I O O G V I C O V C S C A S H O G C C
M X B O G K V D I G Z I N N V V C I J H H

We then compute the indices of coincidence for these alphabets.

Alphabet #1: IC = 0.069    Alphabet #4: IC = 0.056

Alphabet #2: IC = 0.078    Alphabet #5: IC = 0.124

Alphabet #3: IC = 0.078    Alphabet #6: IC = 0.043



All indices of coincidence indicate a single alphabet except for the indices of
coincidence associated with alphabets #4 (period between 1 and 2) and #6
(period between 5 and 10). Given the statistical nature of the measure, we will
assume that these are skewed by the distribution of characters and proceed
on the assumption that there are 6 alphabets, and hence a key of length 6.

Counting characters in each column (alphabet) yields:

An unshifted alphabet has the following characteristics (“L” meaning low
frequency, “M” meaning moderate frequency, and “H” meaning high
frequency).

H M M M H M M H H M M M M H H M L H H H M L L L L L

We now compare the frequency counts in the six alphabets above with the
frequency count of the unshifted alphabet. The first alphabet matches the
characteristics of the unshifted alphabet (note the values for “A”, “E”, and “I”
in particular). Given the gap between “B” and “I”, the third alphabet seems to
be shifted with “I” mapping to “A”. A similar gap occurs in the sixth alphabet
between “O” and “V”, suggesting that “V” maps to “A”. Substituting into the
ciphertext (lower case letters are plaintext) produces

aDiYS riUkB OckKl MIghK aZOto EiOOl iFtAG paUeF VatAs CIitW eOCno EiOOl
bMtFV egGoP CneKi HSseW nECse DdAAa rWcXS anSnP HheUl QOnoF eEGos WlPCm
aJeOC miUaX

In the last line, the group “aJe” suggests the word “are”. Taking this as a
hypothesis, the second alphabet maps “A” into “S”. Substituting back



produces

aliYS rickB Ocksl MIghs aZOto miOOl intAG paceF Vatis CIite eOCno miOOl
butFV egooP Cnesi HSsee nECse ldAAa recXS ananP Hhecl QOnon eEGos elPCm
areOC micaX

The last block suggests “mical”, because “al” is a common ending for
adjectives. This means that the fourth alphabet maps “O” into “A”, and the
cipher becomes

alimS rickp Ocksl aIghs anOto micOl intoG pacet Vatis qIite ecCno micOl
buttV egood Cnesi vSsee nsCse ldoAa reclS anand Hhecl eOnon esGos eldCm
arecC mical

In English, a “Q” is always followed by a “U”, so the “I” in the second group of
the second line must map to “U”. The fifth alphabet maps “M” to “A”. The
cipher is solved:

alime rickp acksl aughs anato mical intos pacet hatis quite econo mical
butth egood onesi vesee nsose ldoma recle anand thecl eanon essos eldom
areco mical

With proper spacing, capitalization, and punctuation, we have:

A limerick packs laughs anatomical

Into space that is quite economical.

But the good ones I’ve seen

So seldom are clean,

And the clean ones so seldom are comical.

The key is “ASIMOV”.



The Vigenère cipher is easy to break by hand. However, the principles of
attack hold for more complex ciphers that can be implemented only by
computer. A good example is the encipherments that several older versions of
WordPerfect used [171, 173]. These allowed a user to encipher a file with a
password. Unfortunately, certain fields in the enciphered file contained
information internal to WordPerfect, and these fields could be predicted. This
allowed an attacker to derive the password used to encipher the file, and from
that the plaintext file itself.

10.2.2.2 One-Time Pad

Repetitions provide a means for the cryptanalyst to attack the Vigènere
cipher. The onetime pad is a variant of the Vigenère cipher with a key that is
at least as long as the message and is chosen at random, so it does not repeat.
Technically, it is a threshold scheme (see Section 16.3.2), and is provably
impossible to break [241] (see also Section C.3.3, “Perfect Secrecy”).

The weakness of the one-time pad that the key must never be used more than
once.

EXAMPLE: In 1943, the U.S. Army’s Signal Intelligence Service began to
examine messages sent from Soviet agents in the United States to Moscow.
These messages were encoded using a complex cipher that was based on a
one-time pad, which in this context was a set of pages of random number
groups. This in theory made the messages unbreakable. But sometimes the
manufacturers of these pads reused pages. Taking advantage of this
duplication, cryptanalysts in the Signal Intelligence Service and, later, the
U.S. National Security Agency were able to decipher many of the messages
sent between 1943 and 1980, providing insight into Soviet espionage of that
time.

10.2.3 Data Encryption Standard

The Data Encryption Standard (DES) [2159] is one of the most important



symmetric cryptosystems in the history of cryptography. It provided the
impetus for many advances in the field and laid the theoretical and practical
groundwork for many other ciphers. While analyzing it, researchers
developed differential and linear cryptanalysis. Cryptographers developed
other ciphers to avoid real, or perceived, weaknesses; cryptanalysts broke
many of these ciphers and found weaknesses in others. Many of the features
of the DES are used in other ciphers. Hence, even though it is used
infrequently, it is well worth understanding.

In 1973, the U.S. National Bureau of Standards (NBS)1 invited the submission
of proposals for a cryptographic system, in an effort to develop a commercial
standard that could also be used for unclassified government
communications. The requirements included that the algorithm be made
public, available to all to use freely, efficient, and economic to implement.
They received no suitable proposals. In 1974, the NBS issued another
invitation. At the time, IBM was developing a cryptosystem for use in the
commercial world [1915]. IBM submitted this algorithm, LUCIFER [1802], to
the NBS, which requested the U.S. National Security Agency’s help in
evaluating the algorithm. It modified the algorithm in several ways, published
the modified algorithm, and held two workshops to evaluate the
cryptosystem. The modified cryptosystenm was adopted as a standard in 1976
[1693].

1The name was later changed to the National Institute of Standards and
Technology (NIST).

10.2.3.1 Structure

The DES is bit-oriented, unlike the other ciphers we have seen. It uses both
transposition and substitution and for that reason is sometimes referred to as
a product cipher. Its input, output, and key are each 64 bits long. The sets of
64 bits are referred to as blocks. Thus,



, and  are sets of all combinations of 64 bits, ε the DES encryption algorithm,
and  the DES decryption algorithm.

The cipher consists of 16 rounds, or iterations. Each round uses a separate
key of 48 bits. These round keys are generated from the key block by
dropping the parity bits (reducing the effective key size to 56 bits), permuting
the bits, and extracting 48 bits. A different set of 48 bits is extracted for each
of the 16 rounds. If the order in which the round keys is used is reversed, the
input is deciphered.

The rounds are executed sequentially, the input of one round being the
output of the previous round. The right half of the input, and the round key,
are run through a function f that produces 32 bits of output; that output is
then xor’ed into the left half, and the resulting left and right halves are
swapped.

The function f provides the strength of the DES. The right half of the input
(32 bits) is expanded to 48 bits, and this is xor’ed with the round key. The
resulting 48 bits are split into eight sets of six bits each, and each set is put
through a substitution table called the S-box. Each S-box produces four bits
of output. They are catenated into a single 32-bit quantity, which is
permuted. The resulting 32 bits constitute the output of the f function.

Section F.1 describes the algorithm in detail, and presents the tables involved.

10.2.3.2 Analysis of the DES

When the DES was first announced, it was criticized as too weak. First, Diffie
and Hellman [568] argued that a key length of 56 bits was simply too short,
and they designed a machine that could break a DES-enciphered message in a
matter of days. Although their machine was beyond the technology of the
time, they estimated that it could soon be built for about $20,000,000.
Second, the reasons for many of the decisions in the design of the DES—most
notably, those involving the S-boxes—were classified. Many speculated that



the classification hid “trapdoors,” or ways to invert the cipher without
knowing the key.

Some properties of the DES were worrisome. First, it had four weak keys
(keys that were their own inverses) and 12 semiweak keys (keys whose
inverses were other keys). Second, let

, and  be the complement of the key k, the plaintext m, and the ciphertext c,
respectively. Let DESk(m) be the encipherment of plaintext m under key k.
Then the complementation property states that

Third, some of the S-boxes exhibited irregular properties. The distribution of
odd and even numbers was nonrandom, raising concerns that the DES did
not randomize the input sufficiently. Several output bits of the fourth S-box
seemed to depend on some of the output bits of the third S-box. This again
suggested that there was a structure to the S-boxes, and because some of the
design decisions underlying the S-boxes were unknown, the reasons for the
structure were unknown. The structure made hardware implementation of
the DES simpler [1916]. It distributed the dependence of each output bit on
each input bit rapidly, so that after five rounds each output bit depended on
every key and input bit [1334]. It could have been needed to prevent the
cipher from being broken easily. It also could enable a trapdoor to allow the
cipher to be broken easily. There was considerable speculation that the NSA
had weakened the algorithm, although a congressional investigation did not
reflect this [140].

In 1990, a breakthrough in cryptanalysis answered many of these questions.
Biham and Shamir applied a technique called differential cryptanalysis to
the DES [205,207,208]. This technique required them to generate 247 pairs of
chosen plaintext and ciphertext, considerably fewer than the trial-and-error
approach others had used. During the development of this technique, they



found several properties of the DES that appeared to answer some of the
questions that had been raised.

First, for a known plaintext attack, differential cryptanalysis requires 256

plaintext and ciphertext pairs for a 15-round version of the DES. For the full
16 rounds, 258 known plaintext and ciphertext pairs are needed, which is
more than sufficient for a trial-and-error approach. (Matsui subsequently
improved this using a variant attack called linear cryptanalysis [1268, 1269];
this attack requires 243 known plaintext and ciphertext pairs on the average.)
Second, small changes in the S-boxes weakened the cipher, reducing the
required number of chosen plaintext and ciphertext pairs. Third, making
every bit of the round keys independent for an effective key length of 16 × 48
= 768 bits did not make the DES resistant to differential cryptanalysis, which
suggests that the designers of the DES knew about differential analysis.
Coppersmith later confirmed this [461].

10.2.3.3 DES and Modes

The DES is used in several modes [2160]. Using it directly is called electronic
code book (ECB) mode, and is very rare. Modes in which it can be used to
generate a pseudo-onetime pad are cipher feed back (CFB) mode (see Section
12.2.1.2) and output feed back (OFB) mode (see Section 12.2.1.1). Its most
common modes of use are cipher block chaining (CBC) mode (see Section
12.2.2), encrypt-decrypt-encrypt (EDE) mode, and triple DES mode (the
EDE and triple DES modes are described in Section 12.2.2.1).

10.2.3.4 Retirement of the DES

In 1998, a design for a computer system and software that could break any
DES-enciphered message in a few days was published [628]. This design
complemented several challenges to break specific DES messages. Those
challenges had been solved using computers distributed throughout the
Internet. By 1999, it was clear that the DES no longer provided the same level
of security as it had 10 years earlier, and the search was on for a new, stronger



cipher to fill the needs that the DES no longer filled. In 2001, the Advanced
Encryption Standard was announced (see Section 10.2.5), and in 2005, NIST
officially withdrew the DES [138]. Triple DES mode remains the only FIPS-
approved implementation [127].

10.2.4 Other Modern Symmetric Ciphers

Several algorithms were proposed to overcome the weaknesses found in the
DES. NewDES (which, despite its name, is not a variant of DES but a new
algorithm) has a block size of 64 bits and a key length of 120 bits [1712].
However, it can be broken using an attack similar to differential cryptanalysis
[1030]. FEAL has a block size of 64 bits and a key size of 64 bits [1371, 1745].
FEAL-4 (FEAL with four rounds) and FEAL-8 (FEAL with eight rounds) fell
to differential cryptanalysis with 20 [1411] and 10,000 [774] chosen
plaintexts, respectively. Biham and Shamir broke FEAL-N, which uses N
rounds, for N < 32 by differential cryptanalysis more quickly than by trial-
and-error [207]. It was proposed that the key be lengthened to 128 bits, but
the 128-bit key proved as easy to break as FEAL-N with the original 64-bit
key. REDOC-II [487] has an 80-bit block and a 160-bit key. It has 10 rounds,
and although a single round was successfully cryptanalyzed [206], the use of
10 rounds appears to withstand differential cryptanalysis.

LOKI89 [306], proposed as an alternative to the DES, was vulnerable to
differential cryptanalysis [207]. Its successor, LOKI91 [304], uses a 64-bit key
and a 64-bit block size. Linear cryptanalysis fails to break this cipher [1894].
LOKI97 [305] uses a 128-bit block size and a 256-bit key schedule, but is
believed to be vulnerable to both linear and differential cryptanalysis [1082].
Khufu [1330] has a block size of 64 bits and a key size of 512 bits. When used
with 24 or 32 rounds, it resists chosen plaintext attacks. Its S-boxes are
computed from the keys. Khafre [1330], similar in design to Khufu, uses fixed
S-boxes, but it has been broken [207].

IDEA is an eight-round cipher that uses 64-bit blocks and 128-bit keys [1131].
It uses three operations: exclusive or’s, addition modulo 216, and



multiplication modulo 216 + 1. It appears to withstand known attacks [887,
1132] but variants with fewer than the full 8 rounds have been broken [204,
534]. It is used in commercial software—notably, in the electronic mail
program PGP (and not the GNU software GPG) [1220]—but is patented and
requires licensing for use in commercial software.

Schneier developed Blowfish [1692] as an alternative to the DES,
unencumbered by patents. It appears to be secure against linear cryptanalysis
[1425], but has been superseded by Twofish [1699, 1700], a finalist for the
Advanced Encryption Standard (AES), the successor to the DES (see Section
10.2.5). Other ciphers that were finalists for the AES wereSerpent [200], RC6
[1605], and MARS [330]. These were extensively analyzed as part of that
competition [202, 367, 957, 1028, 1029, 1747].

10.2.5 Advanced Encryption Standard

In 1997, the U.S. National Institute of Standards and Technology announced
a competition to select the successor to the DES. Like the DES, the chosen
algorithm had to be available for royalty-free use. Unlike the DES, it was to
encipher blocks in 128 bits in length and use keys of 128, 192, and 256 bits.
Initially, 21 cryptosystems were submitted. The developers presented the
cryptosysytems in two workshops, and then selected Twofish, Serpent, RC6,
MARS, and Rijndael. After a third workshop, NIST announced that Rijndael
was selected to be the Advanced Encryption Standard [2129].

10.2.5.1 Structure

Like the DES, the AES is a bit-oriented product cipher. Unlike the DES, the
AES can use keys of 128, 192, or 256 bits and operates on 128 bits of input,
producing 128 bits of output. The number of rounds in the AES depends upon
the key length—10 rounds if the key is 128 bits, 12 rounds if the key is 192
bits, and 14 rounds if the key is 256 bits. Thus,  and  are sets of all
combinations of 128 bits and  is the set of all combinations of 128, 192, and
256 bits, depending on the key length chosen. ε is the AES encryption



algorithm for the key length selected, and  the corresponding AES
decryption algorithm.

The AES maintains a state array that initially consists of the input. Each
round transforms the state array, and the contents of the array at the end of
the last round is the output.

Associated with each round is a round key. If the AES is n rounds, there will
be n round keys. The original key is divided into 4-byte words.2 The RotWord
transformation rotates the word by one byte; the SubWord transformation
changes the bytes by applying an S-box. The result is xor’ed with a bit string,
and then with the corresponding word of the previous round (or the initial
key, if this is the first round key). Each round key consists of 4, 6, or or 8
words depending on the length of the original key.

2A “byte” in this context is 8 bits, regardless of the underlying architecture.

To begin the encryption, the transformation AddRoundKey combines the
supplied key with the state array. Next come a series of rounds, each of which
(except the last) consists of four operations. First, the SubBytes
transformation substitutes new values for each byte in the state array using
an S-box. Then, the ShiftRows transformation cyclically shifts rows. The
MixColumns transformation alters each column independently, and then the
AddRoundKey transformation xors the state with the round key. The last
round omits the MixColumns transformation. The contents of the resulting
state array is the output.

Decryption is accomplished in a similar fashion. The round key schedule is
reversed, and three of the four transformations are changed. In each round,
the InvShiftRows transformation, which is the inverse of the ShiftRows
transformation used in encryption, shifts the rows of the state array. The
InvSubBytes transformation reverses the SubBytes transformation using an
S-box that is the inverse of the one associated with SubBytes. Then the
AddRoundKey transformation xor’s in the appropriate round key, and the



InvMix-Columns transformation, again the inverse of the MixColumns
transformation, reverses the MixColumns transformation. The final round
omits the InvMixColumns transformation.

An alternate expression of the decryption algorithm notes that InvShiftRows
and InvSubBytes commute with respect to (functional) composition, and that
InvMixColumns is linear with respect to the column input. Given these, the
Equivalent Inverse Cipher algorithm exchanges the order of the
InvShiftRows and InvSubBytes transformations, applied InvMixColumns to
all round keys except the initial key and the final round key, and then
exchanges the order of the InvMixColumns and AddRoundKey
transformations. This provides a more efficient structure for decryption,
paralleling the structure of encryption.

Section F.2 describes the algorithm in detail, including the tables and
transformations involved.

10.2.5.2 Analysis of the AES

The designers constructed the AES to withstand the attacks to which the DES
showed weakness [492]. As with the DES, the selection of the values in the S-
box is critical. Unlike the DES, the developers described the design principles
underlying the choice of S-box. The first is non-linearity, so the output of the
transformation is not a linear function of the input. The second is algebraic
complexity, so the inverse of each byte is obtained, and this remapped with
an affine transformation. The result is that no input to the S-box is ever
mapped either to itself or to its bitwise complement.

The designers also took care that the AES transformation diffused the input
bits rapidly After each 2 successive rounds, every bit in the state array
depends on every bit in the state array from 2 rounds ago. As several attacks
trace the dispersion of bits through 6 rounds, and then examine their
propagation over 2 more rounds, providing a minimum of 10 rounds makes
such attacks infeasible.



The generation of the round keys also hinders several known attacks. These
attacks, in which the adversary either knows some key bits or can deduce
relationships among the bits of different but similar keys, become more
difficult as the length of the key increases. So, increasing the number of
rounds with the key length adds complexity that hinders these attacks. In
addition, the round key generation uses a different constant for each round,
eliminating some symmetries, and the round key generation uses the S-box,
so the round keys are non-linear with respect to the original keys.

The AES has been studied for potential weaknesses, both during the
competition and after. No weak or semiweak keys have been identified
[2129]. Further, its design inhibits differential and linear cryptanalysis
attacks [579], as well as many other attacks [201, 203, 1028, 1081, 1962].
Some of these attacks are effective against various forms of reduced-round
AES, which are versions of the AES that use a smaller number of rounds. The
effectiveness of these attacks is measured in the number of chosen (or
known) plaintext/ciphertext pairs, the number of encryptions, and the
memory used. For example, one recent chosen plaintext attack [599] can
break 7-round AES-128, AES-192, and AES-256 with 2116 plaintexts,
encryptions, and memory, 8-round AES-192 with 2113 plaintexts, 2129

memory, and 2172 encryptions, and 8-round AES-256 with 2113 plaintexts, 2129

memory, and 2196 encryptions. Other attacks require fewer chosen plaintexts
but more encryptions. One attack on 7-round AES-192 requires about 291.2

chosen plaintexts and 2139.2 encryptions, and on 8-round AES-256, 289.1

chosen plaintexts and 2229.7 memory [1218]. Others targeted 9-round AES,
breaking 9-round AES-192 with 267 chosen plaintexts and 2143.33 encryptions
[808], and 9-round AES-256 with 259 chosen plaintexts but requires 2119

encryptions [1791]. Of course, the complexity of these attacks increases
dramatically when applied to the full AES rather than a reduced-round
variant. Certain unexpected algebraic structures within the AES have
suggested other possible attacks, as has the possibility of combining different
attacks, but the effectiveness of these ideas is still being evaluated [1003].



10.2.5.3 AES Modes

The modes of operation described for the DES have been extended to include
the AES, and a new counter mode (CTR) [606] has been added (see Section
12.2.1.1). It is not used in EDE or “Triple AES” mode, because the extended
block size make those modes unnecessary [325]. Numerous other modes have
also been recommended.

The design of the AES, which uses basic operations such as xor and is
oriented towards 8-bit bytes, allows high performance implementations in
both hardware and software on a wide variety of processors [627, 662, 741,
1481, 1826]. Indeed, some vendors have created special instructions to
support AES encryption and decryption [837, 838, 1249].

Like the DES, the AES has spurred studies in cryptanalysis. One effects of
these studies is a deeper understanding of how block ciphers work, how to
cryptanalyze them, and how to design them to resist attacks. Other effects of
these studies remain to be seen.

10.3 Public Key Cryptography

In 1976, Diffie and Hellman [567] proposed a new type of cryptography that
distinguished between encipherment and decipherment keys. One of the keys
would be publicly known; the other would be kept private by its owner.
Symmetric cryptography requires the sender and recipient to share a
common key. Public key cryptography does not. If the encipherment key is
public, to send a secret message simply encipher the message with the
recipient’s public key. Then send it. The recipient can decipher it using his
private key. Chapter 11, “Key Management,” discusses how to make public
keys available to others.

Interestingly, James Ellis, a cryptographer working for the British
government’s Communications-Electronics Security Group, developed the
concept of public key cryptography (which he called “non-secret encryption”)



in a January 1970 report. Two of his colleagues found practical
implementations. This work remained classified until 1997 [632].

Because one key is public, and its complementary key must remain secret, a
public key cryptosystem must meet the following three conditions:

• It must be computationally easy to encipher or decipher a message given the
appropriate key.

• It must be computationally infeasible to derive the private key from the
public key.

• It must be computationally infeasible to determine the private key from a
chosen plaintext attack.

The first system to meet these requirements generates a shared session key
(see Section 11.2.3.1.

Public key systems are based on hard problems. The first type uses NP-
complete problems that have special cases that are easy to solve. The system
transforms that simpler problem into the more general problem. The
information to do this is called “trapdoor information.” If an adversary finds
that information, the problem can be transformed back into the simpler one,
and the adversary can break the system.

EXAMPLE: An early public key cipher was based on the knapsack problem.
Given a set of numbers A = {a1, . . . , an} and an integer C, find a subset of A
whose integers add exactly to C. This problem is NP-complete. However, if
the ai are chosen so that each ai > ai1 + · · · + a1, then the knapsack is called
superincreasing and can easily be solved. Merkle and Hellman [1331]
developed trapdoor information allowing them to construct a trapdoor
knapsack from a superincreasing one.

In 1982, Shamir developed a polynomial-time method for determining
trapdoor information [1733], thereby breaking the knapsack cipher. In 1984,



Brickell extended this by showing how to break a cipher consisting of iterated
knapsacks [295].

A second type is based on hard mathematical problems such as finding the
factors of a very large number. The RSA cryptosystem (see Section 10.3.2)
provides confidentiality, authentication, and integrity using a problem related
to factoring.

An important comment about the examples in this section is necessary. In the
examples that follow, we will use small numbers for pedagogical purposes. In
practice, the numbers would be much larger, and often the encipherment
schemes will use additional techniques to prevent the success of attacks such
as precomputation (see Section 12.1.1) and changing the order of the
ciphertext blocks (see Section 12.1.2).

10.3.1 El Gamal

The El Gamal cryptosystem [630] provides message secrecy. It is based on
the discrete logarithm problem.

Definition 10–2. Let n, g, and b be integers with 0 ≤ a < n and 0 ≤ b < n.
The discrete logarithm problem is to find an integer k such that 0 ≤ k < n and
a = gk mod n.

Choose a prime number p with p–1 having at least one large factor. Choose
some g such that 1 < g < p; g is called a generator, because repeatedly adding
g to itself, and reducing modp, will generate all integers between 0 and p – 1
inclusive. Next, select an integer kpriv such that 1 < kpriv < p – 1 , and take y =
gkpriv mod p. Then kpriv will be the private key and the triplet Kpub = (p, g, y)
will be the public key.

EXAMPLE: Alice chooses p = 262643, a prime number; p – 1 = 262642 = 2 ×
131321 has at least one large factor, so her choice is suitable. She chooses g =
9563 and the public key kpriv = 3632. Then:



so the public key is Kpub = (p, g, y) = (262643, 9563, 27459).

To encipher a message m, choose a random integer k that is relatively prime
to p – 1. Compute the following:

The ciphertext is then c = (c1, c2).

EXAMPLE: Represent each plaintext character by a number between 00 (A)
and 25 (Z); 26 represents a blank. Bob wants to send Alice the message
“PUPPIESARESMALL.” Using the representation above, with three
characters per block, the plaintext is 152015 150804 180017 041812 001111.
He uses Alice’s public key (above) to encipher the message character by
character, choosing a different random integer k for each character.

or (15653, 923), (46495, 109351), (176489, 208811), (88247, 144749),
(152432, 5198).

Decipherment is straightforward. Simply compute



EXAMPLE: Alice receives Bob’s ciphertext, and proceeds to decipher it:

Translating this into characters, this is PUP PIE SAR ESM ALL, or
PUPPIESARESMALL, which was indeed what Bob sent.

The El Gamal cryptosystem provides strength comparable to other
cryptosystems but uses a shorter key. It also introduces randomness into the
cipher, so the same letter enciphered twice produces two different
ciphertexts. This prevents attacks that depend upon repetition. However, care
must be taken; if a random integer k is used twice, an attacker who obtains
the plaintext for one message can easily decipher the other (see exercise 10).
Also, notice that c2 is a linear function of m, so an attacker can forge messages
that are multiples of previously enciphered messages. As an example, if (c1,
c2) is the ciphertext of message m, (c1, nc2) is the ciphertext corresponding to
nm. Protocols using El Gamal must prevent an attacker from being able to
forge this type of message.

Network security protocols often use El Gamal due to its shorter key length.
See Section 12.5.3 for an example. It can also be used for authentication (see
Section 10.5.2.2).

10.3.2 RSA

The RSA cryptosystem was first described publicly in 1978 [1606]. Unknown
at the time was the work of Clifford Cocks in 1973, where he developed a
similar cryptosystem. This work was classified, and only became public in the



late 1990s [632].

RSA is an exponentiation cipher. Choose two large prime numbers p and q,
and let n = pq. The totient ø(n) of n is the number of numbers less than n
with no factors in common with n. It can be shown that ø(n) = (p – 1)(q – 1)
(See exercise 12).

EXAMPLE: Let n = 10. The numbers that are less than 10 and are relatively
prime to (have no factors in common with) n are 1, 3, 7, and 9. Hence, ø(10) =
4. Similarly, if n = 21, the numbers that are relatively prime to n are 1, 2, 4, 5,
8, 10, 11, 13, 16, 17, 19, and 20. So ø(21) = 12.

Choose an integer e < n that is relatively prime to ø(n). Find a second integer
d such that ed mod ø(n) = 1. The public key is (e, n), and the private key is d.

Let m be a message. Then:

and

Exercise 13 shows why this works.

When implementing this cipher, two issues are the computation of the
modular exponentiation and finding two large primes. Exercise 19 shows how
to compute the modular exponentiation quickly. Large prime numbers are
found by generating large random numbers and then testing them for
primality [293, 1615, 1837, 1967].

EXAMPLE: Let p = 181 and q = 1451. Then n = 262631 and ø(n) = 261000.
Alice chooses e = 154993, so her private key is d = 95857. As in the El Gamal
example, Bob wants to send Alice the message “PUPPIESARESMALL”, so he
encodes it the same way, giving the plaintext 152015 150804 180017 041812
001111. Using Alice’s public key, the ciphertext is



or 220160 135824 252355 245799 070707.

In addition to confidentiality, RSA can provide data and origin
authentication; this is used in digital signatures (see Section 10.5.2.1). If Alice
enciphers her message using her private key, anyone can read it, but if
anyone alters it, the (altered) ciphertext cannot be deciphered correctly.

EXAMPLE: Suppose Alice wishes to send Bob the same message in such a
way that Bob will be sure that Alice sent it. She enciphers the message with
her private key and sends it to Bob. As indicated above, the plaintext is
represented as 152015 150804 180017 041812 001111. Using Alice’s private
key, the ciphertext is

or 072798 259757 256449 089234 037974. In addition to origin authenticity,
Bob can be sure that no letters were altered.

Providing both confidentiality and authentication requires enciphering with
the sender’s private key and the recipient’s public key.

EXAMPLE: Suppose Alice wishes to send Bob the message
“PUPPIESARESMALL” in confidence and authenticated. Again, assume that
Alice’s private key is 95857. Take Bob’s public key to be 45593 (making his



private key 235457). The plaintext is represented as 152015 150804 180017
041812 001111. The encipherment is

or 249123 166008 146608 092311 096768.

The recipient uses the recipient’s private key to decipher the message and the
sender’s public key to authenticate it. Bob receives the ciphertext above,
249123 166008 146608 092311 096768. The decipherment is

or 152015 150804 180017 041812 001111. This corresponds to the message
Alice sent.

The use of a public key system provides a technical type of nonrepudiation of
origin. The message is deciphered using Alice’s public key. Because the public
key is the inverse of the private key, only the private key could have
enciphered the message. Because Alice is the only one who knows this private
key, only she could have enciphered the message. The underlying assumption
is that Alice’s private key has not been compromised, and that the public key
bearing her name really does belong to her.

In practice, no one would use blocks of the size presented here. The issue is
that, even if n is very large, if one character per block is enciphered, RSA can



be broken using the techniques used to break symmetric substitution ciphers
(see Sections 10.2.2 and 12.1.3). Furthermore, although no individual block
can be altered without detection (because the attacker presumably does not
have access to the private key), an attacker can rearrange blocks and change
the meaning of the message.

EXAMPLE: A general sends a message to headquarters asking if the attack is
on. Headquarters replies with the message “ON” enciphered using an RSA
cipher with a 2,048-bit modulus, but each letter is enciphered separately. An
attacker intercepts the message and swaps the order of the blocks. When the
general deciphers the message, it will read “NO,” the opposite of the original
plaintext.

Moreover, if the attacker knows that headquarters will send one of two
messages (here, “NO” or “ON”), the attacker can use a technique called
“forward search” or “precomputation” to break the cipher (see Section 12.1.1).
For this reason, plaintext is usually padded with random data to make up a
block. This can eliminate the problem of forward searching, because the set of
possible plaintexts becomes too large to precompute feasibly.

A different general sends the same request as in the example above. Again,
headquarters replies with the message “ON” enciphered using an RSA cipher
with a 2,048-bit modulus. Each letter is enciphered separately, but the first
ten bits of each block contain the number of the block, the next eight bits
contain the character, and the remaining 2,030 bits contain random data. If
the attacker rearranges the blocks, the general will detect that block 2 arrived
before block 1 (as a result of the number in the first ten bits) and rearrange
them. The attacker also cannot precompute the blocks to determine which
contains “O,” because she would have to compute 22030 blocks, which is
computationally infeasible.

10.3.3 Elliptic Curve Ciphers

Miller [1358] and Koblitz [1089] proposed a public key scheme based on



elliptic curves. This scheme can be applied to any scheme that depends on the
discrete logarithm problem. Here, we show a version of El Gamal using
elliptic cryptography.

Definition 10–3. An elliptic curve is an equation of the form y2 = x3 + ax +
b.

Figure 10–5 shows the plot of the curve y2 = x3 + 4x + 10. Consider two points
on the curve, P1 and P2. If P1 ≠ P2, draw a line through them. If P1 = P2, then
draw a the tangent to the curve at P1. Suppose that line intersects the curve at
a third point, P3 = (x3, y3). Take P4 = (x3, –y3). We define P4 to be the sum of
P1 and P2. Otherwise, the line is vertical, so take P1 = (x, y) and treat ∞ as
another point of intersection with the curve. The third point of intersection is
P2 = (x, –y), so given the above definition of addition, we have P1 + ∞ = (x, y)
= P1. Hence the point at ∞ is the identity in addition. It is also its own inverse.

Figure 10–5: Plot of the elliptic curve y2 = x3 + 4x + 10.



More precisely, let P1 = (x1, y1) and P2 = (x2, y2). Define

Then P3 = P1 + P2, where

Also, if P4 = –P3, then x4 = x3 and y4 = –y3.

This can be turned into a cryptosystem using modular arithmetic, where the
modulus used is a prime number p. Thus, the curve of interest is of the form

with p a prime number and 4a3 + 27b2 ≠ 0.3 Suppose we add a point P to
itself n times. Call the result Q, so Q = nP . If n is large, it is generally very
hard to compute from Q and P . This is the basis for the security of the
cryptosystem.

3More generally, elliptic curves can be over any finite field. When the size of
the finite field is a power of 2, the equation has the form y2 + xy = x3 + ax2 +
b; the rules for addition are also slightly different.

Thus, an elliptic curve cryptosystem has four parameters: (a, b, p, P). The
private key is a randomly chosen integer k < p; in practice, one chooses this
number to be less than the number of (integer) points on the curve. The
corresponding public key is K = kP . In the following examples, we shall use
the shorthand (x, y) mod p to mean (x mod p, y mod p). Also, a–1 mod p is the
value x that satisfies the equation ax mod p = 1 (see Section B.3).

To use the elliptic curve version of El Gamal, choose a point P on the curve,



and a private key kpriv. Then compute Q = kprivP . Using the elliptic curve
above, this means that the public key is (P, Q, a, p). To encipher a message m,
it is first expressed as a point on the elliptic curve. The sender then selects a
random number k and computes

and sends those to the recipient. To decipher the message, the recipient
computes

EXAMPLE: Alice and Bob now decide to use the elliptic curve version of El
Gamal to encipher their messages. They use the same elliptic curve and point
as in the previous example. Bob chooses a random number kBob = 1847 as his
private key. He then computes his public key KBob = kBobP = 1847(1002, 493)
mod 2503 = (460, 2083).

Alice wants to send Bob the message m = (18, 1394). To encipher it, she
chooses a random number k = 717, computes

and sends c1 and c2 to Bob.

To decipher the message, Bob computes

and uses this to compute

thereby recovering the plaintext message.



The generation of elliptic curves suitable for cryptography is a complex
question. In particular, it requires a careful selection of parameters. For
example, when b = 0 and p mod 4 = 3, or when a = 0 and p mod 3 = 2, the
discrete log problem underlying elliptic curve cryptography becomes
significantly easier to solve. Thus, choosing these parameters weakens the
cryptosystem. Ways to generate elliptic curves are being studied [442].
Several parameter sets have been recommended for use. The U.S. National
Institute for Standards and Technology recommends curves P-192, P-224, P-
256, P-384, or P-521 for elliptic curves using a prime modulus, and Degree
163, 233, 283, 409, or 571 Binary Fields [2162]. Certicom recommends these
as well, except that the degree 233 binary field is replaced by a degree 239
binary field [2246]. These curves are widely used. Some questions have been
raised about the strength of these curves [181]. Other proposed curves include
those of the Brainpool standard [1210], Curve1174 [182], Curve25519 [180],
and several others [272].

The advantage to using elliptic curves over other forms of public key
cryptography is that the keys can be shorter, and hence the computation time
is shorter. As an example, elliptic curve cryptography with a key length of 256
to 383 bits provides a level of security comparable to RSA with a modulus of
3072 bits [126]. Koblitz, Koblitz, and Menezes [1088] discuss how elliptic
curve cryptography became widely accepted, with a discussion of it and RSA .

10.4 Cryptographic Checksums

Suppose Alice wants to send Bob a message of n bits. She wants Bob to be
able to verify that the message he receives is the same one that was sent. So
she applies a mathematical function, called a checksum function, to generate
a smaller set of k bits from the original n bits. This smaller set is called the
checksum or message digest. Alice then sends Bob both the message and the
associated checksum. When Bob gets the message, he recomputes the
checksum and compares it with the one Alice sent. If they match, he assumes
that the message has not been changed; if they do not match, then either the



message or the checksum has changed, and so they cannot be trusted to be
what Alice sent him.

Of course, an adversary can change the message and alter the checksum to
correspond to the message. For the moment, assume this will not happen; we
will relax this assumption in Section 10.5.

EXAMPLE: The parity bit in the ASCII representation is often used as a
single-bit checksum. If odd parity is used, the sum of the 1-bits in the ASCII
representation of the character, and the parity bit, is odd. Assume that Alice
sends Bob the letter “A.” In ASCII, the representation of “A” using odd parity
is p0111101 in binary, where p represents the parity bit. Because five bits are
set, the parity bit is 0 for odd parity.

When Bob gets the message 00111101, he counts the 1-bits in the message.
Because this number is odd, Bob believes that the message has arrived
unchanged.

To minimize the probability that a change to either the message or the
checksum will be detected, the checksum function have satisfy specific
properties.

Definition 10–4. A cryptographic checksum function (also called a strong
hash function or a strong one-way function) h : A → B is a function that has
the following properties.

1. For any x ∈ A, h(x) is easy to compute.

2. For any y ∈ B, it is computationally infeasible to find x ∈ A such that h(x) =
y.

3. It is computationally infeasible to find x, x′ ∈ A such that x ≠ x′ and h(x) =
h(x′). (Such a pair is called a collision.)

The third requirement is often stated as:



3′. Given any x ∈ A, it is computationally infeasible to find another x′ ∈ A
such that x ≠ x′ and h(x) = h(x′).

However, properties 3 and 3′ are subtly different. It is considerably harder to
find an x′ meeting the conditions in property 3′ than it is to find a pair x and
x′ meeting the conditions in property 3. To explain why, we need to examine
some basics of cryptographic checksum functions.

Given that the checksum contains fewer bits than the message, several
messages must produce the same checksum. The best checksum functions
have the same number of messages produce each checksum. Furthermore,
the checksum that any given message produces can be determined only by
computing the checksum. Such a checksum function acts as a random
function.

The size of the output of the cryptographic checksum is an important
consideration owing to a mathematical principle called the pigeonhole
principle.

Definition 10–5. The pigeonhole principle states that if there are n
containers for n + 1 objects, at least one container will hold two objects.

To understand its application here, consider a cryptographic checksum
function that computes hashes of three bits and a set of files each of which
contains five bits. This yields 23 = 8 possible hashes for 25 = 32 files. Hence,
at least four different files correspond to the same hash.

Now assume that a cryptographic checksum function computes hashes of 128
bits. The probability of finding a message corresponding to a given hash is 2–

128, but the probability of finding two messages with the same hash (that is,
with the value of neither message being constrained) is 2–64 (see Exercise 25).

Definition 10–6. A keyed cryptographic checksum function requires a
cryptographic key as part of the computation. A keyless cryptographic



checksum does not.

Many keyless hash functions have been developed. The best known are MD4
[1601] and MD5 [1602] (128 bit checksums), RIPEMD-160 [578] (160 bit
checksum), HAVAL [2109] (128, 160, 192, 224, and 256 bit checksums), and
the Secure Hash Algorithm family of hash functions [2229] (SHA-1, SHA-
224, SHA-256, SHA-384, SHA-512). Dobbertin devised a method for
generating collisions in MD4 [577] and MD5 [576]. Wang and Yu used a
differential attack to find collisions in MD4 and MD5 very quickly [1984];
their attack also works on HAVAL-128, RIPEMD, and the original version of
SHA (now called SHA-0) [2228]. Various techniques for finding collisions
have found collisions in several SHA hash functions, all on versions with a
reduced number of steps (such as 58 step SHA-1 [1983], 70 step SHA-1 [518],
24 step SHA-2, SHA-256, and SHA-512 [1658], and 38 step SHA-256 [1324]).

In 2012, the U. S. National Institute for Standards and Technology selected
the Keccak hash function as SHA-3 [2244]. The design of Keccak prevents
many of the collision-finding attacks that succeeded in previous hash
functions [493]. In 2013, however, a different kind of attack succeeded with 3
round Keccak-384 and Keccak-512, and 5 round Keccak-256 [574]. Only the
future will tell whether SHA-3 continues to be as robust as is believed.

10.4.1 HMAC

HMAC is a generic term for an algorithm that uses a keyless hash function
and a cryptographic key to produce a keyed hash function [1109]. This
mechanism enables Alice to validate that data Bob sent to her is unchanged in
transit. Without the key, anyone could change the data and recompute the
message authentication code, and Alice would be none the wiser.

The need for HMAC arose because keyed hash functions are derived from
cryptographic algorithms. Many countries restrict the import and export of
software that implements such algorithms. They do not restrict software
implementing keyless hash functions, because such functions cannot be used



to conceal information. Hence, HMAC builds on a keyless hash function using
a cryptographic key to create a keyed hash function.

Let h be a keyless hash function that hashes data in blocks of b bytes to
produce a hash l bytes long. Let k be a cryptographic key. We assume that the
length of k is no greater than b; if it is, use h to hash it to produce a new key of
length b. Let k′ be the key k padded with bytes containing 0 to make b bytes.
Let ipad be a sequence of bytes containing the bits 00110110 and repeated b
times; let opad be a similar sequence with the bits 01011100. The HMAC-h
function with key k for message m is

where ⊕ is exclusive or and || is concatenation.

Bellare, Canetti, and Krawczyk [155] analyze the security of HMAC and
conclude that the strength of HMAC depends on the strength of the hash
function h. Emphasizing this, attacks on HMAC-MD4, HMAC-MD5, HMAC-
SHA-0, and HMAC-SHA-1 have been developed, some of which recover
partial [453,1061] or full keys [713,1977]. Bellare [154] extends the analysis by
explaining under what conditions HMAC is secure.

Various HMAC functions are used in Internet security protocols (see Chapter
12).

10.5 Digital Signatures

As electronic commerce grows, so does the need for a provably high degree of
authentication and integrity. Think of Alice’s signature on a contract with
Bob. Bob not only has to know that Alice is the other signer and is signing it;
he also must be able to prove to a disinterested third party (called a judge)
that Alice signed it and that the contract he presents has not been altered
since Alice signed it. Such a construct plays a large role in managing
cryptographic keys as well. This construct is called a digital signature.



Definition 10–7. A digital signature is a construct that authenticates both
the origin and contents of a message in a manner that is provable to a
disinterested third party.

The “proof” requirement introduces a subtlety. Let m be a message. Suppose
Alice and Bob share a secret key k. Alice sends Bob the message and its
encipherment using k. Is this a digital signature?

First, Alice has authenticated the contents of the message, because Bob
deciphers the enciphered message and can check that the message matches
the deciphered one. Because only Bob and Alice know k, and Bob knows that
he did not send the message, he concludes that it has come from Alice. He has
authenticated the message origin and integrity. However, based on the
mathematics alone, Bob cannot prove that he did not create the message,
because he knows the key used to create it. Hence, this is not a digital
signature.

Public key cryptography solves this problem. Let dAlice and eAlice be Alice’s
private and public keys, respectively. Alice sends Bob the message and its
encipherment using dAlice. As before, Bob can authenticate the origin and
contents of the message, but in this situation a judge must determine that
Alice signed the message, because only Alice knows the private key with
which the message was signed. The judge merely obtains Alice’s public key
eAlice and uses that to decipher the enciphered message. If the result is the
original message, Alice signed it. This is in fact a digital signature.

A digital signature provides the service of nonrepudiation. If Alice claims she
never sent the message, the judge points out that the originator signed the
message with her private key, which only she knew. Alice at that point may
claim that her private key was stolen, or that her identity was incorrectly
bound in the certificate (see Chapter 15, “Representing Identity”). The notion
of “nonrepudiation” provided here is strictly abstract. In fact, Alice’s key
might have been stolen, and she might not have realized this before seeing
the digital signature. Such a claim would require ancillary evidence, and a



court or other legal agency would need to handle it. For the purposes of this
section, we consider the service of nonrepudiation to be the inability to deny
that one’s cryptographic key was used to produce the digital signature.

10.5.1 Classical Signatures

All classical digital signature schemes rely on a trusted third party. The judge
must trust the third party. Merkle’s scheme is typical [1329].

Let Cathy be the trusted third party. Alice shares a cryptographic key kAlice
with Cathy. Likewise, Bob shares kBob with Cathy. When Alice wants to send
Bob a contract m, she enciphers the message using kAlice and sends it to Bob.
Bob sends it to Cathy, who deciphers the message using kAlice, enciphers it
with kBob, and returns this to Bob. He can now decipher it. To verify that Alice
sent the message, the judge has Cathy decipher the enciphered message Alice
sent and the enciphered message Bob received from Cathy using Alice’s and
Bob’s keys. If they match, the sending is verified; if not, one of them is a
forgery.

10.5.2 Public Key Signatures

In our earlier example, we had Alice encipher the message with her private
key to produce a digital signature. We now examine two specific systems.

10.5.2.1 RSA Digital Signatures

Section 10.3.2 discussed the RSA system. We observe that using it to
authenticate a message produces a digital signature. However, we also
observe that the strength of the system relies on the protocol describing how
RSA is used as well as on the RSA cryptosystem itself.

First, suppose that Alice wants to trick Bob into signing a message m. She
computes two other messages m1 and m2 such that m1m2 mod nBob = m. She
has Bob sign m1 and m2. Alice then multiplies the two signatures together
modnBob, giving Bob’s signature on m. (See Exercise 13.) The defense is not to



sign random documents and, when signing, never sign the document itself;
sign a cryptographic hash of the document [1693].

EXAMPLE: Let nAlice = 262631, eAlice = 154993, dAlice = 95857, nBob = 288329,
eBob = 22579, and dBob = 138091. Alice and Bob have many possible contracts,
each represented by three letters, from which they are to select and sign one.

Alice first asks Bob to sign the sequence 225536, so she can validate his
signature. Bob computes:

Alice then asks Bob to sign contract “AYE” (002404):

Alice now computes

She then claims that Bob agreed to contract “NAY” (130024). She presents
the signature

Judge Janice is called, and she computes

Naturally, Janice concludes that Bob is lying, because his public key
deciphers the signature. So Alice has successfully tricked Bob.

Enciphering a message and then signing it creates a second problem [60].
Suppose Alice is sending Bob her signature on a confidential contract m. She
enciphers it first, then signs it:



and sends the result to Bob. However, Bob wants to claim that Alice sent him
the contract M. Bob computes a number r such that Mr mod nBob = m. He
then republishes his public key as (reBob, nBob). Note that the modulus does
not change. Now, he claims that Alice sent him M. The judge verifies this
using his current public key. The simplest way to fix this is to require all users
to use the same exponent but vary the moduli.

EXAMPLE: Smarting from Alice’s trick, Bob seeks revenge. He and Alice
agree to sign the contract “LUR” (112017). Alice first enciphers it, then signs
it:

and sends it to Bob. Bob, however, wants the contract to be “EWM” (042212).
He computes an r such that 042212r mod 288329 = 112017; one such r is r =
9175. He then computes a new public key reBob mod ø(nBob) = (9175)(22579)
mod 287184 = 102661. He replaces his current public key with (102661,
288329), and resets his private key to 161245. He now claims that Alice sent
him contract “EWM”, signed by her.

Judge Janice is called. She takes the message 63 and deciphers it:

and concludes that Bob is correct.

This attack will not work if one signs first and then enciphers. The reason is
that Bob cannot access the information needed to construct a new public key,
because he would need to alter Alice’s public key (see Exercise 28).

However, signing first and then enciphering enables the recipient to decipher
the signed message, re-encrypt it using a third party’s public key, and then
forward it to the third party. The third party then cannot tell if the original
sender sent it directly to him. This is the surreptitious forwarding attack.
Several solutions to providing enciphered, authenticated messages have been



proposed [512, 1108]. One simple solution is to embed the signer’s and
recipient’s names in the signed message. Another is to sign the message,
encrypt it, and sign the result; a variant is to encrypt the message, then sign
that, and then encrypt the result.

10.5.2.2 El Gamal Digital Signature

This scheme is similar to the Diffie-Hellman scheme presented in Section
11.2.3.1. It relies on the difficulty of solving the discrete logarithm problem.
Choose a prime p and two random numbers g and d both less than p.
Compute y = gd mod p. The public key is the triplet (y, g, p); the private key is
d [630].

Suppose Alice wants to send Bob a signed contract m. She chooses a number
k that is less than, and relatively prime to, p – 1 and has not been used before.
She computes a = gk mod p and then uses the Extended Euclidean Algorithm
(see Appendix B) to find b such that

The pair (a, b) is the signature.

To verify the signature, check that

EXAMPLE: Alice and Bob decide to use the El Gamal digital signature
scheme. As before, Alice chooses p = 262643, g = 9563, and dAlice = 3632,
yielding y = 27459. She wants to send Bob the signed contract “PUP”
(152015). She chooses k = 601, which is relatively prime to p – 1 = 262643.
She computes

and then uses the Extended Euclidean Algorithm to solve for b:



This yields b = 225835. She sends Bob the message m = 152015 and the
signature (202897, 225835).

Bob obtains the message and wants to verify the signature. He computes

and

Because the two match, Alice signed the message.

If someone learns k, the corresponding message m, and the signature (a, b),
then she can use the Extended Euclidean Algorithm to recover d, Alice’s
private key.

EXAMPLE: Bob happens to learn that Alice signed the last message using k =
601. He immediately solves the following equation for d:

which yields d = 3632. This is Alice’s private key.

10.5.2.3 El Gamal Digital Signature using Elliptic Curve
Cryptography

An elliptic curve version of the El Gamal digital signature is also used.
Represent the message by an integer m. Choose a point P on the elliptic curve
y2 = x3 + ax + b mod p, where p is a large prime. Let n be the number of
integer points on the curve. Choose a private key kpriv and compute Q =
kprivP; the corresponding public key is (P, Q, a, p).

To digitally sign, choose a random integer k such that 1 ≤ k < n, and compute:



where x is the first component of R. The digital signature is then (m, R, s).

To validate the signature, the recipient computes

If V1 = V2, then the signature is verified. Otherwise, the signature does not
correspond to either the message, the private key used to sign the message, or
both.

EXAMPLE: Alice and Bob decide to use the El Gamal digital signature scheme
with elliptic curve cryptography. As in Section 10.3.3, they choose the elliptic
curve y2 = x3 + 4x + 14 mod 2503 and the point P = (1002, 493). This curve
has n = 2477 integer points on it. Again, Bob chooses kBob = 1847, and so Q =
kBobP = 1847(1002, 493) mod 2503 = (460, 2083).

Bob wishes to digitally sign the message m = 379 and send it to Alice. He first
chooses a number k = 877 that is relatively prime to p = 2503. He then
computes:

and sends (m, R, s) = (379, (1014, 788), 2367).

When Alice receives the message and digital signature, she computes:

As V1 = V2, the digital signature checks.

10.6 Summary

For our purposes, three aspects of cryptography require study. Symmetric



cryptography uses a single key shared by all involved. Public key
cryptography uses two keys, one shared and the other private. Both types of
cryptosystems can provide secrecy and origin authentication (although
symmetric cryptography requires a trusted third party to provide both).
Cryptographic hash functions may or may not use a secret key and provide
data authentication.

All cryptosystems are based on substitution (of some quantity for another)
and permutation (scrambling of some quantity). Cryptanalysis, the breaking
of ciphers, uses statistical approaches (such as the Kasiski method and
differential cryptanalysis) and mathematical approaches (such as attacks on
the RSA method). As techniques of cryptanalysis improve, our understanding
of encipherment methods also improves and ciphers become harder to break.
The same holds for cryptographic checksum functions. However, as
computing power increases, key length must also increase. A 56-bit key was
deemed secure by many in 1976; it is clearly not secure now.

10.7 Research Issues

Cryptography is an exciting area of research, and all aspects of it are being
studied. New secret key ciphers incorporate techniques for defeating
differential and linear cryptanalysis. New public key ciphers use simple
instances of NP -hard problems as their bases, and they cast those instances
into the more general framework of the NP -hard problem. Other public key
ciphers revisit well-studied, difficult symmetric problems (such as factoring)
and use them so that mathematically breaking the cipher is equivalent to
solving the hard problem. Still others are built on the notion of randomness
(in the sense of unpredictability).

Cryptanalytic techniques are also improving. From the development of
differential cryptanalysis came linear cryptanalysis. The use of NP -hard
problems leads to an analysis of the problem underlying the cipher to reduce
it to the simpler, solvable case. The use of symmetric mathematical problems



leads to the application of advanced technology to make the specific problem
computable; for example, advances in technology have increased the sizes of
numbers that can be factored, which in turn lead to the use of larger primes
as the basis for ciphers such as RSA.

Advances in both cryptography and cryptanalysis lead to a notion of
“provable security.” The issue is to prove under what conditions a cipher is
unbreakable. Then, if the conditions are met, perfect secrecy is obtained.
Similar issues arise with cryptographic protocols (some of which the next
chapters will explore). This leads to the area of assurance and serves as an
excellent test base for many assurance techniques.

A weak point of the use of cryptography is that the ciphertext must be
decrypted for operations such as searching. Homomorphic cryptosystems
allow operations to be performed on the ciphertexts, and the result is the
same as the operations being applied to the plaintext and then enciphered.
Fully homomorphic encryption allows arbitrary functions to be computed.
Current schemes are computationally expensive. Making them quicker, and
developing somewhat homomorphic encryption schemes that allow only a
certain number of operations to be performed, are topics under active study.

Digital signatures provide the assurance needed to accept documents as
legally binding: a judge can determine whether specific parties signed them
(to the limits of the protocols). If an attacker could forge a digital signature,
the judge could reach incorrect conclusions. Research in both compromising
of digital signature schemes and development of more secure schemes is
examining how to minimize this threat.

10.8 Further Reading

Cryptography is a vast, rich subject. Kahn’s book The Codebreakers [995,
997] is required reading for anyone interested in this field. Other excellent
historical books set the context for codebreaking during World War II



[312,996,1621]. Helen Fouché Gaines presents techniques for cryptanalysis of
many symmetric ciphers using traditional, pencil-and-paper analysis [734].
Sinkov applies basic mathematics to many of these symmetric ciphers [1770].
Schneier describes many old, and new, algorithms in a clear, easy-to-
understand manner [1693]; his book is excellent for implementers. The
underpinnings of these algorithms, and others, lie in statistics and
mathematics. For symmetric cryptography, Konheim’s book [1099] is superb
once the reader has mastered his notation. Unlike other books, it focuses on
cryptanalysis of symmetric ciphers using statistical attacks.

A number of books [920,1100,1255,1493,1899] discuss modern cryptography
and its applications. Spillman’s book [1814] is an excellent introduction.
Menezes, Van Oorschot, and Vanstone’s book [1325] is a valuable reference.
Goldreich’s two-volume series on the foundations of cryptography [792,793]
focuses on the underlying mathematics and formalisms of cryptography.
Ferguson, Schneier, and Kohno [670] discuss the applications of
cryptography to designing protocols.

Digital signature protocols abound. One standard, the DSS [2161], uses a
variant of El Gamal; others, especially those associated with the ITU’s X.500
series of recommendations, recommend (but do not require) RSA. Gran [813]
discusses digital signatures in general and presents many case studies.
Hammond [865] places digital signatures in the context of law and policy.

Several homomorphic encryption schemes have been proposed. Fully
homomorphic encryption schemes [764, 765, 1933] are expensive in terms of
both space and computation. Naehrig et al. [1422] point out that many
applications require only a limited number of operations. Several such
schemes exist [263, 1495]. Bosch et al. survey provably secure searchable
encryption schemes [273]; Poh et al. explore the underlying structure of
searchable symmetric encryption schemes [1535].

Zheng [2108] demonstrated a cryptographic primitive called signcryption
that acts both as a digital signature and an encrypting public key. Schemes



based on El Gamal [2108], elliptic cryptography, and identity-based
cryptosystems have since been developed.

10.9 Exercises

1. A cryptographer once stated that cryptography could provide complete
security, and that any other computer security controls were unnecessary.
Why is he wrong? (Hint: Think of an implementation of a cryptosystem, and
ask what aspect(s) of the implementation can cryptography not protect.)

2. Decipher the following ciphertext, which was enciphered using the Caesar
cipher: TEBKFKQEBZLROPBLCERJXKBSBKQP.

3. If one-time pads are provably secure, why are they so rarely used in
practice?

4. An affine cipher has the form c = (am + b) mod n. Suppose m is an integer
between 0 and 25, each integer representing a letter.

(a) Let n = 26, a = 3, and b = 123. What is the ciphertext corresponding to the
phrase THIS IS A CIPHER MESSAGE.

(b) A requirement for a cipher is that every plaintext letter correspond to a
different ciphertext letter. If a and b are not relatively prime to n, does the
affine cipher meet this property? Either prove it does or present a
counterexample.

5. Let k be the encipherment key for a Caesar cipher. The decipherment key
differs; it is 26 – k. One of the characteristics of a public key system is that the
encipherment and decipherment keys are different. Why then is the Caesar
cipher a classical cryptosystem, not a public key cryptosystem? Be specific.

6. The index of coincidence was defined as “the probability that two randomly
chosen letters from the ciphertext will be the same.” Derive the formula in
Section 10.2.2.1 for the index of coincidence from this definition.



7. The following message was enciphered with a Vigenère cipher. Find the key
and decipher it.

TSMVM MPPCW CZUGX HPECP RFAUE IOBQW PPIMS FXIPC TSQPK SZNUL
OPACR DDPKT SLVFW ELTKR GHIZS FNIDF ARMUE NOSKR GDIPH WSGVL
EDMCM SMWKP IYOJS TLVFA HPBJI RAQIW HLDGA IYOUX

8. Prove that two users who perform a Diffie-Hellman key exchange will have
the same shared key.

9. Prove the decipherment equation of the El Gamal cipher (see p. 269)
correctly recovers the message m from ciphertext (c1, c2) that was enciphered
using the enciipherment equation of the El Gamal cipher (see p. 268) .

10. Alice enciphers messages m and m′ using the El Gamal cipher.
Unfortunately, she uses the same random integer k. Eve intercepts the
ciphers C and c′ corresponding to the two messages, respectively. She learns
m through various sources. But she only has the ciphertext c′ corresponding
to m′. Show how she can get m′.

11. In the example enciphering “HELLO WORLD” using the RSA cipher (the
second example in Section 10.3.2), the modulus was chosen as 77, even
though the magnitude of the cleartext blocks is at most 25. What problems in
transmission and/or representation might this cause?

12. Prove the following:

(a) If p is a prime, ø(p) = p – 1.

(b) If p and q are two distinct primes, ø(pq) = (p – 1)(q – 1).

13. Euler’s generalization of Fermat’s Little Theorem says that, for integers a
and n such that a and n are relatively prime, aø(n) mod n = 1. Use this to show
that deciphering of an enciphered message produces the original message
with the RSA cryptosystem. Does enciphering of a deciphered message



produce the original message also?

14. Alice and Bob are creating RSA public keys. They select different moduli
nAlice and nBob. Unknown to both, nAlice and nBob have a common factor.

(a) How could Eve determine that nAlice and nBob have a common factor
without factoring those moduli?

(b) Having determined that factor, show how Eve can now obtain the private
keys of both Alice and Bob.

15. Consider the RSA cipher with p = 5 and q = 7. Show that d = e for all
choices of public key e and private key d.

16. Consider the RSA cryptosystem. Show that the ciphertexts corresponding
to the messages 0, 1 and n – 1 are the messages themselves. Are there other
messages that produce the same ciphertext as plaintext?

17. It is often said that breaking RSA is equivalent to factoring the modulus,
n.

(a) Prove that if n can be factored, one can determine the private key d from
the modulus n and the public key e.

(b) Show that it is not necessary to factor n in order to determine the private
key d from the modulus n and the public key e. (Hint: Look closely at the
equation for computing the private key from n and e.)

18. Prove the fundamental laws of modular arithmetic:

(a) (a + b) mod n = (a mod n + b mod n) mod n

(b) ab mod n = ((a mod n)(b mod n)) mod n

19. Consider the problem of computing 152015154993 mod 262631.



(a) The naive way is to multiply 152015 by itself 154993 times, then divide by
262631. This produces very large intermediate numbers. How can this
exponentiation be done in such a way that no intermediate value is greater
than or equal to 262631?

(b) The number of multiplications is still prohibitively large. Consider an
alternate approach:

function modexp (a, b, n : integer)
begin
        var result := 1;

        while b > 0 do begin
                if b mod 2 = 1 then
                        result = (result * a) mod n
                b = b / 2
                a = (a * a) mod n
        end

        return result
end

If this function is called as modexp(152015, 154993, 262631), how many
multiplications are required to compute the result?

20. Consider the public keys (e1, n1) and (e2, n2) of two RSA cryptosystems.

(a) You have discovered that n1 and n2 have a common factor but do not know
what it is. How would you find it?

(b) You have intercepted a message c enciphered using the first public key.
You also know the common factor of n1 and n2. Show how to decrypt c.

21. The section on public key cryptosystems discussed nonrepudiation of
origin in the context of public key cryptosystems. Consider a secret key
system (in which a shared key is used). Bob has a message that he claims
came from Alice, and to prove it he shows both the cleartext message and the



ciphertext message. The ciphertext corresponds to the plaintext enciphered
under the secret key that Alice and Bob share. Explain why this does not
satisfy the requirements of nonrepudiation of origin. How might you modify a
classical cryptosystem to provide nonrepudiation?

22. Suppose Alice and Bob have RSA public keys in a file on a server. They
communicate regularly using authenticated, confidential messages. Eve
wants to read the messages but is unable to crack the RSA private keys of
Alice and Bob. However, she is able to break into the server and alter the file
containing Alice’s and Bob’s public keys.

(a) How should Eve alter that file so that she can read confidential messages
sent between Alice and Bob, and forge messages from either?

(b) How might Alice and/or Bob detect Eve’s subversion of the public keys?

23. Is the identity function, which outputs its own input, a good
cryptographic checksum function? Why or why not?

24. Is the UNIX sum program, which exclusive or’s all words in its input to
generate a one-word output, a good cryptographic checksum function? Why
or why not?

25. Assume that a cryptographic checksum function computes hashes of 128
bits. Prove that the probability is 0.5 that at least one collision will occur after
hashing (264) randomly selected messages.

26. The example involving the DES-MAC cryptographic hash function stated
that a birthday attack would find collisions given 232 messages. Alice wants to
take advantage of this to swindle Bob. She draws up two contracts, one that
Bob has agreed to sign and the other that Bob would not sign. She needs to
generate a version of each that has the same checksum. Suggest how she
might do this. (Hint: Adding blank spaces, or inserting a character followed
by a backspace, will not affect the meaning of either contract.)



27. Consider an RSA digital signature scheme (see Section 10.5.2.1). Alice
tricks Bob into signing messages m1 and m2 such that m = m1m2 mod nBob.
Prove that Alice can forge Bob’s signature on m.

28. Return to the example on page 279. Bob and Alice agree to sign the
contract “G” (06). This time, Alice signs the message first and then enciphers
the result. Show that the attack Bob used when Alice enciphered the message
and then signed it will now fail.



Chapter 11. Key Management
VALENTINE: Why then, I would resort to her by night.

DUKE: Ay, but the doors be lock’d and keys kept safe, That no man hath 
recourse to her by night.

VALENTINE: What lets but one may enter at her window?

— The Two Gentlemen of Verona, III, i, 110–113.

Key management refers to the distribution of cryptographic keys; the 
mechanisms used to bind an identity to a key; and the generation, 
maintenance, and revoking of such keys. We assume that identities correctly 
define principals—that is, a key bound to the identity “Bob” is really Bob’s 
key. Alice did not impersonate Bob’s identity to obtain it. Chapter 15,
“Representing Identity,” discusses the problem of identifiers naming 
principals; Chapter 13, “Authentication,” discusses a principal authenticating 
herself to a single system. This chapter assumes that authentication has been 
completed and that identity is assigned. The problem is to propagate that 
authentication to other principals and systems.

We first discuss authentication and key distribution. Next comes key 
generation and the binding of an identity to a key using certificates. We then 
discuss key storage and revocation. We conclude with digital signatures.

A word about notation. The statement

X → Y : {m}k



means that entity X sends entity Y a message m enciphered with key k.
Subscripts to keys indicate to whom the keys belong, and are written where
multiple keys are in use. For example, kAlice and kBob refer to keys belonging
to Alice and Bob, respectively. If Alice and Bob share a key, that key will be
written as kAlice,Bob when the sharers are not immediately clear from the
context. In general, k represents a secret key (for a symmetric cryptosystem),
e a public key, and d a private key (for a public key cryptosystem). If multiple
messages are listed sequentially, they are concatenated and sent. The
operator a || b means that the bit sequences a and b are concatenated.

11.1 Session and Interchange Keys

We distinguish between a session key and an interchange key [1961].

Definition 11–1. An interchange key is a cryptographic key associated with
a principal to a communication. A session key is a cryptographic key
associated with the communication itself.

This distinction reflects the difference between a communication and a user
involved in that communication. Alice has a cryptographic key used
specifically to exchange information with Bob. This key does not change over
interactions with Bob. However, if Alice communicates twice with Bob (and
“communication” can be using, for example, an e-mail or a Web browser), she
does not want to use the same key to encipher the messages. This limits the
amount of data enciphered by a single key and reduces the likelihood of an
eavesdropper being able to break the cipher. It also hinders the effectiveness
of replay attacks. Instead, she will generate a key for that single session. That
key enciphers the data, and it is discarded when the session ends. Hence, the
name of the key is a “session key.”

Session keys also prevent forward searches (see Section 12.1.1). A forward
search attack occurs when the set of plaintext messages is small. The
adversary enciphers all plaintexts using the target’s public key. When



ciphertext is intercepted, it is compared with the precomputed texts. This
quickly gives the corresponding plaintext. A randomly generated session key,
used once, would prevent this attack. (See Exercise 2 for another approach.)

EXAMPLE: Suppose Alice is a client of Bob’s stockbrokering firm. She needs
to send Bob one of two messages: BUY or SELL. The attacker, Cathy,
enciphers both messages with Bob’s public key. When Alice sends her
message, Cathy compares it with her messages and sees which one it matches.

An interchange key is associated with a principal. Alice can use the key she
shares with Bob to convince Bob that the sender is Alice. She uses this key for
all sessions. It changes independently of session initiation and termination.

11.2 Key Exchange

The goal of key exchange is to enable Alice to communicate secretly with Bob,
and vice versa, using a shared cryptographic key. Solutions to this problem
must meet the following criteria.

• The key that Alice and Bob are to share cannot be transmitted in the clear.
Either it must be enciphered when sent, or Alice and Bob must derive it
without an exchange of data from which the key can be derived. Alice and Bob
can exchange data, but a third party cannot derive the key from the data
exchanged.

• Alice and Bob may decide to trust a third party (called “Cathy” here).

• The cryptosystems and protocols are publicly known. The only secret data is
to be the cryptographic keys involved.

Symmetric cryptosystems and public key cryptosystems use different
protocols.

11.2.1 Symmetric Cryptographic Key Exchange



Suppose Alice and Bob wish to communicate. If they share a common key,
they can use a symmetric cryptosystem. But how do they agree on a common
key? If Alice sends one to Bob, Eve the eavesdropper will see it and be able to
read the traffic between them.

To avoid this bootstrapping problem, symmetric protocols rely on a trusted
third party, Cathy. Alice and Cathy share a secret key, and Bob and Cathy
share a (different) secret key. The goal is to provide a secret key that Alice and
Bob share. The following simple protocol provides a starting point [1693].

1. Alice → Cathy : {request for session key to Bob}kAlice

2. Cathy → Alice : {ksession}kAlice || {ksession}kBob

3. Alice → Bob : {ksession}kBob

Bob now deciphers the message and uses ksession to communicate with Alice.

This particular protocol is the basis for many more sophisticated protocols.
However, it can be compromised. Assume that Alice sends Bob a message
(such as “Deposit $500 in Dan’s bank account today”) enciphered under
ksession. If an adversary “Eve” records the third message in the exchange
above, and the message enciphered under ksession, she can send Bob the
message {ksession}kBob followed by the message enciphered under ksession. Bob
will not know that this is a repeat of an earlier message.

Avoiding problems such as this replay attack adds considerable complexity.
Key exchange protocols typically add, at a minimum, some sort of defense
against replay attack. In the process of the exchange, they also may provide
authentication.

11.2.1.1 Needham-Schroeder Protocol

One of the best-known symmetric key exchange and authentication protocols
is the Needham-Schroeder protocol [1442].



1. Alice → Cathy : {Alice || Bob || r1}

2. Cathy → Alice : {Alice || Bob || r1 || ksession || {Alice || ksession}kBob}kAlice

3. Alice → Bob : {Alice || ksession}kBob

4. Bob → Alice : {r2}ksession

5. Alice → Bob : {r2 – 1}ksession

In this protocol, r1 and r2 are two numbers generated at random, except that
they cannot repeat between different protocol exchanges. These numbers are
called nonces. So if Alice begins the protocol anew, her r1 in the first exchange
will not have been used there before. The basis for the security of this
protocol is that both Alice and Bob trust Cathy.

When Bob receives the third message and deciphers it, he sees that the
message names Alice. Since he could decipher the message, the message was
enciphered using a key he shares only with Cathy. Because he trusts Cathy
not to have shared the key kBob with anyone else, the message must have been
enciphered by Cathy. This means that Cathy is vouching that she generated
ksession so Bob could communicate with Alice. So Bob trusts that Cathy sent
the message to Alice, and that Alice forwarded it to him.

However, if Eve recorded the message, she could have replayed it to Bob. In
that case, Eve would not have known the session key, so Bob sets out to verify
that his unknown recipient does know it. He sends a random message
enciphered by ksession to Alice. If Eve intercepts the message, she will not
know what to return; should she send anything, the odds of her randomly
selecting a message that is correct are very low and Bob will detect the
attempted replay. But if Alice is indeed initiating the communication, when
she gets the message she can decipher it (because she knows ksession), apply
some fixed function to the random data (here, decrement it by 1), encipher
the result, and return it to Bob. Then Bob will be sure he is talking to Alice.



Alice needs to convince herself that she is talking to Bob. When she receives
the second message from Cathy, she deciphers it and checks that Alice, Bob,
and r1 are present. This tells her that Cathy sent the second message (because
it was enciphered with kAlice, which only she and Cathy know) and that it was
a response to the first message (because r1 is in both the first and second
messages). She obtains the session key and forwards the rest to Bob. She
knows that only Bob has ksession, because only she and Bob can read the
messages containing that key. So when she receives messages enciphered
with that key, she will be sure that she is talking to Bob.

The Needham-Schroeder protocol assumes that all cryptographic keys are
secure. In practice, session keys will be generated pseudorandomly.
Depending on the algorithm used, it may be possible to predict such keys.
Denning and Sacco [548] assumed that Eve could obtain a session key and
subvert the authentication. After the previous steps, the following exchange
takes place:

1. Eve → Bob : {Alice || ksession}kBob

2. Bob → Alice : {r3}ksession                     [intercepted by Eve]

3. Eve → Bob : {r3 – 1}ksession

Now Bob thinks he is talking to Alice. He is really talking to Eve.

Denning and Sacco suggest using timestamps to enable Bob to detect this
replay. Applying their method to the Needham-Schroeder protocol yields

1. Alice → Cathy : {Alice || Bob || r1}

2. Cathy → Alice : {Alice || Bob || r1 || ksession || {Alice || t || ksession}kBob}kAlice

3. Alice → Bob : {Alice || t || ksession}kBob

4. Bob → Alice : {r2}ksession



5. Alice → Bob : {r2 – 1}ksession

where t is a timestamp. When Bob gets the message in step 3, he rejects it if
the timestamp is too old (“too old” being determined from the system in use).
This modification requires synchronized clocks. Denning and Sacco note that
a principal with a slow clock is vulnerable to a replay attack. Gong [800] adds
that a party with a fast clock is also vulnerable, and simply resetting the clock
does not eliminate the vulnerability.

11.2.1.2 Otway-Rees Protocol

The Otway-Rees protocol [1488] corrects these problems1 by avoiding the use
of timestamps.

1Needham and Schroeder also supply a modification [1443]; see Exercise 12.

1. Alice → Bob : {n || Alice || Bob || {r1 || n || Alice || Bob}kAlice}

2. Bob → Cathy : {n || Alice || Bob || {r1 || n || Alice || Bob}kAlice || {r2 || n ||
Alice || Bob}kBob}

3. Cathy → Bob : {n || {r2 || ksession}kAlice || {r2 || ksession}kBob}

4. Bob → Alice : {n || {r1 || ksession}kAlice}

The purpose of the integer n is to associate all messages with a particular
exchange. Again, consider the elements of the protocol.

When Alice receives the fourth message from Bob, she checks that the num
agrees with the n in the first message that she sent to Bob. If so, she knows
that this is part of the exchange. She also trusts that Cathy generated the
session key because only Cathy and Alice know kAlice, and the random
number r1 agrees with what Alice put in the enciphered portion of the
message. Combining these factors, Alice is now convinced that she is talking
to Bob.



When Bob receives the message from Cathy, he determines that the n
corresponds to the one he received from Alice and sent to Cathy. He
deciphers that portion of the message enciphered with his key, and checks
that r2 is what he sent. He then knows that Cathy sent the reply, and that it
applies to the exchange with Alice.

Because no timestamps are used, the synchronization of the system clocks is
irrelevant. Now suppose that Eve acquired an old session key and the
message in 3. She forwards that message to Alice. Alice immediately rejects it
if she has no ongoing key exchanges with Bob. If she does, and n does not
match, she rejects Eve’s message. The only way Eve could impersonate Bob is
if she acquired ksession for an ongoing exchange, recorded the third message,
and resent the relevant portion to Alice before Bob could do so. In that case,
however, Eve could simply listen to the traffic, and no replay would be
involved.

Unless implemented carefully, this protocol, and many others, are vulnerable
to an attack called a type flaw attack (see Section 12.1.4).

11.2.1.3 Bellare-Rogaway Protocol

The Bellare-Rogaway protocol takes a very different approach [159]. They
note that, although authentication and symmetric key exchange are often
considered together, they are really diifferent problems. So their protocol
only provides symmetric key exchange and not authentication. Rather than
have one of the parties interact with the trusted server directly and send the
results to the other party, this protocol has the trusted server send to both
parties. In this protocol, huser represents a keyed hash function that uses
user’s interchange key.

1. Alice → Bob : {Alice || Bob || r1}

2. Bob → Cathy : {Alice || Bob || r1 || r2}



3. Cathy → Bob : {{ksession}kBob || hBob(Alice || Bob || r1 || {ksession}kBob)}

4. Cathy → Alice : {{ksession}kAlice || hAlice(Alice || Bob || r1 || {ksession}kAlice)}

When Bob receives the first message, he computes the value of the
cryptographic hash function using his name, Alice’s name, his nonce r1, and
the enciphered session key in the message. If it agrees with the hash Cathy
sent, he then uses his interchange key to decipher the session key. Alice
obtains the same session key in a similar way.

If Eve obtains only the message in step 3 (or step 4), she will need to know
the appropriate interchange key, which by assumption she does not. If she
has obtained a previously-used session key and recorded the corresponding
message, there are two possibilities. If the protocol has begun, both Alice and
Bob have generated new nonces. So when either computes the appropriate
hash, the hash will be incorrect because the wrong nonce is used. Hence the
message will be discarded. If the protocol has not begun, Alice and Bob will
discard the replayed message.

The simplicity of this protocol is remarkable, and it has been proved to be
secure, in the sense that Eve cannot obtain a current session key from the
messages in the protocol or by impersonating Alice or Bob [157, 159]. It is an
excellent example of how changing one’s view slightly — here by considering
authentication and symmetric key exchange separately — can affect security
mechanisms.

11.2.2 Kerberos

Kerberos [1448, 1449, 1832] uses the Needham-Schroeder protocol as
modified by Denning and Sacco. A client, Alice, wants to use a server S.
Kerberos requires her to use two servers to obtain a credential that will
authenticate her to S. First, Alice must authenticate herself to the Kerberos
system; then she must obtain a ticket to use S (see the next paragraph). This
separates authentication of the user to the issuer of tickets and the vouching



of identity to S. In practice, though, the authentication server and the ticket
granting server are the same system, known as the key distribution center.

The basis of Kerberos is a credential known as the ticket. Suppose Alice wants
to use the ticket-granting service Barnum. The ticket for this contains:

In this ticket, kBarnum is the key that Barnum shares with the authentication
server, and kAlice,Barnum is the session key that Alice and Barnum will share.
The valid time is the time interval during which the ticket is valid, which is
typically several hours. The ticket is the issuer’s voucher for the identity of the
requester of the service.

The authenticator contains the identity of the sender of a ticket and is used
when Alice wants to show Barnum that the party sending the ticket is the
same as the party to whom the ticket was issued. It contains

where kAlice,Barnum is the session key that Alice and Barnum share, kt is an
alternative session key, and the authenticator was created at generation time.
Alice generates an authenticator whenever she sends a ticket. She sends both
the ticket and the authenticator in the same message.

Alice’s goal is to print a file using the service Gutenberg. The authentication
server is Cerberus and the ticket-granting server is Barnum. The Kerberos
protocol proceeds as follows.

1. Alice → Cerberus : Alice || Barnum

2. Cerberus → Alice : {kAlice,Barnum}kAlice || TAlice,Barnum

At this point, Alice deciphers the first part of the message to obtain the key
she will use to communicate with Barnum. Kerberos uses the user’s password
as the key, so if Alice enters her password incorrectly, the decipherment of



the session key will fail. These steps occur only at login; once Alice has the
ticket for the ticket-granting server Barnum, she caches it and uses it:

3. Alice → Barnum : Gutenberg || AAlice,Barnum || TAlice,Barnum

4. Barnum → Alice : Alice || {kAlice,Gutenberg}kAlice,Barnum || TAlice,Gutenberg

5. Alice → Gutenberg : AAlice,Gutenberg || TAlice,Gutenberg

6. Gutenberg → Alice : {t + 1}kAlice,Gutenberg

In these steps, Alice first constructs an authenticator and sends it, with the
ticket and the name of the server, to Barnum. Barnum validates the request
by comparing the data in the authenticator with the data in the ticket.
Because the ticket is enciphered using the key Barnum shares with Cerberus,
he knows that it came from a trusted source. He then generates an
appropriate session key and sends Alice a ticket to pass on to Gutenberg. Step
5 repeats step 3, except that the name of the service is not given (because
Gutenberg is the desired service). Step 6 is optional; Alice may ask that
Gutenberg send it to confirm the request. If it is sent, t is the timestamp.

Bellovin and Merritt [165] discuss several potential problems with the
Kerberos protocol. In particular, Kerberos relies on clocks being synchronized
to prevent replay attacks [1136]. If the clocks are not synchronized, and if old
tickets and authenticators are not cached, replay is possible. In Kerberos 5,
authenticators are valid for 5 minutes, so tickets and authenticators can be
replayed within that interval. Also, because the tickets have some fixed fields,
a dictionary attack can be used to determine keys shared by services or users
and the ticket-granting service or the authentication service, much as the
WordPerfect cipher was broken (see the end of Section 10.2.2.1). Researchers
at Purdue University used this technique to show that the session keys
generated by Kerberos 4 were weak; they reported deciphering tickets, and
finding session keys, within minutes [582]. Yu, Hartman, and Raeburn
[2080] showed a flaw in Kerberos 4 that enabled an attacker to impersonate



any principal. As a result, the MIT Kerberos Team announced that Kerberos 4
had reached the end of its life in 2006 [1366].

The Kerberos Version 5 protocol has been formally analyzed [332] and shown
to provide the claimed authentication and secrecy properties. It supports
intra-organizational communication, called “cross-realm operation” [1449].
To do this, the two realms must share an inter-realm key. Cervesato et al.
[371] note that this requires the intermediate ticket granting servers to be
trusted. Sakane et al. [1648] present six requirements for cross-realm
operation in large-scale industrial systems that deal with this, and other,
threats.

11.2.3 Public Key Cryptographic Key Exchange and Authentication

Conceptually, public key cryptography makes exchanging keys very easy.
Alice simply uses Bob’s public key to encipher a session key she generates:

where eBob is Bob’s public key. Bob deciphers the message and obtains the
session key ksession. Now he and Alice can communicate securely, using a
symmetric cryptosystem.

As attractive as this protocol is, it has a similar flaw to our original symmetric
key exchange protocol. Eve can forge such a message. Bob does not know who
the message comes from.

One obvious fix is to sign the session key.

where dAlice is Alice’s private key. When Bob gets the message, he uses his
private key to decipher the message. He sees the key is from Alice. Bob then
uses her public key to obtain the session key. Schneier [1693] points out that
Alice could also include a message enciphered with ksession.



These protocols assume that Alice has Bob’s public key eBob. If not, she must
get it from a public server, Peter. With a bit of ingenuity, Eve can arrange to
read Bob’s messages to Alice, and vice versa.

1. Alice → Peter : {send me Bob’s public key}      [intercepted by Eve]

2. Eve → Peter : {send me Bob’s public key}

3. Peter → Eve : eBob

4. Eve → Alice : eEve

5. Alice → Bob : {ksession}eEve      [intercepted by Eve]

6. Eve → Bob : {ksession}eBob

Eve now has the session key and can read any traffic between Alice and Bob.
This is called a man-in-the-middle attack and illustrates the importance of
identification and authentication in key exchange protocols. The man-in-the-
middle attack works because there is no binding of identity to a public key.
When presented with a public key purportedly belonging to Bob, Alice has no
way to verify that the public key in fact belongs to Bob. This issue extends
beyond key exchange and authentication. To resolve it, we need to look at the
management of cryptographic keys.

11.2.3.1 Diffie-Hellman

The Diffie-Hellman scheme [567] was the first public key cryptosystem
proposed, and it is still in use today. A pair of users use this algorithm to
generate a common key. It is based on the discrete logarithm problem. This
problem is to find a value of k such that n = gk mod p for a given n, g, and
prime p. Although solutions are known for small values of p, the difficulty
increases exponentially as p increases [1135].

In this cryptosystem, all users share a common modulus p and a g other than



0, 1, or p – 1. Each user chooses a private key k and computes a public key K.
When two users want to communicate, each enciphers the other’s public key
using their own private key, and uses the result as the shared secret key S.

EXAMPLE: Alice and Bob have chosen p = 121001 and g = 6981. They choose
their private keys to be kAlice = 526784 and kBob = 5596. Their public keys are:

and

Suppose Bob wishes to send Alice a message. He computes a shared secret
key by enciphering Alice’s public key using his private key:

and enciphers his message using this key (and any desired secret key
cryptosystem). When Alice gets the message, she computes the key she shares
with Bob as

and can decipher the message. The mathematical properties of modular
exponentiation ensure that for any two users A and B, SA,B = SB,A (see
Exercise 8).

Because the users share a common secret key S, the Diffie-Hellman scheme is
an example of a symmetric key exchange protocol. Under the assumption
that solving the discrete logarithm problem is computationally infeasible,
deriving a private key from the corresponding public key is also
computationally infeasible. In practice, p must be very large (hundreds of
bits) for this assumption to be met.

This key exchange algorithm has a version based on elliptic curves.



EXAMPLE: Alice and Bob have chosen the elliptic curve y2 = x3 + 4x + 14
mod 2503 and the point P = (1002, 493) to begin the elliptic curve version of
Diffie-Hellman. This curve has 2428 (integer) points on it. Each chooses a
private key, and in practice selects a number between 1 and 2476 inclusive.
Suppose Alice chooses kAlice = 1379 and Bob chooses kBob = 2011. Alice
derives her public key by multiplying P and her private key, so

Similarly, Bob computes his public key as

Now they decide they wish to communicate. They exchange public keys. Then
Bob computes:

Similarly, Alice computes

They now share a common key.

11.3 Key Generation

The secrecy that cryptosystems provide resides in the selection of the
cryptographic key. If an attacker can determine someone else’s key, the
attacker can read all traffic enciphered using that key or can use that key to
impersonate its owner. Hence, generating keys that are difficult to guess or to
determine from available information is critical.

This raises the issue of randomness. Given a set  of potential keys, the
probability of a key being guessed is at a minimum when the key is selected at
random from the elements of . The problem of selecting such a key is
equivalent to generating a random number between 0 and



, inclusive (see Exercise 1). Typically, many keys are required, so a sequence
of random numbers is needed.

Definition 11–2. A sequence of cryptographically random numbers is a
sequence of numbers x1, x2, . . . such that for any positive integer k, an
observer cannot predict xk even if x1, . . . , xk–1 are known.

A random number generator requires a physical source of randomness, such
as background radiation or some other quantifiable physical phenomenon.
For example, in 1955 the RAND Corporation published a table of one million
random digits obtained from measuring random pulses [1880]. Other
mechanisms use electromagnetic phenomena [22,655,1997] or characteristics
of the physical computing environment such as disk latency [513, 614, 844,
967, 1701]. Characteristics of the external environment may affect the quality
of these generators [1804].

Because mechanisms for doing this are often not available, computers use
algorithms to generate sequences of numbers that act as though they were
random.

Definition 11–3. A sequence of cryptographically pseudorandom numbers
is a sequence of numbers generated by an algorithm that is intended to
simulate a sequence of cryptographically random numbers.

When we say “random numbers” and “pseudorandom numbers” without any
further qualification, we mean cryptographically random and pseudorandom
numbers.

Creating such generators is difficult [1501]. A common method of generating
pseudorandom numbers is by a linear congruential generator

where a and b are parameters, n is the period of the sequence, and a, b, and n



are relatively prime. Reeds [1583] and Boyer [282,283] show how to
determine a and b given some numbers from the sequence. The obvious
generalization, a polynomial congruential generator:

has also been broken [1107].

The best software pseudorandom number generators are mixing functions.

Definition 11–4. [614] A strong mixing function is a function of two or
more inputs that produces an output each bit of which depends on some
nonlinear function of all the bits of the input.

The AES (see Section 10.2.5) is an example of a strong mixing function. The
AES takes 256, 320, or 384 bits of input (128 message bits and 128, 192, or
256 key bits) and produces 128 output bits. The dependence of the output bits
on the input bits is complex and nonlinear. The SHA family of hash functions
are also strong mixing functions, producing up to 512 output bits from an
arbitrary set of input bits.

The initial input to the mixing function must be unpredictable and
irreproducible. Random numbers are best, but if they cannot be obtained, lots
of data obtained from highly variable sources often suffices.

EXAMPLE: On a multiuser UNIX system, the status of the processes is highly
variable. An attacker is unlikely to reproduce the state at a future time. So the
command

( date ; ps gaux ) | sha512

would produce acceptable pseudorandom data. In this command, ps gaux
lists all information about all processes on the system. The date is added
simply for more information about the state.



Biometrics can also be used to produce random sequences. This technique is
based upon the fact that physical variations (such as those caused by heat)
cause randomness in the least significant digits of the collected biometric
data. For example, data gathered from brain signals and galvanic skin
responses passed statistical and complexity tests for randomness [1860].

More commonly, biometrics are used to generate cryptographic keys that are
tied to individuals. These keys need to be chosen in such a way that an
adversary is unlikely to be able to determine them, but must be able to be
regenerated consistently.

To generate a key from biometric data, that data is first represented as a bit
string, the feature descriptor. The feature descriptor is then transformed in
some way, such as using error-correcting codes [509], a lattice mapping
[2107], or a secret sharing scheme such as Shamir’s (see Section 16.3.2)
[1379]. The cryptographic key is then generated from this transformed data.

Methods have been developed for generating cryptographic keys from many
features, for example faces [398, 1878], handwritten signatures [728], and
voice [353, 1379].

Generating cryptographic keys from biometrics requires care in choosing
both the bio-metric and the method for measuring that biometric. If two
measurements of the same biometric feature of a principal are made, the
variation must be small enough so that the measurements are statistically
indistinguishable; similarly, if two measurements of the same biometric
feature of two different principals are made, the variation must be large
enough so that the measurements are statistically distinguishable. This
constrains the choice of features used for biometrics.

If a cryptographic key generated from biometrics is compromised, it must be
replaced with a different key. One way to enable this is to introduce random
data into the generation, for example by distorting the biometric
measurement in some way [732, 1577]. Then, if the key is compromised, the



random data is changed.

11.4 Cryptographic Key Infrastructures

Because symmetric cryptosystems use shared keys, it is not possible to bind
an identity to a key. Instead, two parties need to agree on a shared key.
Section 11.2, “Key Exchange,” presents protocols that do this.

Public key cryptosystems use two keys, one of which is to be available to all.
The association between the cryptographic key and the principal is critical,
because it determines the public key used to encipher messages for secrecy. If
the binding is erroneous, someone other than the intended recipient could
read the message.

For purposes of this discussion, we assume that the principal is identified by
a name of some acceptable sort (Chapter 15, “Representing Identity,”
discusses this issue in more detail) and has been authenticated to the entity
that generates the cryptographic keys. The question is how some (possibly
different) principal can bind the public key to the representation of identity.

An obvious idea is for the originator to sign the public key with her private
key, but this merely pushes the problem to another level, because the
recipient would only know that whoever generated the public key also signed
it. No identity is present.

Kohnfelder [1094] suggests creating a message containing a representation of
identity, the corresponding public key, and having a trusted authority sign it.
A timestamp t is also added.

This type of structure is called a certificate.

Definition 11–5. A certificate is a token that binds an identity to a
cryptographic key.



When Bob wants to communicate with Alice, he obtains Alice’s certificate
CAlice. Assuming that he knows the trusted authority Cathy’s public key, he
can decipher the certificate. He first checks the timestamp t to see when the
certificate was issued. From this, he can determine if the certificate is too old
to be trusted (see below.) The public key in the certificate belongs to the
subject named in the certificate, so Bob now has Alice’s public key. He knows
that Cathy signed the certificate and therefore that Cathy is vouching to some
degree that the public key belongs to Alice. If he trusts Cathy to make such a
determination, he accepts the public key as valid and belonging to Alice.

One immediate problem is that Bob must know Cathy’s public key to validate
the certificate. Two approaches deal with this problem. The first, by Merkle,
eliminates Cathy’s signature; the second structures certificates into signature
chains.

11.4.1 Merkle’s Tree Authentication Scheme

Merkle [1329] notes that public keys and associated identities can be kept as
data in a file. Changing any of these changes the file. This reduces the
problem of substituting faked keys or identities to a data integrity problem.
Cryptographic hash functions create checksums that reveal changes to files.
Merkle uses them to protect the file.

Let Yi be an identifier and its associated public key, and let Y1, . . . , Yn be
stored in a file. Define a function f : D × D → D, where D is a set of bit strings.
Let h : ℕ × ℕ → D be a cryptographic hash function.



Figure 11–1: A representation of the recursion involved in Merkle’s
scheme for a file with four identity and public key pairs. The hash
of the file is h(1, 4), and this is known to all parties.

The hash of the entire file (called the root) is h(1, n). Drawn as a diagram, the
recursion creates a tree structure of the hashes (see Figure 11–1).

EXAMPLE: Suppose a user wants to validate Y3 in Figure 11–1. The user does
this by recomputing h(1, 4), the hash for the entire file. This requires
computing each of the intermediate nodes on the path from Y3 to the root,
h(1, 4). To do so, the user needs to know the right child of h(3, 4) and the left
child of h(1, 4). Thus:

h(3, 3) = f(Y3, Y3)

h(3, 4) = f(h(3, 3), h(4, 4))

h(1, 4) = f(h(1, 2), h(3, 4))

This means that either the hashes or the certificates themselves must be
available. For efficiency, the hashes would be precomputed.

Under Merkle’s scheme, the ancillary hashes needed to validate a certificate
are called the authentication path. In the example above, the authentication
path of Y3 is Y3, h(4, 4), and h(1, 2). The authentication path forms the
certificate C3.

Merkle’s scheme requires only that the root value be known and that the file
be publicly available. If any identity and public key pair is compromised, then
the root value will be incorrect and this will be detected during validation.
However, if anyone changes their public key, the root value must be



recomputed and redistributed.

Merkle’s scheme is important because it examines certificate hierarchies and
suggests a mechanism that does not use public key signatures to create
certificates. However, the need to have the file available so the root value can
be recomputed at will makes this scheme impractical for networks involving
large numbers of certificates on widely separated systems.

11.4.2 Certificate Signature Chains

The usual form of a certificate is for the issuer to encipher a hash of the
identity of the subject (to whom the certificate is issued), the public key, and
information such as time of issue or expiration using the issuer’s private key.
To validate the certificate, a user uses the issuer’s public key to decipher the
hash and check the data in the certificate. The user trying to validate the
certificate must obtain the issuer’s public key. If the issuer has a certificate,
the user can get that key from the issuer’s certificate. This pushes the problem
to another level: how can the issuer’s certificate be validated?

Two approaches to this problem are to construct a tree-like hierarchy, with
the public key of the root known out of band, or to allow an arbitrary
arrangement of certifiers and rely on each individual’s knowledge of the
certifiers. First, we examine X.509, which describes certificates in general.
We then look at the PGP certificate structure.

11.4.2.1 X.509: Certificate Signature Chains

The ITU standard X.509 [2191] is the basis for many other protocols. It
defines certificate formats and certificate validation in a generic context. Soon
after its original issue in 1988, I’Anson and Mitchell [946] found problems
with both the protocols and the certificate structure. These problems were
corrected in the 1993 version, referred to as X.509v3. Based on experiences
using X.509 certificates in privacy-enhanced electronic mail (see Section
12.5.1), other fields were added.



The X.509v3 certificate has the following components [459, 2191].

1. Version. Each successive version of the X.509 certificate has new fields
added. If fields 8, 9, and 10 (see below) are present, this field must be 3; if
fields 8 and 9 are present, this field is either 2 or 3; and if none of fields 8, 9,
and 10 are present, the version number can be 1, 2, or 3.

2. Serial number. This must be unique among the certificates issued by this
issuer. In other words, the pair (issuer’s Distinguished Name, serial number)
must be unique.

3. Signature algorithm identifier. This identifies the algorithm, and any
parameters, used to sign the certificate.

4. Issuer’s Distinguished Name. This is a name that uniquely identifies the
issuer. See Chapter 15, “Representing Identity,” for a discussion.

5. Validity interval. This gives the times at which the certificate becomes
valid and expires.

6. Subject’s Distinguished Name. This is a name that uniquely identifies the
subject to whom the certificate is issued. See Chapter 15 for a discussion.

7. Subject’s public key information. This identifies the algorithm, its
parameters, and the subject’s public key.

8. Issuer’s unique identifier. Under some circumstances, issuer Distinguished
Names may be recycled (for example, when the Distinguished Name refers to
a role, or when a company closes and a second company with the same
Distinguished Name opens). This field allows the issuer to disambiguate
among entities with the same issuer name.

9. Subject’s unique identifier. This field is like field 8, but for the subject.

10. Extensions. These define certain extensions in the areas of key and policy



information, certificate path constraints, and issuer and subject information.
Each extension is a triplet, the first field being the extension identifier, the
second a flag indicating whether the extension is critical or not, and the third
being the value.

11. Signature. This field identifies the algorithm and parameters used to sign
the certificate, followed by the signature (an enciphered hash of fields 1 to 10)
itself.

To validate the certificate, the user obtains the issuer’s public key for the
particular signature algorithm (field 3) and deciphers the signature (field 11).
She then uses the information in the signature field (field 11) to recompute
the hash value from the other fields. If it matches the deciphered signature,
the signature is valid if the issuer’s public key is correct. The user then checks
the period of validity (field 5) to ensure that the certificate is current.

Definition 11–6. A certificate authority (CA) is an entity that issues
certificates.

If all certificates have a common issuer, then the issuer’s public key can be
distributed out of band. However, this is infeasible. For example, it is highly
unlikely that France and the United States could agree on a single issuer for
their organizations’ and citizens’ certificates. This suggests multiple issuers,
which complicates the process of validation.

Suppose Alice has a certificate from her local CA, Cathy. She wants to
communicate with Bob, whose local CA is Dan. The problem is for Alice and
Bob to validate each other’s certificates.

Let X ≪Y≫ represents the certificate that the CA X issues for the subject Y .
Bob’s certificate is Dan≪Bob≫. If Cathy has issued a certificate to Dan, Dan
has a certificate Cathy≪Dan≫; similarly, if Dan has issued a certificate to
Cathy, Cathy has a certificate Dan≪Cathy≫. In this case, Dan and Cathy are
said to be cross-certified.



Definition 11–7. Two CAs are cross-certified if each has issued a certificate
for the other.

Because Alice has Cathy’s (trusted) public key, she can obtain Cathy≪Dan≫

and form the signature chain

Cathy≪Dan≫ Dan≪Bob≫

Because Alice can validate Dan’s certificate, she can use the public key in that
certificate to validate Bob’s certificate. Similarly, Bob can acquire
Dan≪Cathy≫ and validate Alice’s certificate.

Dan≪Cathy≫ Cathy≪Alice≫

Signature chains can be of arbitrary length. The only requirement is that each
certificate can be validated by the one before it in the chain. (X.509 suggests
organizing CAs into a hierarchy to minimize the lengths of certificate
signature chains, but this is not a requirement.)

Certificates can be revoked or canceled. A list of such certificates enables a
user to detect, and reject, invalidated certificates. Section 11.5.2 discusses
this.

11.4.2.2 PGP Certificate Signature Chains

PGP is an encipherment program widely used to provide privacy for
electronic mail throughout the Internet, and to sign files digitally. It uses a
certificate-based key management infrastructure for users’ public keys. Its
certificates and key management structure differ from X.509’s in several
ways. Here, we describe OpenPGP’s structure [342]; but much of this
discussion also applies to other versions of PGP.

An OpenPGP certificate is composed of packets. A packet is a record with a
tag describing its purpose. A certificate contains a public key packet followed
by zero or more signature packets. An OpenPGP public key packet has the



following structure.

1. Version. This is either 3 or 4. Version 3 is compatible with all versions of
PGP; Version 4 is not compatible with old (Version 2.6) versions of PGP.

2. Time of creation. This specifies when the certificate was created.

3. Validity period (Version 3 only). This gives the number of days that the
certificate is valid. If it is 0, the certificate does not expire.

4. Public key algorithm and parameters. This identifies the algorithm used
and gives the parameters for the cryptosystem used. Version 3 packets
contain the modulus for RSA (see Section 10.3.2). Version 4 packets contain
the parameters appropriate for the cryptosystem used.

5. Public key. This gives the public key. Version 3 packets contain the
exponent for RSA. Version 4 packets contain the public key for the
cryptosystem identified in field 4.

The information in an OpenPGP signature packet is different for the two
versions. Version 3 contains the following.

1. Version. This is 3.

2. Signature type. This describes the specific purpose of the signature and
encodes a level of trust (see Section 15.5.3, “Trust”). For example, signature
type 0x11 says that the signer has not verified that the public key belongs to
the named subject.

3. Creation time. This specifies the time at which the fields following were
hashed.

4. Key identifier of the signer. This specifies the key used to generate the
signature.

5. Public key algorithm. This identifies the algorithm used to generate the



signature.

6. Hash algorithm. This identifies the algorithm used to hash the signature
before signing.

7. Part of signed hash value. After the data is hashed, field 3 is given the time
at which the hash was computed, and that field is hashed and appended to
the previous hash. The first two bytes are placed into this field. The idea is
that the signature can be rejected immediately if the first two bytes hashed
during the validation do not match this field.

8. Signature. This contains the encipherment of the hash using the signer’s
private key.

A Version 4 signature packet is considerably more complex, but as a Version
3 signature packet does, it binds a signature to an identifier and data. The
interested reader is referred to the OpenPGP specifications [342].

PGP certificates differ from X.509 certificates in several important ways.
Unlike X.509, a single key may have multiple signatures. (All Version 4 PGP
keys are signed by the owner; this is called self-signing.) Also unlike X.509, a
notion of “trust” is embedded in each signature, and the signatures for a
single key may have different levels of trust. The users of the certificates can
determine the level of trust for each signature and act accordingly.

EXAMPLE: Suppose Alice needs to communicate with Bob. She obtains Bob’s
public key PGP certificate, Ellen,Fred,Giselle,Bob≪Bob≫ (where the X.509
notation is extended in the obvious way). Alice knows none of the signers, so
she gets Giselle’s PGP certificate, Henry,Irene,Giselle≪Giselle≫, from a
certificate server. She knows Henry vaguely, so she obtains his certificate,
Ellen,Henry≪Henry≫, and verifies Giselle’s certificate. She notes that Henry’s
signature is at the “casual” trust level, so she decides to look elsewhere for
confirmation. She obtains Ellen’s certificate, Jack,Ellen≪Ellen≫, and
immediately recognizes Jack as her husband. She has his certificate and uses



it to validate Ellen’s certificate. She notes that his signature is at the “positive”
trust level, so she accepts Ellen’s certificate as valid and uses it to validate
Bob’s. She notes that Ellen signed the certificate with “positive” trust also, so
she concludes that the certificate, and the public key it contains, are
trustworthy.

In the example above, Alice followed two signature chains:

Henry≪Henry≫ Henry≪Giselle≫ Giselle≪Bob≫

and

Jack≪Ellen≫ Ellen≪Bob≫

The unchecked signatures have been dropped. The trust levels affected how
Alice checked the certificate.

A subtle distinction arises here between X.509 and PGP certificates. X.509
certificates include an element of trust, but the trust is not indicated in the
certificate. PGP certificates indicate the level of trust, but the same level of
trust may have different meanings to different signers. Chapter 15 will
examine this issue in considerable detail.

11.4.3 Public Key Infrastructures

The deployment and management of public keys is complex because of the
different requirements of various protocols. Several such infrastructures are
in place, such as the PGP Certificate Servers and the commercial certificate
issuers for web browsers.

Definition 11–8. A public key infrastructure (PKI) is an infrastructure that
manages public keys and certificate authorities.

Let us examine the Internet X.509 public key infrastructure [459].

11.4.3.1 The Internet X.509 PKI



The Internet X.509 PKI has two basic types of certificates.

• An end entity certificate is one issued to entities not authorized to issue
certificates.

• A certificate authority certificate (called a CA certificate) is one issued to a
CA. A self-issued certificate has the issuer and subject as the same entity. A
self-signed certificate is a self-issued certificate in which the public key in the
certificate can be used to validate the certificate’s digital signature; these are
useful to provide a public key that begins a certificate chain. Such a CA is
known as a trust anchor. A cross-certificate is a certificate issued by one CA
to another CA, and is intended to describe a trust relationship between the
CAs.

When a user wants to obtain a certificate, she first registers with a CA. The CA
may delegate the registration task to another entity, called the registration
authority (RA). In either case, the registering entity is responsible for
verifying the identity of the user as required by the CA’s policy. The user then
initializes her set of keys, obtaining the public key of the CA and generating
its public and private keys. The CA then issues the appropriate certificate
containing the user’s identity and public key, as discussed in Section 11.4.2.1,
sends it to the user, and stores it in a certificate repository.

Certificate extensions are either critical or non-critical, as noted earlier. An
application supporting Internet certificates must reject a certificate
containing an unrecognized critical extension, or one that the application
cannot process. The application may ignore any unrecognized non-critical
extension, but must process those it recognizes.

All conforming CAs must support the following extensions; they may support
others.

• The authority key identifier extension, which must be non-critical,
identifies the public key that can be used to validate the digital signature of



the certificate. This is necessary if the issuer has multiple key pairs used to
sign certificates. If the certificate is self-signed, this extension can be omitted;
otherwise, it must be present.

• The subject key identifier extension, which must be non-critical, contains
the same value as the authority key field. If the subject of the certificate is a
CA, then this field must be present.

• The key usage extension, which should be critical, describes the purposes
for which the public key can be used. These purposes include enciphering
cryptographic keys (such as session keys), enciphering data, validating digital
signatures of certificates, validating digital signatures other than on
certificates, signing certificates, and so forth.

• The basic constraints extension, which must be critical if the certificate is
used to validate the digital signatures of certificates and may be either critical
or non-critical otherwise, identifies whether the subject is a CA and, if the
public key can be used to verify a certificate’s digital signature, the number of
intermediate certificates that may follow this one in a certificate chain and
that are not self-signed certificates.

• The certificate policies extension, when present on an end-entity certificate,
says under what policy the certificate is issued, and what the certificate may
be used for. When present on a CA certificate, this extension limits the set of
policies on any certificate chain that includes this certificate.

The presence of these extensions simplifies processing and eliminates some
earlier constraints on the Internet PKI. If the first one were not present, the
validator would need to try different keys of the issuing CA to determine
whether the certificate was valid. In earlier versions of the Internet PKI, the
specific key used to sign the certificate often indicated which policy applied to
the certificate. Now, the key identifiers and the certificate policy extensions
do this explicitly. The key usage extension makes clear what the public key in
the certificate is to be used for. Before, this was either embedded in the



issuer’s policy, or the public key was assumed to be valid for all purposes.
Finally, the basic constraints extension limits the length of the certificate
subchain beginning at the certificate and extending to the end point, not
including self-signed certificates.

All conforming applications that process these certificates must recognize the
following extensions.

• The key usage, certificate policies, and basic constraints extensions;

• The subject alternative name extension, which must be critical, provides
another name for the subject, such as an email address, an IP address, and so
forth. If present, the issuing CA must verify that this is another name for the
subject of the certificate.

• The name constraints extension is in CA certificates only. It constrains what
names are allowed in the subject field and subject alternative name extension
of certificates following it in the certificate chain, unless those certificates are
self-signed. It does not apply to self-signed certificates.

• The policy constraints extension, which must be critical, controls when the
policy for the certificate chain containing this certificate must be explicit or
when the policy in the issuer of a certificate in the chain can no longer be the
same as the policy of the subject, even if the certificate says that it is.

• The extended key usage extension allows the issuer to specify uses of the
public key beyond those given in the key usage extension, for example using
the public key to sign downloadable executable code.

• The inhibit anyPolicy extension, which must be critical, enables a wildcard
(anyPolicy) to match policies only if it occurs in an intermediate self-signed
certificate in a certificate chain.

These extensions also add flexibility and control. The subject alternative
name allows multiple subject names in a certificate; earlier versions did not



allow this. The name constraints, policy constraints, and inhibit anyPolicy
extensions control the policies that apply to the use of the certificate and the
meaning of the subject names. The extended key usage field allows the public
key to be used for purposes beyond the ones identified in the key usage
extension.

11.4.3.2 Problems with PKIs

The heart of any PKI is trust. Ultimately, problems with PKIs are problems
with the trust reposed in the infrastructure.

Consider the nature of a certificate. The issuer is binding the identity of a
subject to a public key, so the issuer claims with some degree of confidence
that the identity belongs to the principal claiming that identity. The degree of
confidence of the identity depends entirely on the CA or its delegate usually
the registration authority). Section 15.5 explores this issue in depth.

The understanding of the CA’s policies are also critical. If an end entity uses a
certificate, that entity trusts that the CA is the appropriate CA for the policy
that embodies the use of the certificate. Failure to validate this may result in
accepting or rejecting a certificate inappropriately.

A common source of confusion is the belief that a certificate embodies
authorization of some kind. It does not. An authorization may be associated
with an identity, but that is external to the PKI.

Trust in implementation also abounds. For example, the CA’s systems
containing the private keys used to sign the certificates must protect those
keys. If an adversary can obtain those private keys, it can issue certificates in
the name of the CA, or revoke existing certificates issued by that CA.

One final, critical assumption is that no two certificates will have the same
public (and hence private) key. If Alice discovers Bob’s certificate has the
same public key as hers, she knows Bob’s private key, violating a key



assumption in the use of public key cryptosystems. A study of certificates
throughout the Internet shows this problem has arisen in practice [1158,
1159].

11.5 Storing and Revoking Keys

Key storage arises when a user needs to protect a cryptographic key in a way
other than by remembering it. If the key is public, of course, any certificate-
based mechanism will suffice, because the goal is to protect the key’s
integrity. But secret keys (for symmetric cryptosystems) and private keys (for
public key cryptosystems) must have their confidentiality protected as well.

11.5.1 Key Storage

Protecting cryptographic keys sounds simple: just put the key into a file, and
use operating system access control mechanisms to protect it. Unfortunately,
as discussed in Chapter 24, operating system access control mechanisms can
often be evaded or defeated, or may not apply to some users. On a single-user
system, this consideration is irrelevant, because no one else will have access
to the system while the key is on the system. On a multiuser system, other
users have access to the system. On a networked system, an attacker could
trick the owner into downloading a program that would send keystrokes and
files to the attacker, thereby revealing the confidential cryptographic key. We
consider these systems.

On such systems, enciphering the file containing the keys will not work,
either. When the user enters the key to decipher the file, the key and the
contents of the file will reside in memory at some point; this is potentially
visible to other users on a multiuser system. The keystrokes used to decipher
the file could be recorded and replayed at a later date. Either will compromise
the key.

A feasible solution is to put the key onto one or more physical devices, such as
a special terminal, ROM, or smart card [538,621,1272]. The key never enters



the computer’s memory. Instead, to encipher a message, the user inserts the
smart card into a special device that can read from, and write to, the
computer. The computer sends it the message to be protected, and the device
uses the key on the smart card to encipher the message and send it back to
the computer. At no point is the cryptographic key present on the computer.

A variant relies on the observation that if the smart card is stolen, the thief
has the cryptographic key. Instead of having it on one card, the key is split
over multiple devices (two cards, a card and the physical card reader, and so
on.) Now, if a thief steals one of the cards, the stolen card is useless because it
does not contain the entire key.

11.5.1.1 Key Escrow

As the previous discussion implies, keys can belong to roles.

EXAMPLE: The UNIX superuser password, like the Windows Administrator
password, refers to the role of system administrator. In the absence of other
password management techniques (see Chapter 13) all people who take those
roles need to know the password.

A reasonable concern is how one recovers the key if it is lost, or if the people
who know it are unable or unwilling to reveal it. Three alternatives arise:
either the key or the cryptosystem can be weak, or a copy of the key can be
placed somewhere.

Definition 11–9. A key escrow system is a system in which a third party can
recover a cryptographic key.

The contexts in which key escrow arises are business (recovery of backup
keys, for example) and law enforcement (recovery of keys used to encipher
communications to which an authority requires access, such as enciphered
letters or telephone messages). Beth et al. [188] identify five desirable
properties or goals.



1. The escrow system should not depend on the encipherment algorithm. The
escrow techniques should work regardless of how the messages are
enciphered.

2. Privacy protection mechanisms must work from one end to the other and
be part of the user interface. This protects the user’s privacy unless the
escrowed keys are used, and then only those who have the escrowed keys can
access the messages.

3. Requirements (legal or business) must map to the key exchange protocol.
This prevents a user from enciphering a message and then entering it directly
into the communications channel, bypassing the escrow system.

4. A system supporting key escrow must require that all parties authenticate
themselves. In particular, if a principal uses the escrowed keys, the system
must ensure that the principal is authenticated not only by name but also by
the time and place of the principal and by any equipment used in the
interception and the decipherment. This protects against unauthorized
parties using escrowed keys.

5. If the message is to be observable for a limited time, the key escrow system
must ensure that the keys are valid for that interval exactly (no more and no
less).

Key escrow systems consist of a user security component, a key escrow
component, and a data recovery component [543]. The user security
component does the encryption and decryption as well as supports the key
escrow component. The key escrow component manages the storage and use
of the data recovery keys. The data recovery component does the data
recovery.

The most famous key escrow system is the one that the U.S. government’s
Clipper chip supports.



11.5.1.2 Key Escrow System and the Clipper Chip

Although the Clipper chip is the best-known component of the U.S.
government’s Escrowed Encryption Standard (EES) [2166], the system itself
is a set of interlocking components designed to balance the need for law
enforcement access to enciphered traffic against citizens’ right to privacy.
How well the system achieves this balance is left for the reader to decide in
light of his or her philosophies. This section focuses on the technical
components only [540, 549].

The key escrow hardware components consist of a chip called “Clipper,”
which is used to prepare the per-message escrow information, and a device
called the Key Escrow Decrypt Processor (KEDP). The chip is placed into the
user security component of each device and is numbered uniquely (this
number is called a UID, for “Unique Identifier for Device”). The KEDP is
available to agencies authorized to read messages. In addition, a special
facility creates the escrow devices and programs the chips, and the key used
to access messages is split and the parts given to two different escrow
agencies.

Each user security component contains a unique device key kunique and a non-
unique family key kfamily in addition to the UID. The user security component
uses a symmetric cipher called Skipjack [2245]. Skipjack accepts 64-bit
blocks as input and enciphers them into 64-bit output blocks using an 80-bit
key. (The details of Skipjack were classified until 1998 [2210].) In addition to
the enciphered message, the user security component generates a Law
Enforcement Access Field (LEAF) of 128 bits, containing

where hash is a 16-bit authenticator generated from the session key and an
initialization vector [243]. This is transmitted with the message.

The user component chip is programmed in a secure facility. Two escrow



agents, one from each of the two key escrow agencies, are present. In
addition, a set of family key components has been generated.

Each escrow agent independently supplies a random seed and key number.
The family key components are combined to form kfamily, and the key
numbers are combined to make a key component enciphering key kcomp. The
random seeds are mixed with additional random data to generate a sequence
of keys kunique for the chips being created. Each chip is imprinted with the
UID, the kunique for that chip, and a copy of kfamily.

When kunique is created, the key generator creates two additional key
components ku1 and ku2, where ku1 ⊕ ku2 = kunique. These components are
enciphered under the key component key kcomp. The first escrow agent is
given {ku1}kcomp, and the second is given {ku2}kcomp. The escrow agents take
these encrypted key components to their respective agencies.

When Alice obtains legal authorization to read a message, she first runs the
LEAF through the KEDP. The KEDP knows kfamily, so it can validate the
contents of the LEAF and obtain the UID for the sending device. Alice takes
the authorization and the UID to each of the two escrow agencies. They verify
that the authorization is valid (using whatever procedures are appropriate),
and each brings its encrypted key component and the corresponding key
numbers. The components, LEAF, and key numbers are loaded onto the
KEDP. The KEDP uses the key numbers to generate kcomp, uses kcomp to
obtain ku1 and ku2, and exclusive-or’s ku1 and ku2 to obtain kunique. The KEDP
then extracts the appropriate 80 bits of the LEAF and deciphers them to
obtain the session key ksession. Because that key enciphers the message, the
message can now be read.

Blaze has pointed out an interesting way to defeat the key escrowing [243].
He noticed that the hash component of the LEAF was only 16 bits long. This
means that out of the 2128 possible LEAFs, 2112 will have a valid checksum. Of
these, only one has the actual session key and UID. An attacker could
generate a LEAF with a valid checksum but an incorrect session key and UID,



thereby defeating the decipherment efforts of the party authorized to obtain
the session key. Blaze ran some experiments, and found that the expected
time to generate such a LEAF was 42 minutes. Although too slow for
telephonic applications, it is very feasible for an application such as electronic
mail. Denning and Smid [549] also have pointed out that deployed devices
would have countermeasures, such as a counter of the number of times an
invalid LEAF was presented, that would defeat Blaze’s trial-and-error
method.

The Encrypted Key Escrow system meets the first four goals of a key escrow
system (see Section 11.5.1.1). Unfortunately, it fails on the fifth. The problem
is that kunique is fixed for each unit, so if an authority obtains that key, he can
read any message enciphered by the device, with or without authorization.

11.5.1.3 The Yaksha Security System

Ganesan [738] developed a key escrow system meeting the five requirements.
This system, Yaksha, is based on the RSA cryptosystem and a central server.
The central server will generate session keys, which it can provide on demand
to appropriate authorities (or which it can destroy).

In this system, each user has two private keys derived from the original RSA
key. Let nAlice be Alice’s modulus. The first private key, dAliceA, is known only
to Alice; the second, dAliceY, is known only to the Yaksha server. The keys are
related:

Alice’s public key is eAlice and is available to all. Bob has similar keys dBobB,
dBobY , and eBob.

When Alice wishes to communicate with Bob, she sends a message to Yaksha
asking for a session key. The Yaksha server generates a random session key
ksession. The server then sends Alice



Alice can determine the session key as

Similarly, Bob, who receives an analogous message, can recover the session
key. The Yaksha server can archive the session key, or delete it, as needed.

This scheme eliminates the problem of an authority acquiring an escrow key
and being able to read multiple sessions. Because the session key is random
and not reused (a nonce), only the message that it enciphered can be read.
This satisfies goal 5. Goal 1 is met if the focus is on the message enciphering
algorithms, because the Yaksha system is tied to an RSA interchange with the
server. The other requirements can be implemented, if a supporting
infrastructure is available; certainly, interaction with the Yaksha server
requires authentication.

11.5.1.4 Other Approaches

The fifth goal relies on “time.” Both the EES and Yaksha interpret “time” as
“sessions.” Others have explored basing escrow systems on the length of time
needed to solve some difficult problem. For example, Beth et al. [188] present
an escrow system in which the secret key used to generate the session key is
not given to the escrow authority, but a related key is. To find the actual key
from the related key, the authority must solve an instance of the discrete log
problem. Techniques such as this assume that the difficulty of solving a
particular problem is relatively constant. With advances in technology, such
assumptions must be examined carefully.

Bellare and Rivest [158] have proposed a technique called “translucent
cryptography,” in which some fraction f of the messages Alice sends to Bob
can be read. Their proposal relies on a cryptographic technique called
“oblivious transfer,” in which a message is received with a given probability
[156]. This is not a key escrow system, because the keys are not available, but



it does serve the ends of such a system in that the messages can be read with a
specified probability. The puzzle is the value to which f must be set.

Identity-based encryption uses as a public key a publicly known identifier, for
example an identifier that uniquely names the user. First proposed by Shamir
[1734], such a scheme requires a trusted third party to use (or provide to the
requester to use) a secret to compute the private keys, because if no secret
were used, anyone could derive a private key from a public key. Such a
scheme also provides an effective escrow system, because given a message
enciphered with a public key, the trusted third party can use the secret to
derive the corresponding private key and read the message.

Shamir identified two additional properties that public key cryptosystems
must meet in order to be suitable for identity-based encryption:

1. Private keys can be easily computer from public keys and a secret s; and

2. It is computationally infeasible to compute a private key from a public key
without knowing s.

He then showed that the RSA cryptosystem cannot meet both these
conditions at the same time. In 2001, Cocks [432] and Boneh and Franklin
[261, 262] independently developed identity-based encryption schemes.
Boneh and Franklin’s method provides key escrow in the way that Shamir’s
scheme does, and they further showed how to augment their system to
provide a “global escrow” key to decrypt any ciphertext encrypted using the
public keys of their system.

11.5.2 Key Revocation

Certificate formats contain a key expiration date. If a key becomes invalid
before that date, it must be revoked. Typically, this means that the key is
compromised, or that the binding between the subject and the key has
changed.



We distinguish this from an expired certificate. An expired certificate has
reached a predesignated period after which it is no longer valid. That the
lifetime has been exceeded is the only reason. A revoked certificate has been
canceled at the request of the owner or issuer for some reason other than
expiration.

There are two problems with revoking a public key. The first is to ensure that
the revocation is correct—in other words, to ensure that the entity revoking
the key is authorized to do so. The second is to ensure timeliness of the
revocation throughout the infrastructure. This second problem depends on
reliable and highly connected servers and is a function of the infrastructure as
well as of the locations of the certificates and the principals who have copies
of those certificates. Ideally, notice of the revocation will be sent to all parties
when received, but invariably there will be a time lag.

The Internet X.509 public key infrastructure uses lists of certificates.

Definition 11–10. A certificate revocation list is a list of certificates that are
no longer valid.

A certificate revocation list contains the serial numbers of the revoked
certificates and the dates on which they were revoked. It also contains the
name of the issuer, the date on which the list was issued, and when the next
list is expected to be issued. The issuer also signs the list [459, 2191]. Under
X.509, only the issuer of a certificate can revoke it.

To minimize the time lag, the Internet X.509 PKI also supports an online
revocation system [1674]. When validating a certificate, the system can use
the Online Certificate Status Protocol (OCSP) to determine whether the
certificate has been revoked. The request includes the certificate’s serial
number, the hash of its issuer name, the hash of its issuer’s public key, and an
identification of the hash algorithm. The server will respond that the
certificate is “good”, “revoked”, or “unknown” (meaning the responder does
not know about the certificate being requested). This method is particularly



useful when time is critical, for example during stock trades.

PGP allows signers of certificates to revoke their signatures as well as
allowing owners of certificates, and their designees, to revoke the entire
certificates. The certificate revocation is placed into a PGP packet and is
signed just like a regular PGP certificate. A special flag marks it as a
revocation message.

Boneh and Franklin [261,262] point out that identity-based encryption
provides a simple key revocation mechanism, provided the lifetime of the key
is known when it is generated. Simply add some extra data that depends upon
the time—for example, the current year or month—to the public key. Then the
corresponding private key is valid only until the extra information expires, for
example at the end of the year or the month. This revokes the key at that time
by causing it to expire.

11.6 Summary

Cryptographic infrastructure provides the mechanisms needed to use
cryptography. The infrastructure sees to the distribution of keys and the
security of the procedures and mechanisms implementing cryptographic
algorithms and protocols.

Key exchange and authentication protocols, although distinct in principle, are
often combined because the first step in most communications is to prove
identity. Exchanging a session key in the process saves another exchange.
Both public key and symmetric cryptosystems can provide authentication and
key exchange, provided that the appropriate infrastructure is present.

A key element of such an infrastructure is a mechanism for binding
cryptographic keys to identity. This mechanism leads to the distinction
between session keys (generated once per session, and associated with that
session) and interchange keys (generated once per principal, and associated
with that principal). It also leads to certification, in which a representation of



identity, along with other information such as expiration time, is
cryptographically signed and distributed as a unit. The name of the signer
(issuer) is included so that the certificate can be verified.

The mechanism used to sign certificates and other documents is a digital
signature. A disinterested third party, called a judge, must be able to confirm
or disprove that the (alleged) sender computed the digital signature of the
(alleged) signed message.

Session keys require pseudorandom number generation. Of the many
algorithms in use, the best are mixing algorithms in which every bit of the
output depends on every bit of the input, and no bit can be predicted even if
all previous bits are known.

The management of keys involves storing them and revoking them, both of
which involve system issues as well as cryptographic ones. Another aspect is
the idea of key recovery. Under some circumstances (such as the key holder
dying, or a legal order), a principal may need to obtain a key to read
enciphered information. Key escrow systems provide this capability, but must
meet strict requirements to ensure that they do not permit unauthorized and
unlimited access to messages.

11.7 Research Issues

All issues discussed in this chapter are under active study. In particular, the
design and deployment of public key infrastructures are critical as electronic
commerce becomes more common. Unless technical mechanisms are
sufficiently robust to support legal enforcement, electronic commerce will not
be accepted. Key management mechanisms, in particular, must mimic the
non-computer world’s procedures and processes, because they could be used
to replace those processes.

Authentication protocols are critical to network use, and it is seductively easy
to believe they are correct when they are not. Researchers are creating and



testing various logics of authentication to prove protocols correct, or to prove
them incorrect and fix them. The results of applying such logics must be
interpreted in light of the environment in which the authentication protocol
is used. For example, a proof that protocol X authenticates a user is
misleading if that user keeps his private key in a file that anyone can read.
The integration of system information, and of assumptions, into logics, as
well as the development of new logics, are prime topics for research.

Key escrow defeats the confidentiality aspect of cryptographic protocols.
Development is actively under way to minimize the threat of unauthorized
users accessing escrow and recovery systems. Both symmetric and public key
cryptographic methods, as well as more esoteric methods relying on
techniques such as oblivious transfer, are under study. Researchers are also
proposing systems that allow decipherment to some degree of probability
rather than within some period of time.

11.8 Further Reading

When a user joins a Kerberos system, the user’s password, or cryptographic
key, must be set up on the Kerberos authentication server. This may be
difficult when Kerberos is used over the Internet. The PKINIT protocol uses
public key cryptography to replace the password [588, 2112–2114]; the
current version of PKINIT fixes a problem that allowed a man-in-the-middle
attack [370].

Dodis, Ostrovsky, Reyzin, and Smith [580] formalize the notion of
“closeness” for bio-metric data. Ballard, Kamara, and Reiter [120] identify
several subtleties in using biometric data to generate cryptographic keys in
practice.

Ellison explores methods of binding an identity to a public key without using
certificates [634]. Identity-based encryption provides this ability, as a user’s
public key is typically derived from certain aspects of that user’s identity. Al-



Riyami and Paterson [30] develop a scheme in which the trusted third party
and a user use their own secrets to generate the private key; this prevents the
third party from obtaining the user’s private key. Alternate schemes assume
slightly different security models and infrastructures [112,1129]. Dent [556]
compares these schemes with one another, and with traditional PKI-based
schemes.

The Internet Key Exchange Protocol Version 2 [1019] deals with key exchange
and authentication on the Internet. Several key exchange protocols are based
on symmetric cryptosystems [327, 1447]. Protocols based on public key
methods abound (see, for example, [1236, 1442, 1486, 1871, 2029, 2030,
2120]. Quantum key exchange offers still more key distribution methods
[170, 292, 1875], but is prohibitively expensive.

Several papers discuss issues in public key infrastructure, including
interoperation [905, 940,941,1496,1625], organization [1164,1215],
requirements [81,1612], and models [458,1340, 1521, 1537, 1677]. The
Resource Public Key Infrastructure RPKI [1161] uses the Internet X.509 PKI
to support secure distribution of routing information. Several books
[14,415,932] discuss many aspects of public key infrastructures. Ellison and
Schneier [636] present often overlooked risks in using PKIs.

Several key escrow schemes explore different ways to control access.
Burmester et al. [324] present a non-identity based protocol with a limited
time span. Clark [423] and Walker et al. [1972] discuss the relationship
between key recovery and key escrow. Others have proposed enhancements
and extensions to various Internet protocols for key recovery [118, 1260,
1592, 1752].

The Skipjack cryptosystem has been studied extensively [201, 1530]. The
lessons drawn from the nontechnical aspects of the proposed U.S. key escrow
system have spurred an examination of the non-technical aspects of key
escrow in general [244,730,1336,1687,1821].



11.9 Exercises

1. The problem of selecting a cryptographic key is equivalent to generating a
random number between 0 and

, inclusive. However, certain issues may complicate this process. This exercise
asks you to examine them.

(a) The DES has 16 keys with undesirable properties (the weak and semiweak
keys). These keys cannot be used safely. Describe how to map the selection of
a key for the DES into the problem of generating random numbers.

(b) RSA requires that prime numbers be generated. The usual technique is to
generate a large random number and test it for primality. Assuming that you
have an algorithm P that tests for primality in a “reasonable” time,2 and
assuming that you have a random number generator, how would you
generate such a prime number efficiently?

2In practice, a number is tested for primality by applying a series of
probabilistic tests on the chosen number until the probability of that number
being composite is sufficiently low. See, for example, Wagstaff [1967] and
Stinson [1837].

2. Consider the case of Alice and her stockbroker, Bob, in the example in
section 11.1. Instead of BUY and SELL, Alice will send Bob one of 50 messages
m1, . . . , m50, where mi = i for 1 ≤ i ≤ 50. Bob’s RSA public key is (37, 77). The
attacker Eve intercepts the ciphertext 39. Without computing Bob’s private
key, determine which message Alice sent to Bob.

3. Consider the Otway-Rees protocol. Assume that each enciphered message
is simply the bits corresponding to the components of the message
concatenated together. So, for example, in the first message, one must know
the names “Alice” and “Bob”, and the length of the random numbers r1 and n,
to be able to parse the portion of the first message that is enciphered with



kAlice. The separate parts of the enciphered message have no indicators; the
recipient is expected to determine them.

(a) Consider Alice when all 4 steps of the protocol have been completed. How
does Alice know that steps 2 and 3 have taken place?

(b) Massicotte asks us to assume that an adversary Edgar is impersonating
Bob, and has sufficient control over the exchange so that he receives the
messages intended for Bob. Bob never sees them. What components of the
protocol does Edgar know — that is, does he know r1, r2, n, or ksession, or the
names of “Alice” and “Bob”? How?

(c) Given this, in step 4 of the protocol, how might Edgar provide Alice with a
session key that he knows?

(d) How might someone fix this?

4. Consider the following authentication protocol, which uses a symmetric
cryptosystem. Alice generates a random message r, enciphers it with the key k
she shares with Bob, and sends the enciphered message {r}k to Bob. Bob
deciphers it and sends {r + 1}k back to Alice. Alice deciphers the message and
compares it with r. If the difference is 1, she knows that her correspondent
shares the same key k and is therefore Bob. If not, she assumes that her
correspondent does not share the key k and so is not Bob. Does this protocol
authenticate Bob to Alice? Why or why not?

5. Needham and Schroeder suggest the following variant of their protocol:

1. Alice → Bob : Alice

2. Bob → Alice : {Alice || rand3}kBob

3. Alice → Cathy : {Alice || Bob || rand1 || {Alice || rand3}kBob}

4. Cathy → Alice : {Alice, Bob || rand1 || ksession || {Alice || rand3 ||



ksession}kBob}kAlice

5. Alice → Bob : {Alice || rand3 || ksession}kBob

6. Bob → Alice : {rand2}ksession

7. Alice → Bob : {rand2 – 1}ksession

Show that this protocol solves the problem of replay as a result of stolen
session keys.

6. What purpose would a random biometric-based cryptographic key be used
for? A biometric-based cryptographic key that is associated with an
individual?

7. Modify Kohnfelder’s scheme (see page 300) to allow a principal to issue its
own certificate. Identify one or more problems other principals might have in
relying on such a certificate. In particular, under what conditions would this
solve the problem of an impostor spoofing the sender?

8. A developer is trying to enable a program to validate the contents of
memory locations in a specific part of memory have not been corrupted. She
decides to use a Merkle tree authentication scheme in which the memory
locations are the leaves.

(a) Describe the structure of the tree. In particular, what would the interior
nodes contain? How would it be organized to enable fast validation of the
contents of a memory location?

(b) If the program accessing the memory makes a change to the contents of
one of the memory locations, what steps must it take to ensure the contents
are not considered corrupt in the future? How would it do these steps?

(c) The developer is concerned that an adversary might change data in the
sensitive memory locations. Ideally, she could place all data into protected,



secure memory locations. Unfortunately, that memory is expensive. What is
the minimum number of nodes that she must place into protected, secure
memory to ensure she will detect any unexpected changes to the memory
locations under consideration?

9. The original version of the Internet PKI [1040] was organized as a tree. The
root, the Internet Policy Registration Authority (IPRA), operated under the
auspices of the Internet Society. It only gave certificates to Policy Certification
Authorities (PCAs), which in turn issued certificates for Certificate
Authorities (CAs). Certificates in this PKI did not have any extension fields.

(a) A PCA forms the root of a subtree that complies with a single certification
policy. All subordinate CAs agree to follow that PCA’s policy. The PCA must
file a digitally signed copy of a document stating the policy with the IPRA;
this document was immutable. Among other things, this policy must describe
technical and procedural measures that the PCA will take to protect the
generation and storage of its public and private keys as well as any
information it gathers about the CAs it certifies. Discuss the advantages and
disadvantages of embedding a description of these measures in an immutable
policy document. How would you ameliorate the disadvantages?

(b) A single PCA could support many different policies. Each policy would be
associated with a different certificate. The subject name for all these
certificates would be that of the PCA. What information would a verifier need
to determine which policy applied to a given PCA certificate? What field of
the certificate would be critical here?

(c) A CA was bound by a name subordination rule, which said the subject
names in certificates that CAs issued must be subordinate to the issuer name
(that is, a CA can only certify entities in the name tree of which it is a root).
How would this requirement be implemented in the Internet X.509 PKI?

(d) The document specifying the original version of the Internet PKI stated
that the privacy-enhanced electronic mail (PEM) implementations “must



provide a user with the ability to display a full certification path for any
certificate employed in PEM upon demand” [1040, p. 26]. Such a
requirement was unusual because it specified a requirement upon the user
interface of an application that used the Internet PKI and not the
implementation of the PKI iteslf. Why was this requirement put into the
standard?

10. An X.509 certificate revocation list contains a field specifying when the
next such list is expected to be issued. Why is that field present?

11. After a Kerberos principal is authenticated to a server, the server must
determine if the principal is authorized to use the service. One
implementation of Kerberos had the ticket granting service perform the
authorization check, and not issue a ticket if the principal was not authorized
to use the service.

(a) Under what conditions might an organization prefer to use the ticket
granting server as an authorization server?

(b) Under what conditions would it prefer to leave authorization in the hands
of each server?

12. Show that, under the Yaksha security scheme, Alice can obtain the session
key by computing

13. Rather than a key escrow system, various governments have proposed
requiring “back doors” to be designed into implementations of cryptosystems
so that law enforcement officers could access the information being
enciphered and deciphered under appropriate legal constraints. With such
back doors, law enforcement could detect and thwart many criminal actions.

(a) Suppose the government of Sylvania decides to require all cryptographic
software and hardware manufactured within it borders to have such back



doors. Would its traditional enemy, Freedonia, be likely to require the same
type of back doors to be put into all such equipment made in Freedonia? If
not, what are the implications for the effectiveness of Sylvania’s efforts to
thwart crime that involved use of cryptographic equipment?

(b) Now consider only Sylvania. If back doors are put into all cryptographic
implementation, law enforcement would also use that equipment. What could
criminals then do to anticipate efforts of law enforcement?

(c) If law enforcement were allowed to buy cryptographic implementations
that did not have such back doors, might these implementations leak to the
general public? Why or why not? If they did, what would be the result with
respect to the goals of the requirements?



Chapter 12. Cipher Techniques
IAGO: So will I turn her virtue into pitch, And out of her own goodness make 
the net That shall enmesh them all.

— The Tragedy of Othello, II, iii, 361–363.

Cryptographic systems are sensitive to environment. Using cryptosystems 
over a network introduces many problems. This chapter presents examples of 
these problems and discusses techniques for dealing with them. First comes a 
description of stream and block ciphers, followed by a review of the 
organization of the network layers. We then present several network protocols 
to show how these techniques are used in practice.

The key point of this chapter is that the strength of a cryptosystem depends in 
part on how it is used. A mathematically strong cryptosystem is vulnerable 
when implemented or used incorrectly.

12.1 Problems

The use of a cipher without consideration of the environment in which it is to 
be used may not provide the security that the user expects. Three examples 
will make this point clear.

12.1.1 Precomputing the Possible Messages

Simmons discusses the use of a “forward search” to decipher messages 
enciphered for confidentiality using a public key cryptosystem [1762]. His



approach is to focus on the entropy (uncertainty) in the message. To use an
example from Section 11.1, Cathy knows that Alice will send one of two
messages—BUY or SELL—to Bob. The uncertainty is which one Alice will
send. So Cathy enciphers both messages with Bob’s public key. When Alice
sends the message, Cathy intercepts it and compares the ciphertext with the
two she computed. From this, she knows which message Alice sent.

Simmons’ point is that if the plaintext corresponding to intercepted
ciphertext is drawn from a (relatively) small set of possible plaintexts, the
cryptanalyst can encipher the set of possible plaintexts and simply search that
set for the intercepted ciphertext. Simmons demonstrates that the size of the
set of possible plaintexts may not be obvious. As an example, he uses digitized
sound. The initial calculations suggest that the number of possible plaintexts
for each block is 232. Using forward search on such a set is clearly impractical,
but after some analysis of the redundancy in human speech, Simmons
reduces the number of potential plaintexts to about 100,000. This number is
small enough so that forward searches become a threat.

This attack is similar to attacks to derive the cryptographic key of symmetric
ciphers based on chosen plaintext (see, for example, Hellman’s time-memory
tradeoff attack [899]). However, Simmons’ attack is for public key
cryptosystems and does not reveal the private key. It only reveals the
plaintext message.

12.1.2 Misordered Blocks

Denning [535] points out that in certain cases, parts of a ciphertext message
can be deleted, replayed, or reordered.

EXAMPLE: Consider RSA. As in the example on page 270, take p = 181 and q
= 1451. Then n = 262631 and ø(n) = 261000. Bob chooses e = 45593, so his
private key d = 235457. In this cryptosystem, each plaintext character is
represented by a number from 00 (“A”) to 25 (“Z”), and the message
characters are in groups of three.



Alice wants to send Bob the message “TOM NOT ANN” (191412 131419
001313). She enciphers this message using his public key, obtaining 193459
029062 081227, and sends the message. Cathy intercepts it and rearranges
the ciphertext: 081227 029062 193459. When Bob receives it, he deciphers
the message and obtains “ANN NOT TOM”, the opposite of what Alice sent.

Even if Alice digitally signed each part, Bob could not detect this attack. The
problem is that the parts are not bound to one another. Because each part is
independent, there is no way to tell when one part is replaced or added, or
when parts are rearranged.

One solution is to generate a cryptographic checksum of the entire message
(see Section 10.4) and sign that value. A second solution is to include a
sequence number in each block before encrypting it.

12.1.3 Statistical Regularities

The independence of parts of ciphertext can give information relating to the
structure of the enciphered message, even if the message itself is
unintelligible. The regularity arises when each part is enciphered separately,
such that the same plaintext always produces the same ciphertext. This type
of encipherment is called code book mode or electronic code book mode
(ECB), because each part is effectively looked up in a list of plaintext-
ciphertext pairs. For example, if the word “INCOME” is enciphered as one
block, all occurrences of the word produce the same ciphertext:

EXAMPLE: Consider a banking database with two records:

MEMBER: HOLLY INCOME $100,000
MEMBER: HEIDI INCOME $100,000

Suppose the encipherment of this data under a block cipher is

ABCQZRME GHQMRSIB CTXUVYSS RMGRPFQN



ABCQZRME ORMPABRZ CTXUVYSS RMGRPFQN

If an attacker determines who these records refer to, and that “CTXUVYSS” is
the encipherment of the “INCOME” keyword, he will know that Holly and
Heidi have the same income.

Figure 12–3 on page 329 shows the regularity when an image is enciphered.

12.1.4 Type Flaw Attacks

A type flaw attack occurs when an attacker exploits the assumption that
components of messages have a particular meaning. As an example, consider
the Otway-Rees protocol described in section 11.2.1. Assume an adversary
Ichabod can intercept messages for the trusted third party Cathy. In the
following, the messages to and from Ichabod apopear to Bob to be to and
from Cathy.

1. Alice → Bob : num || Alice || Bob || {rand1 || num || Alice || Bob}kAlice

2. Bob → Ichabod : num || Alice || Bob || {rand1 || num || Alice || Bob}kAlice
|| {rand2 || num || Alice || Bob}kBob

3. Ichabod → Bob : num{rand1 || num || Alice || Bob}kAlice || {rand2 || num
|| Alice || Bob}kBob

4. Bob → Alice : num || {rand1 || num || Alice || Bob}kAlice

In step 3, Bob expects a message in which the two encrypted parts consist of a
nonce followed by a session key. But Ichabod simply replays the message he
received from Bob, who interprets the part following the nonce rand2 as the
session key. He then sends the first encrypted part to Alice, who makes the
same assumption. But Alice and Bob’s assumptions are incorrect. So now
Alice and Bob communicate using the shared secret key num || Alice || Bob —
which Ichabod knows [284, 1212].



In practice, many of these attacks can be foiled by tagging components of
cryptographic messages with the type of the entity or entities being sent
[890]. Meadows [1318] has pointed out that under certain conditions it is
possible to confuse the tag with data. Li and Wang [1181] examine the
underlying reasons that a protocol is vulnerable to this attack.

12.1.5 Summary

Despite the use of sophisticated cryptosystems and random keys, cipher
systems may provide inadequate security if not used carefully. The protocols
directing how these cipher systems are used, and the ancillary information
that the protocols add to messages and sessions, overcome these problems.
This emphasizes that ciphers and codes are not enough. The methods, or
protocols, for their use also affect the security of systems.

12.2 Stream and Block Ciphers

Some ciphers divide a message into a sequence of parts, or blocks, and
encipher each block with the same key.

Definition 12–1. Let E be an encryption algorithm, and let Ek(b) be the
encryption of message b with key k. Let a message m = b1b2 . . ., where each bi
is of a fixed length. Then a block cipher is a cipher for which Ek(m) =
Ek(b1)Ek(b2) . . ..

EXAMPLE: The AES is a block cipher. It breaks the message into 128-bit
blocks and uses the same key to encipher each block.

Other ciphers use a non-repeating stream of key elements to encipher
characters of a message.

Definition 12–2. Let E be an encryption algorithm, and let Ek(b) be the
encryption of message b with key k. Let a message m = b1b2 . . ., where each bi
is of a fixed length, and let k = k1k2 . . . be the bits in k. Then a stream cipher



is a cipher for which Ek(m) = Ek1(b1)Ek2(b2) . . ..

If the key stream k of a stream cipher repeats itself, it is a periodic cipher.

EXAMPLE: The Vigenère cipher (see Section 10.2.2.1) is a stream cipher.
Take bi to be a character of the message and ki to be a character of the key.
This cipher is periodic, because the key is of finite length, and should the key
be shorter than the message, the key is repeated.

The one-time pad (see Section 10.2.2.2) is also a stream cipher but is not
periodic, because the key stream never repeats.

12.2.1 Stream Ciphers

The one-time pad is a cipher that can be proven secure (see Section 10.2.2.2,
“One-Time Pad”). Bit-oriented ciphers implement the one-time pad by
exclusive-or’ing each bit of the key with one bit of the message. For example,
if the message is 00101 and the key is 10010, the ciphertext is 0 ⊕ 1 || 0 ⊕ 0 ||
1 ⊕ 0 || 0 ⊕ 1 || 1 ⊕ 0 or 10111. But how can one generate a random, infinitely
long key?

12.2.1.1 Synchronous Stream Ciphers

To simulate a random, infinitely long key, synchronous stream ciphers
generate bits from a source other than the message itself. The simplest such
cipher extracts bits from a register to use as the key. The contents of the
register change on the basis of the current contents of the register.

Definition 12–3. An n-stage linear feedback shift register (LFSR) consists
of an n-bit register r = r0 . . . rn–1 and an n-bit tap sequence t = t0 . . . tn–1. To
obtain a key bit, rn–1 is used, the register is shifted one bit to the right, and the
new bit r0t0 ⊕ . . . ⊕ rn–1tn–1 is inserted.

EXAMPLE: Let the tap sequence for a four-stage LFSR be 1001, and let the
initial value of the register be 0010. The key bits extracted, and the values in



the register, are

and the cycle repeats. The key stream that this LFSR produces has a period of
15 and is 010001111010110.

The LFSR method is an attempt to simulate a one-time pad by generating a
long key sequence from a little information. As with any such attempt, if the
key is shorter than the message, breaking part of the ciphertext gives the
cryptanalyst information about other parts of the ciphertext. For an LFSR, a
known plaintext attack can reveal parts of the key sequence. If the known
plaintext is of length 2n, the tap sequence for an n-stage LFSR can be
determined completely.

Nonlinear feedback shift registers do not use tap sequences; instead, the new
bit is a function of the current register bits.

Definition 12–4. An n-stage nonlinear feedback shift register (NLFSR)
consists of an n-bit register r = r0 . . . rn–1. To obtain a key bit, rn–1 is used, the
register is shifted one bit to the right, and the new bit is set to f(r0, . . . , rn–1),



where f is any function of n inputs.

EXAMPLE: Let the function f for a four-stage NLFSR be f(r0, r1, r2, r3) = (r0

and r2) or r3, and let the initial value of the register be 1100. The key bits
extracted, and the values in the register, are

and the cycle repeats. The key stream that this NLFSR produces has a period
of 4 (with an initial non-repeating sequence of length 4) and is

(the overstruck part repeats indefinitely).

NLFSRs are not common because there is no body of theory about how to
build NLFSRs with long periods. By contrast, it is known how to design n-
stage LFSRs with a period of 2n – 1, and that period is maximal.

A second technique for eliminating linearity is called output feedback mode.
Let E be an encryption function. Define k as a cryptographic key, and define r
as a register. To obtain a bit for the key, compute Ek(r) and put that value into
the register. The rightmost bit of the result is exclusive-or’ed with one bit of
the message. The process is repeated until the message is enciphered. The key
k and the initial value in r are the keys for this method. This method differs
from the NLFSR in that the register is never shifted. It is repeatedly
enciphered.



A variant of output feedback mode is called the counter method. Instead of
using a register r, simply use a counter that is incremented or otherwise
transformed for every encipherment, so that the value of the counter is
unique for each encryption. The initial value of the counter replaces r as part
of the key. This method enables one to generate the ith bit of the key without
generating the bits 0, . . . , i – 1. If the initial counter value is i0 and the value
is incremented for each encryption, set the register to i + i0. By way of
contrast, in output feedback mode, one must generate all the preceding key
bits.

12.2.1.2 Self-Synchronous Stream Ciphers

Self-synchronous ciphers obtain the key from the message itself. The simplest
self-synchronous cipher is called an autokey cipher and uses the message
itself for the key.

EXAMPLE: The following is an autokey version of the Vigenère cipher, with
the key drawn from the plaintext.

key                XTHEBOYHASTHEBA

plaintext        THEBOYHASTHEBAG

ciphertext     QALFPNFHSLALFCT

Contrast this with the example on page 258. The key there is “VIG”, and the
resulting ciphertext contains a three-character repetition.

The problem with this cipher is the selection of the key. Unlike a one-time
pad, any statistical regularities in the plaintext show up in the key. For
example, the last two letters of the ciphertext associated with the plaintext
word “THE” are always “AL”, because “H” is enciphered with the key letter
“T” and “E” is enciphered with the key letter “H”. Furthermore, if the analyst
can guess any letter of the plaintext, she can determine all successive
plaintext letters.



An alternative is to use the ciphertext as the key stream. A good cipher will
produce pseudorandom ciphertext, which approximates a random one-time
pad better than a message with nonrandom characteristics (such as a
meaningful English sentence).

EXAMPLE: The following is an autokey version of the Vigenère cipher, with
the key drawn from the ciphertext.

Figure 12–1: Diagram of cipher feedback mode. The register r is
enciphered with key k and algorithm E. The rightmost bit of the
result is exclusive-or’ed with one bit of the plaintext mi to produce
the ciphertext bit ci. The register r is right shifted one bit, and ci is
fed back into the leftmost bit of r.

key                XQXBCQOVVNGNRTT

plaintext        THEBOYHASTHECAT

ciphertext     QXBCQOVVNGNRTTM

This eliminates the repetition (“ALF”) in the preceding example.

This type of autokey cipher is weak, because plaintext can be deduced from
the ciphertext. For example, consider the first two characters of the
ciphertext, “QX”. The “X” is the ciphertext resulting from enciphering some
letter with the key “Q”. Deciphering, the unknown letter is “H”. Continuing in
this fashion, the analyst can reconstruct all of the plaintext except for the first
letter.



A variant of the autokey method, cipher feedback mode, uses a shift register.
Let E be an encipherment function. Define k as a cryptographic key and r as a
register. To obtain a bit for the key, compute Ek(r). The rightmost bit of the
result is exclusive-or’ed with one bit of the message, and the other bits of the
result are discarded. The resulting ciphertext is fed back into the leftmost bit
of the register, which is right shifted one bit. (See Figure 12–1.)

Cipher feedback mode has a self-healing property. If a bit is corrupted in
transmission of the ciphertext, the next n bits will be deciphered incorrectly.
But after n uncorrupted bits have been received, the shift register will be
reinitialized to the value used for encipherment and the ciphertext will
decipher properly from that point on.

As in the counter method, one can decipher parts of messages enciphered in
cipher feedback mode without deciphering the entire message. Let the shift
register contain n bits. The analyst obtains the previous n bits of ciphertext.
This is the value in the shift register before the bit under consideration was
enciphered. The decipherment can then continue from that bit on.

12.2.2 Block Ciphers

Block ciphers encipher and decipher multiple bits at once using the same key.
Errors in transmitting one block generally do not affect other blocks, but as
each block is enciphered independently, using the same key, identical
plaintext blocks produce identical ciphertext blocks. This allows the analyst to
search for data by determining what the encipherment of a specific plaintext
block is.



Figure 12–2: Cipher block chaining mode. The left diagram shows
encipherment; each ciphertext is “fed back” into the cipher
stream. The right diagram shows decipherment.

To prevent this type of attack, some information related to the block’s
position is inserted into the plaintext block before it is enciphered. The
information can be bits from the preceding ciphertext block [661] or a
sequence number [1044]. The disadvantage is that the effective block size is
reduced, because fewer message bits are present in a block.

Cipher block chaining does not require the extra information to occupy bit
spaces, so every bit in the block is part of the message. The CBC mode is an
iterative mode in which a block of ciphertext depends not only on its input
but also on the preceding ciphertext block. In addition to a key, it requires an
initialization vector. Before a plaintext block is enciphered, that block is
exclusive-or’ed with the preceding ciphertext block. In addition to the key,
this technique requires an initialization vector with which to exclusive-or the
initial plaintext block. Taking Ek to be the encipherment algorithm with key k,
and I to be the initialization vector, the cipher block chaining technique is

Figure 12–2 shows this mode, and Figure 12–3 visually compares the effect of
enciphering an image without and with cipher block chaining.

CBC mode has the self-healing property. This property says that if one block



of ciphertext is altered, the error propagates for at most two blocks. Figure
12–4 shows how a corrupted block affects others.

12.2.2.1 Multiple Encryption

Other approaches involve multiple encryption. Using two keys k and k′ of
length n to encipher a message as c = Ek′ (Ek(m)) looks attractive because it
has an effective key length of 2n, whereas the keys to E are of length n.
However, Merkle and Hellman [1332] have shown that this encryption
technique can be broken using 2n+1 encryptions, rather than the expected 22n

(see Exercise 3).

Using three encryptions improves the strength of the cipher. There are
several ways to do this. Tuchman [1914] suggested using two keys k and k′:

Figure 12–3: The middle image is the top image encrypted using
AES-128 in ECB mode. The bottom image is the top image
encrypted using AES-128 in CBC mode. CBC mode combines the
previous ciphertext block with the current plaintext block and
encrypts the result obscuring the regularity in the top image.



Figure 12–4: Example of the self-healing property. The ciphertext
at the top was stored incorrectly (the underlined “4c” should be
“4b”). Its decipherment is shown next, with the incorrect octets
underlined. The plaintext enciphered with the DES to create the
ciphertext is shown at the bottom.

This mode, called two-key Triple DES or Encrypt-Decypt-Encrypt (EDE)
mode, collapses to a single encryption when k = k′. The DES in EDE mode is
not vulnerable to the attack outlined earlier. However, it is vulnerable to a
chosen plaintext and a known plaintext attack. If b is the block size in bits,
and n is the key length, the chosen plaintext attack takes

space, and requires 2n chosen plaintexts [1332]. The known plaintext attack
requires p known plaintexts, and takes

time and

memory [1935]. Two-key Triple DES was widely used in the financial
community, but it is no longer approved for use in the U.S. government [126].

Another way is to use three independent keys, so the third key is different
than the first key. This version is called three-key Triple DES. Breaking this
using a chosen plaintext attack using p plaintexts requires

time and



memory [1222]. This also holds if the middle decryption is turned into an
encryption.

12.3 Authenticated Encryption

Authenticated encryption [776,781,1610] transforms a message in such a way
that confidentiality, integrity, and authentication are simultaneously
provided. A variant, authenticated encryption with associated data (AEAD),
also provides integrity and authentication for an unencrypted portion of the
message. This is useful when the message has a header that must be cleartext
because it contains information necessary to forward or decrypt the
encrypted part of the message, and validate the entire message. Two
examples of this type of encryption are Counter with CBC-MAC (CCM) mode
and Galois Counter Mode (GCM). In both cases, the message consists of two
parts: the part to be encrypted and authenticated (called the message) and
the part to be authenticated but not encrypted (called the associated data).
Either may be omitted, in which case they are treated as having length 0.

12.3.1 Counter with CBC-MAC Mode

Counter with CBC-MAC Mode (CCM) [2013] is an example of AEAD defined
for block ciphers with block size 128 bits such as the AES. Each block is made
up of 16 octets (sets of 8 bits).

It has two parameters. lA is the size of the authentication field, and may be
any of 4, 6, 8, 10, 12, 14, or 16 octets. lM is the size of the message length, and
may take up between 2 and 8 octets inclusive. In addition, it requires a nonce
of 15 – lM octets.

Let k be the key, n a nonce, M the message, and A the additional data that is
to be authenticated but not encrypted. The mode proceeds in three phases.

Phase 1 is the computation of the authentication field T . The procedure



prepends a set of blocks Bi to the message. The first block, B0, contains
information about the cipher.

• Octet 0 contains flags. Bits 0 through 2 contain lM – 1; bits 3 through 5
contain

; bit 6 contains 1 if there is associated data and 0 if not; and bit 7 is reserved,
and always 0.

• Octets 1 . . . 15 – lM contain the nonce n

• Octets 16 – lM . . . 15 contain the length of the message in octets

When there is associated data, the next octets contain information about its
length lA. The number of octets needed depends on lA as follows. The value of
lA is stored with the most significant byte first.

• If 0 < la < 216 – 28, the first 2 octets contain lA.

• If 216 – 28 ≤ lA < 232, the first octet is 0xff, the second is 0xfe, and the next
four octets contain lA.

• If 232 ≤ lA < 264, the first and second octets are both 0xff, and the other 6
octets contain lA

Block B0 and these octets are prepended to the associated data A, and the
result is split into 16-octet blocks, padding the last block with zeros if needed.
Then the message is split into blocks, with padding of zeros added to the last
block if needed, and the result appended to the previous part. This results in a
sequence of blocks B0, . . . , Bm.

The CBC-MAC is computed from these blocks:



The MAC T is then the first lA bytes of xm+1.

Phase 2 is encryption. The message is encrypted using counter mode. Let b0
be a block with the following content:

• Octet 0 contains flags. Bits 0 through 2 contain lM – 1 and all other bits are
0.

• Octets 1 . . . 15 – lM contain the nonce n

• Octets 16 – lM . . . 15 contain the ith counter’s value

Then the key blocks Si are computed by:

Let the message M be composed of z blocks M1 . . . Mz. To encrypt the
message, compute

Note that S0 is not used to encrypt the message. Instead, let sA be the first lA
bytes of S0. The authentication value U is then computed as:

In phase 3, the sender constructs C = C1 . . . Cz, and then sends C || U.

Decryption and validation is carried out by reversing the process.

An important requirement of the use of CCM is what to do should validation
fail. In that case, the recipient must reveal only that the computed T is
incorrect, and not anything more. In particular the recipient must not reveal
the incorrect value of T or any part of the decrypted message.

Jonsson has shown that the security and privacy CCM provides are similar to
that of other modes [981]; Fouque et al. have extended those results [714].
Bellare, Rogaway, and Wagner point out several limitations of CCM mode



[160], among them CCM needing the length of both the message and the
associated data before it can encrypt, and that the nonce length may not
provide adequate security when nonces are chosen randomly. They propose
an alternate mode, EAX, that solves these problems [160].

12.3.2 Galois Counter Mode

The Galois Counter Mode (GCM) [607, 1271, 1296, 1946] is a widely used
method of AEAD that can be implemented efficiently in hardware, enabling
its use when encrypted data is to be exchanged at high speeds. Further, if an
encrypted authenticated message is changed, a new authentication value can
be computed with cost proportional to the number of changed bits. It also
allows the use of an initialization vector (called a “nonce”) of any length.

To provide authenticated encryption, GCM has four parameters. A secret key
k is used by the underlying block cipher. A nonce IV may be up to 264 bits
long; for efficiency reasons, 96 bits are recommended. The plaintext message
M may be up to 239 – 256 bits long; the ciphertext C will have the same
number of bits. The associated data A may be up to 264 bits long. The
authentication value is T , and it is t bits long.

Figure 12–5: Multiplication in the field GF (2128). Here, Yi is the ith
leftmost bit, and V127 is the leftmost bit of V. All of X, Y, and Z are



128-bit numbers. The distinguished value R is 11100001 followed
by 120 zero bits, and rightshift(X, n) shifts the bits making up X n
bits to the right, bringing in 0 bits from the left. Adapted from
[1296].

In what follows, the message M is composed of 128-bit blocks M0 . . . Mn,
where Mn may not be a complete block; call its length in bits u (that is, 0 < u
≤ 128). The ciphertext C is similarly composed of 128-bit blocks C0 . . . Cn,
and the number of bits matches the number of bits in M. Similarly, the
associated data A is composed of 128-bit blocks A0 . . . Am, where Am may not
be a complete block; call its length in bits v (that is, 0 < v ≤ 128).

For this mode, multiplication (written X · Y) is performed in the field GF
(2128). Figure 12–5 shows the algorithm.

First, we show the hash function GHASH(H, A, C). It is computed iteratively,
as shown below, and Xm+n+1 is its value.

1. X0 = 0;

2. For i = 1, . . . , m – 1, Xi = (Xi–1 ⊕ Ai) · H;

3. Xm = (Xm–1 ⊕ Am) · H, where Am is right-padded with zeroes to make it a
block;

4. For i = m + 1, . . . , m + n – 1, Xi = (Xi–1 ⊕ Ci) · H;

5. Xm+n = (Xm+n–1 ⊕ Cn) · H, where Cn is right-padded with zeroes to make it a
block;

6. Xm+n+1 = (Xm+n ⊕ (lA||lC)) · H, where lA and lC are the lengths of the
associated data and ciphertext in bits, respectively, left-padded with zeroes to
form 64 bits each.

To perform the authenticated encryption, the following steps are performed



in the order indicated.

1. H = Ek(0128), where 0128 is the block with all bits 0.

2. If the length of the IV is 96, set Y0 = IV ||0311, where 0311 is 31 0 bits
followed by a 1 bit. Otherwise, set Y0 = GHASH(H, v, IV), where v is empty
(length 0 bits).

3. For i = 1, . . . , n, divide Yi–1 into two parts, a right part Ii–1 and a left part
Li–1. Ii–1 is the rightmost 32 bits, and it is are treated as an unsigned 32-bit
integer. Compute Ii = Ii–1 + 1 mod 232, and set Yi = Li–1||Ii.

4. For i = 1, . . . , n – 1, Ci = Mi ⊕ Ek(Yi)

5. Let MSBu(X) be the u most significant bits (leftmost bits) of X. Then Cn =
Mn ⊕ MSBu(Ek(Yn)).

6. The authentication value T = MSBt(GHASH(H, A, C) ⊕ Ek(Y0)). This is
sometimes called the GMAC.

The tag and ciphertext are then sent.

To verify the message, the receiver performs the same operations as
encryption, but in the order 1, 2, 6, 3, 4, and 5. When the authentication value
is computed (step 6 in the encryption, 3 here), it is then compared to the one
that was sent. If they match, the ciphertext is then decrypted; otherwise, the
system returns a failure and the ciphertext is discarded.

The security of GCM depends on certain properties. If the nonce is reused,
part of H can be obtained [987]. If the length of the authentication value is
too short, forgeries can occur and from that, H can be determined [669],
enabling undetectable forgeries. A number of researchers have studied
whether particular values of H (called “weak keys”) make forging messages
easier than when non-weak values of H are used [867, 1554, 1640, 2060].



Both GCM encryption and authentication have been proven to be secure
[959,1297]. An ancillary result is that restricting the length of the nonce to 96
bits produces a stronger AEAD cipher than when the length of the nonce is
unrestricted.

12.4 Networks and Cryptography

Before we discuss Internet protocols, a review of the relevant properties of
networks is in order. The ISO/OSI model [1870] provides an abstract
representation of networks suitable for our purposes. Recall that the ISO/OSI
model is composed of a series of layers (see Figure 12–6). Each host,
conceptually, has a principal at each layer that communicates with a peer on
other hosts. These principals communicate with principals at the same layer
on other hosts. Layer 1, 2, and 3 principals interact only with similar
principals at neighboring (directly connected) hosts. Principals at layers 4, 5,
6, and 7 interact only with similar principals at the other end of the
communication. (For convenience, “host” refers to the appropriate principal
in the following discussion.)

Each host in the network is connected to some set of other hosts. They
exchange messages with those hosts. If host nob wants to send a message to
host windsor, nob determines which of its immediate neighbors is closest to
windsor (using an appropriate routing protocol) and forwards the message to
it. That host, baton, determines which of its neighbors is closest to windsor
and forwards the message to it. This process continues until a host, sunapee,
receives the message and determines that windsor is an immediate neighbor.
The message is forwarded to windsor, its endpoint.



Figure 12–6: The ISO/OSI model. The dashed arrows indicate
peer-to-peer communication. For example, the transport layers
are communicating with each other. The solid arrows indicate the
actual flow of bits. For example, the transport layer invokes
network layer routines on the local host, which invoke data link
layer routines, which put the bits onto the network. The physical
layer passes the bits to the next “hop,” or host, on the path. When
the message reaches the destination, it is passed up to the
appropriate level.

Definition 12–5. Let hosts C0, . . . , Cn be such that Ci and Ci+1 are directly
connected, for 0 ≤ i < n. A communications protocol that has C0 and Cn as its
endpoints is called an end-to-end protocol. A communications protocol that
has Cj and Cj+1 as its endpoints is called a link protocol.

The difference between an end-to-end protocol and a link protocol is that the
intermediate hosts play no part in an end-to-end protocol other than
forwarding messages. On the other hand, a link protocol describes how each
pair of intermediate hosts processes each message.



EXAMPLE: The ssh protocol [2071, 2072] is an applications layer protocol
that allows users to obtain a virtual terminal on a remote host. Thus, it is an
end-to-end protocol. IP is a network layer protocol that guides messages from
a host to one of its immediate neighbors. Thus, it is a link protocol.

The protocols involved can be cryptographic protocols. If the cryptographic
processing is done only at the source and at the destination, the protocol is an
end-to-end protocol. If cryptographic processing occurs at each host along
the path from source to destination, the protocol is a link protocol. When
encryption is used with either protocol, we use the terms end-to-end
encryption and link encryption, respectively.

EXAMPLE: The messages between the ssh client and server are enciphered at
the client and the server only [2072]. The protocol uses end-to-end
encryption. The PPP Encryption Control Protocol [1335] enciphers messages
between intermediate hosts. When a host gets the message, it deciphers the
message, determines which neighbor to send it to, reenciphers the message
using the key appropriate for that neighbor, and sends it to that neighbor.
This protocol uses link encryption.

In link encryption, each host shares a cryptographic key with its neighbor. (If
public key cryptography is used, each host has its neighbor’s public key. Link
encryption based on public keys is rare.) The keys may be set on a per-host
basis or a per-host-pair basis. Consider a network with four hosts called
windsor, stripe, facer, and seaview. Each host is directly connected to the
other three. With keys distributed on a per-host basis, each host has its own
key, making four keys in all. Each host has the keys for the other three
neighbors, as well as its own. All hosts use the same key to communicate with
windsor. With keys distributed on a per-host-pair basis, each host has one
key per possible connection, making six keys in all. Unlike the per-host
situation, in the per-host-pair case, each host uses a different key to
communicate with windsor. The message is deciphered at each intermediate
host, reenciphered for the next hop, and forwarded. Attackers monitoring the



network medium will not be able to read the messages, but attackers at the
intermediate hosts will be able to do so.

In end-to-end encryption, each host shares a cryptographic key with each
destination. (Again, if the encryption is based on public key cryptography,
each host has—or can obtain— the public key of each destination.) As with
link encryption, the keys may be selected on a per-host or per-host-pair basis.
The sending host enciphers the message and forwards it to the first
intermediate host. The intermediate host forwards it to the next host, and the
process continues until the message reaches its destination. The destination
host then deciphers it. The message is enciphered throughout its journey.
Neither attackers monitoring the network nor attackers on the intermediate
hosts can read the message. However, attackers can read the routing
information used to forward the message.

These differences affect a form of cryptanalysis known as traffic analysis. A
cryptanalyst can sometimes deduce information not from the content of the
message but from the sender and recipient. For example, during the Allied
invasion of Normandy in World War II, the Germans deduced which vessels
were the command ships by observing which ships were sending and
receiving the most signals. The content of the signals was not relevant; their
source and destination were. Similar deductions can reveal information in the
electronic world.

EXAMPLE: ARS&C is an engineering firm developing the next generation of
network protocols. Each employee of ARS&C has his or her own workstation.
All network traffic is enciphered using end-to-end encryption. A competitor
of the company appears to be obtaining proprietary data. ARS&C has hired
Alice to figure out who is leaking the information.

Alice begins by monitoring all network traffic. She notices that the
workstations are grouped into three different divisions: corporate
management, sales, and engineering. The leaks are coming from the



engineering systems. She looks at the sources and destinations of all
connections to and from the engineering systems and notices that the
connections from corporate management center on three systems: curly,
larry, and moe. The connections from larry always occur between midnight
and four in the morning; those from the other two occur during the day. Alice
then looks at the events of the days on which the connections take place. The
connections from curly and moe occur on the days of management reviews
and are invariably to the ftp or www port. The connections from larry are
more infrequent and are to the telnet port. A few days after each connection
from larry, the competitor seems to have acquired new proprietary
information.

Figure 12–7: Message handling system. The user composes mail on
the UA (user agent). When she sends it, the message is passed to
the MTA (message transport, or transfer, agent). The MTA passes
the message to other MTAs, until it reaches the MTA associated
with the destination host. That host transfers it to the appropriate
UA for delivery.

From this analysis, Alice suggests that the host larry is somehow involved in
the problem. She needs to check the systems that larry connects to and see if
the proprietary data is on those systems. At no time has Alice read any of the
traffic, because it is encrypted; but from the traffic analysis, she has
determined the system involved in the compromise.

12.5 Example Protocols



Several Internet protocols illustrate different facets of cryptographic
techniques. This section examines three such protocols, each at a different
layer. PEM is a privacy-enhanced electronic mail protocol at the applications
layer and demonstrates the considerations needed when designing such a
protocol. Its techniques are similar to those of PGP, a widely used security-
enhanced electronic mail protocol. The instant messaging protocol Signal
provides security for real-time communications. TLS provides transport layer
security. Application layer protocols such as HTTP can use TLS to ensure
secure connections. IPsec provides security mechanisms at the network, or
IP, layer.

12.5.1 Secure Electronic Mail: PEM and OpenPGP

Electronic mail is a widely used mechanism for communication over the
Internet. It is also a good example of how practical considerations affect the
design of security-related protocols. We begin by describing the state of
electronic mail and then show how security services can be added.

Figure 12–7 shows a typical network mail service. The user agent (UA)
interacts directly with the sender. When the message is composed, the UA
hands it to the message transport, or transfer, agent (MTA). The MTA
transfers the message to its destination host, or to another MTA, which in
turn transfers the message further. At the destination host, the MTA invokes
a user agent to deliver the message.

An attacker can read electronic mail at any of the computers on which MTAs
handling the message reside, as well as on the network itself. An attacker
could also modify the message without the recipient detecting the change.
Because authentication mechanisms are minimal and easily evaded, a sender
could forge a letter from another and inject it into the message handling
system at any MTA, from which it would be forwarded to the destination.
Finally, a sender could deny having sent a letter, and the recipient could not
prove otherwise to a disinterested party. These four types of attacks (violation
of confidentiality, authentication, message integrity, and nonrepudiation)



make electronic mail nonsecure.

In 1985, the Internet Research Task Force on Privacy (also called the Privacy
Research Group) began studying the problem of enhancing the privacy of
electronic mail. The goal of this study was to develop electronic mail
protocols that would provide the following services:

1. Confidentiality, by making the message unreadable except to the sender
and recipient(s);

2. Origin authentication, by identifying the sender precisely;

3. Data integrity, by ensuring that any changes in the message are easy to
detect; and

4. Nonrepudiation of origin (if possible).

The protocols were christened Privacy-enhanced Electronic Mail (or PEM).

A second protocol, called Pretty Good Privacy (PGP), provides similar
features. Because the design of PEM is well-documented and illustrates many
of the considerations that influenced PGP, we begin with PEM and then
discuss a widely used version of PGP, called OpenPGP.

12.5.1.1 Design Principles

Creating a viable protocol requires the developers to consider several design
aspects. Otherwise, acceptance and use of the protocol will be very limited.

Related protocols should not be changed. A protocol is designed to provide
specific services (in this case, the privacy enhancements discussed in the
preceding section). It should not require alteration of other protocols (such as
those that transmit electronic mail). The Privacy Research Group developed
new protocols rather than modifying the mail transfer protocols. This also
requires development of new software rather than modification of existing



software to implement the protocol (although existing software can be
modified to support it).

A corollary is compatibility. A general protocol (such as PEM) must be
compatible with as many other protocols and programs as possible. The
protocols must work with a wide range of software, including software in all
environments that connect to the Internet.

Another important principle is independence. The privacy enhancements
should be available if desired but should not be mandatory. If a new protocol
provides specific services, the user should be able to use the services desired,
which may (or may not) be all the ones that the protocol provides. For
example, a sender might care about sender authentication but not
confidentiality. This also enables some users to send privacy-enhanced
electronic mail, and others to send unprotected electronic mail, on the same
system. Recipients can also read either type of mail.

Finally, two parties should be able to use the protocol to communicate
without prearrangement. Arranging a communications key out of band (such
as in person or over the telephone) can be time-consuming and prone to
error. Furthermore, callers must authenticate themselves to the recipients.
This is difficult and is another error-prone operation.

To summarize, the design goals of PEM were:

1. Not to redesign existing mail system or protocols;

2. To be compatible with a range of MTAs, UAs, and other computers;

3. To make privacy enhancements available separately, so they are not
required; and

4. To enable two parties to use the protocol to communicate without
prearrangement.



12.5.1.2 Basic Design

PEM defines two types of keys. The message to be sent is enciphered with a
data encipherment key (DEK), corresponding to a session key. This key is
generated randomly and is used only once. It must be sent to the recipient, so
it is enciphered with an interchange key. The interchange keys of the sender
and recipient must be obtained in some way other than through the message.

This requires several assumptions. First, the interchange key must be
available to the respective parties. If symmetric ciphers are used, the keys
must be exchanged out of bands— for example, by telephone or courier. If
public keys are used, the sender needs to obtain the certificate of the
recipient.

If Alice wants to send a confidential message to Bob, she obtains Bob’s
interchange key kBob. She generates a random DEK ksession and enciphers the
message m. She then enciphers the DEK using the interchange key. She sends
both to Bob.

Bob can then decipher the session key and from it obtain the message.

If Alice wants to send an authenticated, integrity-checked message to Bob,
she first computes a cryptographic hash h(m) of the message, possibly using a
random session key (if the hash function requires one). The value that the
hash function computes is called a message integrity check (MIC). She then
enciphers the MIC (and the session key, if one was used) with her interchange
key kAlice and sends it to Bob:

Bob uses Alice’s interchange key to decipher the MIC, recomputes it from m,
and compares the two. If they do not match, either the message or the value
of the hash has been changed. In either case, the message cannot be trusted.



To send an enciphered, authenticated, integrity-checked message, combine
the operations discussed above, as follows.

The nonrepudiation service comes from the use of public key cryptography. If
Alice’s interchange key is her private key, a third party can verify that she
signed the message by deciphering it with her public key. Alice cannot refute
that her private key was used to sign the message. (She can dispute that she
signed it by claiming her private key was compromised. Preventing this is
beyond the scope of the cryptographic protocols. In this context,
“nonrepudiation” refers only to the inability to deny that the private key was
used to sign the message.)

12.5.1.3 Other Considerations

When the interchange keys are for public key cryptosystems, PEM suggests
the use of a certificate-based key management scheme (see Section 15.5,
“Naming and Certificates”). However, it is not a requirement.

When PEM was designed, a major problem was the specification of Internet
electronic mail [479,1545]. Among the restrictions placed on it, the
requirements that the letter contain only ASCII characters and that the lines
be of limited length were the most onerous. Related to this is the difference
among character sets. A letter typed on an ASCII-based system would be
unreadable on a non-ASCII-based system.

A three-step encoding procedure overcame these problems.

1. The local representations of the characters making up the letter were
changed into a canonical format. This format satisfied the requirements of
RFC 822-compliant mailers (specifically, all characters were seven-bit ASCII
characters, lines were less than 1,000 characters long, and lines ended with a
carriage return followed by a newline1 [479]).



1The dot stuffing convention (so that a line containing a single “.” was not
seen as a message terminator) was not used (see Section 4.3.2.2 of RFC 1421
[1196]).

2. The message integrity check was computed and enciphered with the
sender’s interchange key. If confidentiality were required, the message would
be enciphered as described above.

3. The message was treated as a stream of bits. Every set of six bits was
mapped into a character, and after every 64 characters,2 a newline was
inserted.

2The character set is drawn from parts of the international alphabet IA5
common to most other alphabets.

The resulting ASCII message had PEM headers (indicating algorithms and
key) prepended. PEM headers and body were surrounded by lines indicating
the start and end of the PEM message.

If the recipient had PEM-compliant software, she could read the message.
Otherwise, she could not. If the message were authenticated and integrity-
checked (but not encrypted), she should be able to read the message even if
she did not have PEM-compliant software (remember that one of the design
goals was compatibility with existing mail programs).

Table 12–1: Comparison of ciphers used by PEM and OpenPGP.
Both are extensible, so other ciphers can be added.

The special mode MIC-CLEAR handled this case. In this mode, the message



check was computed and added, but the message was not transformed into
the representation of step 3. On receipt, the authentication and message
integrity check might have failed because some MTAs added blank lines,
changed the end-of-line character, or deleted terminating white space from
lines. Although this did not alter the meaning of the message, it did change
the content. Hence, PEM-compliant software would report that the message
had been altered in transit. But people could use normal mail reading
programs to read the letter. (Whether they should trust it was another matter.
Given that the PEM software had reported changes, the recipients should
have at least verify the contents in some way before trusting the letter.)

12.5.1.4 OpenPGP and PEM

Philip Zimmermann developed PGP independently of the development of
PEM. A variant of PGP, called OpenPGP [342], was subsequently developed
as a proposed Internet standard.

The structure of a PGP message is a sequence of packets of message
characteristics, such as keying material and signatures, and the message
itself. The message is stored in a literal data packet, and the first byte
indicates whether the data is binary or text. That is followed by the file name,
a date, and then the message itself. An end of line in a text message is stored
as a carriage return followed by a newline; these are translated to the local
form when the message is processed.

For reasons stated earlier, the user may request that messages be “armored”
or sent as ASCII text; this is common when the message contains binary data.
The data is translated into a canonical form, and appropriate OpenPGP
headers (such as a version line) are prepended. A checksum (represented in
the canonical form) and a trailing line are added.

The supported ciphers are also different, as Table 12–1 shows. There are two
reasons. Initially, the developers of PGP wanted an alternative to the DES
cipher, so they included IDEA. Later, PGP became very widely used, and the



OpenPGP standard was developed. It continues to evolve. PEM, however, was
not widely used, and hence it has not been updated since 1993. Thus, it lacks
many of the later ciphers that OpenPGP includes.

Finally, PGP uses a different, nonhierarchical certificate management scheme
described in Sections 11.4.2.2 and 15.5.

12.5.1.5 Summary

PEM demonstrates how system factors influence the use of cryptographic
protocols. While central to the design and implementation of PEM systems,
the cryptographic protocols require a supporting infrastructure. The need for
compatibility guides many design choices for this infrastructure. The
environment of development also affects the infrastructure.

12.5.2 Instant Messaging

Instant messaging has begun to supplant some uses of electronic mail
because it is designed to enable two or more parties to engage in a real-time
dialogue. Thus, for these applications, security and authentication are as
important as they are for email.

The Signal Protocol [443, 1261, 1523, 2267] is designed to provide these
services. It also provides perfect forward secrecy, so the compromise of a key
will not enable an adversary to read previously sent messages.

The protocol has three steps. First, the clients register with the messaging
server. The registration involves cryptographic keys and a representation of
identity. The second step occurs when two clients wish to communicate; they
must set up a session. Once the session is established, they exchange
messages.

The cryptographic protocol uses several different keys. Several public keys are
associated with each client.



1. A long-term identity key pair IK generated when the client program is
installed. This is a Curve25519 key [180] (see page 274).

2. A medium-term signed pre-key pair SP K generated when the client
program is installed, and that is changed periodically. It too is a Curve25519
pair.

3. An ephemeral one-time pre-key pair OP K that is obtained from a list of
Curve25519 key pairs. These are generated when the client is installed; when
they run out, new ones are generated.

Whenever a public key is sent, it is encoded into a byte sequence. We omit an
explicit representation of this to simplify the exposition.

Associated with each session are:

1. The message key, an 80-byte key used to encrypt messages. It consists of
three parts: a 32-byte key for AES-256 encryption, a 32-byte value for the
HMAC-SHA256 cryptographic checksum, and 16 bytes for an initialization
vector.

2. The chain key is a 32-byte value that is used to generate the message keys.

3. The root key is another 32-byte value used to generate the chain keys.

Several cryptographic functions and hashes are also used. As noted
previously, public keys are Diffie-Hellman keys obtained using the elliptic
curve Curve25519; this cipher is represented here as ECDH. Symmetric keys
are produced using two methods. The first is an application of
HMAC_SHA256. The second uses an HMAC-based key derivation function
(HKDF) [1110]. This has two stages. The first stage takes keying material s (a
non-secret salt; if omitted, this is treated as all 0 bits) and x (other material)
and produces a fixed-length pseudorandom key k:



Along with other information, this pseudorandom key is then given to a
second stage that expands the key to the desired length:

where info is a string of characters such as “WhisperGroup”, L is the number
of octets to output, and

The result, HKDF(s, x), is the first L octets of the output of HDKF_Extend.

We now describe each of the steps. In what follows, Alice wishes to
communicate with Bob. The messaging server is W . Public keys have the
superscript pub, and private keys the superscript priv.

12.5.2.1 Registration Step

Alice generates her identity key pair

; her pre-key pair

; and a set of one-time pre-key pairs

. She signs her public pre-key

. Then she sends her identity public key, her pre-key public key, her signed
pre-key, and her set of one-time pre-key public keys to the server:

R1.



This is called the pre-key bundle. This completes Alice’s registration. Bob
registers with the server similarly.

12.5.2.2 Session Set-Up and Initial Message

Alice now wants to establish a session with Bob. She first requests Bob’s key
bundle from the server. The server sends it. If Bob’s set of one-time pre-keys
are all used, no such pre-keys are included:

S1. Alice → W : message requesting Bob’s pre-key bundle

S2. W → Alice

Alice verifies SSP KBob is in fact the signature for

. If the verification fails, the set-up stops. If the verification succeeds, Alice
generates another ephemeral Curve25519 key pair

. She then computes a master secret:

If no one-time pre-key is sent, the last encryption is omitted. Alice then
deletes

and the intermediate values used to compute the master_secret. She uses the
master secret to compute the root and chain keys. Let 0256 be 256 bits of all 0
and F be 256 bits of all 1s. Then Alice computes HKDF(0256,
F||master_secret). The first 32 bytes are the root key kr, and the next 32 bytes
are the first chain key kc.



Finally, Alice creates associated data consisting of

; she may append additional information if desired.

12.5.2.3 Sending Messages

Alice now completes the session set-up by sending her first message to Bob.
Alice creates a message key km derived from the chain key kc:

She uses this as the key to an AEAD encryption scheme that encrypts the
message using the AEC-256 algorithm in CBC mode and authenticates the
message and associated data using the HMAC-SHA256 algorithm.

Alice then sends Bob a message containing

, a new ephemeral Curve25519 public key

, an indicator of which of Bob’s one-time pre-key was used, and the results of
the AEAD encryption.

When Bob receives the message, he calculates the master secret using his own
private keys and the public keys Alice has sent. He deletes the

pair and then computes the root and chain keys. Note he can be off-line when
Alice’s message arrives because the information to decipher and validate the
message is contained in the header.

At this point, Alice and Bob begin to exchange messages. When Alice sends
messages before she receives Bob’s reply to any of them, she uses a Hash
Ratchet to change the message key for each message. Call the message key



used to encipher the last message sent km,i, and the chain key that was used to
create it kc,i. Then the next message is enciphered using the message key
km,i+1 = HMAC_SHA256(kc,i, 1), and the chain key is advanced as kc,i+1 =
HMAC_SHA256(kc,i, 2).

Once Alice receives a reply from Bob, she enters the second phase of the
double ratchet. In this phase, she computes a new chain key and root key
using her current root key kr, her ephemeral key

, and the ephemeral key in the header of the received message

:

The first 32 octets form the new chain key, and the next 32 octets the new
root key.

12.5.2.4 Summary

Key management for instant messaging protocols is more complex than that
for electronic mail because of the nature of the application. Much of the
derivation and manipulation of keys is to provide perfect forward secrecy, to
ensure that previously transmitted messages remain secret. As a result, the
Signal Protocol provides many security services that protect the secrecy and
privacy of messages. That protocol is widely used in these services, including
Signal and WhatsApp.

12.5.3 Security at the Transport Layer: TLS and SSL

The Transport Layer Security (TLS) protocol [566] is a standard designed to
provide privacy, data integrity, and (if desired) authentication in WWW
browsers and servers. It is similar to an older protocol, version 3 of the Secure



Socket Layer version 3 (SSL) [727] developed by Netscape Corporation for the
same purpose. Because the use of SSL is deprecated, we will focus on version
1.2 of TLS, and point out the differences between it and SSL.

TLS works in terms of connections and sessions between clients and servers.

Definition 12–6. A TLS session is an association between two peers. A TLS
connection is the set of mechanisms used to transport data in a TLS session.

A single session may have many connections. Two peers may have many
sessions active at the same time, but this is not common.

Each party keeps information related to a session with each peer. The data
associated with a session includes the following information.

1. A session identifier that uniquely identifies the session;

2. The peer’s X.509v3 certificate (which is empty if no such certificate is
needed);

3. A compression method used to reduce the volume of data;

4. A cipher specification that includes all the relevant parameters for
generating the keys, for the cipher, and for the message authentication code
(MAC);3

3This is another term for a message integrity check (MIC); we use the TLS
protocol specification term here for consistency.

5. A “master secret” of 48 bits shared with the peer; and

6. A flag indicating whether this session can be used to start new connections.

A connection describes how data is sent to, and received from, the peer. Each
party keeps information related to a connection. Each peer has its own
parameters. The key with which the client enciphers data is (probably) not



the same as the key with which the server enciphers data. The information
associated with the connection includes the following:

1. Whether this is a server or a client;

2. Random data for the server and client;

3. The server and client write keys, which each uses to encipher data;

4. The server and client write MAC keys, which each uses to compute a MAC;

5. The initialization vectors for the ciphers, if needed; and

6. The server and client sequence numbers.

TLS consists of two layers supported by numerous cryptographic
mechanisms. We begin by describing the mechanisms, then the lower layer,
and finally the upper layer.

12.5.3.1 Supporting Cryptographic Mechanisms

During the setup negotiations, the peers determine a cryptographic
mechanism for providing confidentiality and message and origin integrity.
Interchange keys are used to establish a session key. Because all parts of TLS
use cryptographic mechanisms, we discuss them first.

The initial phase of session setup uses a public key cryptosystem to exchange
keys. The messages are enciphered using a classical cipher and are
checksummed using a cryptographic checksum. Initially, the handshake
protocol assumes no interchange cipher, no classical cipher, and no
checksum. The handshake protocol then negotiates the selection of these
mechanisms.

TLS uses three basic interchange ciphers. If the interchange cipher is RSA,
the server must provide an RSA certificate for key exchange. The server may
request that the client provide either an RSA or DSS certificate for signatures.



Three types of Diffie-Hellman ciphers serve as interchange ciphers. “Diffie-
Hellman” denotes a cipher system in which the certificate contains the cipher
parameters and is signed by an appropriate certification authority.
“Ephemeral Diffie-Hellman” refers to a cipher system in which a DSS or RSA
certificate is used to sign the parameters to the Diffie-Hellman cipher. This
implies that the parameters will not be used again (or else they would have
been in a certificate) and so are “ephemeral.” “Anonymous Diffie-Hellman”
refers to use of Diffie-Hellman without either party being authenticated. This
cipher is vulnerable to attacks, and its use is “strongly discouraged” according
to the TLS specification.

Elliptic curve versions of Diffie-Hellman ciphers also serve as interchange
ciphers in TLS. However, the anonymous version is not supported.

TLS derives its master secret, keys, and initialization vectors using a
pseudorandom function P RF that generates as many bits as needed for those
quantities. Let hash be a hash function and seed be a public and random
quantity. Define:

The hash expansion function P_hash generates any desired number of bits
from a given hash function hash and a parameter x:

The hash expansion function is the basis for P RF , which also includes an
ASCII string as a label:

TLSv1.2 implementations should use SHA-256 as the hash function.



Then the 48-bit secret master is computed from the premaster secret by:

(with any excess bits discarded). Then the key block is computed by:

where “master secret” and “key expansion” are the ASCII strings without the
quotation marks. When enough bits for the keys have been generated, the bits
are divided into 6 parts. The first two parts are the client and server keys used
for computing MACs, the next two parts are the client and server keys used to
encipher the messages, and the last two parts are the client and server
initialization vectors. The last two may be omitted if the ciphers being used do
not require them.

When TLS enciphers a block at the record layer (see Section 12.5.3.2), it uses
the cryptosystem negotiated during the initialization of the session. The
cryptosystem may be a stream cipher or a block cipher. If it is the former, the
blocks are enciphered sequentially, with the state of the stream at the end of
one block carrying over to the next block. If it is the latter, the block is padded
to the block size by adding bytes after the MAC. The padding is arranged so
that the length of the padding is added just before the cipher block boundary.

Before TLS sends a block, it computes a MAC using the following:

where MAC_ws is the MAC write key, seq is the sequence number of the
block, TLS_comp, TLS_vers, and TLS_len are the message type, version of
TLS, and length of the block, respectively, and block is the data.

12.5.3.2 Lower Layer: TLS Record Protocol

The TLS record protocol provides a basis for secure communication. The
protocol to be secured runs on top of it. For example, TLS adds security to



HTTP by taking HTTP messages and applying the steps listed below to each
message. However, the TLS record protocol need not handle retransmissions
or unreliable delivery, because it runs on top of TCP. TCP handles the
transport layer functions such as retransmissions and reliable delivery.

The TLS record protocol provides both confidentiality and message integrity
for the records being sent. It accepts messages from the higher layer. Each
message is split, if needed, into multiple parts. The TLS record protocol can
transport a block of at most 214 = 16,384 bytes. The following steps are
applied to each block, and the blocks are reassembled at the end.

The block is compressed. The MAC of the (compressed) block is computed as
described earlier, and the compressed block and MAC are enciphered.4

Finally, the TLS record header is prepended. The header contains the
message type, the major version number, the minor version number, and the
length of the block. Figure 12–8 shows these steps.

4During the handshake described in section 12.5.3.3, the peers may use an
extension to negotiate encrypting first, then generating a MAC of the
encrypted data [843].

If the MAC and enciphering key have not been selected (which happens when
the record layer carries messages for the handshake protocol; see Section
12.5.3.3), the encipherment algorithm is the identity transformation and no
MAC is used. (In other words, the record layer does neither encipherment nor
computation of the MAC.)

12.5.3.3 Upper Layer: TLS Handshake Protocol

The TLS handshake protocol sets up the parameters for the TLS record
protocol. It consists of four rounds that enable the peers to agree on keys,
ciphers, and MAC algorithms.



Figure 12–8: TLS record layer. The message is split into blocks.
Each block is compressed, has a MAC added, and is enciphered.

The exact sequence depends on the level of security desired. For clarity, in the
following discussion we assume that the client and server use RSA as the
interchange cryptosystem and AES-128 for the session cryptosystem.

The first round creates the TLS connection between the client C and the
server S. If the server initiates the handshake, it sends an empty server_hello
message, and the client begins the protocol. The client can initiate the
handshake by sending the message without the server’s request:

1. C → S : version || r1 || session_id || cipher_list || compression_list ||
extension_list

where version is the version of TLS that the client uses and r1 is a nonce
composed of a timestamp and a set of 28 random bytes. The session_id is
either empty (meaning a new session) or the session identification number of
an existing session (meaning that parameters are to be updated). The
cipher_list is a list of ciphers that the client understands, in order of
preference, and the compression_list identifies the compression algorithms
that the client understands, again in order of preference. The client may also
include a list of extensions such as encrypt-then-MAC after compression_list.

The server responds with its own message:

2. S → C : version || r2 || session_id || cipher || compression ||
extension_list



which indicates the selection of the parameters for the connection. Here,
version is the highest version of TLS that both the client and server
understand, the cipher and compression fields identify the cipher and
compression algorithms, session_id identifies the session (if the
corresponding field in the client’s message was empty, this is the
identification number of the new session), and r2 is a nonce (timestamp and
28 random bytes) that the server generated. If the client included a list of
extensions, the server may also append a list of extensions that it supports;
this list must be a subset of the extensions that the client included in its list.
This ends the first round.

The server authenticates itself in the second round. (If the server is not going
to authenticate itself, it sends the final message in this round—message 6—
immediately.) First, it sends the client its X.509v3 certificate server_cert.5

5If the client is not using RSA, the server sends a certificate appropriate for
the cryptosystem in use.

3. S → C : cert_chain

The cert_chain is a sequence of certificates. The first one must be the server’s
certificate. Each other certificate in the chain validates the certificate
immediately before it.

If the certificate does not contain enough information to allow the premaster
secret to be exchanged, the server sends an additional message to set the
parameters. For example, if Diffie-Hellman with an RSA certificate is used,
the message would be:

4. S → C : p || g || public_key || {hash(r1 || r2 || p || g || public_key)}kS

The first three parameters are the prime number, generator, and public key
for the Diffie-Hellman cryptosystem in use. A digital signature of those
parameters, prefixed by the random data r1 and r2 from the first two



messages to prevent replay, is then appended. Other cryptosystems have
other parameters, and hence other formats for this message.

If the server is not anonymous, it may request a certificate from the client:

5. S → C : cert_type || signature_algorithms || good_cert_authorities

where cert_type identifies the type of certificate that the server will accept
(by cryptosystem used), signature_algorithm the list of hash and signature
algorithm pairs that the server can use, kin order of preference, and
good_cert_authorities the certification authorities that the server will accept.
The server then sends a message ending the second round.

6. S → C : server_hello_done

Next, the client validates the server’s certificate (if any) and the parameters
(again, if any were sent). If the server requested a certificate, the client obliges
or replies with an alert indicating that it has no certificate:

7. C → S : client_cert

The client next sends a message to begin the key exchange. Since our peers
are using RSA, the appropriate public key is used to encipher the two byte
version number from the first message and 46 additional random bytes to
produce a “premaster secret” premaster. The server and client will use this to
generate a shared master secret.6

6If Diffie-Hellman is used, and a Diffie-Hellman certificate was sent, this
message is empty; otherwise, it contains the client’s public value.

8. C → S : encrypted_premaster

Both parties now compute the master secret master from pre, as discussed
above.

If the client certificate can be used to sign messages, then the server sends a



validation to the client. The message is simply all previous messages put
together and digitally signed:

9. C → S : digitally_signed(messages)

Then, the client tells the server to begin using the cipher specified (using a
“change cipher spec” message; see Section 12.5.3.4). The client updates its
session and connection information to reflect the cipher it uses. It then sends
an acknowledgement:

10. C → S : change_cipher_spec

11. C → S : P RF (master || “client finished” || hash(messages))

where master is the master secret and messages are all messages previously
sent during the handshake protocol. The server replies with a similar
acknowledgement:

12. S → C : change_cipher_spec

13. S → C : P RF (master || “server finished” || hash(messages))

The handshake is now complete.

12.5.3.4 Upper Layer: TLS Change Cipher Spec Protocol

The change cipher spec protocol is a single byte with value 1. It is sent after
new cipher parameters have been negotiated (or renegotiated). The new
parameters are considered “pending” because the old parameters are in use.
When this protocol message is received, the “pending” parameters become
the parameters in use.

12.5.3.5 Upper Layer: TLS Alert Protocol

The alert protocol signals that an unusual condition exists. A close_notify
alert signals that the sender will not send any more messages over the



connection. All pending data is delivered, but any new messages are ignored.

All other alerts are error alerts. Errors are either warnings or fatal errors. In
the latter case, as soon as the error is sent or received, the connection is torn
down. The cause of the error and its type (warning or fatal) are independent;
however, some errors are always fatal.

12.5.3.6 Upper Layer: Heartbeat Extension

The goal of the Heartbeat protocol extension [1717] is to enable a peer to
verify that its peer is responsive. It consists of two messages. Both messages
have four fields. The first consists of a value indicating that the message is a
request; that is followed by the length of the data in the message, and then
data of that length. The last field consists of random data. The total length
cannot exceed 214 bytes.

When a heartbeat message is received, the recipient ignores the fourth field.
If the second field is too large, the message is discarded. Otherwise, the
recipient returns a new heartbeat message containing the same payload, and
a first field indicating this is a response. The padding may of course be
different.

A client or server indicates its ability to respond to heartbeat messages in the
extensions list of the handshake. Once a heartbeat message is sent, no more
should be sent until a response is received. Finally, a heartbeat message
should never be sent during the initial handshake.

An error in one implementation of the Heartbeat extension shows the need
for checking inputs carefully, as discussed in chapter 31. In this
implementation [603], the size of the payload as specified in the second field
was not validated against the actual length of the packet payload. Thus, an
attacker could put a payload length much larger than that of the actual
payload. The recipient would load the heartbeat message into the buffer it
used for all incoming messages, and then copy out the number of bytes in the



payload length. This meant that the contents of the response message, data
that was previously in the buffer and not in the request message’s payload
would be sent to the requester. That extra data often contained sensitive
information such as cryptographic keys or other private data. The
vulnerability was simple to fix, but many popular web sites were vulnerable
until they fixed the problem.

12.5.3.7 Upper Layer: Application Data Protocol

This protocol simply passes data from the application layer to the TLS Record
Protocol layer. The record protocol transports the data to the peer using the
current compression and cipher algorithms.

12.5.3.8 Differences Between SSL version 3 and TLS version 1.2

SSLv3 differs from TLS in four ways.

First, the master secret is computed differently. SSL computes the master
secret, and the key block, as follows:

where premaster is the shared data and r1 and r2 are shared random
numbers. The client and server MAC write keys, client and server write keys,
and client and server initialization vectors (if needed) are computed similarly,
by generating a key block with enough bits to produce all 6 quantities:

Then the keys are derived from the key block in the same way as for TLS.



Second, when the record layer computes a MAC for each block, the MAC is

where hash is the particular hash function used (MD5 or SHA), MAC_ws is
the MAC write key of the entity, ipad and opad are the ipad and opad from
HMAC (see Section 10.4.1), seq is the sequence number, SSL_comp is the
message type (taken from the higher layer protocol), SSL_len is the length of
the block, and block is the block itself.

Third, the last few messages of the handshake are different. Specifically, the
verification message is:

9′. C → S : hash(master || opad || hash(messages || master || ipad))

Here, master is the master secret computed from premaster sent in the
previous step, ipad and opad are as defined for the HMAC, and messages is
the concatenation of messages 1 through 8.

The two finishing messages are also different. After the client sends a “change
cipher spec” message, it sends a “finish message”:

11′. C → S : hash(master || opad || hash(messages || 0x434C4E54 || master
|| ipad))

The server responds with a “change cipher spec” message telling the client to
use the ciphers that the server specified, and it updates its session and
connection information accordingly. It then sends its “finish” message.

13′. S → C : hash(master || opad || hash(messages || 0x53525652 || master
|| ipad))

In both the client’s and the server’s “finish” message, the quantities are as for
message 9, except that messages includes message 9.

Finally, the set of ciphers allowed is different. For example, SSL (and earlier



versions of TLS) allows the use of RC4, but given the weaknesses found in it
[34, 694], its use is deprecated.

SSL also supports a set of ciphers for the Fortezza cryptographic token
[2172,2173] used by the U.S. Department of Defense.

12.5.3.9 Problems with SSL

The use of SSL is deprecated for a variety of reasons. One attack in particular
is nefarious enough to warrant not using SSL: the POODLE attack [1377].

The Padding Oracle On Downgraded Legacy Encryption (POODLE) attack is
based on the use of CBC encryption. The problem is that, when SSL pads its
messages to achieve a block size, all but the last byte of the padding are
random, and cannot be checked on decryption. This allows the attacker to
obtain information even if the information is enciphered with a scheme that
uses CBC encryption.

The padding works as follows: suppose the message ends in a full block. SSL
will add an additional block of padding, and the last byte of that padding will
be the number of bytes of random padding. So, if the block size is b, then the
last byte of that block will contain b – 1. The other bytes of this last block will
be random bytes. Similarly, if the last block has b – 1 bytes, then the padding
byte will be the 0 bte (as there are no other padding bytes).

When a peer received an incoming ciphertext record c1, . . . , cn, that entity
decrypts it to m1, . . . , mn by mi = Dk(ci) ⊕ ci–1, with c0 being the initialization
vector. It then removes the padding at the end, and computes and checks the
MAC by computing it over the remaining bytes. Now, replace cn with some
earlier block cj, j ≠ n. Then, if the last byte of cj contains the same value as the
last byte of cn, then the same number of padding bytes will be discarded as in
the unaltered message, and the message will be accepted as valid. This allows
an attacker to figure out the contents of one byte of the message.



By artfully arranging for the HTTP messages to end with a known number of
padding bytes, and for sensitive information to be aligned on a particular
byte, an attacker can use a man-in-the-middle attack to read bytes of the
message. If the server rejects the message, the attacker tries again. The server
is expected to accept the changed message in 1 out of 256 tries.

This attack eliminates one cipher suite in SSL. The other uses RC4, which—as
noted above—is very weak; indeed, it was removed from the set of allowed
TLS ciphers [1541]. As a result, SSL has been deprecated, and whenever
possible is being disabled.

TLS does not suffer from this problem because the padding bytes are not
random; all are set to the length of the padding. Further, TLS
implementations must check this padding for validity before accepting the
message.

Figure 12–9: The packet on the left is in transport mode, because
the body of the packet is encrypted but its header is not. The
packet on the right is in tunnel mode, because the packet header
and the packet body are both encrypted. The unencrypted IP
header is used to deliver the encrypted packet to a system on
which it can be decrypted and forwarded.

12.5.3.10 Summary

TLS provides a transport mechanism that supports confidentiality and
integrity. It supports a variety of ciphers and MACs. Any higher-level
application protocol can use this protocols, and it is the basis for many
Internet security mechanisms.

12.5.4 Security at the Network Layer: IPsec



IPsec version 3 (called “IPsec” here) is a collection of protocols and
mechanisms that provide confidentiality, authentication, message integrity,
and replay detection at the IP layer [1043]. Because cryptography forms the
basis for these services, the protocols also include a key management scheme,
which we will not discuss here.

Conceptually, think of messages being sent between two hosts as following a
path between the hosts. The path also passes through other intermediate
hosts. IPsec mechanisms protect all messages sent along a path. If the IPsec
mechanisms reside on an intermediate host (for example, a firewall or
gateway), that host is called a security gateway.

IPsec has two modes. Transport mode encapsulates the IP packet data area
(which is the upper layer packet) in an IPsec envelope, and then uses IP to
send the IPsec-wrapped packet. The IP header is not protected. Tunnel mode
encapsulates an entire IP packet in an IPsec envelope and then forwards it
using IP. Here, the IP header of the encapsulated packet is protected. (Figure
12–9 illustrates these modes.) Transport mode is used when both endpoints
support IPsec. Tunnel mode is used when either or both endpoints do not
support IPsec but two intermediate hosts do.

EXAMPLE: Secure Corp. and Guards Inc. wish to exchange confidential
information about a pending fraud case. The hosts main.secure.com and
fraud.guards.com both support IPsec. The messages between the systems are
encapsulated using transport mode at the sender and processed into cleartext
at the receiver.

Red Dog LLC is a third corporation that needs access to the data. The data is
to be sent to gotcha.reddog.com. Red Dog’s systems do not support IPsec,
with one exception. That exception is the host firewall.reddog.com that is
connected to both Red Dog’s internal network and the Internet. Because none
of Red Dog’s other hosts is connected to the Internet, all traffic to gotcha
from Secure Corp. must pass through firewall.reddog.com. So



main.secure.com uses tunnel mode to send its IPsec packets to Red Dog.
When the packets arrive at firewall, the IPsec information is removed and
validated, and the enclosed IP packet is forwarded to gotcha. In this context,
firewall.reddog.com is a security gateway.

Two protocols provide message security. The authentication header (AH)
protocol provides message integrity and origin authentication and can
provide anti-replay services. The encapsulating security payload (ESP)
protocol provides confidentiality and can provide the same services as those
provided by the AH protocol. Both protocols are based on cryptography, with
key management supplied by the Internet Key Exchange (IKE) protocol
(although other key exchange protocols, including manual keying, may be
used). IPsec requires that ESP be implemented, and AH may or may not be
implemented.

12.5.4.1 IPsec Architecture

IPsec mechanisms use one or more security policy databases (SPDs) to
determine how to handle messages. Each entry specifies an action associated
with the packet. Legal actions are discarding the message, applying security
services to the message, and forwarding the message with no change. The
action taken depends on information in the IP and transport layer headers.

When a packet arrives, the IPsec mechanism selects the appropriate SPD. The
SPD determines which entry applies on the basis of the attributes of the
packet. These attributes include the source and destination port and address,
the transport layer protocol involved, and other data.

EXAMPLE: An SPD has two entries for destination addresses 10.1.2.3 to
10.1.2.103. The first applies to packets with destination port 25. The second
applies to packets transporting the protocol HTTP. If a packet arrives with
destination address 10.1.2.50, and its destination port is 25, the first entry
applies; if its destination port is 80, the second entry applies.



Entries are checked in order. If one has a different policy for securing
electronic mail depending on its destination, the more specific entries are
placed where they will be searched first. If no entry matches the incoming
packet, it is discarded.

EXAMPLE: In the example above, the administrator wants to discard SMTP
packets coming from host 192.168.2.9 and forward packets from host
192.168.19.7 without applying IPsec services. Assuming that the SPD entries
are searched from first to last, the SPD would have these three entries:

source 192.168.2.9, destination 10.1.2.3 to 10.1.2.103, port 25,

discard source 192.168.19.7, destination 10.1.2.3 to 10.1.2.103, port 25, bypass

destination 10.1.2.3 to 10.1.2.103, port 25, apply IPsec

The heart of applying IPsec is the security association.

Definition 12–7. A security association (SA) is an association between
peers for security services. The security association is unidirectional.

A security association is a set of security enhancements to a channel along
which packets are sent. It defines the security protocol that is to be applied to
packets sent over that association. It is uniquely identified by the Security
Parameters Index (SPI) and, possibly, the protocol (ESP or AH). If multicast
is supported, the SPI is assigned by the group key server or controller.

Each SA uses either ESP or AH, but not both. If both are required, two SAs
are created. Similarly, if IPsec is to provide security between two peers in
both directions, two SAs are needed.

When IPsec services are to be applied, the SPD entry identifies an entry in an
SA database (SAD) based on the SPD entries and the packet such as remote
IP addresses, local IP addresses, and the protocol. An SAD entry consists of a
set of selectors and the corresponding SA.



EXAMPLE: Continuing the example above, focus on the case in which IPsec is
to be applied. The SPD entry for 10.1.2.101 could take the selector for the SAD
from the packet (so the selector might be the SA with the destination address
10.1.2.101) or from the SPD entry (so the selector might be the SA with the
destination addresses in the range 10.1.2.3 to 10.1.2.103).

Each SAD entry contains information about the SA. The fields include:

• The SPI is used to construct the ESP and AH headers for outgoing packets
and to identify a particular SA for incoming packets.

• The AH algorithm identifier, keys, and other parameters are used when the
SA uses the AH protocol.

• The ESP encipherment algorithm identifier, keys, and other parameters are
used when the SA uses the confidentiality service of the ESP protocol.

• The ESP integrity algorithm identifier, keys, and parameters are used when
the SA uses the authentication and data integrity services of the ESP protocol.

• The lifetime of the SA is either the time at which the SA must be deleted and
a new one formed or a count of the maximum number of bytes allowed over
this SA.

• The IPsec protocol mode is tunnel mode, transport mode, or a wildcard. If it
is a wildcard, either protocol mode is acceptable. Security gateways need to
support only tunnel mode, but host implementations must support both
modes.

An additional field checks for replay in inbound packets.

• The antireplay window field is used to detect replay (see Section 12.5.4.2). If
the SA does not use the antirieplay feature, this field is not used.

Outbound packets have sequence numbers, the generation of which is



controlled by two fields:

• The sequence number counter generates the AH or ESP sequence number.

• The sequence counter overflow field stops further traffic over the SA if the
sequence counter overflows.

The entries in the SAD are processed in order. When inbound traffic arrives,
the SAD is searched for a match on the SPI, source, and destination
addresses. If there is no match, the SAD is searched for a match on the SPI
and destination address. If there is still no match, the SAD is searched using
either just the SPI or both the SPI and protocol, whichever is appropriate. If
there is no match, the packet is discarded. Otherwise, the entry identifies the
SA that the packet is associated with and enables the replay check (if desired).
If the packet is to be forwarded, the SPD the determines the relevant services,
the appropriate services are supplied, and the packet is forwarded.

In some situations, multiple SAs may protect packets.

Definition 12–8. A security association bundle (SA bundle) is a sequence
of security associations that the IPsec mechanisms apply to packets.

Tunnel mode SAs can be nested. This is called iterated tunneling and occurs
when multiple hosts build tunnels through which they send traffic. The
endpoints may be the same, although support for iterated tunneling is
required only when at least one endpoint of the two tunnels is different. The
tunnels may be entirely nested.

EXAMPLE: Return to Secure Corp. and Red Dog LLC. The fraud group within
Secure has a host, frauds, that has IPsec mechanisms. The Red Dog fraud
group has a new system, equity, that also has IPsec mechanisms. Both
Secure’s gateway to the internet, gateway, and Red Dog’s gateway to the
Internet, firewall, have IPsec mechanisms. Because the data is so sensitive,
the fraud groups decide that they need to protect their data within each



company. The SA between the gateways is not enough.

The data transfer now has two SAs. The first goes from gateway.secure.com
to firewall.reddog.com and is in tunnel mode. The second, also in tunnel
mode, begins at frauds.secure.com, tunnels through the SA from
gateway.secure.com to firewall.reddog.com, and terminates at
equity.reddog.com.

Iteration of transport mode SAs occurs when both the AH and ESP protocols
are used. This is called transport adjacency, and when it is used, application
of the ESP protocol should precede application of the AH protocol. The idea
is that the ESP protocol protects the higher-layer (transport) protocol and the
AH protocol protects the IP packet. Were the AH protocol to be applied first,
the ESP protocol would not protect the IP packet headers.

It is instructive to examine the appearance of the packets in the example
above. Figure 12–10 shows the packet layout as it travels between the two
companies. Notice that the packet generated by frauds is encapsulated in
another IP packet with the IPsec services applied to the inner packet. Both
headers identify equity as the destination. When the packet arrives at
gateway, the original IP header is (probably) not visible to gateway. In this
case, the SAD and SPD use a special identifier to indicate that the source is
obscured. (See Exercise 9.) The appropriate SA directs the packet to be
encapsulated and forwarded to firewall, so the added IP header identifies
firewall as the destination IP address. When the packet arrives at firewall, it
uses the incoming packet’s destination IP address (firewall), security
protocol, and SPI to locate the SA. This bundle tells firewall to authenticate
and decrypt the contents of the packet. The inner IP packet is then used to
look up the appropriate action in the SPD, which (in this case) is to bypass
IPsec. The packet is then forwarded to equity, which repeats the processing.
The innermost IP packet is then forwarded to equity and processed.



Figure 12–10: An IPsec-protected packet going through nested
tunnels. The filled rectangles represent headers. The leftmost IP
header and the following data constitute the original packet. The
IPsec mechanisms add the ESP, AH, and IP headers of frauds and
forward the packet to gateway. This is the first SA and is in tunnel
mode. The host gateway adds the ESP, AH, and IP headers shown,
putting the packet into the second tunnel mode SA.

We now examine the AH and ESP protocols.

12.5.4.2 Authentication Header Protocol

The goal of the authentication header (AH) protocol [1041] is to provide
origin authentication, message integrity, and protection against replay, if
desired. It protects static fields of the IP packet header as well as the contents
of the packet.

The important parameters included in the AH header are an indication of the
length of the header, the SPI of the SA under which this protocol is applied, a
sequence number used to prevent replay, and an Integrity Value Check (IVC)7

padded to a multiple of 32 bits (for IPv4) or 64 bits (for IPv6).

7This is another term for a message integrity check (MIC); we use the AH
protocol specification term here for consistency.

The AH protocol has two steps. The first checks that replay is not occurring.
The second checks the authentication data.

When a packet is sent, the sender assumes that anti-replay is used unless it is



told otherwise. If anti-replay is used, the sender first checks that the sequence
number will not cycle; if it would, a new SA must be created. Whether anti-
replay is enabled or not, It adds 1 to the current sequence number. The
sender then calculates the IVC of the packet. The IVC includes all fields in the
IP header that will not change in transit or that can be predicted (such as the
destination field), the AH header (with the IVC field set to 0 for this
computation), and any encapsulated or higher-layer data. Mutable fields in
the IP header (such as the type of service, flags, fragment offset, time to live,
and header checksum fields) are set to 0 for this computation. If an extended
sequence number is used, the IVC uses all 64 bits of the number even though
the AH header only contains the low-order 32 bits.

When a packet arrives, the IPsec mechanism determines if the packet
contains an authentication header. If so, it uses the SPI and (possibly) the
destination address to find the associated SA in the SAD. If no such SA exists,
the packet is discarded. Otherwise, the key, IVC algorithm, and anti-replay
settings are obtained from the SAD entry.

If the anti-replay service is desired, a “sliding window” mechanism checks
that the packet is new. Think of the SA as operating on a stream of packets.
Conceptually, the window contains slots for at least 32 packets (64 should be
the default). Each slot has the sequence number of the packet for that slot.
When a packet arrives, the mechanism checks that the packet’s sequence
number is at least that of the leftmost slot in the window. If not, the packet is
discarded. The IVC of the packet is then verified, and if it is incorrect, the
packet is discarded. Otherwise, if the packet’s sequence number lies within
the window, but the slot with that sequence number is occupied, the packet is
discarded. If the slot is empty, the packet is inserted into the slot. Finally, if
the packet lies to the right of the window, the window is advanced to create a
slot for the packet. The packet is then placed in that slot, which is the
rightmost slot in the window.

If the anti-replay service is not used, the IVC is verified. The IVC is computed



in the same way as the sender (that is, appropriate fields are replaced by
zeros) and is compared with the IVC in the AH. If the two differ, the packet is
discarded.

The cryptosystems that implementations of the AH protocol must support
change over time and are documented in Internet RFCs. As of October 2017,
RFC 8221 contains this information.

12.5.4.3 Encapsulating Security Payload Protocol

The goal of the encapsulating security payload (ESP) protocol [1042] is to
provide confidentiality, origin authentication and message integrity (here
called “integrity” for brevity), protection against replay if desired, and a
limited form of traffic flow confidentiality. It protects only the transport data
or encapsulated IP data; it does not protect the IP header.

The important parameters included in the ESP header are the SPI of the SA
under which this protocol is applied, a sequence number used to prevent
replay, a generic “payload data” field, padding, the length of the padding, and
an optional authentication data field.

The data in the payload data field depends on the ESP services enabled. For
example, if an SA needs to resynchronize a cryptographic algorithm used in
chaining mode, the sender could include an initialization vector here. As
more algorithms for the ESP are defined, they may specify data to be included
in this field.

Because the ESP protocol begins enciphering with the payload data field and
protects both header fields and data, the IPsec mechanism may need to pad
the packet in order to have the number of bits or bytes required by the
cryptographic algorithm. The padding field allows for this adjustment. The
padding length field contains the number of padding bytes; no more than 255
bytes of padding are allowed.



At least one of the confidentiality and integrity services must be selected.
Furthermore, because packets may not arrive in order, any synchronization
material must be carried in the payload field. Otherwise, the packets that
follow a missing packet may be unintelligible.

When a packet is sent, the sender adds an ESP header, including any required
padding, to the payload (either the transport data or an encapsulated IP
packet). This includes a sequence number. As with the AH, this can be used
for an anti-replay service that is enabled by default. If anti-replay is used, the
sequence number is handled as it is for the AH.

The sender then enciphers the result (except for the SPI and sequence
numbers). If integrity is desired, the integrity check is computed as for the
AH protocol, except that it is over the ESP header and payload, excluding the
IVC field, after the encryption. It does not include the IP header that
encapsulates the ESP header and payload. The relevant SA dictates the
cryptographic keys and algorithms that are used.

When a packet arrives, the IPsec mechanism determines if the packet
contains an ESP header. If so, it uses the SPI and (possibly) the protocol and
destination address to find the associated SA in the SAD. If no such SA exists,
the packet is discarded. Otherwise, the SA parameters are obtained from the
SAD entry.

If the integrity service is used, the anti-replay feature and the ICV verification
proceed as for the AH, again except that only the ESP and the payload are
used. Because the authentication data is inserted after encipherment, it is not
enciphered and so can be used directly.

If the confidentiality service is used, the IPsec mechanisms decipher the
enciphered portion of the ESP header. Any padding is processed, and the
payload is deciphered. If the SA specifies transport mode, the IP header and
payload are treated as the original IP packet. If the SA specifies tunnel mode,
the encapsulated IP packet is treated as the original IP packet.



If the cryptosystem used combines confidentiality and integrity, then the
above two steps are combined. The anti-replay feature (if used) is performed
first; then the integrity check and decryption occur simultaneously. At that
point, processing proceeds as above.

Typical implementations of public key cryptosystems are far slower than
implementations of classical cryptosystems. Hence, implementations of ESP
assume a classical cryptosystem, although this is not required.

The cryptosystems that implementations of the ESP protocol must support
change over time and are documented in Internet RFCs. As of October 2017,
RFC 8221 contains this information.

12.5.5 Conclusion

Each of the three protocols adds security to network communications. The
“best” protocol to use depends on a variety of factors.

To what do the requisite security services apply? If they are specific to one
particular application, such as remote logins, then using a program with
application layer security is appropriate. When a program that requires
security services is used in an environment that does not supply those
services, or that the user does not trust to supply the requisite services, the
application should supply its own security.

If more generic services are needed, lower-layer security protocols can supply
security services to multiple applications and can do so whether or not the
application has its own mechanisms for security services. Transport layer
protocols such as TLS are end-to-end security mechanisms. They are
appropriate when the intermediate hosts are not trusted, when the end hosts
support the transport protocol, and when the application uses a connection-
oriented (transport) protocol. Network layer mechanisms such as IPsec may
provide security services on either an end-to-end or a link basis. They are
appropriate when securing connectionless channels or when the



infrastructure supports the network layer security mechanisms.

The application layer security protocol PEM provides security services for
electronic mail messages. Consider using TLS for this goal. TLS does not
authenticate the message to the recipient; it merely authenticates the
transport connection. Specifically, if Alice sends Bob a message, PEM will
authenticate that Alice composed the message and that Bob received it
unaltered (and possibly that the message was kept confidential). TLS can
authenticate that Alice sent the message to Bob, that it arrived as sent, and
possibly that it was confidential in transit. TLS does not verify that Alice
composed the message or that the message was confidential and unchanged
on Alice’s system or Bob’s system. In other words, TLS secures the
connection; PEM secures the electronic mail (the contents of the connection).
Similarly, IPsec protects the packets and their contents in transit, but
authentication is of the hosts and not of Alice or Bob.

12.6 Summary

If one uses a cryptosystem without considering the protocols directing its use,
the security service that the cryptosystem is to provide can be deficient.
Precomputation attacks, assumptions about message sizes, message formats,
and statistical attacks can all compromise messages.

Stream and block ciphers have different orientations (bits and blocks,
respectively) that affect solutions to these problems. Stream ciphers emulate
a one-time pad either through an externally keyed source (such as an LFSR,
which generates a stream of key bits from an initial seed) or internally (such
as the autokey ciphers or through feedback modes). Block ciphers emulate
“code books” in which a set of bits maps to a different set of bits. (In practice,
the mapping is algorithmic.)

Over a network, cryptographic protocols and cryptosystems are the basis for
many security services, including confidentiality, authentication, integrity,



and nonrepudiation. These services can be provided at different layers,
depending on the assumptions about the network and the needs of the
servers and clients.

12.7 Research Issues

Cryptographic protocols are the foundation of many security mechanisms and
are sensitive to the assumptions inherent in their environments. As with
authentication protocols, a critical area of research is to verify that protocols
provide the services they claim to provide. Another area is to determine what
assumptions are relevant to the protocol. For example, is a trusted server
required? How could one modify the protocol so it would work without such a
server (or prove that the protocol cannot work)?

Designing protocols for the Internet, or for any large, heterogeneous internet,
requires flexibility without sacrificing security. The problem is as much
political as technical. When several suitable protocols can solve a particular
problem, different sites will try different protocols. During this process, some
protocols will prove inadequate, others will need modification, and some will
work. The resulting protocols may coexist or may be combined. Determining
which protocol is the “best” is an open research topic.

The interaction of different layers of the network (the “network stack”) with
respect to both the protocols and implementations, is another area of study.

12.8 Further Reading

Garrett [754], Barr [128], Seberry and Pieprzyk [1714], and Denning [535]
discuss the theory of linear feedback shift registers. Schneier [1693] presents
a variant called Feedback Carry Shift Registers. Beker and Piper [147] discuss
stream ciphers. Rueppel analyzes design criteria for stream ciphers [1628].
Several papers [462, 1055, 1506] discuss the cryptanalysis of stream ciphers,
and several others [694, 795, 796, 1274–1276, 1365, 1527, 1766, 2040, 2041]



discuss the strength of particular stream ciphers.

Bellovin [162] discusses security problems in many Internet protocols; Kent
[1039] provides a different perspective. S/MIME [1572, 1573] provides
confidentiality, authentication, integrity, and non-repudiation to sending and
receiving MIME data in email. Whitten and Tygar [2014] discuss usability
problems with PGP clients; Ruoti and colleagues revisited this 15 years later
[1633]. They also discuss user interface characteristics affecting the usability
of secure email systems [1632]. Zurko and Simon [2125] compare usability
issues with the certificate management interfaces of PGP and PEM. Garfinkel
and his colleagues [747, 748] and Ruoti and colleagues [1631] examine other
user interfaces to encrypted email. McGregor et al. examine the use of PGP by
journalists in their collaborative investigation of leaked documents [1295].

Research into secure messaging has identified establshing trust, securing
conversations, and protecting privacy during transmission as key challenges
[1922]. Herzberg and Leibowitz [902] examine the user interfaces of several
instant messaging applications.

Rescorla [1589] presents an in-depth description of SSL and TLS. The
security of SSL and TLS have been analyzed in several ways [1367, 1388,
1965, 2062]. Turner [1918] reviews the history of TLS briefly. The next
version of TLS, version 1.3, is under development, and its security is being
extensively analyzed [110, 478, 587, 962] Downgrade attacks such as FREAK
[189] and Logjam [19] take advantage of the presence of export-controlled
ciphers in SSL. Naylor and his colleagues [1434] discuss the performance
impact of TLS and SSL when used with HTTP.

Oppliger [1482], Kaufman et al. [1020], and Doraswamy and Harkins [586]
present overviews of IPsec version 2; Stallings [1820], of IPsec version 3.
Frankel and Krishnan [718] give an overview of the RFCs that define the
current version of IPsec and its supporting cryptographic infrastructure.
Bellovin [164] discusses the cryptographic security of IPsec. Hamed, Al-
Shaer, and Marreo [863] study the verification of IPsec security policies. Aura



et al. [97] study reconciling multiple IPsec policies. Yin and Wang [2069]
introduce the context of an application into the IPsec policy model.

Bishop [221] examines the Network Time Protocol NTPv2. The application
layer protocol SSH, developed by Ylönen [2071, 2072], provides secure
remote logins and connections. Vixie [1950] and Bellovin [163] discuss issues
related to the Directory Name Services, and the protocol DNSSEC [73–76,
1487, 2044] adds several security services to DNS.

The electronic commerce protocol SET [2168, 2241–2243] uses dual digital
signatures to tie components of messages together in such a way that neither
the messages nor their association can be repudiated. Ford and Baum [702]
discuss SET and the supporting infrastructure. SET has been modeled and
analyzed, and minor problems found [152, 153, 300, 1022, 1629]. The 3-D
Secure protocol, used to authenticate online transactions, has several
problems [1409]. Ghosh [766] provides a balanced view of the dangers of
Internet commerce using the Web; others [897, 1424] discuss developing e-
commerce services and sites.

12.9 Exercises

1. Let the function f for a four-stage NLFSR be f(r0, . . . , rn–1) = (r0 and r1) or
r3, and let the initial value of the register be 1001. Derive the initial sequence
and cycle.

2. An n-stage LFSR produces a sequence with a period of length at most 2n –
1, but the register has n bits and thus may assume 2n values. Why can the
length of the period never be 2n? Which register value is excluded from the
cycle, and why?

3. Consider double encryption, where c = Ek′ (Ek(m)) and the keys k and k′
are each n bits long. Assume that each encipherment takes one time unit. A
cryptanalyst will use a known plaintext attack to determine the key from two
messages m0 and m1 and their corresponding ciphertexts c0 and c1.



(a) The cryptanalyst computes Ex(m0) for each possible key x and stores each
in a table. How many bits of memory does the table require? How many time
units does it take to compute the entry?

(b) The cryptanalyst computes y = Dx′ (c0), where D is the decipherment
function corresponding to E, for each possible key x′, and then checks the
table to see if y is in it. If so, (x, x′) is a candidate for the key pair. How should
the table be organized to allow the cryptographer to find a match for y in time
O(1)? How many time units will pass before a match must occur?

(c) How can the cryptographer confirm that (x, x′) is in fact the desired key
pair?

(d) What are the maximum amounts of time and memory needed for the
attack? What are the expected amounts of time and memory?

4. A network consists of n hosts. Assuming that cryptographic keys are
distributed on a per-host-pair basis, compute how many different keys are
required.

5. One cryptographic checksum is computed by applying the DES in CBC
mode to the message or file and using the last n bits of the final enciphered
block as the checksum. (This is a keyed hash; the parties must agree on the
key and the initialization vector used.) Analyze this hash function. In
particular, how difficult is it to find two different messages that hash to the
same value? How difficult is it to generate a second message that produces
the same hash value as the first message?

6. A variant of the autokey cipher is to pick a well-known book and use its
text, starting at some agreed-upon location. For example, the plaintext THEBO
YHAST HECAT might be enciphered as the phrase AVARI ANTOF THEAU, with the
sender and recipient agreeing that the first sentence in Exercise 6 of Chapter
12 in this book is the initial key. Describe a problem with this approach that
could lead to a successful decipherment.



7. Unlike PEM, PGP requires the user to set a flag to indicate whether the file
being protected is text or binary data. Explain why such a flag is necessary.
Why does PEM not require such a flag?

8. The TLS protocol has several layers. Why was the protocol split into
different layers, rather than just using one layer?

9. Redraw Figure 11-6 assuming that the SA between frauds and equity is a
transport mode SA rather than a tunnel mode SA.

10. When the IVC for the AH protocol is computed, why are mutable fields set
to 0 rather than omitted?

11. Section 12.5.5 discusses the use of TLS to provide confidentiality,
authentication, and integrity security services for electronic mail and suggests
that PEM is more appropriate. Consider a remote login protocol in the same
context. In answering the following questions, please state explicitly any
assumptions that you make.

(a) One goal of the protocol is to provide user authentication from the client
to the server. Which layer (application, transport, or network) would be most
appropriate for providing this service? Why?

(b) Another goal of the protocol is to provide host authentication between the
client and the server, so the client knows which server it is communicating
with, and vice versa. At which layer should these services be provided, and
why?

(c) Assume that the remote login protocol is connection-oriented. Which
layer should supply message integrity and confidentiality services, and why?

(d) Assume that the remote login protocol may use either a connection-
oriented or a connectionless protocol (depending on various network factors
determined when the client contacts the server). Which layer should supply
message integrity and confidentiality services, and why?





Chapter 13. Authentication
ANTIPHOLUS OF SYRACUSE: To me she speaks; she moves me for her theme!
What, was I married to her in my dream? Or sleep I now and think I hear all 
this? What error drives our eyes and ears amiss? Until I know this sure 
uncertainty, I’ll entertain the offer’d fallacy

— The Comedy of Errors, II, ii, 185–190.

Authentication is the binding of an identity to a principal. Network-based 
authentication mechanisms require a principal to authenticate to a single 
system, either local or remote. The authentication is then propagated. This 
chapter explores the question of authentication to a single system.

13.1 Authentication Basics

Subjects act on behalf of some other, external entity. The identity of that 
entity controls the actions that its associated subjects may take. Hence, the 
subjects must bind to the identity of that external entity.

Definition 13–1. Authentication is the binding of an identity to a subject.

The external entity must provide information to enable the system to confirm 
its identity. This information comes from one (or more) of the following.

1. What the entity knows (such as passwords or secret information)

2. What the entity has (such as a badge or card)



3. What the entity is (such as fingerprints or retinal characteristics)

4. Where the entity is (such as in front of a particular terminal)

The authentication process consists of obtaining the authentication
information from an entity, analyzing the data, and determining if it is
associated with that entity. This means that the computer must store some
information about the entity. It also suggests that mechanisms for managing
the data are required. We represent these requirements in an authentication
system [222] consisting of five components.

1. The set  of authentication information is the set of specific information
with which entities prove their identities.

2. The set  of complementary information is the set of information that the
system stores and uses to validate the authentication information.

3. The set  of complementation functions that generate the complementary
information from the authentication information. That is, for

.

4. The set  of authentication functions that verify identity. That is, for

.

5. The set  of selection functions that enable an entity to create or alter the
authentication and complementary information.

13.2 Passwords

Passwords are an example of an authentication mechanism based on what
people know: the user supplies a password, and the computer validates it. If
the password is the one associated with the user, that user’s identity is



authenticated. If not, the password is rejected and the authentication fails.

Definition 13–2. A password is information associated with an entity that
confirms the entity’s identity.

The simplest password is some sequence of characters. In this case, the
password space is the set of all sequences of characters that can be
passwords.

EXAMPLE: Suppose an installation requires each user to choose a sequence
of 10 digits as a password. Then  has 1010 elements (from “0000000000” to
“9999999999”).

The set of complementary information may contain more, or fewer, elements
than , depending on the nature of the complementation function.
Originally, most systems stored passwords in protected files. However, the
contents of such files might be accidentally exposed. Morris and Thompson
[1387] recount an amusing example in which a Multics system editor
swapped pointers to the temporary files being used to edit the password file
and the message of the day file (printed whenever a user logged in); the result
was that whenever a user logged in, the cleartext password file was printed.
The solution is to use a one-way hash function to hash the password into a
complement [2018].

EXAMPLE: The original UNIX password mechanism does not store the
passwords online in the clear. Instead, one of 4,096 functions hashes the
password into an 11-character string, and two characters identifying the
function used are prepended [1387]. The 13-character string is then stored in
a file.

A UNIX password is composed of up to eight ASCII characters; for
implementation reasons, the ASCII NUL (0) character is disallowed. Hence, 

 is the set of strings of up to eight characters, each chosen from a set of 127
possible characters.1 A contains approximately 6.9 × 1016 passwords.



However, the set  contains strings of exactly 13 characters chosen from an
alphabet of 64 characters.  contains approximately 3.0 × 1023 strings.

1In practice, some characters (such as the delete character) have special
meanings and are rarely used.

The UNIX hashing functions

are based upon a permutation of the Data Encryption Standard.  consists of
4,096 such functions fi, 0 ≤ i < 4, 096.

The UNIX authentication functions in (L) are login, su, and other programs
that confirm a user’s password during execution. This system supplies the
proper element of ; that information may not be available to the user. Some
of these functions may be accessible over a network—for example, through
the telnet or FTP protocols.

The selection functions in (S) are programs such as passwd and nispasswd,
which change the password associated with an entity.

Versions of UNIX and Linux now allow much longer passwords. For example,
FreeBSD 10 (a variant of the UNIX operating system) allows passwords of up
to 128 characters [712]. Also, the hash functions in  are MD5, Blowfish,
SHA-256, SHA-512, an extended form of the original UNIX hashing functions
(see exercise 10), and a hash algorithm compatible with the Microsoft
Windows NT scheme. The binary hashed output of these functions is
translated into printable strings, the precise encoding used varying with the
hash algorithm selected.

The goal of an authentication system is to ensure that entities are correctly
identified. If one entity can guess another’s password, then the guesser can
impersonate the other. The authentication model provides a systematic way
to analyze this problem. The goal is to find an



such that, for

,

and c is associated with a particular entity (or any entity). Because one can
determine whether a is associated with an entity only by computing f(a) or by
authenticating via l(a), we have two approaches for protecting the passwords,
often used simultaneously.

1. Hide enough information so that one of a, c, or f cannot be found.

2. Prevent access to the authentication functions .

EXAMPLE: Many UNIX systems make the files containing complementation
information readable only by root. These schemes, which use shadow
password files, make the set of complements c in actual use unknown. Hence,
there is insufficient information to determine whether or not f(a) is
associated with a user. Similarly, other systems make the set of
complementation functions  unknown; again, the computation of the value
f(a) is not possible. This is an example of the first approach.

As an example of the second approach, consider a site that does not allow the
root user to log in from a network. The login functions exist but always fail.
Hence, one cannot test authentication of root with access to these functions
over a network.

13.3 Password Selection

The goal of password selection schemes is to make the difficulty of guessing
the password as great as possible without compromising the ability of the
user to use that password. Several schemes designed to meet this criterion
have been proposed, and we examine the most common ones here.



13.3.1 Random Selection of Passwords

In this scheme, passwords are generated randomly from some set of
characters and some set of lengths. This minimizes the chances of an attacker
guessing a password.

Theorem 13.1. Let the expected time required to guess a password be T .
Then T is a maximum when the selection of any of a set of possible
passwords is equiprobable.

Proof. See Exercise 1. 

Theorem 13.1 guides random selection of passwords in the abstract. In
practice, several other factors mediate the result. For example, passwords
selected at random include very short passwords. Attackers try short
passwords as initial guesses (because there are few enough of them so that all
can be tried). This suggests that certain classes of passwords should be
eliminated from the space of legal passwords P . The danger, of course, is that
by eliminating those classes, the size of P becomes small enough for an
exhaustive search.

Complicating these considerations is the quality of the random (or
pseudorandom) number generator. If the period of the password generator is
too small, the size of P allows every potential password to be tested. This
situation can be obvious, although more often it is not.

EXAMPLE: Morris and Thompson [1387] tell about a PDP-11 system that
randomly generated passwords composed of eight capital letters and digits,
so to all appearances, |P | = (26 + 10)8 = 368. Testing a password took
0.00156 seconds, so trying all possible passwords would require 140 years.
The attacker noticed that the pseudorandom number generator used on the
PDP-11 had a period of 216 – 1 (because the PDP-11 is a 16-bit machine). This
meant that there were only 216 – 1 = 65, 535 possible passwords. Trying all of
them would take about 102 seconds. It actually took less than 41 seconds to



find all the passwords.

Human factors also play a role in this problem. Psychological studies have
shown that humans can repeat with perfect accuracy about eight meaningful
items, such as digits, letters, or words [109, 457, 1355]. If random passwords
are eight characters long, humans can remember one such password. So a
person who is assigned two random passwords must write them down—and
indeed, studies have shown this to be the case [14]. Although most authorities
consider this to be poor practice, the vulnerabilities of written passwords
depend on where a written password is kept. If it is kept in a visible or easily
accessed place (such as taped to a terminal or a keyboard or pinned to a
bulletin board), writing down the password indeed compromises system
security. However, if wallets and purses are rarely stolen by thieves with
access to the computer systems, writing a password down and keeping it in a
wallet or purse is often acceptable.

Michele Crabb describes a clever method of obscuring the written password
[475]. Let X be the set of all strings over some alphabet. A site chooses some
simple transformation algorithm t : X → A. Elements of X are distributed on
pieces of paper. Before being used as passwords, they must be transformed by
applying t. Typically, t is very simple; it must be memorized, and it must be
changed periodically.

EXAMPLE: The transformation algorithm is: “Capitalize the third letter in the
word, and append the digit 2.” The word on the paper is “Swqgle3”. The
password will be “SwQgle32”.

This scheme is most often used when system administrators need to
remember many different passwords to access many different systems. Then,
even if the paper is lost, the systems will not be compromised.

With computers, this method can use any transformation, including
encryption [759].



13.3.2 Pronounceable and Other Computer-Generated Passwords

A compromise between using random, unmemorizable passwords and
writing passwords down is to use pronounceable passwords. Gasser [755] did
a detailed study of such passwords for the Multics system and concluded that
they were viable on that system.

Pronounceable passwords are based on the unit of sound called a phoneme.
In English, phonemes for constructing passwords are represented by the
character sequences cv, vc, cvc, or vcv, where v is a vowel and c a consonant.

EXAMPLE: The passwords “helgoret” and “juttelon” are pronounceable
passwords; “przbqxdf” and “zxrptglfn” are not.

The advantage of pronounceable passwords is that fewer phonemes need to
be used to reach some limit, so that the user must memorize “chunks” of
characters rather than the individual characters themselves. In effect, each
phoneme is mapped into a distinct character, and the number of such
characters is the number of legal phonemes. In general, this means that the
number of pronounceable passwords of length n is considerably lower than
the number of random passwords of length n. Hence, an off-line dictionary
attack is expected to take less time for pronounceable passwords than for
random passwords.

Assume that passwords are to be at most 8 characters long. Were these
passwords generated at random from a set of 96 printable characters, there
would be 7.23 × 1015 possible passwords. But if there are 440 possible
phonemes, generating passwords with up to 6 phonemes produces
approximately the same number of possible passwords. One can easily
generalize this from phonemes to words, with similar results.

One way to alleviate this problem is through key crunching [816].

Definition 13–3. Let n and k be two integers, with n ≥ k. Key crunching is



the hashing of a string of length n or less to another string of length k or less.

Cryptographic hash functions such as the ones in Section 10.4 are used for
key crunching.

Pronounceable password mechanisms often suffer from a “smallest bucket”
problem [739]. The probabilities of the particular phonemes, and hence the
passwords, are not uniform, either because users reject certain generated
passwords as unpronounceable (or impossible for that particular user to
remember) or because the phonemes are not equiprobable in the chosen
natural language. So the generated passwords tend to cluster into “buckets”
of unequal distribution. If an attacker can find a “bucket” containing an
unusually large number of passwords, the search space is reduced
dramatically. Similarly, if an attacker can find a bucket with an unusually
small number of passwords that users might be likely to select, the search
space again is reduced dramatically. Indeed, Ganesan and Davies [739]
examined two pronounceable password schemes and found the distribution
of passwords into the buckets to be non-uniform.

Figure 13–1: Results of Klein’s password guessing experiments
[1070]. The percentages are from 15,000 potential passwords
selected from approximately 50 different sites. Percents are over
all password hashes, not simply the ones guessed.



13.3.3 User Selection of Passwords

Psychological studies have shown that people can remember items (such as
passwords) better when they create them. This generation effect [560,1773]
means that user-created passwords will be more memorable than computer-
generated ones. Countering this advantage is that users tend to select familiar
passwords such as dictionary words, as discussed above. Thus, when users
can select passwords, the selection mechanism should constrain what
passwords users are allowed to select. This technique, called proactive
password selection [223], enables users to propose passwords they can
remember, but rejects any that are deemed too easy to guess. It has several
variations; the most widely used are text-based passwords.

The set of passwords that are easy to guess is derived from experience
coupled with specific site information and prior studies [911, 1387, 1809].
Klein [232, 1070] took 13,892 password hashes and used a set of dictionaries
to guess passwords. Figure 13–1 summarizes his results.

Later studies [303, 310, 1320, 2054] have produced similar results. Unlike
Klein’s, these studies did not guess passwords, using instead user surveys or
publicly disclosed passwords. Nevertheless, they are illuminating. As Figure
13–2 shows, Bryant and Campbell [310] found most passwords are between 6
and 9 characters long even when they can be longer. Further, alphanumeric
passwords dominate. Other studies confirm this.

Some categories of passwords that researchers have found easy to guess are
any of the following.

1. Account names



Figure 13–2: Results of Bryant’s and Campbell’s password surveys
[310]. The percents are from passwords used by 884 participants
in the study.

2. User names

3. Computer names

4. Dictionary words

5. Patterns from the keyboard

6. Letters, digits, or letters and digits only

7. Passwords used in the past

8. Passwords with too many characters in common with the previous
(current) password

9. Variants such as replacing letters with control characters, “a” with “2” or
“4”, “e” with “3”, “h” with “4”, “i” with “1”, “l” with “1”, “o” with “0”, “s” with
“5” or “$”, and “z” with “5”

Additionally, passwords that are short are easily found (the length of “short”
depends on the current technology).

EXAMPLE: The strings “hello” and “mycomputer” are poor passwords
because they violate criteria 4. The strings “qwertyuiop[” and “311t3$p32k”
are also poor as the first is the top row of letters from a U.S. keyboard
(violating criterion 5), and the second is the word “elitespeak” modified as in
criterion 9.

Good passwords can be constructed in several ways. Perhaps the best way is
to pick a verse from an obscure text or poem (or an obscure verse from a well-
known poem) and select the characters for the string from its letters. An
experiment showed passwords generated in this way were more resistant to



guessing than passwords generated in other ways [1121].

EXAMPLE: Few people can recite the third verse of “The Star-Spangled
Banner” (the national anthem of the United States):

And where is that band who so vauntingly swore

That the havoc of war and the battle’s confusion

A home and a country should leave us no more?

Their blood has wiped out their foul footsteps’ pollution.

No refuge could save the hireling and slave

From the terror of flight, or the gloom of the grave:

And the star-spangled banner in triumph doth wave

O’er the land of the free and the home of the brave

Choose the second letter of each word of length 4 or greater of the first 4
lines, alternating case, and add punctuation from the end of the lines followed
by a “+” and the initials of the author of the poem: “WtBvStHbChCsLm?
TbWtF.+FSK”. This is also a password that is hard to guess. But see Exercise
5.

Definition 13–4. A proactive password checker is software that enforces
specific restrictions on the selection of new passwords. These restrictions are
called the password policy.

A proactive password checker must meet several criteria [232]:

1. It must always be invoked. Otherwise, users could bypass the proactive
mechanism.

2. It must be able to reject any password in a set of easily guessed passwords



(such as in the list above).

3. It must discriminate on a per-user and a per-site basis. Passwords suitable
at one organization may be very poor at another.

4. It should have a pattern-matching facility. Many common passwords, such
as “aaaaa”, are not in dictionaries but are easily guessed. A pattern-matching
language makes detecting these patterns simple.

5. It should be able to execute subprograms and accept or reject passwords
based on the results. This allows the program to handle spellings that are not
in dictionaries. It also allows administrators to extend the password filtering
in unanticipated ways.

6. The tests should be easy to set up, so administrators do not erroneously
allow easily guessed passwords to be accepted.

EXAMPLE: The proactive password checker OPUS [1810] addresses the sizes
of dictionaries. Its goal is to find a compact representation for very large
dictionaries. Bloom filters provide the mechanism. Each word in the
dictionary is run through a hash function that produces an integer hi of size
less than some parameter n. This is repeated for k different hash functions,
producing k integers h1, . . . , hk. The OPUS dictionary is represented as a bit
vector of length n. To put the word into the OPUS dictionary, bits h1, . . . , hk
are set.

When a user proposes a new password, that word is run through the same
hash functions. Call the output

. If any of the bits

are not set in the OPUS dictionary, the word is not in the OPUS dictionary
and is accepted. If all are set, then to some degree of probability the word is in



a dictionary fed to OPUS and should be rejected.

EXAMPLE: Ganesan and Davies [739] propose a similar approach. They
generate a Markov model of the dictionary, extract information about
trigrams, and normalize the results. Given a proposed password, they test to
see if the word was generated by the Markov model extracted from the
dictionary. If so, it is deemed too easy to guess and is rejected.

Both these methods are excellent techniques for reducing the space required
to represent a dictionary. However, they do not meet all the requirements of a
proactive password checker and should be seen as part of such a program
rather than as sufficient on their own.

EXAMPLE: A “little language” designed for proactive password checking
[224] was based on these requirements. The language includes functions for
checking whether or not words are in a dictionary (a task that could easily use
the techniques of OPUS or Ganesan and Davies). It also included pattern
matching and the ability to run subprograms, as well as the ability to compare
passwords against previously chosen passwords.

The language contained pattern matching capabilities. If the variable gecos
contained the string

Matt Bishop, 2209 Watershed Science

then the expression

setpat “$gecos” “^\([\^,]*\), \(.*\)$” name office

matches the pattern with the value of gecos (obtained by prefixing a “$” to the
variable name). The strings matched by the subpatterns in “\(” and “\)” are
assigned to the variables name and office (so name is “Matt Bishop” and
office is “2209 Watershed Science”). Equality and inequality operators work



as string operators. All integers are translated to strings before any
operations take place. In addition, functions check whether words are in a file
or in the output of programs.

A logical extension of passwords is the passphrase.

Definition 13–5. A passphrase is a password composed of multiple words
and, possibly, other characters.

Given advances in computing power, passwords that were once deemed
secure are now easily discoverable. A passphrase increases the length of
passwords while allowing the user to pick something that is easier to
remember. Passphrases may come from known texts, or from the user’s own
imagery.

EXAMPLE: Continuing with “The Star Spangled Banner”, one might generate
a passphrase from the third and sixth line: “A home and a country should
leave us no more? From the terror of flight, or the gloom of the grave:”.
Another example comes from the comic xkcd [1408], where the passphrase
“correct horse battery staple” has as a memory aid a horse looking at
something and saying “That’s a battery staple”, and someone saying
“Correct!”.

The memorability of user-selected passwords and passphrases is a good
example of how environment affects security. Given the ubiquity of web
servers that require passwords, people will re-use passwords. One study [691]
found that the average user has between 6 and 7 passwords, and each is
shared among about 4 sites; the researchers obtained this information from
users who opted in to a component of a browser that recorded information
including statistics about their web passwords (but not the password itself).
The question is how people select these passwords.

Ana Maria de Alvaré [516] observed that users are unlikely to change a
password until they find the password has been compromised; she also found



they construct passwords that are as short as the password changing
mechanism will allow.

Passphrases appear no harder to remember than passwords. Keith et al.
[1025] conducted an experiment with three groups, one of which received no
guidance about password selection, one of which had to select passwords that
were at least 7 characters long, and one of which needed to pick a passphrase
of at least 15 characters; the latter two groups’ selections also had to have an
upper-case letter, a lower-case letter, and a non-letter. They then monitored
login attempts to a course web site over the term, and found no signifi-cant
difference in the login failure rates after correcting for typographical errors.
However, there were significantly more typographical errors among the users
with passphrases. Later work [1026] showed that if passphrases consisted of
text such as found in normal documents (called “word processing mode” or
WPM), the rate of typographical errors dropped. Of course, one potential
problem is that users may choose words from a small set when creating
passphrases.

One widely-used method for keeping track of passwords is to encipher them
and store them using a password wallet.

Definition 13–6. A password wallet or password manager is a mechanism
that encrypts a set of a user’s passwords.

The wallet allows users to store multiple passwords in a repository that is
itself encrypted using a single cryptographic key, so the users need only
remember that key (sometimes called a master key). The advantage is that
the master key can be quite complex, as that is the only password the user
ned remember. But there are two disadvantages: accessibility and cascading
disclosure.

The user must have access to the password wallet whenever she needs a
password. The widespread use of portable computing on cellular telephones,
tablets, and laptops has ameliorated this availability problem, but absent



such devices the user needs access to the system or systems where the wallet
is stored. Further, if the user’s master password is discovered, for example
because it is easy to guess or the system with the password wallet is
compromised, then all passwords in the wallet are also disclosed.

13.3.4 Graphical Passwords

These schemes require a user to draw something to authenticate. The system
encodes this drawing in some way and compares it to a stored encoding of an
initial drawing made by that user. If the two match, the user is successfully
authenticated. Here,  is the set of all possible graphical elements,  the
stored representation of the graphical elements, and  the set of functions
that compare the graphical elements to the complementary information.

Biddle, Chiasson, and van Oorschot [197] categorize these schemes based on
how the user is expected to remember the password.

Recall-based systems require users to recall and draw a secret picture. The
selection functions

typically supply a grid for the users to draw their picture. The picture can be a
continuous stroke or several disconnected strokes. The system encodes this as
a sequence of co-ordinates. When a user logs in and supplies the password,
the entered password is encoded and the result compared to the stored
encoding. Some systems require an exact match; others require that the
entered drawing be “close enough” to the stored one.

Recognition-based systems require users to recognize a set of images.
Typically, a user is presented with a collection of images and must select one
or more images from that set. These systems use images of faces, art images,
and pictures of all kinds. Then the user must select the those images (or a
subset of them) from sets of images presented when authentication is
required. A variation is to require the images to be selected in the order users
first chose them in.



Cued-recall systems require users to remember and identify specific locations
within an image. The system assigns the user an image, and the user
initializes his password by selecting some number of places or points in the
image. To authenticate, the user simply selects the same set when presented
with the image. The effectiveness of this scheme depends in part upon how
the system determines when the points selected are close enough to the initial
points.

All these schemes require that the set of possible drawings  is sufficiently
large to inhibit guessing attacks. Even in that case, users usually draw
patterns of some kind, so searching based on common patterns is often
fruitful, just as searching for common words and patterns is often fruitful in
text-based passwords.

The expectation is that the set of possible graphical elements  in each of
the schemes is sufficiently large to inhibit guessing attacks. However, just
with text-based passwords, the graphical elements are often selected from a
much smaller space. For example, users often draw or select patterns of some
kind in recall-based systems, and select prominent features or points in cued-
based systems, so searching based on common patterns is often fruitful, just
as searching for common words and patterns is often fruitful in text-based
passwords. Recognition-based systems suffer from a similar problem; for
example, when the images are faces, user selection is influenced by race and
gender [197].

Human factors play a large role in the effectiveness of graphical passwords.
Stobert and Biddle [1838] studied the memorability of graphical passwords
and found that users could remember recognition-based graphical passwords
the best but slow login times hindered their usability. They proposed a
scheme that combined recall-based and recognition-based schemes and
found it more effective than either individual scheme. A different experiment
used a cued-recall system that presented image components in different ways
when the password was created. The distribution of passwords changed



depending on the order of component presentation [1890]. As the security
depends on the distribution of passwords this means that presentation must
be considered when users are selecting cued-recall-based passwords.

13.4 Attacking Passwords

Guessing passwords requires either the set of complementation functions and
complementary information or access to the authentication functions. In both
approaches, the goal of the defenders is to maximize the time needed to guess
the password. A generalization of Anderson’s Formula [51] provides the
fundamental basis.

Let P be the probability that an attacker guesses a password in a specified
period of time. Let G be the number of guesses that can be tested in one time
unit. Let T be the number of time units during which guessing occurs. Let N
be the number of possible passwords.

Then

.

EXAMPLE: Let R be the number of bytes per minute that can be sent over a
communication line, let E be the number of characters exchanged when
logging in, let S be the length of the password, and let A be the number of
characters in the alphabet from which the characters of the password are
drawn. The number of possible passwords is N = AS, and the number of
guesses per minute is

. If the period of guessing extends M months, this time in minutes is T = 4.32
× 104M. Then



or

, the original statement of Anderson’s Formula.

EXAMPLE: Let passwords be composed of characters drawn from an
alphabet of 96 characters. Assume that 5 × 108 guesses can be tested each
second. We wish the probability of a successful guess to be 0.001 over a 365-
day period. What is the minimum password length that will give us this
probability?

From the formulas above, we want

. Thus, we must choose an integer S such that

This holds when S ≥ 10. So, to meet the desired conditions, passwords of at
least length 10 must be required.

Several assumptions underlie these examples. First, the time required to test
a password is constant. Second, all passwords are equally likely to be selected.
The first assumption is reasonable, because the algorithms used to validate
passwords are independent of the password’s length, or the variation is
negligible. The second assumption usually does not hold, leading attackers to
focus on those passwords they expect users to select. This leads to dictionary
attacks.

Definition 13–7. A dictionary attack is the guessing of a password by
repeated trial and error.

The name of this attack comes from the list of words (a “dictionary”) used for
guesses. The dictionary may be a set of strings in random order or (more



usually) a set of strings in decreasing order of probability of selection.

13.4.1 Off-Line Dictionary Attacks

This version assumes the sets  of complementation functions and  of
complementary information is known to the attacker.

Definition 13–8. In an off-line dictionary attack, the attacker takes each
guess g and computes f(g) for each

. If f(g) corresponds to the complementary information for entity E, then g
authenticates E under f.

Figure 13–3: Search tables. Part (a) shows the computation
process. Part (b) shows what is stored.

EXAMPLE: Attackers who obtain a UNIX system’s password file can use the
(known) complementation functions to test guesses. (Many programs
automate this process [2070].) This is an off-line attack. But the attackers
need access to the system to obtain the complementation data in the
password file. To gain access, they may try to guess a password using the
authentication function. They use a known account name (such as root) and
guess possible passwords by trying to log in. This is an on-line attack.

The issue of efficiency controls how well an authentication system withstands
dictionary attacks. Precomputation speeds up off-line dictionary attacks. One
method is due to Martin Hellman [899], and was originally designed to find



DES keys.

Let

be the complementation function. Choose m passwords

. Let

be a function that transforms an element of  into an element of  (r is called
the reduction function). For each password, let xpi,0 = spi, and compute xpi,j
= f(r(xpi,j–1)) for j = 1, . . . , t. Let epi = xpi,t. The pairs (spi, epi) are then stored
in a table T , and the intermediate values discarded. Figure 13–3a shows this
process, and Figure 13–3b shows the stored table.

An attacker wants to determine the password p that has the complementary
information c = f(p). First, she looks at the epi in the table. If there is an i such
that epi = c, then p is the value in the next-to-last column in Figure 13–3a
because that value was used to produce epi. To find it, the attacker
reconstructs the chain of hashes leading up to epi. If c does not match any of
the epi, then the attacker computes f(p) and compares it to the epi. On a
match, p is in the second-to-last column; to find it, the attacker reconstructs
that chain. The process iterates until the password is found or until the
password is determined not to be in the table.

Rivest [535, p. 100] suggested a simple optimization. Rather than choose the
endpoints based on a parameter t, choose them based on a property of the
value of the endpoints, for example that the first n bits are 1, that is expected
to hold after t iterations. Then, given a hash, iterate the complementation
function (and reduction function) until an endpoint is generated. This
produces variable-length chains.

One problem with these tables lies in collisions. When the computation of two



chains produces the same value at any intermediate point, the chains merge.
Rainbow tables [1476] allow collisions without merging. To do this, multiple
reduction functions are used. So for each password, xpi,j = f(ri(xpi,j–1)) for j =
1, . . . , t. This allows collisions, but in order for two chains to merge, the
collisions must occur for the same value j in both chains.

13.4.1.1 Salting

If an off-line dictionary attack is aimed at finding any user’s password (as
opposed to a particular user’s password), a technique known as salting
increases the amount of work required [1387]. Salting makes the choice of
complementation function a function of randomly selected data. Ideally, the
random data is different for each user. Then, to determine if the string s is the
password for any of a set of n users, the attacker must perform n
complementations, each of which generates a different complement. Thus,
salting increases the work by the order of the number of users.

EXAMPLE: Linux and UNIX-like systems use salts that are generated when
the password is selected. As an example, FreeBSD 10 defines 3 schemes.

In the traditional scheme, the salt is a 12 bit integer chosen at random. The
specific complementation function depends on the salt. The E table in the
DES (see Figure F.3a) is perturbed in one of 212 = 4, 096 possible ways — if
bit i in the salt is set, table entries i and i + 24 are exchanged [1387] — and the
message of all 0 bits is enciphered using the password as a key. The result of
the encipherment is then enciphered with the password, iterating this
procedure until 25 encipherments have occurred. The resulting 64 bits are
mapped into 11 characters chosen from a set of 64 characters. The salt is split
into two sets of six bits, and those sets are mapped to printable characters
using the same alphabet. The 11-character representation of output is
appended to the two-character representation of the salt. The authentication
function is chosen on the basis of the salt also; hence, the salt must be
available to all programs that need to verify passwords.



In the extended scheme, the system stores a salt of 24 bits and a count of 24
bits, and the password can be any length. The password is transformed into a
DES key by enciphering the first 8 bytes with itself using the DES; the result
is xor’ed with the next 8 bytes of the password, and the result is enciphered
with itself. This continues until all characters of the password have been used.
Next, the salt is used to perturb the E-table as in the traditional scheme. The
result of the password transformation is used as the key to encipher the
message of all 0 bits, as in the traditional scheme, but the encipherment
iterates the number of times indicated by count, rather than 25. The result is
then transformed into a printable string, using the same technique as in the
traditional algorithm.

In the modular scheme, one of 5 algorithms is used: MD5, Blowfish, SHA256,
SHA-512, and the scheme used in Windows NT. The salts in these cases are
treated as character strings and combined with the password during the
hashing. The advantage to these schemes over the traditional one is that the
password can be any length, and the length of the salt depends on the
algorithm used (for example, SHA-256 and SHA-512 allow a salt of at most 16
characters).

In all cases, the salt and password hash are stored as a string. To determine
which scheme is used, the system looks at the first characters of the stored
string. If the first character is “_”, then the extended scheme is being used. If
it is “$”, the following characters up to the next “$” indicate which algorithm
of the modular scheme is to be used. Otherwise, the traditional scheme is
used.

13.4.2 On-Line Dictionary Attacks

If either the complementary information or the complementation functions
are unavailable, the authentication functions

may be used.



Definition 13–9. In an on-line dictionary attack, the attacker supplies the
guess g to an authentication function

. If l returns true, g is the correct password.

Although using the authentication functions that systems provide for
authorized users to log in sounds difficult, the patience of some attackers is
amazing. One group of attackers guessed passwords in this manner for more
than two weeks before gaining access to one target system.

Unlike an off-line dictionary attack, this attack cannot be prevented, because
the authentication functions must be available to enable legitimate users to
access the system. The computer has no way of distinguishing between
authorized and unauthorized users except by knowledge of the password.

Defending against such attacks requires that the authentication functions be
made difficult for attackers to use, or that the authentication functions be
made to react in unusual ways. Several types of techniques are common.

Backoff techniques increase the time between interactions as the number of
interactions increases. One such technique, exponential backoff, begins when
a user attempts to authenticate and fails. Let x be a parameter selected by the
system administrator. The system waits x0 =1 second before reprompting for
the name and authentication data. If the user fails again, the system
reprompts after x1 = x seconds. After n failures, the system waits xn–1 seconds.
Other backoff techniques use arithmetic series rather than geometric series
(reprompting immediately, then waiting x seconds, then waiting 2x seconds,
and so forth).

EXAMPLE: If a user fails to supply a valid name and the corresponding
password in 3 tries, FreeBSD 9.0 applies a linear backoff scheme. It adds a 5
second delay in prompting for every attempt beyond the third try.

On the web, this approach is infeasible as one can simply disconnect from the



site and then reconnect. Instead, web sites use CAPTCHAs2, which are visual
or audio tests that are easy for humans to solve, but difficult for humans to
solve [1958]. The test may require the user to type a sequence of characters
presented on a grainy background with the characters positioned at various
angles. It may have the user identify specific objects in a set of images with
complex or cluttered backgrounds. Concerns about the ease of use of
CAPTCHAs, especially audio CAPTCHAs, have been raised [328, 2055], and
several services exist that will solve CAPTCHAs on request [1395].

2The acronym stands for “Completely Automated Public Turing tests to tell
Computers and Humans Apart.”

An alternate approach is disconnection. After some number of failed
authentication attempts, the connection is broken and the user must
reestablish it. This technique is most effective when connection setup
requires a substantial amount of time, such as redialing a telephone number.
It is less effective when connections are quick, such as over a network.

EXAMPLE: If a user fails to supply a valid name and the corresponding
password in 10 tries, FreeBSD 9.0 breaks the connection.

Disabling also thwarts on-line dictionary attacks. If n consecutive attempts to
log in to an account fail, the account is disabled until a security manager can
reenable it. This prevents an attacker from trying too many passwords. It also
alerts security personnel to an attempted attack. They can take appropriate
action to counter the threat.

One should consider carefully whether to disable accounts and which
accounts to disable. A (possibly apocryphal) story concerns one of the first
UNIX vendors to implement account disabling. No accounts were exempt
from the rule that 3 failed logins disabled the account. An attacker broke into
a user account, and then attempted to log in as root three times. The system
disabled that account. The system administrators had to reboot the system to
regain root access.



EXAMPLE: Linux systems and Windows 7, 8, and 10 systems have the ability
to disable accounts after failed logins. Typically, the Linux root account
cannot be disabled. The Windows administrator account can be locked out
(the equivalent of “disabled” in this context) from network logins, but not
from local logins.

Jailing gives the unauthenticated user access to a limited part of the system
in order to gull that user into believing that he or she has full access. The jail
then records the attacker’s actions. This technique is used to determine what
the attacker wants or simply to waste the attacker’s time.

EXAMPLE: An attacker was breaking into the computers of AT&T Bell
Laboratories. Bill Cheswick detected the attack and simulated a slow
computer system. He fed the attacker bogus files and watched what the
attacker did. He concluded that keeping the jail was not an effective way to
discover the attacker’s goals [404].

One form of the jailing technique is to plant bogus data on a running system,
so that after breaking in the attacker will grab the data. (This technique,
called honeypots, is often used in intrusion detection. See Section 27.3.2.1,
“Containment Phase.”) Clifford Stoll used this technique to help trap an
attacker who penetrated computers at the Lawrence Berkeley Laboratory. The
time required to download the bogus file was sufficient to allow an
international team to trace the attacker through the international telephone
system [1840, 1842].

13.4.3 Password Strength

How well the password selection schemes work to produce passwords that
are difficult to guess requires an examination of selected passwords. Some
data sets come from users or system administrators who cooperate with the
researchers performing the study; others come from data sets gathered by
attackers who compromise the passwords in some way and distribute them,
or are themselves compromised.



A NIST report [326] uses the standard definition of entropy (see Appendix C)
and defines two additional types of entropy.

Definition 13–10. Guessing entropy is the the expected amount of work to
guess the password of a selected user.

Definition 13–11. Given a set of passwords, min-entropy is the expected
amount of work to guess any single password in the set.

Computing these requires that the distribution of passwords be known.

EXAMPLE: Suppose passwords are randomly assigned. Each password is
composed of 8 characters drawn from a set of 94 characters each of which is
equally likely to be chosen. Then the entropy of each password is lg 948 ≈ lg
(6.1 × 1015) ≈ 52.4. As any password in the set of possible passwords is equally
likely to be assigned, the guessing entropy and min-entropy are the same.

When users select passwords, the password policy controlling the selection
affects the entropy of the passwords.

EXAMPLE: The NIST report considers three scenarios: one where users can
select any password, one in which users can select any password not in a
dictionary, and one in which users must include a mixture of case and non-
alphabetic characters in their password. Following various studies [1708,
1738], they assume:

1. The entropy of the first character is 4 bits;

2. The entropy of the next seven characters (2–8) is 2 bits per character;

3. The entropy of the next twelve characters (9–20) is 1.5 bits per character;

4. The entropy of all subsequent characters is 1 bit per character;

5. If the password policy is that of the second scenario, up to 6 bits are added
to the computed entropy; and



6. If the password policy is that of the last scenario, 6 bits are added to the
computed entropy.

Under these assumptions, the guessing entropies of an 8 character password
under each of the 3 scenarios are 18, 24, and 30 bits respectively (contrast
that to 52.4 bits for a random password), and for a 16 character password, the
guessing entropies are 30, 32, and 38 bits respectively (and for a random
password of that length, the guessing entropy is 105.4 bits).

Computing the min-entropy is much more difficult because, as noted, users
often select easy to guess passwords. So the NIST report provides a password
policy that will ensure at least 10 bits of min-entropy. That policy disallows:

1. Detectable permutations of user names; or

2. Passwords matching a list of at least 50,000 common passwords, ignoring
case.

They note that requiring users to choose passwords of at least 15 characters
will probably produce a min-entropy of at least 10.

Unfortunately, there is no way to convert Shannon entropy into guessing
entropy [1941]; indeed, Weir et al. [2001] show experimentally that these
metrics do not reflect the strength of passwords in practice. Bonneau [265]
presents alternate metrics including one based on the attacker’s desired
success rate. He validated this metric using a study of anonymized statistical
data gathered from 70,000,000 Yahoo! passwords.3

3The passwords themselves were not collected, and Yahoo!’s legal team
approved the data gathering and analysis [265].

Florêncio and Herley [691] gathered data about passwords used to access web
sites. For privacy reasons, they did not record passwords. Instead, they
divided the set of characters into 4 alphabets: lower case letters (‘a’ to ‘z’, 26
characters), upper case letters (‘A’ to ‘Z’, 26 characters), digits (‘0’ to ‘9’, 10



characters), and other (22 special characters). Let the number of characters in
the alphabets used be α and the password length be L. They calculated the
password strength as log2 αL. When they applied their metric to passwords
used at various web sites, they noted that the more important the service
provided to the user, the stronger the password seemed to be; passwords for
the New York Times web sites, for example, averaged a strength of 37.86,
whereas passwords for employees accessing a corporate web site had an
average strength of 51.36.

Kelley et al. used an alternate approach [1027]. They used Mechanical Turk to
create a study that required users to select a password that conformed to one
of seven policies, and then use it again several days later to obtain a small
payment. Users were given one of two scenarios, the first involving a
password protecting low value information (an online survey), and the second
a password protecting high value information (email). The passwords had to
conform to a policy chosen from 7 possible policies, such as “passwords must
have at least 16 characters” or “passwords must have at least 8 characters,
including mixed case letters, a symbol, and a digit; it may not contain a
dictionary word.” They collected 12,000 passwords. Next, they defined guess
numbers as the number of guesses required to guess a specific password for a
specific algorithm. Thus, each password had a guess number for the brute-
force algorithm based on a Markov model [2106] and another guess number
of a heuristic algorithm [2002]. They found that the best password policy
changed as more guesses were made; ultimately, requiring passwords to be at
least 16 characters long had the greatest guessing number.

Password meters provide an estimate of password strength [350,365]. When
users change passwords, the presence of a password meter matters more than
the meter’s design, and their influence depends on the context in which the
password will be used; if the user considers the account iportant, the
password chosen will be stronger than when the meter is not present [620].

13.5 Password Aging



Guessing passwords requires that access to the sets of complements and
complementation functions, or the set of authentication functions be
obtained. If none of these have changed by the time the password is guessed,
then the attacker can use the password to access the system.

Consider the last sentence’s conditional clause. The techniques discussed in
Section 13.3 attempt to negate the part saying “the password is guessed” by
making that task difficult. The other part of the conditional clause, “if none of
these have changed,” provides a different approach: ensure that, by the time a
password is guessed, it is no longer valid.

Definition 13–12. Password aging is the requirement that a password be
changed after some period of time has passed or after some event has
occurred.

Assume that the expected time to guess a password is 90 days. Then changing
the password more frequently than every 90 days will, in theory, reduce the
probability that an attacker can guess a password that is still being used. In
practice, aging by itself ensures little, because the estimated time to guess a
password is an average; it balances those passwords that can be easily
guessed against those that cannot. If users can choose passwords that are
easy to guess, the estimation of the expected time must look for a minimum,
not an average. Hence, password aging works best in conjunction with other
mechanisms such as the ones discussed in this chapter.

There are problems involved in implementing password aging. The first is
forcing users to change to a different password. The second is providing
notice of the need to change and a user-friendly method of changing
passwords.

Password aging is useless if a user can simply change the current password to
the same thing. One technique to prevent this is to record the n previous
passwords. When a user changes a password, the proposed password is
compared with these n previous ones. If there is a match, the proposed



password is rejected. The problem with this mechanism is that users can
change passwords n times very quickly, and then change them back to the
original passwords. This defeats the goal of password aging.

An alternate approach is based on time. In this implementation, the user
must change the password to one other than the current password. The
password cannot be changed for a minimum period of time. This prevents the
rapid cycling of passwords. However, it also prevents the user from changing
the password should it be compromised within that time period.

EXAMPLE: UNIX and UNIX-like systems use the time period method to age
passwords (when password aging is turned on). They record the time of the
last change, the minimum time before which the password can be changed
again, and the time by which the password must be changed. Different
systems use different formats. Linux systems record the information in terms
of days since January 1, 1970; FreeBSD 10 systems record it in terms of
seconds since midnight of that epoch.

If passwords are selected by users, the manner in which users are reminded
to change their passwords is crucial. Users must be given time to think of
good passwords or must have their password choices checked. Grampp and
Morris [812] point out that, although there is no formal statistical evidence to
support it, they have found that the easiest passwords to guess are on systems
that do not give adequate notice of upcoming password expirations. A study
by Tam et al. [1865] found that sending a warning message 1 day before the
password expired was optimal.

EXAMPLE: Most System V-based UNIX systems give no warnings or
reminders before passwords expire. Instead, when users try to log in, they are
told that their passwords have expired. Before they can complete the logins,
they must change their passwords as part of the login process. Linux systems,
on the other hand, give warning messages every time a user logs in within
some period of time before the password expires. The default period of time is



2 weeks, but can be changed by the system administrator.

In this vein, a further weakness of password aging is how users select the next
password. A study by Zhang, Monrose, and Reiter [2106] found that people
who were given previous passwords for an account with password aging were
able to guess the current password 41% of the time. Further, passwords 17%
of the accounts were guessed in no more than 5 tries. Chiasson and van
Oorschot [406] show that the optimal benefit from password aging is to
reduce the attacker’s expectation of success during the interval between
password changes from 1 (certain success when passwords are not aged) to
0.632 for each period. They conclude that password aging’s effectiveness is
offset by the user interaction issues.

13.5.1 One-Time Passwords

The ultimate form of password aging occurs when a password is valid for
exactly one use.

Definition 13–13. A one-time password is a password that is invalidated as
soon as it is used.

The problems in any one-time password scheme are the generation of
random (or pseudorandom) passwords and the synchronization of the user
and the system. The former problem is solved by using a cryptographic hash
function or enciphering function such as HMAC-SHA-1, and the latter either
by having the system inform the user which password it expects — for
example, by having all the user’s passwords numbered and the system
providing the number of the one-time password it expects — or synchronizing
based on time or a counter.

EXAMPLE: S/Key [858, 859] implements a one-time password scheme. It
uses a technique first suggested by Lamport [1137] to generate the passwords.
Let h be a one-way hash function (S/Key uses MD4 or MD5, depending on
the version). Then the user chooses an initial seed k, and the key generator



calculates

The passwords, in the order they are used, are

Suppose an attacker intercepts pi. Because pi = kn–i+1, pi+1 = kn–i, and h(kn–i)
= kn–i+1, the attacker would need to invert h, or launch a dictionary attack on
h, in order to determine the next password. Because h is a one-way function,
it cannot be inverted. Furthermore, for MD4 and MD5, dictionary attacks are
not a threat provided the seeds are chosen randomly, an assumption we (and
the authors of S/Key) make implicitly.

The S/Key system takes the seed the user enters and generates a list of n
passwords. The implementation presents each password as a sequence of six
short words (but the internal representation is an integer). The user can
generate a numbered list of these sequences. S/Key initializes a database,
called the skeykeys file, with the number of the next password to be supplied
and the hexadecimal representation of the last password correctly supplied.

The protocol proceeds as follows.

1. User Matt supplies his name to the server.

2. The server replies with the number i stored in the skeykeys file.

3. Matt supplies the corresponding password pi.

4. The server computes h(pi) = h(kn–i+1) = kn–i+2 = pi+1 and compares the
result with the stored password. If they match, the authentication succeeds.
S/Key updates the number in the skeykeys file to i – 1 and stores pi in the file.
If the authentication fails, the skeykeys file is left unchanged.

When a user has used all passwords of a particular sequence of passwords,



that user’s entry in the skeykeys file must be reinitialized. This requires the
user to reregister with the S/Key program.

OPIE [1292] is a widely used implementation of S/Key.

EXAMPLE: Two other one-time password schemes use a counter rather than
iterated hash functions. The HMAC-Based One-Time Password Algorithm
(HOTP) [1397] uses the HMAC-SHA-1 cryptographic hash function to hash a
shared secret key k and an 8-byte counter c that is synchronized between the
user and the system. In addition, d ≥ 6 is a system parameter. The algorithm
works as follows.

1. Compute h = HMAC-SHA-1(k, c). The output h = h0 . . . h19 is 20 bytes long.

2. Let b be the low-order 4 bits of h. Then compute hbhb+1hb+2hb+3 Call the
low-order 31 bits p.

3. HOTP(k, c) = p mod 10d.

Each time the algorithm is used to authenticate, the client’s counter is
incremented. However, the server’s counter is incremented only on a
successful authentication. This may result in the counters being out of sync.
So HOTP defines a parameter s on the server. The server then calculates the
next s values, and checks to see if any match. If so, the counters can be
resynchronized.

The Time-Based One-Time Password Algorithm (TOTP) [1398] uses a time-
based value for the counter in HOTP. It defines an initial counter time t0 and
a time step parameter x. The time t used as the counter is

, so the counter value is the same for x time units. TOTP also may use the
HMAC-SHA-256 or HMAC-SHA-512 hash functions instead of the HMAC-
SHA-1 hash function required for HOTP. Clock drift poses a problem, because
it will make the client and server times out of sync, and hence TOTP will fail.



TOTP defines a parameter s that is the number of intervals of size x preceding
and following the current interval. If an authentication request fails, TOTP
can then try s time values preceding the current time, and s values following
it; on a match, the clocks can be resynchronized.

One-time passwords are considerably simpler with hardware support because
the passwords need not be printed on paper or some other medium.

13.6 Challenge-Response

Passwords have the fundamental problem that they are reusable. If an
attacker sees a password, she can later replay the password. The system
cannot distinguish between the attacker and the legitimate user, and allows
access. An alternative is to authenticate in such a way that the transmitted
password changes each time. Then, if an attacker replays a previously used
password, the system will reject it.

Definition 13–14. Let user U desire to authenticate himself to system S. Let
U and S have an agreed-on secret function f. A challenge-response
authentication system is one in which S sends a random message m (the
challenge) to U, and U replies with the transformation r = f(m) (the
response). S validates r by computing it separately.

Challenge-response algorithms are similar to the IFF (identification—friend
or foe) techniques that military airplanes use to identify allies and enemies.

13.6.1 Pass Algorithms

Definition 13–15. Let there be a challenge-response authentication system
in which the function f is the secret. Then f is called a pass algorithm.

Under this definition, no cryptographic keys or other secret information may
be input to f. The algorithm computing f is itself the secret.

EXAMPLE: Haskett [885] suggests using this scheme in combination with a



standard password scheme. After the user supplies a reusable password, a
second prompt is given (Haskett points out that this could be the same as the
system’s standard prompt, to confuse attackers). At this point, the user must
enter some string based on an algorithm. For example, if the prompt
“abcdefg” were given, the appropriate response could be “bdf”; if the prompt
were “ageksido,” the appropriate response could be “gkio” (the algorithm is
every other letter beginning with the second). Or, to use Haskett’s example,
the pass algorithm can alter a fixed password. In this case, at the prompt, the
user would enter “wucsmfxymap” if the terminal were on a dial-in line,
“acdflmq” if it were in a semi-secure area, and “cfm” if it were in a secure
area. Here, “cfm” is the expected password; the location dictates how many
random characters surround each of the letters.

13.6.2 Hardware-Supported Challenge-Response Procedures

Hardware support comes in two forms: a program for a general-purpose
computer and special-purpose hardware support. Both perform the same
functions.

The first type of hardware device, informally called a token, provides
mechanisms for hashing or enciphering information. With this type of device,
the system sends a challenge. The user enters it into the device. The device
returns the appropriate response. Some devices require the user to enter a
personal identification number or password, which is used as a cryptographic
key or is combined with the challenge to produce the response.

The second type of hardware device is temporally based. Every 60 seconds, it
displays a different number. The numbers range from 0 to 10n – 1, inclusive.
A similar device is attached to the computer. It knows what number the
device for each registered user should display. To authenticate, the user
provides his login name. The system requests a password. The user then
enters the number shown on the hardware device, followed by a fixed
(reusable) password. The system validates that the number is the one
expected for the user at that time and that the reusable portion of the



password is correct.

EXAMPLE: The RSA SecurID 700 and 800 Hybrid Authenticator tokens
[2225, 2226] use a system based on time. Every minute, the token outputs a 6
digit number. A set of 6 bars indicates how long until the number changes;
every 10 seconds, one of the bars disappears. In addition to the features
described above, the password is invalidated once a login succeeds. (See
Exercise 12.)

13.6.3 Challenge-Response and Dictionary Attacks

Whether or not a challenge-response technique is vulnerable to a dictionary
attack of type 1 depends on the nature of the challenge and the response. In
general, if the attacker knows the challenge and the response, a dictionary
attack proceeds as for a reusable password system.

EXAMPLE: Suppose a user is authenticating herself using a challenge-
response system. The system generates a random challenge r, and the user
returns the value Ek(r) of r enciphered using the key k. Then the attacker
knows both r and Ek(r) and can try different values of k until the
encipherment of r matches Ek(r).

In practice, it is not necessary to know the value of r. Most challenges are
composed of random data combined with public data that an attacker can
determine.

EXAMPLE: In the authentication system Kerberos [1832], an authentication
server enciphers data consisting of a name, a timestamp, some random data,
and a cryptographic key. An attacker does not see the original data sent to the
server. By knowing the form and contents of part of the data sent back, the
attacker can try cryptographic keys until the known parts of the enciphered
data decipher correctly. From this, she can derive the cryptographic key to be
used in future communications. Researchers at Purdue University combined
this with a weakness in key generation to compromise Kerberos Version 4



[582].

Bellovin and Merritt [166] propose a technique, called encrypted key
exchange (EKE), that defeats off-line dictionary attacks. Basically, it ensures
that random challenges are never sent in the clear. Because the challenges are
random, and unknown to the attacker, the attacker cannot verify when she
has correctly deciphered them. Hence, the off-line dictionary attack is
infeasible.

The protocol assumes that Alice shares a secret password with Bob.

1. Alice uses the shared password s to encipher a randomly selected public key
p for a public key system. Alice then forwards this key, along with her name,
to Bob.

2. Bob determines the public key using the shared password, generates a
random secret key k, enciphers it with p, enciphers the result with s, and
sends it to Alice.

3. Alice deciphers the message to get k. Now both Bob and Alice share a
randomly generated secret key. At this point, the challenge-response phase of
the protocol begins.

Alice generates a random challenge rA, enciphers it using k, and sends Ek(rA)
to Bob.

4. Bob uses k to decipher rA. He then generates a random challenge rB and
enciphers both with k to produce Ek(rArB). He sends this to Alice.

5. Alice deciphers the message, validates rA, and determines rB. She enciphers
it using k and sends the message Ek(rB) back to Bob.

6. Bob deciphers the message and verifies rB.

At this point, both Alice and Bob know that they are sharing the same random



key k. To see that this system is immune to off-line dictionary attacks, look at
each exchange. Because the data sent in each exchange is randomly selected
and never visible to the attacker in plaintext form, the attacker cannot know
when she has correctly deciphered the message.

13.7 Biometrics

Identification by physical characteristics is as old as humanity. Recognizing
people by their voices or appearance, and impersonating people by assuming
their appearance, was widely known in classical times. Efforts to find physical
characteristics that uniquely identify people include the Bertillion cranial
maps, fingerprints, and DNA sampling. Using such a feature to identify
people for a computer would ideally eliminate errors in authentication.

Biometrics is the automated measurement of biological or behavioral features
that identify a person [1350]. When a user is given an account, the system
administration takes a set of measurements that identify that user to an
acceptable degree of error. Whenever the user accesses the system, the
biometric authentication mechanism verifies the identity. Lawton [1150]
points out that this is considerably easier than identifying the user because no
searching is required. A comparison to the known data for the claimed user’s
identity will either verify or reject the claim. Characteristics used are
fingerprints, voice characteristics, eyes, facial features, keystroke dynamics,
and other personal attributes [964].

Because biometrics are measurements of the characteristics of the individual,
people are tempted to believe that attackers cannot pose as authorized users
on systems that use biometrics. Several assumptions underlie this belief
[1575, 1695].

1. The biometric data is initialized properly. This means that the biometric
data is that of the person whose identity it is bound to. If, for example, Ann’s
fingerprint is listed as being Penny’s, then the biometric device will



incorrectly identify Ann as Penny.

2. The biometric device is accurate in the environment in which it is used. For
example, if a fingerprint scanner is under observation, having it scan a mask
of another person’s finger would be detected. But if it is not under
observation, such a trick might not be detected and the unauthorized user
might gain access.

3. The methods and algorithms by which the input biometric is compared to
the stored biometrics only return a successful match when the two biometrics
belong to the same person. The problem here is that most biometrics vary
between measurements. The comparison must take these variations into
account. If the algorithm requires too precise a match, the biometric validator
might return a false negative. Conversely, if the algorithm accepts too large a
variance, the validator might return a false positive. Either of these situations
compromises security.

4. The stored biometric data and the software validating the input biometric
input has not been corrupted. If the former has been, Ann’s stored biometric
data may be replaced with Penny’s, so Penny is incorrectly identified as Ann.
Corrupting the software can cause it to return a match when there is no
match, or vice versa.

5. The transmission from the biometric device to the computer’s analysis
process is tamperproof. Otherwise, one could corrupt the transmission,
causing a variety of security problems.

6. The transmission from the biometric device to the computer’s analysis
process is not a replay. Otherwise, one could record a legitimate
authentication and replay it later to gain access.

If any of these assumptions do not hold, then an attacker can authenticate as
someone else. Thus, biometric mechanisms must ensure these assumptions
are satisfied to the greatest possible degree. Exercise 13 explores these in



more detail.

We now briefly explore some commonly used biometrics.

13.7.1 Fingerprints

Fingerprints can be measured in a variety of ways, and new ones are being
developed. Two examples will show how they work.

Optical devices use cameras. The finger is placed onto a clear, lighted surface,
usually a prism. The prism is illuminated, and the light reflects off the surface
where the fingerprint rests to a camera. The fingerprint ridges obscure the
rays from the light source, causing the ridges to appear as dark parts of the
image [922]. Feature extraction methods then build a representation of the
fingerprint that can be stored.

A capacitative technique uses the differences in electrical charges of the
whorls on the finger to detect those parts of the finger touching a chip and
those raised. The data is converted into a graph in which ridges are
represented by vertices and vertices corresponding to adjacent ridges are
connected. Each vertex has a number approximating the length of the
corresponding ridge. At this point, determining matches becomes a problem
of graph matching [956]. This problem is similar to the classical graph
isomorphism problem, but because of imprecision in measurements, the
graph generated from the fingerprint may have different numbers of edges
and vertices. Thus, the matching algorithm is an approximation.

EXAMPLE: Apple’s TouchID system on iPhones, iPads, and some laptops
uses a capacitative system to gather data from the finger pressing on the
home button [2127].

A technique that uses finger vein biometrics captures an image of the finger
using an infrared camera. This shows the veins and shades produced by other
internal structures such as bones and muscles. An image of the attributes is



then extracted. One way is to use an adaptive technique determines the
threshold for the light parts of the image (veins, etc.), clarifying the image.
Then various noise reduction algorithms remove irregularities, and the
resulting image is translated into the storage form. Experiments show this
method achieves a very high identification rate, with few false recognitions
[1406]. Another method locates the valley-like structures in the image (the
veins), and compares the number of matching pixels in the image with the
number of pixels in the patterns. This method also shows a low error rate in
experiments [1800].

Like all authentication mechanisms, fingerprints can be spoofed [1932],
leading to the development of countermeasures [1256].

13.7.2 Voices

Authentication by voice, also called speaker verification or speaker
recognition, involves recognition of a speaker’s voice characteristics [345] or
verbal information verification [1177, 1178]. The former uses statistical
techniques to test the hypothesis that the speaker’s identity is as claimed. The
system is first trained on fixed pass-phrases or phonemes that can be
combined. To authenticate, either the speaker says the pass-phrase or repeats
a word (or set of words) composed of the learned phonemes. Verbal
information verification deals with the contents of utterances. The system
asks a set of questions such as “What is your mother’s maiden name?” and
“In which city were you born?” It then checks that the answers spoken are the
same as the answers recorded in its database. The key difference is that
speaker verification techniques are speaker-dependent, but verbal
information verification techniques are speaker-independent, relying only on
the content of the answers [1179].

Voice recognition systems are particularly vulnerable to replay attacks in
which an adversary records, and later replays, the authorized user’s voice.
One detection method, designed for mobile phones, uses the difference in
time that a voice reaches two microphones in the phone. The user says a



passphrase that contains phonemes that produce known differences in time
based on the placement of the phone and the user’s voice. Experiments show
the differences are not the same when the speech is replayed [2104].

13.7.3 Eyes

Authentication by eye characteristics uses the iris and the retina. Patterns
within the iris are unique for each person. So one verification approach is to
compare the patterns statistically and ask whether the differences are random
[505, 506, 2017]. Retinal scans rely on the uniqueness of the patterns made
by blood vessels at the back of the eye. This requires a laser beaming onto the
retina, which is highly intrusive [1258]. This method is typically used only in
the most secure facilities [1150].

The availability of eye tracking devices has led to the study of eye motion as
an authentication mechanism. The device tracks specific features of the eyes,
such as statistics about the pupil size, the speed of eye motion and the length
of time of lack of motion, and the steadiness of the gaze. The more features
used in the analysis, the more accurate the identification, and using all
features enabled attackers to be detected quickly (over 90% in 40 seconds),
with few false negatives [615]. A variant of eye motion uses eye gestures, in
which the user moves her eyes in a particular way and that motion is
compared to a predetermined shape [520].

13.7.4 Faces

Face recognition consists of several steps. First, the face is located. If the user
places her face in a predetermined position (for example, by resting her chin
on a support), the problem becomes somewhat easier. However, facial
features such as hair and glasses may make the recognition harder.
Techniques for doing this include the use of neural networks [1185,1622] and
templates [2087]. The resulting image is then compared with the relevant
image in the database. The correlation is affected by the differences in the
lighting between the current image and the reference image, by distortion, by



“noise,” and by the view of the face. The correlation mechanism must be
“trained.” An alternative approach is to focus on the facial features such as
the distance between the nose and the chin, and the angle of the line drawn
from one to the other [1654].

Techniques have been developed to detect spoofing attacks on facial
recognition systems, called “presentation attacks” [1565]. An interesting
problem is that many of the data sets used to train facial recognition systems
are biased, resulting in higher error rates for those whom the data set is
biased against [317, 772].

13.7.5 Keystrokes

Keystroke dynamics requires a signature based on keystroke intervals,
keystroke pressure, keystroke duration, and where the key is struck (on the
edge or in the middle). This signature is believed to be unique in the same
way that written signatures are unique [989, 1509]. Keystroke recognition
can be both static and dynamic. Static recognition is done once, at
authentication time, and usually involves typing of a fixed or known string
[67, 1380]. Once authentication has been completed, an attacker can capture
the connection (or take over the terminal) without detection. Dynamic
recognition is done throughout the session, so the aforementioned attack is
not feasible. However, the signature must be chosen so that variations within
an individual’s session do not cause the authentication to fail. For example,
keystroke intervals may vary widely, and the dynamic recognition mechanism
must take this into account. The statistics gathered from a user’s typing are
then run through statistical tests (which may discard some data as invalid,
depending on the technique used) that account for acceptable variance in the
data [840].

13.7.6 Combinations

Several researchers have combined some of the techniques described above to
improve the accuracy of biometric authentication. Lumini and Nanni [1224]



provide an overview of techniques used to do this. Dieckmann,
Plankensteiner, and Wagner [565] combined voice sounds and lip motion
with the facial image. Duc et al. [595] describe a “supervisor module” for
melding voice and face recognition with a success rate of 99.5%. Lu et al.
[1216] combined mouse and eye movement. The results of experiments
involving fusions of biometric characteristics indicate that a higher degree of
accuracy can be attained than when only a single characteristic is used.

13.8 Location

Denning and MacDoran [547] suggest an innovative approach to
authentication. They reason that if a user claims to be Anna, who is at that
moment working in a bank in California but is also logging in from Russia at
the same time, the user is impersonating Anna. Their scheme is based on the
Global Positioning System (GPS), which can pinpoint a location to within a
few meters. The physical location of an entity is described by a location
signature derived from the GPS satellites. Each location (to within a few
meters) and time (to within a few milliseconds) is unique, and hence form a
location signature. This signature is transmitted to authenticate the user. The
host also has a location signature sensor (LSS) and obtains a similar signature
for the user. If the signatures disagree, the authentication fails.

If the LSS is stolen, the thief would have to log in from an authorized
geographic location. Because the signature is generated from GPS data, which
changes with respect to time, location, and a variety of vagaries resulting
from the nature of the electromagnetic waves used to establish position, any
such signature would be unique and could not be forged. Moreover, if
intercepted, it could not be replayed except within the window of temporal
uniqueness.

This technique can also restrict the locations from which an authorized user
can access the system.



EXAMPLE: Suppose Anna is an employee of a bank in California. The bank
uses location-based authentication to verify logins. Anna’s LSS is stolen, and
the thief takes it to New York. From there, the thief tries to access the bank’s
computer.

Anna’s LSS generates a signature and transmits it to the bank. The bank’s
LSS determines that Anna’s LSS is in New York and is supplying a correct
signature. However, Anna is not authorized to access the bank’s computer
from New York, so the authentication is rejected. If the thief tries to forge a
message indicating that Anna is connecting from inside California, the host’s
LSS would report that Anna was at a different location and would reject the
connection.

An interesting point is that the authentication can be done continuously. The
LSS simply intermingles signature data with the transmitted data, and the
host checks it. If the connection were hijacked, the data from the LSS would
be lost.

A mobile phones or other mobile computer may be used as an LSS [2102]

13.9 Multifactor Authentication

Authentication methods can be combined, or multiple methods can be used.
Multifactor authentication uses two different forms of authentication to
validate identity.

EXAMPLE: A mechanism that asks first for a password and then requires the
user to enter a sequence of numbers sent to a smart phone is multifactor as it
uses what the identity knows (the password) and what the entity has (the
smartphone). A mechanism that asks for a password and then the answer to a
question is not multifactor, as it uses only what the entity knows.

The widespread use of cell phones and other portable computing media,
coupled with the growth of attacks on authentication systems, has



encouraged the use of two-factor authentication. For example, many banks,
particularly in Europe and Asia, use multifactor authentication [1059]. More
commonly, many social networking web providers are encouraging users to
adopt it.

EXAMPLE: Google provides a two-factor authentication protocol (called “2-
Step Verification”) [830, 2176]. After a user supplies a login name and
password, Google sends a 6-digit code to a prearranged phone number or
Google’s mobile app. The user retrieves this code and enters it into the web
page. If the number matches what was sent, authentication succeeds.

This method requires that the user have two factors. If the phone number is
used, the user must have immediate access to the phone. This is usually a cell
phone, which most people carry with them; but it can be any phone. Google
can send the code by voice or text. When sent to the app, user must have the
device with the app.

Techniques using multiple methods assign one or more authentication
methods to each entity. The entity must authenticate using the specific
method, or methods, chosen. The specific authentication methods vary from
system to system, but in all cases the multiple layers of authentication require
an attacker to know more, or possess more, than is required to spoof a single
layer.

EXAMPLE: Some versions of the UNIX operating system provide a
mechanism called pluggable authentication modules (PAM) [1655]. When a
program authenticates a user, it invokes a library routine, pam_authenticate,
that accesses a set of configuration files. These files are in the directory
/etc/pam.d. Each file in that directory has the same name as the program to
which it applies. For example, the library routine will access the file
/etc/pam.d/ftpd when called from the program ftpd. That file contains a
sequence of lines describing the authentication modules to be invoked and
how their results are to be handled.



auth  sufficient  /usr/lib/security/pam_ftp.so
auth  required    /usr/lib/security/pam_unix_auth.so \ 
                  use_first_pass
auth  required    /usr/lib/security/pam_listfile.so \
                  onerr=succeed item=user sense=deny \
                  file=/etc/ftpusers

The first field describes the nature of the line. All checks that the PAM library
function will make relate to authentication of a user. The first entry invokes
the module /usr/lib/security/pam_ftp.so. This module obtains the user’s
name and password. If the name is “anonymous,” the password is assumed to
be the user’s e-mail address. In this case, the module succeeds. If the user’s
name is not “anonymous,” the variable PAM_AUTHTOK is set to the entered
password, the variable PAM_RUSER is set to the entered user name, and the
module fails.

If the module succeeds, the library returns to the caller, indicating success
(because of the “sufficient” in the second field). If it fails, the next two entries
will be used (because of the “required” in their second fields). The second
entry invokes a module that performs the standard UNIX password
authentication. The argument “use_first_pass” means that the password is in
the variable PAM_AUTHTOK. If the module fails, the failure is recorded, but
the next line is invoked anyway. Then the third entry is invoked. Its module
looks in the file /etc/ftpusers for the user name in the variable PAM_RUSER
(because of “item=user”). If found, the module fails (“sense=deny”). If an
error occurs (for example, because the file does not exist), the module
succeeds (“onerr=succeed”). If both of the modules in the last two lines
succeed, the user is authenticated. If not, the user’s authentication fails.

The second field controls the calling of the modules. The entries are
processed in the order in which they appear. If the second field is “sufficient”
and the module succeeds, authentication is completed. If the second field is
“required”, failure of the module makes authentication fail, but all required
modules are invoked before the failure is reported. To make the PAM library



routine return immediately after the failure of a module, the second field
must be set to “requisite”. Finally, an “optional” field indicates that if all other
modules fail (whether they precede or follow this entry), the module in this
entry is invoked.

The idea of invoking successive modules is called stacking. The variables
PAM_AUTHTOK and PAM_RUSER (and some others) enable stacked
modules to communicate with one another. (The option “use_first_pass” in
entry 2 is an example of this.) The caller need know nothing about how the
administrator has set up authentication. Because the order in which the PAM
modules are called can change, the caller can make no assumptions about
how the modules work. The authentication is in effect hidden from the
program.

Modules can control access to resources on the basis of factors other than
authentication. The following file, /etc/pam.d/login, corresponds to standard
UNIX authentication and resource checking at login time.

auth      required  /usr/lib/security/pam_unix_auth.so
account   required  /usr/lib/security/pam_unix_acct.so
password  required  /usr/lib/security/pam_unix_passwd.so
session   required  /usr/lib/security/pam_unix_session.so

The first entry performs the standard password authentication. The second
line controls access on the basis of such factors as time of day, and the fourth
line does so on the basis of the resources available for the session. The third
entry is invoked when the user changes the password.

13.10 Summary

Authentication consists of an entity, the user, trying to convince a different
entity, the verifier, of the user’s identity. The user does so by claiming to
know some information, to possess something, to have some particular set of
physical characteristics, or to be in a specific location. The verifier has some



method of validating the claim, possibly with auxiliary equipment.

Passwords are the most basic authentication mechanism. They are vulnerable
to guessing unless precautions ensure that there is a large enough set of
possible passwords and that each potential password in the set is equally
likely to be selected. Challenge-response techniques allow the system to vary
the password and are less vulnerable to compromise because the password is
never transmitted in the clear. One-time passwords, an example of this
technique, are particularly effective against guessing attacks because even if a
password is guessed, it may not be reused.

Some forms of authentication require hardware support. A cryptographic key
is embedded in the device. The verifier transmits a challenge. The user
computes a response using the hardware device and transmits it to the
verifier. The verifier then validates the signature.

Biometrics measures physical characteristics of the user. These
characteristics are sent to the verifier, which validates them. Critical to the
successful use of biometric measurements is the understanding that they are
simply passwords (although very complex ones) and must be protected in the
same way that passwords must be protected.

Location requires the verifier to determine the location of the user. If the
location is not as it should be, the verifier rejects the claim.

In practice, some combination of these methods is used. The specific
methods, and their ordering, depend on the resources available to the verifier
and the user, the strength of the authentication required, and external factors
such as laws and customs.

13.11 Research Issues

Because of human factors such as writing passwords down or choosing
passwords that are easy to remember, much research focuses on making



authentication schemes difficult to break but easy to use. Using non-character
password schemes (such as graphical motion) appears to be promising.
Research into techniques and the psychology underlying them may improve
this situation. Further, given the multiplicity of passwords, storing them in a
form that a user can easily access but that an attacker cannot access is
another important issue.

Authentication protocols involve passwords, often as cryptographic keys.
Protocols that prevent off-line dictionary attacks make attacks of
authentication schemes more difficult. Research into provably secure
protocols, which cannot be broken, and into probabilistic authentication
protocols (such as zero-knowledge proofs) will harden authentication even
more. Considerable effort is being made to minimize the time and storage
requirements of these protocols, as well as to maximize their robustness in
the face of attacks.

Methods of authentication not requiring traditional text-based passwords
require that usability and memorability be balanced with accuracy. Human
factors are critical in this.

Biometrics enables systems to authenticate users based on physical
characteristics. Because fingerprints uniquely identify people, they should
make excellent authenticators. Research into mechanisms for recording
biometric data under varying conditions is critical to the success of
authentication using biometrics. For example, if voiceprints are used, the
mechanisms must correctly identify an individual even if that individual has a
bad cold.

Single system sign-on is a mechanism whereby a user logs on once and has
access to all systems and resources within the organizational unit. This
requires compatibility among a wide variety of authentication mechanisms,
and development of mechanisms for integrating a wide variety of systems
into a single sign-on organization is an area of active research.



13.12 Further Reading

Discussions of the strength of the UNIX password scheme provide insight
into how gracefully authentication schemes age. Bishop [219] and Feldmeier
and Karn [663] discuss attacks on the UNIX scheme. Su and Bishop use a
Connection Machine in a dictionary attack [1851]; Kedem and Ishihara use a
PixelFlow SIMD computer [1024]. Leong and Tham [1160] discuss specific
password-cracking hardware. Weir et al. [2002] presents a probabilistic
attack on passwords that draws on previously disclosed passwords.

Narayanan and Shmatikov [1428] observed that the distribution of letters in
easy-to-remember passwords is likely to be the same as for the language of
the passwords, and using that observation reduced the search time in
rainbow tables considerably.

Dell’Amico, Michiardi, and Roudier [531] compare methods of guessing user-
chosen passwords and conclude that the most effective techniques depend on
the set from which passwords are drawn. Inglestat and Sasse [951] that
password policies should focus on principles of human-computer interaction
to help users select passwords for specific contexts of use, rather than apply a
blanket requirement to maximize password strength. In particular, studies of
passwords generally conflate two models, the first being that of a user who
chooses passwords randomly and the second being the efficiency of off-line
attacks; this combination ignores many other threats such as phishing (see
Section 23.6.6) [267]. One study concluded that off-line dictionary attacks
occur much less often than widely believed [693]. Florêncio and Herley [692]
examined the password policies of 75 web sites, and concluded that the
policies were independent of the security needs of the web site. van Oorschot
and Herley [1936] discuss factors affecting password policies and argue that
passwords will not disappear any time soon, contrary to conventional
wisdom. Bonneau et al. [266] present a framework to compare authentication
schemes used on the web, and found that other schemes do not provide all
the benefits of passwords, supporting Herley and van Oorschott’s conclusion.



Smith [1781] proposed using word association to authenticate users. One
study [2126] had users provide 20 personal questions and answers; to
authenticate, they had to answer 5 questions randomly chosen from these; as
noted above, if the answers are publicly known, this scheme fails. Bunnell et
al. [315] used 40 questions, evenly divided between fact and opinion.

An interesting version of authentication by what you know is whom you know
[289]. This technique mimics people being identified through mutual
acquaintances in societies.

Other biometric characteristics used for user authentication include palm
prints [2100], wearables [242], mouse dynamics [1591, 1741], touch screen
patterns [521], and electrocardiogram data [836]. Cell phones have numerous
sensors that biometric authenticators can use [1326, 1938]. Some work
examines metrics for evaluating biometric’s security [1576]. Jain,
Nandakumar, and Ross [963] provide a good review of biometric research.

Honan [926] points out that what one organization may display on the web,
another may use to authenticate users. This is a problem in social networks,
where information used to authenticate or validate users is available on
multiple web sites but with differing degrees of privacy [953]. This results in
the unintentional leaking of information on one site that is used to
authenticate on another site, for example when resetting a password [2096].

Peisert, Talbot, and Kroeger [1517] present four principles of authentication.
These principles acknowledge the fact that humans are able to infer from
context much about an identity, whereas computers cannot.

13.13 Exercises

1. Prove Theorem 13.1.

2. A system allows the user to choose a password with a length of one to eight
characters, inclusive. Assume that 10,000 passwords can be tested per



second. The system administrators want to expire passwords once they have a
probability of 0.10 of having been guessed. Determine the expected time to
meet this probability under each of the following conditions.

(a) Password characters may be any ASCII characters from 1 to 127, inclusive.

(b) Password characters may be any alphanumeric characters (“A” through
“Z”, “a” through “z”, and “0” through “9”).

(c) Password characters must be digits.

3. Anderson’s Formula assumes that all passwords are equally likely to be
chosen. Generalize the formula to handle cases in which the probability of the
ith string in a set of possible passwords is pi.

4. Classify the following proposed passwords as good choices or poor choices,
and justify your reasoning.

(a) Mary

(b) go2work

(c) cat&dog

(d) 3.1515pi

5. The strings used as examples of good passwords are constructed to make
them difficult to guess. Yet the particular good passwords in this chapter
should not be used as passwords. Why not?

6. If password aging is based on previous passwords, why should those
previous passwords not be stored in the clear on disk?

7. Why should salts be chosen at random?

8. Does using passwords with salts make attacking a specific account more



difficult than using passwords without salts? Explain why or why not.

9. Show that a system using an EKE scheme is vulnerable to an on-line
dictionary attack.

10. The designers of the UNIX password algorithm used a 12-bit salt to
perturb the first and third sets of 12 entries in the E-table of the UNIX
hashing function (the DES). Consider a system with 224 users. Assume that
each user is assigned a salt from a uniform random distribution and that
anyone can read the password hashes and salts for the users.

(a) What is the expected time to find all users’ passwords using a dictionary
attack?

(b) Assume that eight more characters were added to the password and that
the DES algorithm was changed so as to use all 16 password characters. What
would be the expected time to find all users’ passwords using a dictionary
attack?

(c) Assume that the passwords were eight characters long but that the salt
length was increased to 24 bits. Again, the salts (and the corresponding
algorithms) are known to all users. What would be the expected time to find
all users’ passwords using a dictionary attack?

11. The example describing S/Key stated that “for MD4 and MD5, dictionary
attacks are not a threat provided the seeds are chosen randomly.” Why? How
realistic is this assumption?

12. Why should a time-based authentication system invalidate the current
password on a successful authentication?

13. A computer system uses biometrics to authenticate users. Discuss ways in
which an attacker might try to spoof the system under each of the following
conditions.



(a) The biometric hardware is directly connected to the system, and the
authentication software is loaded onto the system.

(b) The biometric hardware is on a stand-alone computer connected to the
system, and the authentication software on the stand-alone computer sends a
“yes” or “no” to the system indicating whether or not the user has been
authenticated.

14. What complications arise in dynamic keystroke monitoring as a biometric
authentication mechanism when the user’s keystrokes are sent over the
Internet? In particular, what characteristics of the keystroke sequences are
valid, and which ones are distorted by the network?

15. PAM can be used to provide authorization as well as authentication.
Design a set of modules for the PAM scheme that implements the Chinese
Wall model.



Part V: Implementation II:
Systems
Part V discusses non-cryptographic implementation mechanisms. It focuses
on the sharing of rights and information.

Chapter 14, “Design Principles,” presents eight basic design principles for
security mechanisms. These principles underlie computer security
mechanisms and apply to some extent to the policies that the mechanisms
enforce.

Chapter 15, “Representing Identity,” discusses the representation of identity
within a system. Identities include group and role representation of users, as
well as the privileges they have or acquire.

Chapter 16, “Access Control Mechanisms,” presents the basic access control
mechanisms and the various ways in which they are organized. These
mechanisms can be discretionary or mandatory, and sometimes even based
on the originator of a document.

Chapter 17, “Information Flow,” discusses mechanisms for analyzing and
controlling the flow of information throughout a system. Both runtime
mechanisms and compiler-based mechanisms allow such flows to be
restricted.

Chapter 18, “Confinement Problem,” discusses the problem of containing
data for authorized uses only. It presents sandboxes and covert channels.



Chapter 14. Design Principles
FALSTAFF: If I had a thousand sons, the first human principle I would teach 
them should be, to forswear thin potations and to addict themselves to sack.

— The Second Part of King Henry the Fourth, IV, iii, 133–136.

Specific design principles underlie the design and implementation of 
mechanisms for supporting security policies. These principles build on the 
ideas of simplicity and restriction. This chapter discusses those basic ideas 
and design principles.

14.1 Underlying Ideas

Saltzer and Schroeder [1653] describe eight principles for the design and 
implementation of security mechanisms; Saltzer and Kaashoek [1652] later 
refined them. The principles draw on the ideas of simplicity and restriction.

Simplicity makes designs and mechanisms easy to understand. More 
importantly, simple designs lead to fewer problems, and those that occur are 
usually easier to deal with. Minimizing the interaction of system components 
minimizes the number of sanity checks on data being transmitted from one 
component to another.

EXAMPLE: The program sendmail reads configuration data from a binary 
file. System administrators generated the binary file by “freezing,” or 
compiling, a text version of the configuration file. This created three 
interfaces: the mechanism used to edit the text file, the mechanism used to



freeze the file, and the mechanism sendmail used to read the frozen file. The
second interface required manual intervention and was often overlooked. To
minimize this problem, sendmail checked that the frozen file was newer than
the text file. If not, it warned the user to update the frozen configuration file.

The security problem lies in the assumptions that sendmail made. For
example, the compiler would check that a particular option had an integer
value. However, sendmail would not recheck this; it assumed that the
compiler had done the checking. Errors in the compiler checks, or sendmail’s
assumptions being inconsistent with those of the compiler, could produce
security problems. If the compiler allowed the default UID to be a user name
(say, daemon with a UID of 1), but sendmail assumed that it was an integer
UID, then sendmail would scan the string “daemon” as though it were an
integer. Most input routines would recognize that this string is not an integer
and would default the return value to 0. Thus, sendmail would deliver mail
with the root UID rather than with the desired daemon UID.

Simplicity also reduces the potential for inconsistencies within a policy or set
of policies.

EXAMPLE: A college rule requires any teaching assistant who becomes aware
of cheating to report it. A different rule ensures the privacy of student files. A
TA contacts a student, pointing out that some files for a program were not
submitted. The student tells the TA that the files are in the student’s
directory, and asks the TA to get the files. The TA does so, and while looking
for the files notices two sets, one with names beginning with “x” and the other
set not. Unsure of which set to use, the TA takes the first set. The comments
show that they were written by a second student. The TA gets the second set,
and the comments show that they were written by the first student. On
comparing the two sets, the TA notes that they are identical except for the
names in the comments. Although concerned about a possible countercharge
for violation of privacy, the TA reports the student for cheating. As expected,
the student charges the TA with violating his privacy by reading the first set of



files. The rules conflict. Which charge or charges should be sustained?

Restriction minimizes the power of an entity. The entity can access only
information it needs.

EXAMPLE: Government officials are denied access to information for which
they have no need (the “need to know” policy). They cannot communicate
that which they do not know.

Entities can communicate with other entities only when necessary, and in as
few (and narrow) ways as possible.

EXAMPLE: All communications with prisoners are monitored. Prisoners can
communicate with people on a list (given to the prison warden) through
personal visits or mail, both of which are monitored to prevent the prisoners
from receiving contraband such as files for cutting through prison bars or
weapons to help them break out. The only exception to the monitoring policy
is when prisoners meet with their attorneys. Such communications are
privileged and so cannot be monitored.

“Communication” is used in its widest possible sense, including that of
imparting information by not communicating.

EXAMPLE: Bernstein and Woodward, the reporters who broke the Watergate
scandal, describe an attempt to receive information from a source without the
source’s directly answering the question. They suggested a scheme in which
the source would hang up if the information was inaccurate and remain on
the line if the information was accurate. The source remained on the line,
confirming the information [178].

14.2 Principles of Secure Design

The principles of secure design discussed in this section express common-
sense applications of simplicity and restriction in terms of computing. We



will discuss detailed applications of these principles throughout the
remainder of Part V, and in Part VIII, “Practicum.” However, this chapter
mentions specific examples.

14.2.1 Principle of Least Privilege

This principle restricts how privileges are granted.

Definition 14–1. The principle of least privilege states that a subject should
be given only those privileges that it needs in order to complete its task.

If a subject does not need an access right, the subject should not have that
right. Furthermore, the function of the subject (as opposed to its identity)
should control the assignment of rights. If a specific action requires that a
subject’s access rights be augmented, those extra rights should be
relinquished immediately on completion of the action. This is the analogue of
the “need to know” rule: if the subject does not need access to an object to
perform its task, it should not have the right to access that object. More
precisely, if a subject needs to append to an object, but not to alter the
information already contained in the object, it should be given append rights
and not write rights.

In practice, most systems do not have the granularity of privileges and
permissions required to apply this principle precisely. The designers of
security mechanisms then apply this principle as best they can. In such
systems, the consequences of security problems are often more severe than
the consequences for systems that adhere to this principle.

EXAMPLE: The UNIX operating system does not apply access controls to the
user root. That user can terminate any process and read, write, or delete any
file. Thus, users who create backups can also delete files. The administrator
account on Windows has the same powers.

This principle requires that processes should be confined to as small a



protection domain as possible.

EXAMPLE: A mail server accepts mail from the Internet and copies the
messages into a spool directory; a local server will complete delivery. The
mail server needs the rights to access the appropriate network port, to create
files in the spool directory, and to alter those files (so it can copy the message
into the file, rewrite the delivery address if needed, and add the appropriate
“Received” lines). It should surrender the right to access the file as soon as it
has finished writing the file into the spool directory, because it does not need
to access that file again. The server should not be able to access any user’s
files, or any files other than its own configuration files.

14.2.1.1 Principle of Least Authority

Closely related to the principle of least privilege is the principle of least
authority [1356]. The two are often treated as meaning the same. However,
some authors make a distinction between “permission” and “authority.” They
treat permissions as determining what actions a process can take on objects
directly, and authority as determining that effects a process may have on an
object, either directly (as with permissions) or indirectly through its
interactions with other processes or subsystems.

Miller and Shapiro [1356] give a good example from the Take-Grant
Protection Model. In that model, the rights would represent actions that
subjects could take over objects, and so represent permissions. But the de
facto rules of that model, which govern information transfer, show how
information can flow from a subject to an object that is not directly connected
to the subject. Hence the subject does not have permission to write
information into the object, but it does have permission to pass the
information to a second subject, and that subject can write the information
into the object.1

1This is the find rule described by Bishop and Snyder [214, 234].



Definition 14–2. The principle of least authority states that a subject
should be given only the authority that it needs in order to complete its task.

If one reads the principle of least privilege as speaking to permissions, then
this principle is somewhat different. But if it speaks to authority, the two are
the same.

14.2.2 Principle of Fail-Safe Defaults

This principle restricts how privileges are initialized when a subject or object
is created.

Definition 14–3. The principle of fail-safe defaults states that, unless a
subject is given explicit access to an object, it should be denied access to that
object.

This principle requires that the default access to an object is none. Whenever
access, privileges, or some security-related attribute is not explicitly granted,
it should be denied. Moreover, if the subject is unable to complete its action
or task, it should undo those changes it made to the security state of the
system before it terminates. This way, even if the program fails, the system is
still safe.

EXAMPLE: If the mail server is unable to create a file in the spool directory, it
should close the network connection, issue an error message, and stop. It
should not try to store the message elsewhere or to expand its privileges to
save the message in another location, because an attacker could use that
ability to overwrite other files or fill up other disks (a denial of service attack).
The protections on the mail spool directory itself should allow create and
write access only to the mail server and read and delete access only to the
local server. No other user should have access to the directory.

In practice, most systems will allow an administrator access to the mail spool
directory. By the principle of least privilege, that administrator should be able



to access only the subjects and objects involved in mail queueing and
delivery. As we have seen, this constraint minimizes the threats if that
administrator’s account is compromised. The mail system can be damaged or
destroyed, but nothing else can be.

Because many users do not change default access control permissions, this
rule applies to the default settings for both the system and for users.

14.2.3 Principle of Economy of Mechanism

This principle simplifies the design and implementation of security
mechanisms.

Definition 14–4. The principle of economy of mechanism states that
security mechanisms should be as simple as possible.

If a design and implementation are simple, fewer possibilities exist for errors.
The checking and testing process is less complex, because fewer components
and cases need to be tested. Complex mechanisms often make assumptions
about the system and environment in which they run. If these assumptions
are incorrect, security problems may result.

EXAMPLE: The ident protocol [1818] sends the user name associated with a
process that has a TCP connection to a remote host. A mechanism on host
nob that allows access based on the results of an ident protocol result makes
the assumption that the originating host is trustworthy. If host toadflax
decides to attack host nob, it can connect and then send any identity it
chooses in response to the ident request. This is an example of a mechanism
making an incorrect assumption about the environment (specifically, that
host toadflax can be trusted).

Interfaces to other modules are particularly suspect, because modules often
make implicit assumptions about input or output parameters or the current
system state; should any of these assumptions be wrong, the module’s actions



may produce unexpected and erroneous results. Interaction with external
entities, such as other programs, systems, or humans, amplifies this problem.

EXAMPLE: The finger protocol transmits information about a user or system
[2119]. Many client implementations assume that the server’s response is
well-formed. However, if an attacker were to create a server that generated an
infinite stream of characters, and a finger client were to connect to it, the
client would print all the characters. As a result, log files and disks could be
filled up, resulting in a denial of service attack on the querying host. This is an
example of incorrect assumptions about the input to the client.

14.2.4 Principle of Complete Mediation

This principle restricts the caching of information, which often leads to
simpler implementations of mechanisms.

Definition 14–5. The principle of complete mediation requires that all
accesses to objects be checked to ensure that they are allowed.

Whenever a subject attempts to read an object, the operating system should
mediate the action. First, it determines if the subject is allowed to read the
object. If so, it provides the resources for the read to occur. If the subject tries
to read the object again, the system should check that the subject is still
allowed to read the object. Most systems would not make the second check.
They would cache the results of the first check and base the second access on
the cached results.

EXAMPLE: When a UNIX process tries to read a file, the operating system
determines if the process is allowed to read the file. If so, the process receives
a file descriptor encoding the allowed access. Whenever the process wants to
read the file, it presents the file descriptor to the kernel. The kernel then
allows the access.

If the owner of the file disallows the process permission to read the file after



the file descriptor is issued, the kernel still allows access. This scheme violates
the principle of complete mediation, because the second access is not
checked. The cached value is used, resulting in the denial of access being
ineffective.

The mediator should check that the request comes from the claimed source
(authenticity) and that it has not been tampered with (integrity). After those
are validated, the access should be granted if, and only if, the access is
authorized. Failure to check authenticity and integrity can cause security
problems.

EXAMPLE: The Domain Name Service (DNS) caches information mapping
host names into IP addresses. If an attacker is able to “poison” the cache by
implanting records associating a bogus IP address with a name, one host will
route connections to another host incorrectly. Section 15.6.1.2 discusses this
in more detail.

14.2.5 Principle of Open Design

This principle suggests that security should not depend solely on secrecy.

Definition 14–6. The principle of open design states that the security of a
mechanism should not depend on the secrecy of its design or
implementation.

Designers and implementers of a program must not depend on secrecy of the
details of their design and implementation to ensure security. Others can
ferret out such details either through technical means, such as disassembly
and analysis, or through nontechnical means, such as searching through
garbage receptacles for source code listings (called “dumpster-diving”). If the
strength of the program’s security depends on the ignorance of the user, a
knowledgeable user can defeat that security mechanism. The term “security
through obscurity” captures this concept exactly.



This is especially true of cryptographic software and systems. Because
cryptography is a highly mathematical subject, companies that market
cryptographic software or use cryptography to protect user data frequently
keep their algorithms secret. Experience has shown that such secrecy adds
little if anything to the security of the system. Worse, it gives an aura of
strength that is all too often lacking in the actual implementation of the
system.

Keeping cryptographic keys and passwords secret does not violate this
principle, because a key is not an algorithm. However, keeping the
enciphering and deciphering algorithms secret would violate it.

Issues of proprietary software and trade secrets complicate the application of
this principle. In some cases, companies may not want their designs made
public, lest their competitors use them. The principle then requires that the
design and implementation be available to people barred from disclosing it
outside the company.

Figure 14–1: DVD key layout. ka is the authentication key, kt the
title key, kd the disk key, and kpi the key for DVD player i.



EXAMPLE: The authentication and disk keys are not located in the file
containing the movie, so if one copies the file, one still needs the DVD disk in
the DVD player to be able to play the movie.

The Content Scrambling System (CSS) is a cryptographic algorithm that
protects DVD movie disks from unauthorized copying. The DVD disk has an
authentication key, a disk key, and a title key. The title key is enciphered with
the disk key. A block on the DVD contains several copies of the disk key, each
enciphered by a different player key, and a checksum of the disk key. When a
DVD is inserted into a DVD player, the algorithm reads the authentication
key and then authenticates the device (presumably to verify it is allowed to
read the following keys). It then deciphers the disk keys using the DVD
player’s unique key. When it finds a deciphered key with the correct hash, it
uses that key to decipher the title key, and it uses the title key to decipher the
movie [1835]. (Figure 14–1 shows the layout of the keys.)

In 1999, a group in Norway acquired a (software) DVD playing program that
had an unenciphered key. They also derived an algorithm completely
compatible with the CSS algorithm from the software. This enabled them to
decipher any DVD movie file. Software that could perform these functions
rapidly became available throughout the Internet, much to the discomfort of
the DVD Copyright Control Association, which promptly sued to prevent the
code from being made public [646, 1472]. As if to emphasize the problems of
providing security by concealing algorithms, the plaintiff’s lawyers filed a
declaration containing the source code of an implementation of the CSS
algorithm. When they realized this, they requested that the declaration be
sealed from public view. By then, the declaration—with the source code—had
been posted on several Internet sites, including one that had more than
21,000 downloads of the declaration before the court sealed it [1285].

14.2.5.1 Minimize Secrets

The principle of open design implies that the designer should minimize



secrets. Secrets can leak no matter how confidential one thinks they are—and
mistakes do occur that sometimes reveal them, as in the above example.
Protecting the confidentiality of a few secrets is typically simpler than
protecting the confidentiality of many secrets.

This rule also suggests that designers should plan for the compromise of any
secrets. When a secret is compromised, it should be simple and quick to
restore the system to a state where the (formerly) secret data has no value.
Minimizing the number of secrets reduces the number of these contingency
plans, simplifying management.

14.2.6 Principle of Separation of Privilege

This principle is restrictive because it limits access to system entities.

Definition 14–7. The principle of separation of privilege states that a
system should not grant permission based on a single condition.

This principle is equivalent to the separation of duty principle discussed in
Section 6.1. Company checks for more than $75,000 must be signed by two
officers of the company. If either does not sign, the check is not valid. The two
conditions are the signatures of both officers.

Similarly, systems and programs granting access to resources should do so
only when more than one condition is met. This provides a fine-grained
control over the resource as well as additional assurance that the access is
authorized.

EXAMPLE: On Berkeley-based versions of the UNIX operating system, the
program su, which enables users to change from their accounts to the root
account, requires two conditions to be met. The first condition is that the user
knows the root password. The second condition is that the user is in the
wheel group (the group with GID 0). Meeting either condition is not
sufficient to acquire root access; meeting both conditions is required.



14.2.7 Principle of Least Common Mechanism

This principle is restrictive because it limits sharing.

Definition 14–8. The principle of least common mechanism states that
mechanisms used to access resources should not be shared.

Sharing resources provides a channel along which information can be
transmitted, and so such sharing should be minimized. In practice, if the
operating system provides support for virtual machines, the operating system
will enforce this privilege automatically to some degree (see Chapter 18,
“Confinement Problem”). Otherwise, it will provide some support (such as a
virtual memory space) but not complete support (because the file system will
appear as shared among several processes).

EXAMPLE: A Web site provides electronic commerce services for a major
company. Attackers want to deprive the company of the revenue it obtains
from that Web site. They flood the site with messages and tie up the
electronic commerce services. Legitimate customers are unable to access the
Web site and, as a result, take their business elsewhere.

Here, the sharing of the Internet with the attackers’ sites caused the attack to
succeed. The appropriate countermeasure would be to restrict the attackers’
access to the segment of the Internet connected to the Web site. Techniques
for doing this include proxy servers such as the Purdue SYN intermediary
[1704] or traffic throttling (see Section 7.4, “Availability and Network
Flooding”). The former targets suspect connections; the latter reduces the
load on the relevant segment of the network indiscriminately.

Minimizing the number of shared mechanisms also reduces the scope of an
attack that compromises such a mechanism. If all versions of an operating
system use the same program, then compromising that single program
enables attackers to compromise any system of that type. But if the systems
each use a slightly different version of the program, then compromise



becomes more difficult.

EXAMPLE: Attack tools assume an underlying structure or configuration of a
system or program. In order to invalidate this assumption, researchers have
studied how to inject artificial diversity effectively into programs and
systems. Then the attack tools will not work properly.

Object code obfuscation tools scramble the flow of execution and the
placement of data in memory. For example, many attacks target the return
address for function calls, which is stored on a stack and thus in a predictable
location. Adding a layer of indirection requires changing the function call and
return sequence. Then an attempt to overwrite the return address will change
the index into the table instead. By appropriately constraining that value and
obscuring how the actual return addresses are stored, the attacker will be
unlikely to guess the actual location of the return address, defeating this class
of attacks [383]. Other techniques randomize the order of variables and
functions in memory or introduce random gaps between formerly contiguous
areas of storage, and locations of memory regions. This renders ineffective
attack tools that rely on the memory layout of the program [193].

14.2.8 Principle of Least Astonishment

This principle recognizes the human element in computer security.

Definition 14–9. The principle of least astonishment states that security
mechanisms should be designed so that users understand the reason that the
mechanism works the way it does and that using the mechanism is simple.

This principle requires security mechanisms to use a model that the target
audience (users and system administrators, typically) can easily understand.
If the audience’s mental model is too different than that used by the designers
and implementers, then their confusion may undermine the security
mechanisms.



Thus, configuring and executing a program should be as easy and as intuitive
as possible, and any output should be clear, direct, and useful. If security-
related software is too complicated to configure, system administrators may
unintentionally set up the software in a nonsecure manner. Similarly,
security-related user programs must be easy to use and must output
understandable messages. If a user is changing a password, and the proposed
password is rejected, the password changing program should state why it was
rejected rather than giving a cryptic error message. If a configuration file has
an incorrect parameter, the error message should describe the proper
parameter.

EXAMPLE: The ssh program [131, 2071] allows a user to set up a public key
mechanism for enciphering communications between systems. The
installation and configuration mechanisms for the UNIX version allow one to
arrange that the public key be stored locally without any password protection.
In this case, one need not supply a password to connect to the remote system,
but will still obtain the enciphered connection. This mechanism satisfies the
principle of least astonishment.

On the other hand, security requires that the messages impart no
unnecessary information.

EXAMPLE: When a user supplies the wrong password during login, the
system should reject the attempt with a message stating that the login failed.
If it were to say that the password was incorrect, the user would know that
the account name was legitimate. If the “user” were really an unauthorized
attacker, she would then know the name of an account for which she could try
to guess a password.

Balancing the needs of security and the mental models of users requires that
the designers and implementers take into account the environment in which
the security mechanisms are used.

EXAMPLE: A mainframe system allows users to place passwords on files.



Accessing the files requires that the program supply the password. Although
this mechanism violates the principle as stated, it is considered sufficiently
minimal to be acceptable. On an interactive system, where the pattern of file
accesses is more frequent and more transient, this requirement would be too
great a burden to be acceptable.

14.2.8.1 Psychological Acceptability

The Principle of Least Astonishment is similar to one of Saltzer’s and
Schroeder’s original principles, the Principle of Psychological Acceptability.
That principle stated that that security mechanisms should not make the
resource more difficult to access than if the security mechanisms were not
present. The difference between that principle and the Principle of Least
Astonishment is that the former expressed an ideal, whereas the latter
recognizes that security mechanisms may add additional steps to accessing
the resource. The question is whether those additional steps are unnecessarily
difficult to take to the particular population of users of the system.

14.3 Summary

The design principles discussed in this chapter are fundamental to the design
and implementation of security mechanisms. They encompass not only
technical details but also human interaction. Several principles come from
nontechnical environments, such as the principle of least privilege. Each
principle involves the restriction of privilege according to some criterion, or
the minimization of complexity to make the mechanisms less likely to fail.

14.4 Research Issues

These principles pervade all research touching on the design and
implementation of secure systems. The principle of least privilege raises the
issue of granularity of privilege. Is a “write” privilege sufficient, or should it
be fragmented—for example, into “write” and “write at the end” or “append,”



or into the ability to write to specific blocks? How does the multiplicity of
rights affect system administration and security management? How does it
affect architecture and performance? How does it affect the user interface and
the user’s model of the system?

Least common mechanism problems arise when dealing with denial of service
attacks, because such attacks exploit shared media. The principle of least
common mechanism plays a role in handling covert channels, which are
discussed further in Chapter 18.

Separation of privilege arises in the creation of user and system roles. How
much power should administrative accounts have? How should they work
together? These issues arise in role-based access control, which is discussed
in Section 8.4.

The principle of complete mediation runs counter to the philosophy of
caching. One caches data to keep from having to retrieve the information
when it is next needed, but complete mediation requires the retrieval of
access permissions. How are these conflicting forces balanced in practice?

Research in software and systems design and implementation studies the
application of the principle of economy of mechanism. How can interfaces be
made simple and consistent? How can the various design paradigms lead to
better-crafted, simpler software and systems?

Whether “open source” software (software the source of which is publicly
available) is more secure than other software is a complex question. Analysts
can check open source software for security problems more easily than they
can software for which no source is available. Knowing that one’s coding will
be available for public scrutiny should encourage programmers to write
better, tighter code. On the other hand, attackers can also look at the source
code for security flaws, and various pressures (such as time to market) weigh
against careful coding. Furthermore, the debate ignores security problems
introduced by misconfigured software, or software used incorrectly.



Experimental data for the debate about the efficacy of open source software is
lacking. An interesting research project would be to design an experiment
that would provide evidence either for or against the proposition that if
source code for software is available, then that software has (or causes) fewer
security problems than software for which source code is not available. Part
of the research would be to determine how to make this question precise,
what metrics and statistical techniques should be used to analyze the data,
and how the data should be collected.

An understanding of people’s world views, and mental models of how
computers and security should work, are the basis for applying the Principle
of Least Astonishment. The user interface of many security mechanisms, and
the details that users must master, differ from their real-world counterparts
for a variety of reasons. Thus, understanding how to communicate security
issues to people, and tailoring mechanisms to interpret user commands
properly, is an area of active research in both the security and human factors
communities.

14.5 Further Reading

Many papers discuss the application of these principles to security
mechanisms. Succeeding chapters will present references for this aspect of
the principles. Other papers present different sets of principles. These papers
are generally specializations or alternative views of the principles in this
chapter, tailored for particular environments. Abadi and Needham [4] and
Anderson and Needham [60] discuss principles for the design of
cryptographic protocols; Syverson discusses their limits [1858], and Moore
[1384] and Abadi [2] describe problems in cryptographic protocols. Wood
[2031, 2032] discusses principles for secure systems design with an emphasis
on groupware. Shapiro and Hardy elaborate on a set of principles underlying
the design of the operating system, EROS [1739]. Bonyun [269] focuses on
architectural principles. Landwehr and Goldschlag [1142] consider Internet
security. Other examples are for authentication protocols used in the



infrastructure of the power grid [1056], for designing privacy constraints into
systems [369], and for computer forensics [1513].

Principles for interacting with people are also under study. Yee discusses
principles for user interfaces for secure systems [2064]. Peisert et al. [1517]
identify principles of authentication that correspond to physical validation of
identity. Stajano and Wilson [1819] present some principles underlying
successful computer scams, and from them derive principles for protecting
people. Motiee et al. [1394] examine user considerations about the use of the
privilege of least principle.

14.6 Exercises

1. The PostScript language [18] describes page layout for printers. Among its
features is the ability to request that the interpreter execute commands on the
host system.

(a) Describe a danger that this feature presents when the language interpreter
is running with administrative or root privileges.

(b) Explain how the principle of least privilege could be used to ameliorate
this danger.

2. A common technique for inhibiting password guessing is to disable an
account after three consecutive failed login attempts (see Section 13.4.2).

(a) Discuss how this technique might prevent legitimate users from accessing
the system. Why is this action a violation of the principle of least common
mechanism?

(b) One can argue that this is an example of fail-safe defaults, because by
blocking access to an account under attack, the system is defaulting to a
known, safe state. Do you agree or disagree with this argument? Justify your
answer.



3. Kernighan and Plauger [1048] argue a minimalist philosophy of tool
building. Their thesis is that each program should perform exactly one task,
and more complex programs should be formed by combining simpler
programs. Discuss how this philosophy fits in with the principle of economy
of mechanism. In particular, how does the advantage of the simplicity of each
component of a software system offset the disadvantage of a multiplicity of
interfaces among the various components?

4. Design an experiment to determine the performance impact of checking
access permissions for each file access (as opposed to once at the file’s
opening). If you have access to a system on which you can modify the file
access mechanism, run your experiment and determine the impact.

5. A company publishes the design of its security software product in a
manual that accompanies the executable software.

(a) In what ways does this satisfy the principle of open design? In what ways
does it not?

(b) Given that the design is known, what advantages does keeping the source
code unavailable give the company and those who purchase the software?
What disadvantages does it cause?

6. Assume that processes on a system share no resources. Is it possible for
one process to block another process’ access to a resource? Why or why not?
From your answer, argue that denial of service attacks are possible or
impossible.

7. Given that the Internet is a shared network, discuss whether preventing
denial of service attacks is inherently possible or not possible. Do systems
connected to the Internet violate the principle of least common mechanism?

8. A program called lsu [220] gives access to role accounts. The user’s access
rights are checked, and the user is required to enter her password. If access



rules allow the change and the user’s password is correct, lsu allows the
change. Given that Mary uses lsu from her account, why does lsu require her
to enter her password? Name the principles involved, and why they require
this.

9. Recall the S/Key one-time password algorithm discussed in Section 13.5.1.
When a user prints a list of S/Key passwords for future use, the system
encodes each hash value as a set of six short words and prints them. Why
does it not merely print out the hash values?

10. The program su enables a UNIX user to access another user’s account.
Unless the first user is the superuser, su requires that the password of the
second user be given. A (possibly apocryphal) version of su would ask for the
user’s password and, if it could not determine if the password was correct
because the password file could not be opened, immediately grant superuser
access so that the user could fix the problem. Discuss which of the design
principles this approach meets, and which ones it violates.

11. Among the design principles Yee [2064] identifies is the Principle of
Expected Ability, which says that the interface must not lead the user to
believe it is possible to do something that cannot be done. Which of the
design principles in this chapter support this principle?



Chapter 15. Representing 
Identity
AEMELIA: Most mighty duke, behold a man much wrong’d. All gather to see 
them.

ADRIANA: I see two husbands, or mine eyes deceive me!

DUKE SOLINUS: One of these men is Genius to the other; And so of these, 
which is the natural man, And which the spirit? Who deciphers them?

DROMIO OF SYRACUSE: I, sir, am Dromio: command him away.

DROMIO OF EPHESUS: I, sir, am Dromio: pray, let me stay.

— The Comedy of Errors, V, i, 332–338.

The theme of identity runs throughout humanity’s experience, and computers 
are no exception. In computer science, an identity is the basis for assignment 
of privileges and is integral in the designation of a protection domain. This 
chapter discusses the many different types of identity and the contexts in 
which they arise. It begins with the identity of a principal on a system, first 
singly and then as defined by function. Designation of identity for certificates 
follows, as does identity on a network with respect to both individual 
processes and individual hosts. The chapter concludes with the notion of an 
anonymous user.

15.1 What Is Identity?

Identity is simply a computer’s representation of an entity.



Definition 15–1. A principal is a unique entity. An identity specifies a
principal.

Authentication binds a principal to a representation of identity internal to the
computer. Each system has its own way of expressing this representation, but
all decisions of access and resource allocation assume that the binding is
correct.

Identities are used for several purposes. The two main ones are for
accountability and for access control. Accountability requires an identity that
tracks principals across actions and changes of other identities, so that the
principal taking any action can be unambiguously identified. Access control
requires an identity that the access control mechanisms can use to determine
if a specific access (or type of access) should be allowed.

Accountability is tied to logging and auditing. It requires an unambiguous
identification of the principal involved. On many systems, this is not possible.
Instead, the logged identity maps to a user account, to a group, or to a role.

Most systems base access rights on the identity of the principal executing the
process. That is, all processes executed by user bishop have some set of rights.
All processes executed by user holly have a set of rights that may differ from
those that bishop’s processes have. However, a process may have fewer rights
than the principal executing it, and in fact there are substantial reasons to
reduce privileges. Chapter 16, “Access Control Mechanisms,” discusses this
topic in more depth.

15.2 Files and Objects

The identity of a file or other entity (here called an “object”) depends on the
system that contains the object.

Local systems identify objects by assigning names. The name may be
intended for human use (such as a file name), for process use (such as a file



descriptor or handle), or for kernel use (such as a file allocation table entry).
Each name may have different semantics.

EXAMPLE: The UNIX operating system offers four different types of file
names. The device number and inode uniquely identify a file. The inode
contains file attribute information such as access control permissions and
ownership information, and identifies the specific disk blocks that contain the
file’s data. Processes read files using a file descriptor that abstracts the inode
into a representation that the process can read from, write to, and so forth.
Once created, the file descriptor cannot be rebound to a different file.
Processes (and users) can also use file names that identify files by describing
their positions in the file hierarchy. UNIX file names may be absolute path
names that describe the locations of files with respect to the root of the UNIX
file hierarchy, or relative path names that describe the locations of files with
respect to the directory in which the current process is executing.

The semantics of the names differ in important ways. Most critically, when a
process or user operates on a file, the kernel maps the file name to an inode
using an iterative procedure. It obtains the inode of the first directory in the
path,1 opens it, and within that directory locates the inode number of the next
component in the path. This continues until the file’s inode number is found.
Two references to the same file name will reference different file objects when
the file is deleted after the first reference and a new file, with the same name
as the deleted file, is created. This can create problems with programs (see
Section 31.5.3.3, “Race Conditions in File Accesses”).

1If the path is an absolute path name, the first directory in the path is the root
directory, which has a well-known inode number (typically 0, 1, or 2). If the
path is a relative path name, the first directory has the same inode number as
the directory in which the process executes.

However, when a file descriptor is created, it refers to a specific object.
Regardless of how the file is manipulated, the inode that the file descriptor



refers to remains present until the file descriptor is closed, which breaks the
association between the descriptor and the inode.

If the object resides on a different system, the name must encode the location
of the object.

EXAMPLE: A uniform resource locator (URL) identifies an object by its
location and the protocol needed to access it. The object with the URL
ftp://abccorp.com/pub/README specifies that the named object can be
accessed by using the FTP protocol to request the object /pub/README from
the host abccorp.com. The URL does not say that the object is located on that
host. Indeed, the host may construct the object to respond to the request, or it
may forward the request to another host, or it may be invalid.

One file may have multiple names. The semantics of the system determine
the effects of each name. For example, some systems define “deleting a file” to
mean removing the given file name. The file object itself will not be deleted
until all its names (or all names meeting certain conditions) have been
deleted. Section 30.3.1.3, “File Deletion,” discusses this issue further.

15.3 Users

In general, a user is an identity tied to a single entity. Specific systems may
add additional constraints. Systems represent user identity in a number of
different ways. Indeed, the same system may use different representations of
identity in different contexts.

EXAMPLE: Versions of the UNIX operating system usually represent user
identity as an integer between 0 and some large integer (usually 65,535). This
integer is called the user identification number, or UID. Principals (called
users) may also be assigned login names. Each login name corresponds to a
single UID (although one UID may have many different login names).

When the kernel deals with user identity, it uses the UID; for example, the



superuser is any user whose UID is 0 regardless of that user’s name.
However, when a user logs in, she provides her identity as her login name.
Similarly, all logging uses the login name rather than the numeric UID.

The same principal may have many different identities. Typically each
identity serves a particular function.

EXAMPLE: Versions of the UNIX operating system provide several types of
user identities [1301]. Because a user is a subject, and a process executes on
behalf of a user, the various identities are associated with processes. The real
UID is the user identity at initial login, but it can be changed. The effective
UID is the user identity used for access control. For example, if only UID 22
can read a particular file, and a process’ real UID is 22 and its effective UID is
35, the user will not be able to read the file. If the process’ real UID were 35
and its effective UID were 22, access would be granted.

A special class of programs, called setuid programs [750], create processes
with the effective UID being that of the owner of the program rather than that
of the user executing the program. The resulting process has the access rights
of the owner of the program rather than those of the user executing the
program.

In an effort to limit the need for special privileges, many UNIX systems (such
as Solaris and FreeBSD) provide a saved UID. Whenever the effective UID
changes, the saved UID is set to the value of the effective UID before the
change. The user can switch among the real, effective, and saved UIDs. This
allows the process to be given root privileges, use them for a limited time
(effective UID of 0), drop them (saved UID of 0, nonzero effective UID), and
reacquire them later.

Traditionally, the real UID was used to track the original UID of the process.
However, the superuser can change it. To provide an unalterable means of
recording the original real UID of the process, many UNIX systems provide
an audit or login UID. This UID is assigned at login and cannot be changed.2



2Interestingly, some systems allow root to change the audit UID after
assignment.

On a network, or where disambiguation of two users with the same
identification is required, additional information is needed. On a network, for
example, the host name or domain name may be attached to the identity.

EXAMPLE: Kerberos key distribution centers (see Section 11.2.2) can
interoperate. Each one forms the basis of a “realm” (essentially a domain
controlled by the Kerberos key distribution center). Kerberos users are then
identified by both name and realm. For example “anne@realm1.com” refers
to the user “anne” in the realm “realm1.com”, and she is presumably different
than the user “anne@realm2.com” (“anne” in the realm “realm2.com”).

15.4 Groups and Roles

An “entity” may be a set of individual entities referred to by a single identifier.
The members of the set must be distinguishable, but the set may have an
identity separate from any of its elements.

Principals often need to share access to files. Most systems allow principals to
be grouped into sets called, logically enough, groups. Groups are essentially a
shorthand tool for assigning rights to a set of principals simultaneously.

Two implementations of groups provide different abilities and therefore are
based on different models. The first simply uses a group as an alias for a set of
principals. Principals are assigned to groups, and they stay in those groups
for the lifetimes of their sessions. The second model allows principals to
change from one group to another. After each change, the rights belonging to
the principal as a member of the previous group are discarded and the rights
of the new group are added. The difference lies in the representations of
identity. In the former model, the identity assigned to a principal remains
static; it is the principal identity and the set of identities of each group that
the principal is a part of. This identity does not change throughout the



lifetime of the session. In the latter model, the identity of the principal is the
identity of the user and the set of identities of each group of which the
principal is currently a member. It is dynamic, and should the principal
change from one group to another, the identity of that principal also changes.

In practice, one discusses “user identity” and “group identity.”

EXAMPLE: UNIX users are assigned membership to a group when they log in
[1301]. Each process has two identities, a “user identification” and a “group
identification.” On older UNIX systems, each principal can be in only one
group at a time. The command newgrp(1) changes this identity. The principal
can change to any group of which he is a member. On other UNIX systems,
each principal can be in several groups at a time. On login, the user is placed
into all groups of which he is a member.

Membership in a group is often based on some set of attributes, for example
membership in an organization, a particular medical condition, access to
particular sets of equipment or data. A commonly used attribute is a person’s
job because the job requirements dictate the rights that someone needs to do
the job.

More precisely, a role is a type of group that ties membership to function.
When a principal assumes a role, the principal is given certain rights that
belong to that role. When the principal leaves the role, those rights are
removed. The rights given are consistent with the functionality that the
principal needs to perform the tasks expected of members of the role.

EXAMPLE: On the DG/UX system, a multi-level secure system, system
administration privileges belong to the sysadmin role, not the root user
[2201]. That user’s rights are restricted. The sysuser user can assume the
sysadmin role to administer the host, or the netadmin role to administer the
network. Several such roles are defined.

15.5 Naming and Certificates



Chapter 11 described certificates as a mechanism for binding cryptographic
keys to identifiers. The identifier corresponds to a principal. The identifier
must uniquely identify the principal to avoid confusion.

Suppose the principals are people. The identifiers cannot be names, because
many different people may have the same name. (How many people named
“John Smith” or “Pierre LeBlanc” are there?) The identifiers must include
ancillary information to distinguish the “Matt Bishop” who teaches at UC
Davis from a different person named “Matt Bishop” who works at Microsoft
Corporation.

EXAMPLE: The X.509v4 public-key certificates use identifiers called
Distinguished Names [2045, 2191]. A Distinguished Name identifies a
principal. It consists of a series of fields, each with a key and a value. When
written as strings, the fields are separated by “/” and the key and value by
“=”.3 To use our earlier example, the “Matt Bishop” who teaches at the
University of California might have the Distinguished Name

3When compiled into a binary format, in many cases the key is implied by the
data structure.

/O=University of California/OU=Davis campus/OU=Department of Computer
Science/CN=Matt Bishop/

(where the key “O” means organization, “OU” means organizational unit, and
“CN” means common name) and the “Matt Bishop” who works at Microsoft
might have the Distinguished Name

/O=Microsoft Corporation/OU=Quality Assurance/CN=Matt Bishop/

Although the names are the same, the individuals, and hence the
Distinguished Names, are different.

Certification authorities (CAs) vouch, at some level, for the identity of the



principal to which the certificate is issued. Every CA has two policies
controlling how it issues certificates.

Definition 15–2. A CA authentication policy describes the level of
authentication required to identify the principal to whom the certificate is to
be issued.

Definition 15–3. A CA issuance policy describes the principals to whom the
CA will issue certificates.

The difference between these two policies is that the first simply establishes
the level of proof of identity needed for the CA to accept the principal’s claim
of identity whereas the second answers the question, “Given the identity of
the principal, will the CA issue a certificate?”

EXAMPLE: In 1996, Verisign Corporation ran several CAs. Each had its own
policies of issuance and authentication for certificates [749].

Individuals obtained certificates (called “Digital IDs”) from one of three CAs.4

The class 1 CA authenticated the individual’s electronic mail address. This CA
provided a certificate for sending and receiving electronic mail securely. The
class 2 CA required that the individual supply his real name and address,
which was verified through an online database. This CA provided a certificate
suitable for online purchasing and was (roughly) equivalent to the level of
authentication for a credit card. The class 3 CA required a background check
from an investigative service. The certificate from this CA provided a higher
level of assurance of identity than the other two certificates. All three CAs had
the same issuance policy: that certificates were issued to individuals. A fourth
CA provided certificates to Web servers. This CA had the same issuance policy
as the class 3 CA. Consumers who did business with the Web site had a high
degree of assurance that the Web site was whom it claimed to be.

4Actually, a single CA issued multiple types of certificates. Conceptually, the
single organization is acting as though it were multiple CAs.



In many cases, a CA delegates to a third party, the registration authority
(RA), the checking of data to be put into the certificate, such as identity.
When the RA determines that the CA’s requirements for issuing a certificate
are met, the RA instructs the CA to issue the certificate. CAs can issue
certificates to other organizations. The hierarchical certificate-based key
management architecture demonstrates how such an organization can lead to
a simple hierarchical structure of policies [1040].

EXAMPLE: The infrastructure organizes CAs into a hierarchical, tree-based
structure. Each node in the tree corresponds to a CA. Consider a node that is
the root of a subtree. The CAs under that root are constrained by the policies
of that root; the subordinate nodes may issue certificates with more
restrictive policies, but not with more liberal policies.

The root of the tree is the Internet Policy Registration Authority (IPRA). It
sets policies that all subordinate CAs must follow, and it certifies other CAs
called policy certification authorities (PCAs). Each PCA has its own issuance
and authentication policies, but those policies must not conflict with the
policies set by the IPRA. The PCAs issue certificates to ordinary CAs, which
can then issue certificates to organizations or individuals. The IPRA and
PCAs do not issue certificates to individuals or organizations. All CAs, PCAs,
and the IPRA have unique Distinguished Names.

The elegance of this approach is twofold. Because all PCA policies are public,
on receiving a certificate one can determine how much trust to place in the
identity in the certificate (authentication policy) as well as the requirements
that the holder had to meet to have the certificate issued (issuance policy).

To understand how this works, suppose the University of Valmont wishes to
establish a CA for both students and staff. The requirements for certification
for these groups are different. Students must present valid registration cards
to obtain certificates. These certificates would be considered low-assurance
certificates (because of the nature of the registration process) and so would be



signed using the university’s low-assurance certificate. This certificate, in
turn, is signed by a PCA that requires its subordinate CAs to make a good-
faith effort to verify the identities of those to whom it issues certificates. But
the university requires staff members to present proof of employment and
fingerprints, which are compared with the fingerprints obtained when each
employee was hired. This provides a high level of assurance of identity, and so
the University of Valmont signs these certificates with its high-assurance
certificate, obtained from a different PCA that requires the use of biometrics
for verification of identity.

The certificates for student John and professor Marsha are both signed by the
same organization, but they are signed using different cryptographic keys.
John’s certificate is signed by the key corresponding to a low-assurance
certificate (because the first PCA signed it), and Marsha’s certificate is signed
by the key corresponding to a high-assurance certificate (because the second
PCA signed it). By checking the policies of each of the PCAs, and (possibly)
the CA, the recipient of one of these certificates can tell what the policies of
issuance and assurance are. (A potential conflict arises because the CA has
the same Distinguished Name for two different types of policies. Section
15.5.1 discusses this topic further.)

As another example of how the certificates encode policy, note that Marsha’s
certificate implicitly identifies her as being affiliated with the University of
Valmont. This type of certificate is called an organizational certificate. The
Internet infrastructure defines a second type of certificate, a residential
certificate, that identifies the principal’s residential address. Marsha has one
of these, issued by the post office, and identifying her as a citizen residing in
the city of Valmont.

/C=US/SP=Louisiana/L=Valmont/PA=27 Russell Blvd./CN=Marsha/

(Here, “C” is the country code, “SP” is the province or state name, “L” is the
locality (city, town, or village), and “PA” is the street address.



The principals need not be people or organizations; they can be roles.

EXAMPLE: A company wishes to have its comptroller authorized to digitally
sign documents. To this end, it issues a certificate to the role.

/O=Hodgepodge Corporation/OU=Office of Big Money/RN=Comptroller/

Even if the current comptroller leaves and a new one is hired, the same
certificate can be used. Here, “Comptroller” is a role (and the use of the “RN”
key, for “Role Name,” reflects this).

The identifiers in a certificate need not be formal Distinguished Names. The
certificates used with PGP, for example, allow the subject to provide any
identifier he or she wishes. The convention is to use a name and an electronic
mail address [342], but this permits a high level of ambiguity, especially when
mail addresses change frequently. This leads directly to conflicts; how can a
CA ensure that the certificate it issues does not conflict with another?

15.5.1 Conflicts

Both X.509 and PGP are silent about certificate conflicts. They assume that
the CAs will prevent conflicts. The CA’s Distinguished Name is in the
certificate, so if no two CAs have the same Distinguished Name and each CA
requires that principals be identified uniquely among the set of principals
certified by that CA, no conflicts will arise.

The PEM certification hierarchy uses the same approach: the IPRA requires
that each PCA have a unique Distinguished Name, and no PCA may certify
two CAs with the same Distinguished Name. But in practice, there may be
conflicts. For example, suppose John A. Smith and John B. Smith, Jr. both
live at the same address. John B. Smith, Jr. applies for a certificate, based on
his residence, from the post office, which issues one.

/C=US/SP=Maine/L=Portland/PA=1 First Ave./CN=John Smith/



His father, John A. Smith, applies to the Quick Certificate Company for a
residential certificate. His Distinguished Name would be identical to his
son’s, but the Quick Certificate Company would have no way to know this
because there is no central repository of certificates. The PEM infrastructure
deals with this problem in two ways. First, it requires that all CA
Distinguished Names be “superior” to the Distinguished Name of the
principal.

EXAMPLE: In the University of Valmont case, if Marsha’s certificate were

/C=US/O=University of Valmont/OU=Computer Science Department/CN=Marsha/

then the University of Valmont’s CA would be either

/C=US/O=University of Valmont/OU=Computer Science Department/

if the issuer were the Computer Science Department, or

/C=US/O=University of Valmont/

if the issuer were the university itself. The University of New York, with a
Distinguished Name of

/C=US/O=University of New York/

could not issue a certificate to Marsha as an employee of the University of
Valmont, because its Distinguished Name is not superior to that of Marsha.

This works for organizational certificates, since each organization can be its
own CA, or can empower subordinate units to be their own CAs. However, it
is unrealistic to expect that only one entity will issue residential certificates.
This immediately leads to a conflict.



EXAMPLE: Suppose Heidi Smith’s daughter is named Heidi O. Smith (the
mother has no middle name). Heidi O. Smith needs a residential certificate to
apply for college. She goes to the post office and obtains one with the
following Distinguished Name.

/C=US/SP=California/L=San Rafael/PA=1 Forbes Ave./CN=Heidi Smith/

Because CA Distinguished Names are superior to those of the principals, the
post office must have a Distinguished Name that is one of the following.

/C=US/
/C=US/SP=California/
/C=US/SP=California/L=San Rafael/
/C=US/SP=California/L=San Rafael/PA=1 Forbes Ave./

Heidi’s mother must fill out a financial aid package and needs a certificate to
sign it. Because the line at the post office is too long, she goes to Quick and
Cheap Certs, Inc. and obtains a residential certificate from them.

/C=US/SP=California/L=San Rafael/PA=1 Forbes Ave./CN=Heidi Smith/

But by the same rule, the Distinguished Name that Quick and Cheap Certs,
Inc. uses in the certificate could be the same name as that of the post office.

The PEM infrastructure contains an explicit exception that allows multiple
residential CAs to have the same Distinguished Name. But this issue also
arises when the same CA wishes to issue certificates under two different
policies, and hence under two different PCAs. Because the CA uses the same
Distinguished Name for all its certificates, how does one determine under
which policy a certificate was issued?

EXAMPLE: John’s certificate was issued under a low-assurance policy. He
uses it to sign a letter to Eve. When Eve gets John’s certificate, she validates



it. She cannot determine whether the high-assurance authentication policy or
the low-assurance authentication policy was used.

The PEM infrastructure handles these conflicts with a Distinguished Name
conflict detection database. Before a PCA may issue a certificate to a CA, it
must determine if a conflict exists. It sends a query to the database containing
the following information.

• A hash value computed on a canonical representation of the CA’s
Distinguished Name;

• The CA’s public key in the certificate; and

• The Distinguished Name of the PCA

If the first two fields conflict with any other entry in the database, the IPRA
returns the conflicting entry. (The two PCAs must then resolve the conflict.)
Otherwise, the information is entered into a new record and a timestamp is
added.

This mechanism does not ensure uniqueness of Distinguished Names. It does
ensure uniqueness of the pair (Distinguished Name, public key), and therein
lies the answer to the above-mentioned conflicts. In the residential certificate
example, the post office and Quick and Cheap Certs, Inc. have different public
keys, so the CA for the certificates could be determined at validation time. In
the University of Valmont example, the different public keys used to sign the
certificate would indicate under which policy the university issued the
certificate.

15.5.2 The Meaning of the Identity

The authentication policy defines the way in which principals prove their
identities. Each CA has its own requirements (although they may be
constrained by contractual requirements, such as with PCAs). All rely on non-
electronic proofs of identity, such as biometrics (fingerprints), documents



(driver’s license, passports), or personal knowledge. If any of these means can
be compromised, the CA may issue the certificate in good faith to the wrong
person.

This hearkens back to the issue of trust. Ignoring the trust required for
cryptography to work, the certificate is the binding of an external identity to a
cryptographic key and a Distinguished Name. If the issuer can be fooled, all
who rely on that certificate may also be fooled.

With the erosion of privacy in many societies comes the need for anonymity.
This conflicts with the notion of a certificate binding an identity to a
Distinguished Name and a public key. The conflict arises when the
anonymous principal needs to send a set of integrity-checked, confidential
electronic messages to a recipient and to ensure that the recipient realizes
that all of the messages have come from the same source (but the recipient
cannot know what the source is).

EXAMPLE: A government plans to require all citizens with a specific gene to
register, because anecdotal evidence suggests that people with that gene
commit crimes slightly more often than other people. The government plans
to make the law without publicity, because aside from the civil liberties
issues, there is no reputable scientific evidence to back up the belief. A
government employee decides to alert the media. She realizes that the
government will promptly deny the plan and change its approach to getting
the law passed. She feels that she will be fired (or charged with a crime) if the
government determines who she is, and would therefore be unable to reveal
any changes in the plan. So she decides to publicize the plans anonymously.

Anonymous, or persona, certificates supply the requisite anonymity. A CA
issues a persona certificate under a policy that makes the Distinguished Name
of the principal meaningless. For example, a persona certificate with a
principal Distinguished Name of

/C=US/O=House of Representatives/CN=Jessica Rabbit/



does not imply that the certificate was issued to someone named Jessica
Rabbit. PGP certificates can have any name to identify the principal, and can
innately provide anonymity in this sense.

EXAMPLE: Continuing, our heroine obtains a persona certificate and sends a
copy of the government’s plan to the media, using electronic mail, as
described above. The government denies the plan and secretly changes its
strategy. It has some employees leak verifiably false information so that if the
original whistleblower sends another message, it is less likely to be believed.
But she does, and she uses the same certificate to authenticate the message.
Now the media can check that the two messages came from the same source
(or at least were signed with the same certificate), whereas the false messages
were signed by different certificates.

15.5.3 Trust

The goal of certificates is to bind the correct identity to the public key. When
a user obtains a certificate, the issuer of that certificate is vouching, to some
degree of certainty, that the identity corresponds to the principal owning the
public key. The critical question is the degree of that assurance.

X.509v4, and the PEM certification hierarchy, define the degree of certainty
in the policy of the CA that issues the certificate. If a CA requires a passport as
identification, then the degree of certainty is high; if it requires an unsworn
statement of identity, the degree of certainty is low. But even high-assurance
CAs can be fooled. In the case of the passport, passports can be stolen or
forged. So the level of trust in an identity is not quantifiable. Rather, it is an
estimate based on the policy of the CA, the rigor with which that policy is
followed, and the assumptions that the policy makes.

EXAMPLE: Consider the CA that requires a passport to issue a certificate. The
certificate will have as its DN the name in the passport, the name of the
country issuing the passport, and the passport number. There are several



points of trust in this policy. First, the CA assumes that the passport is not
forged and that the name has not been altered. Second, the CA assumes that
the country issuing the passport issued it to the person named in the
passport. Third, the CA assumes that the individual presenting the passport is
the individual to whom the passport was issued.5 Fourth, the users of the
certificate assume that the CA has actually checked the passport and the
individual using the passport to obtain a certificate.

5Passport photographs are notoriously poor, making visual identification
questionable unless conditions are optimal.

PGP certificates include a series of signature fields (see Section 11.4.2.2), each
of which contains a level of trust of the identity in the certificate.6 The
OpenPGP specification defines four levels [342].

6This is encoded in the signature type field of the signature.

• Generic certification of a user name and a public key packet; this makes no
assertions about the correctness of the name.

• Persona certification of a user name and a public key; the signer has done
no verification that the user name correctly identifies the principal.

• Casual certification of a user name and a public key; the signer has done
some verification that the user name correctly identifies the principal.

• Positive certification of a user name and a public key; the signer has done
substantial verification that the user name correctly identifies the principal.

Even here, though, the trust is not quantifiable. What exactly do “some
verification” and “substantial verification” mean? The OpenPGP specification
does not define them, preferring to leave their definitions to the signer, so the
same terms can imply different levels of assurance to different signers.

EXAMPLE: At a university, “substantial verification” may mean having a



student identification card and a matching driver’s license. The university’s
CA would sign the student’s PGP certificate with level 4 trust. But at a high-
security government installation that requires background checks before
certificates are signed, the university’s “substantial verification” would most
likely be considered level 2 trust, “no verification.”

The point is that knowing the policy, or the trust level with which the
certificate is signed, is not enough to evaluate how likely it is that the identity
identifies the correct principal. Knowing how the CA or signer interprets the
policy and enforces its requirements is also required.

EXAMPLE: On March 22, 2001, Verisign, Inc. and Microsoft Corporation
[2262] reported that Verisign had issued two certificates to someone claiming
to be a representative of Microsoft Corporation. The individual was not. Both
companies took steps to cancel the certificates and prevent them from being
used.

If the CA delegates the validation of identity (and other information) to a
registration authority (RA), then the CA trusts that the RA abides by the
policy of the CA, and is not otherwise compromised. The delegation means
that the CA is still ultimately responsible for the certificates it issues.

EXAMPLE: A user account on a registration authority for the certificate
authority Comodo was compromised. The attacker used the RA to generate
requests for certificates for Google, Yahoo, Skype, and other major Internet
sites. The compromise was detected within hours, and the fraudulently issued
certificates were immediately revoked [448, 857]. The compromised account
was deactivated immediately.

15.6 Identity on the Web

Certificates are not ubiquitous on the Internet. Several other means attach
identity to information, even though the binding may be very transient.



The Internet requires every host to have an address. The address may be fixed
or may change, and without cryptography the binding is weak. Many servers
send information about the state of the client’s interaction, so that when the
client reconnects, the server can resume the transaction or glean information
about previous transactions.

15.6.1 Host Identity

Host identity is intimately bound to networking. A host not connected to any
network can have any name, because the name is used only locally. A host
connected to a network can have many names or one name, depending on
how the interface to the network is structured and the context in which the
name is used.

The ISO/OSI model [1870] provides a context for the issue of naming. Figure
12–6 shows the layers of the ISO/OSI model. Each host, conceptually, has a
principal at each layer that communicates with a peer on other hosts. These
principals communicate with principals at the same layer on other hosts.
Each principal on an individual host can have different names (also called
“addresses”) at each layer. All names identify the same host, but each one
refers to a particular context in which the host functions.

EXAMPLE: A computer has an Ethernet (media access control layer, or MAC)
address of 00:05:02:6B:A8:21, an IP address of 192.168.35.89, and a host
name of cherry.orchard.net. At the data link level, the system is known by its
Ethernet address. At the network level, it is known by its IP address. At the
application level, it is known by its host name. The system is also on an
AppleTalk network, with an AppleTalk address of network 51, node 235.
Other systems on the AppleTalk network identify the host by that name.

Shoch [1750] suggests that a “name” identifies a principal and an “address”
identifies where that principal is located. In the context of host identification,
the “address” indicates where on a network (and, sometimes, the specific
network) the host is located. A “name” indicates in what domain the host



resides, and corresponds to a particular address. Although Shoch’s
terminology is instructive in many contexts, in this context a location
identifies a principal just as well as a name. We do not distinguish between
the two in the context of identification.

If an attacker is able to spoof the identity of another host, all protocols that
rely on that identity are relying on a faulty premise and are therefore being
spoofed. When a host has a sequence of names, each relying on the preceding
name, then an attacker spoofing the first identity can compromise all the
other identities. For example, the host identity is based on the IP identity.
Similarly, the IP identity is based on the Ethernet identity. If an attacker can
alter entries in databases containing the mapping of a lower-level identity to a
higher-level identity, the attacker can spoof one host by routing traffic to
another.

15.6.1.1 Static and Dynamic Identifiers

An identifier can be either static or dynamic. A static identifier does not
change over time; a dynamic identifier changes either as a result of an event
(such as a connection to a network) or over time.

Databases contain mappings between different names. The best known of
these is the Domain Name Service (DNS) [1372, 1373], which associates host
names and IP addresses. In the absence of cryptographic authentication of
hosts, the consistency of the DNS is used to provide weak authentication.

EXAMPLE: The DNS contains forward records, which map host names into
IP addresses, and reverse records, which map IP addresses into names. A
reverse domain lookup occurs when a process extracts the IP address of its
remote peer, determines the associated host name (perhaps using the DNS),
and then obtains the set of IP addresses associated with that host name
(again, possibly using the DNS). If the IP address obtained from the peer
matches any of the IP addresses associated with that host name, then the host
name is accepted as the one obtained in the first lookup. Otherwise, the host



name is rejected as untrusted.

The belief in the trustworthiness of the host name in this case relies on the
integrity of the DNS database. Section 15.6.1.2, “Security Issues with the
Domain Name Service,” examines this issue.

Floating identifiers are assigned to principals for a limited time. Typically, a
server maintains a pool of identifiers. A client contacts the server using an
identifier agreed on between the two (the local identifier). The server
transmits an identifier that the client can use in other contexts (the global
identifier) and notifies any intermediate hosts (such as gateways) of the
association between the local and global identifiers.

EXAMPLE: The Bootless University provides a network to which students can
hook up laptops. Rather than assign each student laptop an IP address, the
university has created a DHCP server [592, 593] for this network. When a
student connects her laptop to the network, the laptop transmits its MAC
(media access control) address to the server. The server responds with an
unused IP address belonging to the network. The laptop accepts that IP
address and uses it to communicate on the Internet.

A gateway can translate between a local address and a global address.

EXAMPLE: The Zerbche company has 500 computers on a local area
network, but only 256 Internet addresses. The internal network assigns as
(fixed) local addresses the IP addresses 10.1.x.y, where x and y reflect internal
configuration details not relevant here. A gateway connects the internal
network to the Internet.

When a user at host 10.1.3.241 wants to access the Internet, it forwards its
packets to the gateway. The gateway assigns a legitimate IP address to the
internal, local address; say that IP address is 101.43.21.241. The gateway then
rewrites the source address of each packet, changing 10.1.3.241 to
101.43.21.241, and puts the packets out on the Internet. When the gateway



receives packets destined for host 101.43.21.241, it checks its internal table,
rewrites those addresses as 10.1.3.241, and forwards them to the internal
network, and the packets go to their destination. This translation is invisible
to either end of the communication, and enables up to some number of hosts
on the internal network to communicate with hosts on the Internet. The
Network Address protocol (NAT) [1817] is used on the Internet to perform
this function.

In the absence of cryptography, authentication using dynamic naming is
different from authentication using static naming. The primary problem is
that the association of the identity with a principal varies over time, so any
authentication based on the name must also account for the time. For
example, if the DNS record entries corresponding to the dynamic name are
not updated whenever the name is reassigned, the reverse domain lookup
method of authentication fails.7

7This failure does not necessarily mean that the DNS has been compromised.
Some systems store the forward and reverse lookup information in separate
files. Updating the forward lookup information file does not change the
reverse lookup information file. Unless the latter is updated also, the stated
problem occurs.

The contrast between static and dynamic naming in authentication is worth
noting in light of the different properties described in Chapter 13,
“Authentication.” The reverse domain lookup technique of authentication
corresponds to checking a property of a principal (what it is) with static
naming, because the name is bound permanently to the principal. But that
technique corresponds to checking a possession of a principal (what it has)
with dynamic naming, because the principal will relinquish that name at
some point.

15.6.1.2 Security Issues with the Domain Name Service

Understanding the centrality of trust in the databases that record associations



of identity with principals is critical to understanding the accuracy of the
identity. The DNS provides an example of this. The belief in the
trustworthiness of the host name in this case relies on the integrity of the
DNS database. If the association between a host name and an IP address can
be corrupted, the identifier in question will be associated with the wrong host.

Several attacks on the DNS have been discussed [91, 163, 495, 1703]. The goal
of these attacks is to cause a victim to associate incorrectly a particular IP
address with a host name. They assume the attacker is able to control the
responses from an authoritative domain name server. “Control” means that
the attacker has control over the name server or can intercept queries to that
server and return its own responses.

The attacker can change the records associating the IP address with the host
name, so that a query for one returns an incorrect answer for the other. A
second technique, known as “cache poisoning,” relies on the ability of a server
to add extra DNS records to the answer to a query. In this case, the extra
records added give incorrect association information. Schuba [1703] uses this
to demonstrate how the reverse name lookup can be compromised. The
attacker connects to the victim. The victim queries the DNS for the host name
associated with the IP address. The attacker ensures that two records are
returned: a record with the bogus host name associated with the IP address,
and the reverse record. The DNS protocol allows this piggybacking to enable
the client to cache records. The cache is checked before any records are
requested from the server, so this may save a network request. The third
technique (“ask me”) is similar: the attacker prepares a request that the
victim must resolve by querying the attacker. When the victim queries the
attacker, the attacker returns the answer, along with two records for the
mapping that he is trying to spoof (one for the forward mapping, one for the
reverse). The last corrupts the paths among the client and DNS hosts to
ensure the resolution uses a corrupt DNS server.

Judicious use of cryptographically based techniques coupled with careful



administration of DNS servers can effectively limit the ability of attackers to
use these attacks. The Domain Name System Security Extensions do exactly
this.

15.6.1.3 DNS Security Extensions

In 1999, several security extensions were proposed to augment the DNS
protocols [609–613]. These extensions, collectively called the Domain Name
System Security Extensions (DNSSEC), were revised in 2005 [73–75]. These
extensions provide integrity—specifically, both origin and data integrity—to
DNS information.

The DNS organizes information into resource records (RRs). For example, a
CNAME RR defines the canonical name for a host. DNSSEC defines a
signature resource record (RRSIG RR), a public key resource record
(DNSKEY RR), and a resource record for the name of the next hostname
(NSEC RR). DNSSEC associates a digital signature with sets of resource
records in the RRSIG resource record. Each DNS server has an associated
public key, made available in the DNSKEY RR. When a resolver requests
authenticated data from a DNS name server, the DNS server sends the
desired set of resource records, and the RRSIG record containing the digital
signature of the earlier records. The resolver can verify the signature using
the associated public key, querying for it if needed. It can then verify the DNS
name server’s address in a similar manner.

The NSEC resource record serves a different function: it allows verifying that
a particular host name does not correspond to an IP address. The resolver
requests a record corresponding to a host name. The server responds with an
NSEC record showing the next valid host name in a sorted order. This tells
the resolver that the name being queried for does not exist in that domain. It
is an authoritative statement that no host with that name exists.

Unfortunately, this allows an attacker to derive the names of all hosts in the
domain by repeatedly sending queries for host names that have no



corresponding addresses. The NSEC3 resource record contains similar
information, but the host names are replaced with a cryptographic hash of the
real host names [1149]. The attacker can therefore not glean legitimate names
from the contents of the NSEC3 record. This resource record is incompatible
with earlier implementations, and so an additional protocol determines
which type of record is to be sent.

DNSSEC, if properly implemented, makes both the spoofing and cache
poisoning attacks immediately detectable. It is also designed to minimize
overhead. For example, it does not define a public key infrastructure. Thus, if
a private key is compromised, an attacker can use that key to launch spoofing
and cache poisoning attacks from the compromised domain. There is no key
revocation mechanism. But the same effect can be achieved by simply
replacing the public key and private key. Those who request the new key will
validate the records. Those who do not will determine something is wrong,
because the resource records being sent will appear to have an invalid
signature.

The security of the Domain Name System is critical to the security of the
Internet’s infrastructure. DNSSEC provides substantial improvements to the
current level of trust required for that security.

15.6.2 State and Cookies

Many Internet applications require that the client or server maintain state to
simplify the transaction process [133].

Definition 15–4. A cookie is a token that contains information about the
state of a transaction on a network.

Although the transaction can be any client-server interaction, the term
“cookie” is most widely used in reference to interactions between Web
browsers and clients. These cookies minimize the storage requirements of the
servers and put the burden of maintaining required information on the client.



The cookies consist of several values.

• The name (or key) and value are encoded into the cookie and represent the
state. The interpretation is that the name has an associated value.

• The expires field indicates when the cookie is valid. Expired cookies are
discarded; they are not to be given out. If this field is not present, the cookie
will be deleted at the end of the session.

• The domain states the domain for which the cookie is intended. It consists
of the last n fields of the domain name of a server. The cookie will be sent to
servers in that domain. For example, domain=.adv.com specifies that the
cookie is to be sent to any requesting server in the adv.com domain. A
domain field must have at least one embedded “.” in it; this prevents a server
from sending over a cookie ending in “.com” and then requesting all cookies
for the domain “.com.”

There is no requirement that a cookie be sent from a host in the domain. This
can be used to track certain types of accesses, as discussed below.

• The path further restricts the dissemination of the cookie. When a Web
server requests a cookie, it provides a domain (its own). Cookies that match
that domain may be sent to the server. If the server specifies a path, the path
must be the leading substring of the path specified in the cookie.

• If the secure field is set, the cookie will be sent only over secured
connections (that is, to HTTPS or HTTP over SSL).

EXAMPLE: Caroline logs in to a Web server, www.books.com, used to sell
books. She selects two books to buy and adds them to her “shopping cart.”
The Web server sends her a cookie with name “bought” and value
“BK=234&BK=8763.” The domain for the cookie is “.books.com.” The
expiration field is omitted. When Caroline goes to the page to pay for the
books, the server asks for the cookie “bought” belonging to the domain



“.books.com.” From the value of the cookie, the server sees that Caroline
wants to buy books numbered 234 and 8763. Had Caroline terminated the
session (by exiting her browser, for example), the cookie would be deleted
and no record would exist of the books she thought about purchasing.

The restriction of sending cookies to hosts in the cookie’s domain prevents
one Web server from requesting cookies sent by a second Web server.
However, a Web server can send cookies marked for the domain of a second
server. When the user accesses the second Web server, that server can request
the cookies marked for its domain but sent by the first server.

EXAMPLE: When Caroline accesses the Web server to buy books, that server
sends her a cookie with name “id,” value “books.com,” and domain
“adv.com.” Several advertisements at the www.books.com Web site take
Caroline to the server www.adv.com. When Caroline follows one of those
links to that server, the server requests her cookies for that domain.
Caroline’s browser sends the cookie. From this, www.adv.com can determine
the Web site from which Caroline obtained the cookie.

Caroline need not even follow the advertisement. Most such advertisements
are images, and the www.books.com server does not have those images
online. Instead, the Web page contains a pointer to some other server, such as
www.adv.com. When Caroline’s browser pulls the www.books.com Web
page over, that page contains an instruction for her browser to contact
www.adv.com to get the advertising image. When that is done,
www.adv.com can request the cookie that www.books.com had sent over.

Cookies can contain authentication information, both user-related and host-
related. Using cookies for authentication treats them as tokens supplied by
the browser to validate (or state and validate) an identity. Depending on the
sensitivity of the interactions with the server, protecting the confidentiality of
these cookies may be critical. Exercise 1 explores this topic in more detail.

15.7 Anonymity on the Web



Identification on the Internet arises from associating a particular host with a
connection or message. The recipient can determine the origin from the
incoming packet. If only one person is using the originating host, and the
address is not spoofed, someone could guess the identity of the sender with a
high degree of accuracy.

An anonymizer is a site that hides the origins of connections. It functions as a
proxy server—that is, it operates on behalf of another entity. A user connects
to the anonymizer and tells it the destination. The anonymizer makes the
connection, so the destination host sees only the anonymizer. The
anonymizer forwards traffic in both directions.

The destination believes it is communicating with the anonymizer because all
traffic will have the anonymizer’s address in it. However, the anonymizer is
merely a go-between and merely passes information between the destination
and the origin.

Anonymizers work primarily on electronic mail and HTTP traffic, although
the same principles apply to any type of network messages.

15.7.1 Email Anonymizers

Electronic mail anonymizers are conceptually simple and demonstrate the
techniques used and the privacy issues that arise. The story of the Finnish
anonymizer anon.penet.fi is worth recounting, because it was the first widely
used anonymizer. Its demise points out the problems in both using and
running anonymizers.

EXAMPLE: The host anon.penet.fi offered an anonymous electronic mail
service. One would send a letter to it, naming another destination (either an
individual or a USENET news group). The anonymizer would strip off the
headers, assign an anonymous ID (anon374, for example) to the letter, and
record the sender and the associated anonymous ID in a database. The letter
would then be delivered to its destination, as though user anon374 at



anon.penet.fi had sent it. The recipients could not tell the original sender
from the letter. They would reply to the letter by sending the reply to anon374
at anon.penet.fi. This letter would be anonymized in the same way the
original letter was anonymized, and would then be forwarded to the real
electronic mail address corresponding to anon374.

This exchange is not truly anonymous. Even though the end parties do not
know who each other are, the anonymizer knows who both are.

Definition 15–5. A pseudo-anonymous (or pseudonymous) remailer is a
remailer that replaces the originating electronic mail addresses (and
associated data) of messages it receives before it forwards them, but keeps
mappings of the anonymous identities and the associated origins.

The problem is that the binding between the anonymous address and the real
address is known somewhere. If that point can be made to reveal the
association, anonymity ceases to exist.

EXAMPLE: The association between the anonymous ID and the electronic
mail address of the sender was anon.penet.fi’s undoing [900]. Some material,
claimed to be child pronography, was circulated through the site. A Finnish
court directed the owner of the site to reveal the database so the plaintiffs
could determine the electronic mail address of the sender, thereby ending the
anonymity. Although the owner appealed the order, he subsequently shut
down the site.

The association can be obscured by using a sequence of pseudo-anonymous
remailers. Tracing the origin then requires the trackers to obtain information
from several sites. But the chain must exist if replies are to be sent back to the
original sender. Eliminating that requirement allows true anonymity.

Definition 15–6. [790] A Cypherpunk (or type 1) remailer is a remailer
that deletes the header of an incoming message and forwards the remainder
to its destination.



Unlike a pseudo-anonymous remailer, no record of the association between
the originating address and the remailer address is kept. Thus, one cannot
trace the message by mapping the remailer’s user name to an electronic mail
address.

Cypherpunk remailers are typically used in a chain, and messages sent
through them are always enciphered [839]. Figure 15–1 shows how this
works. Bob composes a message to Alice and then uses PGP to encipher it
twice. The first encipherment is for the destination “remailer 2.” The resulting
message is then enciphered for delivery to remailer 1. Bob then mails the
message to remailer 1. It deciphers the message, sees that it is to be sent to
remailer 2, and forwards it. Remailer 2 receives the message, deciphers it,
and forwards the message to Alice. Because there is no record of who sent the
message to remailer 1, it cannot be tied back to Bob’s electronic mail address.
Because remailer 2 received the message from remailer 1, it cannot associate
any real electronic mail address with the destination address (Alice). This
illustrates the reason for using chains of Cypherpunk remailers. Were only
one remailer used, it could associate the real sender with the real recipients.
Although two remailers, or any number of remailers, could cooperate to do
the same thing, in practice such cooperation is very difficult to achieve. Again,
the issue of trust in the remailers is central to the success of Cypherpunk
remailers.



Figure 15–1: A message sent to a Cypherpunk remailer. Remailer 1
forwards the message to remailer 2, and re-mailer 2 sends it to
Alice.

But there is still a weakness. Suppose an attacker could monitor all traffic
between the source and the destination but the remailers themselves
remained uncompromised. Then the attacker could view traffic into and out
of a remailer but could not see the association of incoming traffic with
outgoing traffic. The goal of the attacker would be to reconstruct this
association [790, 839].

Obviously, reconstructing this association from cleartext messages is simple:
just compare the bodies of incoming messages with those of outgoing
messages. The envelope for the current remailer will be deleted; otherwise,
the bodies will be the same. This is the reason to encipher all messages going
through a Cypherpunk remailer. In the following discussion, we assume that
all such messages are enciphered. The attacks all involve traffic analysis.

If a remailer immediately forwards a message after receiving it, and before
any other message arrives (or if processing is guaranteed to occur in order of
arrival), then the attacker can determine the association. One approach to



obscuring this is to hold messages for random intervals of time; however,
unless the interval is greater than the average interarrival time, the delay does
not help. (Some remailers allow the sender to specify the length of the
interval.)

A second approach is to randomize the order of processing of the incoming
messages; implicit in this approach is a delay to allow such reordering.
Cypherpunk remailers that do this keep a pool of incoming messages. No
messages are sent out until the pool contains a fixed number, call it n, of
messages. When the nth message arrives, one of the messages in the pool is
selected and sent. This protects the associations against passive attacks.
However, an active attacker can send enough messages to the remailer so that
all n – 1 messages in the pool are sent. (See Exercise 2.)

A third approach deals with message size. As a message moves through its
chain of remailers, each remailer strips off an outside envelope. Thus, the size
of the message decreases. The attacker can use this by recording the sizes of
messages entering and leaving the remailer. No outbound message can be
associated with an inbound message of lesser or equal size. Furthermore, the
size of the envelope can be estimated well enough to estimate how much the
message would shrink by, thus eliminating more possible associations. To
limit this threat, some remailers allow users to append junk to the message
and instruct the remailer to delete it. Again, this reduces message size; it does
not increase it.

The final attack is also active. The attacker replays the messages many times
to the first remailer, which forwards them. The attacker monitors the
outbound traffic and looks for a bump in the amount of traffic from the
remailer corresponding to the messages sent into the remailer. This
associates the outbound path with the inbound path. To prevent this attack,
remailers cannot forward the same message more than once.

A second type of remailer, based on ideas from Chaum’s paper [395] (which
uses the term “mix” to describe the obscuring of information), does not suffer



from these problems.

Definition 15–7. [790] A Mixmaster (or type 2) remailer is a Cypherpunk
remailer that handles only enciphered messages and that pads or fragments
messages to a fixed size before sending them.

This hinders the attacks described above. The contents of the incoming and
outgoing messages cannot be matched, because everything is enciphered.
Traffic analysis based on size is not possible, because all messages (incoming
and outgoing) are of the same size. All messages are uniquely numbered, so
replay attacks are not possible. Message fragments are not reassembled until
the message reaches the last remailer in the chain, so reordering attacks are
more difficult. Figure 15–2 shows what a Mixmaster message looks like.
Special software is used to construct the messages, whereas Cypherpunk
remailers can accept messages constructed by hand.



Figure 15–2: A Mixmaster message. This is a fragment of a
multipart message sent through two remailers. Messages are
enciphered using both a public key and symmetric key algorithm,
and random garbage is added as well as padding. The recipient’s
address is visible only to the last remailer.

In practice, messages sent through Mixmaster remailers are untraceable
unless the remailers themselves are compromised. In that case, one could
track packet and message IDs and make associations as desired. The point is
that anonymity assumes that the remailers can be trusted not to disclose
associations. The Mixmaster technique minimizes the threat of compromised



remailers, because all remailers must track origin, packet, and message IDs,
and the final remailer must also track destination address, packet, and
message IDs for the sender to be associated with a received message. This
technique is not foolproof; if only one message is sent over the network, an
attacker can easily determine the sender and receiver, for example. But it
substantially adds to the difficulty of matching an anonymous letter to a
sender.

The Mixmaster remailer BABEL [839] adds the ability to reply without
knowing the identity of, or even the actual e-mail address of, the sender.
Mixminion [499] provides an alternate approach to managing replies by
treating reply messages as new messages, so one cannot determine if an email
is a reply. These techniques can be generalized to routing [794, 1859], and
hence to any protocol.

15.7.2 Onion Routing

Onion routing is a technique that hides a route from not only observers but
also from the nodes along the route. Each node in the path, except the first, is
aware only of its predecessor and successor in the route. Typically, the first
node will select the route, although provisions exist for intermediate nodes
changing a route.

Definition 15–8. [794] Onion routing is a method of routing that ensures
each node in the route knows only the two adjacent nodes in the route.

Suppose a client wishes to communicate with a server, but in such a way as to
remain anonymous. The client chooses a proxy that will perform the routing.
The message will be routed through a set of routers, each of which will
forward the message to the next router. At the end of this route, the final
router will forward the message to the server. Associated with each router is a
public key pair, with the public key available to all proxies.

The heart of the onion route is the onion:



Here, pubr is the public key of the router (or terminal proxy) this message will
be forwarded to; EF and EB identify encryption algorithms to be used when
sending messages forward to the server and backwards to the client,
respectively, with kF and kB being the corresponding keys; nexthop is the
router or proxy to which the message is to be forwarded; expires is an
expiration time for which the payload is to be saved; and payload is the data
associated with the message. Note the payload may itself be a message of this
form, or it may be the data that the terminal proxy is to forward to the server.
Each router has a table that stores a virtual circuit number associated with a
route, the forward and backwards keys and algorithms, the onion, and the
next router to which messages along this route are to be forwarded. If this
router is the last one, the forwarding entry (and nexthop in the packet) are
both set to NULL.

To create a route, the proxy first determines the path that the message is to
follow. The proxy can define this route exactly, or can define it loosely, in
which case each router is free to route messages to the next hop over other
routes, thereby adding routers to the path. The proxy creates an onion
encapsulating the route, embeds it in a create message, along with a virtual
circuit identification number, and forwards it to the next router on the path.
This router deciphers the onion using its private key (“peels the onion”),
checks to see if this is a replay by comparing the result to entries in the table.
If it is, the message is discarded. If not, the router assigns a virtual circuit
identification number to this route, sees what the virtual circuit number on
the incoming message was, and it enters the pair into a table. It also stores
the keys and encryption algorithm identifiers for this route in the table. It
then generates a new create message and puts its assigned virtual circuit
identification number and the “peeled” onion into this message. The resulting
message is smaller than the one received, so the payload (the “peeled” onion)
is padded to match the size of the original incoming message, and then it is
forwarded to the next hop.



To send a message, the client proxy simply applies the decryption algorithms
corresponding to each backwards encryption algorithm along the route. So,
for example, if the route begins at W , and goes through X and Y to Z, the
message m would be transformed to:

where dI is the decryption algorithm corresponding to the encryption
algorithm EB for router I. It then puts this into a data message with the
appropriate virtual circuit identifier and sends it to X. X enciphers the
message, producing:

and forwards that in a data message with the virtual circuit number it
assigned to this route (adding padding if necessary to ensure the size of the
message is the same as the original). This continues until the message
reached Z. At that point, m is known and is forwarded through the server’s
proxy.

To reply, the server sends a message m′ to the server’s proxy. That enciphers
it with its encrypting algorithm and key, adds padding if necessary, and
forwards it to the next hop. This process iterates until the message containing
m′ arrives at the client’s proxy. That proxy has the keys used along the route,
so it can decipher the message and deliver it.

A virtual circuit can be eliminated in two ways. If the client or server wish to
destroy the virtual circuit, it sends a destroy message along the circuit. As
each router receives the message, it replaces the original virtual circuit
number with the one it assigned and forwards the message to the next hop. It
then deletes the entry corresponding to the virtual circuit identified in the
destroy message. The payload for this message is empty, but padded and
enciphered appropriately.

If the client’s proxy is compromised, the attacker can see all messages and the



routes taken, and from that may be able to deduce the server. If the server’s
proxy is compromised, the attacker can see all messages sent to the server,
but cannot deduce the client from the routing information because the only
visible router is the hop preceding the server’s proxy. If a router in the path is
compromised, no traffic can be read due to the encryption; only the previous
and next routers can be determined.

If an attacker is able to see all traffic moving on the network, however, then
by watching the flow of messages she could deduce which clients and servers
were communicating. One approach would be to match client and server
message sizes. Preventing this means all messages sent through the onion
network must be the same size; this is achieved by fragmenting and padding
messages to a fixed size. A second approach is to observe the flow of
messages. Defeating this requires that all onion routers be used equally. This
leads to the observation that the onion network requires meaningless
messages to be sent among the routers, to obscure the flow of any real
messages.

An early implementation of onion routing dealt with web browsing [1859].
This led to the development of the onion router Tor, which modified the
original design.

EXAMPLE: Tor [573] is a widely used onion router. It connects clients and
servers through streams that run over virtual circuits established among
onion routers (ORs). Each OR has an identity key and an onion key. The
identity key is used to sign information about the router. The onion key is
used to read requests to set up circuits, and is changed periodically. All virtual
circuits are over TLS connections, and TLS establishes a third key for this.



Figure 15–3: Tor control and relay commands

Tor’s basic message unit is the cell. Each cell is 512 bytes long and is either a
control or a relay cell. If the cell header contains a command, the cell is a
control cell that directs the recipient to take some action, such as create or
destroy a circuit. Otherwise, the cell is a relay cell that deals with an
established circuit. Figure 15–3 shows some of the Tor commands.

All cell headers also have a virtual circuit number. A virtual circuit is set up
over TLS connections. Several circuits may use the same TLS connections;
this reduces the overhead imposed by cryptography and network latencies.
Similarly, streams move data over virtual circuits, and several streams may be
multiplexed over a single virtual circuit.

Setting up a virtual circuit requires the client’s onion proxy (OPc) to know
where the ORs it may use are. Tor uses directory services for this. A group of
well-known ORs track information about available ORs, such as the keys,
address, and exit policy associated with each OR. Other ORs periodically
upload information about the state of the onion network. When an OPc wants
to set up a route, it contacts one of these directory servers and from the
information it receives, it chooses a path.

Tor uses a route with 3 ORs, namely the entry OR1, the middle OR2, and the



exit OR3. OR1 communicates with the client’s onion proxy OPc, and OR3 with
the server (OPs).

Let RSA(x) denote the encipherment of message x using the onion key of the
destination OR; let g and p be as in the Diffie-Hellman cryptosystem (see
Section 11.2.3.1). Let x1, . . . , xn and y1, . . . , yn be generated randomly, and let
ki = gxiyi mod p; the forward and backwards keys are extracted from this.
Also, let h(x) be a cryptographic hash of message x.

The following protocol creates a virtual circuit between OPc and OPs:

1. OPc → OR1 : {create || c1 || RSA(gx1)}

2. OR1 → OPc : {created || c1 || gy1) || h(k1)}

3. OPc → OR1 : {relay || c1 || {extend || OR2 || RSA(gx2)}}

4. OR1 → OR2 : {create || c2 || RSA(gx2)}

5. OR2 → OR1 : {created || c2 || gy2) || h(k2)}

6. OR1 → OPc : {relay || c1 || {extended || gy2 || h(k2)}}

7. OPc → OR1 : {relay || c1 || {extend || OR3 || RSA(gx3)}}

8. OR1 → OR2 : {relay || c2 || {extend || OR3 || RSA(gx3)}}

9. OR2 → OR3 : {create || c3 || RSA(gx3)}

10. OR3 → OR2 : {created || c3 || gy3) || h(k3)}

11. OR2 → OR1 : {relay || c2 || {extended || gy3) || h(k3)}}

12. OR1 → OPc : {relay || c1 || {extended || gy3 || h(k3)}}

At this point, OPc has the keys for OR1, OR2, and OR3. Call the forward keys
f1, f2, and f3 respectively.



When the client wants to send a message m to the server, it sends the
message to OPc. OPc then enciphers the message using AES-128 in counter
mode, to produce

and puts this into a relay data cell. It then sends the cell to OR1, which
deciphers the cell, determines the next hop by looking up the circuit number
in its table, puts the payload into another relay data cell, and forwards it. OR2
does the same, forwarding the result to OR3. OR3 deciphers the cell, and then
either carries out what the payload requests (for example, opening a TCP
connection to the server) or forwards the payload to the server.

To reply, the server sends a reply r to OR3, which enciphers it with its
backwards key, embeds it in a relay data packet, and forwards it to OR2. OR2
uses the circuit number to determine where the next hop is, enciphers the cell
with its backwards key, and sends the result to OR1. OR1 acts similarly, and
sends the result to OPc. As OPc has all the backwards keys associated with the
routers on the route, it can decipher the message and forward it to the client.

One problem with onion routing is getting to it. A government or other entity
that wishes to determine who is using such a network can look for traffic
between a client and a known entry router. One approach to limiting this
threat is to have entry routers that are not listed publicly but are available to
those who wish to use them.

EXAMPLE: Tor deals with this problem through the use of bridge relays, or
bridges for short. These are entry routers that are not listed in the Tor
directories of entry points. Instead, users who wish to use them can go to a
specific web page, or send an email to a specific address. Once the user
obtains a set of bridges, they can be added to the Tor network settings, and
then Tor will use the bridge as an entry router.

Governments and other entities that wish to prevent the use of onion routing



can also look at packets being sent from a client and determine they are
intended for an onion router. This requires examining the packet contents
and looking for particular structures. A counter to this is to obfuscate the
traffic, so it does not appear to have the structures being checked for. When
the packet reaches the entry point, it is then deobfuscated, and handled
normally.

EXAMPLE: Tor provides this capability with pluggable transports. These
modules transform the traffic to make misidentification easy. Tests have
shown that, for example, a pluggable transport that uses format-transforming
encryption has allowed the experimenters to access URLS that are otherwise
censored [608].

15.7.2.1 Anonymity for Better or Worse

Anonymity provides a shield to protect people from having to associate their
identities with some data. Is this desirable?

The easiest way to answer this is to ask what the purpose of anonymity is.
Anonymity is power, because it allows one to make statements without fear of
reprisals. One can even deny having made the statements when questioned,
and with true anonymity, the denial cannot be disproved.

Anonymity allows one to shape the course of debate by implication.
Alexander Hamilton, James Madison, and John Jay deliberately used the
name “Publius” to hide their authorship of the Federalist Papers. Aside from
hiding the authors’ identity, the “Publius” pseudonym was chosen because
the Roman Publius was seen as a model governor. The pseudonym implied
that the authors stood for responsible political philosophy and legislation
[864]. The discussion of the Federalist Papers focused on their content, not
on the personalities of their authors.

Anonymity allows whistleblowers considerable protection. Those who
criticize the powerholders often fall into disfavor, even when their criticism is



valid, and the powerholders take action. Galileo promulgated the theory that
the earth circles the sun and was brought before the Inquisition [898]. Ernest
Fitzgerald exposed cost overruns on the U.S. Air Force C-54 airplane and was
removed from his position. After several court victories, he was reinstated
[329]. Contrast this with the anonymous sources that spoke with Bernstein
and Woodward during the Watergate scandal. The reporters combined those
anonymous sources (especially one called “Deep Throat”8) with public
records to uncover a pattern of activity that ultimately led to impeachment
charges against President Richard Nixon, his resignation, and criminal
indictments and convictions of many government officials. No action could be
taken against the sources, because their identities were unknown [178, 179].

8Deep Throat was actually W. Mark Felt, at the time, an Associate Director of
the U. S. Federal Bureau of Investigation [2035]. He was identified in 2005.
Had his identity been known at the time of the Watergate scandal, he would
have suffered severe consequences.

Whether these are benefits or drawbacks depends on whether one is the
powerholder under attack or the person attacking the powerholder. In many
societies, questioning of authority is considered desirable and beneficial to
the society, and in such cases the need for anonymity outweighs the
problems, especially when the powerholders will strike back at the critics. In
other societies, those who hold power are considered to be more experienced
and knowledgeable and are trusted to act in the best interests of the society.
In those societies, anonymous criticism would be considered destabilizing
and inimical to the best interests of the social order. The reader must decide
how anonymity affects the society of which he or she is a part.

Just as anonymity is a tool with which powerholders can be attacked, the
powerholders can use it to attack those they consider to be adversaries. Franz
Kafka’s book The Trial [992], which describes a trial in which the accused
does not know the (anonymous) judges, is considered a masterpiece of
existential literature. However, as dissidents in many countries have found,



anonymous judges are not always fictional. In the United States during the
period when Martin Dies and Joseph McCarthy held sway, anonymous
accusers cost many people their livelihoods, and in some cases their lives
(see, for example, Donner [585] and Nizer [1464]).

Anonymity also protects privacy. From this perspective, as we move through
a society, parts of that society gather information about us. Grocery stores can
record what we purchase, bookstores can record what books we buy, and
libraries can record what books we read. Individually, each datum seems
unimportant, but when the data is correlated, the conclusions that can be
drawn are frighteningly complete. Credit bureaus do this to a degree already,
by obtaining information from a variety of credit sources and amalgamating
them into a single credit report that includes income, loans, and revolving
credit accounts such as credit cards.

This poses three risks to individuals. First, incorrect conclusions can come
from data interpreted incorrectly. For example, suppose one visits Web sites
looking for information on a proscribed narcotic. One conclusion is that the
individual is looking for information on making or obtaining such a drug for
illicit purposes, but this conclusion could be wrong. The individual could be a
high school student assigned to write a report on dangerous drugs. The
individual could be a doctor seeking information on the effects of the use of
the drug, for treating a patient. Or the individual could simply be curious.
There is insufficient information to draw any of these conclusions.

Second, erroneous information can cause great harm. The best examples of
this are cases of “identity theft,” in which one person impersonates another,
using a faked driver’s license, Social Security card, or passport to obtain
credit in another’s name [541,1519]. The credit reporting agencies will
amalgamate the information under the real person’s records, and when the
thief defaults, the victim will have to clear himself. Identity theft also occurs
in other arenas such as social networks [209], where the goal is to gain the
confidence of a victim by impersonating another.



Third, the right to privacy inherent in many societies includes what Brandeis
called the “right to be let alone—the most comprehensive of rights and the
right most valued by civilized men” [290]. Anonymity serves as a shield
behind which one can go about one’s business and be let alone. No central, or
distributed, authority can tie information obtained about an anonymous
entity back to an individual. Without the right to anonymity, protecting one’s
privacy becomes problematic. Stalkers can locate people and harass them;
indeed, in one case a stalker murdered an actress [104]. On the Web, one may
have to accept cookies that can be used to construct a profile of the visitor.
Organizations that use cookies for this purpose generally adopt an “opt-out”
approach, in which a user must request that no information be gathered,
rather than an “opt-in” approach, in which a user must expressly give
permission for the information to be gathered. If the user is anonymous, no
meaningful profile can be constructed. Furthermore, the information
gathered cannot be matched with information in credit records and other
data banks. The ability to prevent others from gathering information about
you without your consent is an example of the right to privacy.

Anonymity for personal protection has its disadvantages, too. Jeremy
Bentham’s panopticon introduced the notion of perpetual and complete
monitoring to prevent crime and protect citizens. The idea that governments
should be able to detect crimes as they happen and intervene, or establish
that a crime has been committed and act to apprehend the perpetrators, is
attractive because of the sense of security it gives citizens. But many,
including the Founding Fathers of the United States, regarded this as too high
a price to be paid. As Benjamin Franklin wrote, “They that can give up
essential liberty to obtain a little temporary safety deserve neither liberty nor
safety” [135].

Perhaps the only conclusion one can draw is that, like all freedoms and all
powers, anonymity can be used for good or for evil. The right to remain
anonymous entails a responsibility to use that right wisely.



15.8 Summary

Every access control mechanism is based on an identity of some sort. An
identity may have many different representations (for example, as an integer
and as a string). A principal may have many different identities. One
certificate may identify the principal by its role, another by its job, and a third
by its address. A host on the Internet has multiple addresses, each of which is
an identity.

Identities are bound to principals, and the strength and accuracy of that
binding determines how systems act when presented with the identity.
Unfortunately, trust cannot be measured in absolute terms except for
complete trust and no trust. Reality dictates a continuum, not discrete values.
Understanding how an identity is bound to a principal provides insight into
the trustworthiness of that identity.

Anonymity allows a principal to interact with others without revealing his or
her true identity. Anonymity comes in two forms: pseudo-anonymity, in
which an intermediary knows the true identity (and can relay messages
without revealing that identity); and true anonymity, in which no one knows
the true identity. The use of anonymity entails a responsibility to use it wisely.

15.9 Research Issues

Identification is an area of ongoing research, both in the sense of determining
who a principal is and in the sense of determining how to identify that
principal uniquely. The ubiquity of the World Wide Web complicates this
issue, because different organizations may have the same name. If so, which
one can use its name for its identifier?

The issue of naming—in particular, how to represent relationships among
principals—is a deep one. One goal is to enable an observer to draw
conclusions about relationships from the identities; the PEM hierarchy’s use
of subordinate Distinguished Names is an example of this. Another issue is



delegation—in particular, how one can identify a principal acting on behalf of
another. How can one use naming mechanisms to describe such a
relationship, and how can one affirm that the claimed relationship is correct?

A name is an attribute of an entity used to identify the entity. As noted in this
chapter, an entity may have many names, or many names may refer to the
same entity. Other attributes may identify the entity. For example, a role is an
attribute, as is the CPU type, web browser, and domain for systems, the
location and type of business of commercial firms, and facial figures and DNA
of people. Research into managing attributes deals with access control as well
as authentication, and is growing in importance.

Anonymity is another important area of research. Designing remailers and
other tools to anonymize the senders of messages, and to prevent messages
from being traced back to their origins, is of interest.

Anonymity is also an important factor in payment of money over the Internet.
Digital cash is analogous to physical cash; once spent, there is nothing that
ties it to a particular individual. As commercial firms and organizations sell
products over the Internet, digital cash provides a simple way for individuals
to purchase items just as they would purchase items from a grocery store. The
protocols involved must deal with the need for untraceability, as well as
preventing the digital cash from being spent twice (thereby defrauding the
repository that issued the cash). Implementing protocols that handle all
situations correctly is another area of research.

15.10 Further Reading

Representation of identity varies from system to system. Bishop [220]
discusses implementation of role accounts using standard UNIX account
mechanisms. Faden [651] describes an implementation for Solaris. McNutt
[1309] presents requirements and procedures for implementing roles to
manage UNIX systems. Sandhu and Ahn [1662] extend the UNIX group



semantics to include hierarchies.

Ellison explores methods of identifying a principal through relationships to
others [634] and the meaning of a name [635]. Rivest and Lampson
developed a simple infrastructure, SDSI, that simply uses public keys as
principals, and ignores any notion of “individual” [1604]; others combine this
with a simple PKI to produce an authorization system [426,1171]. Ellison and
Dohrmann analyze establishing identity using SDSI in a group collaboration
[633]. Park et al. presents an extension of persona certificates that separate
the verification of ownership of a private key from the verification of the
contents of the certificate [1502]

Saltzer [1651] lucidly discusses the issues and principles that affect naming on
the Internet. Several RFCs discuss schemes for naming hosts and other
principals on the Internet and the issues that implementing them raise [626,
873, 1076, 1077, 1156, 1337, 1616, 2094]. An “attribute certificate” [1500,2191]
binds attributes to a principal, and many studies have looked at the use of,
and management of, attribute information [228,230,372,943,1197,2074].

Several cryptographic protocols allow information to be broadcast
anonymously. The best-known such algorithm is Chaum’s “Dining
Cryptographers Problem” [389], in which the goal is to determine if one of
the dining cryptographers paid for the meal (without revealing which one), or
someone else did. Waidner and Pfitzmann [1969] point out that Chaum’s
solution could be disrupted if one of the cryptographers lies, and present an
algorithm (called “The Dining Cryptographers in the Disco”) to detect it.
Golle and Juels [798] present an alternate solution that handles other attacks
as well.

Chaum [395] first described digital cash. Okamoto and Ohta [1479] list
desirable properties for digital cash systems and present a protocol that
meets them. Other protocols include Brands’ protocol [291], electronic checks
[390,394], endorsed e-cash [344], CAFE [259], Net-Cash [1321], NetCard
[58] and BitCoins [1426]. Smart cards can carry digital cash [56, 114] and



banks and other financial institutions have taken advantage. Some such
schemes have been compromised [1410]. Callas and other panelists [341]
discuss the actual systems deployed. Von Solms and Naccache note that the
untraceability of digital cash makes solving certain crimes more difficult
[1959].

Bacard [105] discusses the basics of anonymous remailers. Mazières and
Kaashoek [1280] describe a type 1 remailer in operation. Naessens, De
Decker, and Demuynck add accountability to anonymous email [1423], but
this requires the use of a trusted third party to determine when
deanonymization is appropriate. Several attacks on mixes such as Tor, and
appropriate countermeasures, have been studied [970, 1126, 1195, 1722,
2116]. Alsabah and Goldberg [38] examine several proposed improvements to
the security of Tor.

15.11 Exercises

1. When discussing the nature of identity, Section 15.1 refers to a “principal”
rather than a “user”. What type of entity other than a user might an identity
refer to? Why might such an entity be more important for accountability than
an individual user?

2. Most operating systems define two types of names. A direct alias (name or
link) identifies the specific entry in a file allocation table (such as an inode),
and an indirect alias is itself a file containing the path name of a second file.
When one opens an indirect alias for certain actions (such as reading or
writing), the operating system instead opens the file named in the indirect
alias. Specific commands operate on the indirect alias itself (as opposed to the
file it names).

(a) Can indirect aliases ever loop; that is, can there exist a chain of indirect
aliases i1, . . . , in such that i1 = in? If so, how would the system detect such
loops? What should it do when one is discovered?



(b) Can a loop with direct aliases occur?

(c) The text points out the difference between a file name and a file
descriptor. How does the introduction indirect aliases complicate the
resolution of an alias to a device number and inode?

(d) On some systems, a direct alias cannot refer to an inode on a different
device. Suppose the system were altered to allow a device number to be
included in the alias, so a direct alias could refer to a file on another device.
What complications might arise? Do indirect aliases, which can reference files
on other devices, have the same complications?

3. On versions of the UNIX and Linux operating systems, some programs
determine rights by the effective UID, and others by the user name.

(a) Suppose two different user accounts have the same UID. What problems
might this cause? What, if any, are the benefits?

(b) Suppose two different users have the same login name. What problems
might this cause? What, if any, are the benefits?

4. Give reasons why root should not be able to change the audit UID on a
UNIX system, and give reasons why it should. Which reasons sound more
persuasive to you?

5. What problems might the failure to quantify the levels of trust in an
OpenPGP certificate pose?

6. The Web site www.widget.com requires users to supply a user name and a
password. This information is encoded into a cookie and sent back to the
browser. Whenever the user connects to the Web server, the cookie is sent.
This means that the user need only supply a password at the beginning of the
session. Whenever the server requests re-authentication, the client simply
sends the cookie. The name of the cookie is “identif.”



(a) Assume that the password is kept in the clear in the cookie. What should
the settings of the secure and expires fields be, and why?

(b) Assume that the name and password are hashed and that the hash is
stored in the cookie. What information must the server store to determine the
user name associated with the cookie?

(c) Is the cookie storing state or acting as an authentication token, or both?
Justify your answer.

7. Recall that DNSSEC associates a digital signature with sets of resource
records.

(a) How does this solve the problem of cache poisoning?

(b) What assumption(s) underlie the claim that DNSSEC solves cache
poisoning attacks?

8. Assume that a Cypherpunk remailer reorders messages. It has a pool of n–
1 messages at all times. When the nth message arrives, one of the n messages
is selected at random and forwarded. An attacker floods the server with
enough messages to force the n – 1 messages in the original pool to be sent.

(a) Assuming that the message to be sent is chosen according to a uniform
random distribution, what is the expected number of messages that the
attacker would have to send to achieve this goal?

(b) How can the attacker determine when all the messages originally in the
pool have been sent?

9. Consider a scheme that allows a recipient to reply to a message from a
chain of Cypherpunk remailers. Assume that encipherment is used
throughout the chain.

(a) Bob selects a chain of remailers for the return path. He creates a set of



keys and enciphers them so that only the key for the current remailer is
visible to that remailer. Design a technique by which he could accomplish
this. Describe how he would include this data in his message.

(b) How should Alice’s mailer handle the processing of the return address
information?

(c) When Bob receives the reply, what does it contain? How can he obtain the
cleartext reply?



Chapter 16. Access Control
Mechanisms
CASSIO: Why, no. The day had broke Before we parted. I ha’ made bold, Iago, 
To send in to your wife. My suit to her Is that she will to virtuous Desdemona 
Procure me some accéss.

— The Tragedy of Othello, III, i, 32–36.

Recall the access control matrix discussed in Chapter 2. As in the theoretical 
model, an implementation of the array and the commands to manipulate it 
provide a mechanism that the system can use to control access to objects. 
Unfortunately, there are several problems with a straightforward 
implementation. On a typical system, the number of subjects and objects will 
be very large. Most entries in the matrix will be either blank (indicating no 
access) or the same (because implementations often provide a default 
setting). Also, the creation and deletion of subjects and objects will require 
the matrix to be managed carefully, adding to the complexity of this code.

Instead, several optimizations enable systems to use more convenient, and in 
some cases simpler, versions of the access control matrix. Access control lists 
and capabilities are variants based on the access control matrix that 
eliminate many of the problems mentioned above. Various organizations of 
these mechanisms lead to powerful controls, such as the ring-based 
mechanism of Multics. A third mechanism, locks and keys, is based on 
cryptography and provides a powerful alternative. A fourth mechanism uses 
access control lists to implement an ORCON-like control.



16.1 Access Control Lists

An obvious variant of the access control matrix is to store each column with
the object it represents. Thus, each object has associated with it a set of pairs,
with each pair containing a subject and a set of rights. The named subject can
access the associated object using any of those rights. More formally:

Definition 16–1. Let S be the set of subjects, and R the set of rights, of a
system. An access control list (ACL) l is a set of pairs l = {(s, r) | s ∈ S, r ⊆ R}.
Let acl be a function that determines the access control list l associated with a
particular object o. The interpretation of the access control list acl(o) = {(si,
ri) | 1 ≤ i ≤ n} is that subject si may access o using any right in ri.

EXAMPLE: Consider the access control matrix in Figure 2–1, on page 30. The
set of subjects is process 1 and process 2, and the set of objects is file 1, file 2,
process 1, and process 2. The corresponding access control lists are

acl(file 1) = { (process 1, { read, write, own }), (process 2, { append }) }

acl(file 2) = { (process 1, { read }), (process 2, { read, own }) }

acl(process 1) = { (process 1, { read, write, execute, own }), (process 2, { read
}) }

acl(process 2) = { (process 1, { write }), (process 2, { read, write, execute, own
}) }

Each subject and object has an associated ACL. Thus, process 1 owns file 1,
and can read from or write to it; process 2 can only append to file 1. Similarly,
both processes can read file 2, which process 2 owns. Both processes can read
from process 1; both processes can write to process 2. The exact meanings of
“read” and “write” depend on the instantiation of the rights.

One issue is the matter of default permission. If a subject is not named in the
ACL, it has no rights over the associated object. On a system with many



subjects, the ACL may be very large. If many subjects have the same right
over the file, one could define a “wildcard” to match any unnamed subjects,
and give them default rights (see Section 16.1.2.3).

16.1.1 Abbreviations of Access Control Lists

Some systems abbreviate access control lists. The basis for file access control
in the UNIX operating system is of this variety. UNIX systems divide the set
of users into three classes: the owner of the file, the group owner of the file,
and all other users (sometimes called the world). Each class has a separate
set of rights.

EXAMPLE: UNIX systems provide read (r), write (w), and execute (x) rights.
User bishop creates a file in the group vulner. Initially, bishop requests that
he be able to read from and write to the file, that members of the group be
allowed to read from the file, and that no one else have access to the file. Then
the permissions would be rw for owner, r for group, and none for other.

UNIX permissions are represented as three triplets. The first is the owner
rights; the second, group rights; and the third, other rights. Within each
triplet, the first position is r if read access is allowed or – if it is not; the
second position is w if write access is allowed or – if it is not; and the third
position is x if execute access is allowed or – if it is not. The permissions for
bishop’s file would be rw–r– – – – –.

An interesting topic is how UNIX systems assign group ownership.
Traditionally, UNIX systems assign the effective principal group ID of the
creating process. But in some cases this is not appropriate. For instance,
suppose the line printer program works by using group permissions; say its
group is lpdaemon. Then, when a user copies a file into the spool directory,
lpdaemon must own the spool file. The simplest way to enforce this
requirement is to make the spool directory group owned by lpdaemon and to
have the group ownership inherited by all files created in that directory. Most
systems—notably, Solaris and Linux systems—augment the semantics of file



protection modes by setting the setgid bit on the directory when any files
created in the directory are to inherit the group ownership of the containing
directory.

Abbreviations of access control lists, such as those supported by the UNIX
operating system, suffer from a loss of granularity. Suppose a UNIX system
has five users. Anne wants to allow Beth to read her file, Caroline to write to
it, Della to read and write to it, and Elizabeth to execute it. Because there are
only three sets of permissions and five desired arrangements of rights
(including Alice), three triplets are insufficient to allow all desired modes of
access. Hence, Alice must compromise, and either give someone more rights
than she desires or give someone fewer rights. Similarly, traditional UNIX
access control does not allow one to say “everybody but user Fran”; to do this,
one must create a group of all users except Fran. Such an arrangement is
cumbersome, the more so because only a system administrator can create
groups.

Many systems augment abbreviations of ACLs with full-blown ACLs. This
scheme uses the abbreviations of ACLs as the default permission controls; the
explicit ACL overrides the defaults as needed. The exact method varies.

EXAMPLE: Many Linux systems, MacOS X, and the FreeBSD system define
two sets of permissions: minimal ACLs and extended ACLs. Minimal ACLs
correspond to the standard UNIX permissions; extended ACLs augment these
with full access control lists.

The minimal ACL has three entries corresponding to the owner, group owner,
and other (everyone else). They are represented as:

owner entry               user::rwx

group owner entry     group::rwx

other entry                 other::rwx



where rwx contains r, w, or x in appropriate combinations. They correspond
to the standard Linux and UNIX file permissions.

The extended ACL defines rights for named users and groups. Each entry is
similar to those for the minimal ACL, except that the second part of the entry
contains the name of the user or group to which the entry applies. For
example, the entry user:skyler:rwx means the user skyler has read, write,
and execute permissions; the entry user:sage:r means the user sage has
read permissions; and the entry group:child:rx means that members of the
group child have read and execute permission.

The extended ACL entries are interpreted in light of a “mask entry.” This
mask is applied only when extended ACLs are present, and it is applied to the
group owner entry and any named group and user entries. Such a subject has
a right if the right exists in both the extended ACL entry and the mask. The
mask is not applied to the owner rights or the other (world) rights.

To determine whether a subject can access an object using a particular right,
the applicable rights are determined using the following algorithm. The steps
are executed in the order shown, and the algorithm stops as soon as the
applicable rights are determined.

1. If the subject is the owner, the owner entry gives the set of applicable
rights.

2. If the subject is named in a named user entry, the set of applicable rights is
the set of rights in that entry that are also in the mask.

3. If the subject is in the group owner, the set of applicable rights is the set of
rights in that entry that are also in the mask.

4. If the subject is in one or more of the named groups, the set of applicable
rights is the union of the rights of all such entries that are also in the mask.

5. The other entry gives the applicable rights.



The access is allowed if the particular right is in the set of applicable rights.

As a specific example, consider the following representation of a system’s
access control permissions for the file xyzzy, owned by user heidi and group
family. The group child has three users, skyler, sage, and steven. The user
sage is also a member of the group family.

user::rw-
user:skyler:rwx
group::rw-
group:child:r-
mask::rw-
other::r-

Here, heidi can read and write the file (from the owner rights), and another
user mike can read it (other rights).

Because skyler is in a named user entry, his rights are those of the entry that
also appear in the mask. So, skyler can read and write the file, but not execute
it as execute is not in the user mask. Note that the named user entry is used,
even though skyler is also in the group child.

But sage is in the group owner, family. So, the group owner rights combined
with the mask apply. Thus, sage can read and write the file.

Finally, steven is in the group child and not in the group owner family, so the
named group entry for child applies. As read is the only right in both the
named group entry and the mask, steven can read the file.

16.1.2 Creation and Maintenance of Access Control Lists

Specific implementations of ACLs differ in details. Some of the issues are:

• Which subjects can modify an object’s ACL?

• If there is a privileged user (such as root in the UNIX system or



administrator in Windows systems), do the ACLs apply to that user?

• Does the ACL support groups or wildcards (that is, can users be grouped
into sets based on a system notion of “group” or on pattern matching)?

• How are contradictory access control permissions handled? If one entry
grants read privileges only and another grants write privileges only, which
right does the subject have over the object?

• If a default setting is allowed, do the ACL permissions modify it, or is the
default used only when the subject is not explicitly mentioned in the ACL?

Because these issues are critical to the correct use of ACLs on a system, we
will explore them in more detail.

16.1.2.1 Which Subjects Can Modify an Object’s ACL?

When an ACL is created, rights are instantiated. Chief among these rights is
the one we will call own. Possessors of the own right can modify the ACL.

Creating an object also creates its ACL, with some initial value (possibly
empty, but more usually the creator is initially given all rights, including own,
over the new object). By convention, the subject with own rights is allowed to
modify the ACL. However, some systems allow anyone with access to
manipulate the rights.

EXAMPLE: The relational database System R [827] contains sets of n-tuples
making up the records, and each element of each n-tuple has attributes.
These n-tuples are stored as tables, with the records as the rows and the
attributes as the columns. Each table defines a relation.

The rights for manipulating a table (relation) include read (for reading rows,
querying using the relation, or defining views), update (for writing to a table),
insert (for adding rows), delete (for deleting rows), and drop (for deleting
tables). Each right has a modifier, called the grant option, which if set allows



the possessor to give the right to another. Any user with access to a table can
give rights to any other user, provided the right has the grant option. Hence,
possession of access (and a grant option associated with each right), not
ownership, controls the transfer of rights.

16.1.2.2 Do the ACLs Apply to a Privileged User?

Many systems have users with extra privileges. The two best known are the
root super-user on UNIX systems and the administrator user on Windows
systems. Typically, ACLs (or their degenerate forms) are applied in a limited
fashion to such users.

EXAMPLE: Solaris UNIX systems use both the abbreviations of ACLs
standard to UNIX systems and a full-blown ACL [2250]. The abbreviations of
ACLs are ignored when root is the subject, but the full ACLs apply even to
root.

16.1.2.3 Does the ACL Support Groups and Wildcards?

In its classic form, ACLs do not support groups or wildcards. In practice,
systems support one or the other (or both) to limit the size of the ACL and to
make manipulation of the lists easier. A group can either refine the
characteristics of the processes to be allowed access or be a synonym for a set
of users (the members of the group).

EXAMPLE: IBM’s version of the UNIX operating system, called AIX, uses an
ACL (called “extended permissions”) to augment the traditional UNIX
abbreviations of ACL (called “base permissions”) [729]. Unlike traditional
ACLs, the AIX ACL allows one to specify permissions to be added or deleted
from the user’s set. The specific algorithm is:

1. Determine what set S of permissions the user has from the base
permissions.

2. If extended permissions are disabled, stop. The set S is the user’s set of



permissions.

3. Get the next entry in the extended permissions. If there are no more, stop.
The set S is the user’s set of permissions.

4. If the entry has the same user and group as the process requesting access,
determine if the entry denies access. If so, stop. Access is denied.

5. Modify S as dictated by the permissions in the entry.

6. Go to 3.

As a specific example, consider the following representation of an AIX
system’s access control permissions for the file xyzzy.

attributes:
base permissions
    owner(bishop):  rw-
    group(sys):     r-
    others:         --
extended permissions enabled
    specify         rw-  u:holly
    permit          -w-  u:heidi, g=sys
    permit          rw-  u:matt
    deny            -w-  u:holly, g=faculty

Initially, the group sys had read permission only on the file. The second line
of the extended permissions adds write permission for processes with UID
heidi and GID sys. The first line of the extended permissions gives processes
with UID holly read and write access, except when the GID of the process is
faculty, in which case the process cannot write to the object (see the fourth
line of the extended permissions).

EXAMPLE: The UNICOS 7.0 operating system provided ACLs similar to
those of AIX, but allowed wildcards [2263]. For example,

holly :  maceranch :  r



meant that a process with UID holly and GID maceranch could read the
object with which the ACL was associated. The ACL entry

holly :  * :  r

meant that a process with UID holly could access the object regardless of the
group that the process was in. And the entry

* :  maceranch :  r

meant that any process with GID maceranch could read the object.

16.1.2.4 Conflicts

A conflict arises when two access control list entries in the same ACL give
different permissions to the subject. The system can allow access if any entry
would give access, deny access if any entry would deny access, or apply the
first entry that matches the subject.

EXAMPLE: If any entry in an AIX ACL denies access, the subject is denied
access regardless of the location of that entry. Otherwise, if any entry has
granted access, the subject is granted access. This is an example of denial
taking precedence.

EXAMPLE: Cisco routers apply the first access control list entry that matches
the incoming packet [2231]. If none applies, the incoming packet is discarded.
This is an example of the third approach, with a default rule of deny.

16.1.2.5 ACLs and Default Permissions

When ACLs and abbreviations of access control lists or default access rights
coexist (as on many UNIX systems), there are two ways to determine access
rights. The first is to apply the appropriate ACL entry, if one exists, and to



apply the default permissions or abbreviations of access control lists
otherwise. The second way is to augment the default permissions or
abbreviations of access control lists with those in the appropriate ACL entry.

EXAMPLE: The AIX extended permissions fall into the second category,
because they modify the base permissions.

EXAMPLE: If a packet entering a Cisco router is destined for a host on a
network behind the router, but the router has no access list entry that allows
the packet to be forwarded, the packet is discarded. This is an example of the
first method, because the default permission is deny.

16.1.3 Revocation of Rights

Revocation, or the prevention of a subject’s accessing an object, requires that
the subject’s rights be deleted from the object’s ACL.

Preventing a subject from accessing an object is simple. The entry for the
subject is deleted from the object’s ACL. If only specific rights are to be
deleted, they are removed from the relevant subject’s entry in the ACL.

If ownership does not control the giving of rights, revocation is more
complex.

EXAMPLE: Return to System R. Suppose Anna has given Peter update rights
over a relation T but now wishes to revoke them. System R holds that after
the revoking, the protection state of the system should be as it was before
Anna gave Peter any rights. Specifically, if Peter gave Mary update rights,
when Anna revokes Peter’s update rights, Mary’s update rights should be
revoked unless someone other than Peter has also given her update rights.

To implement this, System R defines a relation called Sysauth. The attributes
of this relation are (User, Table, Grantor, Read, Insert, Delete, Drop,
Update). The values of the attributes corresponding to the rights are
timestamps indicating when the right was given (except for Update, which we



will deal with later). For example, if Anna gave Peter read rights over the
relation Reports at time 10, Michelle gave them to Mary at time 15, and Peter
gave them to Mary at time 20, the table would be:

User Table Grantor Read

Peter Reports Anna 10

Mary Reports Michelle 15

Mary Reports Peter 20

If Anna revokes Peter’s read rights, and Mary obtained her read rights from
Peter after Anna gave them to Peter, her read rights would also be revoked.
Peter can no longer read |textitReports, and had Michelle not given Mary the
right, Mary would not be able to read Reports either. But deleting Ann’s
permissions to Peter, and thus Peter’s to Mary, leaves an entry for Mary—
namely, the one from Michelle:

User Table Grantor Read

Mary Reports Michelle 15

So Mary can still read Reports.

The update right has a value of All, Some, or None. These values refer to the
set of rows that can be changed. If the value is Some, a second relation called
Syscolauth records the columns that the subject can update. This table also
records times, and revocation proceeds as for the other columns.

16.1.4 Example: NTFS and Access Control Lists

Microsoft Corporation’s Windows operating systems support the NTFS file
system. The NTFS file system provides a set of rights, called basic
permissions, that apply to objects (files and directories, called “folders” in
Windows and NTFS terminology). In the ACLs, each entry contains the user
or group, the right, and whether the right is allowed or denied.



Windows applies the idea of inheritance to permissions. By default, when an
object is created, it inherits the permissions of its parent folder. A user can
change these permissions, and when a folder’s permissions are changed, so
are the corresponding permissions of all subfolders and files in those folders.

EXAMPLE: A project manager creates a directory called Project on the
network drive N:. Initially, Project has the same permissions as the root
directory of the network drive, N:∩. She then changes the permissions of
Project to allow any member of the group projdoer to modify the folder.

Tom, a member of projdoer, creates a folder called Design in Project. That
file inherits its initial permissions from Project. Tom then turns off delete
permission for the group for Design. Now, whenever a new folder is created
in Design, the group Delete permission will be turned off.

A subject can have the following permissions over each NTFS object (file or
folder):

• full control: the subject has all rights to the file, including the right to take
ownership of it.

• modify: the subject has all rights to the object except for the right to take
ownership of it.

• read & execute: if the object is a file, the subject can read and execute it; if
the object is a folder, the subject can list the files in the folder and subfolders.

• list folder contents: this applies only to objects that are folders, and is just
like read and execute except that it is not inherited by files in the folder or in
subfolders.

• read: if the object is a file, the subject can view its contents; if the object is a
folder, the user can view the contents of the folder and the attributes of those
contents.



• write: if the object is a file, the subject can write data to it; if the object is a
folder, the subject can create new files and subfolders in it.

If the subject has none of these rights over the object, then it cannot access
the object.

The basic permissions are aggregated into another set of rights called special
permissions:

• traverse folder/execute file: if the object is a folder, the subject can access
its subfolders whether or not the subject has explicit permission to read the
contents of the folder; if a file, the subject can execute the file

• list folders/read data: if the object is a folder, the subject can list its
contents; if the object is a file, the subject can read the file

• read attributes: the subject can read the basic attributes of the object.

• read extended attributes: the subject can read the extended attributes of the
object.

• create files/write data: if the object is a folder, the subject can create files in
it; if the object is a file, the subject can write data to it.

• create folders/append data: if the object is a folder, the subject can create
subfolders in it; if the object is a file, the subject can append data to it.

• write attributes: the subject can write the basic attributes of the object.

• write extended attributes: the subject can write the extended attributes of
the object.

• delete subfolders and files: the subject can delete subfolders and files within
the (folder) object, whether or not it has permission to delete the individual
subfolders and files.



• delete: the subject can delete the object, unless it is a non-empty folder and
the subject doesd not have the delete subfolders and files permission on the
object.

• read permissions: the subject can read the basic and special permissions for
the object.

• change permissions: the subject can change the basic and special
permissions for the object.

• take ownership: the subject can make itself the owner of the object.

• synchronize: the subject can synchronize the (off-line) object.

When a user accesses a file, Windows 7 first examines the file’s ACL. If the
user is not present in the ACL, and is not a member of any group listed in the
ACL, access is denied. Otherwise, if any ACL entry denies the user access,
Windows 7 denies the access (this is an explicit denial, which is calculated
first). If access is not explicitly denied, and the user is named in the ACL (as
either a user or a member of a group), the user has the union of the set of
rights from each ACL entry in which the user is named.

EXAMPLE: Suppose Paul, Quentin, and Regina use a Windows 7 system. Paul
and Quentin are in the group students. Quentin and Regina are in the group
staff. The directory e:∩stuff has its access control list set to (staff, create
files/write data, allow), (Quentin, delete subfolders and files, allow),
(students, delete subfolders and files, deny). Under this list, the first entry
enables Regina to create subfolders or files in e:∩stuff. The third entry
disallows all members of the group students from deleting subfolders and
files in e:∩stuff. The second entry would allow Quentin to delete these, except
that Quentin is in the students group, and in Windows 7 an explicit deny (as
given in the third entry) overrides any grants of permission. Hence, Quentin
cannot delete them.



Now, let Regina create a subdirectory plugh in e:∩stuff. She then disallows
Paul’s delete subfolders and files access, but wants Quentin to have delete
subfolders and files access. She takes the following steps:

1. Create e:∩stuff∩plugh; it inherits from e:∩stuff the ACL (staff, create
files/write data, allow), (Quentin, delete subfolders and files, allow),
(students, delete subfolders and files, deny).

2. Delete the last entry in the ACL; from the second entry, this gives Quentin
delete subfolders and files access.

3. Add the entry (Paul, delete subfolders and files, deny) to the ACL.

The last step is superfluous, because Windows 7 denies access by default, but
it is safer to add it anyway, lest the group students be given rights. If that
should happen, Paul would get those rights unless the (Paul, delete subfolders
and files, deny) entry were present.

16.2 Capabilities

Conceptually, a capability is like the row of an access control matrix. Each
subject has associated with it a set of pairs, with each pair containing an
object and a set of rights. The subject associated with this list can access the
named object in any of the ways indicated by the named rights. More
formally:

Definition 16–2. Let O be the set of objects, and R the set of rights, of a
system. A capability list c is a set of pairs c = {(o, r) | o ∈ O, r ⊆ R}. Let cap be
a function that determines the capability list c associated with a particular
subject s. The interpretation of the capability list cap(s) = {(oi, ri) | 1 ≤ i ≤ n}
is that subject s may access oi using any right in ri.

We abbreviate “capability list” as C-List.

EXAMPLE: Again, consider the access control matrix in Figure 2–1, on page



30. The set of subjects is process 1 and process 2. The corresponding
capability lists are

cap(process 1) = { (file 1, { read, write, own }), (file 2, { read }),

(process 1, {read, write, execute, own }), (process 2, { write }) }

cap(process 2) = { (file 1, { append }), (file 2, { read, own }),

(process 1,{ read }), (process 2, { read, write, execute, own }) }

Each subject has an associated C-List. Thus, process 1 owns file 1, and can
read or write to it; process 1 can read file 2; process 1 can read, write to, or
execute itself and owns itself; and process 1 can write to process 2. Similarly,
process 2 can append to file 1; process 2 owns file 2 and can read it; process 2
can read process 1; and process 2 can read, write to, or execute itself and
owns itself.

Capabilities encapsulate object identity. When a process uses a capability to
access an object, the operating system examines the capability to determine
both the object and the access to which the process is entitled. This reflects
how capabilities for memory management work; the location of the object in
memory is encapsulated in the capability. Without the capability, the process
cannot identify the object in a way that will give it the desired access.

EXAMPLE: To open a UNIX file, a process gives the file name to the kernel.
The kernel obtains the file’s inode number by resolving the name through the
file hierarchy. Once the inode is obtained, the system determines if the
requested access should be granted using the access control permissions. If
the access is granted, the operating system returns a capability called a file
descriptor. The capability is tightly bound to the file object, so even if the file
is deleted and a new file with the same name is created, the file descriptor still
refers to the previous file.

The “codewords” of Iliffe [950] are similar to capabilities. Dennis and Van



Horn [555] first suggested “capabilities” as a way to control access to objects
in memory or secondary storage. Fabry generalized this idea to implement
capability-based addressing [650].

The architecture of capabilities is more interesting than that of access control
lists. The access control list and the process identity are under the control of
the operating system. In the absence of flaws, user processes can change them
only by invoking the operating system services. However, a process must
identify a capability in order to use it, so the process must have some control
over the capabilities. If the process can forge a capability and then use it,
access controls fail.

16.2.1 Implementation of Capabilities

Three mechanisms are used to protect capabilities: tags, protected memory,
and cryptography.

A tagged architecture has a set of bits associated with each hardware word.
The tag has two states: set and unset. If the tag is set, an ordinary process can
read but not modify the word. If the tag is unset, an ordinary process can read
and modify the word. Further, an ordinary process cannot change the state of
the tag; the processor must be in a privileged mode to do so.

EXAMPLE: The B5700 [1485] used a tagged architecture (although it did not
use capabilities as protection mechanisms). The tag field consisted of three
bits and indicated how the architecture was to treat the word (pointer,
descriptor, type, and so on).

More common is to use the protection bits associated with paging or
segmentation. All capabilities are stored in a page (segment) that the process
can read but not alter. This requires no special-purpose hardware other than
that used by the memory management scheme. But the process must
reference capabilities indirectly, usually through pointers, rather than
directly.



EXAMPLE: The CAP system [1444] did not allow processes to modify the
segment in which instructions lay. It also stored capabilities in this segment.
A fence register separated instructions and capabilities.

EXAMPLE: The Extremely Reliable Operating System (EROS) is a capability-
based system that stores its capabilities in capability pages. These pages are
protected with a tag indicating their type, so only the kernel can access them
[1739, 1740].

A third alternative is to use cryptography. The goal of tags and memory
protection is to prevent the capabilities from being altered. This is akin to
integrity checking. Cryptographic checksums are another mechanism for
checking the integrity of information. Each capability has a cryptographic
checksum associated with it, and the checksum is digitally enciphered using a
cryptosystem whose key is known to the operating system.

When the process presents a capability to the operating system, the system
first recomputes the cryptographic checksum associated with the capability.
It then either enciphers the checksum using the cryptographic key and
compares it with the one stored in the capability, or deciphers the checksum
provided with the capability and compares it with the computed checksum. If
they match, the capability is unaltered. If not, the capability is rejected.

EXAMPLE: The Amoeba system is a distributed system that uses capabilities
to name objects [1869]. On creation, a capability corresponding to the object
is returned. To use the object, the program presents the corresponding
capability. The capability encodes the name of the object (24 bits), the server
that created it (48 bits), and the rights (8 bits) in a 128-bit quantity. Initially,
all rights are turned on.

The last 48 bits are used as a check field. This is a random number selected at
creation time. (Because the capability is given to the owner of the object, the
owner can freely modify the rights without danger.) The number is stored in a
table corresponding to the server that created the object, so whenever the



capability is presented to that server, it verifies that the random number is
correct. An attacker would need to know the random number in order to be
able to forge a capability. However, as Tanenbaum notes, the system is
vulnerable if a capability is disclosed.

16.2.2 Copying and Amplifying Capabilities

The ability to copy capabilities implies the ability to give rights. To prevent
processes from indiscriminately giving away rights, a copy flag is associated
with capabilities. A process cannot copy a capability to another process unless
the copy flag is set. If the process does copy the capability, the copy flag may
be turned off (at the discretion of either the process or the kernel).

EXAMPLE: Amoeba uses an interesting scheme. It does not control copying
rights. However, the uses to which those copied rights can be put are
restricted.

Suppose user matt wishes to allow user holly to read an object he owns. He
passes his capability for that object to the server and requests a restricted
capability for reading. The server creates a new capability for the object but
with only the read right turned on. The rights field now is all 0’s except for
the read bit, which is a 1. This is xor’ed with the random check and input to a
cryptographic hash function. The output is the new random number for this
capability. The restricted capability is then passed back to matt, who gives it
to holly.

When holly uses the capability, the server notes that at least one bit in the
rights field is 0. It takes the rights field, xor’s it with the random number of
the original capability (stored in its tables), and hashes the result. If the
resulting hash matches the random number in the capability, the capability is
valid; otherwise, it is not.

Amplification is the increasing of privileges. The idea of modular
programming, and especially of abstract data types, requires that the rights a



process has over an object be amplified.

To understand why, consider the following abstract data type for a counter:

module counter;
        procedure entry increment (var ctr: integer);
        begin
                ctr := ctr + 1;
        end;
        function entry getval (ctr: integer);
        begin
                getval := ctr;
        end;
        procedure entry clear (var ctr: integer);
        begin
                ctr := 0;
        end;
end.

Suppose x is declared to be a counter. The rules of abstract data types allow
that object to be accessed only by the counter module. So, initially the
capability for x would contain the right to invoke the counter module only.
But when the object is passed to the counter module, the process must now
be able to read and write to that object. Hence, the capability must be
amplified temporarily while the module counter is active.

EXAMPLE: The seminal system HYDRA [435,2043] used amplification
templates to amplify a process’ rights. Associated with each procedure in the
module is a template that adds rights to the capabilities as needed. For
example, the template for the getval procedure would add read rights while
the procedure was active. The template for the increment procedure would
add read and write rights.

EXAMPLE: The Intel iAPX 432 system [998,2182] implements a similar
mechanism in hardware. Its “access descriptors” correspond to capabilities.
Three bits in the capability control various system functions. One of these bits
controls amplification of rights. When an abstract data type module is



constructed, the permission bits of the type control object (which defines the
data type) are set to the permissions that the procedure needs. When the
procedure is called, the system checks the amplification bit. If it is set, the
rights in the type control object are or’ed with the rights in the descriptor of
the object being passed. This combination defines the rights available to the
procedure.

16.2.3 Revocation of Rights

In a capability system, revoking access to an object requires that all the
capabilities granting access to that object be revoked. Conceptually, each
process could be checked, and the capabilities deleted. The cost of such an
operation would be unacceptable, however, so alternative methods are used.

The simplest mechanism is indirection [1582]. Define one or more global
object tables. In this scheme, each object has a corresponding entry in a table.
Capabilities do not name the object directly; they name the entry in the table
corresponding to the object.

This scheme has several advantages. First, to revoke capabilities, the entry in
the global object table is invalidated. Then any references will obtain an
invalid table entry and will be rejected. Second, if only some of the
capabilities are to be revoked, the object can have multiple entries, each
corresponding to a different set of rights or a different group of users.

EXAMPLE: Amoeba uses essentially this scheme. To revoke a capability, the
owner of the object requests that the server change the random number and
issue a new capability. This invalidates all existing capabilities.

An alternative revocation mechanism uses abstract data type managers.
Included with each abstract data type is a revocation procedure. When access
is to be revoked, the type manager simply disallows further accesses by the
subject whose rights are being revoked. This does not affect alternative
methods of accessing the objects underlying the abstract data types. For



example, access to a file may be revoked, but this technique would not block
access to the underlying segments through an alternative type manager. The
SCP3 system used this technique [2027].

16.2.4 Limits of Capabilities

Boebert [251] credits Neumann and his colleagues [1457] with a
demonstration of the importance of controlling the copying of capabilities.
Without such restrictions, a capability system cannot enforce the *-property
of the Bell-LaPadula Model (see Chapter 5).

Suppose capabilities can be copied into one’s C-List. Let Heidi be cleared for
HIGH information, and Lou only for LOW information. The file “lough” has
LOW classification. Lou asks for a capability to read and write to the file
“lough” and obtains it (call the capability “rw*lough””). Lou stores the
capability in the file “lough.” Now, Heidi requests a capability to read “lough”
(call it “r*lough”); by the simple security condition, this is granted. Heidi uses
this to read “lough,” thereby obtaining the capability “rw*lough.” She can now
write to a LOW object, even though she has HIGH clearance. This violates the
*-property. (See Figure 16–1.)

Figure 16–1: Copying and reading capabilities. The left diagram
shows the capability rw*lough copied into the file lough. In the
right diagram, Heidi has read the contents of the file lough and



added the capability it contains to her C-List.

Kain and Landwehr [1000] present two ways to handle this problem. Their
first technique assigns a security classification to the capability itself. When
the capability is created, its compartment is the same as the requesting
process, and the capability contains read, read and write, or write rights
depending on whether its compartment dominates, is the same as, or is
dominated by that of the object to which the capability refers. Similar rules
apply when a capability is copied. So, in Boebert’s example, because the
capability “rw*lough” is copied to HIGH, and because the destination (HIGH
level) dominates the source (“lough,” at the LOW level), the resulting
capability has only the right to read.

Their second solution uses a technique from Karger and Herbert [1014],
although in a different context. Before a capability is passed to another
process, the kernel evaluates the capability to determine if passing it to the
subject violates any security properties. In Boebert’s example, the *-property
is violated, so Heidi’s request to obtain “rw*lough” would be denied.

A simpler approach is to distinguish between the “copy capability” right and
the “read” right. The Take-Grant Protection Model (see Section 3.3) uses this
difference to resolve Boebert’s example. That Heidi could read the capability
did not mean that she could acquire (take or copy) it. Heidi would be able to
read the capability but could not add it to her C-List.

16.2.5 Comparison with Access Control Lists

Two questions underlie the use of access controls:

• Given a subject, what objects can it access, and how?

• Given an object, what subjects can access it, and how?

In theory, either access control lists or capabilities can answer these
questions. For the first question, capabilities are the simplest; just list the



elements of the subject’s associated C-List. For the second question, ACLs are
the simplest; just list the elements of the object’s access control list. In an
ACL-based system, answering the first question requires all objects to be
scanned. The system extracts all ACL entries associated with the subject in
question. In a capability-based system, answering the second question
requires all subjects to be scanned. The system extracts all capabilities
associated with the object in question.

Karger and Herbert [1014] speculate that the practical difference in
answering the second question is the reason more systems use access control
lists than capabilities. This question is asked more often than the first. As the
focus of incident response (see Section 27.3, “Intrusion Response”) shifts
from “who accessed the object” to include “what else did that subject access,”
capability-based systems may become more common.

16.2.6 Privileges

Many UNIX-like systems define specific sets of privileges that processes may
possess. These privileges can be used to override restrictions on access, or (by
removing them) restrict access further. These are not capabilities in the sense
of Definition 16–2 because no particular object is associated with the right.
The right applies to all objects.

Privileges enable fine-grained restrictions on processes, in accordance with
the Principle of Least Privilege. Typically, processes have at least three sets of
privileges:

• The bounding set, which is the set of all privileges that the process may
assert;

• The effective set, which is the set of current privileges that the process may
assert; and

• The saved set, which is a set of rights, typically used to save rights for some



future purpose.

The effective set and the saved set are both subsets of the bounding set.

EXAMPLE: The effective and saved UIDs in many versions of the UNIX
operating system (see page 415) are an implementation of the effective and
saved sets. The effective set is the set of privileges belonging to the user with
the effective UID. When a user changes identity using, for example, the setuid
system call, the current effective UID becomes the saved UID, and the new
UID becomes the effective UID. Now, the new effective UID defines the
privileges in the effective set, and the previous effective UID defines the
privileges in the saved set.

In the previous example, the privileges are implicit because the UIDs define
them. Some systems have explicit privileges that augment the ones defined by
user, group, and role identities.

EXAMPLE: Trusted Solaris defines a number of privileges that override file
system and process access controls [2170, 2260]. For example, the privilege
PRIV_FILE_MAC_WRITE allows a process to write to a file when mandatory
access controls would normally prevent the write. Similarly,
PRIV_FILE_DAC_READ allows a process to read a file when the associated
permission bits (or ACL) would prevent the read.

Privileges are grouped into types. File system privileges override restrictions
imposed on file systems, such as mandatory and discretionary access
controls. Process privileges enable processes to perform process-related
actions that would normally be prevented. The management of these
privileges shows how they can be used to “bracket” sections of code that need
extra privileges.

Associated with each executable file are an allowed set (AS) of privileges,
which says what privileges will be assigned to the process created by
executing the file, and a forced set (F S) of privileges that the process must



have when it begins execution. The forced set is a subset of the allowed set.

Trusted Solaris processes have four sets of privileges:

• The inheritable set (IS) contains those privileges inherited from the parent
process;

• The permitted set (P S) contains all the privileges that the process may
assert, which is defined as (F S ∪ IS) ∩ AS.

• The effective set (ES) contains the privileges the program requires for the
current task. Initially, ES = P S.

• The saved set (SS) contains privileges inherited from the parent process and
allowed for use; that is, SS = IS ∩ AS.

Here, the permitted set corresponds to the bounding set.

A programmer can use this structure to bracket effective privileges, so they
are present only when needed. This limits the time and use to which a
privilege can be put, enforcing the Principle of Least Privilege. For example, if
a process needs to read a file at a particular point in its execution, the
privileges PRIV_FILE_MAC_READ and PRIV_FILE_DAC_READ would in
the permitted and effective sets when the program begins. The programmer
would then delete the privileges from the effective set, ensuring they could
not be used yet. Then, just before the program needs to read the file, the
process would reset its effective set to include those two privileges (it can do
so because they are in the permitted set). After the read, it would then remove
those privileges from the effective set.

Once the program no longer needs to read the file at any point in the future, it
can remove the privileges from its permitted set. Then, it cannot add them
back, even if (for example) it is compromised.

Linux capabilities work similarly [860].



An alternate approach is to use capabilities to confine processes. This follows
the philosophy of viewing capabilities as limiting the privileges of subjects,
because the subject can only do what its capabilities allow.

EXAMPLE: Capsicum, described in more detail on page 515, is a framework
designed with this philosophy [1995]. It first appeared in FreeBSD 9. It
changes the notion of file descriptor to include not only the descriptor but a
set of capabilities associated with that file descriptor.

When a process enters capability mode, it invokes a library that spawns a new
process that executes a run-time linker that augments its capabilities with
those delegated from the application. That linker then loads other libraries
and links them with the application binary, which it then executes. The
executing application can query the library for delegated capabilities as
needed.

As an example, the program tcpdump captures network traffic matching one
or more supplied patterns. Because the ability to read the network requires
privileges acquired when the program starts, it can enter capability mode
directly after those privileges. This constrains access to the rest of the system.
Two additional changes were required. The first blocked access to the
(inherited) standard input file descriptor; this prevented tcpdump from
reading input from a keyboard. The second changed the DNS resolution
method, which no longer worked as the resolver required access to the file
system, which capability mode disallowed. The solution was to switch to a
lightweight resolver that sent DNS queries to a daemon that did the actual
resolution. The communication channel was set up before entering capability
mode, and thus the process inherited the required access to the daemon.

16.3 Locks and Keys

The locks and keys technique combines features of access control lists and
capabilities. A piece of information (the lock) is associated with the object and



a second piece of information (the key) is associated with those subjects
authorized to access the object and the manner in which they are allowed to
access the object. When a subject tries to access an object, the subject’s set of
keys is checked. If the subject has a key corresponding to any of the object’s
locks, access of the appropriate type is granted.

The difference between locks and keys and the other access control
mechanisms is the dynamic nature of the former. An access control list is
static in the sense that all changes to it are manual; a user or process must
interact with the list to make the change. Locks and keys, on the other hand,
may change in response to system constraints, general instructions about
how entries are to be added, and any factors other than a manual change.

Gifford [773] suggests a cryptographic implementation of locks and keys. The
object o is enciphered with a cryptographic key. The subject has a deciphering
key. To access the object, the subject deciphers it. Gifford points out that this
provides a simple way to allow n subjects to access the data (called or-access).
Simply encipher n copies of the data using n different keys, one per subject.
The object o is then represented as o′, where

The system can easily deny access except on the request of n subjects (called
and-access). Simply iterate the cipher using n different keys, one per subject:

EXAMPLE: The IBM 370 system [999] assigns each process an access key
and assigns each page a storage key and a fetch bit. If the fetch bit is cleared,
only read accesses are allowed. If the fetch bit is not set, and the access key
matches the storage key of a particular page, the process can write to that
page. If the fetch bit is set and the access key is 0 (which occurs in nonuser
mode), the process can write to any page. If the access key is neither 0 nor the
same as the storage key, the process cannot access the page.



EXAMPLE: Cisco routers have a mechanism called dynamic access control
lists that is a locks and keys mechanism [2231]. Consider a router that
transfers packets between the Internet and an internal network. We want to
limit external access to the (internal) server with address 10.1.2.3 to weekdays
between 9:00 a.m. and 5:00 p.m. Our router’s IP address is 10.1.1.1. The
following is the relevant portion of the dynamic access control list.

access–list 100 permit tcp any host 10.1.1.1 eq telnet
access–list 100 dynamic test timeout 180 permit ip any host
        10.1.2.3 time–range my–time
time–range my–time
        periodic weekdays 9:00 to 17:00
line vty 0 2
        login local
        autocommand access–enable host timeout 10

The first line tells the router to accept packets coming to it over the Internet
and going to the telnet port. (The binding of the access control list to the
Internet connection is not shown.) The user will enter a name and a
password, and if they match a pair in the configuration file, the connection
will close and the router will add an access control list entry for that remote
host to access the server 10.1.2.3 over any IP protocol. After 180 minutes, the
access control list entry will be discarded even if there are connections at that
time (this effectively terminates the connections). The access control entry is
valid only between 9:00 a.m. and 5:00 p.m. on weekdays (the “time-range”
block). Furthermore, any host matching this new entry is to be allowed
access; if no packets from that host are received within a 10-minute interval,
the access control entry is to be deleted (the “line” block).

16.3.1 Type Checking

Type checking restricts access on the basis of the types of the subject and
object. It is a form of locks and keys access control, the pieces of information
being the type. Systems use type checking in areas other than security.



EXAMPLE: UNIX-like systems use type checking to protect the integrity of
their file systems. Under the UNIX model, all file system objects are files, but
the kernel disallows the use of write to change the directory. Instead, users
must call specific system calls to create and delete entities in the directory.
This allows the kernel to ensure that all writing to the directory file will create
entries of the correct format. The kernel disallows certain operations, such as
write, to file system objects of type directory.

The simplest case of type checking is distinguishing instructions from data.
The operation execute can be performed only on instructions, and the
operations read and write can be performed only on data. Many systems and
processors such as the PDP-11 [2218], the Intel Itanium 64 and IA-32 [2194,
2195], the AMD64 [2130], and the ARM11 [78] provide features to enforce
this distinction.

EXAMPLE: One form of a type of attack called buffer overflow (see Section
24.3.1, “Two Security Flaws”) involves overwriting of a buffer stored on a
memory stack and changing of the return address on the stack to the location
of the buffer. When the input routine executes a return to the caller, the
return address is popped from the stack and placed in the program counter.
The contents of the buffer are then executed as instructions.

Some vendors have tried to eliminate this type of attack by marking the
memory in which the stack resides as data. The systems cannot execute data,
and therefore the program terminates right after the return address is popped
and placed into the program counter.

Like pages, files can be either “executable” or “data.”

EXAMPLE: Boebert, Young, Kain, and Hansohn [254] propose labeling of
subjects and objects in Logical Coprocessor Kernel or LOCK (formerly Secure
Ada Target or SAT) [254, 852, 1679, 1680], a system designed to meet the
highest level of security under the Department of Defense criteria [2254].
Once compiled, programs have the label “data” and cannot be executed until



a sequence of specific, auditable events changes the label to “executable.”
After that, the program cannot be modified.

Strictly enforced type checking is a powerful protection mechanism. The
DTEL policy language discussed in Section 4.5.1, and the supporting domain
and type enforcement (DTE) mechanism, are a good example. Walker et al.
[1971] discuss the implementation of DTE using DTEL at length for the UNIX
operating system. The Sidewinder firewall uses a similar approach.

EXAMPLE: Like DTEL, Sidewinder [1888] assigns each subject a domain and
each object a type. The domain definition table defines how domains may
interact with types. For instance, packets coming from inside the firewall are
assigned one type, and packets from the outside are assigned a second type.
This separates the two.

Suppose that an attacker outside the firewall is able to embed in a legal
packet a second, fake packet and that this fake packet contains an IP source
address that is inside the firewall. The attacker sends the packet to the
Sidewinder firewall and then sends a second packet to overwrite the part of
the first packet before the fake packet. If there were no typing, the firewall
could confuse the fake packet, which came from outside, with a legitimate
packet originating from inside the firewall. However, because Sidewinder
types outside packets differently than those originating behind the firewall,
the fake packet will have the type “outside” even though the source address is
from the inside. Thus, it will not be forwarded to the inside.

16.3.2 Sharing Secrets

A question related to the locks and keys access methods is how to construct a
control that will allow any three out of ten people to gain access to a file.

EXAMPLE: An organization prepares for its managers being incapacitated by
deciding that three senior managers must agree that a manager is
incapacitated before her system account can be accessed by anyone else.



However, the organization realizes that any particular group of three senior
managers might not all be available when needed. So, the organization
chooses ten senior managers and schedules them so that at least 3 are always
available. Assuming that any three agree a manager is incapacitated, they can
grant access to her account. But if only two believe she is incapacitated, they
can do nothing until they have convinced a third manager.

Each manager in the organization takes her passwords and secondary
authentication information and places them in a file. The files are enciphered
and sent to many different computers. The decryption key must be broken up
and the parts distributed in such a way that exactly three of the recipients can
reassemble the original key.

This implements the principle of separation of privilege (see Section 14.2.6).
A threshold scheme provides this capability.

Definition 16–3. A (t, n)-threshold scheme is a cryptographic scheme in
which a datum is divided into n parts, any t of which are sufficient to
determine the original datum. The n parts are called shadows.

The previous example requires a (3, 10)-threshold scheme to protect the
decryption key (datum). The locks and keys scheme can solve this problem
using a combination of or-access and and-access mechanisms, but the
number of representations of the datum grows rapidly (see Exercise 7). An
alternative is to use a cryptographic method designed to share secrets.

Shamir [1732] based a secret sharing algorithm on Lagrange interpolating
polymonials. He selects a polynomial of degree t – 1 and sets the constant to
the secret value. The shadows are the polynomial evaluated at an arbitrary
point. By the laws of polynomial arithmetic, because the polynomial is of
degree t – 1, at least t values are needed to rederive the polynomial.

Let P (x) = (at–1xt–1 + . . . + a1x + a0) mod p. The number we wish to share is
S. Choose p to be greater than both S and n. Choose a0 = S; note that P (0) =



S. Choose a1, . . . , at–1 arbitrarily. Then choose P (1), . . . , P (n) as the n
shadows.

EXAMPLE: We wish to share the secret key S = 7 using a (3, 5)-threshhold
scheme. We choose p = 11, a2 = 5, a1 = 3, and a0 = S = 7. Thus, P (x) = (5x2 +
3x + 7) mod 11. The five shadows are

P (1) = (5(1)2 + 3(1) + 7) mod 11 = (5 + 3 + 7) mod 11 = 15 mod 11 = 4

P (2) = (5(2)2 + 3(2) + 7) mod 11 = (20 + 6 + 7) mod 11 = 33 mod 11 = 0

P (3) = (5(3)2 + 3(3) + 7) mod 11 = (45 + 9 + 7) mod 11 = 61 mod 11 = 6

P (4) = (5(4)2 + 3(4) + 7) mod 11 = (80 + 12 + 7) mod 11 = 101 mod 11 = 2

P (5) = (5(5)2 + 3(5) + 7) mod 11 = (125 + 15 + 7) mod 11 = 147 mod 11 = 4

We give each shadow to a different person.

To recover the polynomial, we interpolate any t shadows. Let P (xi) = ki. The
formula for the interpolated polynomial is:

EXAMPLE: The people holding shadows 1, 2, and 5 decide to recompute the
secret. Take x1 = 1, x2 = 2, and x3 = 5; from the previous example, this yields
k1 = 4, k2 = 0, and k3 = 4. Recall that p = 11. Applying the formula above, we
have

which yields



So the secret is P (0) = 7.

To protect a file using a secret sharing scheme, the system first enciphers the
file. The cryptographic key then becomes the secret to be shared. If necessary,
the key may be split into blocks of appropriate size, and each set of blocks
shared using a secret sharing scheme. In theory, someone could share the
contents of the file itself using a secret sharing scheme, but unless the file is
very small, the benefits of sharing are outweighed by the problem of each user
managing his or her own shadows for the file.

16.4 Ring-Based Access Control

The Multics system [463, 1484] generalizes the notion of a supervisor and
user state with a protection mechanism called ring-based access control. To
understand its simplicity and elegance, one must realize that files and
memory are treated the same from the protection point of view. For example,
a procedure may occupy a segment of the disk. When invoked, the segment is
mapped into memory and executed. Data occupies other segments on disk,
and when accessed, they are mapped into memory and accessed. In other
words, there is no conceptual difference between a segment of memory and a
segment on a disk.

Segments are of two kinds: data and procedure. A segment could have r
(read) rights, w (write) rights, e (execute) rights, and a (append) rights
associated with it. These rights are contained in access control lists, which
constrain access on a per-user basis. So all procedures that user bishop
executes would have the rights associated with that user, bishop.

In addition, the Multics system defines a sequence of protection rings (or
rings, for short) numbered from 0 to 63.1 The kernel resides in ring 0. The
higher the ring number, the lower the privileges of the segments in that ring.
We also say that “a procedure executes in ring r” because the ring is
associated with the individual segment, not with the entire process.



1In fact, the system as implemented had eight rings [1485, p. 141].

Subject to the access constraints noted in the following lists, procedures can
“cross” ring boundaries. In some cases, the crossing causes a “ring-crossing
fault” that traps to the kernel. At that point, a mechanism called the
Gatekeeper checks arguments and access and performs other functions that
constrain ring crossings. In other cases, no ring-crossing fault is induced, and
access is permitted if the access modes allow.

A gate is simply an entry point (like the “public” designators of object-
oriented languages). Gates are specially declared within programs, and the
compiler and linker generate special code to make these entry points
available to other procedures.

Assume that a procedure executing in ring r wants to access a data segment.
Associated with each data segment is a pair of ring numbers called an access
bracket (a1, a2), with a1 ≤ a2. Assume that the data segment’s permissions
allow the desired access. The ring numbering adds an extra constraint:

• r ≤ a1: access permitted

• a1 < r ≤ a2: r and e access permitted; w and a access denied

• a2 < r: all accesses denied

Assume that the same procedure, again executing in ring r, wants to access a
procedure segment. Each procedure segment has an access bracket, just like a
data segment. A procedure segment may also have a call bracket (c1, c2), with
c1 ≤ c2. By convention, when a call bracket is present, c1 = a2, leading to an
alternative notation of (a1, a2, a3), where (a1, a2) is the access bracket and (a2,
a3) is the call bracket (that is, c2 = a3). The rules for access differ slightly from
those for accessing a data segment:

• r < a1: access permitted, but a ring-crossing fault occurs



• a1 ≤ r ≤ a2: all accesses permitted and no fault occurs

• a2 < r ≤ a3: access permitted if made through a valid gate

• a3 < r: all accesses denied

EXAMPLE: Assume that a data segment has the access bracket (2, 4) and
heidi has rw rights over the segment. If heidi’s procedure executes in ring 1,
and tries to read the data, the read succeeds. If heidi’s procedure executes in
ring 3, any reads succeed and any writes fail. If heidi’s procedure executes in
ring 5, all accesses fail.

EXAMPLE: Assume that a procedure segment has the bracket (2, 4, 6)—that
is, its access bracket is (2, 4) and its call bracket is (4, 6). heidi’s procedure
calls that procedure. If heidi’s procedure executes in ring 1, a ring-crossing
fault occurs, but the call succeeds (unless the Gatekeeper blocks the call). If
heidi’s procedure executes in ring 3, the call succeeds and no ring-crossing
fault occurs. If heidi’s procedure executes in ring 5 and calls the procedure
segment through a valid gate, the call succeeds; otherwise, it fails. If heidi’s
procedure executes in ring 7, the call fails.

The reason for the brackets shows how practical details complicate ideal
solutions. Conceptually, the access bracket should contain one ring. However,
consider a procedure embodying a service routine (such as “access file”).
Then procedures in other rings accessing that routine would cause a large
number of ring crossings. The operating system would need to handle these
crossings, increasing the overhead. But if the procedures were within the
service routine’s access bracket, no ring-crossing faults would occur. Hence,
the access bracket minimizes operating system overhead in this context.

A similar situation arises with different classes of users. Suppose a service
routine lies in ring a. Some users need to invoke this routine. Others are
allowed to invoke it in specific ways—for example, to access some system
resource in a particular manner. Still others should not invoke it at all. The



access bracket handles the first and third sets of users, but the second set
cannot be handled with an access bracket. However, with a call bracket, the
second set can access the service routine and be forced to use predefined
entry points (the gates). Hence, the need for call brackets.

Variants of the ring mechanism have been used by other systems. The Intel
Itanium architecture, for example, provides four levels of privilege, level 0
being the most privileged and level 3 the least [2195]. Contrast this with the
more traditional two levels (user and supervisor) and the influence of the
rings of Multics is clear.

16.5 Propagated Access Control Lists

The Propagated Access Control List (PACL) mechanism [2015] provides the
creator of an object with control over who can access the object. It is an
implementation that is ideal for the ORCON policy (see Section 8.3). The
creator (originator) is kept with the PACL, and only the creator can change
the PACL. When a subject reads an object, the PACL of the object is
associated with the subject. When a subject creates an object, the PACL of the
subject is associated with the object.

The notation PACLsubject means that subject is the originator of the PACL.
Only subject can change that PACL. The notation PACL(entity) is the PACL
associated with entity.

EXAMPLE: Ann creates the file dates. Ann wants to control who can read the
file. The file’s PACL is the PACL associated with Ann: PACL(dates) =
PACLAnn.

Let the PACL of an object o be PACL(o) = PACLs. When another subject s′
reads o, PACL(o) must augment PACL(s′). Otherwise, s′ could create another
subject o′, and copy the data from o to o′. Then s would have no control over
the data in o, defeating the purpose of using PACLs.



Hence, an object can have PACLs associated with two creators. If so, both
creators control access to the object. Only subjects common to both PACLs
can access the object. Otherwise, one creator would not control access to the
data it expects to control. The default is to deny access unless both creators
allow it.

EXAMPLE: Ann allows Betty, Dorothy, and Elisabeth access to the file dates.
Before Betty reads dates, her PACL is PACLBetty. After Betty reads dates, her
PACL changes to PACLBetty ∩ PACL(dates) = PACLBetty ∩ PACLAnn. Write this
as PACLBetty,Ann.

Betty creates the file datescopy. The system assigns Betty’s PACL to
datescopy. Hence, PACL(datescopy) = PACLBetty,Ann.

If PACLBetty allows Cherisse and Dorothy access to objects, Dorothy will be
able to access datescopy but Cherisse and Elisabeth will not. Because Dorothy
is in both PACLAnn and PACLBetty, both originators of datescopy agree that
Dorothy can access the data in that file. So Dorothy is in PACLBetty,Ann.
Because Cherisse is not in PACLAnn, and because Elisabeth is not in
PACLBetty, one originator of datescopy does not want them to have access to
the data in datescopy. Hence, neither of them is in PACLBetty,Ann.

Discretionary access controls can augment PACLs. They restrict access, but
they cannot allow access to subjects excluded by the PACL.

EXAMPLE: Betty does not want Dorothy to be able to read the file datescopy.
However, Dorothy is allowed access by PACLBetty,Ann. Betty, being the owner
of the file, can change the access control list associated with the file (but not
the PACL). So Betty sets the access control list to deny access to Dorothy.

This example illustrates the distinction between the PACL mechanism and
the ACL mechanism. A PACL is associated with data, whereas an ACL is
associated with an object. The PACL follows the information as it flows
around the system, but an ACL stays with each object. In the example,



Cherisse cannot access the information in dates because of the setting of
PACL(dates), and cannot access the information in any derivative of dates
because PACL(dates) propagates with the information. The copiers of the
information cannot change this.

Were the files protected by ACLs instead of PACLs, the ACL would not be
copied with the information. So, Cherisse would not be able to read dates, but
Betty could copy that file and set the ACL so that Cherisse could read it. Ann
would not control the information; she would have to trust those with access
to dates not to give access to others.

16.6 Summary

Access control mechanisms implement controls on subjects and objects.
Access control lists bind the data controlling access to the object. Capability
lists bind that data to the subject. Locks and keys distribute the data between
the subject and the object. All are particularly well-suited for discretionary
access controls, because usually the owners of the objects determine who gets
access. If the controller of access is the operating system, then these
mechanisms also can implement mandatory access controls.

Ring-based mechanisms generalize the notion of “supervisor” and “user”
mode. They are particularly well-suited for mandatory access controls,
because the operating system enforces the barriers to ring crossings.
However, the brackets must be chosen judiciously.

Propagated access control lists are associated with information rather than
with the objects that contain the information. This makes them particularly
suitable for implementing originator controlled policies.

16.7 Research Issues

Access control mechanisms provide ways of enforcing stated policies. How
can these mechanisms work together to enforce policies? What limits do their



natures impose on their use?

As an example, PACLs were created to provide a mechanism for enforcing
ORCON policies. How can this mechanism be implemented in a manner that
prevents users from compromising the system? Could other mechanisms
enforce ORCON policies and be easier to implement?

Language-based techniques are seeing a resurgence. These techniques assert
that compilers should add access-checking code to the programs. This
technique is particularly well-suited for mobile code, where the operating
systems may enforce different access control policies. The implications of the
differences in policy between what a mobile program needs in order to
perform its task, and how the system on which it is run limits its access, are
under active study.

Proofs that the mechanisms supply security services sufficient to meet the
goals of a system are another research issue. The method of noninterference
and its related properties discussed in Chapter 9, “Noninterference and Policy
Composition,” provide a basis for such proofs. Alternative techniques may be
simpler and may take into account specific system details.

Finally, new or modified mechanisms may provide better control for
particular policies or systems. This is also an area of research.

16.8 Further Reading

Saltzer [1650] describes the use of access control lists in Multics. Kramer
[1105] describes their incorporation into the Linus system. Stiegler [1836]
describes structures used to implement ACLs. Riechmann and Hauck [1595]
discuss extensions.

In addition to the systems described in this chapter, several others, both
abstract and real, use capabilities [799,882,1954]. Klein [1069] describes how
to emulate capabilities using setuid programs in traditional UNIX systems.



EROS is a descendant of the KeyKOS system, which implemented capabilities
[260, 874, 1564]. CapROS [2138], a successor to EROS, and the seL4
microkernel [1071] use capabilities. Ko [1087] developed a model of the ring
bracket mechanism and demonstrated that it can enforce either the Bell-
LaPadula confidentiality policy or the Biba integrity policy, but not both.

Blakley [240], Asmuth and Bloom [88], and others [1974] discuss other
secret sharing schemes. Simmons discusses several generalizations
[1759–1761]. Others discuss several forms of cheating and how to compensate
for them [296, 1184, 1895].

16.9 Exercises

1. In general, ACLs use “owners” (users) rather than individual processes.
Why?

2. Alice can read and write to the file x, can read the file y, and can execute
the file z. Bob can read x, can read and write to y, and cannot access z.

(a) Write a set of access control lists for this situation. Which list is associated
with which file?

(b) Write a set of capability lists for this situation. With what is each list
associated?

3. Revoking an individual’s access to a particular file is easy when an access
control list is used. How hard is it to revoke a user’s access to a particular set
of files, but not to all files? Compare and contrast this with the problem of
revocation using capabilities.

4. Explain why some UNIX-based systems with ACLs do not allow root to
alter the ACL. What problems might this create?

5. The second example in section 16.2 asserts that UNIX file descriptors are in
fact capabilities. Please explain in detail why this is true. (Hint: How are file



descriptors used?)

6. Suppose a user wishes to edit the file xyzzy in a capability-based system.
How can he be sure that the editor cannot access any other file? Could this be
done in an ACL-based system? If so, how? If not, why not?

7. Consider implementing secret sharing using the locks and keys or-access
and and-access controls. Let each encipherment operation take one unit of
time, and let each enciphered datum take one unit of space. Under each of the
following conditions, how much time and space are needed to store a datum
so that t out of n people can reconstruct the datum?

(a) For t = 3 and n = 10

(b) For t = 5 and n = 10

(c) For general t and n (That is, give the general formulae for space and time.)

8. Consider Multics procedures p and q. Procedure p is executing and needs
to invoke procedure q. Procedure q’s access bracket is (5, 6) and its call
bracket is (6, 9). Assume that q’s access control list gives p full (read, write,
append, and execute) rights to q. In which ring(s) must p execute for the
following to happen?

(a) p can invoke q, but a ring-crossing fault occurs.

(b) p can invoke q provided that a valid gate is used as an entry point.

(c) p cannot invoke q.

(d) p can invoke q without any ring-crossing fault occurring, but not
necessarily through a valid gate.

9. Consider Multics procedure p and data segment d. Procedure p is
executing and needs to access segment d. Segment d’s access bracket is (5, 6).
Assume that d’s access control list gives p full (read, write, append, and



execute) rights to d. In which ring(s) must p execute for the following to
happen?

(a) p can read, write to, and append to d.

(b) p can read d but not write to or append to d.

(c) p cannot access d.

10. Consider ownership as a right that allows the changing of capabilities (or
access control lists). How might you implement this right using capabilities?
How might you implement it using access control lists? Contrast these
implementations of capability lists and access control lists with PACLs.



Chapter 17. Information Flow
BOTTOM: Masters, I am to discourse wonders: but ask me not what; for if I tell 
you, I am no true Athenian. I will tell you every thing, right as it fell out.

— A Midsummer Night’s Dream, IV, ii, 30–33.

Although access controls can constrain the rights of a user, they cannot 
constrain the flow of information through a system. In particular, when a 
system has a security policy regulating information flow, the system must 
ensure that the information flows do not violate the constraints of the policy. 
Both compile-time mechanisms and runtime mechanisms support the 
checking of information flows. Several systems implementing these 
mechanisms demonstrate their effectiveness.

17.1 Basics and Background

Information flow policies define the way information moves throughout a 
system. Typically, these policies are designed to preserve confidentiality of 
data or integrity of data. In the former, the policy’s goal is to prevent 
information from flowing to a user not authorized to receive it. In the latter, 
information may flow only to processes that are no more trustworthy than the 
data.

Any confidentiality and integrity policy embodies an information flow policy.

EXAMPLE: The Bell-LaPadula Model (see Section 5.2) describes a lattice-
based information flow policy. Given two compartments A and B, information



can flow from an object in A to a subject in B if and only if B dominates A.
Similarly, Biba’s Strict Integrity Model (see Section 6.2.3) also describes a
lattice-based information flow policy. Given two compartments A and B,
information can flow from an object in A to a subject in B if and only if A
dominates B.

Let x be a variable in a program. Represent the information flow class of x by
x.

EXAMPLE: Consider a system that uses the Bell-LaPadula Model. The
variable x, which holds data in the compartment (TS, { NUC, EUR }), is set to
3. Then x = 3 and x = (TS, {NUC, EUR}).

17.1.1 Entropy-Based Analysis

We now define precisely the notion of information flow. Intuitively,
information flows from an object x to an object y if the application of a
sequence of commands c causes the information initially in x to affect the
information in y. We use the notion of entropy, or uncertainty (see Appendix
C, “Entropy and Uncertainty”), to formalize this concept.

Let c be a sequence of commands taking a system from state s to another
state t. Let x and y be objects in the system. We assume that x exists when the
system is in state s and has the value xs. We require that y exist in state t and
have the value yt. In addition, if y exists in state s, it has value ys.

Definition 17–1. The command sequence c causes a flow of information
from x to y if H(xs | yt) < H(xs | ys). If y does not exist in s, then H(xs | ys) =
H(xs).

This definition states that information flows from the variable x to the
variable y if the value of y after the commands allows one to deduce
information about the value of x before the commands were run.

This definition views information flow in terms of the information that the



value of y allows one to deduce about the value in x. For example, the
statement

y := x;

reveals the value of x in the initial state, so H(xs | yt) = 0 (because given the
value yt, there is no uncertainty in the value of xs). The statement

y := x / z;

reveals some information about xs, but not as much as the first statement.

The result of the sequence c must reveal information about the initial value of
x for information to flow. The sequence

tmp := x;
y := tmp;

has information flowing from x to y because the (unknown) value of x at the
beginning of the sequence is revealed when the value of y is determined at the
end of the sequence. However, no information flow occurs from tmp to x,
because the initial value of tmp cannot be determined at the end of the
sequence.

EXAMPLE: Consider the statement

x := y + z;

Let y take any of the integer values from 0 to 7, inclusive, with equal
probability, and let z take the value 1 with probability 0.5 and the values 2
and 3 with probability 0.25 each. Let s be the state before this operation is
executed, and let t be the state immediately after it is executed. Then H(ys) =
H(yt) = 3 and H(zs) = H(zt) = 1.5. Once the value of xt is known, ys can



assume at most three values, so H(ys | xt) < lg 3 ≈ 1.58. Thus, information
flows from y to x. Similar results hold for H(zs | xt); see Exercise 1.

EXAMPLE: Consider a program in which x and y are integers that may be
either 0 or 1. The statement

if x = 1 then y := 0;
else y := 1;

does not explicitly assign the value of x to y.

Assume that x is equally likely to be 0 or 1. Then H(xs) = 1. But H(xs | yt) = 0,
because if y is 0, x is 1, and vice versa. Hence, H(xs | yt) = 0 < H(xs | ys) =
H(xs) = 1. Thus, information flows from x to y.

Definition 17–2. An implicit flow of information occurs when information
flows from x to y without an explicit assignment of the form y := f(x), where
f(x) is an arithmetic expression with the variable x.

The flow of information occurs, not because of an assignment of the value of
x, but because of a flow of control, or other behavior, based on the value of x.
This demonstrates that analyzing programs for assignments to detect
information flows is not enough. To detect all flows of information, implicit
flows must be examined.

17.1.2 Information Flow Models and Mechanisms

An information flow policy is a security policy that describes the authorized
paths along which that information can flow. Part III, “Policy,” discussed
several models of information flow, including the Bell-LaPadula Model,
nonlattice and nontransitive models of information flow, and nondeducibility
and noninterference. Each model associates a label, representing a security
class, with information and with entities containing that information. Each
model has rules about the conditions under which information can move



throughout the system.

In this chapter, we use the notation x ≤ y to mean that information can flow
from an element of class x to an element of class y. Equivalently, this says
that information with a label placing it in class x can flow into class y.

Earlier chapters usually assumed that the models of information flow policies
were lattices. We first consider non-lattice information flow policies and how
their structures affect the analysis of information flow. We then turn to
compiler-based information flow mechanisms and runtime mechanisms. We
conclude with a look at flow controls in practice.

17.2 Non-Lattice Information Flow Policies

Denning [536] identifies two requirements for information flow policies. Both
are intuitive. Information should be able to flow freely among members of a
single class, providing reflexivity. If members of one class can read
information from a second class, they can save the information in objects
belonging to the first class. Then, if members of a third class can read
information from the first class, they can read the contents of those objects
and, effectively, read information from the second class. This produces
transitivity. The Bell-LaPadula Model exhibits both characteristics. For
example, Cathy dom Betty, and Betty dom Anne, then Cathy dom Anne.

However, in some circumstances, transitivity is undesirable.

EXAMPLE: Betty is a confidante of Anne, and Cathy is a confidante of Betty.
Hence, information can flow from Anne to Betty, and from Betty to Cathy.
Anne confides to Betty that she is having an affair with Cathy’s significant
other. Needless to say, it is not desirable that this information flow directly
from Anne to Cathy.

If information flow throughout a system is not transitive, then Denning’s
lattice model of information flow cannot represent the system. But such



systems exist, as just pointed out. Lattices may not even model transitive
systems.

EXAMPLE: Two faculty members are co-principle investigators of a grant.
Graduate students report to both faculty members, and graduate students
supervise undergraduate students on the project. The faculty members have
equal power, neither being able to overrule the other. Clearly, information
flows from the undergraduates to the graduates, and then on to the faculty
members, so the system is transitive. But the graduate students have no
single least upper bound, because both faculty members dominate them and
there is no entity that dominates both faculty members. Hence, the
information flow relations in this system do not form a lattice.

We generalize the notion of a confidentiality policy. An information flow
policy I is a triple I = (SCI, ≤I, joinI), where SCI is a set of security classes, ≤I is
an ordering relation on the elements of SCI, and joinI combines two elements
of SCI.

EXAMPLE: Denning’s lattice model for the Bell-LaPadula Model has SCI as
the set of security compartments, ≤I as the relation dom, and joinI as the
relation least upper bound.

We now present a model of information flow that does not require transitivity
and apply it to two cases in which the information flow relations do not form
a lattice. In the first case, the relations are transitive; in the second, they are
not.

17.2.1 Confinement Flow Model

Foley [697] presented a model of confinement flow. Assume that an object
can change security classes; for example, if the data stored in a variable
changes, the security class of the variable becomes that of the data. Associate
with each object x a security class x.



Definition 17–3. [697] The confinement flow model is a 4-tuple (I, O,
confine, →) in which I = (SCI, ≤I, joinI) is a lattice-based information flow
policy; O is a set of entities; →: O × O is a relation with (a, b) ∈→ if and only
if information can flow from a to b; and, for each a ∈ O, confine(a) = (aL, aU)
∈ SCI × SCI, with aL ≤I aU , and the interpretation that for a ∈ O, if x ≤ aU ,
information can flow from x to a, and if aL ≤ x, information can flow from a to
x.

This means that aL is the lowest classification of information allowed to flow
out of a, and aU is the highest classification of information allowed to flow
into a.

The security requirement for an information flow model requires that if
information can flow from a to b, then b dominates a under the ordering
relation of the lattice. For the confinement flow model, this becomes

EXAMPLE: Let a, b, c ∈ O. Define

confine(a) = [CONFIDENTIAL, CONFIDENTIAL]

confine(b) = [SECRET, SECRET]

confine(c) = [TOPSECRET, TOPSECRET]

The possible information flows are a → b, a → c, b → a, b → c, c → a, and c
→ b. If only secure flows (those meeting the security requirement of the
confinement flow model) are allowed, then a → b, a → c, and b → c are the
legal flows (because aL ≤I bU , aL ≤I cU, and bL ≤I cU). Thus, transitivity holds.

Now consider x, y, and z. These three variables can assume values of different
classifications:

confine(x) = [CONFIDENTIAL, CONFIDENTIAL]



confine(y) = [SECRET, SECRET]

confine(z) = [CONFIDENTIAL, TOPSECRET]

The possible information flows are x → y, x → z, y → x, y → z, z → x, and z →
y. If only secure flows are allowed, then x → y, x → z, y → z, and z → x are the
legal flows. But information cannot legally flow from y to x, because yL ≤I xU
is false. Hence, transitivity fails.

This model exhibits weak tranquility. It also binds intervals of security
classes, rather than a single security class (as in the Bell-LaPadula Model).
The lattice of security classes induces a second lattice on these intervals (see
Exercise 2).

17.2.2 Transitive Non-Lattice Information Flow Policies

Consider a company in which line managers report income to two different
superiors—a business manager and an auditor. The auditor and the business
manager are independent. Thus, information flows from the workers to the
line managers, and from the line managers to the business manager and the
auditor. This model is reflexive (because information can flow freely among
entities in the same class) and transitive (because information can flow from
the workers to the business manager and auditor). However, there is no way
to combine the auditor and the business manager, because there is no
“superior” in this system. Hence, the information flow relations do not form a
lattice. Figure 17–1 captures this situation.

Definition 17–4. A quasi-ordered set Q = (SQ, ≤Q) is a set SQ and a relation
≤Q defined on SQ such that the relation is both reflexive and transitive.

The company described here forms a quasi-ordered set. Handling the
information flow now becomes a matter of defining a lattice that includes the
quasi-ordered set. For all x ∈ SQ, let f(x) = {y | y ∈ SQ ⋀ y ≤Q x}. Define the set
SQP = {f(x) | x ∈ SQ} and the relation ≤QP = {(x, y) | x, y ∈ SQP ⋀ x ⊆ y}. Then



SQP is a partially ordered set under ≤QP . f preserves ordering, so x ≤Q y if and
only if f(x) ≤QP f(y).

Assume SQP is finite. Then Denning [537] shows how to turn a partially
ordered set into a lattice.

Figure 17–1: An example of a non-lattice information flow policy.
Because the business manager and the auditor are independent,
they have no least upper bound. Hence, the structure is not a
lattice.

1. Let

.

2. Define

(here, ub stands for “upper bound,” which contains all sets containing all
elements of both x and y). Then define lub(x, y) = ∩(x, y). If this is not in

, add it, and repeat this step until every pair of elements has an upper bound.

3. Define the lower bound lb(x, y), and the greatest lower bound glb(x, y)
similarly, and ensure that every pair of elements has a lower bound.

The structure



is now a lattice.

At this point, the information flow policy simply emulates that of the
containing lattice.

17.2.3 Non-Transitive Information Flow Policies

Foley [697] has considered the problem of modeling non-transitive systems.
He defines a procedure for building lattices from such systems. His procedure
adds entities and relations to the model, but the procedure keeps the non-
transitive relationships of the original entities and relations intact.

EXAMPLE: A government agency has the policy shown in Figure 17–2. It
involves three types of entities: public relations officers (PRO), who need to
know more than they can say publicly; analysts (A); and spymasters (S). The
accesses of the three types of entities are confined to certain types of data, as
follows.

confine(PRO) = [public, analysis]

confine(A) = [analysis, top-level]

confine(S) = [covert, top-level]

According to the confinement flow model, PRO ≤ A, A ≤ PRO, PRO ≤ S, A ≤
S, and S ≤ A. But data cannot flow to the public relations officers; S ≤ A and A
≤ PRO do not imply S ≤ PRO. The system is not transitive.

Government (and private) agencies often use procedures to insulate public
relations officers from data that is not to be leaked. Although the agency may
trust the public relations officers, people make mistakes, and what the
officers don’t know, they cannot accidentally blurt out. So the example is
realistic.

Figure 17–2: An example of a government agency information flow



policy. Public information is available to all. All other types of
information are restricted, with analysis data and covert data
(about secret missions) being distinct types of data. Top-level data
is synthesized from both covert and analysis data.

Definition 17–5. Let R = (SCR, ≤R, joinR) represent a reflexive information
flow policy. A dual mapping (lR(x), hR(x)) maps R to an ordered set P = (SP ,
≤P):

lR : SCR → SP with lR(x) = {x}

hR : SCR → SP with hR(x) = {y | y ∈ SP ⋀ y ≤R x}

The relation ≤P indicates “subset,” and the elements in SP are the set of
subsets of SCR. The dual mapping is called order preserving if and only if

The set SP formed by the dual mapping of a reflexive information flow policy
is a (possibly improper) subset of the power set of SCR. It is a partially
ordered set. Denning’s procedure, as previously discussed, can transform this
into a lattice. Hence, without loss of generality, we can assume that the set P
= (SP , ≤P) is a lattice.

An order-preserving dual mapping preserves the ordering relation under the
transformation. It also preserves nonorderings and hence non-transitivity.
We now have:

Theorem 17.1. A dual mapping from a reflexive information flow policy R
to an ordered set P is order-preserving.

Proof. Let R = (SCR, ≤R, joinR) be an information flow policy and let P = (SP ,
≤P) be an ordered set. Let (lR(x), hR(x)) be the dual mapping from R to SP. Let
a, b ∈ SCR.

(⇒) Let a ≤R b. By Definition 17–5, a ∈ lR(a) and a ∈ hR(b). Thus, lR(a) ∈



hR(b), or lR(a) ≤P hR(b), as claimed.

(⇐) Let lR(a) ≤P hR(b). By Definition 17–5, lR(a) ∈ hR(b). Because lR(a) = {a},
this means that a ∈ hR(b). Thus, a ∈ SP and a ≤R b, as claimed.

This completes the proof. 

We can now interpret the information flow policy requirements. Let

and consider class y. Then information can flow from x to an element of y if
and only if xL ≤R y, or lR(xL) ⊆ hR(y). Information can flow from an element
of y to x if and only if y ≤R xU , or lR(y) ⊆ hR(xU).

EXAMPLE: Return to the government agency with the policy shown in Figure
17–2 and the entity types discussed in the preceding example. Call this policy
R. We have the following flow relationships among the security classes.

public ≤R public

public ≤R analysis         analysis ≤R analysis

public ≤R covert            covert ≤R covert

public ≤R top-level        covert ≤R top-level

analysis ≤R top-level     top-level ≤R top-level

The dual mapping elements lR and hR are

lR(public) = {public}               hR(public) = {public}

lR(analysis) = {analysis}         hR(analysis) = {public, analysis}

lR(covert) = {covert}               hR(covert) = {public, covert}



lR(top-level) = {top-level}      hR(top-level) = {public, analysis, covert, top-
level}

Let p, a, and s be entities of the types PRO, A, and S, respectively. In terms of
P , they are confined as follows.

confine(p) = [{public}, {public, analysis}]

confine(a) = [{analysis}, {public, analysis, covert, top-level}]

confine(s) = [{covert}, {public, analysis, covert, top-level}]

Thus,

p → a because {public} ⊆ {public, analysis, covert, top-level}

a → p because {analysis} ⊆ {public, analysis}

p → s because {public} ⊆ {public, analysis, covert, top-level}

a → s because {analysis} ⊆ {public, analysis, covert, top-level}

s → a because {covert} ⊆ {public, analysis, covert, top-level}

However, because {covert} ⊄ {public, analysis}, information cannot flow from
s to p, reflecting the lack of transitivity of the system.

Non-lattice policies can be embedded into lattices. Hence, analysis of
information flows may proceed without loss of generality under the
assumption that the information flow model is a lattice.

17.3 Static Mechanisms

Compiler-based mechanisms check that information flows throughout a
program are authorized. The mechanisms determine if the information flows
in a program could violate a given information flow policy. This



determination is not precise, in that secure paths of information flow may be
marked as violating the policy; but it is secure, in that no unauthorized path
along which information may flow will be undetected.

Definition 17–6. A set of statements is certified with respect to an
information flow policy if the information flow within that set of statements
does not violate the policy.

EXAMPLE: Consider the program statement

if x = 1 then y := a;
else y := b;

By the rules discussed earlier, information flows from x and a to y or from x
and b to y, so if the policy says that a ≤ y, b ≤ y, and x ≤ y, then the
information flow is secure. But if a ≤ y only when some other variable z = 1,
the compiler-based mechanism must determine whether z = 1 before
certifying the statement. Typically, this is infeasible. Hence, the compiler-
based mechanism would not certify the statement.

The mechanisms described here follow those developed by Denning and
Denning [535, 544].

17.3.1 Declarations

For our discussion, we assume that the allowed flows are supplied to the
checking mechanisms through some external means, such as from a file. The
specifications of allowed flows involve security classes of language constructs.
The program involves variables, so some language construct must relate
variables to security classes. One way is to assign each variable to exactly one
security class. We opt for a more liberal approach, in which the language
constructs specify the set of classes from which information may flow into the
variable. For example,



x : integer class { A, B }

states that x is an integer variable and that data from security classes A and B
may flow into x. Note that the classes are statically, not dynamically,
assigned. Viewing the security classes as a lattice, this means that x’s class
must be at least the least upper bound of classes A and B—that is, lub{A, B} ≤
x.

Two distinguished classes, Low and High, represent the greatest lower bound
and least upper bound, respectively, of the lattice. All constants are of class
Low.

Information can be passed into or out of a procedure through parameters. We
classify parameters as input parameters (through which data is passed into
the procedure), output parameters (through which data is passed out of the
procedure), and input/output parameters (through which data is passed into
and out of the procedure).

(* input parameters are named is; output parameters, os; *)
(* and input/output parameters, io_s, with s a subscript *)
procedure something(i1, ..., ik; var o1, ..., om, io1, ..., ion);
var l1, ..., lj;        (* local variables *)
begin
        S;              (* body of procedure *)
end;

The class of an input parameter is simply the class of the actual argument:

is: type class { is }

We assume that any output-only parameter is initialized in the procedure.
Because information can flow from any input parameter to any output
parameter, the declaration of an output parameter must capture this:



os: type class { i1, ..., ik, io1, ..., ion }

The input/output parameters are like output parameters, except that the
initial value (as input) affects the allowed security classes:

ios: type class { i1, ..., ik, io1, ..., ion }

EXAMPLE: Consider the following procedure for adding two numbers.

procedure sum (x: integer class { x };
        var out: integer class { x , out });
begin
        out := out + x;
end;

Here, we require that x ≤ out and out ≤ out (the latter holding because ≤ is
reflexive).

The declarations presented so far deal only with basic types, such as integers,
characters, floating point numbers, and so forth. Nonscalar types, such as
arrays, records (structures), and variant records (unions) also contain
information. The rules for information flow classes for these data types are
built on the scalar types.

Consider the array

a : array 1 .. 100 of integer;

First, look at information flows out of an element a[i] of the array. In this
case, information flows from a[i] and from i, the latter by virtue of the index
indicating which element of the array to use. Information flows into a[i]
affect only the value in a[i], and so do not affect the information in i. Thus,
for information flows from a[i], the class involved is lub{a[i], i}; for



information flows into a[i], the class involved is a[i].

17.3.2 Program Statements

A program consists of several types of statements. Typically, they are

1. Assignment statements

2. Compound statements

3. Conditional statements

4. Iterative statements

5. Goto statements

6. Procedure calls

7. Function calls

8. Input/output statements.

We consider each of these types of statements separately, with two
exceptions. Function calls can be modeled as procedure calls by treating the
return value of the function as an output parameter of the procedure.
Input/output statements can be modeled as assignment statements in which
the value is assigned to (or assigned from) the input source or output
destination, such as a file. Hence, we do not consider function calls and
input/output statements separately.

17.3.2.1 Assignment Statements

An assignment statement has the form

y := f (x1, ..., xn)



where y and x1, ..., xn are variables and f is some function of those variables.
Information flows from each of the xi’s to y. Hence, the requirement for the
information flow to be secure is

• lub{x1, . . . , xn} ≤ y

EXAMPLE: Consider the statement

x := y + z;

Then the requirement for the information flow to be secure is lub{y, z} ≤ x.

17.3.2.2 Compound Statements

A compound statement has the form

begin
        S1;
        ...
        Sn;
end;

where each of the Si’s is a statement. If the information flow in each of the
statements is secure, then the information flow in the compound statement is
secure. Hence, the requirements for the information flow to be secure are

• S1, . . . , Sn secure

EXAMPLE: Consider the statements

begin
        x := y + z;
        a := b * c – x;
end;

Then the requirements for the information flow to be secure are lub{y, z} ≤ x



for S1 and lub{b, c, x} ≤ a for S2. So, the requirements for secure information
flow for the block are lub{y, z} ≤ x and lub{b, c, x} ≤ a.

17.3.2.3 Conditional Statements

A conditional statement has the form

if f(x1, ..., xn) then
        S1;
else
        S2;
end;

where x1, . . . , xn are variables and f is some (boolean) function of those
variables. Either S1 or S2 may be executed, depending on the value of f, so
both must be secure. As discussed earlier, the selection of either S1 or S2
imparts information about the values of the variables x1, . . . , xn, so
information must be able to flow from those variables to any targets of
assignments in S1 and S2. This is possible if and only if the lowest class of the
targets dominates the highest class of the variables x1, . . . , xn. Thus, the
requirements for the information flow to be secure are

• S1 and S2 secure

• lub{x1, . . . , xn} ≤ glb{y | y is the target of an assignment in S1 and S2}

As a degenerate case, if statement S2 is empty, it is trivially secure and has no
assignments.

EXAMPLE: Consider the statements

if x + y < z then
        a := b;
else
        d := b * c – x;
end;



Then the requirements for the information flow to be secure are b ≤ a for S1
and lub{b, c, x} ≤ d for S2. But the statement that is executed depends on the
values of x, y, and z. Hence, information also flows from x, y, and z to d and a.
So, the requirements are b ≤ a, lub{b, c, x} ≤ d, and lub{x, y, z} ≤ glb{a, d}.

17.3.2.4 Iterative Statements

An iterative statement has the form

while f(x1, ..., xn) do
        S;

where x1, . . . , xn are variables and f is some (boolean) function of those
variables. Aside from the repetition, this is a conditional statement, so the
requirements for information flow to be secure for a conditional statement
apply here.

To handle the repetition, first note that the number of repetitions causes
information to flow only through assignments to variables in S. The number
of repetitions is controlled by the values in the variables x1, . . . , xn, so
information flows from those variables to the targets of assignments in S—but
this is detected by the requirements for information flow of conditional
statements.

However, if the program never leaves the iterative statement, statements after
the loop will never be executed. In this case, information has flowed from the
variables x1, . . . , xn by the absence of execution. Hence, secure information
flow also requires that the loop terminate.

Thus, the requirements for the information flow to be secure are

• Iterative statement terminates

• S secure



• lub{x1, . . . , xn} ≤ glb{y | y is the target of an assignment in S}

EXAMPLE: Consider the statements

while i < n do
begin
        a[i] := b[i];
        i := i + 1;
end;

This loop terminates. If n ≤ i initially, the loop is never entered. If i < n, i is
incremented by a positive integer, 1, and so increases, at each iteration.
Hence, after n – i iterations, n = i, and the loop terminates.

Now consider the compound statement that makes up the body of the loop.
The first statement is secure if i ≤ a[i] and b[i] ≤ a[i]; the second statement is
secure because i ≤ i. Hence, the compound statement is secure if lub{i, b[i]} ≤
a[i].

Finally, a[i] and i are targets of assignments in the body of the loop. Hence,
information flows into them from the variables in the expression in the while
statement. So, lub{i, n} ≤ glb{a[i], i}. Putting these together, the requirement
for the information flow to be secure is lub{i, n, b[i]} ≤ glb{a[i], i} (see
Exercise 5).

17.3.2.5 Goto Statements

A goto statement contains no assignments, so no explicit flows of information
occur. Implicit flows may occur; analysis detects these flows.

Definition 17–7. A basic block is a sequence of statements in a program
that has one entry point and one exit point.

EXAMPLE: Consider the following code fragment.



There are seven basic blocks, labeled b1 through b7 and separated by lines.
The second and fourth blocks have two ways to arrive at the entry—either
from a jump to the label or from the previous line. They also have two ways to
exit—either by the branch or by falling through to the next line. The fifth
block has three lines and always ends with a branch. The sixth block has two
lines and can be entered either from a jump to the label or from the previous
line. The last block is always entered by a jump.

Control within a basic block flows from the first line to the last. Analyzing the
flow of control within a program is therefore equivalent to analyzing the flow
of control among the program’s basic blocks. Figure 17–3 shows the flow of
control among the basic blocks of the body of the procedure transmatrix.



Figure 17–3: The control flow graph of the procedure transmatrix.
The basic blocks are labeled b1 through b7. The conditions under
which branches are taken are shown over the edges corresponding
to the branches.

When a basic block has two exit paths, the block reveals information
implicitly by the path along which control flows. When these paths converge
later in the program, the (implicit) information flow derived from the exit
path from the basic block becomes either explicit (through an assignment) or
irrelevant. Hence, the class of the expression that causes a particular
execution path to be selected affects the required classes of the blocks along
the path up to the block at which the divergent paths converge.

Definition 17–8. An immediate forward dominator of a basic block b
(written IFD(b)) is the first block that lies on all paths of execution that pass
through b.

EXAMPLE: In the procedure transmatrix, the immediate forward



dominators of each block are IFD(b1) = b2, IFD(b2) = b7, IFD(b3) = b4,
IFD(b4) = b6, IFD(b5) = b4, and IFD(b6) = b2.

To compute the information flow requirement for the set of blocks along the
path, simply apply the logic for the conditional statement. Each block along
the path is taken because of the value of an expression. Information flows
from the variables of the expression into the set of variables assigned in the
blocks. Let Bi be the set of blocks along an execution path from bi to IFD(bi),
but excluding these endpoints. (See Exercise 6.) Let xi1, . . . , xin be the set of
variables in the expression that selects the execution path containing the
blocks in Bi. The requirements for the program’s information flows to be
secure are

• All statements in each basic block are secure; and

• lub{xi1, . . . , xin} ≤ glb{y | y is the target of an assignment in Bi}

EXAMPLE: Consider the body of the procedure transmatrix. We first state
requirements for information flow within each basic block:

b1: Low ≤ i ⇒ secure

b3: Low ≤ j ⇒ secure

b5: lub{x[i][j], i, j} ≤ y[j][i] ⋀ j ≤ j ⇒ lub{x[i][j], i, j} ≤ y[j][i]

b6: lub{Low, i} ≤ i ⇒ secure

The conditions for b1, b3, and b6 are by definition satisfied. The requirement
for b5 to be secure is, for i = 1, . . . , n and j = 1, . . . , n, lub{x[i][j], i, j} ≤ y[j][i].
By the declarations, this is true when lub{x, tmp} ≤ y.

In this procedure, B2 = {b3, b4, b5, b6} and B4 = {b5}. Thus, in B2, statements
assign values to i, j, and y[j][i]. In B4, statements assign values to j and y[j][i].
The expression controlling which basic blocks in B2 are executed is i ≤ 10; the



expression controlling which basic blocks in B4 are executed is j ≤ 10. Secure
information flow requires that i ≤ glb{i, j, y[j][i]} and j ≤ glb{j, y[j][i]}. In
other words, tmp ≤ glb{tmp, y} and tmp ≤ glb{tmp, y}, or tmp ≤ y.

Combining these requirements, the requirement for the body of the
procedure to be secure with respect to information flow is lub{x, tmp} ≤ y.

17.3.2.6 Procedure Calls

A procedure call has the form

procedure procname(i1, ..., im: integer; var o1, ..., on: integer);
begin
        S;
end;

where each of the ij’s is an input parameter and each of the oj’s is an
input/output parameter. The information flow in the body S must be secure.
As discussed earlier, information flow relationships may also exist between
the input parameters and the output parameters. If so, these relationships are
necessary for S to be secure. The actual parameters (those variables supplied
in the call to the procedure) must also satisfy these relationships for the call
to be secure. Let x1, . . . , xm and y1, . . . , yn be the actual input and
input/output parameters, respectively. The requirements for the information
flow to be secure are

• S secure

• For j = 1, . . . , m and k = 1, . . . , n, if ij ≤ ok then xj ≤ yk

• For j = 1, . . . , n and k = 1, . . . , n, if oj ≤ ok then yj ≤ yk

EXAMPLE: Consider the procedure transmatrix from the preceding section.
The body of the procedure is secure with respect to information flow when
lub{x, tmp} ≤ y. This indicates that the formal parameters x and y have the



information flow relationship x ≤ y. Now, suppose a program contains the
call

transmatrix(a, b)

The second condition asserts that this call is secure with respect to
information flow if and only if a ≤ b.

17.3.3 Exceptions and Infinite Loops

Exceptions can cause information to flow.

EXAMPLE: Consider the following procedure [535, p. 306], which copies the
(approximate) value of x to y.

procedure copy (x: integer class { x }; var y: integer class Low);
var     sum: integer class { x };
        z: integer class Low;
begin
        z := 0;
        sum := 0;
        y := 0;
        while z = 0 do begin
                sum := sum + x;
                y := y + 1;
        end
end

When sum overflows, a trap occurs. If the trap is not handled, the procedure
exits. The value of x is

, where MAXINT is the largest representable integer on the system. At no
point, however, is the flow relationship x ≤ y checked.

If exceptions are handled explicitly, the compiler can detect problems such as
this. Denning again supplies such a solution.



EXAMPLE: Suppose the system ignores all exceptions unless the programmer
specifically handles them. Ignoring the exception in the preceding example
would cause the program to loop indefinitely. So, the programmer would
want the loop to terminate when the exception occurred. The following line
does this.

on overflowexception sum do z := 1;

This line causes information to flow from sum to z, meaning that sum ≤ z.
Because z is Low and sum is {x}, this is incorrect and the procedure is not
secure with respect to information flow.

Denning also notes that infinite loops can cause information to flow in
unexpected ways.

EXAMPLE: The following procedure copies data from x to y. It assumes that x
and y are either 0 or 1.

procedure copy (x: integer 0..1 class { x };
        var y: integer 0..1 class Low);
begin
        y := 0;
        while x = 0 do
                (* nothing *);
        y := 1;
end.

If x is 0 initially, the procedure does not terminate. If x is 1, it does terminate,
with y being 1. At no time is there an explicit flow from x to y. This is an
example of a covert channel, which we will discuss in detail in Chapter 18.

17.3.4 Concurrency

Of the many concurrency control mechanisms that are available, we choose to
study information flow using semaphores [569]. Their operation is simple,



and they can be used to express many higher-level constructs [299, 1758,
1868]. The specific semaphore constructs are

wait(x):           if x = 0 then block until x > 0; x := x – 1;
signal (x):        x := x + 1;

where x is a semaphore. As usual, the wait and the signal are indivisible; once
either one has started, no other instruction will execute until the wait or
signal finishes.

Reitman and his colleagues [62, 1586] point out that concurrent mechanisms
add information flows when values common to multiple processes cause
specific actions. For example, in the block

begin
        wait(sem);
        x := x + 1;
end;

the program blocks at the wait if sem is 0, and executes the next statement
when sem is nonzero. The earlier certification requirement for compound
statements is not sufficient because of the implied flow between sem and x.
The certification requirements must take flows among local and shared
variables (semaphores) into account.

Let the block be

begin
        S1;
        ...
        Sn;
end;

Assume that each of the statements S1, . . . , Sn is certified. Semaphores in the
signal do not affect information flow in the program in which the signal



occurs, because the signal statement does not block. But following a wait
statement, which may block, information implicitly flows from the semaphore
in the wait to the targets of successive assignments.

Let statement Si be a wait statement, and let shared(Si) be the set of shared
variables that are read (so information flows from them). Let g(Si) be the
greatest lower bound of the targets of assignments following Si. A
requirement that the block be secure is that shared(Si) ≤ g(Si). Thus, the
requirements for certification of a compound statement with concurrent
constructs are

• S1, . . . , Sn secure

• For i = 1, . . . , n, shared(Si) ≤ g(Si)

EXAMPLE: Consider the statements

begin
        x := y + z;
        wait(sem);
        a := b * c – x;
end;

The requirements that the information flow be secure are lub{y, z} ≤ x for S1
and lub{b, c, x} ≤ a for S2. Information flows implicitly from sem to a, so sem
≤ a. The requirements for certification are lub{y, z} ≤ x, lub{b, c, x} ≤ a, and
sem ≤ a.

Loops are handled similarly. The only difference is in the last requirement,
because after completion of one iteration of the loop, control may return to
the beginning of the loop. Hence, a semaphore may affect assignments that
precede the wait statement in which the semaphore is used. This simplifies
the last condition in the compound statement requirement considerably.
Information must be able to flow from all shared variables named in the loop
to the targets of all assignments. Let shared(Si) be the set of shared variables



read, and let t1, . . . , tm be the targets of assignments in the loop. Then the
certification conditions for the iterative statement

while f(x1, ..., xn) do
        S;

are

• Iterative statement terminates

• S secure

• lub{x1, . . . , xn} ≤ glb{t1, . . . , tm}

• lub{shared(S1), ..., shared(Sn)} ≤ glb{t1, . . . , tm}

EXAMPLE: Consider the statements

while i < n do
begin
        a[i] := item;
        wait(sem);
        i := i + 1;
end;

This loop terminates. If n ≤ i initially, the loop is never entered. If i < n, i is
incremented by a positive integer, 1, and so increases, at each iteration.
Hence, after n – i iterations, n = i, and the loop terminates.

Now consider the compound statement that makes up the body of the loop.
The first statement is secure if i ≤ a[i] and item ≤ a[i]. The third statement is
secure because i ≤ i. The second statement induces an implicit flow, so sem ≤
a[i] and sem ≤ i. The requirements are thus i ≤ a[i], item ≤ a[i], sem ≤ a[i],
and sem ≤ i.

Finally, concurrent statements have no information flow among them per se.



Any such flows occur because of semaphores and involve compound
statements. The certification conditions for the concurrent statement

cobegin
        S1;
        ...
        Sn;
coend;

are

• S1, . . . , Sn secure

EXAMPLE: Consider the statements

cobegin
        x := y + z;
        a := b * c – y;
coend;

The requirements that the information flow be secure are lub{y, z} ≤ x for S1
and lub{b, c, y} ≤ a for S2. The requirement for certification is simply that
both of these requirements hold.

17.3.5 Soundness

Denning and Denning [544], Andrews and Reitman [62], and others build
their argument for security on the intuition that combining secure
information flows produces a secure information flow, for some security
policy. However, they never formally prove this intuition. Volpano, Irvine,
and Smith [1957] express the semantics of the aforementioned information
on flow analysis as a set of types, and equate certification that a certain flow
can occur to the correct use of types. In this context, checking for valid
information flows is equivalent to checking that variable and expression types
conform to the semantics imposed by the security policy.



Let x and y be two variables in the program. Let x’s label dominate y’s label. A
set of information flow rules is sound if the value in x cannot affect the value
in y during the execution of the program. (The astute reader will note that
this is a form of noninterference; see Chapter 9.) Volpano, Irvine, and Smith
use language-based techniques to prove that, given a type system equivalent
to the certification rules discussed previously, all programs without type
errors have that noninterference property. Hence, the information flow
certification rules of the Dennings and of Andrews and Reitman are sound.

17.4 Dynamic Mechanisms

The goal of an execution-based mechanism is to prevent an information flow
that violates policy. Checking the flow requirements of explicit flows achieves
this result for statements involving explicit flows. Before the assignment

y := f (x1, ..., xn)

is executed, the execution-based mechanism verifies that

lub{x1, . . . , xn} ≤ y

If the condition is true, the assignment proceeds. If not, it fails. A naïve
approach, then, is to check information flow conditions whenever an explicit
flow occurs.

Implicit flows complicate checking, because dynamic analysis fllows the flow
of control. Thus, information flow paths not taken are ignored.

EXAMPLE: Let x and y be variables. The requirement for certification for a
particular statement y op x is that x ≤ y. The conditional statement

if x = 1 then y := a;

causes a flow from x to y. Now, suppose that when x ≠ 1, x = High and y =



Low. If flows were verified only when explicit, and x ≠ 1, the implicit flow
would not be checked. The statement may be incorrectly certified as
complying with the information flow policy.

Fenton explored this problem using a special abstract machine.

17.4.1 Fenton’s Data Mark Machine

Fenton [667] created an abstract machine called the Data Mark Machine to
study handling of implicit flows at execution time. Each variable in this
machine had an associated security class, or tag. Fenton also included a tag
for the program counter (PC).

The inclusion of the PC allowed Fenton to treat implicit flows as explicit
flows, because branches are merely assignments to the PC. He defined the
semantics of the Data Mark Machine. In the following discussion, skip means
that the instruction is not executed, push(x, x) means to push the variable x
and its security class x onto the program stack, and pop(x, x) means to pop
the top value and security class off the program stack and assign them to x
and x, respectively.

Fenton defined five instructions. The relationships between execution of the
instructions and the classes of the variables are as follows.

1. The increment instruction

x := x + 1

is equivalent to

if PC ≤ x then x := x – 1

else skip

2. The conditional instruction



if x = 0 then goto n

else x := x – 1

is equivalent to

if x = 0 then    { push(PC, PC); PC = lub{PC; x}; PC := n; }

else             { if PC ≤ x then { x := x – 1; } else skip }

This branches, and pushes the PC and its security class onto the program
stack. As is customary, the PC is incremented so that when it is popped, the
instruction following the if statement is executed. This captures the PC
containing information from x (specifically, that x is 0) while following the
goto.

3. The return

return

is equivalent to

pop(PC, PC);

This returns control to the statement following the last if statement. Because
the flow of control would have arrived at this statement, the PC no longer
contains information about x, and the old class can be restored.

4. The branch instruction

if′ x = 0 then goto n

else x := x – 1

is equivalent to

if′ x = 0 then   { if x ≤ PC then { PC := n; }; else skip }



else             { if PC ≤ x then { x := x – 1; } else skip }

This branches without saving the PC on the stack. If the branch occurs, the
PC is in a higher security class than the conditional variable x, so adding
information from x to the PC does not change the PC’s security class.

5. The halt instruction

halt

is equivalent to

if stack empty then halt execution

The program stack being empty ensures that the user cannot obtain
information by looking at the program stack after the program has halted (for
example, to determine which if statement was last taken).

EXAMPLE: (From [535, p. 290]) Consider the following program, in which x
initially contains 0 or 1.

1.   if x = 0 then goto 4 else x := x – 1
2.   if z = 0 then goto 6 else z := z – 1
3.   halt
4.   z := z + 1
5.   return
6.   y := y + 1
7.   return

This program copies the value of x to y. Suppose that x = 1 initially. The
following table shows the contents of memory, the security class of the PC at
each step, and the corresponding certification check.



Fenton’s machine handles errors by ignoring them. Suppose that, in this
program, y ≤ x. Then at the fifth step, the certification check fails (because PC
= x). So, the assignment is skipped, and at the end y = 0 regardless of the
value of x. But if the machine reports errors, the error message informing the
user of the failure of the certification check means that the program has
attempted to execute step 6. It could do so only if it had taken the branch in
step 2, meaning that z = 0. If z = 0, then the else branch of statement 1 could
not have been taken, meaning that x = 0 initially.

To prevent this type of deduction, Fenton’s machine continues executing in
the face of errors, but ignores the statement that would cause the violation.
This satisfies the requirements. Aborting the program, or creating an
exception visible to the user, would also cause information to flow against
policy.

The problem with reporting of errors is that a user with lower clearance than
the information causing the error can deduce the information from knowing
that there has been an error. If the error is logged in such a way that the
entries in the log, and the action of logging, are visible only to those who have
adequate clearance, then no violation of policy occurs. But if the clearance of
the user is sufficiently high, then the user can see the error without a violation
of policy. Thus, the error can be logged for the system administrator (or other
appropriate user), even if it cannot be displayed to the user who is running
the program. Similar comments apply to any exception action, such as
abnormal termination.

17.4.2 Variable Classes



The classes of the variables in the examples above are fixed. Fenton’s machine
alters the class of the PC as the program runs. This suggests a notion of
dynamic classes, wherein a variable can change its class. For explicit
assignments, the change is straightforward. When the assignment

y := f (x1, ..., xn)

occurs, y’s class is changed to lub{x1, . . . , xn}. Again, implicit flows
complicate matters.

EXAMPLE: (From [535, p. 285]) Consider the following program (which is
the same as the program in the example for the Data Mark Machine).

procedure copy (x : integer class { x };
                 var y : integer class { y });
var z : integer class variable { Low };
begin
        y := 0;
        z := 0;
        if x = 0 then z := 1;
        if z = 0 then y := 1;
end;

In this program, z is variable and initially Low. It changes when something is
assigned to z. Flows are certified whenever anything is assigned to y. Suppose
y < x.

If x = 0 initially, the first statement checks that Low ≤ y (trivially true). The
second statement sets z to 0 and z to Low. The third statement changes z to 1
and z to lub{Low, x} = x. The fourth statement is skipped (because z = 1).
Hence, y is set to 0 on exit.

If x = 1 initially, the first statement checks that Low ≤ y (again, trivially true).
The second statement sets z to 0 and z to Low. The third statement is skipped
(because x = 1). The fourth statement assigns 1 to y and checks that lub{Low,
z} = Low ≤ y (again, trivially true). Hence, y is set to 1 on exit.



Information has therefore flowed from x to y even though y < x. The program
violates the policy but is nevertheless certified.

Fenton’s Data Mark Machine would detect this violation (see Exercise 7).

Denning [536] suggests an alternative approach. She raises the class of the
targets of assignments in the conditionals and verifies the information flow
requirements, even when the branch is not taken. Her method would raise z
to x in the third statement (even when the conditional is false). The
certification check at the fourth statement then would fail, because lub{Low,
z} = x ≤ y is false.

Denning [535, p. 285] credits Lampson with another mechanism. Lampson
suggested changing classes only when explicit flows occur. But all flows force
certification checks. For example, when x = 0, the third statement sets z to
Low and then verifies x ≤ z (which is true if and only if x = Low).

17.5 Integrity Mechanisms

The previous analyses used confidentiality constraints to control the flow of
information; the constraints were based on a multilevel security policy such
as Bell-LaPadula. The analyses are equally effective when the constraints are
intended to protect integrity, for example when they are based on a multilevel
integrity policy such as Biba.

As a multilevel integrity policy model is the mathematical dual of the
corresponding multilevel security policy model, the constraints on
information flow are simply the duals of the security-based constraints used
in sections 17.3 and 17.4.

Consider the integrity constraint for information flow in an assignment
statement

y := f (x1, ..., xn)



where y and x1, ..., xn are variables and f is some function of those variables.
As before, information flows from each of the xi’s to y. Thus, if y has a higher
integrity level than any of the xi’s, information from those xi’s would taint the
integrity of y. Hence, the requirement for the integrity of y to be preserved is

• glb{x1, . . . , xn} ≤ y

Similarly, a conditional statement of the form

if f (x1, ..., xn) then
         S1;
else
         S2;
end;

with x1, . . . , xn are variables and f is some (boolean) function of those
variables is handled similarly. Either S1 or S2 may be executed, depending on
the value of f, so both must satisfy integrity constraints. As discussed earlier,
the selection of either S1 or S2 imparts information about the values of the
variables x1, . . . , xn, so information must be able to flow from those variables
to any targets of assignments in S1 and S2. This is possible if and only if the
lowest class of the variables x1, . . . , xn dominates the highest integrity class of
the targets. Thus, the requirements for the information flow to be secure are

• S1 and S2 satisfy integrity constraints

• glb{x1, . . . , xn} ≥ lub{y | y is the target of an assignment in S1 and S2}

As a degenerate case, if statement S2 is empty, has no assignments.

Dynamic information flow is handled similarly. We leave the development of
an integrity version of Fenton’s Data Mark machine as an exercise to the
reader (see Exercise 9).

17.6 Example Information Flow Controls



Like the program-based information flow mechanisms discussed in this
chapter, both special-purpose and general-purpose computer systems have
information flow controls at the system level. File access controls, integrity
controls, and other types of access controls are mechanisms that attempt to
inhibit the flow of information within a system, or between systems.

The first example follows a line of research that examines privacy in
information flow on cell phones. The second example describes firewalls,
which act to control information flow between (or among) networks.

17.6.1 Privacy and Android Cellphones

Cell phones are becoming ubiquitous and more powerful. Users can augment
the usual telephone functionality with millions of commercial and free
applications (apps) available for all brands. Many of the free apps use
advertising libraries to fetch advertising content, monitor clicks, and display
the advertisements using the WebView subsystem. Other products offer
information, services, or tailor their in-app advertising to the habits,
locations, and other personal characteristics of the user.

Because of the complexity of the permissions structure of cellphones, apps
often are given permission to access all data and resources on the cellphone.
Further, the advertising (and other) libraries are part of the app, so they have
the same privilege. Thus, any web page downloaded and displayed will
execute any Javascript (or other) code with the privileges of the app. These
violate the Principle of Least Privilege. It also means that the app can use the
resources of the phone to gather information it does not need, and send that
information to unknown parties. This puts at risk the privacy of the user, and
possibly others whose data is stored on the phone [286, 1404].

This is an information flow problem, because the confidential information in
the phone is flowing to an untrusted destination. Thus, tools have been
developed to analyze the flow of information in apps. Here, we focus on the
Android operating system because it has been extensively studied and is



widely used on a variety of cellphones.

Android is based on the Linux system. The executables are in a bytecode
format called Dalvik executables (DEX). The apps are event-driven, and use
system libraries to carry out much of their functionality; for example, a native
OpenGL library performs the graphics and another, Webkit, handles web
browsing. These libraries are considered part of the underlying Android
system and so are considered trusted. Each app executes within a virtual
machine, the Dalvik VM interpreter. A subsystem called Binder controls
interprocess communication, which is communication between the Dalvik
VMs of the processes.

The analysis uses a two-level security model. The higher level is called
untainted (U) and the lower level, tainted (T). This model has no security
categories, so the levels form a linear ordering, with U > T . It is effectively a
two-level version of the Bell-LaPadula model.

TaintDroid [637, 638] is an example of a dynamic Android information flow
analysis tool. It considers Android native libraries as trusted; those that
communicate information externally, such as a library that sends a message,
are also designated as taint sinks. Objects are tagged as U or T and the tags
are propagated throughout the execution of the app. The interpreters are
augmented to handle the tags. When an app communicates with another app,
for example by accessing shared objects, the tag is also communicated; so
Binder also is augmented to handle tags. When an untrusted app invokes a
library that is a taint sink, the taint tag of the data being sent is recorded.

The bytecode defines several operations, and the tags are modified according
to information flow rules described in section 17.3. To handle native libraries,
TaintDroid assigns taint tags to the external variables that the native code
accesses; it also assigns a taint tag to the returned value. The value assigned
depends upon knowledge of what the native code does; this is determined in a
variety of ways, including heuristics.



The interprocess communication mechanism sends messages composed of
one or more variables. Keeping track of the taint tags requires a trade-off
between precision and performance. If the entire message has one tag, the
variables tagged U will be subsumed and when the message is received, will
have a T tag. But if each byte in the message has its own tag, the performance
suffers by a factor of approximately 2. TaintDroid compromises by grouping
tags of variables with the same tag into a structure with a starting address and
a size. Thus, two variables that are adjacent in the message take up a single
entry in the structure.

Files have a single taint tag that is updated when the file is written and
propagated into the appropriate variables when the file is read. As with
interprocess communication, this can lead to imprecision, but saves on
memory usage and minimizes performance impact. On the other hand,
Android databases are queried, and so the information retrieved can have
taint values assigned based on the database query responder. So the
databases are not assigned a single taint value.

Finally, the information obtained from the cellphone’s sensors may be
sensitive, and if so should be tagged as T. TaintDroid determines these tags
based on characteristics of the information. For example, data obtained from
the microphone or camera would be considered privacy sensitive, and hence
tagged T, as would the phone number and various cellphone and device
identifiers.

Enck and his colleagues conducted two studies to determine the effectiveness
of Taint-Droid. The first study [637], conducted in 2010, selected 30 popular
apps out of a set of 358 apps that required permission to access the Internet,
and any of the cellphone location, camera, or microphone. The apps could
also access cellphone information. In this set of apps, TaintDroid flagged 105
network connections as accessing data labeled T. Two of them sent cellphone
identification information such as the phone number to a server; of the 9 that
sent device identifiers, two did not notify the user that they would do so.



Fifteen apps sent location information to third parties, and none indicated
they would do so. TaintDroid correctly identified all these messages. It had no
false positives.

Two years later, the researchers revisited the 30 apps [638]. Only 18 of them
ran on the current version of Android, and of those 18, only 3 apps still sent
location information to third parties. However, 8 exposed device
identification information (3 that did so in 2010, and 5 new ones) without
consent. They also found two new flows that could reveal tainted information,
because of the changes they made to TaintDroid. Again, no false positives
were observed.

Other dynamic analysis tools provide mechanisms for app creators to
constrain information flow. For example, DroidDisintegrator [1904] extend
the techniques used in TaintDroid to enable app developers to do this. Jia et
al. [974] implement information flow constraints that allow multiple security
and integrity compartments.

Like other dynamic information flow analysis tools, TaintDroid detects flows
that occur during execution, so if a different set of inputs and conditions
would cause the apps to take a different execution path, those information
flows will not be examined unless they also occur in the current execution.
Static information flow analysis tools such as AndroidLeaks [770],
Amandroid [1999], FlowDroid [84], Epicc [1475], and CHEX [1219]
implement the information flow rules in section 17.3, but each in a different
way. All suffer from the limitations of static analysis in being overly
conservative.

AppAudit [2046] seeks to have the best of both static and dynamic analysis
by combining them. It examines the code statically. It looks for a potential
path from a source API that accesses sensitive information and a sink API
that sends data out of the device. If there is a path from a function to a source
API and a sink API, that function is labeled as suspicious. Complicating the
detection of suspicious functions are the call-back functions that notify a



listener that some event occurred (such as a computation completing). As
many trigger APIs may register call-back functions, the static analyzer cannot
determine which call-back function will be heard. So, AppAudit treats those
functions that call a trigger API as invoking all possible call-back functions of
the registered type. This can result in identifying potential flows that will
never be realized, so AppAudit then dynamically executes suspicious
functions to determine if sensitive data could be leaked. In tests, AppAudit
reported no information flow paths that could not be taken, and the
information flow paths it missed depended on the contents of a text message.

17.6.2 Firewalls

Firewalls are systems that sit between networks, usually an organization’s
internal network and some other external network such as the Internet. The
firewall controls access between the networks. The advantage of firewalls is
that they can filter network traffic before it reaches the target host. They can
also redirect network connections as appropriate, or throttle traffic to limit
the amount of traffic that flows into (or out of) the internal network.

Definition 17–9. A firewall is a host that mediates access to a network,
allowing and disallowing certain types of access on the basis of a configured
security policy.

EXAMPLE: A company wishes to prevent any variants of the worm Conficker
[85,1151] from entering its networks. Conficker is a worm that connects to a
botnet (the Conficker botnet) and can then be used for a variety of purposes,
including downloading other malware and controlling the infected system.
Conficker spreads through a vulnerability in the Microsoft Windows Service
serve [1152, 1339], so a firewall can be configured to examine packets that are
targeting that service to determine if they contain any variant of Conficker.

Once Conficker is resident, it generates a list of domain names and tries to
contact the botnet at those hosts. Every Conficker worm will generate the
same set of domain names, and it changes every 3 hours. The generation



sequence, and hence set of domains, is known. So the firewall can also be
configured to block outgoing traffic to those domains, neutralizing the
“botnet” aspect of conficker.

There are two basic types of firewalls. The first accepts or rejects messages on
the basis of packet header information, such as destination addresses or
ports.

Definition 17–10. A filtering firewall performs access control on the basis
of attributes of the packet headers, such as destination addresses, source
addresses, and options.

Routers and other infrastructure systems are typical examples of filtering
firewalls. They allow connections through the firewall, usually on the basis of
source and destination addresses and ports. Access control lists provide a
natural mechanism for representing these policies.

This contrasts with the second type of firewall, which never allows such a
direct connection. Instead, special agents called proxies control the flow of
information through the firewall.

Definition 17–11. A proxy is an intermediate agent or server that acts on
behalf of an endpoint without allowing a direct connection between the two
endpoints. A proxy (or application level) firewall uses proxies to perform
access control.

A proxy firewall adds to a filtering firewall the ability to base access on
content, either at the packet level or at a higher level of abstraction. Thus, a
proxy firewall can base access control on the contents of packets and
messages, as well as on attributes of the packet headers.

EXAMPLE: A company wishes to check all incoming electronic mail for
computer viruses. It implements a mail proxy at the firewall between the
Internet and the company intranet. The proxy has a virus scanning program



(see Chapter 23). When mail arrives at the firewall, the proxy mail daemon
accepts the mail. It then runs the virus scanner. If the scanner reports that
there are no viruses in the mail or in any associated attachments, the proxy
forwards the mail to the desired recipient. If the virus scanner reports that
the mail or an attachment contains a virus, the mail is discarded (or some
other appropriate action is taken). The fact that the electronic mail message is
reassembled at the firewall by a mail agent acting on behalf of the mail agent
at the ultimate destination makes this a proxy firewall.

EXAMPLE: Because Java applets usually come from untrusted sources, many
organizations want to block the applets from entering their internal networks.
A simple method of doing this is to block the applets at a firewall. When an
HTTP connection is made through the firewall, the firewall creates a proxy to
reassemble the packets and determine if they contain a Java applet. The
proxy then may use one of three approaches to block the applet.

First, it can rewrite the HTML tag to something other than “<applet>”. When
the page is delivered to the browser, the browser will not recognize the applet
and will not run it. This method requires the firewall to determine that the
connection is indeed an HTTP connection and to parse the HTML in that
connection. Both are nontrivial tasks.

The second approach is to look for incoming files with the hexadecimal
sequence “CA FE BA BE”. All Java class files must contain this four-byte
signature in order to be properly recognized and interpreted. If this sequence
is found, the file is immediately discarded. The danger here is a false positive.
Because ActiveX and Javascript code are different, this approach cannot
block those types of applets.

The third approach is to block based on file name, but this is far more
problematic because the names do not necessarily represent the contents of
the file. Many browsers require Java class files to end in “.class”. The firewall
can block these applets. However, more recent browsers allow Java class files



to be combined into archives. The names of these archives often end in “.zip”.
This is a popular format among users of MS-DOS and Windows, so it is not
realistic to block all such files.

Figure 17–4: This figure shows two different common
configurations for using firewalls to protect company internal
networks. In both cases, the subnets labeled “DMZ” provide
limited public access to various servers. In (a), the firewall is dual-
homed and routes messages to the internal network or the DMZ as
appropriate. In (b), the outer firewall sits between the Internet
and the internal network. The inner firewall sits between the DMZ
and the subnets that are not to be accessed by the public.

Martin, Rajagopalan, and Rubin [1265] conclude that the situation is rather
bleak for stopping Java applets at the firewall.

A variant of the application level firewall assembles enough of a packet to
determine whether it should be forwarded.

Definition 17–12. A stateful firewall is a firewall that keeps track of the
state of each connection.

Although no proxies are involved, a stateful firewall can examine the contents
of connections, even when the data in question is spread over several packets.
For example, a connection to port 25 typically indicates electronic mail, as
that is the standard port for the SMTP (e-mail) protocol. A packet filtering
firewall would not detect that, for example, HTTP messages were being sent



to a host on the internal network if those messages were being sent to port 25
on that host. A stateful firewall would detect that the messages were not
messages associated with the SMTP protocol and block them.

Organizations typically partition their network into several parts, with
firewalls between parts to prevent information from leaking. A common
arrangement is to have two different internal networks, one accessible to the
public and the other not (see Figure 17–4).

Definition 17–13. The DMZ1 is a portion of a network that separates a
purely internal network from an external network.

1“DMZ” stands for “demilitarized zone.” The acronym is always used in this
context.

When information moves from the Internet to the internal network,
confidentiality is not at issue. However, integrity is. So there are firewalls
between the Internet and the DMZ, and between the DMZ and the internal
network. These must not accept messages that will cause servers to work
incorrectly or to crash. When information moves from the internal network to
the Internet, confidentiality and integrity are both at issue. The firewalls must
ensure that no confidential information goes to the Internet. The
arrangement and configuration of the firewalls provide the supporting access
control mechanisms used to implement the policy.

In addition to controlling information flow, a different point of view is to use
the firewall as an audit mechanism. In this role, the firewall analyzes the
packets that transit it. The firewall can then base actions on this analysis,
leading to traffic shaping (in which percentages of bandwidth are reserved for
specific types of traffic), changes in access permissions due to the amount and
nature of the traffic, and other controls.

17.7 Summary



Two aspects of information flow are the amount of information flowing and
the way in which it flows. Given the value of one variable, entropy measures
the amount of information that one can deduce about a second variable. The
flow can be explicit, as in the assignment of the value of one variable to
another, or implicit, as in the antecedent of a conditional statement
depending on the conditional expression.

Traditionally, models of information flow policies form lattices. Should the
models not form lattices, they can be embedded in lattice structures. Hence,
analysis of information flow assumes a lattice model.

A compiler-based mechanism assesses the flow of information in a program
with respect to a given information flow policy. The mechanism either
certifies that the program meets the policy or shows that it fails to meet the
policy. It has been shown that if a set of statements meet the information flow
policy, their combination (using higher-level language programming
constructs) meets the information flow policy.

Dynamic mechanisms check flows at runtime. Unlike static mechanisms,
dynamic mechanisms either allow the flow to occur (if the flow satisfies the
information flow policy) or report or block it (if the flow violates the policy).
Classifications of information may be static or dynamic.

The Android information flow analysis tools are examples of mechanisms
that provide information flow controls at the program and program
statement levels. Firewalls control information flow at the network level.

17.8 Research Issues

The declassification problem permeates information flow questions. The goal
is to sanitize data so that it can move from a more confidential position to a
less confidential one without revealing information that should be kept
confidential. In the integrity sense, the goal is to accredit data as being more
trustworthy than its current level. These problems arise in governmental and



commercial systems. Augmenting existing models to handle this problem is
complex, as suggested in Chapters 5 and 6.

Automated analysis of programs for information flows introduces problems
of specification and proof. The primary problem is correct specification of the
desired flows. Other problems include the user interface to such a tool
(especially if the analysts are programmers and not experts in information
flow or program proving methodologies); what assumptions are implicitly
made; and how well the model captures the system being analyzed. In some
cases, models introduce flows with no counterparts in the existing system.
Detecting these flows is critical to a correct and meaningful analysis.

The cascade problem involves aggregation of authorized information flows to
produce an unauthorized flow. It arises in networks of systems. The problem
of removing such cascades is NP-complete. Efforts to approximate the
solution must take into account the environment in which the problem arises.

17.9 Further Reading

The Decentralized Label Model [1416, 1417] allows one to specify information
flow policies on a per-entity basis. Formal models sometimes lead to reports
of flows not present in the system; Eckmann [616] discusses these reports, as
well as approaches to eliminating them. Austin and Flanagan [99] present the
permissive-upgrade strategy to reduce the number of false positives in
information flow analysis. Guttmann [845] draws lessons from the failure of
an information flow analysis technique.

Akella, Tang, and McMillin [29] analyze information flow in cyber-physical
systems, which requires taking the physical components, and thereby their
physics, into account. Web browsers provide a fertile ground for the
application of information flow for detecting attacks [519, 854, 1955].

Sabelfeld and Myers [1641] survey methods of information flow control based
on programming languages. Schwartz et al. [1710] consider the benefits and



drawbacks of dynamic taint analysis and forward symbolic execution. Russo
and Sabelfeld [1638] consider the trade-off between static and dynamic flow
analysis. Information flow analysis techniques and tools have been developed
for many languages, including Java [134, 380, 762, 1414], JavaScript [419,
563, 894], and others [1176, 1299, 1538].

The cascade problem is identified in the Trusted Network Interpretation
[2257]. Numerous studies of this problem describe analyses and approaches
[684,711,1349,1725,1726]; the problem of correcting it with minimum cost is
NP-complete [930].

The Security Pipeline Interface (SPI) [918] adds a processor between a host
and destination (such as a disk), and the processor ensures that only
information flows allowed by policy occur. It is similar to a firewall, but at the
host level. The Secure Network Server Mail Guard [1474,1779] is in essence a
firewall between classified and unclassified networks, filtering all traffic
between the two and blocking or sanitizing the messages as appropriate.
Keromytis and Prevelakis [1049] provide a detailed overview of firewalls.

Many books and papers describe firewalls and the design of network
infrastructures that use them. Cheswick, Bellovin, and Rubin [405] cover the
basics of firewalls, and Lodin and Schuba [1211] describe their use. Schuba
and Spafford [1705] have created a reference model for firewalls. Kamara et
al. [1002] analyze vulnerabilities in firewalls. Several papers discuss tools for
and analyses methods about configuring and managing firewalls
[31,132,399,1207, 1278, 1923, 2036, 2083, 2098]. Mansmann, Göbel, and
Cheswick [1252] consider visualizing firewall configurations as an aid to
network administration.

A multithreaded or distributed environment adds to the complexity of
constraints on information flow [695, 1777, 1911]. Some architectural
characteristics can be used to enforce these constraints [497, 955, 1011].

17.10 Exercises



1. Revisit the example for x := y + z in Section 17.1.1. Assume that x does
not exist in state s. Confirm that information flows from y and z to x by
computing H(ys | |xt), H(ys), H(zs | xt), and H(zs) and showing that H(ys | xt)
< H(ys) and H(zs | xt) < H(zs).

2. Let L = (SL, ≤L) be a lattice. Define:

(a) SIL = {[a, b] | a, b ∈ SL ⋀ a ≤L b}

(b) ≤IL= ([a1, b1], [a2, b2]) | a1 ≤L a2 ⋀ b1 ≤L b2

(c) lubIL([a1, b1], [a2, b2]) = (lubL(a1, a2), lubL(b1, b2))

(d) glbIL([a1, b1], [a2, b2]) = (glbL(a1, a2), glbL(b1, b2))

Prove that the structure IL = (SIL, ≤IL) is a lattice.

3. Prove or disprove that the set P formed by the dual mapping of a reflexive
information flow policy (as discussed in Definition 17–5) is a lattice.

4. Extend the semantics of the information flow security mechanism in
Section 17.3.1 for records (structures).

5. Why can we omit the requirement lub{i, b[i]} ≤ a[i] from the requirements
for secure information flow in the example for iterative statements (see
Section 17.3.2.4)?

6. In the flow certification requirement for the goto statement in Section
17.3.2.5, the set of blocks along an execution path from bi to IFD(bi) excludes
these endpoints. Why are they excluded?

7. Prove that Fenton’s Data Mark Machine described in Section 17.4.1 would
detect the violation of policy in the execution time certification of the copy
procedure.

8. Using integrity labels rather than security labels, redo the analysis of



information flow in Sections 17.3.1 and Section 17.3.2.

9. Using integrity labels rather than security labels, define an “Integrity
Fenton Data Mark Machine”. Analyze the program in the example on page
495.

10. Section 17.6.1 says that enabling advertising libraries and the apps that
invoke them execute in the same environment, with the same privileges,
violates the Principle of Least Privilege (see Definition 14.2.1.

(a) Explain why. How might the principle be enforced?

(b) On the web, the protocol, host, and port in a URL define an “‘origin”. The
same origin policy allows scripts in a web page to access data in a second web
page only if they have the same origin. Older versions of the Android’s
WebView component treated every object with the protocol file:// (that is,
the URL begins with that string) as though it had the same origin, violating
the same origin policy. So any JavaScript embedded in HTML in a local file
can, if loaded into WebView, access resources with the same permissions as
the app. Why is this dangerous?

11. A common organization of a network provides a DMZ to which the public
has controlled access. For each of Saltzer and Schroeder’s other design
principles [1650] (see Chapter 14), explain whether, and if so how, the
principle is relevant to the creation and use of the DMZ.

12. A science DMZ [502, 1512] is a set of network design patterns that, among
other capabilities, enable scientists to transfer large amounts of data at high
speed. You have been asked to design the interface between a science DMZ
and a high-speed public network that has enough bandwidth to support the
data transfer speeds that the scientists require. As it is a public network, it is
untrusted, whereas the science DMZ is trusted. The scientists use the regular
Internet for other purposes, such as email and web browsing.



(a) Given the science DMZ is connected to a special-purpose public network
used only for high-speed data transfer, what are the threats that should
concern you?

(b) You have been instructed that, for security reasons, you must put a
firewall at the interface. What type of firewall — filtering or proxy — would be
most appropriate there? Why?

(c) As noted in Chapter 16 on page 462, some routers can have their access
control lists reprogrammed dynamically. Would this be better than a firewall
for handling the threats you identified? Why or why not?



Chapter 18. Confinement
Problem
TROILUS: This is the monstruosity in love, lady; that the will is infinite and 
the execution confin’d; that the desire is boundless and the act a slave to 
limit.

— Troilus and Cressida, III, ii, 82–84.

When a program executes, it interacts with its environment. The security 
policy allows some interactions and disallows others. The confinement 
problem deals with prevention of processes from taking disallowed actions. 
Beginning with Lampson’s characterization of this problem, this chapter 
continues with a discussion of methods for confinement such as virtual 
machines and sandboxes. It concludes with a discussion of covert channels. 
This chapter focuses on confinement. Chapter 23, “Malicious Logic,” 
discusses tools and techniques used to breach confinement.

18.1 The Confinement Problem

Consider a client and a server. When the client issues a request to the server, 
the client sends the server some data. The server then uses the data to 
perform some function and returns a result (or no result) to the client. Access 
control affects the function of the server in two ways.

1. The server must ensure that the resources it accesses on behalf of the client
include only those resources that the client is authorized to access.

2. The server must ensure that it does not reveal the client’s data to any other



entity not authorized to see the client’s data.

The first requirement represents the goal of the service provider. That goal is
to prevent the client from sending messages to the server that cause it to
access, alter, transmit, or consume resources that the client is not authorized
to access, alter, transmit, or consume. The second requirement represents the
goal of the service user. That goal is to prevent the server from transmitting
confidential information to the service provider. In both cases, the server
must be confined to accessing only a specific set of resources.

EXAMPLE: A server balances accounts for subscribers. The subscribers use a
client to transmit the register entries, the current bank balance, and those
withdrawals and deposits that have cleared the bank to the server. The server
returns the list of outstanding checks and deposits and any discrepancy
between the register balance and the bank balance. Subscribers pay a fee for
each use.

The service provider requires that the server correctly record who used the
service each time it is used. Otherwise, the service provider cannot bill for the
use of the service. The threat is that someone may use the service without
being detected (and therefore without being charged) or that the user may
impersonate another subscriber (resulting in the wrong subscriber being
charged). The service provider also does not want the server to transmit
billing records or any other unauthorized information to the client. The server
should send only the information it derived from the data that the client sent.
So the server must be confined to operating only on the data it is sent.

The subscriber expects certain security services from the server. The server
must correctly log the user’s invocation so that the user is not charged
incorrectly. (This matches the need of the service provider.) The server must
not record or transmit the data that the subscriber sends to it because the
subscriber’s data is confidential to the subscriber and is not relevant to the
service provider. So the server must be confined to keeping the data to itself



and to sending the results only to the subscriber.

Lampson [1138] calls this the confinement problem.

Definition 18–1. The confinement problem is the problem of preventing a
server from leaking information that the user of the service considers
confidential.

One characteristic of processes that do not leak information comes from the
observation that a process must store data for later retrieval (the leaking). A
process that does not store information cannot leak it. However, in the
extreme, such processes also cannot perform any computations, because an
analyst could observe the flow of control (or state of the process) and from
that flow deduce information about the inputs. This leads to the observation
that a process that cannot be observed and cannot communicate with other
processes cannot leak information. Lampson calls this total isolation.

In practice, achieving total isolation is difficult. The processes to be confined
usually share resources such as CPUs, networks, and disk storage with other,
unconfined processes. The unconfined processes can transmit information
over those shared resources.

Definition 18–2. A covert channel is a path of communication that was not
designed to be used for communication.

The difference between a covert channel and a side channel (see Section 9.6)
lies in the way the sender and receiver interact. With a covert channel, the
sender and receiver cooperate to transmit information from the sender to the
receiver. With a side channel, the receiver extracts information from a
characteristic or attribute, and there is no active sender co-operating with the
receiver.

EXAMPLE: Process p is to be confined such that it cannot communicate with
process q. However, processes p and q share a file system. In order for



process p to send a message to process q, it creates a file called send in a
directory that both processes can read. Just before process q is to read the
information, q deletes the send file. Process p then transmits a bit by creating
a file named 0bit or 1bit, as appropriate. When q detects either file, it records
the bit and deletes the file. This continues until p creates a file called end, at
which point the communication ceases.

Confinement is transitive. Assume that a process p is confined to prevent
leakage. If it invokes a second process q, then q must be similarly confined or
q could leak the information that p passes.

Definition 18–3. The rule of transitive confinement states that if a confined
process invokes a second process, the second process must be as confined as
the caller.

Confinement is a mechanism for enforcing the principle of least privilege (see
Section 14.2.1). A properly confined process cannot transmit data to a second
process unless the transmission is needed to complete their task. The
problem is that the confined process needs access to the data to be
transmitted and so the confinement must be on the transmission, not on the
data access. To complicate matters, the process may have to transmit some
information to the second process. In this case, the confinement mechanism
must distinguish between transmission of authorized data and transmission
of unauthorized data.

The combination of these problems illustrates the difficulty of preventing
leakage. The dilemma is that modern computers are designed to share
resources, and yet by the act of sharing they create channels of
communication along which information can be leaked.

Lipner [1199] examines the problem from a policy and modeling aspect. He
considers two types of covert channels. The first involves the use of storage to
transmit information. If a model correctly describes all ways in which
information can be stored and read, then the model abstracts both legitimate



and covert channels along which information can flow. The model constrains
all accesses to storage. The only accesses allowed are those authorized by the
policy, so the flows of information are legitimate. However, if the model does
not capture all such flows, then unauthorized flows, or covert channels, arise.

Lipner then notes that all processes can obtain at least a rough idea of time.
This makes time a communication channel. A program can “read” time by
checking the system clock or (alternatively) by counting the number of
instructions it has executed during a period of wall clock time. A program can
“write” time by executing a set number of instructions and stopping, allowing
another process to execute. This shared channel cannot be made exclusive
unless a process does not share the computer with another process, which
suggests isolation as a remedy.

A good example of this is the side channel (see Section 9.6), which is a form
of a covert channel. A side channel attack does not require a sender desiring
to transmit information. Instead, the sender is passive; the recipient derives
information about the sender from covert channel. Like a covert channel, it
requires the recipient to be able to observe some characteristic of the sender.
So, techniques used to analyze, limit, and close covert channels also defend
against the exploitation of side channels.

We explore the mechanism of isolation first. Then we examine covert
channels in more detail and discuss other approaches to analyzing them,
including techniques for identifying covert channels and isolating them.

18.2 Isolation

Systems isolate processes in two ways [1754]. In the first, the process is
executed in a controlled environment. In the second, when the process is
generated, it is altered so that the actions of the process will satisfy an
isolation policy. The first provides interfaces that mediate access to the
resources of the underlying computer. The second transforms the source



code, ancillary libraries, or executable before it is executed.

18.2.1 Controlled Environment

A controlled environment is an environment that constrains process
execution in such a way that it can only interact with other entities in a
manner that preserves its isolation. One way to do this is to ensure the
hardware on which the process runs is disconnected from all other systems.

EXAMPLE: Supervisory control and data acquisition (SCADA) systems
control industrial processes such as refining oil, generating and distributing
power and water, and treating waste and sewage. The first generation of
SCADA systems used serial protocols and were not connected to other
systems and networks. Hence external attackers could not compromise those
systems and, through them, the processes they controlled. Thus, they had no
computer security defenses; their developers focused on detecting
malfunctions. The second generation used serial networks connected to
computers that were not connected to the Internet, and the current third
generation uses TCP/IP and runs on networks connected to the Internet.
Attackers could attempt to compromise these systems, and indeed have done
so since 1998 [337, 378].

As another example, electronic voting systems record voters’ votes, and make
them available in some fashion to be tallied to obtain election results. The
integrity of these systems is paramount to ensuring the election results are
accurate. Physical isolation is one component of ensuring this. For example,
section 19205 of the US state of California’s Election Code [2136] requires
that no part of a voting system can be connected to the Internet at any time,
receive or transmit wireless messages at any time, or transmit or receive
election data over an external network if sent between a polling place,
satellite location, or counting center. The intent is to prevent any attacks on
those systems from the Internet, or any other external network (including the
public telephone system).



Virtual machines provide another type of environment that constrains
process execution.

18.2.1.1 Virtual Machines

Definition 18–4. A virtual machine is a program that simulates the
hardware of a (possibly abstract) computer system.

A virtual machine uses a special operating system called a virtual machine
monitor or hypervisor to provide a virtual machine on which conventional
operating systems can run. A type-1 hypervisor runs directly on the system; a
type-2 hypervisor is a program that runs on another operating system.
Appendix D discusses virtual machines in more detail.

The primary advantage of a virtual machine is that existing operating systems
do not need to be modified. They run on the hypervisor. The hypervisor
enforces the desired security policy. This is transparent to the user. The
hypervisor functions as a security kernel.

In terms of policy, a hypervisor deals with subjects (the subjects being the
virtual machines). Even if one virtual machine is running hundreds of
processes, the hypervisor knows only about the virtual machine. Thus, it can
apply security checks to its subjects, and those controls apply to the processes
that those subjects are running. This satisfies the rule of transitive
confinement.

EXAMPLE: Karger and colleagues at Digital Equipment Corporation
developed a virtual machine monitor (VMM) for the DEC VAX [1017]. The
monitor is a security kernel and can run either the VMS or the Ultrix
operating system. The VMM runs on the native VAX hardware and is invoked
whenever the virtual machine executes a privileged instruction. Its structure
is typical of virtual machines designed to provide security.

The VAX has four levels of privilege: user, supervisor, executive, and kernel



modes. In order to provide a compatible virtual machine, the virtual
machines must also have four levels of privilege. However, the kernel mode
allows a process to access privileged instructions on the VAX hardware
directly. Only the VMM is allowed to do this. The virtual machines cannot
access kernel mode. The solution is to provide virtual modes. These modes
are VM user (corresponding to user mode), VM supervisor mode, and VM
executive and VM kernel modes (both actually executive mode).1

1Appendix D discusses this approach in more detail.

The VMM subjects are users and virtual machines. VMM has a basic, flat file
system for its own use and partitions the remaining disk space among the
virtual machines. Those machines may use any file structure they desire, and
each virtual machine has its own set of file systems. Each subject and object
has a multilevel security and integrity label, and the security and integrity
levels form an access class. Two entities have the same access class if and only
if their security and integrity labels are the same, and one entity dominates
another if and only if both the security and integrity classes dominate.

An integral component of the VMM is an auditing mechanism. This
mechanism records actions for later analysis.

EXAMPLE: The Xen 3.0 hypervisor [125]uses a different approach when run
on the Intel® virtualization technology [2059].2 The processor supports two
modes, VMX root operation and VMX non-root operation. Fully virtualized
domains called hardware-based virtual machines (HVMs) support
unmodified guest operating systems; these run in VMX non-root operations.
The Xen hypervisor runs in VMX root operation mode.

2Section D.2.1 discusses this architecture.

When a guest operating system executes a privileged instruction, the
operation can only be executed as a VMX root operation. Thus, control
transfers to the Xen hypervisor; this is a VM exit. The hypervisor determines



whether to execute the instruction. After it does so and updates the HVM
appropriately, it returns control to the guest operating system. This is called a
VM entry.

Here there are 8 levels of privilege. Four rings exist in the VMX non-root
operation mode, and four more in the VMX root operation mode. This avoids
the need to overload one of the rings, as the DEC VMM architecture does.

Because virtual machines provide the same interface for communication with
other virtual machines that computers provide, those channels of
communication can be controlled or severed. As mentioned earlier, if a single
host runs multiple virtual machines, those virtual machines share the
physical resources of the host on which they run. They may also share logical
resources, depending on how the virtualizing kernel is implemented. This
provides a fertile ground for covert channels, a subject explored in Section
18.3.

A container is similar to a virtual machine. Unlike a virtual machine, all
containers share the same kernel, and execute instructions natively; thus, a
container does not emulate the instructions of another hardware architecture.
Each container contains the libraries and applications needed to execute the
program or programs it contains, and isolates its contents from other
containers.

EXAMPLE: Docker [255, 447, 594] is a container widely used in Linux
systems. It contains all libraries, programs, and other data for the software
being contained. Thus, it provides an ideal development environment that
can be moved from one system to another. The container software itself runs
as a daemon that launches containers, monitors them so it can take
supporting actions, and controls their levels of isolation.

The isolation is enforced using features of the Linux kernel. For example,
containers have a reduced set of capabilities, their own namespace, and their
own file system. They can also be configured to restrict resource usage among



its processes. The Docker daemon also controls access of the containers to the
network, and containers can have different levels of network access set when
they start. Each container is assigned its own IP address, and the root user of
the container is different than the root user of the system.

18.2.1.2 Library Operating Systems

Virtual machines provide isolation by presenting the process with a full
operating system. In many cases, this is unnecessary. Anderson [61] pointed
out that, in many cases, the process can optimize the use of system resources
better than the generic algorithms used by the operating system. For
example, consider a process that accesses SSD secondary storage, which
operates much like memory. An operating system that optimizes reading and
writing for a disk drive head adds unnecessary overhead to those operations.
Anderson proposed a kernel with two functions. The first is to use hardware
protections to prevent processes from overwriting one another or accessing
the memory of another process. The second is to control access to physical
resources that much be shared among the executing processes. All other
functions normally in the kernel are in user space.

EXAMPLE: The V++ Cache Kernel [403] implemented this idea. The Cache
Kernel tracks operating system objects that are in use, such as address spaces,
and handles process coordination such as scheduling. It runs in supervisor
mode. The application kernel manages process resources. For example, the
application kernel handles page faults by loading a new page mapping
descriptor into the Cache Kernel. It runs in user mode. The Exokernel [642]
goes a step further, separating resource protection and resource
management. A small kernel, Aegis, provides interfaces to the hardware
resources and multiplexes them among the processes. A “library OS”, ExOS,
provides an interface to Aegis that enables the process to use the resources as
appropriate. It also provides isolation through the protection of resources.

The goal of a library OS is to move as much of the operating system as is



feasible to the user level, thus minimizing the overhead of context switches
and providing processes with maximum flexibility. For example, ExOS
implements virtual memory abstractions. Thus, the process can take into
account any particular memory referencing patterns to use its own virtual
memory management algorithm, and other processes may use different
virtual memory management algorithms.

Definition 18–5. A library operating system is a library or set of libraries
that provide operating system functionality at the user level.

One issue is the level of abstraction that the library OS provides. Those that
the Exokernel and Cache Kernel provide are low-level, in that the process
needs to understand details of how the library OS interacts with the
supervisor-mode kernel. Higher level abstractions limit the changes
necessary for existing programs and applications.

EXAMPLE: Drawbridge [1543] is a library OS architecture developed for
Windows 7. It supports standard Windows applications such as Microsoft
Excel, the web server IIS, and provides access to Windows features such as
DirectX. It uses higher-level abstractions than the Cache Kernel and the
Exokernel.

Drawbridge consists of a library OS and a security monitor. The security
monitor provides an application binary interface (ABI) to the underlying
operating system, thereby virtualizing the system resources. Processes use the
library OS to access the ABI, and all interactions with the operating system go
through that interface. The library OS provides application services such as
frameworks and rendering engines. The ABI provides calls to manage virtual
memory, processes and threads, and I/O streams, as well as calls for
cryptographically strong random sequences of bits, wall clock time, and other
information. One of the goals of Drawbridge was to keep the ABI compact
and easy to work with, a design decision that led to a logical organization of
the calls.



Drawbridge handles kernel dependencies using a Windows NT emulator at
the lowest layer of the library OS. This allowed all server dependencies and
Windows subsystems to be moved out of the operating system and into the
user layer (either in the library OS or another user-level library). Human-
computer interaction used emulated device drivers that tunneled input and
output between the desktop and the security monitor.

Drawbridge provides process isolation. When malware that deleted all
registry keys was run, under Drawbridge only the malware process was
affected, but without Drawbridge, all processes were affected. Similarly,
under Drawbridge, a keystroke logger captured the keystrokes of the
application with the keystroke logger, but without Drawbridge, it captured all
keystrokes for all applications. Another test involved 5 attack vectors that
caused Internet Explorer to escape its normal protected mode that restricted
its actions (for example, preventing programs run under Explorer from
writing to disk). Drawbridge mitigated all the attacks.

18.2.1.3 Sandboxes

A playground sandbox provides a safe environment for children to stay in. If
the children leave the sandbox, they will leave a contained environment in
which they can be watched and, if needed, prevented from hurting themselves
or others. The computer sandbox is similar. It provides a safe environment
for programs to execute in. If the programs “leave” the sandbox, they may do
things that they are not supposed to do. Both types of sandboxes restrict the
actions of their occupants.

Definition 18–6. A sandbox is an environment in which the actions of a
process are restricted according to a security policy.

Systems may enforce restrictions in two ways. First, the sandbox can limit the
execution environment as needed. This is usually done by adding extra
security-checking mechanisms to the libraries or kernel. The program itself is
not modified. For example, the VMM kernel discussed earlier is a sandbox



because it constrains the accesses of the (unmodified) operating systems that
run on it. The Java virtual machine, in which downloaded applets are
executed, is a sandbox because its security manager limits access of
downloaded programs to system resources as dictated by a security policy
[1192].

EXAMPLE: The operational kernel of the Sidewinder firewall [1888] uses
type enforcement to confine processes (see the example on page 464 in
Section 16.3.1). This is an example of a sandbox built into a kernel, and it has
the property that the sandbox is defined by the vendor. It is not intended to
be altered at the site. Such a design is typical for a turnkey system, which is
the intended use for a Sidewinder firewall.

DTE, the type enforcement mechanism for DTEL (see page 108 in Section
4.5.1), is an example in which kernel modifications enable system
administrators to configure their own sandboxes. The kernel enforces the
constraints.

The second enforcement method is to modify the program (or process) to be
executed. Dynamic debuggers [15, 872, 1266, 1822, 1823, 2067] and some
profilers [218] use this technique by adding breakpoints to the code and,
when the trap occurs, analyzing the state of the running process. A variant,
known as software fault isolation [1718, 1968, 2110] adds instructions that
perform memory access checks or other checks as the program runs, so any
attempt to violate the security policy causes an error.

EXAMPLE: Janus [791] implements a user-level sandbox. It is an execution
environment in which system calls are trapped and checked. Users execute it
to restrict the objects and modes of access of an untrusted program. Janus
consists of a framework, which does the runtime checking, and modules,
which determine which accesses are to be allowed.

Janus first reads a configuration file. This file instructs it to load certain
modules. Along with the module identification is a list of constraints. The



following example configuration file defines the environment variable IFS for
the child and restricts the child’s access to the file system. The child cannot
access any files except those that are named below (this meets the principle of
fail-safe defaults discussed in Section 14.2.2). The child can read or write to
any file in the /usr file system except for those in the /usr/lib and
/usr/local/lib directories (which are read only) and in /usr/bin (read and
execute). The child can read any file in the /lib directory and can read and
execute any file in the /sbin and /bin directories. In the configuration file
below, the first word in each instruction line is the name of the module and
the other words are the arguments passed to the modules (“#” begins a
comment).

# basic module
basic

# define subprocess environment variables
putenv IFS=“\t\n” PATH=/sbin:/bin:/usr/bin TZ=PST8PDT
# deny access to everything except files under /usr
path deny read,write *
path allow read,write /usr/*
# allow subprocess to read files in library directories
# needed for dynamic loading
path allow read /lib/* /usr/lib/* /usr/local/lib/*
# needed so child can execute programs
path allow read,exec /sbin/* /bin/* /usr/bin/*

Each module constrains system calls. The framework uses the modules to
build a linked list for each monitored system call. The list defines allowed and
disallowed actions. Once this list has been constructed, the Janus framework
invokes the program in such a way that all monitored system calls are
trapped.

When the program executes a monitored system call, the program traps and
the Janus framework is invoked. It has access to the arguments supplied to
the system call. It validates that the system call, with these specific
parameters, is allowed. If the system call is not allowed, the framework sets



the child’s environment so that the system call appears to have failed. If the
system call is allowed, the framework returns control to the child, which in
turn passes control to the kernel. On return, control goes to the framework,
which updates any internal state and returns the results to the child.

An example use would be in reading MIME mail. One could have set the mail
reading program to pass control to a Postscript display engine. Some such
engines have a mechanism for executing system-level commands embedded
in the Postscript file. Hence, an attacker could put a file deletion command in
the Postscript file. The recipient would run the display engine to read the file,
and some of her files would be deleted [2174]. However, the user (or system
administrator) can set up the Janus configuration file to disallow execution of
any subprograms. Then the embedded command will be detected (on the
system call to execute it) and rejected.

Some sandboxing mechanisms use both program and kernel modifications.
These redefine some aspect of the system calls, which requires both kernel
modifications and program modifications.

EXAMPLE: Capsicum [1995] is a framework developed to sandbox a single
application. Kernel modifications enforce the sandbox limits set by the
application.

In UNIX-like systems such as Linux and FreeBSD, file descriptors control
read and write access, but given a file descriptor the application can obtain an
modify metadata such as file permissions and times of last access and
modification. Capsicum extends the notion of UNIX file descriptors by
providing fine-grained rights for accessing and manipulating the underlying
file. The extended file descriptor is called a capability, and the process can
create capabilities that allow a subprocess to read a file but not access the file
permissions, for example.

The process issues the cap_enter system call to activate the sandbox; the
process is now in capability mode. The process remains in this mode until the



process terminates. Any subprocesses that it creates will also be in capability
mode and will inherit those capabilities that the parent process allows it to.

The system call cap_new creates capabilities from file descriptors or existing
capabilities. It takes a mask of rights that are to be set. If a capability is given,
the mask must be a subset of the rights in that capability. For example, the
mask F_READ | F_SEEK allows a file to be read with the read system call.

The global namespaces for the system are not available in capability mode. So
any system call which depends upon access to the namespace, for example
open, is unavailable. The other system calls may be constrained. For example,
the system call that creates memory objects can create anonymous ones but
not named ones (as the names would be in the global namespace). Opening a
file requires a special form of the open system call, in which the containing
directory is given as a file descriptor. So for example if the file descriptor is
that of the directory “/lib”, the system call could open the file “libc.so.7” (for
which “lib” is an ancestor directory) but not “/etc/passwd” or “../etc/passwd”
(as “/lib” is not an ancestor directory for those files). Subprocesses of a
sandboxed process cannot elevate privileges. This means they cannot be
setuid or setgid. However, a setuid or setgid program may enter capability
mode by issuing the cap_enter system call. All these constraints are applied
at the point in the kernel where the relevant service is provided, and not at
the system call interface.

At the user level, the libcapsicum library provides an interface to start
sandboxed processes and to explicitly delegate rights to the sandbox. When it
starts a sandboxes process, all non-delegated file descriptors are closed and
the address space is flushed. A UNIX domain socket is returned to the parent
process; this allows communication between the parent and the sandboxed
child process. In addition, there is a runtime linker designed to support
capability mode.

Applications can either work directly with capabilities or use the libcapsicum
interface. As an example, and a way to test performance, the program



tcpdump was sandboxed. This program takes a user-supplied pattern and
passes it to a filter that reads network traffic looking for packets that match
the pattern. These are then saved. Having it work directly with capabilities is
straightforward, as it acquires the resources it needs (such as access to the
underlying network to get the packets) when it starts, and uses those
resources throughout its execution. Unnecessary privileges, such as
unconstrained access to the user’s keyboard, are not acquired, and hence the
modified tcpdump cannot read user input — which it should not read in the
first place. These modifications took 8 lines of code.

One complication was the use of the DNS resolver. As tcpdump provides the
ability to change IP addresses into host names, it needs access to the DNS.
But the standard DNS resolver needs access to files in the file system, which
requires access to the global namespace and is therefore blocked. The
solution was to use a simple DNS resolver that communicates with a local
daemon, and that daemon does the resolution and sends the result back to
the simple resolver.

More complex programs, such as the Google Chrome web browser, have also
been sand-boxed using Capsicum. Sandboxing is essential as each tab uses a
renderer process to display the web page, and the renderer includes the
ability to execute JavaScript applets. The design of Chrome for Linux systems
and MacOS X systems compartmentalized many functions, so the task was
less complex than might be assumed. The implementation of shared memory
had to be changed to the POSIX shared memory code and about 100 lines of
code were needed to limit access to file descriptors given to sandboxed
processes.

Like a virtual machine monitor, a sandbox forms part of the trusted
computing base. If the sandbox fails, it provides less protection than it is
believed to provide. Hence, ensuring that the sandbox correctly implements a
desired security policy is critical to the security of the system.

18.2.2 Program Modification



The second class of techniques to confine applications relies on transforming
the source or binary code of the application to ensure that the confinement
constraints are satisfied. These transformations may be carried out by a code
rewriter, which is usually a preprocessor; the compiler, which transforms the
program as it compiles; a binary code rewriter, which is a postprocessor that
transforms the machine instructions in the executable; or a loader that
transforms the linkages between the program and the libraries and operating
system calls to validate interactions. All transformations are controlled by a
policy that states which interactions are to be allowed and which are
forbidden.

18.2.2.1 Rewriting

Software fault isolation considers programs with both trusted and untrusted
modules. The untrusted modules are placed in special virtual segments, and
the code is modified so that control flow remains in that segment whenever
the module is invoked. Additionally, all memory accesses are to data in that
segment; the module cannot refer to any data not in the module. The
rewriting may occur before or after compilation.

EXAMPLE: Wahbe et al. [1968] propose two ways to implement software
fault isolation for untrusted modules. Each module is placed in its own
segment, and each such segment has a unique pattern of bits (the segment
identifier) in the upper part of the virtual addresses in the segment. An
instruction that accesses (transfers control to or stores in) an address that
cannot be verified to be in the module’s segment is an unsafe instruction. The
first technique, called segment matching, is to statically analyze the program
and identify all unsafe instructions. Then they are wrapped to check the
actual addresses when the program executes. If the check shows that the
address is not in the segment, a trap occurs. Checking is straightforward as
only the segment identifier in the address need be checked. An alternate
technique, sandboxing simply sets the upper bits of any target virtual address
to the segment identifier. An illegal address resulting from this is handled in



the usual way.

System calls in untrusted modules pose a problem, as the module can use that
to interfere with the operation of trusted modules, for example by closing a
file that a trusted module relies on. To prevent this, trusted arbitration code
is placed into its own segment. This code accepts RPC requests from other
modules and translates them into system calls, returning the results via the
RPC. The arbitration module filters these requests. Then the untrusted
modules are rewritten so any system calls are translated into RPC calls to the
arbitration code.

Taking software fault isolation a step further, one can separate the security-
sensitive parts of the application into a separate trusted process. The
application is then rewritten so the untrusted part invokes the trusted part
through IPC. To run the application, both the untrusted part and the trusted
part are executed. The trusted process handles all security-sensitive
operations and mediates access to security-sensitive data.

EXAMPLE: An implementation of separation of trusted modules and
untrusted modules into different processes is built upon the Nizza
architecture [1768]. This architecture provides a trusted computing
environment. The trusted process, AppCore, is executed on this architecture
and the untrusted process on a virtual system running the appropriate
operating system.

Creating the trusted AppCore is a three-step process. First, the application is
analyzed to identify the security-sensitive components. This can be
automated to some extent, but is typically done manually. Next, these
components are placed in a standalone AppCore process. In this step, these
components may be rewritten to ensure they satisfy the requisite security
policy, and whenever possible the interfaces between the AppCore and the
untrusted process are reused. Finally, the rest of the application is
transformed to invoke the AppCore to execute security-sensitive components.



Experiments showed the AppCores were small compared to the original
programs, and that this approach had a low impact on performance.

18.2.2.2 Compiling

A security policy can specify confinement for a compiler to implement. The
goal of the resulting compiled code is to provide the isolation defined by the
security policy. As an example, type-safe programming languages provide this
type of confinement because the typing places restrictions on the actions that
can be taken with objects. The compiler checks the program to verify that the
use of types is consistent; if it is not, then the process will not be properly
confined. In addition to this static checking, compilers can determine when
run-time checking is necessary, and add code to do that. Both type-safe high
level and assembly languages have been developed.

EXAMPLE: The programming language Java is a type-safe language. This
means that a Java program with no type errors will act in a known,
understood way. For example, in Java, if an array access is out of bounds, the
behavior is well-defined: an exception (ArrayIndexOutOfBoundsException) is
thrown. By way of contrast, the C programming language is not type-safe,
because the behavior of such a reference is undefined and, in fact, the
program may crash, or it may continue to run with incorrect values in
memory.

CCured is a system that imposes type safety on C programs [1441]. It adds
semantics to constructs in C that can produce undefined results. For example,
three types of pointer attributes are defined: safe, sequence, and dynamic.
Each pointer has a set of invariants to be maintained. For example, if a safe
pointer points to an object of type t, then it can only contain 0 (the NULL
pointer) or the address of an object of type t. Thus, when dereferencing this
type of pointer, the system need only check that it is not 0. A sequence
pointer is either an integer or a pointer into a memory area containing objects
of type t. This type of pointer is used as a pointer to elements in data



structures such as arrays. Thus, the checks here are that the pointer is indeed
a pointer, and that it points to an object of type t in that memory area when
cast to a safe pointer or dereferenced. A dynamic pointer does not have
information about the type of data it references. It can be used to point to
untyped areas of memory, or memory of arbitrary type (which must be tagged
with the type of values in that area).

Given an existing C program, a type inference algorithm constructs a CCured
program that honors the type rules. This algorithm first gathers constraints
that control the pointers in the program. If the pointer is used in pointer
arithmetic, it cannot be a safe pointer. If used in a cast, the pointer being cast
must be a safe pointer, and the one being cast to a sequence pointer. If the
pointer points to another pointer and is a dynamic pointer, the pointer it
points to must be dynamic also. Finally, if two pointers have the dynamic
attribute, their types must be equivalent. These constraints are then
simplified and the attributes assigned accordingly. The algorithm maximizes
the number of safe and sequential pointers because tags need not be
maintained when those pointers are involved.

The results of running CCured over the SPECINT95 benchmarks resulted in
detecting several bugs in those benchmarks. Performance on that benchmark
and the OIden benchmark was impacted, leading to execution times
increasing by 30% to 150% in most cases.

An alternate approach is to use a certifying compiler that includes a proof
that a program satisfies specified security properties. Then the proof can be
validated before execution.

EXAMPLE: Touchstone [1440] is a compiler and certifier for a type-safe
subset of C. In this language, the bounds of all array references are checked.
To facilitate this, arrays are represented as pairs of base address and array
length.

The compiler translates the program into assembly language. Loop invariants



that describe the types of registers used in the loops annotate the code. Type
specifications declare the types of arguments (preconditions) and return
values (postconditions) for each function. This goes to the VCGen, which
generates verification conditions. VCGen works on a per-function basis and
uses symbolic execution. First, it initializes variables corresponding to the
machine registers. Then, it builds a predicate based on the assembly language
instructions emitted by the compiler. Both branches of a conditional branch
are evaluated, and the appropriate condition is included in the evaluation.
When VCGen encounters a return instruction, it puts out a predicate that
includes a check on the instantiation of the preconditions, the predicate built
up from the assembly language, and the postcondition. This predicate can be
proved if and only if the program satisfies the postcondition, and the registers
that were preserved on entry to the function are not changed by the function.

A theorem prover for first-order logic verified the proof. The theorem prover
produces proofs that can be checked independently, and it proves the
predicates automatically. The prover has a set of inference rules such as it
being safe to read an element of an array if the index of the element being
accessed is within the bounds of the array. These inference rules and the rules
of first-order predicate logic suffice to have the theorem prover validate the
proof.

18.2.2.3 Loading

This approach loads libraries that will apply constraints to keep the process
appropriately confined. It is similar to the sandboxing discussed in Section
18.2.1.3, except that the framework is embedded in the libraries and is not a
separate user-level process. When the process calls one of the constrained
libraries, the library applies its policy rules to determine whether it should
carry out the request or take some other action.

EXAMPLE: To prevent Android apps from exfiltrating sensitive data or
misusing resources, Aurasium [2051] transforms (repackages) the app by



adding code to monitor all interactions with the phone’s resources to enforce
security and privacy policies. These policies can be considerably more
granular than the default permissions set upon installation. When the policies
are violated, the user is notified and asked whether the app should proceed.

Aurasium has two parts. The first part is the tool that inserts the code to
enforce various policies when the app calls upon resources in the underlying
operating system such as SMS messaging. The second part is a modified
version of the Android standard C libraries called the Bionic libc. These
libraries receive the system call requests from the app, and determine
whether the system call should be blocked based on the policy. If not, the call
proceeds. The importance of this library is that all higher-level frameworks
invoke functions that in turn use the Android standard C libraries — and the
Bionic libc stands in for those libraries with the same functionality, plus the
policy checking feature.

The developers of Aurasium noted that Android apps are typically signed, so
modifying them will cause the signature to not match the app, and thus be
rejected. Their approach is to validate the original signature before
transforming the app. Then, after the transformation, Aurasium simply signs
the modified app with its own certificate.

When applied to apps from a third party app store and to apps known to be
malicious, Aurasium was able to repackage well over 99% of those apps. The
performance impact on these was negligible.

18.3 Covert Channels

Covert channels use shared resources as paths of communication. This
requires sharing of space or sharing of time.

Definition 18–7. A covert storage channel uses an attribute of the shared
resource. A covert timing channel| uses a temporal or ordering relationship
among accesses to a shared resource.



EXAMPLE: The covert channel in the example on page 508 is a covert storage
channel. The shared resource is the directory and the names of the files in
that directory. The processes communicate by altering characteristics (file
names and file existence) of the shared resource.

EXAMPLE: A study of the security of the KVM/370 system [1684] found that
two virtual machines could establish a covert channel based on the CPU
quantum that each virtual machine received. If the sending virtual machine
wished to send a 0 bit, it would relinquish the CPU immediately; to send a 1
bit, it would use its full quantum. By determining how quickly it got the CPU,
the second virtual machine could deduce whether the first was sending a 1 or
a 0 bit. The shared resource is the CPU. The processes communicate by using
a real-time clock to measure the intervals between accesses to the shared
resource. Hence, this is a covert timing channel.

A covert timing channel is usually defined in terms of a real-time clock or a
timer, but temporal relationships sometimes use neither. An ordering of
events implies a time-based relationship that involves neither a real-time
clock nor a timer.

EXAMPLE: Consider a variant of a channel identified in KVM/370 [789,
2037]. Two virtual machines share cylinders 100 through 200 on a disk. The
disk uses a SCAN algorithm [1758] to schedule disk accesses. One virtual
machine has security class High, and the other has class Low. A process on
the High machine is written to send information to a process on the Low
machine.

The process on the Low machine issues a read request for data on cylinder
150. When that request completes, it relinquishes the CPU. The process on
the High machine runs, issues a seek to cylinder 140, and relinquishes the
CPU. The process on the Low machine runs and issues seek requests to
cylinders 139 and 161. Because the disk arm is moving over the cylinders in
descending order, the seek issued to cylinder 139 is satisfied first, followed by



the seek issued to cylinder 161. This ordering represents a 1 bit.

To send a 0 bit, the process on the High machine issues a read request for
data on cylinder 160 instead of cylinder 140. Then the process on the Low
machine’s requests will be satisfied first on cylinder 161 and then on cylinder
139.

Is this a covert timing channel or a covert storage channel? Because it does
not involve a real-time clock or timer, the usual definition implies that it is a
covert storage channel.

Modify the example slightly to postulate a timer. The process on the Low
machine uses this timer to determine how long it takes for its requests to
complete. If the timer shows that the time required to satisfy the request for a
seek to cylinder 139 is less than the time required to satisfy the request for a
seek to cylinder 161, then a 1 bit is being sent. If the timings indicate the
opposite, a 0 bit is being sent. This modification clearly uses a covert timing
channel.

The difference between the modified example and the original example is the
presence of a timer. The timer changes nothing about the way the channel
works. For this reason, we include relative ordering of events as a covert
timing channel.

A second property distinguishes between a covert channel that only the
sender and receiver have access to and a covert channel that others have
access to as well.

Definition 18–8. A noiseless covert channel is a covert channel that uses a
resource available to the sender and receiver only. A noisy covert channel is a
covert channel that uses a resource available to subjects other than the sender
and receiver, as well as to the sender and receiver.

The difference between these two types of channels lies in the need to filter



out extraneous information. Any information that the receiver obtains from a
noiseless channel comes from the sender. However, in a noisy channel, the
sender’s information is mixed with meaningless information, or noise, from
other entities using the resource. A noisy covert channel requires a protocol
to minimize this interference.

The key properties of covert channels are existence and bandwidth. Existence
tells us that there is a channel along which information can be transmitted.
Bandwidth tells us how rapidly information can be sent. Covert channel
analysis establishes both properties. Then the channels can be eliminated or
their bandwidths can be reduced.

18.3.1 Detection of Covert Channels

Covert channels require sharing. The manner in which the resource is shared
controls which subjects can send and receive information using that shared
resource. Detection methods begin with this observation.

18.3.1.1 Noninterference

Models such as the Bell-LaPadula Model represent information transfer using
read and write operations and develop controls to restrict their use. Viewing
“information transfer” more broadly, one can consider any operation that a
second process can detect as being a write command. This immediately leads
to the use of an interference model to detect these covert channels. If a
subject can interfere with another subject in some way, there is a covert
channel, and the nature of the interference identifies the channel.

EXAMPLE: The SAT system has a multilevel security policy analyzed in terms
of noninterference [852]. The formal model of the SAT was analyzed to locate
covert channels [851]. The first analysis, using noninterference, introduced
the π(i, l) function, which removes all instructions issued by subjects
dominated by level l from the instruction stream i. A(i, σ) is the state
resulting from the execution of the instruction stream i on the state σ. σ.v(s)



describes the subject s’s view of the state σ. Then, by Definition 9–4, the
system is noninterference-secure if and only if, for all instruction sequences i,
subjects s with security level l(s), and states σ,

This leads to a version of the unwinding theorem (Theorem 9.1):

Theorem 18.1. Let Σ be the set of states of the system. A specification is
noninterference-secure if, for each subject s at security level l(s), there exists
an equivalence relation ≡: S × S such that

1. for σ1, σ2 ∈ S, when σ1 ≡ σ2, σ1.v(s) = σ2.v(s)

2. for σ1, σ2 ∈ S and any instruction i, when σ1 ≡ σ2, A(i, σ1) ≡ A(i, σ2)

3. for σ ∈ S and instruction i, if π(i, l(s)) is empty, A(π(i, l(s)), σ).v(s) = σ.v(s).

Intuitively, this theorem states that the system is noninterference-secure if
equivalent states have the same view for each subject, the view remains the
same when any instruction is executed, and instructions from higher-level
subjects do not affect the state from the viewpoint of lower-level subjects.

The designers looked at several parts of the SAT specification. The relevant
parts were for the object creation instruction and the readable object set.

Let s be a subject with security level l(s), and let o be an object with security
level l(o) and type τ(o). Let σ be the current state. The set of existing objects is
listed in a global object table T (σ). Then the object creation specification
object_create is as follows.

Specification 18.1.

The object is created if it does not exist and if the subject’s clearance is



sufficient to permit the creation of an object at the desired level.

The readable object set contains the set of existing objects that the subject
could read in at the current, or at least at a future, state. We ignore
discretionary controls for this predicate. Let s be a subject and o an object.
Let l and T be as before, and let canread(s, o, σ) be true if, in state σ, o is of a
type to which s can apply the read operation (ignoring permissions). Then:

Specification 18.2.

An object is not in the set if it does not exist, if the subject’s security level does
not dominate the object’s security level, or if the subject is of the wrong type
to read the object (or vice versa).

Because the SAT system model was tranquil, adding an object to the readable
set requires a new object to be created. Let s′ be the subject that creates it.
Then:

Specification 18.3.

For an object to be added to a subject’s readable set, it initially cannot exist, it
must first be created, and then its levels and discretionary access controls
must be set appropriately.

Consider two states σ1 and σ2. These states differ only in that an object o
exists in state σ2 and not in σ1 and that in state σ2, l(s) does not dominate l(o).
By Specification 18.2, ∉ readable(s, σ1) (because o does not exist) and ∉
readable(s, σ2) (because ¬(l(o) ≤ l(s))). Thus, σ1 ≡ σ2. Now, s issues a
command to create o with l(o) = l(s) and of a type that it can read (that is,
can_read(s, o, ) is true, where  is the state after object_create(s, o, σ1)).
By Specification 18.1,  differs from σ1 by the addition of o to the table T (σ1).



This new entry would satisfy can_read(s, o, ) and l(s′) ≤ l(o) ≤ l(s), where s′
is the subject that created the object.

Next, because o exists in σ1,  = object_create(s′, o, ff2) = σ2. So, σ1 ≤ σ2 is
true, but A(object_create(s′, o, ff1), ff1) ≤ A(object_create(s′, o, ff2), ff2) is
false. This means that condition 2 in Theorem 18.1 is false. Thus, Theorem
18.1 does not apply.

Exploiting this covert channel is straightforward. To send a 1, the subject at a
high level creates an object at a high level. The recipient (a second subject)
tries to create the same object but at a low level. The creation fails, but no
indication of the failure is given. The second subject then gives a different
subject type permission to read and write the object. It writes a 1 to the object
and reads the object. The read returns nothing. To send a 0, the subject at the
high level creates nothing, but the subject at the low level follows the same
steps. In this case, the read returns a 1.

Because noninterference techniques reason in terms of security levels and not
in terms of time, these techniques are most useful for analyzing covert storage
channels.

18.3.1.2 The Shared Resource Matrix Methodology

Kemmerer introduced a methodology for identifying shared channels and
determining in what ways they are shared [1031, 1032, 1034]. First, the
analyst identifies all shared resources and the attributes of those resources
that are visible to subjects. These attributes make up the rows of the matrix.
Next, the analyst determines the operations that either reference (read) or
modify (alter) the attributes. These operations make up the columns of the
matrix. The contents of each element of the matrix indicate whether the
operation references, modifies, or both references and modifies the attribute.

EXAMPLE: Consider a system that implements a multilevel security model.
Files have four attributes: file existence, file owner, file label, and file size.



Two subjects, one High and one Low, are active. The file manipulation
operations are read_file, write_file, delete_file, and create_file. Reading
succeeds if the file exists and the subject’s label is greater than or equal to the
file’s label. Writing and deletion succeed if the file exists and the subject’s
label is less than or equal to the file’s label. Creation succeeds if no file with
the given name exists. The file is given the creating process as its owner and
the label of the creating process as its label.

The shared resource matrix is as follows.

read_file write_file delete_file create_file

file existence R R R, M R, M

file owner R M

file label R R R M

file size R M M M

Because all four operations check for the existence of the file, they reference
the attribute. The “R” in each matrix location reflects this. The create_file
and delete_file operations also modify that attribute. This is reflected by the
“M.” Read and write do not check ownership, but delete and create do; create
modifies the owner, and delete references it. The file label is set by create_file
and referenced by the other operations, and all but read_file modify the file
size. The read_file operation checks the size of the the file to determine if the
end of the file will be (or has been) encountered.

The next step is to determine whether any of these shared resources provide
covert channels. The following properties must hold for a covert storage
channel to exist.

1. Both the sending and receiving processes must have access to the same
attribute of a shared object.

2. The sending process must be able to modify that attribute of the shared
object.



3. The receiving process must be able to reference that attribute of the shared
object.

4. A mechanism for initiating both processes, and properly sequencing their
respective accesses to the shared resource, must exist.

Hence, we need to consider only those attributes with both “R” and “M” in
their rows.

EXAMPLE: The High process is not allowed to communicate directly with the
Low process. For this example, the sending process is the High one and the
receiving process is the Low one. Consider the create_file operation, which
both references and modifies the attribute file existence. Both the High and
Low processes have access to the file existence attribute. The High process
can modify the file existence attribute using create_file or delete_file. The
Low process can use create_file to reference this attribute regardless of the
file label because if the file exists the creation will fail. All that remains is to
devise a mechanism for sequencing the accesses to the attribute of the shared
resource, the file.

Let two files be named ready and done and a third be named 1bit. Both
processes begin. The Low process creates a file named ready at the High
level. The High process references the file existence attribute of this file and
sees it exists. If the High process is to send a 1, it creates the file 1bit at the
High level. The lack of this file will indicate a 0 bit. The process then deletes
the ready file and creates the file done at the High level.

The Low process periodically tries to create the done file at level High. When
it fails, the file exists. The process then tries to create the file named 1bit at
the High level. On success, it records a 0. On failure, it records a 1. The
process then deletes the file named done and creates ready at the High level.
This continues until the message is sent. This is a covert storage channel.

The requirements for covert timing channels are similar to those for covert



storage channels.

1. Both the sending and receiving processes must have access to the same
attribute of a shared object.

2. Both the sending and receiving processes must have access to a time
reference, such as a real-time clock, a timer, or the ordering of events.

3. The sending process must be able to control the timing of the detection of a
change in the attribute by the receiving process.

4. A mechanism for initiating both processes, and properly sequencing their
respective accesses to the shared resource, must exist.

As with covert storage channels, we need to consider only those attributes
with both “R” and “M” in their rows.

EXAMPLE: The variant of the KVM/370 channel (on page 521) is an example
of a timing channel. Both the sender and receiver have access to the same
attribute—the ordering of requests by the disk-arm scheduler. Both have
access to a time reference—the ordering of the requests. The High process can
control the ordering of the requests of the Low process by the cylinder
number of the request that the High process issues, so it can control the
(relative) timing of the detection of a change in the attribute (ordering) by the
Low process. Whether this channel can be exploited therefore depends on the
initiating and sequencing mechanisms required by requirement 4.

Kemmerer demonstrates the use of the shared resource matrix (SRM)
methodology at various stages of the software life cycle ranging from English
requirements and formal specifications to implementation code. Its flexibility
is one of its strengths.

The SRM methodology was used to analyze the Secure Ada Target [850, 851].
The participants constructed the matrix manually from a flow analysis of the
model. From the transitive closure of the elements of the matrix, two



potential covert channels were found, one using the assigned level attribute of
an object and the other using the assigned type attribute.

The SRM methodology is comprehensive but incomplete. In particular, it
does not address the problem of determining what the shared resources are
and what the primitives used to access them are. In some ways, this is
appropriate, because the techniques used differ at the different steps of the
software life cycle. The generality of the SRM method makes it suitable for
use throughout the life cycle. However, the absence of detail makes its
application sensitive to the analysis of the particular stage of development:
specification, design, or implementation. The next approach looks at these
issues at the implementation, or source code, level.

18.3.1.3 Information Flow Analysis

The methods of Denning and Denning and of Reitman and Andrews
discussed in Sections 17.3.3 and 17.3.4 can uncover covert channels. When an
exception occurring depends on the value of a variable, a covert channel
exists because information leaks about the value in that variable.
Synchronization and interprocess communication primitives also cause
problems because one process can control when it sends a message or blocks
to receive a message, something the second process can typically detect. This
differs from shared variables, which are legitimate channels of information
flow. The covert channel occurs because of timing considerations or shared
resources (such as a file system).

Tsai, Gligor, and Chandersekaran [1909] have developed a method for
identifying covert storage channels in source code. The method asserts that
covert (storage) channels arise when processes can view or alter kernel
variables. It focuses on identifying variables that processes can refer to
directly or that processes can view or alter indirectly (through system calls).

The first step is to identify the kernel functions and processes for analysis.
The processes involved are those that function at the highest level of privilege



and perform actions on behalf of ordinary users. Processes executing on
behalf of administrators are ignored because administrators have sufficient
privilege to leak information directly; they do not need to use covert channels.
System calls available only to the administrator are ignored for the same
reason.

The second step identifies the kernel variables that user processes can read
and/or alter. The process must be able to control how the variable is altered
and be able to detect that the variable has been altered. For example, if a
system call assigns the fixed value 7 to a particular variable whenever that
system call is made, the process cannot control how that variable is altered.
Similarly, error conditions affect visibility. For example, if the variable count
being zero causes an error, the state of count can be determined from the
setting of the error indicator: if it is set on exit, count is 0; otherwise, it is
nonzero. The specific criteria are as follows.

1. The value of a variable is obtained from a system call.

2. A calling process can detect at least two different states of that variable.

EXAMPLE: In Figure 18–1, the variable x is visible because it is returned
directly to the calling process. The variable y is not directly visible because its
value is never returned. However, its state (zero or nonzero) is visible through
the value of the variable z.

Figure 18–1: Visibility of variables. The code fragments represent
the body of system calls. The return value is the value returned by
the system call. At the left, x is visible directly. The value of y at the



right is not directly visible, but information about its state can be
deduced from the returned value.

The detection of such variables requires that the data flow through the kernel
be analyzed to ensure that all dependencies (both data and functional) are
detected. If the variable is a record or structure, the analysis process must
consider changes in its attributes. If the variable is an array of records,
changes both in the attributes of each element and in the array as a whole
affect the analysis. Finally, the analysis must consider pointers to the
variables in question.

The third step is to analyze these shared variables, looking for covert
channels. The analysis here is similar to the analysis in the SRM method. The
results are given in terms of the primitives that alter or view the shared
variables. Primitives associated with variables that can only be altered or only
be viewed are discarded. Complicating this process is the observation that
many variables may be associated with a single covert channel, or one
variable with many covert channels.

The resulting primitives are then compared with the model of non-
discretionary access control under the assumption that the recipient’s
security clearance does not dominate the sender’s.

An analysis of the Secure Xenix kernel using this method found two kernel
variables involved in covert channels. Four classes of generic covert channels
were identified, including an unexploitable class that could be exploited only
when the system failed (one such channel caused a reboot) and a noiseless
channel that could not be eliminated without discarding the semantics of
regular Xenix. The analysts also used the SRM method to analyze the top-
level specification of Secure Xenix and noted that it failed to detect several
covert channels. (This was expected, because the top-level specifications did
not specify the data structures in which the covert channels were found.)

Tsai, Gligor, and Chandersekaran conclude that the shared variables could



have been detected by informal code analysis but claim it unlikely that
informal analysis would make all the associations of those variables with
system calls. Hence, informal analysis would have missed several covert
channels that their methodology found.

18.3.1.4 Covert Flow Trees

Porras and Kemmerer have devised an approach to representing security
violations that spring from the application of fault trees [1035]. They model
the flow of information through shared resources with a tree. The paths of
flow are identified in this structure. The analyst determines whether each
flow is legitimate or covert.

A covert flow tree is a tree-structured representation of the sequence of
operations that move information from one process to another. It consists of
five types of nodes.

1. Goal symbols specify states that must exist for the information to flow.
There are several such states:

(a) A modification goal is reached when an attribute is modified.

(b) A recognition goal is reached when a modification of an attribute is
detected.

(c) A direct recognition goal is reached when a subject can detect the
modification of an attribute by referencing it directly or calling a function that
returns it.

(d) An inferred recognition goal is reached when a subject can detect the
modification of an attribute without referencing it directly and without calling
a function that references the attribute directly. For example, the subject may
call a function that performs one of two computations depending on the value
of the attribute in question.



(e) An inferred-via goal is reached when information is passed from one
attribute to other attributes using a specified primitive operation (such as a
system call).

(f) A recognize-new-state goal is reached when an attribute that was
modified when information was passed using it is specified by an inferred-via
goal. The value need not be determined, but the fact that the attribute has
been modified must be determined.

2. An operation symbol is a symbol that represents a primitive operation. The
operation symbols may vary among systems if they have different primitive
operations.

3. A failure symbol indicates that information cannot be sent along the path
on which it lies. It means that the goal to which it is attached cannot be met.

4. An and symbol is a goal that is reached when both of the following hold for
all children:

(a) If the child is a goal, then the goal is reached.

(b) The child is an operation.

5. An or symbol is a goal that is reached when either of the following holds for
any children:

(a) If the child is a goal, then the goal is reached.

(b) The child is an operation.

Constructing the tree is a three-step process. To make the steps concrete, we
present a simple set of operations and then ask if they can create a covert
channel.

EXAMPLE: Consider a file system in which each file has three attributes. The
boolean attributes locked and isopen are true when the file is locked or



opened, respectively, and are false otherwise. The third attribute, inuse, is a
set that contains the process ID of each process that has the file open. The
function read_access(p, f) is true if process p has read rights over file f, and
empty(s) is true if set s has no members. The function random returns one of
its arguments chosen at random. The following operations are defined.

(* lock the file if it is not locked and not opened *)
(* otherwise indicate it is locked by returning false *)
procedure Lockfile (f: file): boolean;
begin
        if not f.locked and empty (f.inuse) then
                f.locked := true;
end;
(* unlock the file *)
procedure Unlockfile (f: file);
begin
        if f.locked then
                f.locked := false;
end;
(* say whether the file is locked *)
function Filelocked (f: file): boolean;
begin
        Filelocked := f.locked;
end;
(* open the file if it isn ’t locked and the *)
(* process has the right to read the file *)
procedure Openfile (f: file);
begin
        if not f.locked and read_access(process_id, f) then
                (* add the process ID to the inuse set *)
                f.inuse = f.inuse + process_id;
end;
(* if the process can read the file, say if the *)
(* file is open, otherwise return a value at random *)
function Fileopened (f: file): boolean;
begin
        if not read_access (process_id, f) then
                Fileopened := random (true, false);
        else
                Fileopened := not isempty (f.inuse);
end



Assuming that processes are not allowed to communicate with one another,
the reader is invited to try to find a covert storage channel.

The first step in constructing a covert flow tree is to determine what
attributes (if any) the primitive operations reference, modify, and return.

EXAMPLE: The functions in the preceding example affect file attributes in
different ways, as follows.

The symbol Ø means that no attribute is affected in the specified manner.

The second step begins with the goal of locating a covert storage channel that
uses some attribute. The analyst constructs the covert flow tree. The type of
goal controls the construction, as follows.

1. The topmost goal requires that the attribute be modified and that the
modification be recognized. Hence, it has one child (an and symbol), which in
turn has two children (a modification goal symbol and a recognition goal
symbol).

2. A modification goal requires some primitive operation to modify the
attribute. Hence, it has one or child, which has one child operation symbol
per operation for all operations that modify the attribute.

3. A recognition goal requires that a subject either directly recognize or infer
a change in an attribute. It has an or symbol as its child. The or symbol has
two children, one a direct recognition goal symbol and the other an inferred
recognition goal symbol.

4. A direct recognition goal requires that an operation access the attribute.
Like the modification goal, it has one or child, and that child in turn has one



child operation symbol for each operation that returns the attribute. If no
operation returns the attribute, a failure symbol is attached.

5. An inferred recognition goal requires that the modification be inferred on
the basis of one or more other attributes. Hence, it has one child, an or
symbol, which has one child inferred-via symbol for each operation that
references an attribute and that modifies some attribute (possibly the same
one that was referenced).

6. An inferred-via goal requires that the value of the attribute be inferred via
some operation and a recognition of the new state of the attribute resulting
from that operation. Hence, it has one child (an and symbol), which has two
children (an operation symbol representing the primitive operation used to
draw the inference and a recognize-new-state goal symbol).

7. A recognize-new-state goal requires that the value of the attribute be
inferred via some operation and a recognition of the new state of the attribute
resulting from that operation. The latter requires a recognition goal for the
attribute. So, the child node of the recognize-new-state goal symbol is an or
symbol, and for each attribute enabling the inference of the modification of
the attribute in question, the or symbol has a recognition goal symbol child.

Tree construction ends when all paths through the tree terminate in either an
operation symbol or a failure symbol. Because the construction is recursive,
the analyst may encounter a loop in the tree construction. Should this
happen, a parameter called repeat defines the number of times that the path
may be traversed. This places an upper bound on the size of the tree.

EXAMPLE: We build the covert flow tree for the attribute locked in our
previous two examples. The goal state is “covert storage channel via attribute
locked.” The and node beneath it has two children, “modification of attribute
locked” and “recognition of attribute locked.” At this point, the tree looks like
Figure 18–2.



Figure 18–2: First stage of building tree

Figure 18–3: Second stage of building tree

Figure 18–4: Third stage of building tree

From the table in the preceding example, the operations Lockfile and
Unlockfile modify the attribute locked. That branch of the tree is shown in
Figure 18–3.

Figure 18–5: Fourth stage of building tree



Figure 18–6: Fifth stage of building tree

The recognition branch expands into direct recognition and inferred
recognition branches. The direct recognition branch has an and with one
child, Filelocked, because Filelocked returns the value of the locked attribute.
The inferred recognition branch has an or child with one child, an “inferred-
via” node that infers locked from inuse. This branch comes from comparing
the “reference” row of the table in the preceding example with the “modify”
row. If an operation references the locked attribute and modifies another
attribute, inference is possible (assuming that the modification can be
detected). At this point, Figure 18–4 shows the recognition branch looks like
this



Inferring that the attribute locked has changed from the attribute inuse
requires the operation Openfile. After that operation, the recognize-new-state
goal represents the change in the attribute inuse, as shown in Figure 18–5.

This in turn requires the recognition of modification of the attribute inuse
(hence, a recognition state). The operation Fileopened recognizes this change
directly; nothing recognizes it indirectly. The result is shown in Figure 18–6

Figure 18–7 shows the full covert flow tree.

The analyst now constructs two lists. The first list contains sequences of
operations that modify the attribute, and the second list contains sequences
of operations that recognize modifications in the attribute. A sequence from
the first list followed by a sequence from the second list is a channel along
which information can flow. The analyst examines these channels to
determine which are covert.

EXAMPLE: In the covert flow tree presented above, the first list has two
sequences:

List1 = ((Lockfile), (Unlockfile))

because both operations modify the attribute (and lie on the “modified”
branch under the root of the tree). The second list also has two sequences:

List2 = ((Filelocked), (Openfile, Fileopened))

The first comes from the direct recognition of the modification of the
attribute and the second comes from the indirect recognition. These
sequences result in four channels of communication.

1. Lockfile followed by Filelocked;

2. Unlockfile followed by Filelocked;

3. Lockfile followed by Openfile, then Fileopened; and



4. Unlockfile followed by Openfile, then Fileopened.

If a High-level user transmits information to a Low-level user by locking and
unlocking a file, the first two channels (in combination) represent a direct
covert storage channel. The last two represent an indirect covert storage
channel. To use the channel, the High-level process locks a file to send a 0 bit
and unlocks a file to send a 1 bit. The Low process tries to open the locked
file. It then uses Fileopened to see if it has opened the file. If the file is
opened, the High process did not lock the file (a 0 bit). If the file is not
opened, the High process did lock the file (a 1 bit).

The shared resource matrix model and covert flow trees spring from the idea
of examining shared resources for modification and reference operations, and
both can be used at any point within the software development life cycle. One
advantage of covert flow trees over the SRM model is that the former
identifies explicit sequences of operations that cause information to flow from
one process to another. The latter identifies channels rather than sequences
of operations. In comparisons involving file system access operations and the
Secure Ada Target, the covert flow tree method identified sequences of
operations corresponding to the covert storage channels found by the SRM
method and the noninterference method, as well as one not found by the
other two.



Figure 18–7: The covert flow tree for the operations.

18.3.2 Analysis of Covert Channels



How dangerous is a covert channel? Policy and operational issues come into
play, and we do not consider those issues here. For our purposes, the security
policy in force deems covert channels a serious problem. However, the
amount of information that can be transmitted over a covert channel affects
how serious a problem that channel presents. If the rate were one bit per
hour, the channel would be harmless in most circumstances. If the rate were
1,000,000 bits per second, the channel would be dangerous. Following Millen
[1344], we examine the problem of measuring this bandwidth.

18.3.2.1 Covert Channel Capacity and Noninterference

We begin by asking when the bandwidth is 0. Suppose Alice wants to send
Bob information over a covert channel. Alice feeds her input into a machine
that passes the output to Bob. We define the following random variables.

• W represents the inputs to the machine.

• A represents the inputs from Alice.

• V represents the inputs to the machine from users other than Alice.

• B represents all possible outputs to Bob.

Define I(A; B) as the amount of information transmitted over the covert
channel. We are interested in the greatest amount of information that can be
transmitted.

Definition 18–9. The covert channel capacity is maxAI(A; B).

This capacity is measured in bits. The rate is then established by dividing the
capacity by the number of trials (or the amount of time) required to send the
information.

We first establish that noninterference is sufficient to make the capacity of a
covert channel 0.



Theorem 18.2. [1344] If A and V are independent and A is noninterfering
with B, then I(A; B) = 0.

Proof. It suffices to show that the conditions of the theorem mean that A and
B are independent—that is, to prove that p(A = a, B = b) = p(A = a)p(B = b).
Recall that

By Definition 9–4, A being noninterfering with B means that deleting that
part of the input making up a will not change the output b. Thus, we need to
consider only those values of B that can result from values of V . Hence,

By independence of A and V , this becomes

Standard manipulations yield

establishing independence and hence the desired result. 

However, noninterference is not necessary [1344]. To see this, consider a
system with one bit of state; three inputs IA, IB, and IC; and one output OX.
Each input flips the state, and the value of the state (0 or 1) is output. Let the
system initially be in state 0, and let w be the sequence of inputs
corresponding to the output x(w). Then the value x(w) depends on the length
of the input; x(w) = length(w) mod 2. Clearly, IA is not noninterfering with
OX because if the inputs from IA are deleted, the length of the input sequence



is affected and so the value x(w) may also be affected. We consider two cases.
In the following discussion, let W represent the random variable
corresponding to the length of the input sequences, let A represent the
random variable corresponding to the length of the components of the input
subsequence contributed by input IA, let V represent the random variable
corresponding to the length of the components of the input sequence not
contributed by IA, and let X represent the random variable corresponding to
the output state. Let A and V be independent and consider two distributions
of V . Without loss of generality, we restrict A and V to representing single
bits.

1. If V = 0, because W = (A+V) mod 2, then W = A. So A and W are not
independent, and neither are A and X. Hence, if V = 0, I(A; X) ≠ 0.

2. Let inputs IB and IC produce inputs such that p(V = 0) = p(V = 1) = 0.5.
Then,

p(X = x) = p(V = x, A = 0) + p(V = 1 – x, A = 1)

Because A and V are independent,

p(X = x) = p(V = x)p(A = 0) + p(V = 1 – x)p(A = 1)

This yields p(X = x) = 0.5. Moreover,

p(X = x | A = a) = p(X = (a + x) mod 2) = 0.5

Hence, A and X are independent, yielding I(A; X) = 0.

This means that even though A and X are not noninterfering, the channel
capacity may be 0. In other words, the covert channel capacity will be 0 if
either the input is noninterfering with the output or the input sequence is
produced from independent sources and all possible values from at least one
source are equiprobable. In the latter case, the distribution in effect “hides”
the interference.



18.3.2.2 Measuring Covert Channel Capacity

When an attacker uses a covert channel, he modulates the output by
providing specific inputs. Suppose that, when no modulation occurs, the
uncertainty in the output is eight bits. When modulation occurs, the
uncertainty is reduced to five bits. Then the covert channel capacity is three
bits, because the input “fixes” those bits. We formalize this idea as follows
[1344].

The capacity of the covert channel with inputs A and V , and output X, is the
measure of the certainty in X given A. In terms of entropy, this means that we
maximize

I(A; X) = H(X) – H(X | A)

with respect to A.

EXAMPLE: Return to the example in the preceding section. We assume that
A and V are independent. Let p = p(A = 0) and q = p(V = 0). Then,

and p(X = 0) = pq + (1 – p)(1 – q) and p(X = 1) = (1 – p)q + p(1 – q). Also,

This means that

and



So

This is a maximum when p = 0.5. At that value,

I(A; X) = 1 + q lg q + (1 – q) lg(1 – q) = 1 – H(V)

which agrees with the intuition from the earlier example. In particular, if q =
0 (so V is a constant), the capacity of the covert channel is I(A; X) = 1 bit, and
if q = p = 0.5, the capacity of the covert channel is I(A; X) = 0 bits.

We now examine a model for computing the capacity for a storage channel
and a timing channel.

18.3.2.3 Analyzing a Noisy Covert Channel’s Capacity

Costich and Moskowitz [464] examined the covert channel created by a
multilevel secure database that used replication to ensure data availability.
The database used the two-phase commit protocol to ensure atomicity of
transactions. One coordinator process managed global execution; the other
processes were participants.

1. The coordinator sends a message to each participant requesting whether to



commit or abort the transaction. Each participant replies as it deems
appropriate. If a participant replies to abort, it stops its process.

2. The coordinator gathers the replies from the participants. If all replies are
to commit, the coordinator sends commit messages back to the participants.
If any reply is to abort, the coordinator sends abort messages to the
participants. Each participant that has sent a commit waits for the reply from
the coordinator, and then acts accordingly.

In the database under discussion, if either the coordinator does not receive a
reply from a participant or a participant does not receive a reply from the
coordinator, the protocol times out and the parties act as though the
transaction has been aborted.

Suppose the replicated database consists of two types of components—one at
a Low security level and another at a High security level. If a Low component
begins the two-phase commit, both Low and High components must
cooperate in the two-phase commit protocol. A High component can transmit
information to a Low component by selectively aborting transactions (either
by sending abort messages or simply by not sending anything, causing a time-
out). This is a covert channel.

EXAMPLE: If transactions always succeeded except when a High component
is sending information, this channel would not be noisy. The capacity of the
channel would be one bit (abort/commit) per trial.

This channel is noisy because transactions may abort for reasons other than
the sending of information. The analysis must take this into account.

EXAMPLE: Let X be the random variable corresponding to what the High
user wants to send. Without loss of generality, we treat an aborted
transaction as the High user sending a 1 and a committed transaction as the
High user sending a 0. Let A be the random variable corresponding to what
the Low user receives. (Note that for a noiseless channel, X = A.)



Let p = p(X = 0) be the probability that the High user sends a 0. We also
assume that the n users other than the sender and receiver act independently
of one another, and that the probability of a transaction being aborted at any
of these users is q. Thus,

This yields p(A = 0) = p(1 – q)n and p(A = 1) = 1 – p(1 – q)n. From this, we
have

This means that

and

So



We maximize this with respect to p to obtain the covert channel capacity. For
notational convenience, take m = (1 – q)n and M = (1 – m)(1–m). Then I(A; X)
is a maximum when

. So, the channel capacity is

18.3.3 Mitigation of Covert Channels

Covert channels convey information by varying the use of shared resources.
An obvious way to eliminate all covert channels is to require processes to
state what resources they need before execution and provide these resources
in such a manner that only the process can access them. This includes
runtime, and when the stated runtime is reached, the process is terminated
and the resources are released. The resources remain allocated for the full
runtime even if the process terminates earlier. Otherwise, a second process
could infer information from the timing of the release of the resources
(including access to the CPU). This strategy effectively implements
Lampson’s idea of total isolation, but it is usually unworkable in practice.

An alternative approach is to obscure the amount of resources that a process
uses. A receiving process cannot determine what amount of resource usage is
attributable to the sender and what amount is attributable to the obfuscation.
This can be done in two ways.

First, the resources devoted to each process can be made uniform. This is a
variant of isolation, because each process gets the same amount of resources
and cannot tell whether a second process is accessing the resource by
measuring the timing or amount of resources available. In essence, the
system eliminates meaningful irregularities in resource allocation and use.



EXAMPLE: The covert channel involving the CPU usage in KVM (see the
second example on page 520) can be mitigated by assigning each virtual
machine a time slice of fixed magnitude and not allowing any virtual machine
to surrender the CPU until the end of the slice. No virtual machine can
shorten its time slice by relinquishing the CPU early, thereby sending a “0” or
a “1.” This closes the timing channel.

Second, a system can inject randomness into the allocation and use of
resources. The goal is to make the covert channel a noisy one and to have the
noise dominate the channel. This does not close the covert channel (because
it still exists) but renders it useless.

EXAMPLE: Return to the noisy covert channel in the multilevel secure
database discussed in Section 18.3.2.3. If the probability of a transaction
being aborted by a participant that is neither the sender nor the receiver
approaches 1, then the channel capacity approaches 0. Hence, increasing the
probability of such an abort decreases the calculated bandwidth of the
channel. One suggestion [464] is to resolve conflicts by aborting; this
increases the probability of aborts from participants that are neither senders
nor receivers. A second idea is to cause participants to abort transactions
randomly.

Both these techniques affect efficiency. Assigning fixed allocations and
constraining use waste resources. Fixing the time slices on the KVM system
means that the CPU will be unused (or will execute an idle process) when
another virtual machine could run a non-idle process. Increasing the
probability of aborts in the multilevel secure database system will abort some
transactions that would normally commit, increasing the expected number of
tries to update the database. Whether the closing of the covert channel or the
limiting of the bandwidth compensates adequately for the loss in efficiency is
a policy decision.

Figure 18–8: The pump. Messages going between the High and



Low processes enter the pump (represented by the dashed oval).
The pump controls the rate at which the messages flow between
the two processes. The pump acknowledges each message as it is
moved from the process buffer to the communications buffer.

EXAMPLE: Hu [938] describes an interesting approach to limiting covert
timing channels on the VAX virtualizing security kernel. “Fuzzy time” reduces
the accuracy of system clocks by using the programmable system clock to
generate random clock ticks. The random interrupts can take any desired
distribution. For example, virtual machines receive timer interrupts with a
uniform distribution and a mean of 20 milliseconds, rather than every 10
milliseconds (as the native timer would create). The system clock is updated
only after each timer interrupt, and the kernel rounds the time to the nearest
tenth of a second before supplying it to the virtual machine (so it cannot be
any more accurate than that of the interrupts). I/O operations have delays
added randomly. The kernel distinguishes between event time (when the I/O
event occurs) and notification time (when the virtual machine is told that the
I/O operation has occurred). The random delay between these two times
prevents the virtual machine from determining exactly when an event
occurred. The random length of the interval can be distributed as desired. In
the security kernel, the interval is between 1 and 19 milliseconds. The “fuzz”
added to the timings adds noise to the covert timing channel, thereby making
it more difficult to exploit. Trostle [1905] improved on this technique by
modifying the scheduler to run processes in increasing order of security level
and by observing that countermeasures are needed only when a transition
from a dominating virtual machine to a dominated virtual machine occurs.
He also suggested adding random intervals between quanta at these
transitions.

A device known as a pump is the basis of several techniques for defeating
covert channels.

EXAMPLE: The pump [1006] is a (hardware or software) tool for controlling



a communication path between a High process and a Low process. It consists
of a buffer for messages to and from the High process, a buffer for messages
to and from the Low process, and a communications buffer of length n that is
connected to both of the other buffers (see Figure 18–8). We assume that
messages are numbered and that the communications buffer preserves
messages if the pump crashes. Under these assumptions, the processes can
recover (so that either the messages in the pump are delivered or the sender
detects that they are lost and resends the message; see Exercise 10).

A covert timing channel occurs when the High process can control the rate at
which the pump passes messages to it. The Low process fills the
communications buffer by sending messages to the pump until it fails to
receive an acknowledgment. At that point, the High and Low processes begin
their trials. At the beginning of each trial, if the High process wants to send a
1, it allows the pump to send it one of the queued messages. If the High
process wants to send a 0, it does not accept any messages from the pump. If
the Low process receives an acknowledgment, it means that a message has
moved from the Low buffer to the communications buffer. This can happen
only if a space in the communications buffer opens. This occurs when the
High process reads a message. Hence, if the Low process gets an
acknowledgment, the High process is signaling a 1. By a similar argument, if
the Low process does not get an acknowledgment, the High process is
signaling a 0. Following the trial, if the Low process has received an
acknowledgment, it must send another message to the pump to enter the
state required for the next trial.

In what follows, we assume that the Low process and the pump can process
messages more quickly than the High process. Let Li be the random variable
corresponding to the time from the Low process’ sending a message to the
pump to the Low process’ receiving an acknowledgment. Let Hi be the
random variable corresponding to the average time required for the High
process to acknowledge each of the last n messages. Three cases arise.



1. E(Li) > Hi. This means that the High process can process messages in less
time than it takes for the Low process to get the acknowledgment. Because
this contradicts our assumption above, the pump must be artificially delaying
acknowledgments. This means that the Low process will wait for an
acknowledgment regardless of whether the communications buffer is full or
not. Although this closes the covert timing channel, it is not optimal because
the processes may wait even when they do not need to.

2. E(Li) < Hi. This means that the Low process is sending messages into the
pump faster than the High process can remove them. Although it maximizes
performance, it opens the covert channel.

3. E(Li) = Hi. This means that the pump and the processes handle messages
at the same rate. It balances security and performance by decreasing the
bandwidth of the covert channel (with respect to time) and increases
performance. The covert channel is open, however, and performance is not
optimal.

Kang and Moskowitz [1006] showed that adding noise to the channel in such
a way as to approximate the third case reduced the covert channel capacity to
at most 1/nr, where r is the time between the Low process’ sending a message
to the pump and its receiving an acknowledgment when the communications
buffer is not full. They concluded that the pump substantially reduces the
capacity of covert channels between High and Low processes when compared
with direct connection of those processes.

18.4 Summary

The confinement problem is the problem of preventing a process from illicitly
leaking information. Its solutions lie in some form of separation or isolation.
Virtual machines provide a basis for these mechanisms, as do less restrictive
sandbox environments. Virtual machines and sandboxes limit the transfer of
information by controlling expected paths used to send (or receive) data.



However, shared resources provide unexpected paths for transmission of
information. Detecting and analyzing these covert channels require deduction
of the common resources, which processes can manipulate (alter) the
resources, which processes can access (read) the resources, and how much
information per trial the channel can transmit. Several methods, among them
a matrix methodology and tree analysis methodology, provide systematic
ways to analyze systems for such channels.

Information flow and noninterference techniques focus on how information
moves about the system. Information flow considers exceptions resulting
from flows that are disallowed. The exception itself leads to a covert channel.
Noninterference techniques work similarly and also provide a basis for
measuring channel capacity. Statistical techniques are useful also.

Covert channels are difficult to eliminate. Countermeasures focus on making
the channel less useful by decreasing its capacity, usually through the
addition of randomness to obscure the regularity that sending and receiving
requires.

18.5 Research Issues

Research into the confinement problem and its solutions includes research
into malicious logic as well as covert channels.

Policy determines what information is to be confined. Policy representation is
critical to a correct implementation of these requirements. So is a mechanism
for translating these representations into effective, reliable security
mechanisms. This is a fruitful area for research not only because of the
technical issues, such as power of expression and constraint representation,
but also because of the human interface issues.

Balancing security and functionality raises issues of controlling the channels
through which systems communicate, as well as shared channels. A sandbox
isolates some aspects of processes while providing access to system resources.



Preventing other information from leaking requires development of precise
mechanisms and is also an area of active research, particularly in mobile
code. Sandboxes often reduce performance and efficiency of processes.
Minimizing this impact makes such security constraints more acceptable.

Covert channel research focuses on detection, measurement, and mitigation.
Techniques for detecting covert channels require effort by a human analyst.
Simplifying and reducing the effort required would aid the discovery of these
channels. Techniques for discovering these channels at all levels of the
software life cycle are varied. Current techniques for detecting the exploiting
of covert channels are typically statistical.

The balance between minimizing the bandwidths of covert channels (or
closing them entirely) and providing acceptable performance is delicate.
Techniques for optimizing both simultaneously are primitive and rarely yield
mechanisms that provide optimality. This is another active research area.

18.6 Further Reading

Confinement mechanisms are used to limit the actions of downloaded or
untrusted programs [470, 558, 960, 1245, 1524, 1897, 2063]. McLean [1307]
raises questions about the effectiveness of sandboxes, pointing out the
complexity of hardening them against escape. The risks that Java applet and
application containers pose depends in part upon their implementation and
the environment in which the program is to execute [525, 903]. In addition to
Xen, many hypervisors, such as VMware [590, 1461] and Virtual Box [1483,
1992], have been developed. Rosenblum and Garfinkel [1617] provide an
overview of the different types of virtual machines, and Pearce, Zeadally, and
Hunt [1510] discuss security issues specific to virtual machines. Agarwal,
Jain, and Porter [20] compare virtual machines and containers. Techniques
that detect that programs are being run in a virtual machine have been
developed [676, 719], as have various countermeasures [352, 1852].



A number of sandboxing mechanisms have different emphases on desired
attributes such as performance, complexity, and special environments, and
all aim to isolate processes for protection [700, 913, 969, 1062, 1180].
Garfinkel [751] and Watson [1991] discuss some issues with intercepting
system calls for sandboxing. Madhavapeddy and Scott [1239] present a
detailed overview of library operating systems.

Millen [1342] provides a retrospective of covert channel research, including
an amusing view of the disk-arm covert channel. Gold, Linde, and Cudney
[788] review the successes and failures of KVM/370. Karger and Wray [1016]
discuss covert storage channels in disk accesses. Hu [937] and Völp, Hamann,
and Härtig [1956] discuss countermeasures against covert channels arising
from process scheduling. Biswas, Ghosal, and Nagarja [237] present a survey
of timing channels. Covert channels that use the L2 cache [2052], interrupts
[1254], network traffic [335, 1729, 2008, 2090], shared hardware-based
random number generators [649], and the cloud [1175] have also been
studied, both in their detection and the detection of their exploitation.

Several studies describe the relationship between noise and the capacity of
covert channels [1262,1390,1391,1393,1986,2037,2117]. Gray [821] suggests
alternating between secure and nonsecure modes to limit bandwidth. Tsai
and Gligor [1908] examine a Markov model for bandwidth computation in
covert storage channels. Browne [307] examines state transitions to place
upper bounds on covert channels. Meadows [1312] discusses covert channels
in integrity lock architectures, in which a trusted component mediates access
to databases. Venkatraman and Newman-Wolfe [1940] examine the capacity
of a covert channel on a network. The “light pink book” [2178] looks at covert
channels in the context of government security requirements.

Carrara and Adams [354] examine covert channels the exploitation of which
has a low probability of being detected. Gianvecchio, Wang, Wijesekera, and
Jajodia [769] and Kothari and Wright [1104] discuss approaches to evading
detection of the use of a covert timing channel. Archibald and Ghosal [70]



compare statistical techniques for identifying the use of covert channels.

Variations of the pump extend its concept to other arenas, including the
network [805, 806,1007–1009] and a nozzle for limiting the effectiveness of
denial of service attacks [1849].

18.7 Exercises

1. Implement the transmission protocol in the example that follows Definition
18–2. Measure how much information is sent over a 10-minute period.

2. Two UNIX processes wish to communicate but cannot use standard IPC
mechanisms. However, both can run ps(1) as a subprocess.

(a) Devise a protocol whereby the two processes can communicate using their
environment lists.

(b) Implement the protocol. Measure the (actual) rate of transmission.

3. Consider the rule of transitive confinement. Suppose a process needs to
execute a subprocess in such a way that the child can access exactly two files,
one only for reading and one only for writing.

(a) Could capabilities be used to implement this? If so, how?

(b) Could access control lists implement this? If so, how?

4. A company wishes to market a secure version of the Swiss Cheese
Operating System (SCOS), known as much for its advanced user and database
management features as for its security vulnerabilities. The company plans to
build a virtual machine to run SCOS and run that virtual machine on a second
system, the Somewhat Secure Operating System (SSOS). The marketing
literature claims that the VM running SCOS provides total isolation, thereby
eliminating any potential security problems.



(a) Does this arrangement provide total isolation? If your answer is “no,”
discuss what features the VM would need to include to provide total isolation
or show why this arrangement cannot provide total isolation.

(b) The literature states that “the VM mediates all accesses to real system
resources, providing an impenetrable barrier to any attacker trying to break
out of the SCOS and attack other copies of SCOS running on the SSOS.” Do
you agree or disagree with this statement? Why? (If you would need more
information in order to make a decision, state what information you would
need and why.)

5. In the Janus system, when the framework disallows a system call, the error
code EINTR (interrupted system call) is returned.

(a) When some programs have read or write system calls terminated with this
error, they retry the calls. What problems might this create?

(b) Why did the developers of Janus not devise a new error code (say, EJAN)
to indicate an unauthorized system call?

6. A developer produces a program and VCGen generates the verification
conditions from it. A user downloads the program, knowing it will be
validated after downloading. If the validation succeeds, the user will execute
the downloaded program. However, an adversary wants to trick the user into
executing a malicious program. So she intercepts and alters the downloading
program without altering the predicates.

(a) Will the theorem prover validate the altered program?

(b) How could this attack be detected and thwarted?

7. The following system call adds read permission for a process (for_pid) if
the caller (call_pid) owns the file, and does nothing otherwise. (The
operating system supplies callpid; the caller supplies the two latter
parameters.)



function addread(call_pid, for_pid: process_id;
                                        fid: file_id): integer;
begin
        if (call_pid = filelist[fid].owner) then
                addright(filelist[fid].access_control_list,
                                               for_pid, “r”);
        addread := (call_pid = filelist[fid].owner);
end.

(a) Is the variable addread directly or indirectly visible, or not visible?

(b) Is the variable filelist[fid].owner directly or indirectly visible, or not
visible?

(c) Is the variable filelist[fid].accesscontrol directly or indirectly visible, or not
visible?

8. In the covert flow tree technique, it is possible for some part of the tree to
enter a loop in which recognition of attribute a depends on recognition of
attribute b, which in turn is possible when attribute a is recognized.

(a) Give a specific example of such a loop.

(b) Should such a loop occur, the covert flow tree path is labeled with a repeat
parameter that dictates the maximum number of times that branch may be
traversed. Discuss the advantages and drawbacks of this solution.

9. Section 18.3.2.3 derives a formula for I(A; X). Prove that this formula is a
maximum with respect to p when

, with M and m as defined in that section.

10. Prove that if the pump crashes, either every message in the pump has
been delivered or the sender detects that a message has been lost and resends
it.





Part VI: Assurance
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Security policies are assumed to be internally consistent and to reflect the
requirements of the organization to which they apply. Similarly, security
mechanisms are assumed to work correctly and to perform the functions for
which they are intended. These critical aspects of trustworthiness are
commonly glossed over because they are difficult to quantify or analyze.
However, they speak directly to the assumptions on which all security policies
and mechanisms rest. Part VI explores the concepts and methodologies of
assurance and describes the options available for receiving an evaluation of
the level of trust that the assurance can provide in the system.

Chapter 19, “Introduction to Assurance,” explores and motivates the concept
of security assurance, provides fundamental definitions, and presents an
overview of current assurance techniques.

Chapter 20, “Building Systems with Assurance,” identifies what must be done
differently to create a system that is built specifically for security by
addressing life cycle issues of assurance.

Chapter 21, “Formal Methods,” provides a look at the formal techniques used
today to ensure the correctness of programs and designs. These techniques
include specification, proof-based verification, model checking, and protocol
verification.

Chapter 22, “Evaluating Systems,” investigates the formal evaluation and



certification techniques that are available today. The specific evaluation
techniques and assignment of trust used in these methodologies are
highlighted.



Chapter 19. Introduction to
Assurance
BOTTOM: Not a whit: I have a device to make all well. Write me a prologue; 
and let the prologue seem to say, we will do no harm with our swords, and 
that Pyramus is not killed indeed; and, for the more better assurance, tell 
them that I, Pyramus, am not Pyramus, but Bottom the weaver: this will put 
them out of fear.

— A Midsummer Night’s Dream, III, i, 17–23.

This chapter introduces the concepts of security assurance and trusted 
systems. Assurance for secure and trusted systems must be an integral part of 
the development process. The following chapters elaborate on the concepts 
and ideas introduced here.

19.1 Assurance and Trust

In previous chapters we have used the terms trusted system and secure 
system without defining them precisely. When looked on as an absolute, 
creating a secure system is an ultimate, albeit unachievable, goal. As soon as 
we have figured out how to address one type of attack on a system, other 
types of attacks occur. In reality, we cannot yet build systems that are 
guaranteed to be secure or to remain secure over time. However, vendors 
frequently use the term “secure” in product names and product literature to 
refer to products and systems that have “some” security included in their 
design and implementation. The amount of security provided can vary from a 
few mechanisms to specific, well-defined security requirements and well-



implemented security mechanisms to meet those requirements. However,
providing security requirements and functionality may not be sufficient to
engender trust in the system.

Intuitively, trust is a belief or desire that a computer entity will do what it
should to protect resources and be safe from attack. However, in the realm of
computer security, trust has a very specific meaning. We will define trust in
terms of a related concept.

Definition 19–1. An entity is trustworthy if there is sufficient credible
evidence leading one to believe that the system will meet a set of given
requirements. Trust is a measure of trustworthiness, relying on the evidence
provided.

These definitions emphasize that calling something “trusted” or “trustworthy”
does not make it so. Trust and trustworthiness in computer systems must be
backed by concrete evidence that the system meets its requirements, and any
literature using these terms needs to be read with this qualification in mind.
To determine trustworthiness, we focus on methodologies and metrics that
allow us to measure the degree of confidence that we can place in the entity
under consideration. The term assurance captures this notion. Assurance is
the basis for trust. Essentially, trust depends upon assurance.

Definition 19–2. Security assurance, or simply assurance, is confidence
that an entity meets its security requirements, based on specific evidence
provided by the application of assurance techniques.

Examples of assurance techniques include the use of a development
methodology, formal methods for design analysis, and testing. Evidence
specific to a particular technique may be simplistic or may be complex and
fine-grained. For example, evidence that measures a development
methodology may be a brief description of the methodology to be followed.
Alter-natively, development processes may be measured against standards
under a technique such as the System Security Engineering Capability



Maturity Model (SSE-CMM; see Section 22.8).

Assurance techniques can be categorized as informal, semiformal, or formal.
Informal methods use natural languages for specifications and justifications
of claims. Informal methods impose a minimum of rigor on the processes
used. Semiformal methods also use natural languages for specifications and
justifications but apply a specific overall method that imposes some rigor on
the process. Often these methods mimic formal methods. Formal methods
use mathematics and other machine-parsable languages with tools and
rigorous techniques such as formal mathematical proofs.

Security assurance is acquired by applying a variety of assurance techniques
that provide justification and evidence that the mechanism, as implemented
and operated, meets the security requirements described in the security
policy for the mechanism (or collection of mechanisms). Figure 19–1
illustrates this process.

A related term, information assurance, refers to the ability to access
information and preserve the quality and security of that information [598].
It differs from security assurance, because the focus is on the threats to
information and the mechanisms used to protect information and not on the
correctness, consistency, or completeness of the requirements and
implementation of those mechanisms. However, we use the word “assurance”
to mean “security assurance” unless explicitly stated otherwise.

Figure 19–1: Assurance, policy, and mechanisms.



We are now in a position to define a trusted system.

Definition 19–3. A trusted system is a system that has been shown to meet
well-defined requirements under an evaluation by a credible body of experts
who are certified to as-sign trust ratings or assurance levels to evaluated
products and systems.

Specific methodologies aggregate evidence of assurance, and results are
interpreted to assign levels of trustworthiness. The Trusted Computer System
Evaluation Criteria [2254] and the Information Technology Security
Evaluation Criteria [2192] are two standards that have been replaced by the
Common Criteria (CC) [2142–2144]. These methodologies provide increasing
“levels of trust,” each level having more stringent assurance requirements
than the previous one. When experts evaluate and review the evidence of
assurance, they provide a check that the evidence amassed by the vendor is
credible to disinterested parties and that the evidence supports the claims of
the security requirements. Certification by these experts signifies that they
accept the evidence.

19.1.1 The Need for Assurance

Applying assurance techniques is time-consuming and expensive. Operating
systems, critical applications, and computer systems are often marketed as
“secure,” whereas in reality they have serious flaws that undermine their
security features, or they are used in environments other than those for which
their security features were developed. The marketing creates a false sense of
well-being, which in turn encourages the users, system administrators, and
organizations to act as though their systems were protected. So they fail to
develop the defenses needed to protect critical information.

Accidental or unintentional failures of computer systems, as well as
intentional compromises of security mechanisms, can lead to security
failures. Neumann [1451] describes nine types of problem sources in
computer systems.



1. Requirements definitions, omissions, and mistakes;

2. System design flaws;

3. Hardware implementation flaws, such as wiring and chip flaws;

4. Software implementation errors, program bugs, and compiler bugs;

5. System use and operation errors and inadvertent mistakes;

6. Willful system misuse;

7. Hardware, communication, or other equipment malfunction;

8. Environmental problems, natural causes, and acts of God; and

9. Evolution, maintenance, faulty upgrades, and decommissions

Assurance addresses each of these problem sources (except for natural causes
and acts of God). Design assurance techniques applied to requirements
address items 1, 2, and 6. A specification of requirements must be rigorously
analyzed, reviewed, and verified to address completeness, consistency, and
correctness. If the security requirements are faulty, the definition of security
for that system is faulty, so the system cannot be “secure.” Proper
identification of threats and appropriate selection of countermeasures reduce
the ability to misuse the system. Design assurance techniques can detect
security design flaws, allowing their correction prior to costly development
and deployment of flawed systems.

Implementation assurance deals with hardware and software implementation
errors (items 3, 4, and 7), errors in maintenance and upgrades (item 9),
willful misuse (item 6), and environmentally induced problems (item 8).
Thorough security testing as well as detailed and significant vulnerabilities
assessment find flaws that can be corrected prior to deployment of the
system.



Operational assurance can address system use and operational errors (item 5)
as well as some willful misuse issues (item 6).

Neumann’s list is not exclusive to security problems. It also addresses risks to
safety, reliability, and privacy.

EXAMPLE: [1451] The space shuttle Challenger exploded on January 28,
1986, killing everyone on board. An essential failure was a decision to take
shortcuts to meet an accelerated launch schedule. Among other steps, several
sensors were removed from the booster rockets. The sensors might have
enabled analysts to detect that the cold weather was affecting the booster
rockets adversely and to delay the launch. Better assurance techniques might
have detected the possible effects of removing the sensors, as well as other
problems in the design of the booster rockets.

EXAMPLE: [1451] Three patients died from a radiation overdose attributed to
a Therac 25 computer-based electron accelerator radiation therapy system.
The flaws in the system resulted from two flaws in the design of the system’s
software and the removal of a hardware safety interlock. Assurance
techniques would have detected the flaws in the software’s design, and
ongoing assurance techniques would have detected the removal of the
interlock.

EXAMPLE: [1451] Although the most significant root cause of the Three Mile
Island nuclear failure was a hardware problem (non-standard instruments
were used to measure core temperature), design and software problems
contributed significantly. When the temperature rose very high, the system
printed a string of question marks rather than the measured temperature. In
addition, the intended, rather than the actual, valve settings were displayed.
Assurance techniques would have detected these software flaws.

Sometimes safety and security measures can backfire. Assurance techniques
highlight the consequences of these errors.



EXAMPLE: [1451] The Bell V22 Osprey is a high-technology helicopter. After
a fifth Osprey had crashed, an analysis traced the cause to a failure to correct
for malfunctioning components. The Osprey implemented a majority-voting
algorithm, and the cross-wiring of two roll-rate sensors allowed two faulty
components to outvote the third, correctly functioning, component. Although
assurance techniques might not have prevented the incorrect voting, they
would have emphasized the results that could have occurred if faulty
components overrode the correctly functioning components.

Other failures have had less serious consequences. When bugs were found in
the trigonometric functions of the Intel 486 chip, Intel’s public reputation
was damaged, and replacing the chips cost Intel time and money. As a result,
Intel began using high-assurance methods to verify the correctness of
requirements in their chip design [1552].

19.1.2 The Role of Requirements in Assurance

Although security policies define security for a particular system, the policies
themselves are created to meet needs. These needs are the requirements.

Definition 19–4. A requirement is a statement of goals that must be
satisfied.

A statement of goals can vary from generic, high-level goals to concrete,
detailed design considerations. The term security objectives refers to the
high-level security issues and business goals, and the term security
requirements refers to the specific and concrete issues.

A brief review of definitions will prove helpful. Definition 4–1 states that a
security policy is a statement that partitions the states of the system into a set
of authorized or secure states and a set of unauthorized or non-secure states.
Equivalently, we can consider a security policy to be a set of specific
statements that, when enforced, result in a secure system. The individual
statements are the security requirements for the entity and describe what



behavior must take place (or not take place) in order to define the authorized
states of the system. Typically, requirements do not contain implementation
details, which are the realm of the implementing mechanism (see Definition
4–7). On the other hand, a security model describes a family of policies,
systems, or entities (see Definition 4–8) and is more abstract than a policy,
which is specific to a particular entity or set of entities.

EXAMPLE: Suppose a high-level security goal for an entity is to ensure the
confidentiality of certain data that the entity must process. A set of individual
security requirements that specify an access control mechanism to restrict
access to the information would address this objective. Individual
requirements might describe the access control policy, the rules it
implements, the security attributes associated with the data, and other
specific issues. Another group of requirements that could address this
objective might require encryption of the information when it is in transit
from one part of the entity to another.

Selecting the right security requirements for a computer entity requires an
understanding of the intended use of that entity as well as of the environment
in which it must function. One can then examine policy models to determine
if any are appropriate. Part III, “Policy,” describes several types of policies
and models that have been used in the past. These models have been
subjected to significant analysis and peer review, and most have had
corrections during their life spans. This process of acceptance is like the
acceptance of mathematical proofs over the centuries. Typically,
mathematicians study a mathematical proof to find its flaws and weaknesses.
Some proofs have survived this test of time, and others have not.



Figure 19–2: Development of a trusted system. There may be
multiple levels of design and implementation. Note that the
refinement steps alternate with the assurance steps.

19.1.3 Assurance Throughout the Life Cycle

The goal of assurance is to show that an implemented and operational system
meets its security requirements throughout its life cycle. Because of the
difference in the levels of abstraction between high-level security
requirements and low-level implementation details, the demonstration is
usually done in stages. Different assurance techniques apply to different
stages of system development. For this reason, it is convenient to classify
assurance into policy assurance, design assurance, implementation
assurance, and operational or administrative assurance.

Definition 19–5. Policy assurance is the evidence establishing that the set
of security requirements in the policy is complete, consistent, and technically
sound.

Policy assurance is based on a rigorous evaluation of the requirements.
Completeness and consistency are demonstrated by identifying security
threats and objectives and by showing that the requirements are sufficient to
counter the threats or meet the requirements. If a security policy model is
used, the justifications in the model can support the technical soundness of



the requirements.

Once the proper requirements have been defined, justified, and approved for
the system, the design and development process can begin with confidence.
The developers create the system design to implement the security
requirements and provide assurance evidence that the design meets the
security requirements. The next step is to show that the system implements
the design correctly. The design and development approach is illustrated in
Figure 19–2. As that figure shows, following every design and
implementation refinement step is an assurance justification step that shows
that the requirements continue to be met at successive levels of development
of the trusted system.

This process is usually iterative, because assurance steps identify flaws that
must be corrected. When this happens, the affected steps must be rechecked.

EXAMPLE: If assurance step 4 indicates a flaw in the implementation, the
implementation will have to be adjusted and the affected parts of step 4
redone. If this flaw in the implementation in turn indicates a flaw in the
design, the design must be adjusted, causing steps 1, 2, 3, and 4 to be
revisited. On rare occasions, a flaw in the implementation or design may
point to a flaw in the requirements.

Assurance must continue throughout the life of the system. Because
maintenance and patching usually affect the system design and
implementation, the assurance requirements are similar to those described
above.

Definition 19–6. Design assurance is the evidence establishing that a
design is sufficient to meet the requirements of the security policy.

Design assurance includes the use of good security engineering practices to
create an appropriate security design to implement the security
requirements. It also includes an assessment of how well the system design



meets the security requirements.

Design assessment techniques use a policy or model of the security
requirements for the system as well as a description or specification of the
system design. Claims are made about the correctness of the design with
respect to security requirements. The design assurance techniques provide a
justification or proof of such claims.

Definition 19–7. Implementation assurance is the evidence establishing
that the implementation is consistent with the security requirements of the
security policy.

In practice, implementation assurance shows that the implementation is
consistent with the design, which design assurance showed was consistent
with the security requirements found in the security policy. Implementation
assurance includes the use of good security engineering practices to
implement the design correctly, both during development and through the
maintenance and repair cycles. It also includes an assessment of how well the
system as implemented meets its security requirements through testing and
proof of correctness techniques, as well as vulnerability assessment.

Design assurance and implementation assurance verify that the security
policy requirements are properly designed and built into the system.
However, computer systems and applications must be delivered, installed,
and operated as assumed during design and implementation. Typically, the
vendor provides procedures and processes in the form of supporting auto-
mated tools and documentation. The customer is responsible for ensuring
their correct use.

Definition 19–8. Operational or administrative assurance is the evidence
establishing that the system sustains the security policy requirements during
installation, configuration, and day-to-day operation.

One fundamental operational assurance technique is a thorough review of



product or system documentation and procedures, to ensure that the system
cannot accidentally be placed into a nonsecure state. This emphasizes the
importance of proper and complete documentation for computer
applications, systems, and other entities.

19.2 Building Secure and Trusted Systems

Building secure and trusted systems depends on standard software
engineering techniques augmented with specific technologies and
methodologies. Hence, a review of the life cycles of systems will clarify much
of what follows.

19.2.1 Life Cycle

The concept of a life cycle addresses security-relevant decisions that often are
made outside the engineering disciplines in business situations. There is
more to building a product or system than just the engineering steps. Security
goals may impact both the life cycle and the engineering process used. Such
processes establish both discipline and control and provide confidence in the
consistency and quality of the resulting system. Assurance requires a life cycle
model and engineering process in every situation, although the size and
complexity of the project, the project team, and the organization guide
selection of the appropriate model and process. In a small operation, where
individuals play multiple roles, an informal structure of the life cycle process
may work best. In a larger company with complex roles, distributed
development environments, and interactions among several projects and
project team members, a more rigorous and formal process might be more
appropriate.

A life cycle starts when a system is considered for development and use. The
life cycle ends when the system is no longer used. A life cycle includes a set of
processes that define how to perform activities, as well as methods for
managing activities. Examples of such activities are writing of marketing



literature, sales training, and design and development of code. Management
activities include planning, configuration management, and selection and use
of standards. Both types of activities follow the system from its initial
conception through the decision to create the system, the steps required to
develop, sell, and deploy the system, the maintenance of the system, and the
decommissioning and retirement of the system.

A typical life cycle process is defined in stages. Some stages depend on
previous stages, whereas others do not. Each stage describes activities of all
the involved disciplines and controls interdisciplinary interactions. As work
progresses, the project ideally transitions from one stage to the next. In
practice, there is often some iteration of the stages — for example, when a
more advanced stage uncovers flaws or omissions in the work of the previous
stage.

Consider a very general life cycle “metamodel” to illustrate these concepts.
This model captures the fundamental areas of system life for any type of
project, although the focus is on software engineering projects. An actual,
functioning life cycle process may be more detailed, but this metamodel
addresses the needs of any business application. It incorporates the four
stages of conception, manufacture, deployment, and fielded product life.
Engineering process-es tend to focus on manufacture and, to a lesser degree,
on fielded product life, although engineering function responsibilities may
exceed this typical view.

19.2.1.1 Conception

The conception stage starts with an idea. Ideas come from anywhere — for
example, from customers, engineers, other disciplines, user groups, or others.
The organization decision makers may decide to

• fund the idea and make it a project;

• reject the idea; or



• ask for further information or for a demonstration that the idea has merit.

How decisions are made varies. A decision may be rather spontaneous in a
very small and self-contained organization, where communication is
ubiquitous and informal. A larger company may have formalized processes
for initiation of new projects requiring many layers of approval.

Definition 19–9. A proof of concept is a demonstration that an idea has
merit.

The decision makers may ask for a proof of concept if they are unsure, or not
convinced, that the idea is worth pursuing. Developing proofs of concept
typically involves small projects. A request for a proof of concept may result
in a rapid prototype, an analysis, or another type of proof. It need not involve
the engineering staff, and it need not use steps in the engineering process.

The output of the conception stage must provide sufficient information for all
disciplines to begin their tasks in the next stage. This information may be an
overview of the project; high-level requirements that the project should meet;
or schedule, budget, staffing, or planning information. The planning
information could be a detailed project plan or more general high-level plans
for each of the disciplines involved in the project. The exact nature of the
information depends on the size and complexity of the project.

Security feasibility and high-level requirement analysis should begin during
this stage of the life cycle. Before time and resources are invested in
development or in proof of concept activities, the following questions should
be considered.

• What does “secure” mean for this concept?

• Is it possible for this concept to meet this meaning of security?

• Is the organization willing to support the additional resources required to
make this concept meet this meaning of security?



Identification of threats and assumptions comprises another important set of
security is-sues. It is especially important to determine the expected usage of
the product and the threats that are visible at the conception stage. This
allows those threats to be addressed in rapid prototypes and proofs of
concept. It also helps develop realistic and meaningful requirements at lat-er
stages. It provides the basis for a detailed threat analysis that may be required
in the manufacturing phase to refine requirements.

Development of assurance considerations is important at this stage. A
decision to incorporate assurance, and to evaluate mechanisms and other
evidence of assurance, will influence every subsequent step of development.
Assurance decisions will affect schedules and time to market.

19.2.1.2 Manufacture

Once a project has been accepted, funded, approved, and staffed, the
manufacturing stage be-gins. Each required discipline has a set of substages
or steps determined in part by the size of, complexity of, and market for the
system. For most disciplines, the manufacturing stage is the longest.

Manufacturing begins with the development of more detailed plans for each
of the involved disciplines, which could include marketing plans, sales
training plans, development plans, and test plans. These documents describe
the specific tasks for this stage of the life cycle within each discipline. The
actual work required by each discipline depends on the nature of the system.
For example, a system designed for internal use would not have sales
requirements, and marketing requirements might target internal groups who
may use the completed entity. Alternatively, a product designed for
commercial use could require massive marketing campaigns and significant
effort on the part of the sales force.

The software development or engineering process lies in this stage. It
includes procedures, tools, and techniques used to develop and maintain the
system. Technical work may include design techniques, development



standards and guidelines, and testing tools and methods. Management
aspects may include planning, scheduling, review processes, documentation
guidelines, metrics, and configuration management such as source code
control mechanisms and documentation version controls.

The output of this stage from each discipline should be the materials
necessary to determine whether to proceed. These materials are the masters
that are then used to distribute and deploy the product. Marketing groups
could complete marketing collateral such as white papers and data sheets.
Sales groups could develop documented leads and sales channels, as well as
training materials for the sales force. Engineering groups would develop a
tested, debugged system that is ready for use. Documentation groups would
complete manuals and guides. Service groups would be trained on the
product and may need to add staffing to handle telephone calls, installation
support, bug tracking, and the like. The focus of this book is on the engineer-
ing steps of this stage.

19.2.1.3 Deployment

Once the system has passed the acceptance criteria in the manufacturing
stage, it is ready for deployment. This stage is the process of getting the
system out to the customer. It is divided into two substages.

The first substage is the domain of production, distribution, and shipping.
The role of the other disciplines (such as engineering and marketing) is to
deliver masters to the production staff. That staff creates and packages the
materials that are actually shipped. If there is no assurance that masters have
been appropriately protected from modification, and that copies are replicas
of the masters, then the painstaking assurance steps taken during
manufacture may be for naught.

The distribution organization ships systems to customers and to other sales
organizations. In the case of an internal system, this step may be small. Users
of the system may require specific types of documentation. Security and



assurance issues in this part of deployment are focused on the integrity of the
delivery, that is knowing that what was received is actually what was shipped.

The second substage of deployment is proper installation and configuration
of the system in its production setting. Accurate installation and
administrative guidance that includes security considerations and
descriptions of security measures are necessary. The developers must ensure
that the system will work appropriately in this environment. The developers
are also responsible for appropriate assurance measures for functionality,
tools, and documentation. Service personnel must know appropriate security
procedures as well as all other aspects of the system.

19.2.1.4 Fielded Product Life

The primary tasks of fielded product life are patching or fixing of bugs,
maintenance, and customer service. In some organizations, routine
maintenance and emergency patching may be the responsibility of
engineering. Alternatively, maintenance and patching may the responsibility
of an organization entirely separate from the product development
organization. Wherever this responsibility lies, an engineering process must
track maintenance and patches, and a deployment process must distribute
patches and new releases. Modifications and enhancements must meet the
same level of assurance rigor as the original development.

Commercial systems often have separate customer service and support
organizations and engineering organizations. The support organization tasks
could include answering questions, recording bugs, and solving routine
customer problems. The engineering organization handles maintenance and
patching.

Product retirement, or the decision to take a product out of service, is a
critical part of this stage of the life cycle. Vendors need to consider migration
plans for customers, routine maintenance for retired products still in use, and
other issues.



The importance of the configuration of the fielded product and its role in the
security of the network system cannot overlooked. There are many large,
expensive breaches lately that have been the result of improper security
architectures, improper remote connections, or un-patched systems. In
addition to the Target and Equifax breaches mentioned below, since 2000
there have also been breaches at Yahoo!, Home Depot Inc., Anthem Inc., and
the US Office of Management and Budgeting (OMB) which have affected
large numbers of individuals.

EXAMPLE: [1018, 1755] The Target Corporation breach of 2013 is an example
of a system network that was architected with improper security controls.
This breach started by compromising a third party vendor with access to the
Target network. Once in the Target network, the attackers were able to
compromise internal servers and install malware on the point-of-sale (POS)
systems in order to steal tens of millions of debit and credit cards.

EXAMPLE: [804] The Equifax breach of 2017 is an example of improperly
maintained and configured systems with possible insufficient data security
policies and practices. Based on current information, an important system
patch was not installed, causing the breach of private personal financial
information for hundreds of millions of individuals.

19.2.2 The Waterfall Life Cycle Model

We have discussed life cycles in terms of stages. The waterfall model captures
this.

Definition 19–10. [1624] The waterfall life cycle model is the model of
building in stag-es, whereby one stage is completed before the next stage
begins.

This model is not the only technique for building secure and trusted systems,
but it is perhaps the most common. It consists of five stages, pictured in
Figure 19–3. The solid arrows show the flow from each stage to the next.



19.2.2.1 Requirements Definition and Analysis

In this phase, the high-level requirements are expanded. Development of the
overall architecture of the system may lead to more detailed requirements. It
is likely that there will be some iteration between the requirements definition
step and the architecture step before either can be completed.

Figure 19–3: Development of a trusted system. There may be
multiple levels of design and implementation. Note that the
refinement steps alternate with the assurance steps.

Requirements may be functional requirements or nonfunctional
requirements. Functional requirements describe interactions between the
system and its environment. Nonfunctional requirements are constraints or
restrictions on the system that limit design or implementation choices.
Requirements describe what and not how. They should be implementation-
independent.

Often, two sets of requirements are defined. A requirements definition of
what the customer can expect the system to do is generally presented in
natural language. A technical description of system characteristics,
sometimes called a requirements specification, may be presented in a more
precise form. The analysis of the requirements may include a feasibility study
and may examine whether or not the requirements are correct, consistent,



complete, realistic, verifiable, and traceable.

System design includes the development of the overall system architecture by
partitioning requirements into hardware and/or software systems. The
nature of the overall architecture may place additional constraints or
requirements on the system, thus creating the need for iteration between this
step and the previous one. An architecture document may or may not be
required. In projects that are revisions or new releases of previous products,
the basic architecture may be already defined. The architecture and the
requirements must be reconciled to be consistent — that is, the architecture
must be able to support the requirements.

19.2.2.2 System and Software Design

Software design further partitions the requirements into specific executable
programs. Typically, at this stage, external functional specifications and
internal design specifications are written. The external functional
specifications describe the inputs, outputs, and constraints on functions that
are external to the entity being specified, whereas the internal design spec-
ifications describe algorithms to be used, data structures, and required
internal routines.

This stage is sometimes broken into the two phases system design, in which
the system as a whole is designed, and program design, in which the
programs of the system are individually designed.

19.2.2.3 Implementation and Unit Testing1

1Some authors break this phase into two parts: implementation testing and
unit testing. In practice, the develop-er of a program is usually responsible for
the unit testing of that program. Because the two are often done con-
currently, it seems appropriate to treat them as a single phase.

Implementation is the development of software programs based on the



software design from the previous step. Typically, the work is divided into a
set of programs or program units. Unit testing is the process of establishing
that the unit as implemented meets its specifications. It is in this phase that
many of the supporting processes described earlier come into play.

19.2.2.4 Integration and System Testing

Integration is the process of combining all the unit-tested program units into
a complete system. Automated tools and guidelines governing the integration
process may be in place. System testing is the process of ensuring that the
system as a whole meets the requirements. System testing is an iterative step
because invariably bugs and errors are found that have to be correct-ed.
Typically, the errors are sent back to the development team to be corrected.
This requires iteration with the previous step. The corrected code is
reintegrated into the system, and system testing is repeated.

19.2.2.5 Operation and Maintenance

Once the system is finished,2 it is moved into production. This is called
fielding the system. Maintenance involves correction of errors that have been
reported from the field and that have not been corrected at earlier stages.
This stage also involves routine maintenance and the re-lease of new versions
of the system. Finally, retirement of the system also falls under this phase.

2That is, the system meets the criteria established to define when it has been
completed.

19.2.2.6 Discussion

In reality, there is usually some iteration between the processes at each stage
of the waterfall because a later process may uncover deficiencies in a previous
stage, causing it to be revisited. For example, implementation errors in the
fielded system may not become clear until the operation and maintenance
stage. Correction of such a deficiency will “trickle down” through the waterfall



of phases. For example, if an error discovered in system testing is found to
impact the software design, that change would feed into the system and
software design phase, through implementation and unit testing to
integration and system testing. An error found in the field may affect any
stage from requirements to integration and system testing. Figure 19–3
shows the waterfall model, depicted by the solid arrows, and the potential
error paths, represented by the dotted arrows. In practice, the stages may be
performed in parallel during the development of certain features and/or parts
of the system. For example for an appliance, the hardware may be in
development while the operating system and other software is still in design.

Use of good system engineering practices provides discipline and process
control during development and maintenance. Security analysis and
development of assurance evidence on a regular basis, and as an integral part
of the development and maintenance activities, increase confidence that the
resulting system meets its security requirements. Use of a life cycle model and
reliable supporting tools cannot ensure freedom from flaws or compliance
with requirements. However, an appropriate process may help limit the
number of flaws, especially those that can lead to security violations. Hence,
building security into a product increases its trust-worthiness. This
demonstrates that the methods used to build a system are critical to the
security of that system.

19.2.3 Agile Software Development

Software development is still a relatively young field. After the past few
decades of building software, the industry has realized that software
development is a creative process. Software development is always changing
and is never really completed. To adjust to the unique nature of software
development, Agile software development was developed. Agile software
development is a term first coined in the Manifesto for Agile Software
Development [143].

Agile software development is centered around Agile teams and focuses on



working together. There are really no Agile methods or processes, but there
are several agile methodologies that fall under Agile software development.
Instead, an Agile team learns how to efficiently work together in their
environment to develop quality software. In addition, Agile engages the
customer to be involved in the software development as a member of an Agile
team. Customers are involved in the requirements and scoping of the
software development projects. This allows the developers to learn first-hand
how the product will be used and what features are the most important.

Agile software development accepts and adapts to changing requirements,
allowing for continuous improvement of features. Agile involves quickly
creating working software and demonstrating to the customer prior to
continuing with the development.

19.2.3.1 Manifesto for Agile Software Development

Agile software development was born at The Lodge at Snowbird ski resort by
seventeen engineers with years of software development experience. They
wrote:

We are uncovering better ways of developing software by doing it. Through
this work we have come to value:

• Individuals and Interactions more than processes and tools

• Working Software more than comprehensive documentation

• Customer Collaboration more than contract negotiation

• Responding to Change more than following a plan

That is, while there is value in the items on the right we value the items on the
left more.3

3Manifesto for Agile Software Development [143].



The seventeen engineers also documented the principles behind the Agile
Manifesto.

19.2.3.2 Agile Methodologies or Implementations?

As mentioned above, Agile software development is not a methodology or set
of processes. Agile software development is an overarching term used to
describe any one of a number of Agile methodologies. These methodologies
include Scrum, Kanban, eXtreme programming (XP), Crystal, Feature-Driven
Development (FDD), Dynamic Systems Development Method (DSDM), and
Pragmatic Programming.

The following subsections provide an overview of the Scrum, Kanban, and XP
methodologies.

19.2.3.2.1 Scrum.

Scrum is a simple, adaptive framework used to iteratively manage projects,
allowing for fast development and continuous improvement. First, the project
is split into small parts that can be completed within a short timeframe
(called a sprint). This is called a product backlog and is created by the
product owner, who is responsible for representing the customer and product
stakeholders. The Scrum team agrees on a small subset from the top of the
product backlog and decides how to design and implement that subset. The
team’s goal is to complete that subset within the sprint. To accomplish this,
the team gathers each day in a daily Scrum “stand up” meeting to evaluate
progress and adjust as needed to deliver a workable solution within every
sprint. When the sprint is over, the work completed should be ready to ship,
demonstrate, or place back in the product backlog if not complete. At the end
of the sprint, the team meets to consider any lessons learned. The project
continues by the team choosing another subset form the product backlog and
starts again [1128, 1709]

19.2.3.2.2 Kanban



The Kanban methodology originated at Toyota manufacturing. Its goal is to
deliver a valuable product to the customer in an expected timeframe. Kanban
ensures that feedback is provided throughout the software development
process to evaluate effort and product at each stage of development. Kanban
manages projects by identifying lanes of work: work to be done, work in
progress, work completed, and work deployed. Each lane, except for the work
deployed lane, has a limit on the number of items within that lane, based on
the staff available to perform the work. Teams can take items off of the work
to be done lane and work on it until completion. When implemented
correctly, a team is completing work on the top item in a lane when another
work item is coming into the lane. [1128].

19.2.3.2.3 Extreme Programming

Extreme programming (XP) is a development methodology based on rapid
prototyping and best practices such as separate testing of components,
frequent reviewing, frequent integration of components, and simple design. A
project is driven by business decisions, not by project stakeholders, and
requirements are open until the project is complete. The design evolves as
needed to remove complexity and add flexibility. Programmers work in teams
or pairs. Component testing procedures and mechanisms are developed
before the components are developed. The components are integrated and
tested several times a day. One objective of this model is to put a minimal
system into production as quickly as possible and then enhance it as
appropriate.

19.2.3.2.4 Discussion

Use of Agile software development for security has several benefits and
several drawbacks. The nature of an evolving design leaves the product
vulnerable to the problems of an add-on product (see Section 20.1.2.2).
Leaving requirements open does not ensure that security requirements will
be properly implemented into the system. If assurance is needed, using Agile
will require that the software development include checkpoints for security of



the features and system overall at appropriate points of the development
process. If threats are analyzed and appropriate security requirements
developed before the system is designed, a secure or trusted system could
result. However, evidence of trustworthiness would need to be adduced after
the system was developed and implemented.

19.2.4 Other Models of Software Development

A few words on other life cycle models will illuminate the differences between
those models and the waterfall model with respect to assurance [1798].

19.2.4.1 Exploratory Programming

In exploratory programming approaches, a working system is developed
quickly and then modified until it performs adequately. This approach is
commonly used in artificial intelligence (AI) system development, in which
users cannot formulate a detailed requirements specification and in which
adequacy rather than correctness is the aim of the system designers. The key
to using this approach successfully is to use techniques that allow for rapid
system iterations. Using a very high-level programming language may
facilitate rapid changes.

In this technique, there are no requirements or design specifications. Hence,
assurance becomes difficult. A system subjected to continual modification
suffers the same vulnerabilities that plague any add-on system. The focus on
adequacy rather than correctness leaves the implementation potentially
vulnerable to attack. Therefore, this model is not particularly useful for
building secure and trusted systems because such systems need precise
requirements and detailed verification that they meet those requirements as
implemented.

19.2.4.2 Prototyping

Prototyping is similar to exploratory programming. The first phase of



development involves rapid development of a working system. However, in
this case, the objective of the rapid development is specifically to establish the
system requirements. Then the software is reimplemented to create a
production-quality system. The reimplementation can be done using another
model that is more conducive to development of secure and trusted systems.

19.2.4.3 Formal Transformation

In the formal transformation model, developers create a formal specification
of the software system. They transform this specification into a program
using correctness-preserving trans-formations. The act of formal
specification, if tied to well-formed security requirements, is beneficial to
security and to design in general. The use of correctness-preserving
transformations and automated methods can assist in developing a correct
implementation. However, a system developed by such a method should be
subjected to the same rigorous implementation testing and vulnerabilities
analysis that are applied to any other methodology.

19.2.4.4 System Assembly from Reusable Components

This technique assumes that systems are made up mostly of components that
already exist. The system development process becomes one of assembly
rather than creation. Developing trusted systems out of trusted components
is complex because of the need to reconcile the security models and
requirements of each component, and developing trusted systems out of
untrusted components is even more complex. However, this is a common
approach to building secure and trusted systems.

19.3 Summary

Assurance is the foundation for determining the trustworthiness of a
computer system. Assurance techniques test the appropriateness of
requirements and the effectiveness of spec-ification, design, implementation,
and maintenance. These techniques cannot guarantee system security or



safety, but they can significantly increase the likelihood of finding security
flaws during requirements definition, design, and implementation. Errors
found early can be corrected early. A well-defined life cycle process provides
rigorous, well-defined steps with checks and balances that contribute
significantly to the quality of the software developed and also increases the
credibility of the measures of assurance that are used.

19.4 Research Issues

Probably the most important area in assurance research is getting people to
understand the importance and the value of assurance and trust. Assurance
techniques are expensive and time-consuming, but they result in more
reliable products. Moreover, assurance techniques support the identification
of more clearly defined problems for products to solve and functions for them
to perform. Most current systems are fragile — particularly systems used as
infrastructure. Applying increasingly rigorous assurance techniques would
strengthen these systems, not only in terms of security but also in terms of
reliability and robustness. However, the level of assurance used with systems
and products is driven by regulation and consumer demand as well as by the
ability to hire people who know these techniques. Therefore, the problem of
getting assurance techniques to be more widely used is in large part a
problem of persuading consumers, developers, vendors, and regulators of
their importance.

Part of the problem is cost; most assurance techniques are expensive. If
assurance techniques were more effective, more efficient, less costly, and
easier to use, would they be used more often? How can their cost be lowered?
How can the use of these techniques, and the techniques themselves, be
automated? In particular, formal methods require organizations not just to
invest money but also to find qualified people who can use those methods
effectively. Automating the less formal testing of software and systems, and
providing better tools for evaluation methodologies such as those discussed
in Chapter 22, “Evaluating Systems,” would help.



This leads to the issue of selecting appropriate assurance techniques. Some
assurance technologies are appropriate in specific environments or for
meeting specific goals. How does one determine which of the many
techniques to use? Given specific environments and goals, how do the
techniques compare?

One important area for research and standardization is the strength of
security functionality. The effectiveness of a cryptographic algorithm has
several measures (none of them perfect): the size of the key, the arrangement
of elements in a substitution table, the size of the possible message space, and
the strength of the cipher when used as a pseudorandom number generator.
Other types of security functionality have more obscure, or more
meaningless, measures. Of course, not all such functions lend themselves to
computational measures, but there may be other methods that can be
applied.

Another important area is the investigation of new approaches to assurance.
Assurance is generally measured by the performance of the resulting product
or system rather than the process by which it was developed. Several models
and methodologies, notably the SSE-CMM (see Section 22.8), deal with the
process of development rather than its result. In practice, which approach
produces systems with some level of assurance and with lowest cost? Would
combining the two approaches improve the level of assurance, or would it
make the development process more cumbersome with no added benefit?

19.5 Further Reading

Any serious student of assurance should read James Anderson’s seminal
paper [50]. This paper defines many key concepts on which assurance is
based.

Recent work on automobile [396,1103,2038] and medical device security
[323,861,862] has shown the necessity of applying assurance techniques.



These techniques have been applied for a variety of specialized systems,
including outer space [1163, 1459, 1585], systems that control trains [1270],
and aviation [192, 675].

Metrics have been used to measure assurance with respect to specific
properties, such as failure tolerance [532,1951] abnormal system behavior
[648], and test coverage [40,2111]. The Visual Network Rating Methodology
(VNRM) [1499] helps users organize and document assurance arguments.

Berzins and Luqi [187] discuss applications of formal methods to software
engineering. Brooks’ description of the development of OS/360 [302] focuses
on the human practices and problems as well as the technical ones. It is a
classic in the field of software engineering.

19.6 Exercises

1. Definition 19–2 defines assurance in terms of “confidence.” A vendor
advertises that its system was connected to the Internet for three months, and
no one was able to break into it. It claims that this means that the system
cannot be broken into from any network.

(a) Do you share the vendor’s confidence? Why or why not?

(b) If a commercial evaluation service had monitored the testing of this
system and confirmed that, despite numerous attempts, no attacker had
succeeded in breaking into it, would your confidence in the vendor’s claim be
increased, decreased, or left unchanged? Justify your answer.

2. A computer security expert contends that most break-ins to computer
systems today are attributable to flawed programming or incorrect
configuration of systems and products. If this claim is true, do you think
design assurance is as important as implementation and operational
assurance? Why or why not?



3. Suppose you are the developer of a computer product that can process
critical data and will likely run in a hostile environment. You have an
outstanding design and development team, and you are very confident in the
quality of their work.

(a) Explain why you would add assurance steps to your development
environment.

(b) What additional information (if any) would you need in order to decide
whether or not the product should be formally evaluated?

4. Requirements are often difficult to derive, especially when the
environment in which the system will function, and the specific tasks it will
perform, are unknown. Explain the problems that this causes during
development of assurance.

5. Why is the waterfall model of software engineering the most commonly
used method for development of trusted systems?

6. The goal of a researcher is to develop new ideas and then test them to see if
they are feasible. Software developed to test a new idea is usually similar to
software developed for proof of concept (see Definition 19–9). A commercial
firm trying to market software that uses a new idea decides to use the
software that the researchers developed.

(a) What are the problems with this decision from an assurance point of
view?

(b) What should the company do to improve the software (and save its
reputation)?

7. A company develops a new security product using the extreme
programming soft-ware development methodology. Programmers code, then
test, then add more code, then test, and continue this iteration. Every day,
they test the code base as a whole. The programmers work in pairs when



writing code to ensure that at least two people review the code. The company
does not adduce any additional evidence of assurance. How would you
explain to the management of this company why their soft-ware is in fact not
“high-assurance” software?



Chapter 20. Building Systems
with Assurance
LORD BARDOLPH: When we mean to build, We first survey the plot, then draw 
the model; And when we see the figure of the house, Then must we rate the 
cost of the erection; Which if we find outweighs ability, What do we then but 
draw anew the model In fewer offices, or at last desist To build at all?

— King Henry IV, Part II, I, iii, 41–48.

Designing and implementing systems with assurance requires that every step 
of the process involve an appropriate level of assurance. This chapter 
discusses how to provide the levels of assurance during the steps of building a 
system. It emphasizes the documentation and methods required to obtain 
evidence to support claims of assurance and provides the context for detailed 
discussions of methodologies such as formal program verification and testing.

20.1 Assurance in Requirements Definition and 
Analysis

Understanding the role of assurance in the development of requirements 
means understanding what requirements must provide. The set of 
requirements must be complete and correct in the context of security policy 
models. Defining requirements is an iterative process that normally begins 
with threat definition and culminates with the detailed level requirements 
that are used in the design, implementation, and maintenance of the system.



20.1.1 Threats and Security Objectives

In building a secure or trusted system, it is a mistake to assume that threats
to the system are obvious or well-defined. This section briefly discusses
identification of the security threats to the system and development of high-
level security requirements, or security objectives, to mitigate the threats.
This approach parallels that of the Common Criteria (see Section 22.7).

Definition 20–1. A threat is a potential occurrence that can have an
undesirable effect on the system assets or resources. It is a danger that can
lead to undesirable consequences.

Threats are different from vulnerabilities.

Definition 20–2. A vulnerability is a weakness that makes it possible for a
threat to occur.

At the highest layer of abstraction, security threats are breaches of
confidentiality, disruptions of integrity, or denials of service. It is important
to refine these threats in relation to the specific system and the environment
in which it must operate. Threats may come from either outside or inside
some boundary that defines the system. Threats can come from authorized
users or from unauthorized users who masquerade as valid users or find ways
to bypass security mechanisms. Threats can also come from human errors or
from acts of God.

EXAMPLE: An attacker from the Internet penetrating a computer system is
an example of an outside threat. A penetration could result in a breach of
confidentiality, a breach of integrity, or a denial of service. A successful
penetration could result in theft of secrets, compromising of secret
information, or the setting up of a denial of service attack.

EXAMPLE: Another example of an outsider threat involves an organizational
LAN having restricted access to certain machines. A valid user of the LAN



could be an outsider to a specific host and could theoretically mount an
outsider attack on that host.

If the system is not connected to external networks, outside attackers may not
be a threat. Elimination or mitigation of the threat of penetration does not,
however, eliminate the threat of disclosure of secrets, breaches of integrity, or
denials of service. Typically, inside users are trusted to use the system
correctly, but there are many ways in which this trust can go wrong. One way
is through intentional misuse of authorizations, whether for fun, profit, or
revenge. An example of intentional misuse of authorizations is abuse of
privileges to commit fraud within the system, including exfiltrating
personally identifiable information. Another way trust can go wrong is the so-
called fat-finger error, whereby an authorized user makes a mistake or
inadvertently corrupts or misuses the system. Other means of misusing
systems include finding ways to defeat or bypass authorization and access
controls or other security mechanisms to reach information that would
ordinarily be denied the perpetrator.

Every identified threat must be addressed by some countermeasure that
mitigates it. Security objectives are high-level requirements that can serve
this purpose. For example, threats regarding unauthorized use of the system
can be mitigated by an objective that requires user identification and
authentication before a user is given access to any system resources.
Objectives are requirements at the highest level, and they provide clues about
the kinds of mechanisms that are needed to implement them. In addition,
objectives reveal information that can help in the subsequent development of
a detailed requirement specification. Objectives suggest models and other
existing policies. Sometimes security objectives are not sufficient to address
all threats, which leads to assumptions about the operating environment,
such as physical protection mechanisms, to address all threats.

Mapping the security threats into the set of objectives and assumptions
partially addresses the completeness of the system security requirements.



Note that every threat must be addressed. Threats may be mitigated by a
combination of assumptions or objectives. Often a single objective or
assumption can address multiple threats.

20.1.2 Architectural Considerations

An early architectural decision is to determine the primary focus of control of
security enforcement mechanisms. Computer security centers on access to
information, but the primary focus of control of security protection and
enforcement mechanisms may be on user identity or on operations. In
operating systems, for example, the focus of control is on the data. Access
decisions are based on predefined permissions to data for processes acting on
behalf of users. User-based mechanisms include mandatory access control
mechanisms, discretionary access control mechanisms, and privileges
assigned to users. In applications, the focus of control may be on operations
that a user is allowed to perform. A user may be restricted to certain
operations. These operations control access to the data needed to perform
their functions. Role-based access control mechanisms focus on operations.

Another architectural decision is whether to centralize some security
functions or to distribute them among systems or system components. There
are trade-offs between a centralized security enforcement mechanism and a
distributed mechanism. In distributed systems, a function may be spread
across components or centralized in a single component. In a single-host
system, a function may be distributed across modules or consolidated into a
single module. An example in a distributed system is the collection of security
audit information. The system could forward all auditing information to a
central audit repository, or each component could do its own auditing. As
another example, an operating system can use centralized or distributed
mandatory access control checks. The mechanism may be centralized, and
called by other routines or may be distributed, and duplicated within the
operating system where needed.

Generally, it is easier to analyze and develop sound assurance evidence for



centralized mechanisms. A mechanism that is in one place need only be
analyzed once, and the remainder of the assurance steps simply argue that
the routine is called appropriately. However, a centralized mechanism may be
a bottleneck and may impact performance.

20.1.2.1 Security Mechanisms and Layered Architecture

Computer architectures are layered, and security enforcement mechanisms
may reside at any architectural layer. Systems designed and built using layers
describe the functionality of each layer precisely.

EXAMPLE: Consider an architecture with four layers.

1. The uppermost layer is the application layer. Application programs are
those special-purpose programs that are used to perform specific tasks on
behalf of a user, varying from personal applications to business applications
to Web applications.

2. The next layer is the services or middleware layer. It provides support
services for applications. These services, however, are not part of the
operating system. Examples of tools at this layer include database
management systems and object reference brokers.

3. The next layer is the operating system layer. Software at this layer
manages memory, file systems, I/O, and peripheral devices and may be
responsible for scheduling and process control. The operating system kernel,
which is at this layer, is the part of the operating system that is restricted to
specially authorized users and is at the heart of the control of the physical
resources of the underlying processor.

4. The lowest layer is the hardware layer. This layer includes firmware,
which is code that has been built into the hardware itself and cannot be
altered or removed without making a physical change in the processor.

When an application receives a request, it passes the request to the layer



underneath the application. That layer processes the request and passes it to
the next layer. This continues until the request reaches the layer that can
fulfill the request. Successive layers simply follow the instructions they are
given by the preceding layers. When the request is satisfied, the pertinent
information is passed back up the layers to the user at the application layer.

An early architectural decision is selecting the correct layer for a mechanism.
Designers must select the layer at which the mechanism will be the most
efficient and the most effective. Security mechanisms for controlling user
actions may be most effective at the application level, but security
mechanisms for erasing data in freed disk blocks may be most effective at the
operating system level.

Once a layer has been chosen for a security mechanism, one must consider
how to protect the layers below that layer. For example, a secure operating
system requires security mechanisms in the hardware layer as well as in the
operating system itself. A secure application requires security mechanisms
inside the application as well as at the services, operating system, and
hardware layers.

The security mechanisms at the hardware layer may be a combination of
physical security mechanisms that isolate the hardware in rooms requiring
special access and administrative procedures that restrict access to them.
Some computer manufacturers suggest that security mechanisms be built
into the firmware and hardware [82, 2258] as well as into the software.

It may not be possible to place a mechanism in the desired layer unless what
is being developed includes all the pertinent architectural layers. For
example, when developing an application, the builder may not be able to
make changes in the operating system layer. Doing so would mean defining
requirements for the operating system and acquiring an operating system
that meets those requirements. If no such operating system exists, the
mechanism must be placed at a less optimal layer, or the builders must
consider a special-purpose operating system.



EXAMPLE: Consider an application program that uses a database
management system to manage information. The user requests access to a
particular data item from the application. The application forwards this
request to the database management system. That system processes the
request and sends appropriate requests to the operating system. The database
management system may use operating system commands or may issue
system calls directly to continue the request. The operating system kernel
issues commands to the firmware and hardware to physically retrieve the
data and pass it back to the operating system. Then the operating system
passes the retrieved data to the database management system, which returns
the data to the application.

The security enforcement mechanisms of the application and the database
management system can only control accesses to the underlying operating
system that use the internal mechanisms of the application and the database
management system. Application and database mechanisms cannot control a
system user from accessing the operating system directly, bypassing the
controls of the application or the database mechanism entirely. If a user can
access application or database information by accessing the operating system
directly, then the system is vulnerable. Regardless of the security mechanisms
within the database management system, the operating system must also
enforce security. For this reason, all evaluated and rated database
management systems require the underlying operating system to provide
specific security features and to be a rated and evaluated operating system.

20.1.2.2 Building Security In or Adding Security Later.

Like performance, security is an integral part of a computer system. It should
be integrated into the system from the beginning, rather than added on later.

Imagine trying to create a high-performance product out of one that has poor
performance. If the poor performance is attributable to specific functions,
those functions must be redesigned. However, the fundamental structure,



design, and style of the system are probably at the heart of the performance
problem. Fixing the underlying structure and system design is a much harder
problem. It might be better to start over, redesigning the system to address
performance as a primary goal. Creating a high-security system from one that
previously did not address security is similar to creating a high-performance
system. Products claiming security that are created from previous versions
without security cannot achieve high trust because they lack the fundamental
and structural concepts required for high assurance.

A basic concept in the design and development of secure computer systems is
the concept of a reference monitor and its implementation—the reference
validation mechanism.

Definition 20–3. [50] A reference monitor is an access control concept of
an abstract machine that mediates all accesses to objects by subjects.

Definition 20–4. [50] A reference validation mechanism (RVM) is an
implementation of the reference monitor concept. An RVM must be
tamperproof, must always be invoked, can never be bypassed, and must be
small enough to be subject to analysis and testing, the completeness of which
can be assured.

Any secure or trusted system must obviously meet the first three
requirements. The “analysis and testing” of the reference monitor provides
evidence of assurance. The fourth requirement engenders trust by providing
assurance that the operational system meets its requirements.

Definition 20–5. [50] A security kernel is a combination of hardware and
software that implements a reference monitor.

Security kernels were early examples of reference validation mechanisms.
The idea of a security kernel was later generalized by the definition of a
trusted computing base, which applies the reference validation mechanism
rules to additional security enforcement mechanisms.



Definition 20–6. [2254] A trusted computing base (TCB) consists of all
protection mechanisms within a computer system—including hardware,
firmware, and software— that are responsible for enforcing a security policy.

A TCB consists of one or more components that together enforce the security
policy of a system. The ability of a TCB to enforce a security policy depends
solely on the mechanisms within the TCB and on the correct input of
parameters (such as a user’s clearance) related to the security policy.

If a system is designed and implemented so as to be “small enough to be
subject to analysis and testing, the completeness of which can be assured,” it
will be more amenable to assurance than a system that is not so designed and
implemented. Design analysis is possible using a variety of formal and
informal methods. More thorough testing is possible because what must be
tested is clear from the structured, analyzed design. More and deeper
assurance leads to a higher level of trust in the resulting system. However,
trade-offs may occur between features and simplicity. Inclusion of many
features often leads to complexity, which limits the ability to analyze the
system, which in turn lowers the potential level of assurance.

Systems in which security mechanisms are added to a previous product are
not as amenable to extensive analysis as those that are specifically built for
security. Often the functions are spread throughout the system in such a way
that a thorough design analysis must analyze the entire system. Rigorous
analysis of large and complex designs is difficult. So, it may not be feasible to
determine how well the design implements the requirements. Assurance may
be limited to test results. Testing of conformance to a flawed design is similar
to designing a system to meet inappropriate requirements. The gap in
abstraction between security requirements and implementation code may
prohibit complete requirements testing. Hence, systems with security
mechanisms added after development has been completed are inherently less
trustworthy.

Building a system with security as a significant goal may provide the best



opportunity to create a truly secure system. In the future, this may be the
norm. However, many products today, including many high-assurance
products, are developed by rearchitecting existing products and reusing parts
as much as possible while addressing fundamental structure as well as adding
new security features.

EXAMPLE: Multics [1484] was one of the early general-purpose operating
systems that was built for secure applications. It borrowed much from the
other operating systems of the day. Although it is no longer in use, many
security experts consider Multics to be the best example of an operating
system built for security.

EXAMPLE: Gemsos [1686] is a high-assurance, formally verified operating
system that has a minimal UNIX-like kernel and limited functionality.
Seaview [649] was a high-assurance database management system that was
intended to run on the Gemsos operating system. Seaview was designed for
security but was implemented by rearchitecting an existing database product.

EXAMPLE: Information flow control mechanisms, called guards, are often
high-assurance devices. The RECON guard [53] controls the flow of
information from a highly classified reconnaissance database to an
unclassified network. The Restricted Access Processor [1555] controlled the
flow of information between two differently classified networks. Firewalls are
a form of guards, although they are usually single-purpose applications built
on security-hardened versions of existing operating systems rather than
systems developed specifically for high assurance.

EXAMPLE: In the late 1980s and early 1990s, AT&T undertook two projects
to provide secure versions of UNIX System V that supported mandatory
access controls. The first project was market-driven, in response to specific
requests from customers. The underlying goals of this project were quick time
to market and minimal impact on the user interface and on the look and feel
of the resulting UNIX system, called SV/MLS [288, 690]. The chosen



approach was to add security functionality to AT&T UNIX System V Release
3.2. The second project was focused on restructuring and recreating a UNIX
system to provide a medium-to-high level of trust. This version, called
SVR4.1ES, involved significant rearchitecting of the UNIX system with
security built in [1626]. The technical differences between these two products
illustrate the superiority of building security in over adding it on.

The SVR4.1ES project involved extensive restructuring of the UNIX kernel to
meet high-modularity requirements and to incorporate an implementation of
the principle of least privilege that was integral to the UNIX kernel. SV/MLS
used the existing UNIX kernel modular structure and did not provide an
implementation of least privilege. The basic architecture of SVR4.1ES was
new, and the architecture of SV/MLS was essentially unchanged from its
parent product.

In UNIX systems, the inode structure contains attribute information about
each file or object, such as access permission information and file owner. The
inode also has a pointer to the file or object itself. There is insufficient space
in the inode to house security labels of any significant size. SV/MLS chose not
to disturb the existing inode structure. The designers created a separate table
to hold mandatory access control labels and used a free location in the inode
structure to point to the table. When an object is created, a code defining both
the mandatory access control label and the discretionary security attributes is
stored in the table. Security attributes for subjects are stored internally in the
same code structure. An access control check becomes a comparison of the
codes for the subject and object, effectively doing a mandatory access control
check and a discretionary access control check in one operation.

Even if the implementation of this table is correct and the comparison of the
codes properly reflects the mandatory and discretionary access control
requirements, there are potential weaknesses in this design. The coupling
between the table and the file is inherently weaker than the coupling between
the inode and the file. Two accesses are required to reach the coded



mandatory and discretionary access control attributes of the object (first to
the inode, then to the table), potentially weakening the tie between the actual
object and its security attributes. Updating of discretionary access control
security attributes is done to the inode version of the discretionary access
control requirements. An additional step to update the table entry occurs
whenever the permissions or owner is changed. This introduces the potential
for inconsistency between the inode attributes and the coded interpretation.
During a table update, the mandatory access control information for that
object may be exposed. Finally, if the table is corrupted, the mandatory and
discretionary access permissions for the entire file system may be impacted.
Although the SV/MLS implementations addressed these issues satisfactorily,
the potential for these vulnerabilities still existed.

The SVR4.1ES implementation simply redefined the inode structure. These
new inodes, called vnodes, contained the mandatory access control label as
well as the discretionary access control attributes in the vnode. Access to the
vnode provided access to the mandatory and discretionary attributes.
SVR4.1ES reused the UNIX discretionary access control mechanisms and
augmented them with access control lists. Checks of mandatory and
discretionary access were independent checks. SVR4.1ES was not constrained
by minimal impact requirements, resulting in a stronger set of access control
mechanisms. Because of the structural change, SVR4.1ES was able to reuse
other parts of the system with little impact.

20.1.3 Policy Definition and Requirements Specification

Recall from Section 19.1.2 that we can consider a security policy to be a set of
specific statements or security requirements.

Definition 20–7. A specification is a description of characteristics of a
computer system or program. A security specification specifies desired
security properties.

Good specifications are as important as the properties of the systems or



programs that they describe. Specifications can be written at many different
levels of abstraction. For example, some specifications may describe the
security requirements, whereas other specifications may describe an
architectural view of the system. More detailed specifications may describe
individual components. Even more detailed specifications may describe
individual functions. As this example implies, there may be multiple levels of
specifications at different layers of abstraction.

Specifications must be clear, unambiguous, and complete. This is difficult
when using informal methods that rely on natural language because natural
languages do not have precise syntax or semantics.

EXAMPLE: A specification or an operating system gave “meet C2 security” as
a requirement. The specification provided no details of the C2 requirements
[2254], which included 34 requirements in 11 different categories. Other
requirements in the same specification were extremely detailed, such as those
for adding a new file system, adding several new devices, and making very
detailed changes in the memory control subsystem. The unevenness of the
specification made it difficult to use. The developers chartered to “meet C2
security” neither understood what it meant nor knew how to find the detailed
requirements.

Precision in stating requirements can be difficult to achieve

EXAMPLE: The requirement that “users of the system must be identified and
authenticated” is ambiguous. It does not specify the type of identification
required. Is a driver’s license presented to the system operator sufficient? It
does not unambiguously specify the entities to be authenticated. Is the user,
the representation of the identity, or the system to be authenticated? It also
does not specify who is to perform the authentication. Is the system, some
other system, or some other entity (such as a guard at the door) to perform
the authentication? It is not necessary to name specific identification or
authentication mechanisms to answer these questions and clear up the



ambiguities.

A second iteration might change this requirement to “users of the system
must be identified to the system and must have that identification
authenticated by the system.” This is more precise. The “system” both
identifies and authenticates the representation of the user’s identity (not the
system or the user). However, it still does not address the conditions under
which the user must be identified to the system. Is the user to be identified at
entry to the site, at login, at a particular time of day, or before certain
operations are to be performed?

A third iteration produces the requirement that “users of the system must be
identified to the system and must have that identification authenticated by
the system before the system performs any functions on behalf of that
identity.” This form addresses the concerns from the previous two versions.

There are several different methods of defining policies or requirement
specifications. One technique is to extract applicable requirements from
existing security standards, such as the Common Criteria. These
specifications tend to be semiformal because of the structure of the
requirements and the mappings among them. Another method is to create a
new policy by combining the results of a threat analysis with components of
existing policies.

A third technique is to map the system to an existing model. If the model is
appropriate for the goals of the system, creating a mapping between the
model and the system may be simpler and cheaper than constructing a
requirements specification by other methods. If the mapping is accurate, the
proofs of the original model establish the correctness of the resulting policy.

The expression of the specification can be formal or informal in nature.
Section 21.2 contains an example of a formal specification of the Bell-
LaPadula Model in the specification language SPECIAL.



EXAMPLE: System X is a product that enhances standard UNIX security
mechanisms with mandatory access controls and auditing. The
confidentiality components are based on the Bell-LaPadula (BLP) model
discussed in Section 5.2.3.

The designers use a mapping technique to develop the System X
confidentiality policy.

1. The designers map the elements and state variables of BLP to entities in
System X. They also justify the existence and functions of any entities in
System X that have no counterparts in BLP:

• System X processes are subjects in the set S of the BLP model.

• Inode objects (disk files, directories, and other file system constructs),
interprocess communication objects, mail messages, processes as
destinations for messages, and other passive entities in System X are the
objects in the set O of the BLP model.

• Each system function of System X is given a right from the set P of the BLP
model. Functions that create entities (such as creat, which creates a file) have
the access type w; functions that read and write entities (such as the system
calls read and write) have the types r and w, respectively. Execution and
search accesses are mapped to the access type r.

• The access set b in the BLP model defines the types of access allowed for
each object. For example, subjects can use the rights r, w, and a to access
inode objects.

• The access control matrix a for the current state in the BLP model is the
current state of both mandatory and discretionary controls in System X.

• The functions fs, fo, and fc in the BLP model map into three functions in
System X. The function f(s) is the maximum security level of the subject s, the
function current-level(s) is the current security level of the subject, and f(o) is



the security level of an object.

• The hierarchy H in the BLP model maps differently for different types of
objects. For example, inode objects are hierarchical trees represented by the
file system hierarchy, whereas other object types map to discrete points in the
hierarchy.

2. Next, the designers define BLP properties in the language of System X and
demonstrate that each property is consistent with BLP.

• The mandatory access control property of BLP is translated as a user having
read access over an object if and only if the user’s clearance dominates the
object’?s classification, and as a user having write access over an object if and
only if the object’s classification dominates the user’s clearance.

• The discretionary access control property of BLP is translated as giving a
user access to an object if and only if the owner of the object has explicitly
granted that user access to the object.

• Label inheritance and user level changes are properties specific to System X.
The security level of a newly created object is inherited from the creating
subject. The security level of the initial process at user login, and the security
level of the initial process after a user level change, are bounded by the
security level range defined for that user and by the security level range
defined for the terminal. The security level of a newly spawned process is
inherited from the parent, except for the first process after a user level
change. When a user’s level is raised, the child process does not inherit write
access to the objects opened by the parent. When a user’s level is lowered, all
processes and all accesses associated with the higher privilege are terminated.

• Reclassification is also a property of System X. Specially trusted users are
allowed to downgrade objects they own within the constraints of the user’s
authorizations.



• The System X property of owner/group transfer allows the ownership or
group membership of the process to be transferred to another user or group.

• Finally, the status property is a property of System X. It restricts the
visibility of status information available to users when they use the standard
System X set of commands.

3. In this step, the designers define System X rules by mapping System X
system calls, commands, and functions to BLP rules. The simple security
condition, the *-property, and the discretionary security property are all
interpreted for each type of access. From these interpretations, the designers
can extract specific requirements for specific accesses to particular types of
objects.

4. Finally, the designers demonstrate that the System X rules preserve the
security properties. They either show that the rules enforce the properties
directly or map the rules directly to a BLP rule or a sequence of BLP rules.
System X has nine rules about current access, five rules about functions and
security levels, eight access permission rules, and eight more rules about
subjects and objects. The designers must show that each rule is consistent
with the actions of System X.

The results of these steps provide a high degree of assurance that System X
correctly enforces the rules of the Bell-LaPadula confidentiality model.

20.1.4 Justifying Requirements

Once the policy has been defined and specified, it must be shown to be
complete and consistent. This section examines part of a security policy
developed in accordance with the ITSEC [2192] guidelines. It also provides a
partial informal demonstration that the resulting security policy meets the
threats defined for the system.

The ITSEC (see Section 22.2.5) is a harmonization of security evaluation



criteria of several European countries. ITSEC introduced the concept of a
security target (ST) that defines the security threats to the system and the
functional requirements of the system under evaluation. An ITSEC suitability
analysis justifies that the security functional requirements are sufficient to
meet the threats to the system.

The suitability analysis maps threats to requirements and assumptions in
tabular form. For each threat, a prose description describes how the
references address the threat.

EXAMPLE: Consider a system called Y that is under evaluation. A subset of
the threats, requirements, and assumptions relevant to our security target are
as follows.

• Threat T1: A person not authorized to use the system gains access to the
system and its facilities by impersonating an authorized user.

• Requirement IA1: A user is permitted to begin a user session only if the user
presents a valid unique identifier to the system and if the claimed identity of
the user is authenticated by the system by authenticating the supplied
password.

• Requirement IA2: Before the first user/system interaction in a session,
successful identification and authentication of the user take place.

• Assumption A1: The product must be configured such that only the
approved group of users has physical access to the system.

• Assumption A2: Only authorized users may physically remove from the
system the media on which authentication data is stored.

• Assumption A3: Users must not disclose their passwords to other
individuals.

• Assumption A4: Passwords generated by the administrator shall be



distributed in a secure manner.

The security analysis mapping is as follows.

Threat     Security Target Reference

T1           IA1, IA2, A1, A2, A3, A4

The justification for this mapping requires an examination of the effects of
the security target references.

• The referenced requirements and assumptions guard against unauthorized
access. Assumption A1 restricts physical access to the system to those
authorized to use it. Requirement IA1 requires all users to supply a valid
identity and confirming password. Requirement IA2 ensures that
requirement IA1 cannot be bypassed.

• The referenced assumptions prevent unauthorized users from gaining
access by using a valid user’s identity and password. Assumption A3 ensures
that users keep their passwords secret. Assumption A4 prevents unauthorized
users from intercepting new passwords when those passwords are distributed
to users. Finally, assumption A2 prevents unauthorized access to
authentication information stored on removable media.

The justification provides an informal basis for asserting that, if the
assumptions hold and the requirements are met, the threat is adequately
handled.

20.2 Assurance During System and Software Design

Design assurance is often neglected. Design flaws are usually uncovered when
tests produce numerous flaws that cannot be fixed easily. Had the design
been analyzed, the security flaws could have been corrected at that level, and
then the implementation flaws would have been easier to fix. Hence,
identifying and correcting security flaws at the design level not only enhances



the trustworthiness of the system but also supports both implementation and
operational assurance.

Design assurance is the process of establishing that the design of the system
is sufficient to enforce the security requirements for the system. Design
assurance techniques employ a specification of the requirements, a
specification of the system design, and processes for examining how well the
design (as specified) meets the requirements (as specified). This is also
important when creating a design that utilizes externally hosted systems. The
assurance requirements of the internal and external system must be
consistent and well-defined. The assurance and security techniques of the
internal and external systems must be compatible, and the interfaces of the
externally hosted systems and internal systems must be well-defined.

20.2.1 Design Techniques That Support Assurance

Modularity and layering are techniques of system design and implementation
that can simplify the system, thus making it more amenable to security
analysis. If a complex system has well-defined independent modules, it may
be amenable to a security analysis. Similarly, layering simplifies the design.
Layering supports a better understanding of the system and therefore leads to
more assurance. Layering can also support data hiding. For example, global
variables span all layers and modules and therefore may allow sensitive
information to be available to functions for which that information is not
needed. This type of unnecessary interaction between layers or between
modules should be eliminated. This reduces the risk that errors in one layer
or module will contaminate another.

The reference validation mechanism suggests that functions not related to
security be removed from modules supporting security functionality. This
makes those modules smaller and thus easier to analyze. These design
concepts must be carefully described in design documentation and in the
implementations derived from them.



Large systems can be broken down into layers, making it easier to develop
specifications at different levels of abstraction. The following terminology
describes the different levels of a system.

Definition 20–8. A subsystem or component is a special-purpose division
of a larger entity.

The subsystems or components of an operating system may include the
memory management system or file systems, whereas a subsystem or
component of a Web store may be the collection of credit-card processing
activities. A component consists of data structures and subcomponents or
modules. A system that does not have subsystems in the traditional sense
may be subdivided by other means, such as layers or servers. A solution
utilizing externally hosted systems may identify each externally hosted
system as a subsystem or component.

It may be easier to describe a large component if it is broken into smaller
parts, each having a specific functionality or purpose.

Definition 20–9. A subcomponent is a part of a component.

For example, in an operating system, an I/O component may be broken down
into I/O management and I/O drivers. It may be useful to break a
subcomponent into even lower subsystems, such as a component for each I/O
driver. The lowest level of decomposition is made up of modules.

Definition 20–10. A module is a set of related functions and pertinent data
structures.

A set of modules may be a subcomponent or component. The functions that
may make up a module include commands, system calls, library routines, and
other supporting routines. Functions have inputs, outputs, exception
conditions, error conditions, and effects on data or other functions. Function
descriptions may include internal logic and algorithms or just address



interfaces.

EXAMPLE: A system may be decomposed into components and
subcomponents in many ways. The I/O system of Windows 10 and Windows
Server 2016 may be viewed as a three-layer component decomposition: I/O
System component, Drivers component, and HAL component. The I/O
System components comprise the first layer with the following
subcomponents: the Windows Management Instrumentation (WMI)
Routines, the Plug and Play (PnP) Manager, the Power Manager, and the I/O
Manager. The Drivers component which includes the kernel mode device
drivers. There are three basic types of kernel-mode device drivers: filesystem
drivers, plug and play drivers, and non-plug and play drivers. The hardware
abstraction layer (HAL) component has no subcomponents [2075]. The
subcomponents of the I/O System and Drivers components define the second
layer of the decomposition. (See Figure 20–1).

Figure 20–1: Decomposition of the Windows 10 and Windows
Server 2016 I/O System



The subcomponent I/O filesystem drivers can be broken down into a third
layer, consisting of the compact disk file system (CDFS), the NT file system
(NTFS), the fast file allocation table file system (FAT), and the encrypting file
system (EFS). Below this layer sits the module and function layers.

Because the HAL has no subcomponents, it has no second or third layer. The
other subcomponents do have third layers, but for reasons of space we will
not discuss them.

The I/O System utilizes data stored in the Registry (a database storing system
configuration information including hardware devices and driver
initialization settings), INF files (driver installation files), and CAT files
(stores digital signatures for drivers).

Another design consideration is the principles of secure design (see Chapter
14). For example, consider the principle of least privilege (see Section 14.2.1).
The modular structure of a design can support the use of this principle. Each
level of the design should address privilege. At the time of implementation, it
may be tempting to give more privilege than is required, because it is simpler,
because the privilege may be needed again shortly, or for other reasons. This
temptation should be resisted. Implementers should understand how to write
programs and configure systems so that the assignment of privilege is tightly
controlled and privileges are revoked when no longer needed.

20.2.2 Design Document Contents

Most life cycle models require design documentation, although the
documentation requirements are not always sufficient for developing design
assurance. A more rigorous specification may be necessary to establish that
the system design is sufficient to enforce the security requirements. Design
specifications can be informal, semiformal, or formal in style. Specifications
that are more formal can be subjected to more rigorous security analysis and
justification, providing a higher level of assurance. A significant benefit of
writing specifications is the ability to correct a design as one defines it in



writing. Creating formal design specifications is time intensive, but the added
assurance can be valuable in the long term. The more precise the
descriptions, the more likely one can find and correct flaws.

For security analysis, documentation must specify three types of information.

1. Security functions. High-level descriptions of the functions that enforce
security on the system, such as identification and authentication, access
controls, and auditing, provide an overview of the protection approach of the
system.

2. External interfaces. The interfaces visible to the users are the mechanisms
through which users access system resources and information. The system
security enforcement functions control these actions, and security
enforcement depends on the constraints and effects that determine their
behavior.

3. Internal design. High-level design descriptions of the system address the
architecture of the entity being described in terms of the next layer of
decomposition. For example, system high-level designs describe the system
architecture in terms of its major subsystems. The low-level or detail design is
a description of the internal function of a module. The low-level description
identifies and describes all the interfaces and data structures of the module.

The next three subsections expand on each of these types of information.

20.2.2.1 Security Functions Summary Specification

This is the highest level of specification of security enforcement and is
significant to the development of all subsequent specifications and to the
security analysis on which they depend.

Definition 20–11. A security functions summary specification identifies the
high-level security functions that are defined for the system.



These functions are the protection mechanisms defined to meet the security
functional requirements in a requirement specification. The content of the
security functions summary specification should include the following
information.

1. Description of individual security functions. This description should be
complete enough to show the intent of the function. The activities of each
function relate to one or more security requirements and may specify
behavior that is not explicitly a part of the security requirements.

2. Overview of the set of security functions. This overview should describe
how the security functions work together to satisfy security requirements.

3. Mapping to requirements. This section should specify a mapping between
the security functions and the security requirements. It is often presented as a
table.

20.2.2.2 External Functional Specification

A description of the expected behavior of each external interface should
include parameters, syntax, effects, security constraints, and security error
conditions. Each of the security functions mentioned above may have several
user-visible interfaces, which are of particular importance for a specification
of a secure or trusted product or system.

Definition 20–12. An external functional specification, also called a
functional spec-ification, is a high-level description of external interfaces to a
system, component, subcomponent, or module.

The interface descriptions provide details about parameters, effects,
exceptions, and error conditions. An external functional specification can be
written for an entire system, a component, a subcomponent, or even a
module. The technical content of this specification should include the
following information.



1. Component overview. This overview identifies the component, its parent
component, and how the component fits into the design structure of the
parent component. It also identifies the substructures (such as modules) to be
specified in this document as well as in related documents.

2. Data descriptions. These descriptions identify and define data types and
data structures that are necessary to support the external interface
descriptions specific to this component. They provide references to
definitions of data types and structures that are defined outside the scope of
this component but that are used in this component. Finally, they identify
security issues or protection requirements relevant to data structures.

3. Interface descriptions. External interfaces are methods available for use by
external entities (human users, applications, devices, etc.) to interact with the
system, component, subcomponent, or module. External interfaces include
commands, system calls, library calls, functions, protocols, and application
program interfaces. They may be visible to the user or may be application
program interfaces to the particular component being specified. Interfaces
visible to the user should be explicitly identified as visible to the user. An
interface description should follow a standard syntax and should identify
input and output parameters, exception conditions, effects, and error
messages. The exception conditions and effects are especially important.

EXAMPLE: The following external functional specification describes a
routine for an error handling subsystem. This routine adds a new event to an
existing log file. The specification has a fixed C-like format. Each required
piece of information is carefully identified.

Interface Name

error_t add_logevent    (
        handle_t  handle;
        data_t  event;
);



Input Parameters

handle a valid handle returned from a previous call to open_log
event the buffer of event data with event records in logevent format

Exceptions

Caller does not have permission to add to EVENT file.

There is inadequate memory to add to an EVENT file.

Effects

Event is added to EVENT log.

Output Parameters

Note

add_logevent is a user-visible interface.

EXAMPLE: The following external functional specification describes a web
user interface used for changing a user password.

Interface Name

User Manager / Change Password

Input Parameters

Old password Current user’s old password

New password Current user’s new password

Confirm new password Confirmation of current user’s new password

status  status_ok           /* routine completed successfully */
        no_memory           /* routine failed due to insufficient  memory */
        permission_denied   /* routine failed, caller does not have permission  



OK button is used to submitted the change password request

CANCEL button is used to cancel the change password request and return the
previous screen / window

Exceptions

Caller does not have permission to change their password

The new supplied password does not meet password complexity
requirements

The new supplied password does not meet the confirm password

Effects

Event is added to EVENT log

If the correct old password is supplied, the new password and confirm
password are identical, and the new password meets complexity
requirements, the user’s password is changed

Output Parameters

Event is added to EVENT log

A dialog box appears indicating that the password is changed, the password
did not meet the complexity requirements, or the new password and confirm
password did not match

Note

User Manager / Change Password is a user-visible interface

20.2.2.3 Internal Design Description



Definition 20–13. An internal design description describes the internal
structures and functions of the components of the system.

The description of the internal structures and functions of the system consists
of a set of one or more documents. The complexity of the system and its
decomposition into components and subcomponents determine the
decomposition of the high-level design documentation.

High-level design documents focus on subsystems or components and
address their structures, functions, and the ways in which they are used. The
architecture of the system, in terms of its major subsystems, is the most
abstract layer of the high-level design. The high-level design documents of
each major subsystem provide specific information about the subsystem
design in terms of the subcomponents, regardless of the layer of the design
decomposition.

The high-level design documents for each layer, from the system architecture
through all intermediate layers, provide the same fundamental information
and should follow the same structure. The technical content of a high-level
design document includes the following information.

1. Overview of the parent component. Only the highest level of the design or
system architecture lacks a parent component. If there is a parent
component, the high-level design identifies its high-level purpose and
function. The description identifies all subsystems of the parent component,
describes their purpose and function, and includes how they interact with
each other to transfer data and control. A description of the security relevance
of the parent component, including a mapping of the security requirements
met by the parent component, completes this overview.

2. Detailed description of the component. This document expands on the
purpose and functionality of the component. It includes a description of the
features and functions that the component provides. The component
structure is described in terms of the subcomponents, providing an overview



of how the subcomponents support the component in accomplishing its
purpose and functionality. Any underlying hardware, firmware, and software
that the component or its subcomponents need are also identified. The
document describes the data model for the component in terms of the
variables and data structures that are global to it and describes the data flow
model in terms of how subcomponents of the component interact and
communicate to transfer information and control. The document describes
the interactions of the component with other components. The document
identifies all interfaces to the component and explicitly notes which are
externally visible. A more complete description includes a description of the
interfaces in terms of effects, exceptions, and error messages, as appropriate.

3. Security relevance of the component. This section identifies the relevance
of the component and its subcomponents to the system security in terms of
the security issues that the component and its subcomponents should
address. It is recommended that this security description include a mapping
of the security requirements (or part of the security requirements) met by the
component. It includes specific information on the protection needs of global
variables, data structures, and other information under the control of the
component. Other issues include correctness of particular routines and
management of security attributes. The mechanisms supporting security in
the underlying hardware, firmware, and software mechanisms must also be
identified and described.

EXAMPLE: This example documents the high-level design of the audit
mechanism from the preceding section.

Overview of the Parent Component. The audit component is
responsible for recording an accurate representation of all security-relevant
events that occur in the target of evaluation (the system) and ensuring that
the integrity and confidentiality of the records are maintained. The audit
component is broken into three different subcomponents.



• Audit view. This subcomponent provides authorized users with a
mechanism for viewing audit records.

• Audit logging. This subcomponent records the auditable events, as
requested by the system, in the format defined by the requirements. For
example, the audit record includes the date and time of the event, the user
identifier of the process causing the event, and the success or failure of the
event.

• Audit management. This subcomponent handles the administrative
interface used to define what is audited.

The audit management subcomponent manages the information that the
audit logging subcomponent uses to decide whether to generate an audit
record for a given event. Each subcomponent is responsible for maintaining
the integrity and confidentiality of the audit records.

The audit component satisfies the security requirements related to logging of
security-relevant events. All security-relevant events must be audited, and all
audit records must include the date and time of the event, the user identifier
of the process causing the event, and the success or failure of the event.1

1The exact security requirements would be listed here.

Detailed Description of the Component. The audit logging
subcomponent records the auditable events, as requested by the system, in a
secure fashion. When the audit logging subcomponent receives a request to
write an audit record, it determines whether the audit system has been
configured to audit records with those characteristics. For example, if the
audit system is configured to record login failures and not to record login
successes, then a request to record a login success will not generate an audit
record.

The audit logging subcomponent formats the audit record and includes all



attributes of the security-relevant event. It generates the audit record in the
predefined format, which includes the date and time of the event, the user
and group identifiers of the process causing the event, the record number, the
function or application identifier, the system name, and the success or failure
of the event.

In addition, the audit logging subcomponent handles exception conditions,
such as an error writing to the log (for example, when the disk containing the
log is full). The audit logging subcomponent uses one global structure:

struct audit_config      /* defines configuration of which events */
                         /* are to be audited */

The audit logging subcomponent has two external interfaces:

add_logevent()  /* ask to log multiple events of a given type */
logevent()      /* ask to log event */

Security Relevance of the Component. The audit logging subcomponent
is supplied security-relevant events and records those events that match the
configurable audit selection criteria. Security-relevant events include
attempts to violate the security policy and successful completion of security-
relevant actions.

Low-level design documents focus on the internal design of modules,
describing relevant data structures, interfaces, and logic flow. These
documents include detailed descriptions of interface functions such as
application program interface routines, system calls, library calls, and
commands. This specification focuses on how a function is to be implemented
and may include specific algorithms and pseudocode.

A low-level design description of a module should contain sufficient
information for a developer to write the implementation code for the module.
The design description includes the following information.



1. Overview of the module being specified. This overview describes the
purpose of the module and its interrelations with other modules—especially
dependencies on other modules. The description of the module structure is in
terms of interfaces and internal routines as well as global data structures and
variables of the module and provides details of the logic and data flow
throughout the module.

2. Security relevance of the module. This section identifies how the module is
relevant to system security in terms of the security issues that the module and
its interfaces should address. It provides specific information on the
protection needs of global variables, data structures, or other information
under the control of the module.

3. Individual module interfaces. This section identifies all interfaces to the
module, explicitly naming those that are externally visible. It describes the
purpose and method of use of each routine, function, command, system call,
protocol, and other interface, in terms of effects, exceptions, and error
messages. The documentation must provide details of the flow of control and
of the algorithms used.

EXAMPLE: This example documents the low-level design of the audit
mechanism from the preceding section.

Overview of the Module Being Specified. The audit logging
subcomponent is responsible for monitoring and recording security-relevant
events. This subcomponent depends on the I/O system and process system
components. The audit management subcomponent depends on the audit
logging subcomponent for accurate implementation of the audit parameters
configured by the audit management subcomponent. All system components
depend on the audit logging component to produce their audit records.

The audit logging subcomponent uses the following variables.

structure logevent_t structure defining the audit record



structure audit_ptr points to current position in audit file
file_ptr audit_fd file descriptor to current audit file

The audit logging subcomponent uses the following global structure, which
the audit management subcomponent initializes and updates.

structure audit_config     /* defines configuration of which events */
                           /* are to be audited */

The audit logging subcomponent has two external interfaces:

add_logevent()  /* ask to log multiple events of a given type */
log event()     /* ask to log event */

Security Relevance of the Component. The audit logging subcomponent
is supplied security-relevant events and records those events that match the
configurable audit selection criteria. Security-relevant events include
attempts to violate security policy and successful completion of security-
relevant actions. The audit logging subcomponent must ensure that no audit
records are lost and that the audit records are protected from tampering.

Individual Module Interfaces. The logevent() function is the only non-
privileged external interface to the audit logging subcomponent. This
function determines if the system has been configured to audit the reported
event. If so, the function creates the audit record for the event and writes it to
the audit log. The function must ensure that no audit records are lost.
Pseudocode for logevent() is as follows.

verify function parameters
call check_selection_parameters to determine if the system has been
                                configured to audit the event
if check_selection_parameters is true then
         call create_logevent
         call write_logevent
         return success or error number



else
         return success

Refer to the functional specification for logevent() in Section 20.2.2.2 for
details on using this function.

The add_logevent() function is a privileged external interface to the audit
logging subcomponent that allows multiple events to be written to the audit
log. This function is available only to privileged users and requires that the
audit records be provided in the correct format.

Pseudocode for add_logevent() is as follows.

verify the caller has privilege/permission to use this function
if the caller does not have permission
        return permission_denied
verify function parameters
call write_logevent for each event record
return success or error number from write_logevent

20.2.2.4 Internal Design Specification

The internal design specification is slightly more complex than either the
security functions summary specification or the external functional
specification. Previous sections discussed content. They did not show how to
relegate various designs to specific documents, thus making a set of
documents that is a useful, readable, and complete set. Developers may use
an internal design specification document, which covers parts of both the
low-level and high-level design documents. The internal design specification
is most useful when specifying the lowest layer of decomposition of a system
and the modules that make up that layer. However, the internal design
specification is not always used to describe the higher levels of design,
making them incomplete for security analysis or for developers who are new
to the system.



The following two examples present an outline of an internal design
specification and an approach for dividing the internal design documentation
for the I/O system, following the component decomposition described in the
example in Section 20.2.1.

EXAMPLE: This example presents an outline of an internal design
specification of a low-level component that consists of modules. The internal
design specification contains elements of the high-level design of the
component and the low-level design of each module in the component.

1. Introduction. The introduction defines the purpose and scope, identifies
the target audience, and presents definitions new to this document.

2. Component overview. This overview identifies and describes the modules,
data structures, and other data mechanisms in the component. It describes
how data is transmitted through the modules and data structures in the
component. Depending on the type of product, this section might describe
interfaces, protocols, installation, signals and interrupts, and diagnostic
processing. This section also describes the security relevance of the
component in terms of what security functionality it provides.

3. Detailed module designs. A separate section describes each module and all
of its interfaces.

3.1 Module #1. This section describes the module’s interrelations with other
modules, its local data structures and variables, its control and data flows
through the module, and the relevance of the module to security.

3.1.1 Interface Designs. A separate section describes each interface.

3.1.1.1 Interface 1a. This describes security relevance and external visibility
and provides a detailed description including purpose and method of use in
terms of input/output parameters, effects, exceptions, error messages, and
results. It describes logic flow, data flow, and algorithms as appropriate.



EXAMPLE: The example in Section 20.2.1 identified the decomposition of the
Windows I/O system. High-level design documents for each component and
subcomponent of the decomposition would be excessive. A high-level design
document describing the I/O system as a whole, including all the necessary
descriptions of the three components (I/O System, Drivers, and HAL), is
more useful. This document addresses the I/O system high-level design and
the high-level design of the I/O System, Drivers, and HAL components. The
next level of decomposition could be documented with a high-level design
document for each of the subcomponents of Drivers component. An internal
design specification for the HAL component (which has no subcomponents)
and I/O System subcomponents would be documented. Internal design
specifications for each of the modules of the Drivers subcomponents
complete the documentation of the I/O system.

20.2.3 Building Documentation and Specification

Considerations other than the kind of specification required to support design
assurance affect the development of documentation. Time, cost, and
efficiency issues may impact how a development organization creates a
complete set of documents. For example, a time constraint may compel an
organization to write informal rather than formal specifications. Other
shortcuts can result in effective documentation if done carefully.

20.2.3.1 Modification Specifications

When a system or product is built from previous versions or components, the
specification set may consist of specifications of previous versions or parent
products, together with modification specifications that describe the required
changes. Time and cost constraints may compel developers to write
specifications that are restricted to changes in the existing parts. These
modification specifications describe the changes in existing modules,
functions, or components; the addition of new modules, functions, or
components; and possibly the methods for deleting discarded modules,



functions, or components.

The use of modification specifications is most effective in developing new (or
maintenance) releases of existing products, where security requirements and
specifications are well defined for the older releases. Creating modification
specifications gives the developer the advantage of understanding the
specifications, design, and implementation of the system on which the new
release is built. However, it can create problems for security analysis. The
security analysis must rest on the specification of the resulting product, not
just the changes. If there are full specifications of the previous versions of the
parts, it may be possible to do an informal analysis based on the two sets of
specifications. Modifications of modifications make the analysis even more
complex.

Problems arise when the modification specifications are the only
specifications of the system. Because there are no specifications for the parts
not being modified, security analysis must be based on incomplete
specifications.

20.2.3.2 Security Specifications

When external and internal design specifications are adequate in every way
except for security issues, a supplemental specification may be created to
describe the missing functionality. One approach is to develop a document
that starts with the security functions summary specification. It is expanded
to address the security issues of components, subcomponents, modules, and
functions. Depending on the size and organization of the existing
documentation, the information can be organized in the same way as the
existing documentation. It can also be organized by security function.

EXAMPLE: Section 20.1.3 described the security policy for System X. Recall
that System X is a UNIX operating system enhanced to include mandatory
access control, auditing, and other functionality in order to meet certain
evaluation requirements. The underlying UNIX implementation is completely



specified. The specification includes complete functional spec-ification and
internal design specification documentation. However, because security had
not been a significant consideration in the UNIX system on which System X
was based, the functional specification and internal design specification
documentation did not cover security issues sufficiently well, nor did it
include information about the new functionality.

The System X security team addresses the missing parts of the
documentation with a set of documents to supplement the existing functional
specification and internal design specification documentation. A security
architecture document provides an overview of the base product architecture,
including the operating system, firmware, and hardware. It addresses some
security shortcomings of the existing design documentation. The remainder
of the security architecture document provides a complete overview of each
security function. Some functions are entirely new to the product (such as
mandatory access control, labeling, and audit). Others are a part of the
existing product and require modification for the new product (such as
discretionary access control and identification and authentication). Still
others are a part of the base product but are unchanged in the new version
(such as object reuse). Four documents, one for each of the four security
functional areas, support the security architecture document. These other
documents describe the external interfaces and internal design of each of the
functions in the functional area. In some cases, the supporting
documentation references base product documentation; in others, the
security architecture documents replace the base product documentation.

20.2.3.3 Formal Specifications

Any of the four specification types discussed above (requirements
specifications, security functions summary specifications, functional
specifications, and design specifications) can be informal, semiformal, or
formal. Informal methods use natural language for specifications. Semiformal
methods also use natural language for specifications but apply a specific



overall method that imposes some rigor on the process. Formal methods use
mathematics and machine-parsable languages. Formal specifications are
written in formal languages based on well-defined syntax and sound
semantics. The languages themselves are usually supported by parsers and
other tools that help the author check the resulting specification for
consistency and proper form. The semantics of the language may help catch
some oversights in the specification, but in general the author determines the
completeness and correctness of the specification. Some high-level formal
languages are appropriate for requirements specifications or functional
specifications. Other languages are more like programming languages and
can easily describe algorithms and logic flow. Chapter 21, “Formal Methods,”
describes a variety of formal languages and discusses their use.

20.2.4 Justifying That Design Meets Requirements

The nature of the specification limits the techniques that can validate the
specified design. Informal specifications and semiformal specifications
cannot be analyzed using formal methods because of the imprecision of the
specification language. However, it is possible to do some informal security
analysis. An informal specification can justify the correct implementation of
requirements or justify consistency between two levels of specification. The
most common informal techniques are requirements tracing, informal
correspondence, and informal arguments. An excellent technique for
verifying any of the informal techniques is called review. Other methods,
producing higher assurance, are formal in nature, such as formal
specifications and precise mathematical proofs of correctness. Chapter 21,
“Formal Methods,” discusses these methods.

20.2.4.1 Requirements Tracing and Informal Correspondence

Two techniques help prevent requirements and functionality from being
discarded, forgotten, or ignored at lower levels of design. They also highlight
functionality that may creep into the design but does not meet specific
requirements.



Definition 20–14. Requirements tracing is the process of identifying
specific security requirements that are met by parts of a specification.

Definition 20–15. Informal correspondence (also called representation
correspondence) is the process of showing that a specification is consistent
with an adjacent level of specification.

Together, these two methods can provide confidence that the specifications
constitute a complete and consistent implementation of the security
requirements defined for the system.

A typical set of design documentation for a system contains security
requirements, external functional specifications, and internal design
specifications, presented by one of the methods described in Section 20.2.2.
The final level of decomposition of this design is the implementation code.
Figure 20–2 shows the requirements tracing steps and the informal
correspondence steps in such a design decomposition.

Identifying how a very high-level and abstract requirement applies to a very
specific and concrete function in an external functional specification is not
always straightforward. The difference in level of abstraction may obscure the
relationship. Having an intermediate level between the very abstract and the
very concrete often makes the process simpler. A security functions summary
specification provides such an intermediate step between the requirements
and the external functional specification. High-level design documentation
can bridge the gap between functional specifications and low-level design
specifications.

Requirements tracing and informal correspondence are most appropriate
when all levels of specification or representation of the system have identified
requirements and all adjacent pairs of specifications have been shown to be
consistent. In addition to the security functions summary specification, the
external functional specification, and the high- and low-level design
specifications, the implementation (source) code is the final and lowest level.



The adjacent pairs of specifications are as follows.

• Security functions summary specification and functional specification

• Functional specification and high-level design specification

• High-level design specification and low-level design specification

Figure 20–2: Requirements mapping and informal
correspondence. Arrows 1, 2, and 3 indicate requirements tracing
for each of the three levels of specification. Arrows 4 and 5
represent informal correspondence between adjacent levels of
specification.

• Low-level design specification and implementation code

If requirements have been traced to the nth level of specification, developing
an informal correspondence between level n and level n + 1 provides a
straight path to the identities of specific requirements in the descriptions of



specification level n + 1.

EXAMPLE: Consider a family of specifications across several levels.

R2 is a security requirement from the requirement specification. It requires
users of the system to be identified to the system and to have that
identification authenticated by the system prior to use of any system
functions.

I&A (identification and authentication) is a high-level security enforcing
function from a security functions summary specification.

• Using a login_ID, users identify themselves to the system before they can
use any of the system resources.

• Users authenticate their identities to the system by providing a password.
The password must be accepted as authentic by the system before any system
resources can be used.

• The password must meet specific password size and character constraints.

• The life of a password shall not exceed 12 months.

The interfaces login and change_password are described in a functional
specification.

The login function allows a user to enter his or her identity and, when
prompted to do so, enter authentication information. The login function
returns a message indicating success or failure. If login fails, the user cannot
use any resources of the system except to start the login process again.

The change_password function allows the user to change his or her
password by entering the old password and then entering the new password
when prompted. A failure message results if the new password does not meet
the size and character constraints, and the user is prompted to try again. If



the proposed password meets the constraints, the user is prompted to enter it
a second time.

Writing of the external functional specifications for these functions is left as
an exercise for the reader (see Exercise 5).

The requirements mapping between the requirements specification and the
security functions summary specification is represented by a table followed
by an explanation. In this example, R2 is the only requirement mapping to
I&A.

The informal correspondence between the functional specification and the
security functions summary specification relevant to these two functions is as
follows.

• login maps to the first two list items in the description of I&A.

• change_password maps to the second and third list items in the description
of I&A.

The informal correspondence shows that the requirement R2 maps to login,
but not to change_password.

The requirements trace and the informal correspondence information may be
included in the design specifications described above by adding sections from
the security functions summary specifications, functional specifications, high-
level design documentation, and low-level design documentation. These
sections describe the informal correspondence to the next-higher level of
specification and identify the security requirements met by the lowest-level
entities of the specification. Requirements tracing and correspondence



mapping can also be written in a separate document, with high-level
overviews or references to the relevant parts of the specifications themselves.

20.2.4.2 Informal Arguments

Requirements tracing identifies the components, modules, and functions that
meet requirements, but this technique does not fully address how well the
requirements are met. This requires analysis beyond simple mappings. A
technique called informal arguments uses an approach similar to
mathematical proofs.

Common Criteria protection profiles and security targets (see Section 22.7.1)
provide examples of informal arguments. Protection profiles define threats to
the system and security objectives for the system. The rationale section of the
protection profile presents an argument justifying that the objectives are
adequate to prevent the threats. A security target identifies the mechanisms
used to implement the security requirements and justifies that the
mechanisms are sufficient to meet the objectives. This technique helps the
writer analyze the completeness and correctness of security objectives (in
protection profiles) and of security mechanisms (in security targets).

EXAMPLE: Consider the modification specifications of System W, a new
version of an existing product. The previous version had adequate
requirement specifications, security functions summary specifications,
external functional specifications, and design specifications.

System W included numerous bug fixes and added several new features to the
product. Some were large and pervasive. The developers created both
external functional specification documents and internal design specification
documents for all modifications of the system. Each document carefully
defined the scope to be modifications only and, where applicable, referred to
the documentation of the previous version. The modification specifications
provided by the development staff were almost adequate to understand the
issues. The security analysts asked developers many questions. The



developers reviewed the author’s work. The resulting combined security
specification and analysis document addressed the impacts of the changes on
the security of the previous, evaluated system. The analysis documentation
contained a system overview document, a security analysis document, and a
test coverage analysis (omitted here). The security analysis of the
modifications contained individual documents for each of approximately 15
different functional areas. Some described new functionality, and others
presented modifications of existing subsystems. Each subsystem document
described the results of the analysis in terms of problems and
recommendations for the code, documentation, and testing of the
component.

The documentation was semiformal in nature. It was written in a natural
language supported with code excerpts where practical.

Design overview. The design overview gave a high-level description of the
component as well as the security issues relevant to the component. This
section described the impact of the component on security by enumerating
new object types and decomposing the component into subcomponents or
modules. The rest of the section described the subcomponents or modules.

Requirements section. This section identified the security functionality in the
module and traced it to the applicable security functional requirements. An
explanation was provided for each security functional requirement not
applicable to this module.

Interface analysis. This section described each new or impacted interface and
mapped requirements to them. It also identified and documented security
problems and analyzed documentation and test coverage to uncover
additional problems and to make recommendations.

20.2.4.3 Formal Methods: Proof Techniques

Producing a formal specification is expensive. Thus, the specifiers usually



intend to process the specification using an automated tool such as a proof-
based technology or a model checker. Requirements tracing for a formal
specification will check that the specification satisfies the requirements.
Creating informal justifications before applying formal methods provides
intuition about the proofs. Chapter 21, “Formal Methods,” discusses formal
proof technologies and model checking.

Formal proof mechanisms are general-purpose techniques. They are usually
based on logic such as the predicate calculus. They are generally highly
interactive and are sometimes called proof checkers to indicate that the user
constructs the proof and the tool merely verifies the steps in the proof. Proof
technologies are designed to allow one to show that a specification satisfies
certain properties (such as security properties). An automated theorem
prover processes the properties and the specification. There may be many
intermediate steps, such as proving of supporting lemmata and splitting of
cases. Some proof technologies use a separate tool to generate formulas that
can be given to the prover. The formula generator takes the specification of
the system and a specification of properties as input. The generator develops
formulas claiming that the specification parts meet the properties.

Model checking, on the other hand, checks that a model satisfies a
specification. A model checker is an automated tool with a specific security
model and processes a specification to determine if the specification meets
the constraints of the model. This type of checking is designed for systems
such as operating systems that do not terminate. Model checkers are usually
based on temporal logic. Chapter 21, “Formal Methods,” discusses them in
detail.

20.2.4.4 Review

A mechanism for gaining consensus on the appropriateness of assurance
evidence is especially important when the assurance technique used for the
evidence is informal in nature. A formal review process can meet this need.
Every meaningful review process has three critical parts: review guidelines,



conflict resolution methods, and completion procedures.

The reviewers receive (or determine) guidelines on how to review the entity.
These guidelines vary from general directions to specific instructions. For
example, a review guide-line might instruct a reviewer to focus on the
correctness of a particular section of a document. It might request that the
reviewer ensure that relevant requirements are described for each interface in
an external functional specification.

Reviewers will have different strengths, opinions, and expertise. The review
process must have a method for resolving any conflicts among the reviewers
and authors.

Finally, the review must terminate, ensuring the completion of the entity
being reviewed. This may include techniques for tracking and organizing
feedback, ensuring the correct implementation of feedback, final approval
procedures, and the like.

EXAMPLE: The following formal review process may be used by large
software development organizations with assurance goals. The review
participants have four critical roles: moderator, reviewer, scribe, and author.
In some cases, an observer may be included in the review meeting. The
observer’s role is to observe silently and to not participate in the review
process in any way. Managers may not be moderators, scribes, or observers
and may be selected as reviewers only if their technical expertise is needed
and cannot be provided otherwise. The absence of managers often eases the
process and allows reviewers to speak more openly.

This review process is designed for individual documents such as
specifications or other engineering documents. However, it can be used for
other items such as code walk-throughs.

Setting Up the Review. When the author is ready to have the entity
reviewed, he informs the appropriate person to select a review moderator to



manage the review process.

The first responsibility of the moderator is to decide if she agrees that the
entity is ready for review. If not, then the moderator and the author’s
manager will discuss additional requirements with the author. Otherwise, the
manager, author, and moderator determine if the size of the entity warrants
dividing the review into chapters or sections. Whether or not the division is
done, the entity in its entirety must be reviewed eventually. This may require
more than one review meeting. If the entity to be reviewed is large and is to
be subdivided, then at least two reviewers should review each pertinent part
of the entity, as well as the entity in its entirety.

The moderator selects the review team, defines the review guidelines (ground
rules), schedules the review meeting, and distributes the review materials to
the reviewers. The moderator also arranges for appropriate facilities and
materials for the review. Ground rules include the minimum amount of time
a reviewer should spend on the entity review and may include special
assignments to focus on specific areas.

When feasible, the moderator should indicate what the reviewers should look
for with respect to security. A document template or a list of issues may be
helpful in this regard. Such materials should be circulated with the item to be
reviewed.

The Technical Review. Reviewers study the entity with respect to the
ground rules and guidelines provided, answering any specific questions and
commenting on any issues they uncover. If a reviewer feels that the entity is
not ready for review because it does not meet a predefined ground rule, is
incomplete, has major errors, or is unreadable, the reviewer can request that
the moderator send the entity back to the author for changes. The moderator
decides whether to continue or stop the technical review. If the review is
stopped, the moderator and the manager discuss additional requirements
with the author. This step can save time and effort in the end.



Reviewers provide general, specific, and grammatical comments. General
comments apply to the entity as a whole and include comments on structure,
organization, style, major omissions, and duplications. Specific comments
apply to a particular section of the entity and address technical content.
Grammatical comments include comments on clarity, style, spelling, and
grammar, and include other issues such as missing reference markings. When
the entity being reviewed is a document, the reviewers tie specific and
grammatical comments to the documents by providing line, page, and section
numbers. The reviewers record all comments in writing and give them to the
scribe at the end of the review meeting.

The Review Meeting. First, the moderator determines whether or not each
reviewer has had sufficient time to review the entity. If not, she reschedules
the review meeting. Otherwise, the meeting begins with grammatical
comments being presented to the scribe. These comments are not discussed
unless they present clarity issues that need amplification.

The moderator does not participate as a reviewer, but acts as an independent
master of ceremonies. If the moderator has been a reviewer as well,2 another
reviewer should represent the moderator’s comments.

2This is not recommended.

Typically, the moderator first asks for general comments. After all general
comments have been made, the moderator starts at the beginning of the
entity and goes through it sequentially, collecting comments from the
reviewers. The reviewers must make concise, clear comments about the
content of the document and not reiterate grammatical comments that have
already been submitted. A good moderator will instruct reviewers to keep
comments constructive and positive, not demeaning or personal. The
reviewers may ask the author for clarification on parts of the entity being
reviewed. Similarly, the author may ask for clarification of a reviewer’s
comment.



The goal of the review meeting is to collect all comments on the entity. It is
not to re-solve conflicting opinions between reviewers or between a reviewer
and the author. These conflicts are handled outside the review meeting.

Once a comment is understood, the scribe writes down the comment,
including the name of the person who made the comment. The reviewer may
need to assist the scribe in correct phrasing. All meeting attendees should see
what the scribe records, and the person making the comment can attest to its
correctness.

Conflict and Comment Resolution. After the review meeting, the scribe
creates a Master Comment List. This list is circulated to the reviewers. Each
reviewer marks each comment with a code of “Agree” or “Challenge” and the
reviewer’s identity. When all reviewers have completed this process, the
scribe moves comments that all reviewers marked “Agree” or all marked
“Challenge” to an Official Comment List. The remaining comments are
recirculated. Reviewers must resolve their differences. This allows reviewers
with conflicting views to discuss their differences. As disputes are resolved,
the scribe adds them to the Official Comment List. If the reviewers cannot
resolve a dispute, the review moderator must resolve the conflict or call a
meeting to do so.

When all conflicts have been resolved, the moderator and the reviewers
decide whether to accept the entity as it stands, reject the entity for major
revision, or accept the entity with changes as indicated on the Official
Comment List. If the entity is accepted, the review is complete. Otherwise, the
moderator and the manager meet with the author to discuss additional
requirements.

The scribe gives the completed Official Comment List to both the moderator
and the author. The author changes the entity to reflect the comments as he
sees fit. When all changes have been made, the author reviews the changes
with the reviewers. He explains how he handled each comment to the
reviewer who made the comment. When all comments have been resolved to



the satisfaction of the author and the reviewers, the conflict and comment
resolution phase is complete and the review goes to completion.

Completion of the Review. After the moderator is satisfied with all
changes, the review is completed. All reviewers and the moderator sign off on
the review, and the completed entity is put under configuration management.

Notes. Due to the fast pace of releases and bug fixes, a simplified, informal
review process is commonly used by developers. The review process for many
development organizations does not include a moderator or scribe. In
addition, reviews are frequently performed via electronic communications
with only one reviewer.

20.3 Assurance in Implementation and Integration

The most well-known technique for showing that an implementation meets
its security requirements is testing. Section 20.3.3.1 discusses security testing
methodologies, but other techniques also increase assurance in
implementation and integration.

20.3.1 Implementation Considerations That Support Assurance

A system should be modular, with well-defined modules having a minimal
number of well-defined interfaces. Whenever possible, functionality not
relevant to security should be removed from modules that enforce security
functionality.

The choice of the programming language for the implementation can affect
the assurance of the implementation. Some languages strongly support
security by providing built-in features that help to avoid commonly exploited
flaws. Programs written in these languages are often more reliable. For
example, the C programming language can produce programs with limited
reliability, because C does not constrain pointers adequately and has only
rudimentary error handling mechanisms. Implementations of C usually allow



a program to write past the bounds of the program’s memory and buffers.
The extra data goes into the next contiguous piece of memory, overwriting
what was already there. The C language does not provide checks to prevent
this overwriting, leaving the responsibility for preventing this type of buffer
overflow to the C programmer.

Languages that provide features supporting security will detect many
implementation errors. Languages having features such as strong typing,
built-in buffer overflow protections (such as array bounds handling), data
hiding, modularity, domains and domain access protections, garbage
collection, and error handling support the development of more secure,
trustworthy, and reliable programs. For example, the programming language
Java was designed to support the development of secure code as a primary
goal. Other languages provide some support for security. Perl, a general-
purpose programming language, provides a “taint mode,” which monitors
input and warns when a program uses the information inappropriately.

Sometimes it is not feasible to use a high-level language because of efficiency
constraints or the need to exploit system features that the high-level language
cannot access. In such cases, coding standards can compensate for some of
the security enforcement limitations. Although not as reliable as built-in
features, coding standards help programmers avoid many errors. Another
technique is to restrict the use of lower-level languages to specific situations
in which high-level languages are inadequate.

20.3.2 Assurance Through Implementation Management

Teams of programmers often develop systems designed in modules. Each
programmer develops modules independently of the others. Well-defined
module interfaces are critical, especially when the work of the different
programmers is integrated into a single system. This is especially important
when the programmers working on the system are part of a large team or
many small distributed teams. Supporting tools and processes are important
for small and large systems, whether developed by one programmer or a large



team of programmers.

Definition 20–16. Configuration management is the control of changes
made in the system’s hardware, software, firmware, documentation, testing,
test fixtures, and test documentation throughout the development and
operational life of the system.

Configuration management tools and processes provide discipline and
control of the refinement and modification of configuration items such as the
source code and other information such as documentation. The configuration
management system is made up of several tools or manual processes and
should perform several functions.

1. Version control and tracking. Most development organizations use a
source code control system that stores code modules and subsequent versions
of them. Other configu-ration items, such as documents or document
sections, require similar version control and tracking, whether using the same
or a different tool. These tools allow an individual to make a copy of a
particular version of a configuration item under control of the system and to
return a new version later.

2. Change authorization. Version control and tracking tools do not always
control who can make a change in a document. Typically, these tools allow
anyone to have a copy of a version and to place the new version in the
database. Hence, there must be a mechanism that allows only authorized
individuals to “check in” versions. Consider the case in which two
programmers each need to make changes in a module. They both request a
copy of the module, make their changes, and return the changed module to
the database. Without any change in authorization controls, both versions
will be kept, but the version from the first programmer will not include the
changes made by the second programmer, and vice versa. Hence, some
changes will be lost. Some tools require that a specific individual or
gatekeeper check versions in. Other version control and tracking tools restrict
check-in to the first person to check out the configuration item. Others can



check out review copies but cannot check them back in. When the authorized
first user checks in the new version, others can then check that item out and
merge their changes. Some version control and tracking tools provide change
collision features allowing the second user to check in the item to decide how
to resolve the conflicts between the two sets of changes.

3. Integration procedures. Integration procedures define the steps that must
be taken to select the appropriate versions of configuration items to generate
the system. This ensures that the system generation tools process properly
authorized versions.

4. Tools for product generation. Product generation creates the current
system from the properly authorized versions provided by the integration
procedures. It may include various steps of compiling source code and linking
binaries to create the full executable system.

The development of code standards is another implementation management
tool that supports assurance. Coding standards support improved software
development practices. Coding standards may require or recommend naming
conventions, style considerations, and commenting guidelines. Although
useful, these standards provide limited support for development of good code
that produces secure and trusted systems. No programming language solves
all the security problems, and coding standards may address some issues not
covered by the language itself. Other coding guidelines address constraints on
the use of the language that help prevent common security flaws. Still other
guidelines may be specific to handling of permissions or processing of secret
or sensitive information, or may address specification of error handling or
security exceptions.

20.3.3 Justifying That the Implementation Meets the Design.

Code reviews, requirements tracing, informal correspondence, security
testing, and formal proof techniques can be used to enhance assurance about
the implementation. Code walk-throughs, or code reviews, take place at



system implementation. Section 20.2.4.4 describes the review process. That
description applies to code reviews. The review guidelines, however, will be
specific to software development techniques rather than to documentation.

Requirements tracing and informal correspondence apply to the code.
Comments in the code typically show the results of a requirement trace and a
correspondence between the code and the lowest level of design
documentation.

20.3.3.1 Security Testing

There are two types of testing techniques.

Definition 20–17. Functional testing, sometimes called black box testing,
is testing of an entity to determine how well it meets its specification.

Definition 20–18. Structural testing, sometimes called white box testing,
is testing based on an analysis of the code in order to develop test cases.

Testing occurs at different times during the engineering process.

Definition 20–19. Unit testing consists of testing by the developer on a
code module before integration. Unit testing is usually structural.

Definition 20–20. System testing is functional testing performed by the
integration team on the integrated modules of the system. It may include
structural testing in some cases.

Definition 20–21. Third-party testing, sometimes called independent
testing, is functional testing performed by a group outside the development
organization, often an outside company.

Definition 20–22. Security testing is testing that addresses the product
security.

Security testing consists of three components.



1. Security functional testing is functional testing specific to the security
issues de-scribed in the relevant specification.

2. Security structural testing is structural testing specific to security
implementation found in the relevant code.

3. Security requirements testing is security functional testing specific to the
security requirements found in the requirements specification. It may overlap
significantly with security functional testing.

In general, security functional testing and security requirements testing are
parts of unit testing and system testing. Third-party testing may include
security functional testing or just security requirements testing. Security
structural testing can be part of a unit test or a system test.

Security functional testing differs from ordinary functional testing in its
focus, coverage, and depth. Normal testing focuses on the most commonly
used functions. Security testing focuses on functions that invoke security
mechanisms, particularly on the least used aspects of such mechanisms. The
least used parts often contain the exploitable flaws. Security functional
testing focuses on pathological cases, boundary value issues, and the like.

Test coverage describes how completely the entity has been tested against its
functional specification. Security testing requires broader coverage than
normal testing. Security testing covers system security functions more
consistently than ordinary testing. A completed test coverage analysis
provides a rigorous argument that all external interfaces have been
completely tested. An interim test coverage analysis indicates additional test
requirements.

Finally, security testing against high-level and low-level specifications shows
how well the testing covers the specifications of the subsystem, module, and
routine. A completed test depth analysis provides a rigorous argument that
testing at all levels is sufficient. An interim test depth analysis indicates



additional test requirements that must be met.

During a unit test, the programmer should perform extensive security and
requirements tests. A unit test should focus on the least used aspects,
pathological cases, or boundary value issues. Most structural testing occurs
during unit testing.

Most development organizations perform system testing on their systems.
For the most part, security system testing takes place at the external interface
level. In this context, an interface is a point at which processing crosses the
security perimeter. Users access the system services through external
interfaces. Therefore, violations of policy occur through external interfaces.
Occasionally, noninterface tests are required. Typically, there are two parallel
efforts, one by the programming team and the other by the test team. Figure
20–3 illustrates this.

Security test suites are very large. Automated test suites are essential, as are
configu-ration management and documentation. The testers must also
develop and document test plans, test specifications, test procedures, and test
results.

Writing test plans, specifications, and procedures gives the author the ability
to examine and correct approaches as the writing proceeds. This provides
assurance about the test methodology. This documentation increases the
assurance of the testing because it enables analysis of the test suite for
completeness and correctness.

The reports of the results of security testing are the tangible evidence of the
test effort. These reports identify which tests the entity has passed. Ideally, it
will pass all tests. In practice, the entity will fail some tests, so unusual results
must be examined. In particular, automated test suites can introduce some
problems; the entity may fail a test when the test is part of an automated test
suite but pass the test when it is run independently of the test suite. Also, the
tester may demonstrate the desired result by means other than execution of



the particular test.

20.3.3.2 Security Testing Using PGWG

PGWG, the PAT (Process Action Team) Guidance Working Group, presents a
systematic approach to system and requirements test development using
successive decomposition of the system and requirements tracing. This
methodology works well in a system defined into successively smaller
components, such as systems, components, modules, and functions, as
described in previous sections of this chapter. Requirements are mapped to
successively lower levels of design using test matrices. At the lowest level of
decomposition, usually the individual function and interface level, test
assertions claim that the interfaces meet the specifics of each requirement for
those interfaces. These test assertions are used to develop test cases, which
may be individual tests or families of tests. This strategy is accompanied by a
documentation approach that fits nicely with traditional test planning and
documentation.



Figure 20–3: Relationship between code development and testing.
At the left are the development tasks, and at the right are the
testing tasks. Reverse arrows indicate iterative steps.

Test Matrices. The PGWG methodology defines two levels of test matrices
(high and low). Rows reflect the decomposition of the entity to be tested. If
design decomposition is previously defined in the design documentation,
identifying row headers is a simple task. The rows of the high-level matrix are
the entity subsystems or major components. The columns in the high-level
matrix reflect security areas to be considered. Selection of security areas
should be a simple task, because security requirements should already be
well-defined. The security areas focus on functional requirements (as
opposed to assurance requirements or documentation requirements).



Examples of security functional areas may be discretionary access controls,
nondiscretionary access controls, audit, integrity controls, cryptography,
trusted communications, and the like. The cells of the high-level test matrix
provide pointers to relevant documentation and to lower-level test matrices.

In a large and complex system with a multiple-layer design decomposition, it
may be useful to create intermediate levels of test matrices to address
components or even modules of components in individual matrices. If
intermediate levels are used, there is one lower-level matrix for each row of
the higher-level matrix until the lowest level is reached. At the intermediate
levels, it may be useful to refine the security areas that define the columns.
For example, discretionary access could be decomposed into protection-bit-
based access controls and access-control-list-based controls. The cells of
intermediate levels have contents similar to those of a high-level matrix.

At the lowest level, matrix rows are the interfaces to the subsystem or
component. The columns could be represented as security areas, subdivisions
of security areas, or even individual requirements. The size and complexity of
the system are the determining factors. The cells of the lowest level are the
heart of the decomposition methodology. They contain test assertions (or
pointers to test assertion sets). Each assertion applies to a single interface
and a single requirement, and all assertions relative to each cell in the low-
level test matrix must be identified. Once the assertions have been developed,
it is a simple matter to fill in the cells in the higher-level matrices.

When the low-level matrices are completed, any empty cells must be justified
to ensure that coverage is complete. The cells should refer to a rationale that
justifies why a particular requirement class does not apply to a particular
interface.

EXAMPLE: Consider security testing of a typical security-enhanced UNIX
product. The subsystems include file management, memory management,
process management, process control, I/O interfaces, I/O devices, and IPC



management. The security functional requirement areas of this UNIX system
are discretionary access controls (DAC), privileges, identification and
authentication (I&A), object reuse protection, security audit, and system
architecture constraints. The mechanisms implementing the DAC
requirements include the abbreviated access controls of UNIX systems (see
Section 16.1.1) as well as full access control lists. The privilege
implementation uses a “privilege vector” to allow normal users to access
certain functions that are usually restricted to the root user. I&A mechanisms
include login, password, password constraints, and system entry constraints.
Object reuse mechanisms are the standard purge-on-reallocation and
revocation-of-access-rights-on-deallocation mechanisms found in UNIX
systems. Security audit mechanisms expand beyond the standard UNIX
logging capabilities. System architecture mechanisms include isolation and
private execution domain issues.

In this system, testing is done using an interpretation of the PGWG
methodology. The high-level matrix used is as follows.

An “x” in a cell indicates that there are requirements in that security area that
apply to that component. If a cell is empty, then the security area does not
apply to the particular subsystem. Forward references are provided for the
low-level matrices, which contain justifications of the empty cells in all
matrices.



One low-level matrix is developed for each row of the system’s high-level
matrix. The rows are the system calls of the pertinent subsystem, and the
columns are expanded to address subdivisions of the security areas.

(The column labeled “DAC u/g/o” refers to DAC using the UNIX style of
permissions; see Section 16.1.1.) An “x” in a cell means that high-level test
specification (HLTS) documents contain the relevant assertions for the
(interface, security requirement area) pair.

Test Assertions. Test assertions are created by reviewing design
documentation and identifying conditions that are security-relevant, testable,
and analyzable. If the documentation contains requirements tracing, creating
test assertions is greatly simplified and developing assertions provides an
excellent review of the existing requirement trace. Assertions are at a very
fine level of granularity, and each assertion should generate one or more
individual tests that illustrate that the assertion is met. In rare cases, an
assertion will not be testable. It should then be verified by other means, such
as analysis.

PGWG presents three methods for stating assertions. The first technique is to
develop brief statements describing behavior that the tester must verify, such
as “Verify that the calling process needs DAC write access permission to the
parent directory of the file being created. Verify that if access is denied, the
return error code is 2.” The second technique is very similar to the first, but
the form of the statement is different, making claims that the tester must
prove or disprove with tests. For example, an assertion might be “The calling



process needs DAC write access permission to the parent directory of the file
being created, and if access is denied, it returns error code 2.” The third
method states assertions as claims that are embedded within a structured
specification format.

Test Specifications. Define one or more test cases to verify the truth of
each assertion for each interface. The test cases are specified by test
specifications. PGWG suggests the use of high-level test specifications (HLTS)
to describe and specify the test cases for each interface, and low-level test
specifications (LLTS), which provide specific information about each test
case, such as setup conditions, cleanup conditions, and other environmental
conditions.

EXAMPLE: We present a high-level test specification for the interface
stime(). The HLTS should include an overview of the interface being specified
and relevant documentation references as well as the assertion and test case
specifications shown below.

Test case specifications describe specific tests required to meet the assertions.

EXAMPLE: We now show a low-level test specification (LLTS) for stime_1.



These specifications are written for each individual test. The LLTS should
identify the test name, test descriptions, any assumptions about the hardware
or the environment that are necessary to run the test, the test case setup,
algorithms, and procedures. The LLTS can be put into the test case code as
comments and extracted for documentation if necessary.

Test case name: K_MIS_stime_1

Test case description: Call stime as a non-root user to change the system
time. The stime call should fail, verifying that only root can use the stime()
system call successfully.

Expected result: The stime call should fail with a return value of –1, the
system clock should be unchanged, and the error number should be set to
EPERM (indicating that permission for the access is denied). The audit
record should be as specified below.

Test specific setup:

1. Login as the non-root user (secusr1).

2. Get the current system time.

Algorithm:

1. Do the setup as above.

2. Call stime to change the system time to 10 minutes ahead of the current
time.

3. If the return value from the stime call is –1, the error number is EPERM,
and the current system time is not the new time passed to stime as a
parameter, declare that the stime call passed the test; otherwise, declare that
it failed.

Cleanup: Restore the system time (if it has changed) by reducing the current



time by 10 minutes.

Audit record field values for failure (success):

Authid secusr1

RUID secusr1

EUID secusr1

RGID scgrp1

EGID secgrp1

Class tune

Reason Privilege failure (success)

Event SETTHETIME_1

Message Privilege failure (none)

20.3.3.3 Formal Methods: Proving That Programs Are Correct

Just as there are formal methods for specification and for proving that a
design specification is consistent with its security requirements, there are
techniques for proving properties about programs. Used during the coding
process, these techniques help avoid bugs. They work best on small parts of a
program that performs a well-defined task. This technique can be used for
some programs that enforce security functionality. Chapter 21, “Formal
Methods,” covers these techniques.

20.4 Assurance During Operation and Maintenance

While a system is in operation, bugs will occur, requiring maintenance on the
system. A hot fix addresses bugs immediately and is sent out as quickly as
possible. Hot fixes correct bugs that can immediately affect the security or
operation of the system. A regular fix addresses less serious bugs or provides
long-term solutions to bugs already addressed with hot fixes. Regular fixes
are usually collected until some condition is met. Then the vendor issues a
maintenance release containing those fixes. If the system involved is not sold



to others but instead is used internally, the problems that hot fixes address
are usually not addressed by regular fixes also.

As part of the maintenance of a system, well-defined procedures track
reported flaws. The information about each flaw should include a description
of the flaw, remedial actions taken or planned, the flaw’s priority and severity,
and the progress in fixing the code, documentation, a pointer to the
configuration management system entries related to the flaw corrections, and
other aspects of the flaw.

The action taken for a maintenance release or bug fix should follow the same
security procedures used during the original development. Any new design
should follow the modularity considerations, design principle considerations,
documentation, and justifications for the first release. Furthermore, the
vendor must apply to the bug fix or maintenance release all security
considerations and assurance measures that were used in the
implementation, integration, and security testing of the original product. The
vendor must update the assurance evidence appropriately. For fixes, the
vendor must rerun the pertinent parts of the security test suite. For
maintenance releases, the vendor must rerun the security tests for the
system.

20.5 Summary

Security assurance is an integral part of the life cycle of product or system
development. Assurance measures are taken at every step of the process,
from requirements development through design and development to testing
and release, and must be supported during product or system operation.
Consistency between distributed development teams in terms of assurance
techniques and implementation of security features accessing large
components is critical to security assurance of the product or system.

The process begins with analyses of the goals of the system and the threats



against which the system must be protected. These analyses guide the
development of the architecture of the system and its security policy and
mechanisms. As part of this process, the requirements for each of these
elements are stated and justified.

System and software design must also include assurance. There are specific
design goals that lead to the desired level of assurance. Documentation of
decisions, designs, and the process through which these decisions and
designs were developed provides information on which beliefs of assurance
can be based. The design documents and software specification documents
include both external and internal interfaces and functions and justify that
the design meets the requirements. Formal (or informal) methods of
implementation and testing provide assurance at the implementation level.

20.6 Research Issues

Research issues abound. One important issue is creating systems and
products from commercial off-the-shelf (COTS) components and providing as
high a level of assurance as possible that the resulting system meets its
requirements. The problem lies in the difficulty of assessing composition and
assessing the COTS components, few of which are constructed using high-
assurance techniques. This is frequently addressed by reviewing the code
provided for COTS components and performing functional and integration
testing on the COTS components. When a COTS component is updated,
developers normally review the changes made to the component and re-
execute the functional and integration tests. As discussed in this chapter,
these techniques alone do not provide a high level of assurance.

Adding appropriate assurance measures at appropriate times in the software
engineering life cycle is another critical issue. The process by which the
system or product is developed affects the degree of assurance. For example,
use of a methodology such as the SSE-CMM (see Section 22.8) imparts a
certain level of assurance.



Requirements analysis is often overlooked in the security arena, and yet it
forms the basis for the definition of security by guiding the development of a
security policy. Expressing requirements unambiguously but in a way that is
easily understood and analyzing requirements for feasibility in a particular
environment and for consistency are difficult problems.

Testing of systems and products for security is another area of active
research. Property-based testing abstracts security as a set of properties and
then tests conformance to those properties. Other types of testing, notably
software fault injection, assess the assurance of existing systems and
products.

20.7 Further Reading

Yen and Paul [2065] present a short survey of six areas in which high
assurance is critical. Assurance is also critical in safety-related software
[276,731,862,1154,1231,1244,1462,1949, 2073].

An early methodology for assertion-based testing and requirements
correspondence in security is discussed by Bullough, Loomis, and Weiss
[314].

Several papers consider the problem of providing assurance when
components are assembled for a system [343, 866, 1194]. Programming
languages provide a foundation for assurance, and the design and iteration of
assurance into both languages and supporting subsystems such as libraries is
critical [801].

Technologies that aid the processes described in this chapter include
requirements analysis and checking [868, 1230, 1290, 1767, 2091],
architectural description languages [1910], and documentation [215, 1382].
Several authors have described methodologies and experiences [752, 1066,
1293, 1945, 2021].



Arbo, Johnson, and Sharp [69] present a network interface that allows
System V/MLS to be used in a network MLS environment. Kang, Moore, and
Moskowitz analyze the design of the NRL pump for assurance [1005]. Smith
[1780] discusses the cost-benefit impacts of using formal methods for
software assurance.

Property-based testing [681,682,775,1084] tests process conformance to a
stated security policy. Software fault injection [77,465,466,767,1952,1953]
tests how systems react to failures of components. Both methods can be
adapted to testing for other, non-security problems as well.

20.8 Exercises

1. Distinguish between a policy requirement and a mechanism. Identify at
least three specific security requirements for a system you know and describe
at least two different mechanisms for implementing each one.

2. Justify that the four security properties in System X (see the example that
begins on page 577) are consistent with the Bell-LaPadula properties. Use the
System X statements in this chapter. Identify any information you may need
to complete the justification that you do not find in this material

3. In System Y (see the example on page 579), assumption A3 restricts the
access to authentication data to administrators. Should this assumption have
been used in the justification of threat T1? Why or why not? If yes, create the
appropriate statements to add to the justification given above.

4. Pick a life cycle development model not discussed in Chapter 19 and
describe how useful it is for development of secure and trusted products.

5. This exercise deals with the external specifications discussed in Section
20.2.4.1

(a) Write the external functional specification for the login function in the



example that begins on page 20–15.

(b) Write the external functional specification for the change_password
function in the example that begins on page 20–15.

(c) Write the low level test matrix, test assertions, and test case specifications
for the login function for the external functional specification written in part
a.

(d) Write the low level test matrix, test assertions, and test case specifications
for the change_password function for the external functional specification
writ-ten in part b.

6. Discuss the benefits and disadvantages of building secure and trusted
products or systems with assurance using an Agile software development
methodology.

7. Write an informal review process for small development organization.



Chapter 21. Formal Methods
PETRUCHIO: And, for an entrance to my entertainment, I do present you with 
a man of mine [Presenting Hortensio.] Cunning in music and the 
mathematics, To instruct her fully in those sciences, Whereof I know she is 
not ignorant: Accept of him, or else you do me wrong: His name is Licio, born 
in Mantua.

— The Taming of the Shrew, II, i, 54–60.

Previous chapters have addressed the topic of assurance in general and have 
described how assurance can be acquired throughout the life cycle of a 
product or system. To this point, the methods and techniques that have been 
discussed have been informal in nature and dependent on documentation and 
written requirements statements for design assurance and on testing for 
implementation assurance. Chapter 20, “Building Systems with Assurance,” 
introduced the concepts of formal specification languages for specifying 
requirements and systems as well as mathematically based automated formal 
methods for proving properties of specifications and programs. This chapter 
discusses these topics more fully, examining past and present formal 
specification and proof technologies.

21.1 Formal Verification Techniques

As in the techniques discussed in previous chapters, formal verification 
techniques rely on descriptions of the properties or requirements of interest, 
descriptions of systems to be analyzed, and verification techniques for



showing that the system descriptions are sufficient to meet the requirements.
The difference between the formal methods and those described in Chapter
20 is the degree of formality of the approach.

Part III, “Policy,” presented a variety of formal and informal security policy
models. The formal models are presented in the language of mathematics.
This chapter introduces other formal languages, called specification
languages, that are useful for representing policies, models, and system
descriptions. These languages have well-defined syntax and semantics and
are based on a mathematical logic system. This chapter also addresses formal
verification techniques that process the formal specifications, determining
how well each specification meets the requirements stated in the
policy/model or requirements specification. All verification techniques rely
on the underlying structure of some mathematical logic system and the proof
theory of that logic. Appendix E, “Symbolic Logic,” provides a very brief
overview of several logical systems that are used in formal proof technologies
and presents fundamental definitions and theories. The reader who is
inexperienced in logical systems should review that chapter before
proceeding.

Although all formal verification techniques implement similar concepts and
approaches, current trends have divided these techniques into inductive
verification techniques and model checking techniques. The differences
between these two types of techniques are based on the intended use, degree
of automation, general logical approach, and underlying logic system. Huth
and Ryan [944] provide an excellent set of criteria for classifying verification
technologies.

• Proof-based versus model-based techniques. Proof-based techniques define
a set of formulas called premises that embody the system description and
another formula called the conclusion that represents what is to be proved
(the properties). These techniques rely on finding a set of intermediate
formulas that allow the verifier to reach the desired conclusion beginning



from the premises. Model-based techniques rely on establishing that the
premises and the conclusion exhibit the same truth table values.

• Degree of automation. Approaches vary from fully automated to fully
manual, with every possibility in between.

• Full verification versus property verification. The system specification may
describe an entire system or parts of it, and the property specification may be
as small as a single property or may contain many properties.

• Intended domain of application. This may be hardware or software,
sequential or concurrent, reactive1 or terminating, or other types of systems.

1Huth and Ryan [944] define a reactive system as one that is not meant to
terminate. Examples include operating systems, embedded systems, and
computer hardware.

• Predevelopment versus postdevelopment. A verification technique may be
intended to be used as a design aid or for verification of the system after the
design is complete.

Inductive verification techniques are typically more general in nature. Some
of the techniques we discuss below were designed to be general-purpose
software development methodologies, addressing all stages of the life cycle.
Other inductive verification systems simply provide mechanisms for proof of
theorems. All are based on generation of formulas that show that a
specification of a system meets the requirements of a set of properties. These
techniques often have separate steps to create formulas that claim that the
specification meets the properties. These formulas are submitted to a
theorem prover that uses a higher-order logic such as predicate calculus. The
theorem prover attempts to show that the premises and conclusion are
provably equivalent by finding a series of proof steps starting with the
premises of the formula and eventually reaching the conclusion of the
formula. The user of an inductive verification technique generally guides a



theorem prover in finding a proof by supplying lemmata and previous results
that can be used to prove more complex theorems. Some inductive
verification techniques are used in the development cycle to find flaws during
the design process. Others are used to verify the properties of computer
programs.

Model checking techniques also establish how well a specification of a system
meets a set of properties. The systems modeled are state transition systems,
and a formula may be true in some states and false in others. Formulas may
change truth values as the system evolves from one state to another. The
properties to be verified by a model checker are formulas in a temporal logic.
In temporal logic, truth or falsehood of a formula is dynamic and is not
statically true or false as in propositional and predicate logic. Section E.3,
“Temporal Logic Systems,” presents an example of a temporal logic system.

Typically, a model checker addresses a single model that is built into a tool or
given to the tool as a specification of external properties. The tool is usually
automatic, with little or no interaction with the users’ point of view. Formula
generation and proof are a single step from the user view. The model checker
attempts to show that the model of the system and the desired properties are
semantically equivalent, which can be described by saying that the model and
properties exhibit the same truth table. The user initiates the model checker
and waits for the results. The model checking approach is often used after
development is complete but before a product is released to the general
market. Model checking was designed for concurrent systems and systems
that react to the environment and that are not expected to terminate.

EXAMPLE: The Hierarchical Development Methodology (HDM) of SRI,
International, will be used in many examples in this chapter. HDM began as a
general-purpose proof-based formal verification methodology addressing
design through implementation. It was an automated and general-purpose
(rather than property-oriented) methodology. It supported formal
descriptions of a system at various levels of abstraction, using specification



languages, implementation languages, and verification techniques to
demonstrate that successive levels of abstraction were consistent.

HDM also provided one of the earliest so-called model checkers with its
Multilevel Security (MLS) tool, although the theorem prover uses a proof-
based technique. The input to the MLS tool was a formal specification in the
language SPECIAL, a nonprocedural design specification language that was
very effective for writing external functional specifications. This tool is a fully
automated, property-oriented verification system. The MLS tool embodies
the SRI model, which is an interpretation of the Bell-LaPadula Model. MLS
processed SPECIAL specifications to determine potential violations of the
model within the specification. This was accomplished by the MLS
verification condition generator, which created formulas that asserted that
the specifications correctly implemented the embedded SRI model. The
Boyer-Moore theorem prover processed these formulas. The output of the
MLS program was a list of formulas that passed and those that failed.

The final section of this chapter addresses the analysis of cryptographic
protocols, which lends itself nicely to the use of formal methods. The
protocols themselves are relatively small and contained but may present
complex and exploitable flaws. Protocol verification has been a hugely
popular topic in the computer security research community over the past
decade. Protocol verification has been accomplished using inductive proof
methodologies as well as model checkers, and there are several special-
purpose protocol verification methodologies in wide use. Many are based on
the knowledge and belief logics of Burrows, Abadi, and Needham [327], and
others describe the interactions of a set of state machines to attempt to prove
that a protocol is secure.

21.2 Formal Specification

Recall that a specification is a description of characteristics of a computer
system or program. A security specification specifies desired security



properties. (See Definition 20–7.) To this we add the definition of a formal
specification.

Definition 21–1. A formal specification is a specification written in a formal
language with a restricted syntax and well-defined semantics based on well-
established mathematical concepts.

Formal specifications use a language with precise semantics. This avoids
ambiguity and may allow for proofs of properties about the specification.
These languages support precise descriptions of the behavior of system
functions and generally eliminate implementation details.

EXAMPLE: One good example of the use of formal mathematical
specifications can be seen in the Bell-LaPadula security policy model (see
Section 5.2.3). The elements and rules of this security policy model are
precisely defined in mathematical language. Using this well-defined
specification, theorems were generated showing the consistency of the model
rules with its axioms. Precise mathematical proofs of the theorems complete
this model. Other formal specification languages resemble programming
languages and are usually supported by automated tools that verify correct
syntax and semantics of a specification in the language.

Generally, the specification languages are supported by automated tools for
verifying the correct use of the language syntax and semantics. Inductive
verification, protocol verifiers, and model checkers use formal specification
languages as input to the tools of the technique, making a formal specification
a part of any formal verification technology. Formal spec-ification is also
important as a stand-alone technique. The specification may or may not be
needed for some proof process. The process of writing formal specifications
helps us to understand the design better and to see potential flaws, even
without claims and proofs.

SPECIAL is a first-order logic-based language developed at SRI,
International, as a stand-alone specification language. SPECIAL provides an



excellent example of a nonprocedural and strongly typed specification
language that is well suited for writing functional specifications, as described
in Chapter 20. The strengths of SPECIAL are the richness of its expressive
capability and its ability to describe inputs, constraints, errors, and outputs
without implementation details. SPECIAL has a rich set of built-in operators,
including set operations such as UNION and DIFF; logical operators such as
AND, OR, and => (implies); universal and existential quantifiers (FORALL,
EXISTS); IF/THEN/ELSE constructs; arithmetic operators; and many
others. SPECIAL also has a mechanism for distinguishing an old value of a
variable from a new value.

A specification in SPECIAL represents a module, and the specifier defines the
scope of the module. Several modules can be used to describe a system. Two
good reasons to make smaller modules are convenience and ease of
manipulation, but another reason is to take advantage of the ability to hide
information between modules.

A SPECIAL module specification has several sections for describing types,
parameters, assertions, and functions. SPECIAL types are identified
syntactically using keywords in capital letters. Two examples are the
DESIGNATOR type, which allows the use of a type whose specifics are to be
defined at a lower level of abstraction, and the BOOLEAN type, which
includes the values TRUE and FALSE. SPECIAL also supports discrete sets,
sets defined in terms of other types, and structured types. Parameters define
constants and entities whose ability to change is outside the scope of the
specification. Definitions are a shortcut for complex expressions that need to
be used repeatedly. Global assertions can be made about the other elements
of the module and can be used in proving theorems about the specification.

The heart of the SPECIAL specification is the functions, which define state
variables and state transitions. Any function can be defined as private to the
scope of the module in which that function is defined or as visible and
addressable outside the specific module description. The visible functions



define the external interface to the module. A visible function may have an
exceptions clause that lists the conditions to be tested and passed for the
effects of the function to take place. VFUNs describe variable data. Primitive
VFUNs describe the system state variables, whereas derived VFUNs provide
values determined by expressions involving primitive VFUNs, which have an
initial value. VFUNs are viewed as functions that return a value to the caller
and thus contribute to the definition of the system state. OFUNs and
OVFUNs describe state transitions. They have exception sections as well as an
effects section that describes changes in VFUN values. Like OFUNs, OVFUNs
describe state transitions, but, like VFUNs, they also return a value and thus
are state transition functions and contribute to the state of the system. Any
function specification can contain “local” assertions that are specific to the
function.

EXAMPLE: The specification below represents parts of the SPECIAL
specification of the Bell-LaPadula Model. The give-access rule is a
generalization of the give-read rule described in Section 5.2.4.2.

MODULE Bell_LaPadula_Model give–access
TYPES
Subject_ID:     DESIGNATOR;
Object_ID:      DESIGNATOR;
Access_Mode:    {OBSERVE_ONLY, ALTER_ONLY, OBSERVE_AND_ALTER};
Access: STRUCT_OF(      Subject_ID      subject;
                        Object_ID       object;
                        Access_Mode     mode);
FUNCTIONS
VFUN active (Object_ID object) –> BOOLEAN active:
HIDDEN;
INITIALLY
        TRUE;
VFUN access_ matrix () –> Accesses accesses:
HIDDEN;
INITIALLY
        FORALL Access a: a INSET accesses => active (a. object);
OFUN give–access (Subject_ID giver; Access access);
ASSERTIONS
        active (access.object) = TRUE;



EFFECTS
        access_matrix () = access_ matrix () UNION (access);
END_MODULE

This example defines four types. The Subject_ID and Object_ID are to be
described at a lower level of abstraction, and so are of type DESIGNATOR.
Variables of type Access_Mode may take only the values OBSERVE_ONLY,
ALTER_ONLY, and OBSERVE_AND_ALTER. The type Access is a structure with
three fields—namely, a Subject_ID, an Object_ID, and an Access_Mode. The
first VFUN defines the state variable active for an object to be TRUE. The
second VFUN defines the state variable access_matrix to be the set of triplets
of (subject, object, right ). The OFUN defines the transition occurring when
a new element is added to the matrix. It requires that the state variable active
for the object be TRUE (in the ASSERTIONS). Then the value of the variable
access_matrix after the transition is the value of that variable before the
transition, with the additional access right added to the access_matrix
variable. An interpretation of this specification is that the triples in
access_matrix define the current set of access rights in the system and the
active state variable for an object is TRUE if the object is in access_matrix—
that is, if the object exists.

21.3 Early Formal Verification Techniques

Some early work in formal methods attempted to mechanize and formalize
the entire development process. This approach met with only limited success
but provided invaluable lessons that led to further research that produced
more useful results. Other early work led to modern-day model checkers, and
still other early work analyzed communications protocols. This work
demonstrated the importance of the individual components by themselves
and not just as parts of an overall method. More recent research has focused
on more specific entities (for example, one part of the overall picture, such as
proofs, and one type of system, such as cryptographic protocols).



In the 1970s and 1980s, several formal verification systems were developed.
The most well-known of these systems are described in Cheheyl et al. [397],
from which much of the material in this section is drawn. We will discuss two
verification systems to illustrate the basic concepts of verification. The
Enhanced Hierarchical Development Methodology focuses on proofs of
design, whereas the Gypsy Verification Environment focuses on proofs of
implementation.

21.3.1 The Hierarchical Development Methodology

The Enhanced Hierarchical Development Methodology (EHDM) was strongly
based on its predecessor, the Hierarchical Development Methodology (HDM)
[1456]. HDM was a general-purpose design and implementation
methodology. Its goal was to mechanize and formalize the entire
development process, providing reliable, verifiable, and maintainable
software. The HDM package addressed design specification and verification
as well as implementation specification and verification, using the concept of
successive refinement of specifications.

The system design specification was created as a hierarchy that consisted of a
series of abstract machines at increasing levels of detail. The hierarchy began
with requirements. These requirements were expanded into a model that was
proven to be internally consistent.

Next, layers of abstract machines represented the system at increasingly
lower levels of detail, as shown in Figure 21–1.



Figure 21–1: Levels of abstract machines in HDM.

The hierarchy specification was written in the Hierarchy Specification
Language (HSL). It identified the abstract machines of the hierarchy. The
abstract machines were made up of sets of module specifications written in
SPECIAL, as shown in the example that begins on page 617. Each abstract
machine specification had one or more module specifications, each of which
defined a group of related functions. Modules could be reused in one or more
abstract machines.

Mapping specifications defined the functions of one abstract machine in
terms of the next higher machine. HDM module and mapping specifications
were written in SPECIAL. Module and mapping specifications each had some
unique constructs and a large set of common constructs. Several tools
supported module and mapping specifications, including syntax checkers and
consistency checkers.

A hierarchy consistency checker ensured consistency among the hierarchy



specifications, the associated module specifications for each machine, and the
mapping specifications between the abstract machines.

The basis for HDM implementation specification was the design hierarchy.
The spec-ification was accomplished by looking at each pair of consecutive
abstract machines and the mapping between them. For each function in the
higher-level abstract machine, programs were written to show how the
function was implemented in terms of calls to the lower-level abstract
machine. These programs were to be written in a high-order language that
had a compiler. To verify these programs, a translator mapped the program
into a Common Internal Form (CIF) that the HDM tools understood. Such a
translator existed for a restricted version of Modula. Using the mappings, the
two levels of specifications were translated into an intermediate language.
This language, together with the CIF, generated verification conditions to be
sent to the Boyer-Moore theorem prover. Assuming that the lower-level
machine worked as specified, the higher-level machine was verified to work
correctly. Given the correspondence of the CIF to the real programs,
correctness of the CIF implied correctness of the real implementation. See
Figure 21–2.

Figure 21–2: Implementation verification in HDM.



21.3.1.1 Verification in HDM

The implementation specification and verification parts of HDM were never
used outside the research environment, nor was the originally planned design
verification in HDM. The approach centered on the proof that the top-level
specification correctly implemented a set of predefined properties within a
model. The original intent was to be able to provide design verification for a
wide variety of models and properties, but the difficulty in formally stating
properties other than those found in U.S. Department of Defense (DOD)
policy limited the utility of this approach. HDM was used as a design
verification package for the Multilevel Security (MLS) tool [658]. This tool
implemented a version of the Bell-LaPadula Model known as the SRI model
and processed SPECIAL specifications for consistency with the model
properties.

The SRI model differed from an implementation of the Bell-LaPadula Model
in several aspects [1873]. The SRI model was specifically constructed to
function within the MLS tool. As a result, some entities differed from their
Bell-LaPadula counterparts. Some entities had no counterparts. For example,
the SRI model addressed visible function references and results (from VFUNs
or OVFUNs), whereas the Bell-LaPadula Model did not have these elements.
On the other hand, the Bell-LaPadula Model addressed discretionary access
control and had a concept of current access triples as well as an access
permission matrix. These entities did not appear in the SRI model. Both
models had mandatory access control properties, and both called the
mandatory rules the simple security condition and the *-property, but the
rules differed slightly between the two models. Subjects were implicitly
defined in the SRI model (as the invokers of functions). They were explicitly
defined in the Bell-LaPadula Model. In the Bell-LaPadula Model, the *-
property was expressed in terms of allowable access, but in the SRI model,
that property addressed downward flow of information. Thus, they were not
the same [1873].



The SRI model embedded in the MLS tool has three properties.

1. The information being returned by a specific function invocation could
depend only on information at a security level lower than or equal to that of
the subject.

2. The information flowing into a state variable (VFUN) could depend only on
other state variables that had security levels lower than that of the first state
variable.

3. If the value of a state variable was modified, the modification could be done
only by a function invocation whose level is the same as or lower than the
level of the state variable.

The underlying model of the MLS tool was a reasonable interpretation of the
multilevel policy of the U.S. Department of Defense. It was used successfully
for several years to analyze the mandatory access control properties of
systems and products.

The MLS tool processed a SPECIAL specification that described the
externally visible interfaces to the SPECIAL model, as shown in Figure 21–1.
When the MLS tool was used, one abstract machine was represented, and
there were no mappings, but there might have been multiple modules in the
specification. The SPECIAL module checker had to verify each module, and
the hierarchy consistency tool had to verify the set of modules.

The MLS tool generated formulas that claimed the correctness of the three
properties listed above. This was done for each function separately. All
formulas assumed that the initial conditions and local assertions of the
function were true and hypothesized the correctness of the applicable SRI
model property. Exceptions from visible functions and function returns from
OVFUNs and VFUNs were considered return values and thus generated
formulas asserting the correctness of property 1 for each return value. For
properties 2 and 3, the MLS formula generator identified new value



assignments for state variables. For each such reference, the tool generated
formulas asserting the correctness of properties 2 and 3. The formulas
generated were called verification conditions (VCs). The MLS tool
automatically submitted the VCs to the theorem prover. The theorem prover
attempted to prove the theorems. It reported those VCs that passed and those
that failed or could not be proved. This information was fed back to the MLS
tool.

21.3.1.2 The Boyer-Moore Theorem Prover

The Boyer-Moore theorem prover [285] was a fully automated program. It
did not have an interface for commands or directions to the theorem prover
to take user-defined actions. The user had to provide any theorems, axioms,
lemmata, and assertions that were needed to assist in the proof process.
These were expressed in a LISP-like notation. For example, when proving
VCs from the MLS tool, the theorem prover needed fundamental axioms
about the elements of the VCs, such as rules of transitivity, reflexivity, and
antisymmetry of the partial ordering relationship between security levels (see
Section 5.2). The MLS tool provided these axioms to the theorem prover.

This approach made it easier for the user to prove simple theorems but
potentially more difficult to prove more complex theorems. The user needed
to understand the underlying theory used by the theorem prover in order to
structure input in such a way that the theorem prover could find a proof. The
Boyer-Moore theorem prover maintained a file of previously proven theorems
and axioms that it could use in future proofs. In spite of the limitations, this
theorem prover was capable of complex mathematical proofs.

The theory behind the Boyer-Moore theorem prover used an extended
propositional calculus. This was enhanced to support the needs of computer
programs. The heuristics of the theorem prover were organized to find a
proof in the most efficient manner. The prover then performed a series of
steps on a formula in search of a proof. The fundamental steps were as
follows.



• Simplify the formula by applying axioms, lemmata, and function
definitions. Other simplifications included rerepresenting the formula by
converting it to a conjunction of if -free clauses.

• Reformulate the formula by trading terms for equivalent terms that are
easier for the theorem prover to process. For example, if a theorem involved
the term x – 1(x ≠ 0), the theorem prover would replace x by y + 1. The
formula now contained the terms y and y + 1 rather than x – 1 and x.

• Substitute equalities by replacing equality expressions with appropriate
substitutions, eliminating the equality clauses. For example, if (EQUAL s t)
appeared in the formula, we replaced t with s elsewhere in the formula and
eliminated the equality.

• Generalize the formula by introducing variables for terms whose roles have
been completed.

• Eliminate irrelevant terms from the formula.

• Induct to prove theorems when necessary.

The first step was always simplification, which could have resulted in a
conclusion of the proof process by reducing the formula to “TRUE” or
“FALSE”. If a conclusion was not reached, the theorem prover attempted the
next step. If this did not result in a conclusion, processing returned to the
simplification step. Processing iterated between simplification and
reformulation until a conclusion was reached, or simplification or
reformulation did not produce additional changes to the formula. The prover
then attempted equality substitution, and if a conclusion was not reached, it
returned to the simplification step and the process was repeated. In this way,
the theorem prover iterated between simplification, reformulation, and
equality substitution until a conclusion was reached or actions were
exhausted. The prover might have split off subgoals at any step, and these
were addressed separately. After carrying out each step in the sequence, the



prover returned to the simplification step and proceeded to the next step if
nothing could be one on any previous steps. Thus induction was only carried
out if a proof could not be reached via the other steps.

21.3.2 Enhanced HDM

HDM had some limitations that were addressed in a new, enhanced version
of the system called Enhanced HDM, or EHDM. The fundamental framework
of HDM was preserved but was enhanced to work more smoothly and with
less complexity for the user. Like HDM, EHDM used modules as the building
blocks of specifications. It supported multiple abstract machines and
mappings between them and had an MLS tool for design verification. Like
HDM, EHDM supported implementation verification. The difficulties with
HDM focused on three areas: the language SPECIAL, some of the tools, and
limitations of the theorem prover.

SPECIAL, which had been designed as a stand-alone specification language
before HDM was developed, was not defined in terms that the Boyer-Moore
theorem prover could readily use. This was attributable in part to the richness
of the language and in part to the lack of specific constructs needed by the
theorem prover. The missing constructs made formula generation and proof
difficult. As a result, the toolset lacked a general-purpose verification
condition generator to create verification conditions from SPECIAL that the
Boyer-Moore theorem prover could use. Finally, the theorem prover itself was
not interactive, requiring the user to understand the underlying theory used
by the theorem prover in order to structure input in such a way that the
theorem prover could find a proof.

To remedy these problems, new language constructs were needed. Eventually
SPECIAL was eliminated as the specification language for EHDM, and a new
language was developed. The new language bore many similarities to
SPECIAL but was much more powerful. It had the rich, expressive
capabilities of SPECIAL but had more logical constructs, allowing for more
reusable specifications and proofs. The new language used the concepts of



AXIOM, THEOREM, and LEMMA, which helped make it more conducive to
the use of a theorem prover.

The HDM theorem prover was not interactive. The user had to understand
the underlying theory used by the theorem prover in order to structure input
so that the theorem prover could find a proof. The EHDM theorem prover
was based on the Boyer-Moore theorem prover but was interactive. The MLS
tool that worked with EHDM was one of the formal verification tools
approved by the National Computer Security Center (NCSC) for use in high-
assurance evaluations of computer products (see Section 22.2.3).

21.3.3 The Gypsy Verification Environment

This discussion of the Gypsy Verification Environment (GVE) and its
language Gypsy is based on the work of Cheheyl et al. [397]. GVE focused on
implementation proofs rather than design proofs, and the verification system
attempted to prove a correspondence between specifications and their
implementation. It was also possible to use the GVE to prove properties of
Gypsy specifications. The GVE was based on structured programming, formal
proof, and formal specification methods. It supported a set of tools that
included a Gypsy language parser, a verification condition generator, and a
theorem prover.

21.3.3.1 The Gypsy Language

Gypsy was a program description language and combined specification
language constructs with a programming language. Using Gypsy,
specifications could be added to program code at appropriate places in an
implementation program. Alternatively, Gypsy could be used as an abstract
specification language, using abstract types and their operations.

Gypsy was based on the programming language Pascal [973], with some
notable changes. The primary goal of the language was verifiability, to include
both formal proof and runtime validation. This fundamental requirement led



to the following limitations on the Pascal language base. Gypsy routines could
not be nested, but instead could be grouped together in a named “scope.”
There were no global variables in Gypsy. Only constants, types, procedures,
and functions were visible between routines. This helped to eliminate side
effects from functions. Only constant parameters were allowed, and these
parameters could be passed only by reference. Furthermore, Gypsy did not
allow routine names to be passed as parameters. The data types in Gypsy
were different from those in Pascal. Pointers were replaced by dynamic
structures consisting of sets, sequences, mappings, and buffers, allowing for a
variable number of components and three basic operations (addition,
deletion, and moving a component to a different structure). Finally,
statements were slightly different from Pascal statements, to support optimal
placement of assertions.

A second goal of the Gypsy language was to support incremental
development. A Gypsy program was made up of small, independently
verifiable units including functions, procedures, lemmata, types, and
constants. The units were defined so that they could be removed and replaced
easily. They also supported verification. The proof of a unit depended only on
the external specifications of those other units it referenced.

Gypsy provided facilities for detection, isolation, and recovery from hardware
and software faults. It supported concurrency by allowing the security
properties of concurrent routines to be specified and verified.

Gypsy also included an extensive set of specification constructs. Gypsy
external specifications defined the effects of a routine, function, or procedure
on its parameters at specified points in its execution. Gypsy provided
keywords and specification statements for this purpose.

• Entry: conditions that were assumed to be true when the routine was
activated

• Exit: conditions that must have been true if the routine exited



• Block: conditions that must have held if the routine were blocked waiting on
access to shared memory

Gypsy internal specifications addressed the internal behavior of a routine.
These specifications could not be accessed outside the routine. The keywords
and specification statements were

• Assert: conditions that had to be satisfied at a specific point of execution

• Keep: conditions that had to remain true throughout the execution of the
routine

Gypsy supported the execution of lemmata as separate units. These lemmata
defined a relation among a number of functions and global constraints.
Lemmata could be used to state algebraic properties of abstract data types.

Gypsy provided a hold specification, which defined a constraint on the value
set of the concrete representation of an abstract data type.

At the expressive level, specification statements were made up of boolean
expressions that had to be true as specified by the keywords (listed above).
For example, an expression with the entry keyword had to be true at the time
the routine was activated. The boolean expressions were made up of
constants, variables, and function references allowed in the program code.
Gypsy also supported existential quantifiers using the keyword some, and
universal quantifiers using the keyword all. Like SPECIAL, there was a
mechanism to distinguish the old value of a variable from the new, so that the
exit specification could describe the computed value of a variable parameter
in terms of its prior value. Each expression in a specification statement also
could contain a validation directive, which determined if the condition were
to be proved during verification, validated at runtime, or both.

The GVE was not intended as a design verification package but rather as an
environment for proving properties of implementation programs. However,



MITRE developed a tool of the same nature as the HDM MLS tool that
performs security flow analysis on specifications written in a limited subset of
Gypsy.

21.3.3.2 The Bledsoe Theorem Prover

The Bledsoe theorem prover was an interactive natural deduction system that
used an extended first-order logic. This logic allowed subgoaling, matching,
and rewriting. In order to prove a Gypsy program unit by inductive assertion,
every loop had to be broken by at least one assert specification. Thus, there
was a finite number of paths through the program that covered all possible
execution sequences. Each verification condition was a theorem
corresponding to a single path. The condition stated that the specification at
the beginning of the path implied the specification at the end of the path. An
analyst could guide the theorem prover, or the theorem prover could be
instructed to choose the next step.

21.4 Current Verification Systems

Many formal verification systems are being developed and used. We present a
sampling of three: the inductive proof system called the Prototype
Verification System, the model checker called the Symbolic Model Verifier,
and the cryptographic protocol verifier called the NRL Protocol Analyzer.
These three examples demonstrate the key concepts underlying each type of
verification system.

21.4.1 The Prototype Verification System

The Prototype Verification System (PVS) [1492] builds on the successes and
failures of other systems developed at SRI, International. HDM and EHDM
focused on providing a means of proving programs correct and supporting a
full life cycle of program development. PVS was built as a “lightweight
prototype” to explore the next-generation verification system based on
EHDM. PVS provides mechanically checked specifications and readable



proofs but does not attempt to be a full development methodology. There is
no concept of successive layers of abstraction or mappings between levels as
in HDM and EHDM.

PVS is a system for writing specifications and constructing proofs. It focuses
on creating good specifications and proving appropriate properties for critical
systems. PVS consists of a specification language that is tightly integrated
with a powerful theorem prover. The theorem prover is highly interactive,
allowing the user to guide the proof, and is often referred to as a “proof
checker.” The use of powerful inference tools allows the enrichment of the
language. Conversely, several of the features of the language, including data
types, predicate subtypes, and dependent types, contribute to the
effectiveness of the inference mechanisms used in the proof checker. PVS also
includes tools such as a syntax checker, a type checker, and parsers.

21.4.1.1 The PVS Specification Language

The PVS language is a strongly typed language based on first-order logic. It is
used to construct compact specifications. This language is especially designed
to describe computer systems but, like SPECIAL, is generally nonprocedural,
focusing on what is to occur and how it is to be accomplished. This highly
expressive language supports modularity by allowing the specifier to describe
theories, which are somewhat similar in concept to the modules in SPECIAL.
The typing of the PVS language is rich and includes the notion of a predicate
subtype as well as type constructors for function, tuple, record, and abstract
data types.

Each theory contains a series of statements called declarations. The
declarations identify types, constants, variables, axioms, and formulas used
by the theory. Theories are reusable, and many have been incorporated into
the PVS package. These predefined theories have been named preludes. A
PVS library provides a wealth of such preludes. They include fundamental
definitions and theorems of set theory, functions, relations, and ordering, as
well as the properties of the integers and the real numbers. External PVS



libraries provide finite sets, bit vectors, coalgebras, real analysis, graphs,
quaternions, lambda calculus, and linear and branching time temporal logics.

EXAMPLE: The following example of a PVS specification language is an
abbreviated version of an example taken from the PVS tutorial [483]. It is a
theory that is built into the PVS library. This example shows how the PVS
language declarations are formed, as well as illustrating some of the types and
subtypes the language provides. The theory is called rats and begins to build
a theory of rational numbers.

rats THEORY
BEGIN
    rat: TYPE
    zero: rat

    nonzero : TYPE {x | x ≠ zero}
    / : [rat, nonzero –> rat]
    * : [rat, rat –> rat]
    x, y : VAR

    left_cancellation : AXIOM zero ≠ × IMPLIES x * (y/x) = y
    zero_times : AXIOM zero * x = zero
END rats

The type rat is not interpreted (just as DESIGNATOR in SPECIAL marks the
type as primitive). This specification describes the types rat and nonzero and
identifies a constant zero of type rat as well as a “division” function “/” and a
multiplication function “*”—each of which takes two arguments and returns a
value of type rat. The type nonzero is called a predicate subtype of type rat,
because membership in type nonzero consists of members of type rat that
satisfy the given predicate (namely, all members not equal to zero). The “/”
function addresses division by zero by taking a parameter of type rat and one
of type nonzero. The multiplicative function “*” takes two arguments of type
rat.

When the PVS type checker checks the types for an occurrence of the “/”



operator in left cancellation, the type checker generates a type correctness
condition (TCC) and adds it to the specification. For the example above, the
added declaration is

Left_cancellation _TCC1: OBLIGATION
       (FORALL (x: rat): zero ≠ x IMPLIES x ≠ zero)

TCCs are called obligations because they must be proved in order to show
that the theory is type correct. Such proofs may be deferred until a later time,
but they are required to complete the proof of the theory.

21.4.1.2 The PVS Proof Checker

The PVS proof checker uses a life cycle concept with four phases.

1. Exploratory phase: The specification is debugged. The developer tests the
specification proofs and revises key high-level proof ideas.

2. Development phase: The developer constructs a proof in larger steps and
works on the efficiency of the proof.

3. Presentation phase: The proof is honed, polished, and checked.

4. Generalization phase: The developer analyzes the proof and the lessons
learned for future proofs.

The PVS proof checker is highly interactive, supporting a goal-directed proof
search. The prover starts from the conclusion and progressively applies
inference steps to generate subgoals. The prover repeats this process until the
subgoals are trivially provable.

One goal is to support efficient development of readable proofs in all stages of
the proof development life cycle. The PVS prover has a small set of powerful
primitive inference rules and a mechanism for composing rules into proof
strategies. It can also rerun proofs and check that secondary proof obligations



(such as type correctness conditions) have been met. Among the PVS proof
checker primitive inference rules are the following.

• Propositional rules, such as a cut rule for introducing case splits, a rule for
lifting if -conditionals to the top level of the formula, and a rule for deleting
formulas from a goal (weakening rule)

• Quantifier rules, such as a rule for instantiating existentially quantified
variables with terms

• Equality rules, such as replacing one side of an equality premise by another

Other rules introduce lemmata, axioms, type constraints, and decision
procedures to limit the number of cases.

Figure 21–3: Graphical representation of the model M

Proof strategies are frequently used patterns of proofs that have been
composed into single steps. Examples of proof strategies are propositional
simplifications, use of decision procedures, and rewriting with a definition or
lemma.

21.4.1.3 Experience with PVS

PVS has been used in a variety of applications in many areas, not just
computer security. NASA centers have analyzed requirements for several



spacecraft projects and for avionics control. PVS has been used to verify
microarchitectures as well as complex circuits, algorithms, and protocols in
hardware devices. PVS has been used successfully to analyze both fault-
tolerant algorithms and distributed algorithms. The model checker integrated
into the PVS theorem prover enables PVS to analyze finite-state systems.
Finally, PVS has also been used in real-time and hybrid systems, for compiler
correctness, and in other applications.

21.4.2 The Symbolic Model Verifier

The Symbolic Model Verifier (SMV) [319] is based on Control Tree Logic
(CTL) [427]. Control Tree Logic (see Section E.3) adds eight temporal
connectives to those of the predicate calculus. Two letters represent each
connective. The first is an “A” or an “E.” Intuitively, one can think of “A” as
inevitability, or meaning “along all paths.” “E” is called possibility and means
“along at least one path.” The second symbol is “X,” “F,” “G,” or “U.” An “X”
refers to the next state, an “F” means some future state, “G” means all future
states (globally), and “U” means “until.” Therefore, “AX” means “along all
possible next paths,” and “EX” means “there is at least one next path.”

CTL can represent a model specifying a system as a directed graph whose
nodes represent the states. The propositional atoms of the system that hold in
that state can be indicated within the graph of the node, and the possible state
transitions are represented by arrows connecting the appropriate nodes.

EXAMPLE: Suppose that M is a model that specifies a system with three
states s0, s1, and s2 and three propositional atoms p1, p2, and p3. Suppose
further that the possible state transitions are s0 → s1, s0 → s2, s1 → s0, s1 →
s2, and s2 → s2. Finally, suppose that p1 is true in state s1, p1 and p3 are true
in s0, and p2 and p3 are true in s2. The graph in Figure 21–3 completely
represents this model.

We can unwind this graph, creating an infinite tree of all computational paths
beginning in a given state. This provides a graphical representation that



clarifies the new temporal connectives such as “AX” and “EX.” See Figure 21–
4.

Figure 21–4: Unwinding the graph of M

21.4.2.1 The SMV Language

An SMV program specifies the system and includes a description of the
properties to be verified. The property specifications are written as CTL
formulas. The SMV tool processes the program and returns either a “true,”’
indicating that the specifications hold for all initial states, or a trail of actions
to help in debugging.

The SMV program may consist of several modules. The module called main
takes no parameters and identifies the modules of the program. This module
forms the root of the model hierarchy. It is the starting point for building the
finite-state model for a given description. Individual module specifications
contain declarations describing a set of variables. A module may be
parameterized and may contain instances of other modules. Alternatively, a



module can be reused as necessary.

The SMV program may have many types of declarations. The VAR declaration
defines a variable and identifies its type. The language supports boolean,
scalar, and fixed array types, as well as static structured data types. The
ASSIGN declaration assigns initial and next values to variables. Next values
are described in terms of current values of other variables, as in SPECIAL and
Gypsy. The DEFINE declaration assigns values to variables in terms of other
variables, constants, logical and arithmetic operators, and case and set
operators. The INVAR declaration describes an invariant on the state
transition system. The SPEC declaration introduces a CTL specification of the
properties to be proved about the module.

The SMV language includes other features. One of the more interesting is a
set of fairness constraints that can be used to rule out infinite executions. It
describes deterministic and nondeterministic transitions as well as specifying
synchronous or interleaving composition.



Figure 21–5: Graph of mutual exclusion model.

21.4.2.2 The SMV Proof Theory

The SMV model checking tool uses the proof logic of CTL. The proof
technique is to establish semantic equivalence of the premises (from the
specification of the system) and the conclusion, represented by the properties
following the SPEC declaration in the CTL program.

EXAMPLE: Suppose that two concurrent processes share a resource but must
not have access to it at the same time. To ensure correctness, we must define
a critical section of each process’ code and a protocol to determine which
process can enter its critical section at which time. We verify our solution by
confirming that some expected properties are met.



The model M is defined as follows. Let p1 and p2 be two processes. Define
each of the following states for each process pi.

• A noncritical state ni corresponding to the process not attempting entry

• A state ti in which the process is trying to enter the critical section

• A critical state ci corresponding to the process being in its critical section

A process moves from its noncritical state to trying to enter its critical state to
being in its critical state to back to its noncritical state, and so on. The set of
possible system states is (n1, n2), (n1, t2), (n1, c2), (t1, n2), (t1, t2), (t1, c2), (c1,
n2), (c1, t2), and (c1, c2). However, the state (c1, c2) is not included in the
model because it is the condition that the model is to show is not possible. We
also model the (t1, t2) state twice in our model, as shown in Figure 21–5. Both
occurrences record that both processes are in their trying states, but s3
describes p1’s turn and s8 describes p2’s turn.

Suppose that the properties we want to show about the model are as follows.

• Safety: Only one process at a time can be in the critical section.

• Liveness: A process trying to enter its critical section will eventually do so.

• Nonblocking: A process can always request to enter its critical section.

The model for this system is represented by the graph in Figure 21–5.
Consider each of these desired properties separately.

• Safety: In terms of the model, this property requires that, for all paths, c1
and c2 cannot be true simultaneously. The CTL formula is AG¬(c1 ∧ c2).
Because the state (c1, c2) is not defined in our model, this formula trivially
holds.

• Nonblocking: In terms of the model, this property requires that, for every
computational path, every state ni has a successor state ti. The CTL formula



for this is AG(ni → EXti). Inspection of Figure 21–5 shows that this is true.

• Liveness: In terms of the model, this property requires that, for all paths, if
ti is true, then there is some future state (on the same path) in which ci is true.
More simply, if the first process attains its trying state, then it will always
eventually reach its critical state. The CTL formula is AG(ti → AFci). This
proof can also be verified by inspection of Figure 21–5.

Thus we have verified that all three properties hold.

21.4.2.3 SMV Experience

SMV has been used to verify sequential circuit designs [318]. SMV was used
to verify the IEEE Futurebus+ Logical Protocol Specification [346].
Researchers also used SMV and some of its predecessors to verify security
protocols [428], finite state real-time systems [347], and concurrent systems
[427].

21.4.3 The Naval Research Laboratory Protocol Analyzer

The Naval Research Laboratory (NRL) Protocol Analyzer (NPA) [1314] is a
special-purpose verification system used to verify cryptographic protocols,
including authentication protocols and key distribution protocols. The NPA is
written in Prolog [431]. It is based on the term-rewriting model of Dolev and
Yao [583]. This model assumes that an intruder can read all message traffic,
modify and destroy any messages, and perform any operation (encryption or
decryption) that can be read, altered, or performed by a legitimate user. The
model further assumes that there are certain words, such as keys or
encrypted messages, that the intruder does not already know. The intruder’s
goal is to learn these words, and the defender’s goal is to prevent the intruder
from doing so.

The NPA approach to protocol verification is based on an interaction among a
set of state machines. The user specifies nonsecure states and attempts to



prove that they are unreachable. The proof uses an exhaustive backward
search from the unreachable state. The NPA can also use proof techniques for
reasoning about state machine models and for finding flaws and identifying
potential attacks as well.

21.4.3.1 NPA Languages

The NPA Temporal Requirements Language (NPATRL) is the fundamental
language of the NPA. It expresses generic requirements of key distribution or
key agreement protocols.

The work in protocol verification includes the development of protocol
specification languages and tools for generating formulas and searching for
proofs. Each method has its own language. The large number of protocol
verification systems led to the development of CAPSL, the Common
Authentication Protocol Specification Language. CAPSL is a high-level
language for cryptographic authentication and key distribution protocols.
This allows a protocol to be specified once, after which, theoretically,
translators can be provided to convert the specification automatically into
another language supported by a protocol verification system.

A CAPSL specification has three parts. The protocol specification describes
the protocol. A types specification describes the encryption operations. An
environment specification provides scenario-specific details that can help in
finding a proof for a protocol. The NRL Protocol Analyzer has a CAPSL
interface [287].

21.4.3.2 NPA Experience

The NPA has been widely used to verify protocols. Among the protocols
tested with this tool are the Internet Key Exchange protocol [1316] and the
Needham-Schroeder public key protocol [1319].

21.5 Functional Programming Languages



Functional programming is a declarative style of developing computer
programs using mathematical expressions that are evaluated, instead of using
statements which can change the state. Functional programs utilize
expressions that are only dependent upon the inputs provided ensuring that
the outputs and effects of the function are not dependent upon global
variables or local states. Functions in functional programming are treated like
any other value, so they can be modified and used as input or output
parameters. Functional programming languages are well-defined and well-
typed lending to analysis that is comparatively simple compared to non-
functional programming languages [2180].

The increased use of functional programming languages has given a more
promising future to the ability to formally verify a program. Because state
changes are dependent solely on the inputs to the function construct and
syntaxes are well-defined, mathematically proving a program developed
using functional programming is simpler and more straightforward.

There are three well known functional programming languages: OCaml,
Haskell, and Rust. A brief description of each is provided below.

OCaml is a functional programming language. OCaml programs are verified
by the compiler prior to execution resulting in a reduction in programming
errors. As such OCaml programs lend to easier formal verification. OCaml is
used in environments where speed and error-free functionality is critical
[2212].

Haskell is a purely-functional programming language that is free. It offers
built-in memory management and is strongly typed (e.g., no core dumps).
Programs written in Haskell tend to be shorter, lending to a program that is
easier to verify [2180].

Rust is a new system programming language that combines the speed of the C
programming language with functional programming language
characteristics providing thread safety and prevent segmentation faults



[2227]. The Rust programming language has recently undergone a formal
proof for the Rust ownership discipline to demonstrate that unsafe
implementations are safely encapsulated [990].

21.6 Formally Verified Products

As mentioned earlier, most of the formally verified products are security
kernels. There have been recent advances in scalability of formal verification
methods. Due to the increased computing power and cheaper computer
systems, the ability to formally verify a product is becoming more feasible.

EXAMPLE: The seL4 microkernel is an open source operating system kernel
that was designed using high assurance techniques and has undergone formal
verification by SSRG@NICTA (now known as Trustworthy Systems@Data61).
It has been formally verified against its own specification, including the
ability to enforce security properties [1072].

More commonly, annotations are used. In this method, hypotheses about the
program are embedded in the program, and when encountered, the
hypothesis is checked. If the hypothesis fails, the program or system takes
some action such as warning the user or aborting execution.

EXAMPLE: The Security-Oriented Analysis of Application Programs
(SOAAP) analysis tool [834, 835] is based on a number of annotations related
to compartmentalization of execution. They describe what parts of a program
should be in a sandbox, and how those parts can communicate among
themselves. Consider a function to decipher a file and put the cleartext into a
second file.

_ _soaap_var_read(“decrypt“)
int retval;
_ _soaap_sandbox_persistent(“decipher“)
void decipher(fdes in, fdes out)
{
        char key[128] _ _soaap_private;



        if (getkey(“Key:⊔“, key) < 0)
                retval = –1;
        while((n = read (buf, 1023, in)) > 0)
                decrypt (buf, key);
                if (write(buf, n, out) != n)
                        retval = –1;
                retval = 0;
}

In the above, __soaap_sandbox_persistent(“decrypt”) specifies that the
function decrypt is to be run in a sandbox. The value of key, the key to
decrypt the file, is marked as __soaap_private so any leaks of it via library
functions (here, decrypt) will be detected. Because decipher is in a sandbox,
it cannot communicate with the rest of the program to return success or
failure. The variable retval is to be 0 on success and –1 if an error occurs.
Hence, it is annotated with __soaap_var_read(“decrypt”) to indicate that
the function decipher may change the value of that variable even though it is
outside the sandbox.

Annotated programs are first compiled into an intermediate representation,
and the representations for all files making up the program are linked.
SOAAP then performs both static and dynamic control and dataflow analysis
to identify violations, and also to warn if the overhead added by the
additional checks causes performance requirements not to be met.

SOAAP was developed as part of a project to develop a high assurance
capability-based system designed for software compartmentalization [1996,
2034].

21.7 Summary

Formal verification begins with a specification stated in an appropriate
language. The language has a precise syntax and well-defined semantics
based on mathematical principles. The system design and the properties to be
verified are described in formal specifications. The specification of the design



is proved to meet the specification of the properties. The proof may use
general, inductive techniques or be tied to a specific model, in which case
model checking techniques are appropriate.

The Hierarchical Development Methodology (HDM) was an early formal
verification technique. It treated the specification as a hierarchy of abstract
machines. The requirements and model were first proven consistent
internally and with one another. The model was mapped into the top-level
abstract machine, which in turn was mapped into the next lower abstract
machine, and so forth. Each layer was expressed in terms of the lower layer,
and each mapping between machines was verified to be correct. A later
version, called Enhanced HDM (EHDM), used a different specification
language and an interactive theorem prover to verify the system.

A second early verification environment focused not on verifying design but
on proving properties of implementations. It combined a specification
language with a programming language. The specifications were embedded in
the programs. It supported incremental development as well as handling of
hardware and software faults.

The Prototype Verification System (PVS) evolved from EHDM. Its goals are to
provide a system for proving theorems about specifications. It does not
attempt to support the full life cycle of program development. Specifications
written in PVS use a specification language coupled with an interactive
theorem prover. PVS has been used successfully to analyze requirements for
spacecraft and to verify protocols in hardware devices.

The Symbolic Model Verifier (SMV) is a model checking tool. It represents a
model of the system in a specification language. The properties to be verified
are written in CTL, a temporal logic. An automated program tests the model
against properties to verify that the properties hold. Circuit designs, security
protocols, and real-time systems have been verified using this methodology.
Protocols, especially cryptographic protocols, are notoriously difficult to get
right. The NRL Protocol Analyzer is a system used to verify protocols. It is a



state-based analysis engine that determines whether the protocol can enter
states labeled as nonsecure. It can also identify potential attacks.

21.8 Research Issues

One area of research is how to define, and how to select, security properties in
a way that is amenable to formal analysis and applies to realistic situations
with precision. Security properties are often defined at an abstract level, and
the mapping of the properties to that level removes much of the detail that
affects security at the implementation level. Furthermore, many security-
relevant properties are difficult to analyze in the context of formal methods.
The issue of noninterference, for example, falls outside most formal analysis
methods that operate on implemented systems. A good counterpoint is the
analysis of cryptographic protocols. Formal methods work well with
cryptographic protocols because the protocols can be expressed
mathematically and the implementing software is small, but the current
methods do not scale well to large systems.

This suggests restructuring of systems to make formal verification of security-
critical components easier. Developing architectures that lend themselves to
formal verification is a deep area. The concept of reference monitors comes
into play, but in most instances systems are simply too large to structure as
single reference monitors. How can systems be architected to achieve a
compact or simple enough form so that formal methods can be used to verify
the key components?

Expressions of security properties, designs, and implementations can
simplify the use of formal methods. Different environments and different
uses lead to different verification methodologies. Currently, there are many
languages that can express policies at various levels of abstraction and others
that can tie code to specifications. Can one create languages that support the
implementation of verified designs without introducing flaws that create
vulnerabilities?



In the realm of security and safety, ongoing work includes verification of
cryptographic protocols and verification of code on active networks. The
latter is particularly critical because active networks change the software that
controls traffic while the network is in use. Protocols supporting these
changes, and the code being introduced, must meet security requirements
that are suitable for the network, but the verification of the code must be
done at the time the code arrives, and so must be quick. How to speed up the
verification of code is an important issue. The ideas of proof-carrying code
(see Section 23.9.5.1) may work well in this environment. This is an
important area of research.

21.9 Further Reading

McLean [1308] provides a terse but enlightening review of 20 years of formal
methods. Snow [1786, 1787] discusses the future of assurance, including the
role of formal methods. Wing [2022] discusses the relationship of formal
methods and security. Bowen and Hinchley [279–281] discuss guidelines for
and misperceptions of formal methods.

Many other specification languages are available. Among these are ACL2
[1021], Estelle [1917], HOL [807], LOTOS [258], SDL [1917], Z [570], and
Isabelle [2009]. Comparisons of these languages are instructive [72, 92].

Similarly, several model checkers are in use. In addition to SMV, the model
checker Spin [123, 924] is based on a temporal logic system and FDR2 [1613]
is based on a process algebra. SyMP [172] and Forte [1322] combine model
checking and theorem proving.

Many papers discuss formal methods and tools for protocol analysis.
Kemmerer [1033] laid the basis for this work. The Interrogator [1343, 1347,
1348] is another Prolog-based protocol analysis system. Kemmerer,
Meadows, and Millen [1037] contrast three protocol analysis systems. Abadi
and Needham [4] present 11 principles for creating cryptographic protocols.



Formal methods have benefited in the past decade or so by the emergence of
advancements in Satisfiability Modulo Theories (SMT). SMT checks whether
the first-order formula expressions have a model or solution [130,523]. A
sample SMT solver is Z3, an SMT theorem prover from Microsoft Research
[522].

The use of formal methods in the certification of aircraft systems is a current
area of development and research. Muñoz [1407] discusses the use of formal
methods in air traffic management for unmanned aircrafts. Cofer and Miller
[434] discuss case studies for different formal methods of software
development projects in the avionics industry.

21.10 Exercises

1. Add a SPECIAL specification to the example beginning on page 617 that
describes get-access (see 5.2.4.1).

2. Section 21.3.1.1 presents three properties of the SRI model as embedded in
the MLS tool. Compare and contrast these properties with the simple security
property and the *-property of the Bell-LaPadula Model.

3. Why does the Boyer-Moore theorem prover perform induction only when
the other five steps fail to simplify the formula? Why does it not try induction
first?

4. Contrast the goals of the Gypsy Verification Environment with those of
HDM. In particular, when is using HDM appropriate, and when is using
Gypsy appropriate? Can HDM and Gypsy be used interchangeably?

5. Add rules to the rats example for PVS in Section 21.4.1.1 for exponentiation
(^) and remainder (%). Remember that 0 and the remainder of anything
when divided by 0 are both undefined.

6. Compare the life cycle concept that the PVS proof checker uses with the



waterfall model of software engineering (see Section 19.2.1). Can the life cycle
concept be expressed as a form of the waterfall model?

7. Consider the example in Section 21.4.2.2. The proof of the nonblocking
condition states that “for every computational path, every state ni has a
successor state ti.” But the path s0s1s2 is a cycle in which n2 never changes to
t2. Reconcile this observation with the statement in the proof that “Inspection
of Figure 21–5 shows that this is true.”



Chapter 22. Evaluating Systems
LEONATO: O! she tore the letter into a thousand halfpence; railed at herself, 
that she should be so immodest to write to one that she knew would flout her; 
‘I measure him,’ says she, ‘by my own spirit; for I should flout him, if he writ 
to me; yea, though I love him, I should.’

— Much Ado About Nothing, II, iii, 156–161.

Evaluation is a process in which the evidence for assurance is gathered and 
analyzed against criteria for functionality and assurance. It can result in a 
measure of trust that indicates how well a system meets particular criteria. 
The criteria used depend on the goals of the evaluation and the evaluation 
technology used. The Trusted Computer System Evaluation Criteria (TCSEC) 
was the first widely used formal evaluation methodology, and subsequent 
methodologies built and improved on it over time. The Common Criteria for 
Information Security Evaluation (Common Criteria or CC) is an 
internationally developed standard for certification of security features within 
products. CC was developed in the mid-1990s and is still in use today by many 
countries. The Federal Information Processing Standard (FIPS) Publication 
140-2 (FIPS PUB 140-2) is a standard co-sponsored by the U.S. and Canadian 
government to accredit cryptographic modules. This chapter explores several 
past and present evaluation methodologies, emphasizing the differences 
among them and the lessons learned from each methodology.

22.1 Goals of Formal Evaluation



Perfect security is an ultimate, but unachievable, goal for computer systems.
As the complexity of computer systems increases, it becomes increasingly
difficult to address the reference validation mechanism concept of a system
being simple enough to analyze. A trusted system is one that has been shown
to meet specific security requirements under specific conditions. The trust is
based on assurance evidence. Although a trusted system cannot guarantee
perfect security, it does provide a basis for confidence in the system within
the scope of the evaluation.

Formal security evaluation techniques were created to facilitate the
development of trusted systems. Typically, an evaluation methodology
provides the following features.

• A set of requirements defining the security functionality for the system or
product.

• A set of assurance requirements that delineate the steps for establishing that
the system or product meets its functional requirements. These requirements
usually specify required evidence of assurance.

• A methodology for determining that the product or system meets the
functional requirements based on analysis of the assurance evidence.

• A measure of the evaluation result (called a level of trust) that indicates how
trustworthy the product or system is with respect to the security functional
requirements defined for it

Definition 22–1. A formal evaluation methodology is a technique used to
provide measurements of trust based on specific security requirements and
evidence of assurance.

Several evaluation standards have affected formal evaluation methodologies.
Among the major standards have been the Trusted Computer System
Evaluation Criteria (TCSEC) [2254] and the Information Technology Security



Evaluation Criteria (ITSEC) [2192]. The Common Criteria (CC)
[2142–2144,2146] has supplanted these standards as a standard evaluation
methodology. This chapter discusses components of each standard.

Even when a system is not formally evaluated, the security functional
requirements and assurance requirements provide an excellent overview of
the considerations that improve assurance. These considerations are
invaluable to any development process.

22.1.1 Deciding to Evaluate

A decision to evaluate a system formally must take into consideration the
many trade-offs between security and cost, such as time to market and the
number of features. Vendors typically seek validation or certification for a
product due to government acquisition requirements. In the U.S., the
Committee on National Security Systems (CNSS) established a policy for
acquisition of information assurance (IA) and IA enabled products, called
NSTISSP #11. NSTISSP #11 mandates that COTS products used on national
security systems within the Executive branch be evaluated or validated
against CC or FIPS 140-2 [2211].

Groups seeking formal evaluation usually have to pay the evaluator’s charge
as well as staffing costs for skilled experts to develop security documentation
and assurance evidence. Interaction with the evaluator for training,
clarification, or corrections takes development staff time and could affect
development and delivery schedules. Unfortunately, security evaluation
cannot prove that a system is invulnerable to attack. Most systems today
must operate in hostile environments, and the systems must provide their
own protections from attacks and inadvertent errors.

Security and trust are no longer the exclusive realm of the government and
military, nor are they of concern only to financial institutions and online
businesses. Computers are at the heart of the economy, medical processes
and equipment, power infrastructures, and communications infrastructures.



Systems having no security are unacceptable in most environments today.
Systems providing some security are a step in the right direction, but a
trusted system that reliably addresses specifically defined security issues
engenders stronger confidence. Evaluation provides an independent
assessment by experts and a measure of assurance, which can be used to
compare products.

The independent assessment by experts of the effectiveness of security
mechanisms and the correctness of their implementation and operation is
invaluable in finding vulnerabilities and flaws in a product or system. An
evaluated product has been scrutinized by security experts who did not
design or implement the product and can bring a fresh eye to the analysis.
Hence, the evaluated product is less likely to contain major flaws than a
product that has not been evaluated. The analysis of such a system begins
with an assessment of requirements. The requirements must be consistent,
complete, technically sound, and sufficient to counter the threats to the
system. Assessing how well the security features meet the requirements is
another part of the evaluation. Evaluation programs require specific types of
administrative, user, installation, and other system documentation, which
provide the administrators and maintainers the information needed to
configure and administer the system properly, so that the security
mechanisms will work as intended.

The level of risk in the environment affects the level of trust required in the
system. The measure of trust associated with an evaluated product helps find
the optimum combination of trust in the product and in the environment to
meet the security needs.

22.1.2 Historical Perspective of Evaluation Methodologies

Government and military establishments were the early drivers of computer
security research. They also drove the creation of a security evaluation
process. Before evaluation methodologies were available for commercial
products, government and military establishments developed their own



secure software and used internal methodologies to make decisions about
their security. With the rapid expansion of technology, government and
military establishments wanted to use commercial products for their systems
rather than developing them. This drove the development of methodologies
to address the security and trustworthiness of commercial products.

Evaluation methodologies provide functional requirements, assurance
requirements, and levels of trust in different formats. Some list requirements
and use them to build trust categories. Others list the requirements only
within the description of a trust category. To help the reader compare the
development of the methodologies, we present each methodology in a
standard manner. We first present overview information about the
methodology. Descriptions of functional requirements (when they exist),
assurance requirements, and levels of trust follow. If the methodology was
widely used to evaluate systems, we describe the evaluation process. The final
discussion for each methodology addresses its strengths, its weaknesses, and
the contributions it makes to the evaluation technology. Unfortunately, the
methodologies use slightly different terminologies. In the discussion of each
methodology, we will describe the terminology specific to that technique and
relate it to the specific terminologies of previous methodologies.

22.2 TCSEC: 1983–1999

The Trusted Computer System Evaluation Criteria (TCSEC), also known as
the Orange Book, was developed by the U.S. government and was the first
major computer security evaluation methodology. It presents a set of criteria
for evaluating the security of commercial computer products. The TCSEC
defined criteria for six different evaluation classes identified by their rating
scale of C1, C2, B1, B2, B3, and A1. Each evaluation class contains both
functional and assurance requirements, which are cumulative and increasing
throughout the evaluation classes. Classes were subdivided into three
different “divisions” of lesser importance to our discussion than individual
evaluation classes. A fourth division, D, was provided for products that



attempted evaluation but failed to meet all the requirements of any of the six
classes. The vendor could select the level of trust to pursue by selecting an
evaluation class but otherwise had no say in either the functional or
assurance requirements to be met.

The reference monitor concept (see Section 20.1.2.2) and the Bell-LaPadula
security policy model (see Section 5.2) heavily influenced the TCSEC criteria
and approach. Recall that a trusted computing base (TCB) is a generalization
of the reference validation mechanism (RVM). The TCB is not required to
meet the RVM requirements (always invoked, tamper-proof, and small
enough to analyze) for all classes. In the TCSEC, the TCB need not be a full
RVM until class B3.

The TCSEC emphasizes confidentiality, with a bias toward the protection of
government classified information. Although there is no specific reference to
data integrity in the TCSEC, it is indirectly addressed by the *-property of the
embedded Bell-LaPadula Model1.

1Recall that the *-property addresses writing of data, which provides some
controls on the unauthorized modification of information (see Section 5.2.1).

However, this is not a complete data integrity solution, because it does not
address the integrity of data outside the mandatory access control policy.
System availability is not addressed.

During the first few years that the TCSEC was available, the National
Computer Security Center published a large collection of documents that
expanded on requirement areas from the TCSEC. These “Rainbow Series”
documents2 discussed the requirements in specific contexts such as networks,
databases, and audit systems, and some are still applicable today.

2Each document had a different colored cover.

The TCSEC provides seven levels of trust measurement called ratings, which



are represented by the six evaluation classes C1, C2, B1, B2, B3, and A1, plus
an additional class, D. An evaluated product is a rated product. Under the
TCSEC, some requirements that this text considers to be functional in nature
appear under headings that use the word assurance. These requirements are
identified in the text below.

22.2.1 TCSEC Requirements

The TCSEC is organized by evaluation class and uses an outline structure to
identify named requirement areas. It defines both functional and assurance
requirements within the context of the evaluation classes. The actual
requirements are embedded in a prose description of each named area. The
divisions and subdivisions of the document are of lesser importance than the
actual requirement areas found within them.

22.2.1.1 TCSEC Functional Requirements

Discretionary access control (DAC) requirements identify an access control
mechanism that allows for controlled sharing of named objects by named
individuals and/or groups. Requirements address propagation of access
rights, granularity of control, and access control lists.

Object reuse requirements address the threat of an attacker gathering
information from reusable objects such as main memory or disk memory.
The requirements address the revocation of access rights from a previous
owner when the reusable object is released and the inability of a new user to
read the previous contents of that reusable object.

Mandatory access control (MAC) requirements, not required until class B1,
embody the simple security condition and the *-property from the Bell-
LaPadula Model. These requirements include a description of the hierarchy of
labels. Labels attached to subjects reflect the authorizations they have and are
derived from approvals such as security clearances. Labels attached to objects
reflect the protection requirements for objects. For example, a file labeled



“secret” must be protected at that level by restricting access to subjects who
have authorizations reflecting a secret (or higher) clearance.

Label requirements, also not required until class B1, enable enforcement of
mandatory access controls. Both subjects and objects have labels. Other
requirements address accurate representation of classifications and
clearances, exporting of labeled information, and labeling of human-readable
output and devices.

Identification and authentication (I&A) requirements specify that a user
identify herself to the system and that the system authenticate that identity
before allowing the user to use the system. These requirements also address
the granularity of the authentication data (per group, per user, and so on),
protecting authentication data, and associating identity with auditable
actions.

Trusted path requirements, not required until class B2, provide a
communications path that is guaranteed to be between the user and the TCB.
For example, in Windows the CTRL-ALT-DELETE can be configured to be
required for login. The CTRL-ALT-DELETE key sequence cannot be
intercepted, so spoofed login screens are not possible.

Audit requirements address the existence of an audit mechanism as well as
protection of the audit data. They define what audit records must contain and
what events the audit mechanism must record. As other requirements
increase, the set of required auditable events increases, causing the auditing
requirements to expand as one moves to higher classes.

The TCSEC presents other requirements that it identifies as system
architecture requirements. They are in fact functional requirements, and they
include a tamperproof reference validation mechanism, process isolation, the
principle of least privilege, and well-defined user interfaces.

TCSEC operational assurance requirements that are functional in nature



include the following. Trusted facility management requires the separation of
operator and administrator roles and are required starting at class B2.
Trusted recovery procedure requirements ensure a secure recovery after a
failure (or other discontinuity). These requirements are unique to class A1.
Finally, a system integrity requirement mandates hardware diagnostics to
validate the on-site hardware and firmware elements of the TCB.

22.2.1.2 TCSEC Assurance Requirements

Configuration management requirements for the TCSEC begin at class B2
and increase for higher classes. They require identification of configuration
items, consistent mappings among all documentation and code, and tools for
generating the TCB.

The trusted distribution requirement addresses the integrity of the mapping
between masters and on-site versions as well as acceptance procedures for
the customer. This requirement is unique to class A1.

TCSEC system architecture requirements mandate modularity, minimization
of complexity, and other techniques for keeping the TCB as small and simple
as possible. These requirements begin at class C1 and increase until class B3,
where the TCB must be a full reference validation mechanism.

Design specification and verification requirements address a large number
of individual requirements, which vary dramatically among the evaluation
classes. Classes C1 and C2 have no requirements in this area. Class B1
requires an informal security policy model that is shown to be consistent with
its axioms. Class B2 requires that the model be formal and be proven
consistent with its axioms and that the system have a descriptive top level
specification (DTLS). Class B3 requires that the DTLS be shown to be
consistent with the security policy model. Finally, class A1 requires a formal
top level specification (FTLS) and that approved formal methods be used to
show that the FTLS is consistent with the security policy model. Class A1 also
requires a mapping between the FTLS and the source code.



Testing requirements address conformance with claims, resistance to
penetration, and correction of flaws followed by retesting. A requirement to
search for covert channels includes the use of formal methods at higher
evaluation classes.

Product documentation requirements are divided into a Security Features
User’s Guide (SFUG) and an administrator guide called a Trusted Facility
Manual (TFM). The SFUG requirements include a description of the
protection mechanisms, how they interact, and how to use them. The TFM
addresses requirements for running the product securely, including
generation, start-up, and other procedures. All classes require this
documentation, and as the level of the class increases, the functional and
assurance requirements increase.

Internal documentation includes design and test documentation. The design
documentation requirements and the design specification and verification
requirements overlap somewhat. Design documentation requirements
include a statement of the philosophy of protection and a description of
interfaces. Test documentation requirements specify test plans, procedures,
tests, and test results. As with the user and administrator documentation,
requirements for test and design documentation increase as the functional
and assurance requirements increase as the classes increase.

22.2.2 The TCSEC Evaluation Classes

Class C1, called discretionary protection, has minimal functional
requirements only for identification and authentication and for discretionary
access controls. The assurance requirements are also minimal, covering
testing and documentation only. This class was used only briefly, and no
products were evaluated under this class after 1986.

Class C2, called controlled access protection, requires object reuse and
auditing in addition to the class C1 functional requirements and contains
somewhat more stringent security testing requirements. This was the most



commonly used class for commercial products. Most operating system
developers incorporated class C2 requirements into their primary product by
the end of the lifetime of the TCSEC.

Class B1, called labeled security protection, requires mandatory access
controls, but these controls can be restricted to a specified set of objects.
Labeling supports the MAC implementation. Security testing requirements
are more stringent. An informal model of the security policy, shown to be
consistent with its axioms, completes class B1. Many operating system
vendors offered a class B1 product in addition to their primary products.
Unfortunately, the B1 products did not always receive the updates in
technology that the main line received, and they often fell behind technically.

Class B2, called structured protection, is acceptable for some government
applications. At class B2, mandatory access control is required for all objects.
Labeling is expanded, and a trusted path for login is introduced. Class B2
requires the use of the principle of least privilege which requires all users
operate with the least set of privileges necessary to perform the specific task.
Assurance requirements include covert channel analysis, configuration
management, more stringent documentation, and a formal model of the
security policy that has been proven to be consistent with its axioms.

Class B3, called security domains, implements the full reference validation
mechanism and increases the trusted path requirements. It also constrains
how the code is developed in terms of modularity, simplicity, and use of
techniques such as layering and data hiding. It has significant assurance
requirements that include all the requirements of class B2 plus more
stringent testing, more requirements on the DTLS, an administrator’s guide,
and design documentation.

Class A1, called verified protection, has the same functional requirements as
class B3. The difference is in the assurance. Class A1 requires significant use
of formal methods in covert channel analysis, design specification, and
verification. It also requires trusted distribution and increases both test and



design documentation requirements. A correspondence between the code and
the FTLS is required.

22.2.3 The TCSEC Evaluation Process

Government-sponsored evaluators staffed and managed TCSEC evaluations
at no fee to the vendor. Some products began the TCSEC evaluations during
the product design and implementation phases. The evaluation had three
phases: application, preliminary technical review (PTR), and evaluation. If
the government did not need a particular product, the application might be
denied. The PTR was essentially a readiness review, including comprehensive
discussions of the evaluation process, schedules, the development process,
product technical content, requirement discussions, and the like. The PTR
determined when an evaluation team would be provided, as well as the
fundamental schedule for the evaluation.

The evaluation phase was divided into design analysis, test analysis, and a
final review. In each part, the results obtained by the evaluation team were
presented to a technical review board (TRB), which approved that part of the
evaluation before the evaluation moved to the next step. The TRB consisted of
senior evaluators who were not on the evaluation team being reviewed.

The design analysis consisted of a rigorous review of the system design based
on the documentation provided. Because TCSEC evaluators did not read the
source code, they imposed stringent requirements on the completeness and
correctness of the documentation. Evaluators developed the initial product
assessment report (IPAR) for this phase. Test analysis included a thorough
test coverage assessment as well as an execution of the vendor-supplied tests.
The evaluation team produced a final evaluation report (FER) after approval
of the initial product assessment report and the test review. Once the
technical review board had approved the final evaluation report, and the
evaluators and vendor had closed all items, the rating was awarded.

The Ratings Maintenance Program (RAMP) maintained assurance for new



versions of an evaluated product. The vendor took the responsibility for
updating the assurance evidence to support product changes and
enhancements. A technical review board reviewed the vendor’s report and,
when the report had been approved, the evaluation rating was assigned to the
new version of the product. RAMP did not accept all enhancements. For
example, structural changes and the addition of some new functions could
require a new evaluation. The RAMP program required that the vendor have
a trained Vendor Security Analyst on staff to perform the RAMP process.

22.2.4 Impacts

The TCSEC created a new approach to identifying how secure a product is.
The approach was based on the analysis of design, implementation,
documentation, and procedures. The TCSEC was the first evaluation
technology, and it set several precedents for future methodologies. The
concepts of evaluation classes, assurance requirements, and assurance-based
evaluations are fundamental to evaluation today. The TCSEC set high
technical standards for evaluation. The technical depth of the TCSEC
evaluation came from the strength of the foundation of requirements and
classes, from the rigor of the evaluation process, and from the checks and
balances provided by reviews from within the evaluation team and the
technical review boards from outside the evaluation team.

However, the TCSEC was far from perfect. Its scope was limited. The
evaluation process was difficult and often lacked needed resources. The
TCSEC bound assurance and functionality together in the evaluation classes,
which troubled some users. Finally, the TCSEC evaluations were recognized
only in the United States, and evaluations from other countries were not valid
in the United States.

22.2.4.1 Scope Limitations

The TCSEC was written for operating systems and does not translate well to
other types of products or to systems. Also, the TCSEC focused on the



security needs of the U.S. government and military establishments, who
funded its development. All evaluation classes except C1 and C2 require
mandatory access control, which most commercial environments do not use.
Furthermore, the TCSEC did not address integrity, availability, or other
requirements critical to business applications.

The National Computer Security Center (NCSC) tried to address the scope
problems by providing criteria for other types of products. After an attempt to
define a criteria document for networks, the NCSC chose to develop the
Trusted Network Interpretation (TNI) of the TCSEC [2257], released in 1987.
The TNI offered two approaches: evaluation of networks and evaluation of
network components. The TNI network approach addressed centralized
networks with a single accreditation authority, policy, and Network TCB
(NTCB). In the first part of the TNI, the TCSEC criteria were interpreted for
networks, and one could evaluate a network at the same levels offered by the
TCSEC. The second part of the TNI offered evaluation of network
components. A network component may be designed to provide a subset of
the security functions of the network as a whole. The TNI could provide an
evaluation based on the specific functionality that the component offered.

In 1992, a Trusted Database Management System Interpretation (TDI) [2255]
of the TCSEC was released. In the early 1990s, IBM and Amdahl pushed for a
Trusted Virtual Machine Monitor Interpretation [2222] of the TCSEC, but
this project was eventually dropped. The interpretations had to address issues
that were outside the scope of the TCSEC, and each had limitations that
restricted their utility. Not many evaluations resulted from the TNI or the
TDI.

22.2.4.2 Process Limitations

The TCSEC evaluation methodology had two fundamental problems. The first
was “criteria creep,” or the gradual expansion of the requirements that
defined the TCSEC evaluation classes. Evaluators found that they needed to
interpret the criteria to apply them to specific products. Rather than publish



frequent revisions of the TCSEC to address these requirement
interpretations, the NCSC chose to develop a process for approval of
interpretations and to publish them as an informal addendum to the TCSEC.
The interpretations were sometimes clearer and more specific than the
original requirement. Over time, the list became quite large and expanded the
scope of the individual criteria in the TCSEC and its interpretations. The
requirements of the classes became the union of the requirements in the
TCSEC and the set of applicable interpretations. Thus, a class C2 operating
system may have been required to meet stronger requirements than a system
evaluated a few years before. This put an additional burden on the newer
products under evaluation and meant that the minimum-security
enforcement of all C2 operating systems was not the same. Although there
were many problems with these differences, it caused the security community
to learn more about security and create better security products.

The second problem with the evaluation process was that evaluations took
too much time. Three factors contributed to this problem. Many vendors
misunderstood the depth of the evaluation and the required interactions with
the evaluation teams. The practices of the evaluation management caused
misunderstandings and scheduling problems. Finally, the motivation to
complete a free evaluation was often lacking. Typically, both vendors and
evaluators caused delays in the schedule. Vendors often had to do additional
unanticipated work. Evaluators were assigned to multiple evaluations, and
the schedule of one evaluation could cause delays for another vendor. Many
evaluations took so long to complete that the product was obsolete before the
rating was awarded. Toward the end of the life of the TCSEC, commercial labs
approved by the government were allowed to do TCSEC evaluations for a fee.
Vendors had to be prepared for evaluation, and there was significantly less
interaction between evaluators and vendors. This change addressed much of
the timeliness problem, with labs completing evaluations in roughly a year.

A related problem was that RAMP cycles were as difficult as full evaluations
and suffered from similar delays. Consequently, RAMP was not used very



much.

22.2.4.3 Contributions

The TCSEC provided a process for security evaluation of commercial
products. Its existence heightened the awareness of the commercial sector to
the needs for computer security. This awareness would have arisen later if not
for the influence of the TCSEC.

In the 1990s, new varieties of products emerged, including virus checkers,
firewalls, virtual private networks, IPsec implementations, and cryptographic
modules. The TCSEC remained centered on operating systems, and its
interpretations were insufficient to evaluate all types of networks or the new
varieties of products. The commercial sector was dissatisfied with the
functional requirements of the evaluation classes. These inadequacies of the
TCSEC stimulated a wave of new approaches to evaluation that significantly
affected evaluation technology. Commercial organizations wrote their own
criteria. Other commercial organizations offered a pass-fail “certification”
based on testing. The Computer Security Act of 1987 gave the responsibility
to the NSA for security of computer systems processing classified and
national security-relevant information. NIST received a charter for systems
processing sensitive and unclassified information. In 1991, NIST and the NSA
began working on new evaluation criteria called the Federal Criteria (FC). All
these activities sprang from the impact of the TCSEC.

22.2.5 International Efforts and the ITSEC: 1991–2001

By 1990, several Western countries had developed their own security
evaluation criteria. Canada released the first version of the Canadian Trusted
Computer Product Evaluation Criteria (CTCPEC) [107, 2137] in 1989. The
CTCPEC relied heavily on the TCSEC in the beginning but also incorporated
some new ideas through successive releases. The CTCPEC espouses
separation of assurance and functionality. It offers a catalogue of functional
requirements in several categories. It introduces the concept of functionality



“profiles” based on sets of well-defined requirements from the catalogue. It
also addresses new functional requirement areas such as integrity and
availability and new assurance areas such as the developer environment.

Some Western European countries—notably, France, Germany, the United
Kingdom, and the Netherlands—also had security evaluation criteria by this
time. The lack of reciprocity of evaluation among European nations created a
move to harmonize the criteria of these countries, resulting in the
Information Technology Security Evaluation Criteria (ITSEC), the European
standard published in 1991. The European Union officially endorsed the
ITSEC as a Recommendation by the Council of the European Union in 1995.
The ITSEC was widely used over a 10-year period until the Common Criteria
(see Section 22.7) became available. The ITSEC took a different approach to
evaluation than that of the TCSEC, and consequently it successfully
addressed some of the shortcomings of the TCSEC. However, it created a new
set of shortcomings of its own.

The ITSEC provided six levels of trust, called evaluation levels, E1, E2, E3,
E4, E5, and E6. A seventh level, E0, was used for products that did not meet
other levels. A product or system successfully evaluated under the ITSEC was
called a certified product or certified system, and a certified product or
system was said to have a certification. ITSEC did not provide functional
criteria. It required the vendor to define the security functional criteria in a
security target (ST). This effectively split functionality and assurance into
distinct categories. Having vendor-defined or externally defined functional
requirements permitted evaluation of any type of product or system. There
was no equivalent to the concept of a TCB in the ITSEC. However, a new term
was introduced by the ITSEC.

Definition 22–2. A target of evaluation (TOE) is a product or system, and
its associated administrator and user documentation, that is the subject of an
evaluation.

We use the acronym “TOE” and “product” or “system” interchangeably in this



text, avoiding the use of “TOE” where appropriate.

The United Kingdom IT Security Evaluation and Certification Scheme
Certification Body defined exemplary sets of functional requirements that
were consistent with the functional requirements for TCSEC classes C1
through B3, as well as other fixed functionality classes. An evaluated product
using these predefined sets of functional requirements received certification
that had two components: one for the functional class (for example, FC2 was
the U.K. functional requirement specification that mimicked TCSEC class C2)
and one for the assurance class. Therefore, an operating system evaluated
under the ITSEC could end up with a certification for “FC2-E3,” indicating
that it met the assurance requirements stated in the E3 assurance class and
the functional requirements stated in the FC2 functionality class.

22.2.6 ITSEC Assurance Requirements

The ITSEC assurance requirements were similar to those in the TCSEC,
although there were substantial differences in terminology. As in the TCSEC,
assurance requirements were defined within the constraints of the evaluation
levels. ITSEC assurance was viewed in terms of correctness and effectiveness.
The six effectiveness requirements applied equally to all levels of ITSEC
evaluation. The first two effectiveness requirements were as follows.

1. Suitability of requirements. This requirement addressed consistency and
coverage of the security target by showing how the security requirements and
environmental assumptions found in the security target were sufficient to
counter the threats defined in the security target.

2. Binding of requirements. This analysis investigated the security
requirements and the mechanisms that implemented them. This ensured that
the requirements and mechanisms were mutually supportive and provided an
integrated and effective security system. The assessment took both the
requirements and the implementing mechanisms into account.



These requirements applied to the security target and provided an analysis of
the security target that contained the security requirements. There was no
correspondence between the ITSEC and the TCSEC in this area because the
corresponding analysis was done in defining the TCSEC evaluation classes.

This section discusses the remaining four effectiveness requirements along
with the correctness requirements. The correctness requirements are
subdivided, and, as with the TCSEC, the subdivisions are not as significant as
the individual requirement areas. This section will identify the differences
between the requirements of the ITSEC and those of the TCSEC.

22.2.6.1 Requirements in the ITSEC Not Found in the TCSEC

The ITSEC required an assessment of the security measures used for the
developer environment during the development and maintenance of the
product or system. The TCSEC had no such requirement.

Starting at level E2, the ITSEC required that a correspondence be defined
between all levels of representation of the TOE (such as mappings of
specifications to requirements, mappings between successive levels of
specification, and mappings between the lowest spec-ification and the code).
The TCSEC required only a mapping from the top-level specification to the
code, and only for higher evaluation classes. The ITSEC had requirements on
compilers and languages that the TCSEC did not have. Finally, the ITSEC
required the submission of source code at several levels and of object code at
the highest level. The TCSEC evaluations were done without examining code.

The ITSEC requirements for delivery and generation procedures, and for
approved distribution procedures, addressed many aspects of those
procedures, whereas the TCSEC addressed only the use of masters in the
distribution process. Furthermore, the distribution requirements began at the
lowest level of the ITSEC, whereas the TCSEC required them only at the
highest level. Secure start and operation requirements in the ITSEC
addressed more aspects than did the TCSEC requirements, which addressed



only recovery after a discontinuity.

The effectiveness requirements of the ITSEC required several forms of
vulnerability assessment that the TCSEC did not require. The design
vulnerability analysis, which assessed vulnerabilities at the design level, had
no equivalent in the TCSEC. The TCSEC had no equivalent to the ITSEC’s
ease of use analysis, which determined how the system could be misused
based on a study of the system documentation. The ITSEC known
vulnerabilities analysis was similar to the TCSEC design vulnerability analysis
but addressed the implemented system. The strength of mechanisms
effectiveness requirement applied to each security mechanism whose
strength could be measured. For example, it applied to cryptographic
algorithms (the measure was based on key size) and passwords (the measure
was based on the size of the password space). The TCSEC has no
corresponding requirement.

22.2.7 The ITSEC Evaluation Levels

The ITSEC levels were listed from lowest to highest. Each level included the
requirements of the preceding level. If a product or system did not meet the
requirements for any level, it was rated as level E0 (which corresponded to
the TCSEC level D).

Level E1 required a security target against which to evaluate the product or
system. It also required an informal description of the product or system
architecture. The product or system had to be tested to demonstrate that it
satisfied its security target.

Level E2 also required an informal description of the detailed design of the
product or system TOE, as well as configuration control and a distribution
control process. Evidence of testing had to be supplied.

Level E3 had more stringent requirements on the detail design and also
required a correspondence between the source code and the security



requirements.

Level E4 also required a formal model of the security policy, a more rigorous,
structured approach to architectural and detailed design, and a design level
vulnerability analysis.

Level E5 also required a correspondence between the detailed design and the
source code, and a source code level vulnerability analysis.

Level E6 also required extensive use of formal methods. For example, the
architecture design had to be stated formally and shown to be consistent with
the formal model of the security policy. Another requirement was the partial
mapping of the executable code to the source code.

22.2.8 The ITSEC Evaluation Process

Each participating country had its own methodology for doing evaluations
under the ITSEC. All were similar and followed well-defined guidelines. This
discussion uses the U.K. methodology.

Certified, licensed evaluation facilities (CLEFs) performed evaluations for a
fee. The U.K. government certified the CLEFs. Evaluations typically started
much later in the development cycle than did TCSEC evaluations. CLEFs
often had an evaluation division and a consulting division. Vendors sought
guidance and support from the consulting division to prepare for the
evaluation, and consequently the products and systems were better prepared
before evaluation began. Because fees were involved, all parties were
motivated to finish the evaluation quickly. The evaluation process was much
more structured and did not have the lengthy (but technically sound) checks
and balances that were provided by TCSEC technical review boards.

The process began with an evaluation of the security target, based on the
suitability and binding of assurance requirements. When the security target
was approved, the evaluators evaluated the product against the security



target. The documentation required for the ITSEC followed a slightly more
rigid structure than that for the TCSEC, making it easier in some ways for
vendors to provide useful evidence to the evaluators. ITSEC evaluators read
the code for clarification when documentation proved inadequate.

The U.K. Scheme for the ITSEC had a very straightforward and simplistic
certificate maintenance scheme. It required a plan and evidence to support
correct implementation of the plan. Like the evaluation process, it did not
have technical reviews such as those of the technical review boards of the
TCSEC.

22.2.9 Impacts

The ITSEC evaluation allowed flexibility in requirement definition and in
mixtures of assurance and functionality. Commercial labs performed the
ITSEC evaluations, which effectively reduced the length of the evaluation
process. Additionally, the ITSEC methodology lent itself to any kind of
products or systems. ITSEC provided guidance on what documentation was
required. Reciprocity of evaluation existed within the European states. The
four effectiveness requirements were a very useful addition to assurance
requirements.

In spite of the somewhat stronger assurance requirements in some areas, the
ITSEC evaluations were often viewed as technically inferior to the TCSEC
evaluations for two reasons. The first was a fundamental potential weakness
in the development of functional requirements. The second dealt with the
evaluation process itself, which was somewhat lacking in technical rigor.

Another limit of the ITSEC was the lack of reciprocity of evaluation with
Canada and the United States

22.2.9.1 Vendor-Provided Security Targets

Unfortunately, vendors did not always have qualified security experts to



develop appropriate security targets. This raised the concern that ITSEC
evaluations did not determine if a claim made sense; it merely verified that
the product met the claim. In fact, security target evaluation was often the
work of one or two individuals. No official review provided checks and
balances. No board of experts (such as the TCSEC’s technical review board)
assessed the quality of the evaluators’ work. The use of predefined
functionality classes eased this limitation somewhat.

22.2.9.2 Process Limitations

Some considered using the same company for both evaluation preparation
support and evaluation itself to be a conflict of interest. Different personnel
provided the consulting and evaluation services, but their biases could be the
same. Separation of these duties among different organizations may produce
stronger results because this approach offers more diversity of opinion.

ITSEC product and system evaluations could have had one- or two-person
teams. Usually, one or two people made all the decisions, and there was
insufficient review of the decisions. One- or two-person teams cannot
generate the rich set of opinions and internal review that a team of five or six
security experts can provide.

Efficiency of process and ease of use are not substitutes for rigor or depth.
There was no body of experts to approve evaluator design analysis or to test
coverage analysis. The small evaluation team made the decision to move to
the next phase of the evaluation. There was no equivalent to a final review by
experts. A government body provided the final approval for the evaluation,
but that body usually took the recommendation of the evaluation team.

22.3 Commercial International Security
Requirements: 1991

The Commercial International Security Requirements (CISR) [488] was a
joint effort of individuals from American Express and Electronic Data



Systems (EDS). They used the TCSEC, Germany’s IT-Security Criteria [2198],
and the newly released ITSEC. Their approach was to develop a “C2+”
security evaluation class that stressed the areas of importance to business. As
before, the following discussion focuses on the differences between the
requirements of the CISR and the TCSEC.

22.3.1 CISR Requirements

The CISR had its roots in the TCSEC evaluation class C2. Because one level of
trust was involved, the functional and assurance requirements were stated
directly and not embedded in the description of several levels of trust. The
CISR functional and assurance requirements included only those
requirement areas required by the TCSEC evaluation class C2. This effectively
eliminated design specification and verification, labeling, mandatory access
control, trusted path, trusted facilities management, and trusted recovery.
Assurance requirements were identical to the TCSEC C2 requirements with
one small addition. The administrator guide had to contain a threat analysis
that identified the protection measures addressing each threat. CISR
functional requirements for object reuse and system integrity were identical
to the TCSEC class C2 requirements. The other C2 functional requirement
areas were enhanced.

1. CISR discretionary access control requirements included the B3 TCSEC
requirements of access control lists and limiting of access by specific modes.
Several new access modes were added.

2. CISR I&A requirements included password management constraints, as
identified in the Password Management Guide of the Rainbow Series [2217].
The CSIR offered one-time passwords as an alternative to fixed, stored
passwords and required one-way encryption to protect stored passwords.

3. CISR made minor modifications to address the auditing of new
discretionary access control attributes, added a few auditable events, and
included small issues from TCSEC evaluation classes B1 and B3. The CISR



added B1, B2, and B3 requirements to the system architecture requirements
from the TCSEC.

CISR added several new categories of requirements that were not found in
the TCSEC. Session controls included login attempt thresholds, limits on
multiple concurrent sessions, and keyboard locking. System entry constraints
could be set to limit a user’s access to the system based on time, location, and
mode of access. CISR provided a set of workstation security requirements
that included the use of encryption, virus deterrents, and restrictions on use
of peripheral devices and operating commands. CISR network security
requirements included the use of a centralized administrative interface as
well as alternative user authentication methods such as tokens, challenge
response techniques, and public key cryptography.

22.3.2 Impacts

Although the CISR never became a generally available evaluation
methodology, it did contribute to the rapid growth of evaluation technology
in the early 1990s. Perhaps the most significant contribution of this work was
the awareness it brought to the U.S. federal government regarding the
security evaluation needs of the commercial sector. The CISR influenced the
Federal Criteria, which included many of the new requirements stated by the
CISR.

22.4 Other Commercial Efforts: Early 1990s

In the late 1980s and early 1990s, private commercial companies in the
United States and the United Kingdom began evaluating other types of
products. These evaluations were oriented toward testing and did not include
requirement analysis, design analysis, or other classical evaluation
techniques. This approach offered no level of trust but rather used a “pass-or-
fail” process. A product or system that passed the process was called certified,
and a certified product received periodic recertification as part of the initial



agreement. These companies evaluated products such as antivirus software,
network firewalls, Internet filter software, cryptographic products, biometric
products, and IPsec products with this technique. In the absence of U.S.
government criteria, some of these evaluations were an effective stopgap
measure for security evaluations of products that could not be addressed
using the TCSEC. They are still available today, but they must compete with
the lowest level of trust Common Criteria evaluations that provide similar
services at similar costs but provide a government-validated assurance rating.

22.5 The Federal Criteria: 1992

The National Institute of Standards and Technology (NIST) and the National
Security Agency (NSA) together developed the Federal Criteria (FC) [2169] in
1992 to replace the TCSEC with a new evaluation approach. The FC
attempted to address the shortcomings of the TCSEC and of the ITSEC and to
address the concerns of the CISR authors. It was heavily influenced by the
TCSEC technically but followed the lead of the ITSEC in its separation of
assurance and functional requirements. The FC used a catalogue of functional
requirements, which had been done in the CTCPEC. A new direction in the
FC is evaluation of products with respect to protection profiles, with each
profile identifying requirements and other information particular to a family
of products or systems.

Definition 22–3. A protection profile (PP) is an abstract specification of the
security aspects of an IT product. A protection profile is product-
independent, describing a range of products that could meet this same need.
It contains both functional and assurance requirements that are bound
together in a profile with a rationale describing the anticipated threats and
intended method of use.

NIST and NSA planned to create a set of FIPS for each protection profile. The
Minimum Security Functionality Requirements for Multi-User Operating
Systems (MISR) was an example of such a profile. Before the FC approach



could come to fruition, the Canadian Security Establishment (CSE) and the
ITSEC community approached the U.S. government to encourage it to use the
FC as a basis for a new set of international criteria.

22.5.1 FC Requirements

The FC included a catalogue of all functional requirements of the TCSEC.
New functional requirements adopted from the CISR included the system
entry constraints based on time, mode of entry, and location, and other
functional issues. Possibly for the first time, there appeared an availability
policy based on requirements for resource allocation and fault tolerance.
Security management requirements were identified, enhanced, and added to
a new section of the functional requirements. Assurance requirements met
both TCSEC and ITSEC requirements. The FC included a new assurance
requirement for a life cycle process.

22.5.2 Impacts

The most significant contribution of the FC was the concept of an evaluated
protection profile. This approach also appears in the 1993 CTCPEC. The
functional requirements sections of protection profiles are similar to the
ITSEC functionality classes, but the protection profile requirements were
selected from the FC functional requirements catalogue. The FC methodology
supported evaluation of protection profiles. In contrast, the ITSEC
functionality classes were not included in the ITSEC evaluation methodology.

The FC protection profile included the information needed for identification
and cross-referencing as well as a brief description of the nature of the
problem that the profile addressed. The rationale portion included
identification of threats, the environment, and assumptions and provided the
justification for the profile. The subsequent sections of the protection profile
contained the functional and assurance requirements as stated in the FC. The
FC also introduced the concept of a product-dependent security target that
implemented the requirements of an approved protection profile.



A second significant contribution was the development of a profile registry
that made FC-approved protection profiles available for general use.

22.6 FIPS 140: 1994–Present

During the time of the TCSEC, the U.S. government had no mechanism for
evaluating cryptographic modules. Evaluation of such modules was needed in
order to ensure their quality and security enforcement. Evaluation of
cryptographic modules outside the United States under the ITSEC or within
the United States under the commercial pass-or-fail techniques did not meet
these needs. In 1994, NIST and the Canadian Security Establishment (CSE)
jointly established FIPS 140-1 as an evaluation standard for cryptographic
modules for both countries. This standard was updated in 2001 to FIPS 140-2
[2232] to address changes in technology and process since 1994. The
program is now sponsored jointly by NIST and CSE under the Cryptographic
Module Validation Program (CMVP). Since May 25, 2002, the CMVP only
accepts validations against FIPS 140-2. Certification laboratories are
accredited in Canada, the United States, Australia, Germany, Spain, Japan,
and Taiwan to perform the evaluations, which are validated jointly under the
CMVP, sponsored by CSE and NIST. This scheme for evaluating
cryptographic products has been highly successful and is actively used today
[2154].

A cryptographic module is a set of hardware, firmware, or software, or some
combination thereof, that implements cryptographic logic or processes. If the
cryptographic logic is implemented in software, then the processor that
executes the software is also a part of the cryptographic module. The
evaluation of software cryptographic modules automatically includes the
operating system.

The Cryptographic Algorithm Validation Program (CAVP) provides for the
evaluation of approved cryptographic algorithms against specific algorithm
specifications. This list of approved cryptographic algorithms is dynamic. The



CAVP tests the following types of cryptographic algorithms: block ciphers,
block cipher modes, digital signatures (including elliptic curves), key
derivation functions, key management, message authentication, random
number generation, secure hashing, and component testing. CMVP requires
validation testing for claimed approved cryptographic algorithms to be
performed by the CAVP. It is also possible for vendors to obtain validations
for approved algorithms using CAVP without CMVP [2154].

22.6.1 FIPS 140 Requirements

FIPS 140-1 and FIPS 140-2 provide the security requirements for a
cryptographic module implemented within federal computer systems. Each
standard defines four increasing, qualitative levels of security (called security
levels) intended to cover a wide range of potential environments. The
requirements for FIPS 140-1 cover basic design and documentation, module
interfaces, roles and services, physical security, software security, operating
system security, key management, cryptographic algorithms, electromagnetic
interference/electromagnetic compatibility, and self-testing. The
requirements for FIPS 140-2 include areas related to the secure design and
implementation of cryptographic modules: specification; ports and
interfaces; roles, services, and authentication; a finite state model; physical
security; the operational environment; cryptographic key management;
electromagnetic interference/electromagnetic compatibility; self-testing;
design assurance; and mitigation of other attacks.

22.6.2 FIPS 140-2 Security Levels

In this section we present an overview of the security levels of FIPS 140-2.
Changes from those of FIPS 140-1 reflect changes in standards (particularly
the move from the TCSEC to the Common Criteria), changes in technology,
and comments from users of FIPS 140-1.

Security Level 1 provides the lowest level of security. It specifies that the
encryption algorithm be a FIPS-approved algorithm but does not require



physical security mechanisms in the module beyond the use of production-
grade equipment. Security Level 1 allows the software and firmware
components of a cryptographic module to be executed on a general-purpose
computing system using an unevaluated operating system. An example of a
Level 1 cryptographic module is a personal computer board that does
encryption.

Security Level 2 dictates greater physical security than Security Level 1 by
requiring tamper-evident coatings or seals, or pick-resistant locks. Level 2
provides for role-based authentication, in which a module must authenticate
that an operator is authorized to assume a specific role and perform a
corresponding set of services. Level 2 also allows software cryptography in
multiuser timeshared systems when used in conjunction with an operating
system evaluated at EAL2 or better under the Common Criteria (see Section
22.7) using one of a set of specifically identified Common Criteria protection
profiles. Security Level 3 requires enhanced physical security generally
available in many existing commercial security products. Level 3 attempts to
prevent potential intruders from gaining access to critical security parameters
held within the module. It provides for identity-based authentication as well
as stronger requirements for entering and outputting critical security
parameters. Security Level 3 requirements on the underlying operating
system include an EAL3 evaluation under specific Common Criteria
protection profiles (see Section 22.7.1), a trusted path, and an informal
security policy model. An equivalent evaluated trusted operating system may
be used.

Security Level 4 provides the highest level of security. Level 4 physical
security provides an envelope of protection around the cryptographic module
with the intent of detecting and responding to all unauthorized attempts at
physical access. Level 4 also protects a cryptographic module against a
security compromise resulting from environmental conditions or fluctuations
outside the module’s normal operating ranges of voltage and temperature.
Level 4 allows the software and firmware components of a cryptographic



module to be executed on a general-purpose computing system using an
operating system that meets the functional requirements specified for
Security Level 3 and that is evaluated at the CC evaluation assurance level
EAL4 (or higher). An equivalent evaluated trusted operating system may be
used.

22.6.3 Additional FIPS 140-2 Documentation

To promote consistency and repeatability, validation testing of cryptographic
modules is performed using the Derived Test Requirements for FIPS PUB
140-2, Security Requirements for Cryptographic Modules (DTR). The DTR
contains all vendor and certification laboratory requirements for validating a
cryptographic module. The FIPS 140-2 certified laboratories use the DTR as
the basis for their validation activities.

An Implementation Guidance for FIPS PUB 140-2, Security Requirements for
Cryptographic Modules (IG) provides programmatic guidance of the CMVP.
It contains clarification and guidance for the DTR. It includes testing
guidance and guidance related to the implementation of Approved and non-
Approved functions. The content of the IG is based on responses provided by
NIST and CSE to questions received from the FIPS 140-2 certification
laboratories. The IG includes guidance on how a validated software or
firmware module can be ported to a similar environment and still maintain
its validation.

22.6.4 Impact

The CMVP has improved the quality and security of cryptographic modules.
By 2002, 164 cryptographic modules and 332 cryptographic algorithms had
been tested. Of the 164 modules, approximately half had security flaws and
more than 95% had documentation errors. Of the 332 algorithms,
approximately 25% had security flaws and more than 65% had
documentation errors. Vendors were able to correct these problems before
their modules and algorithms were deployed and used. By 2018, more than



1,100 cryptographic modules and more than 7,000 cryptographic algorithms
had been validated.

In 2006, the first edition of ISO/IEC 19790 Information Technology —
Security Techniques — Security Requirements for Cryptographic Modules
[2184] was published by the Joint Technical Committee ISO/IEC JTC 1,
Information technology, Subcommittee SC 27, IT Security techniques. This
requirements standard was derived from FIPS 140-2. A second edition of
ISO/IEC 19790 was published in 2012 [2185]. In 2008, a companion to this
standard, ISO/IEC 24759 Information Technology — Security Techniques —
Test Requirements for Cryptographic Modules [2188] was published by the
same committee. A second edition of ISO/IEC 24759 [2189] was published in
2014, and a third in 2017 [2190]. The CMVP does not validate cryptographic
modules against these standards.

22.6.5 Future

In 2005, NIST announced plans to develop FIPS 140-3, Security
Requirements for Cryptographic Modules. NIST solicited comments from the
public for suggested modifications and enhancements to FIPS 140-2. Between
2007 and 2012, NIST released drafts of the revised standard for public
review. The most recent draft of FIPS 140-3 was released on August 30, 2012
and the public comment period ended on October 1, 2012. FIPS 140-3 is
currently in the internal review process. It will probably be released in the
latter half of 2018.

22.7 The Common Criteria: 1998–Present

The Common Criteria (CC) approach to security evaluation draws from the
strengths of TCSEC, ITSEC, CTCPEC, and FC, as well as from commercial
efforts. The original participants in the Common Criteria Project included
Canada, NIST and the NSA from the United States, the United Kingdom,
France, Germany, and the Netherlands. Although all participants had the



common goal of developing a technically strong, easy to use, mutually
reciprocal evaluation technology, each of the participants represented
previous methodologies. The United Kingdom, France, Germany, and the
Netherlands represented the ITSEC community. NIST and the NSA
represented the work done for the Federal Criteria Project, and the NSA also
represented the TCSEC and the interests of the U.S. military establishment
for very high assurance systems. Canada represented the CTCPEC.

Common Criteria version 1.0 was published in 1994. In 1998, the first signers
of the Arrangement on the Recognition of the Common Criteria Certifications
in the Field of Information Technology Security were the United States, the
United Kingdom, France, Germany, and Canada. This arrangement is called
the Common Criteria Recognition Arrangement (CCRA), and also the Mutual
Recognition Arrangement (MRA), in the literature. This version of the CCRA
required nations to develop an appropriate evaluation scheme in order to
join. In 1999, Australia and New Zealand signed the MRA. Also in 1999, the
CC became Standard 15408 of the International Standards Organization
(ISO).

The CCRA was expanded to allow nations to join as either authorizing nations
(also known as certificate-producing nations) or consuming nations (also
known as certificate-consuming). Authorizing nations have developed
evaluation schemes to accredit laboratories to perform CC evaluations that
conform to the CC. The Consuming nations do not yet have an evaluation
scheme developed, but agree to recognize the evaluations performed by the
Authorizing nations. As of May 2002, Australia, New Zealand, Finland,
Greece, Israel, Italy, the Netherlands, Spain, Sweden, and Norway had signed
the CCRA. As of November, 2017, Austria, Czech Republic, Denmark,
Ethiopia, Finland, Greece, Hungary, Israel, India, Japan, Malaysia, Pakistan,
Qatar, Republic of Korea, Russia, Singapore, Turkey, and South Korea have
signed the CCRA, bringing the total number of nations in the CCRA to
twenty-eight. As of November 2017, Australia, Canada, France, Germany,
India, Italy, Japan, Malaysia, the Netherlands, New Zealand, Norway,



Republic of Korea, Spain, Sweden, Turkey, United Kingdom, and the United
States were the seventeen Authorizing nations.

The CC became the de facto security evaluation standard in the United States
in 1998. The TCSEC was retired in 2000, when the last TCSEC evaluation was
completed. European countries that used the ITSEC similarly retired it,
although remnants of the old evaluation programs still exist.

The Common Criteria evaluation methodology has three parts: the CC
documents, the CC Evaluation Methodology (CEM), and a country-specific
evaluation methodology called an Evaluation Scheme or National Scheme.
The CC provides an overview of the methodology and identifies functional
requirements, assurance requirements, and Evaluation Assurance Levels
(EALs). The CEM provides detailed guidelines for the evaluation of products
and systems at EAL1–EAL4 as well as some commonly used assurance
requirements not included in any EAL. This document is useful to developers
and invaluable to evaluators. The first four EALs address low and medium
levels of trust, whereas the higher three levels are specific to what are called
high-assurance products and systems. Individual country Evaluation
Schemes provide the infrastructure necessary to implement CC evaluation.
Each country implements the methodology in its own way. The CC
documents and the CEM set the fundamental criteria, EALs, and evaluation
strategy, but countries may have different methods of selecting evaluators,
awarding certifications, structuring interactions between evaluators and
vendors, and the like. In the United States, for example, the Evaluation
Scheme is the Common Criteria Evaluation and Validation Scheme (CCEVS),
which is implemented within NIST. Under this scheme, NIST accredits
commercial evaluation laboratories, which then perform product and system
or protection profile evaluations. The sponsoring agencies of NIST then
validate the evaluation and award the appropriate EALs.

The CC uses the following terms.

Definition 22–4. A TOE Security Policy (TSP) is a set of rules that regulate



how assets are managed, protected, and distributed within a product or
system.

Definition 22–5. The TOE Security Functions (TSF) is a set consisting of
all hardware, software, and firmware of the product or system that must be
relied on for the correct enforcement of the TSP.

Notice that the TSF is a generalization of the TCSEC concept of a trusted
computing base (TCB).

There have been many versions of the CC and its companion CC Evaluation
Methodology (CEM). Significant changes were made to the CC in September
2006 with release of CC v3.1 and CEM v3.1. In April 2017, CC Version 3.1
Revision 5 and CEM Version 3.1 Revision 5, were release. In May 2017, CC
and CEM addenda describing additional criteria was released.

Due to the amount of content and current relevancy in the field, the following
discussion is based on Version 3.1 Release 5 of the Common Criteria.
Previous versions of the CC are still available on the international CC web
portal [2145].

22.7.1 Overview of the Methodology

The CC supports two kinds of evaluations: evaluations of protection profiles
and evaluations of products or systems against security targets (STs). Product
evaluations are awarded at one of seven predefined EALs or at another, user-
defined, EAL. All CC evaluations that meet the conditions of the CCRA are
reciprocal to the signers of the CCRA. Initially member nations recognized
evaluations of products or systems up to EAL4. Then, member nations
recognized evaluations of products or systems up to EAL2 and possibly up to
EAL4 based on approved protection profiles (PPs). In October 1, 2009,
CCEVS began only accepting products into evaluation that claimed
compliance to a NIAP-approved PP.



In 2014, the members CCRA decided to encourage the development of PPs by
collaborating with member government agencies, product vendors, and CC
licensed laboratories. PPs developed by this process are called collaborative
Protection Profiles (cPP). The intent is that the member nations will utilize
the cPPs as a procurement tool. Under the current CCRA dated July 2, 2014,
all signatories to the CCRA recognize the results of the evaluation of a product
or system claiming compliance to a cPP and results of the evaluations
claiming EAL1 or EAL2 with a flaw remediation claim [2131]. Each group of
organizations working together to develop a cPP forms a Technical
Community. Currently, there are six technical communities: USB Portable
Storage Devices, Full Disk Encryption, Network Fundamentals and Firewalls,
Application Software, Dedicated Security Component, and Biometrics
Security.

The concept of a protection profile evolved from the Federal Criteria, the
CTCPEC profiles, and the ITSEC functionality classes. The form, structure,
and terminology of a CC protection profile differs from that of an FC
protection profile, although the concepts are similar.

Definition 22–6. A CC protection profile (PP) is an implementation-
independent set of security requirements for a category of products or
systems that meet specific consumer needs.

The PP provides a thorough description of a family of products in terms of
threats, environmental issues and assumptions, security objectives, and CC
requirements. The requirements include both functional requirements,
chosen from the CC functional requirements by the PP author, and assurance
requirements, which include one of the seven EALs and may include
additional assurance requirements as well. The final section of the PP
provides the assurance evidence in the form of a rationale that the PP is
complete, consistent, and technically sound. PPs do not have to be evaluated
and validated. Currently, many NIAP approved PPs have not undergone
evaluation. PPs that are evaluated must undergo evaluation in accordance



with the methodology outlined in the CC assurance class APE: Protection
Profile Evaluation.

A PP consists of six sections.

1. Introduction. This section contains

(a) the PP Reference, which is precise information used to identify, catalogue,
register, and cross reference the PP; and

(b) the TOE Overview, which is a narrative summary of the TOE that should
identify and describe the type of the product or system and its features and be
acceptable as a stand-alone abstract for use in catalogues and registries.

2. Conformance Claims. This section defines whether or not the PP claims
conformance to any other PPs and/or packages. It also contains a
conformance rationale which justifies how it meets the PP it claims to comply
with and a conformance statement which indicates how STs and/or other PPs
must claim conformance to that PP. Strict conformance requires evidence
that all PP requirements are met, that the ST/PP claiming conformance is an
instantiation of the PP while allowing the ST/PP claiming conformance to be
broader that itself. Demonstrable conformance requires evidence that the
ST/PP claiming conformance solve the generic security problem described in
the PP, providing a solution equivalent to or more restrictive than that
described in the PP. Exact conformance requires that the ST claiming
conformance use the exact same security requirements, no more and no less.
Exact conformance is a type of strict conformance.

3. Security Problem Definition. This section presents

(a) assumptions about the intended usage and the environment of use;

(b) threats to the assets requiring protection, in terms of threat agents, types
of attacks, and assets that are the targets of the attacks; and



(c) organizational security policies (OSPs) by which the product or system
must abide.

4. Security Objectives. This section defines the security objectives and
provides rationale for those security objectives. There are two types of
security objectives:

(a) the security objectives for the TOE must be traced back to aspects of
identified threats and/or organizational security policies; and

(b) the security objectives for the operational environment must be traced
back to threats not completely countered by the product or system and/or
organizational policies or assumptions not completely met by the product or
system.

This section also defines security objectives rationale which demonstrate that
the security objectives counter the threats, enforce the OSPs, and uphold the
assumptions.

5. Extended Components Definition. The section defines components needed
in a PP that are not defined in CC Part 2 or CC Part 3. The new definitions
must be modeled after existing CC Part 2 components.

6. Security Requirements. This section covers functional and assurance
requirements.

(a) The security functional requirements are usually drawn from the CC Part
2. If no CC requirements are appropriate, the PP author may supply other
requirements explicitly without reference to the CC. PPs are allowed to
include optional SFRs which contribute to the PP’s security problem, but can
be included in the ST at the discretion of the ST author. PPs are also allowed
to include selection-based requirements, which are mandatory requirements
that depend upon the selections made by the ST author in the rest of the PP.

(b) The security assurance requirements are usually drawn from CC Part 3



and may be based on an EAL. The PP author may augment an EAL by adding
extra security assurance requirements from the CC or may supply other
requirements explicitly without reference to the CC. This includes security
requirements for the environment, as applicable.

(c) The security requirements rationale demonstrates that the requirements
are traceable to and meet the security objectives. This section also includes
justification for any security requirement dependencies that are not satisfied.

A PP-Module is a uniquely referenced construct which defines a set of
elements (i.e., security problem definition, security objectives, and security
requirements) that address an optional set of security features added to a
base product type. A PP-Module must refer to at least one Base-PP that
provides the mandatory requirements and base TOE type. The PP-Module
complements the security problem definition, security objectives, and
security requirements of the Base-BB by introducing new elements or
providing a more detailed set of elements. A PP-Module cannot be evaluated
stand-alone; must be evaluated as part of a PP-Configuration. CC Part 1
describes the required sections of a PP-Module.

A PP-Configuration is also uniquely referenced. It is a composite of one or
more PP-Modules with their associated Base-PPs. A PP-configuration cannot
have any additional content not found in the selected PP-Modules or Base-
PPs. Evaluation rules for PP-Configurations are based on the evaluation rules
for standard PPs. CC Part 1 describes the required sections of a PP-
Configuration.

The second form of evaluation offered by the CC is the evaluation of a product
or system against a security target (ST). This type of evaluation has two parts.
The first is the evaluation of the ST in accordance with assurance class ASE:
Security Target Evaluation (see Section 22.7.4). The product or system itself
is then evaluated against the ST.

Under the CC, the functional requirements for a specific product or system



are defined in an ST, just as was done under the ITSEC. The concept of a
security target evolved from the ITSEC, and the idea of evaluating a security
target against an evaluated protection profile evolved from the FC.

Definition 22–7. A security target (ST) is an implementation-dependent
set of security requirements and specifications to be used as the basis for
evaluation of an identified product or system.

There are two approaches to developing an ST. The first approach is to
develop an ST based on a PP. The second approach is to develop an ST
directly from the CC. If an evaluated PP is used, the ST process is generally
simpler because much of the security problem definition, security objectives,
and security objectives rationale in the ST can be taken directly from the PP.
The ST addresses the same fundamental issues as the PP, with some notable
differences. A significant difference is that the ST addresses the issues for the
specific product or system, not for a family of potential products or systems.

An ST consists of seven sections.

1. ST Introduction. This section has four parts.

(a) The ST Reference gives precise information that is used to control and
identify the ST.

(b) The TOE Reference gives precise information that is used to control and
identify the product or system to which the ST refers.

(c) The TOE Overview is a brief description of the TOE should be acceptable
as a stand-alone abstract for use in evaluated product lists. The TOE overview
also states the type of the TOE, such as router, operating system, or firewall.
Any non-TOE hardware, software, and/or firmware required by the TOE is
identified in the TOE Overview.

(d) The TOE Description provides a more detailed description of the TOE as
an aid to understanding its security requirements. It addresses the product or



system type and the scope and boundaries of the TOE (both physically and
logically).

2. Conformance Claims. This section has four parts.

(a) The CC conformance claim is a statement of conformance to the CC. An
ST is part 2 conformant if it uses only functional requirements found in part
2 of the CC. If it uses extended requirements defined by the vendor, it is
called part 2 extended. Part 3 conformant and part 3 extended are similarly
defined.

(b) The PP claim lists the PPs to which the ST is conformant if it is compliant
with all parts of the PP.

(c) The package claim identifies the packages (e.g., EALs) to which the ST
claims conformance. A PP is conformant to a package if the security
functional requirements or security assurance requirements of the ST are
identical to all of those in the package. A PP is augmentation of a package if
the security functional requirements or security assurance requirements of
the ST include all of those in the package plus at least one additional
requirement.

(d) The conformance rationale demonstrates that the TOE type is consistent
with claimed PP, that the SPD in the ST is consistent with the SPD in the
claimed PP, that the security objectives in the ST are consistent with the
security objectives in the claimed PP, and that the security requirements in
the ST are consistent with the security requirements in the claimed PP.

3. Security Problem Definition. This section includes:

(a) assumptions about the intended usage and about the environment of use;

(b) threats to the assets requiring protection, in terms of threat agents, types
of attacks, and assets that are the targets of attacks; and



(c) organizational security policies by which the product or system must
abide.

4. Security Objectives. There are two types of security objectives:

(a) The security objectives for the TOE must be traced back to aspects of
identified threats and/or organizational security policies; and

(b) The security objectives for the operational environment must be traced
back to threats not completely countered by the product or system and/or
organizational policies or assumptions not completely met by the product or
system.

This section also defines security objectives rationale which demonstrate that
the security objectives counter the threats, enforce the OSPs, and uphold the
assumptions.

5. Extended Components Definition. The section defines components needed
in a ST that are not defined in CC Part 2 or CC Part 3. The new definitions
must be modeled after existing CC Part 2 components.

6. Security Requirements. This section covers functional and assurance
requirements.

(a) The security functional requirements are usually drawn from the CC Part
2. If no CC requirements are appropriate, the ST author may supply other
requirements explicitly without reference to the CC.

(b) The security assurance requirements are usually drawn from CC Part 3
and may be based on an EAL. The ST author may augment an EAL by adding
extra security assurance requirements from the CC or may supply other
requirements explicitly without reference to the CC. This includes security
requirements for the environment, as applicable.

(c) The security requirements rationale demonstrates that the requirements



for the product or system and the requirements for the environment are
traceable to the objectives and meet them.

(d) The section includes justification for any security requirement
dependencies that are not satisfied.

7. TOE Summary Specification. This specification defines the instantiation of
the security requirements for the product or system and includes:

(a) a high-level description of how the TOE meets each of the claimed security
functional requirements; and

(b) a high-level description of how the TOE protects itself from interference,
logical tampering, and bypass.

As shown in the previous list, in addition to the PP issues, the ST includes a
TOE summary specification. A PP claims section identifies claims made to
PPs that the ST implements. An ST that claims to implement a PP must state
those claims and justify them in the rationale.

The CC also has a scheme for assurance maintenance. The goal of such
activities is to build confidence that assurance already established for a
product or system will be maintained and that the product or system will
continue to meet the security requirements through changes in the product or
system or its environment.

22.7.2 CC Requirements

The heart of the CC is the requirements themselves. The CC defines both
functional and assurance requirements and then builds EALs out of the
assurance requirements. The requirements are organized into a somewhat
elaborate naming and numbering scheme. However, this scheme is much
easier to use than the textual descriptions of multiple requirements in a single
section, as is done in other methodologies. Functional and assurance
requirements are divided into classes based on common purpose. Classes are



broken into smaller groups called families. Families contain components,
which contain definitions of detailed requirements as well as dependent
requirements and a definition of hierarchy of requirements.

22.7.3 CC Security Functional Requirements

There are 11 classes of security functional requirements, each having one or
more families. Two of the security functional requirement classes are auditing
and security management. The related requirements are unique in the sense
that many requirements in other classes generate auditing and/or
management requirements. A management section of each family overview
provides specific information about management issues relevant to the
subdivisions and requirements of the family. Similarly, the audit section of
the family overview identifies relevant auditable events associated with the
requirements of the family. Requirements may be hierarchical in nature.
Requirement A is hierarchical to requirement B if the functional elements of
requirement A offers more security (or is more restrictive) than requirement
B. Finally, nonhierarchical dependencies, which may cross classes, are also
identified with each requirement. These four structural approaches
(identification of management requirements, audit requirements,
hierarchical relationships, and nonhierarchical dependencies) help define a
consistent and complete specification using the CC.

Consider the security functional requirements of the CC by class and family.
The class is indicated by the title, and the families are identified in the
descriptive text. All other requirements are derived from previously discussed
methodologies.

• Class FAU: Security Audit. This class contains six families of requirements
that address audit automatic response, audit data generation, audit analysis,
audit review, audit event selection, and audit event storage.

• Class FCO: Communication. This class contains two families that address
nonrepudiation of origin and nonrepudiation of receipt. The CC is the first



methodology to contain this requirement.

• Class FCS: Cryptographic Support. This class contains two families that
address cryptographic key management and cryptographic operation.
Encryption algorithms and other implementation issues can be addressed
using FIPS 140-2.

• Class FDP: User Data Protection. This class has 13 families. It includes two
different types of security policies: access control policies and information
flow policies. The difference between these two types of policies is essentially
that an access control policy makes decisions based on discrete sets of
information, such as access control lists or access permissions, whereas an
information flow control policy addresses the flow of information from one
repository to another. A discretionary access control policy is an access
control policy and a mandatory access control policy is an information flow
control policy. These families are also represented in other methodologies,
but they are generalized in the CC, for flexibility.

The residual information protection family addresses the issues called “object
reuse” in previous criteria. Other families address data authentication,
rollback, stored data integrity, inter-TSF user data confidentiality transfer
protection, inter-TSF user data integrity transfer protection, exporting to
outside the TSF control, and importing from outside the TSF control.

• Class FIA: Identification and Authentication. This class has six families that
include authentication failures, user attribute definition, specification of
secrets, user authentication, user identification, and user/subject binding.

• Class FMT: Security Management. This class contains seven families that
include management of security attributes, management of TSF data,
management roles, management of functions in TSF, security attribute
expiration, specification of management functions, and revocation.

• Class FPR: Privacy. The CC is the first evaluation methodology to support



this class. It has four families that address anonymity, pseudonymity,
unlinkability, and unobservability.

• Class FPT: Protection of Security Functions. This class has 14 families.
These families address TSF physical protection, fail secure, trusted recovery,
availability of exported TSF data, confidentiality of exported TSF data,
integrity of exported TSF data, internal TOE TSF data transfer, replay
detection, state synchrony protocol, timestamps, inter-TSF TSF data
consistency, testing of external entities, internal TOE TSF data replication
consistency, and TSF self-tests.

• Class FRU: Resource Utilization. The three families in this class deal with
fault tolerance, resource allocation, and priority of service (first used in the
CC).

• Class FTA: TOE Access. This class has six families. They include limitations
on multiple concurrent sessions, session locking and termination, TOE access
history, TOE session establishment, TOE access banners, and limitations on
the scope of selectable attributes (system entry constraints).

• Class FTP: Trusted Path. This class has two families. The inter-TSF trusted
channel family (which is first defined in the CC) and the trusted path family.

EXAMPLE: As indicated above, Class FAU contains six families. The
management section for each family identifies potential management
functions of class FMT that should be considered relative to the components
of that family. The audit section for each family description identifies
auditable events that must be addressed if the component FAU_GEN is
selected in the PP or ST.

Component FAU_SAA addresses security audit analysis. Within FAU_SAA
there are four components, two of which are described here. FAU_SAA.1,
potential violation analysis, is a component that is hierarchical to no other
components. This means that there is no lesser requirement in this family on



this topic. FAU_SAA.1 depends on requirement FAU_GEN.1, a requirement
from another FAU family. This means that if FAU_SAA.1 is selected,
FAU_GEN.1 must also be selected. Within FAU_SAA.1 there are two
functional requirements. The next component is FAU_SAA.2, profile-based
anomaly detection. It is hierarchical to FAU_SAA.1, meaning that the
requirements of FAU_SAA.2 are more stringent than those of FAU_SAA.1
and subsume the requirements of FAU_SAA.1. FAU_SAA.2 is also dependent
on FIA_UID.1, a requirement for a family in another class. FAU_SAA.2
contains two individual requirements.

22.7.4 Assurance Requirements

There are nine security assurance classes. One assurance class relates to
protection profiles, one to security targets, and one to the maintenance of
assurance. The other six directly address assurance for the product or system.

• Class APE: Protection Profile Evaluation. This class has six families, one for
each section of the PP.

• Class ACE: Protection Profile Configuration Evaluation. This class has
eight families used to evaluate a PP-Configuration. The first six families are
similar to the APE families. The other two families are PP-Module
consistency and PP-Configuration consistency.

• Class ASE: Security Target Evaluation. This class contains seven families,
one for each of the seven sections of the ST. They are similar to the APE
families and include a family for TOE summary specification.

• Class ADV: Development. This class contains six families: security
architecture, functional specification, implementation representation, TSF
internals, TOE design, and security policy modeling.

• Class AGD: Guidance Documentation. The two families in this class are
operational user guidance and preparative procedures.



• Class ALC: Life Cycle. There are seven families in this class. There are 2
configuration management (CM) classes: CM capabilities and CM scope. The
other five families are delivery, development security, flaw remediation, tools
and techniques, and life cycle definition.

• Class ATE: Tests. There are four families in this class: test coverage, test
depth, functional tests, and independent testing.

• Class AVA: Vulnerabilities Assessment. There is only one family in this
class: vulnerability analysis, which can include aspects of covert channel
analysis and strength of function analysis.

• Class ACO: Composition. There are five families in this class: composition
rationale, development evidence, reliance of dependent component,
composed TOE testing, and composition vulnerability analysis.

22.7.5 Evaluation Assurance Levels

The CC has seven levels of assurance.

• EAL1: Functionally Tested. This level is based on an analysis of security
functions using functional and interface specifications and an examination of
the guidance documentation provided. It is supported by a search of the
public domain for vulnerabilities and independent functional and
vulnerability testing. EAL1 requires unique TOE identification. EAL1 is
applicable to systems in which some confidence in correct operation is
required but security threats are not serious.

• EAL2: Structurally Tested. In addition to the analysis performed at EAL1,
EAL2 analyses a basic description of the TOE architecture. The analysis is
supported by a public domain search for vulnerabilities, independent
functional and vulnerability testing, as in EAL1, as well as by evidence of
developer testing based on the functional specification and independent
confirmation of developer test results, and a vulnerability analysis indicating



resistance to attackers with a basic attack potential. EAL2 requires unique
TOE identification, the use of a CM system, and secure delivery procedures.
EAL2 is applicable to systems for which a low to moderate level of
independent assurance is required but the complete developmental record
may not be available, such as legacy systems.

• EAL3: Methodically Tested and Checked. At this level, the analysis of
security functions is the almost same as at EAL2, except it requires an
architectural description of the TOE design. The analysis is supported as in
EAL2, with the addition of high-level design as a basis for developer testing
and the use of development environment controls and configuration
management.

• EAL4: Methodically Designed, Tested, and Reviewed. This level adds low-
level design, a complete interface description, a basic modular design of the
TOE, and a subset of the implementation to the inputs for the security
function analysis. Other assurance measures at EAL4 require additional
configuration management including automation and evidence of secure
delivery procedures. The analysis is supported as in EAL3, with the addition
of implementation representation and a vulnerability analysis indicating
resistance to attackers with an enhanced-basic attack potential. This is the
highest EAL that is likely to be feasible for retrofitting of an existing product
line. It is applicable to systems for which a moderate to high level of
independently assured security is required.

• EAL5: Semiformally Designed and Tested. This level adds a modular TSF
design and the full implementation to the inputs for the security function
analysis for EAL4. A semiformal functional specification and a semiformal
modular high-level design are required. A methodical vulnerability search
must address penetration attackers with moderate attack potential.
Configuration management must be comprehensive. This level is the highest
EAL at which rigorous commercial development practices supported by a
moderate amount of specialist computer security engineering will suffice.



This EAL is applicable to systems for which a high level of independently
assured security is needed.

• EAL6: Semiformally Verified Design and Tested. This level requires a
structured presentation of the implementation in addition to the inputs for
the security function analysis for EAL5. A formal model of the security
policies and a semiformal functional specification and TOE design must be
included. The TSF design must be simple and support layering as well as
modularity. Other assurance measures at EAL6 require additional
configuration controls and development environment security measures. The
methodical vulnerability search at EAL6 addresses penetration attackers with
high attack potential. A structured development process must be used. EAL6
is applicable for systems in high risk situations where the assets being
protected are valuable enough to justify the high cost of development and
certification.

• EAL7: Formally Verified Design and Tested. The final level requires a
formal presentation of the functional specification and a high-level design,
and formal and semiformal demonstrations must be used in the
correspondence, as appropriate. The product or system design must be
simple. The analysis requires that the implementation representation be used
as a basis for testing. Independent confirmation of the developer test results
must be complete. EAL 7 is applicable in extremely high-risk situations and
requires substantial security engineering.

Figure 22–1 gives a rough matching of the levels of trust of various
methodologies. Although the correspondences are not exact, they are
reasonably close. The table indicates that the CC offers a level that is lower
than any previously offered level.

22.7.6 Evaluation Process

The CC evaluation process in the United States is controlled by the CC
Evaluation Methodology (CEM) and NIST. Evaluations are performed by



NIST-accredited commercial laboratories that do evaluations for a fee. In
addition to using partner organizations, many of the evaluation laboratories
also offer support for vendors in getting ready for evaluations. Staff that assist
vendors in getting ready for an evaluation are not allowed to work as
evaluators on the evaluation. The size of an evaluation team is normally
dependent upon the assurance level, size of the TSF, or PP. It is usually a
team of two to six individuals but this may vary from laboratory to laboratory.

Typically, a vendor selects an accredited laboratory to evaluate a product or
system. The laboratory performs the evaluation on a fee basis. Once
negotiations and a baseline schedule have been developed, the laboratory
must coordinate with the validating body. Under the U.S. scheme (CCEVS),
the evaluation laboratory must develop a work plan and must submit the
evaluation for eligibility.

Figure 22–1: Comparison of levels of trust in various
methodologies.

Evaluation of a product or system is slightly more complex than evaluating a
PP because there are more steps involved and more evaluation evidence
deliverables. Some schemes require a completed ST that passes all CEM work
units prior to accepting the evaluation project. Other schemes only require a
ST that is mostly complete. CCEVS will only accept evaluations against an
NIST-approved PP. Other schemes will accept evaluations that claim an EAL
level. Each scheme has different evaluation acceptance criteria. The vendor



and the evaluation laboratory must coordinate schedules for deliverables of
evaluation evidence. The evaluation proceeds as outlined in the CEM. When
the laboratory finishes the evaluation, it presents its findings to the validating
agency, which decides whether or not to validate the evaluation and award
the EAL rating.

22.7.7 Other International Organizations

Over the years, a few additional entities have been created as a result of the
CC. Two of these are described in this section.

22.7.7.1 SOG-IS International Cooperation Agreement

The Senior Officials Group Information Systems Security (SOG-IS)
agreement is a mutual recognition agreement between participating
government organizations and agencies from countries in the European
Union (EU) or European Free Trade Association (EFTA). The development of
the agreement was a result of an EU decisions in the fields of security of
information systems and common information technology security evaluation
criteria. The agreement was originally signed in 1997. In 1999, the agreement
was updated to incorporate CC.

The current SOG-IS agreement was modified in January 2010. The 2010
version of the agreement included the concept of Authorizing (or certificate
producing) participants and Consuming participants. This update also
limited levels of recognition above EAL4 to approved technical areas. There
are two levels of certificate producers within SOG-IS: the recognition of CC
certificates claiming EAL1-EAL4 and the recognition of CC certificates at
higher levels for defined technical areas if the SOG-IS management
committee has approved the scheme for that level. As of 2017, there are eight
Authorizing participants: France, Germany, Italy, Netherlands, Norway,
Spain, Sweden, and UK. In addition there are six consuming participants:
Austria, Croatia, Estonia, Finland, Luxembourg, and Poland.



SOG-IS participants collaborate to standardize CC PPs and CC certificate
policies between the CC schemes within Europe to present a common
position within the CCRA and to develop PPs when the EU commission issues
an IT security-related directive that should be incorporated in EU national
laws. Authorizing nations still perform EAL3 and EAL4 evaluations of
products, including operating systems and network devices. There are
currently two technical area covered by the SOG-IS agreement: smartcards
and similar devices, and hardware devices with security boxes. The SOG-IS
participants have developed 16 smart card and similar device PPs, including
PPs for passports and secure signature creation devices. Ten PPs have been
developed by the SOG-IS participants for hardware devices with security
boxes.

22.7.7.2 Common Criteria Users Forum

The Common Criteria Users Forum is comprised of international individual
members from the following sectors: academia, consultants, end users,
governments, CC laboratories, schemes, solution providers, standards
organizations, and vendors. The CCUF provides a communication
mechanism between individuals in the CC community. The CCUF strives to
promote worldwide mutual recognition of CC evaluations, focused technical
communities to develop cPPs, viable policies and processes for evaluation
maintenance on future product versions, and viable policies and processes for
evaluation of systems comprised of evaluated products. It also encourages the
development methods/techniques for minimizing the time and resources
required to successfully complete an evaluation.

The CCUF is governed by the CCUF Management board which is comprised
of seven elected members. The CCUF hosts a portal used for collaboration
and communication between CCUF members as well as Technical
Communities.

22.7.8 Impacts



The CC addresses many issues with which other evaluation criteria and
methodologies have struggled. However, the CC is not perfect. At first glance,
one might think that the protection profiles and security targets of the CC
suffer the same weaknesses as those that plagued the security targets of the
ITSEC. In some sense, this is true. A PP or ST may not be as strong as TCSEC
classes because fewer security experts have reviewed it and it has not yet
faced the test of time. Some of the CC requirements were derived from
requirements of the previous methodologies. Such requirements may
inherently have more credibility. Mature requirements and the CC process of
identifying dependencies, audit requirements, and management
requirements can contribute to the completeness, consistency, and technical
correctness of a resulting PP or ST. The clarity of presentation of the
requirements also helps, but ultimately the correctness of an ST lies in the
hands of the vendor and the evaluation team.

The CC is much more complete than the functional requirements of most
preceding technologies. However, it is not immune to “criteria creep.” A CC
project board manages interpretations to support consistent evaluation
results. Interpretations can be submitted by any national scheme for
international review. The final interpretations agreed on become required on
all subsequent evaluations under the CC and form the basis for future CC
updates. Although this is a well-managed process, it does not address the fact
that a newer evaluation may have more stringent requirements levied on it
than an older evaluation of the same type.

Having a team member who is not motivated by financial issues to complete
the evaluation quickly lends support to the depth of the evaluation and in
some respects addresses the functions of a technical review board by
providing impartial review. The evaluation process itself is very well-defined
and well-monitored by the validating body. The process itself is less
subjective than some of the preceding methodologies because every step is
well-defined and carefully applied.



22.7.9 Future of the Common Criteria

The CC documentation and methodology continue to evolve. As of 2017, there
have been eight official versions of the CC/CEM. CCRA members can submit
change proposals for consideration. New technical communities are
continuing to be formed and cPPs are continuing to be developed by these
new TCs.

The Common Criteria Management Board (CCMB) is an international body
responsible for maintaining the Common Criteria and ensuring the CCRA is
operated as defined by its rules. Each signatory of the CCRA has a
representative on the CCMB. This group has the responsibility of accepting or
rejecting change proposals of the CC submitted by national schemes or the
general public. The charter of the CCMB is to facilitate consistent evaluation
results under the CCRA.

The CCMB discusses change proposals forward by CCRA participants and
makes one of the following determinations: Agreed, Concurred, Disagreed.
Agreed indicates that the change proposal is worthy of international adoption
by the CC. Concurred indicates that the change proposal is acceptable and
does not violate mutual recognition, but is not worthy of international
adoption. Disagreed means either the change proposal violates mutual
recognition rules or is not complete enough to be acceptable. If a change
proposal is assigned the designation of Disagreed, it is assumed that use of
the change proposal would be halted as soon as possible.

The CCMB also supports the process required to obtain ISO/IEC
standardization for the CC/CEM by responding appropriately to requests
from ISO/IEC. When appropriate the CCMB is responsible for integrating the
new material developed from the work projects into the CC/CEM. Technical
consistency of CC/CEM related work projects assigned to other groups are
reviewed by the CCMB, and issues are reported to the Common Criteria
Development Board (CCDB). The CCDB is responsible for managing the
technical facets of the CCRA, the CC/CEM maintenance and continuous



development, and development of cPPs created by Technical Communities.
The CCDB also provides technical recommendations, technical guidance to
the CCMB.

22.8 SSE-CMM: 1997–Present

The System Security Engineering Capability Maturity Model (SSE-CMM)
[136, 895, 896, 2186, 2251] is a process-oriented methodology for developing
secure systems based on the Software Engineering Capability Maturity Model
(SE-CMM). SSE-CMM was developed by a team of security experts from the
U.S. government and industries to advance security engineering as a defined,
mature, and measurable discipline. It helps engineering organizations define
practices and processes and to focus on improvement efforts. The SSE-CMM
became ISO Standard 21827 in 2002 [2187]. The ISO/IEC standard was
updated in 2008 [2186].

Taking a very abstract view, there is a similarity between evaluation of
processes using a capability model and evaluation of security functionality
using an assurance model. Capability models define requirements for
processes, whereas methodologies such as the CC and its predecessors define
requirements for security functionality. Capability models assess how mature
a development/engineering process is, whereas the CC type methodology
evaluates how much assurance is provided for the functionality. SSE-CMM
provides maturity levels, whereas the other methodologies provide levels of
trust. In each case, there are specific requirements for the process or
functionality and different levels of maturity or trust that can be applied to
each.

The SSE-CMM can be used to assess the capabilities of security engineering
processes and provide guidance in designing and improving them, thereby
improving an organization’s security engineering capability. The SSE-CMM
provides an evaluation technique for an organization’s security engineering.
Applying the SSE-CMM can support assurance evidence and increase



confidence in the trustworthiness of a product or system.

22.8.1 The SSE-CMM Model

The SSE-CMM is organized into processes and maturity levels. Generally
speaking, the processes define what needs to be accomplished by the security
engineering process and the maturity levels categorize how well the process
accomplishes its goals.

Definition 22–8. A process capability is the range of expected results that
can be achieved by following the process. It indicates potential and is a
predictor of future project outcomes.

Definition 22–9. Process performance is a measure of the actual results
achieved.

Definition 22–10. Process maturity is the extent to which a process is
explicitly defined, managed, measured, controlled, and effective.

The SSE-CMM contains 11 systems security engineering process areas.

• Administer Security Controls

• Assess Impact

• Assess Security Risk

• Assess Threat

• Assess Vulnerability

• Build Assurance Argument

• Coordinate Security

• Monitor System Security Posture



• Provide Security Input

• Specify Security Needs

• Verify and Validate Security

The definition of each process area contains a goal for the process area and a
set of base practices that support the process area. The SSE-CMM defines 61
base practices within the 11 pro

EXAMPLE: The definition of the Assess Threat process area contains the goal
that threats to the security of the system be identified and characterized. The
base processes are

• Identify Natural Threats

• Identify Human-Made Threats

• Identify Threat Units of Measure

• Assess Threat Agent Capability

• Assess Threat Likelihood

• Monitor Threats and Their Characteristics

Eleven additional process areas related to project and organizational
practices adapted from the SE-CMM are

• Ensure Quality

• Manage Configuration

• Manage Project Risk

• Monitor and Control Technical Effort



• Plan Technical Effort

• Define Organization’s Systems Engineering Process

• Improve Organization’s Systems Engineering Process

• Manage Product Line Evolution

• Manage Systems Engineering Support Environment

• Provide Ongoing Skills and Knowledge

• Coordinate with Suppliers

The five Capability Maturity Levels that represent increasing process
maturity are as follows.

1. Performed Informally. Base processes are performed.

2. Planned and Tracked. Project-level definition, planning, and performance
verification issues are addressed.

3. Well-Defined. The focus is on defining and refining a standard practice and
coordinating it across the organization.

4. Quantitatively Controlled. This level focuses on establishing measurable
quality goals and objectively managing their performance.

5. Continuously Improving. At this level, organizational capability and
process effectiveness are improved.



Figure 22–2: Example of a rating profile for the 11 process areas of
the SSE-CMM (from [673]).

22.8.2 Using the SSE-CMM

Application of the SSE-CMM is a straightforward analysis of existing
processes to determine which base processes have been met and the maturity
levels they have achieved. The same process can help an organization
determine which security engineering processes they may need but do not
currently have in practice.

This is accomplished using the well-defined base processes and capability
maturity levels that were overviewed in the preceding section. One starts with
a process area, identifying the area goals and base processes that SSE-CMM
defines for the process area. If all the processes within a process area are
present, then the next step of the analysis involves determining how mature
the base processes are by assessing them against the Capability Maturity
Levels. Such an analysis is not simple and may involve interactions with
engineers who actually use the process. The result of the analysis culminates
in identification of the current level of maturity for each base process in the



process area.

The analysis continues as described above for each process area. Processes
within an area may have varying levels of maturity, and the level of maturity
for the process area would be the lowest level represented by the set of levels
for the base process. A useful way of looking at the result of a complete SSE-
CMM analysis is to use a Rating Profile, which is a tabular representation of
process areas versus maturity levels. An example of such a profile is provided
in Figure 22–2.

In a similar fashion, process area rating profiles can be used to show the
ratings provided for individual base processes within a process area.

22.9 Summary

Since the early 1980s, the international computer security community has
been developing criteria and methodologies for the security evaluation of IT
products and systems. The first public and widely used technique was
provided by the Trusted Computer System Evaluation Criteria (TCSEC),
which was driven by the U.S. Department of Defense. Although the TCSEC
was widely used for nearly two decades, criticisms of it inspired research and
development of other approaches that addressed many areas of concern,
including limitations of scope, problems with the evaluation process, binding
of assurance and functionality, lack of recognition of evaluations in one
country by the authorities of another, and inflexibility in selection of
requirements, to name the most significant ones. New methodologies were
developed to address these issues. Most notable of these were the
Information Technology Security Evaluation Criteria (ITSEC) in Europe, the
Canadian Trusted Computer Product Evaluation Criteria (CTCPEC), and the
Federal Criteria (FC) in the United States. These foundational methodologies
have culminated in the Common Criteria, which has obtained world-wide
support for over a decade.



Other evaluation techniques include FIPS 140-2 (a special-purpose
evaluation of cryptographic modules, jointly managed by NIST and the
Canadian CSE) and the process-oriented System Security Engineering
Capability Maturity Model (SSE-CMM).

22.10 Research Issues

The Common Criteria (CC) methodology is the focus of much current
research. Aside from the issues discussed in Section 21.8.8, mechanisms for
spreading the use of the CC and other evaluation criteria are receiving much
attention. Evaluations are expensive and time-consuming. Reducing both
cost and time without diminishing the quality of the evaluation is a critical
area of research.

Another interesting research topic is reuse of evaluations in new
environments or for systems composed of evaluated parts. Consumers of
products and systems need to determine how effective those products and
systems are in their current environments. Formal evaluation is suitable
when one can determine precise security requirements and the environment
in which the product or system is to be used and can provide appropriate
evidence that the requirements are met in the defined environment. Today’s
evaluation techniques and approaches do not readily support reuse of
evidence, for reasons of intellectual property ownership and proprietary
information. Without detailed assurance evidence from the product or system
developer, evaluation options for consumers may be limited. Current
approaches that are alternatives to evaluation include various types of testing,
such as penetration testing (see Section 24.2). Penetration testing is an
excellent technique for identification of vulnerabilities but lacks the “total
picture” view of formal evaluation. More complete and effective functional
and structural testing is another alternative for finding problems. How can
one make the testing as effective as possible, and what is the highest possible
level of effectiveness?



22.11 Further Reading

The evaluation process of the TCSEC has been widely discussed and critiqued
[80, 167, 410, 977, 1452, 1548, 1724], and changes have been proposed for
specific environments such as real-time embedded systems [39]. Several
products and systems aimed at levels of the TCSEC have also been analyzed
[288, 564, 644, 1626, 1879, 2024]. Pfleeger [1528] compares the TCSEC with
then-current European evaluation methodologies.

The results of ITSEC evaluations have also been presented [336, 936]. Straw
[1846] compares the ITSEC with the Federal Criteria, and Borrett [271]
discusses the differences between evaluation under the TCSEC and under the
U.K. ITSEC.

The basis for CC requirements arises in several papers, including one that
describes the functional criteria for distributed systems [484]. Other papers
discuss various aspects of CC ratings and protection profiles [257, 945],
including the use of SSE-CMM processes to develop those profiles [81, 2020].
Some evaluations have also been discussed [9, 877].

Hefner [895, 896] and Menk [1327] discuss the origins and evaluation
partnerships under the SSE-CMM. Some papers [1050, 1051] discuss the
relationships between product-oriented evaluation and process-oriented
evaluation. In particular, Ferraiolo [673] discusses the contribution of
process capability to assurance and the definition of metrics to support
process-based assurance arguments. Ferraiolo’s tutorial [672] provides a
good introduction to SSE-CMM.

Some systems have demanded their own specialized certification processes
[688], as have some environments [387, 631].

Lipner [1198] gives a short, interesting historical retrospective on evaluation,
and Snow [1786, 1787] briefly discusses the future.



The most current information on evaluation standards and processes can be
found on the World Wide Web. For example, the CMVP Web site [2155] gives
information about NIST’s cryptographic module validation program and the
CAVP Web site gives information about NIST and CSE’s cryptographic
algorithm validation program [2154]. The international Common Criteria
Web site [2140] contains copies of the Common Criteria documents. It also
offers historical information, information about current projects, registries of
evaluated and unevaluated protection profiles, evaluated product and system
listings (most of which include the security target for the product or system),
and information on testing laboratories and recognition agreements among
the participating countries. National schemes have their own web sites which
usually provide scheme announcements, list of evaluation facilities licensed
by the scheme, scheme approved PPs, a list of products certified by the
scheme, the scheme’s accreditation process, a list products and PPs currently
undergoing evaluated in that scheme. Examples of scheme web sites include
that of the United States scheme (known as CCEVS) [2208], the Canadian
scheme (known as CSE) [2152], the Germany scheme (known as BSI) [2135],
and the Swedish scheme (known as CSEC) [2157].

22.12 Exercises

1. The issue of binding assurance requirements to functional requirements
versus treating them as mutually exclusive sets has been debated over the
years. Which approach do you think is preferable, and why?

2. What are the values of doing formal evaluation? What do you see as the
drawbacks of evaluation?

3. Recall that “criteria creep” is the process of refining evaluation
requirements as the industry gains experience with them, making the
evaluation criteria something of a moving target. (See Section 22.2.4.2.) This
issue is not confined to the TCSEC, but rather is a problem universal to all
evaluation technologies. Discuss the benefits and drawbacks of the CC



methodology for handling criteria creep.

4. What are the conceptual differences between a reference validation
mechanism, a trusted computing base, and the TOE Security Functions?

5. Choose a Common Criteria protection profile and a security target of a
product that implements that profile (see the CCEVS Web site [2208]).
Identify the differences between the PP and the ST that implements the PP.

6. Identify the specific requirements in the Common Criteria that describe a
reference validation mechanism. Hint: Look in both security functional
classes and security assurance classes.

7. Use the Common Criteria to write security functional requirements for
identifying the security functional and assurance requirements that define a
security policy that implements the Bell-LaPadula Model.

8. Map the assurance requirements of the TCSEC (as defined in this chapter)
to the assurance requirements of the ITSEC and the CC. Map the ITSEC
assurance requirements to the CC assurance requirements. Justify your
mappings.

9. Map the security functional requirements of the CC to the functional
requirements of the TCSEC (as described in this chapter). Justify your
mappings.

10. Describe a family of security functional requirements that is not covered
in the Common Criteria. Using the CC style and format, develop several
requirements.

11. Use the Common Criteria Part 2 to write security functional requirements
for a security feature that requires passwords to be 15 or more characters in
length and include at least one upper case character, at least one lower case
character, at least one number, and at least one special character.



12. Use the Common Criteria Part 2 to write security functional requirements
for a security feature that requires the following security related events to be
audited: start-up and shutdown of the audit functions, all login and logout
attempts, all password resets, cryptographic key management, all attempts to
update the TOE, all attempts to change time, and all user management
activities.

13. Select a certified Security Target (see the Common Criteria Certified
Products web site [2141]) and complete the ASE evaluator work units in the
CEM.



Part VII: Special Topics
Part VII explores four topics that play important roles in computer security.
They underlie the security of modern systems and networks.

Chapter 23, “Malicious Logic,” discusses programs set up by attackers to
perform actions that violate the site’s security policy. The programs act with
the privileges of an authorized user but execute without that user’s
knowledge.

Chapter 24, “Vulnerability Analysis,” describes penetration testing. Although
important as a standard a posteriori testing technique, penetration testing
models the way attackers analyze a system when determining how best to
attack it. The insight gained from this mode of thinking is invaluable to
defenders. This chapter also discusses models of vulnerabilities to gain
insight into why they occur.

Chapter 25, “Auditing,” considers auditing and logging. These operations are
important in the analysis of attacks. However, they introduce complexities,
particularly in the areas of knowing what to log and how to correlate logs kept
on different systems.

Chapter 26, “Intrusion Detection,” examines the different ways to detect and
respond to various types of intrusions. Intrusion detection automates analysis
of logs and systems to detect attacks and, in some cases, counter them.

Chapter 27, “Attack Analysis,” presents techniques to determine how an
attack works and what it did, to varying degrees of certainty based on the
information recorded in logs and the visible results of the attack. The
problem of the insider attack is also discussed in some detail.



Chapter 23. Malware
TITUS ANDRONICUS: Ah!, wherefore dost thou urge the name of hands? To bid 
Aeneas tell the tale twice o’er, How Troy was burnt and he made miserable?

— The Tragedy of Titus Andronicus, III, ii, 26–28.

Trojan horses, computer viruses, and spyware are effective tools with which to 
attack computer systems. They assume an authorized user’s identity. Thus, 
access control methods based upon identity or role are ineffective. This 
chapter presents several types of malicious logic, and discusses defenses.

23.1 Introduction

Odysseus, of Trojan War fame, found the most effective way to breach a 
hitherto-impregnable fortress was to have people inside bring him in without 
knowing they were doing so [925, 1948]. The same approach works for 
computer systems.

Definition 23–1. Malicious logic, more commonly called malware, is a set 
of instructions that cause a site’s security policy to be violated.

EXAMPLE: The following UNIX script is named ls and is placed in a directory.

#! /bin/sh
# make a privileged, hidden copy of the shell (command interpreter)
cp /bin/sh /tmp/.xxsh
chmod o+s, w+x /tmp/.xxsh



# do what the victim thinks is *all* you’re doing
ls $*

# delete this file
rm ./ls

It creates a copy of the UNIX shell that is setuid to the user executing this
program (see Section 15.3). The correct ls command is executed, and then
this program is deleted. On most systems, it is against policy to trick someone
into creating a shell that is setuid to themselves. If someone is tricked into
executing this script, a violation of the (implicit) security policy occurs. This
script is an example of malicious logic.

This chapter presents several different types of malware. It is important to
understand that a single piece of malware may embody several different
types, as several examples in what follows will show.

23.2 Trojan Horses

Suppose the user root executed the script in Section 23.1 unintentionally (for
example, by typing “ls” in the directory containing this file). This would be a
violation of the security policy. However, if root deliberately typed

cp /bin/sh /tmp/.xxsh
chmod o+s, w+x /tmp/.xxsh

the security policy would not be violated. This illustrates a crucial component
of the problems with malware. The system cannot determine whether the
instructions being executed by a process are known to the user or are a set of
instructions that the user does not intend to execute. The next definition
makes this distinction explicit.

Definition 23–2. A Trojan horse is a program with an overt (documented
or known) purpose and a covert (undocumented or unexpected) purpose.



EXAMPLE: In the preceding example, the overt purpose is to list the files in a
directory. The covert purpose is to create a shell that is setuid to the user
executing the script. Hence, this program is a Trojan horse.

Dan Edwards was the first to use this term [50]. Trojan horses are often used
in conjunction with other tools to attack systems.

EXAMPLE: Geinimi [1847] is a Trojan horse designed for Android cell
phones. It was placed in several Android apps on Android markets and
forums. When an unsuspecting victim downloaded and ran the app, Geinimi
installed itself. It then connected to a remote command and control server,
announced its presence, and waited for commands. Among the commands it
could execute were a command to delete some or all SMS messages, send
them to a remote server named in the command, dump the contact list and
list of installed apps, and other functions. It also used several techniques to
hide itself, making discovery difficult.

23.2.1 Rootkits

A rootkit is a pernicious Trojan horse. It hides itself on a system so it can
carry out its actions without detection. The earliest rootkits first installed
back doors and other traps at various places in the system. The rootkit then
changes various system programs that reported on the status of the system
and its components. For example, a program that listed the contents of a
directory would be altered to not report the presence of certain files; a
network status program would be altered so it would not show network
connections from specific hosts.

EXAMPLE: The Linux Rootkit IV [309] required superuser access to install.
It replaced several programs that might reveal the presence of rootkit-related
files (ls, find, du), proceses (ps, top, pidof ), and other changes (killall to not
terminate any rootkit-related processes and crontab to not reveal any entries
causing rootkit-related processes to run). Several programs (chfn, chsh,
passwd) gave a user a privileged shell if that user entered a particular



password. Similarly, the login program allowed the attacker to log in using
any name if a particular password were entered, and doing so suppressed the
logging information normally saved when one logs in.

It also altered several programs to allow the attackers to return as privileged
users, and to gather information. Changing various network status programs
(netstat, tcpd, syslogd) prevented adding entries in log files, or displaying
network information, that would reveal the presence of the attackers. Some
network servers (inetd, rshd) would allow attackers to connect with root
privileges when they entered a particular password.

The installation of the rootkit created several programs useful to attackers.
One would install the Trojan horse version of the programs above, but restore
the timestamps of the original program and add meaningless data to restore
the checksum information.1 Programs to erase log entries were also added, as
was a network sniffer; this enabled the attacker to gather use names and
passwords sent over the network. Of course, the network status program
ifconfig, which would reveal the presence of such a sniffer by reporting the
network was accepting all network traffic, was altered to hide this behavior.

1This is a CRC checksum, which is not a cryptographic hash function and so
could be matched easily.

Similar rootkits were developed for other systems such as FreeBSD, SunOS,
Irix, and Solaris [1473].

The obvious approach to counter rootkits, used very successfully, was to run
nonstandard programs that obtained the same information as the system
programs. For example, a program might access the directory directly and
read its contents, which would be a list of files and other ancillary
information. Other techniques included looking for specific strings in the
Trojaned executables, and using cryptographically strong checksums to
determine when changes had occurred (see page 111 for a brief example). The
reason is that these programs bypassed the system programs, using system



calls and information from the kernel to obtain the required information.

Later rootkits were more sophisticated. They altered parts of the kernel,
typically by changing modules loaded into it, so that any program accessing
the kernel (for example, through system calls or other means) to retrieve
information would get information that had been filtered by the rootkit.

EXAMPLE: Three Linux rootkits use slightly different methods of hiding
themselves.

The Knark rootkit [1116,1165,1357] modifies entries in the system call table to
invoke new versions in a kernel-loadable module, sysmod.o. These routines
hijack the system calls that examine the file system and network connections,
and spawn new processes, and supplies new versions that conceal the
presence of the rootkit. Knark also uses several exploits enabling an attacker
to obtain root privileges easily.

One detection method compares the system call table stored in the kernel
with a copy of that table stored on disk at boot time. Instead of modifying
entries in the system call tale, the SucKIT rootkit [1165, 1596] changes a
variable in the kernel that contains the address of the system call table. The
new value points to a new system call table with modified entries. This
defeats the earlier-mentioned defense.

The adore-ng rootkit [316, 1116, 1831] works differently. On Linux systems, as
on UNIX systems, operating system entities such as processes and devices
can be accessed through the file system interface; indeed, this uniformity is
part of what makes these systems so elegant. Linux implements many
actions, such as gathering information about processes and network
connections, through the file system. The adore-ng rootkit takes advantage of
this by compromising the virtual file system (VFS) layer, which translates
system call requests into file system actions. If a process trying to read a file
has a UID and a GID with the rootkit’s values, adore-ng will show all files;
otherwise, it will hide files with the given UID and GID. By manipulating the



file system /proc, which has entries corresponding to the active processes, it
can manipulate what process monitoring programs report. It also hides
processes and any log messages they generate.

A rootkit was once used for digital rights management — with very bad
results.

EXAMPLE: In 2005, Sony BMG, a major music vendor, released a music CD
with anti-piracy software called XCP from the First 4 Internet Ltd. company
[362, 855, 1635, 1636]. To play the music on a Windows computer system,
users had to use a proprietary music playing program. When the user
installed this software from the disk, the XCP software was installed. This
software tried to prevent users from bypassing the proprietary music player
by altering certain functions of the Windows operating system. After the
alteration, if the user tried to access the music on the CD in any way other
than with the proprietary program, the access would be blocked. Otherwise,
the normal operating system CD access methods would be invoked. In
addition to altering the CD access functions of the CD, the XCP software
concealed itself by altering the kernel not to list any files, including folders,
with a name beginning with “$sys$” and placing its software into a folder
with such a name.

XCP also contacted Sony during system startup. It obtained new advertising
material for the proprietary program to display when music was played.
Further, the web-based uninstaller that Sony released had several
vulnerabilities; Sony quickly replaced it with a downloadable uninstaller
without those problems.

Shortly after the rootkit was made public, attackers took advantage of one of
its actions. A variant of one Trojan horse created a file called “$sys$drv.exe”
in the Windows system directory [1168]. A system running the rootkit would
hide this file even though it has no association the rootkit.

This illustrates the problem of using a malicious technology for purposes the



perpetrator believes are benign. Not only did the Sony rootkit fail to achieve
its objectives, it created new vulnerabilities in systems, and resulted in
lawsuits and a flood of bad publicity, as well as a recall of CDs with the rootkit
on them [724, 1403, 1697].

23.2.2 Propagating Trojan Horses

Some Trojan horses can make copies of themselves. One of the earliest Trojan
horses was a version of the game animal. When this game was played, it
created an extra copy of itself. These copies spread, taking up much room.
The program was modified to delete one copy of the earlier version and create
two copies of the modified program. Because it spread even more rapidly
than the earlier version, the modified version of animal soon completely
supplanted the earlier version. After a preset date, each copy of the later
version deleted itself after it was played [559].

Definition 23–3. A propagating Trojan horse (also called a replicating
Trojan horse) is a Trojan horse that creates a copy of itself.

Karger and Schell [1015], and later Thompson [1886], examined detection of
Trojan horses. They constructed a Trojan horse that propagated itself slowly
and in a manner that was difficult to detect. The central idea is that the
Trojan horse modifies the compiler to insert itself into specific programs,
including future versions of the compiler itself.

EXAMPLE: Thompson [1886] created a version of the login program that was
a Trojan horse. When a user logged in, the Trojan horse would accept a fixed
password as well as the user’s normal password. However, anyone reading
the source code for the login program would instantly detect this Trojan
horse. To obscure it, Thompson had the compiler check the program being
compiled. If that program was login, the compiler added the code to use the
fixed password. Now, no code needed to be added to the login program. Thus,
an analyst inspecting the login program source code would see nothing amiss.
If the analyst compiled the login program from that source, she would believe



the executable to be uncorrupted.

The extra code is visible in the compiler source. To eliminate this problem,
Thompson modified the compiler. This second version checked to see if the
compiler (actually, the C preprocessor) was being recompiled. If so, the code
to modify the compiler so as to include both this Trojan horse and the login
Trojan horse code would be inserted. He compiled the second version of the
compiler and installed the executable. He then replaced the corrupted source
with the original version of the compiler. As with the login program,
inspection of the source code would reveal nothing amiss, but compiling and
installing the compiler would insert the two Trojan horses.

Thompson took special pains to ensure that the second version of the
compiler was never released. It remained on the system for a considerable
time before someone overwrote the executable with a new version from a
different system [1600]. Thompson’s point was that “no amount of source-
level verification or scrutiny will protect you from using untrusted code,”2 a
point to be reiterated later.

2See [1886, p. 763]

23.3 Computer Viruses

A replicating Trojan horse Trojan horse propagates itself only as specific
programs (in the preceding example, the compiler and the login program).
When the Trojan horse can propagate freely and insert a copy of itself into
another file, it becomes a computer virus.

Definition 23–4. A computer virus is a program that inserts (a possibly
transformed version of) itself into one or more files and then performs some
(possibly null) action.

The first phase, in which the virus inserts itself into a file, is called the
insertion phase.



The second phase, in which it performs some action, is called the execution
phase. The following pseudocode fragment shows how a simple computer
virus works.

beginvirus:
    if spread–condition then begin
        for some set of target files do begin
            if target is not infected then begin
                determine where to place virus instructions
                copy instructions from beginvirus to endvirus
                    into target
                alter target to execute added instructions
            end;
        end;
    end;
    perform some action(s)
    goto beginning of infected program
endvirus:

As this code indicates, the insertion phase must be present but need not
always be executed. As a simple example, one of the earliest viruses [909]
would check for an uninfected boot file (the spread-condition mentioned in
the pseudocode) and, if one was found, would infect that file (the set of target
files). Then it would increment a counter and test to see if the counter was at
4. If so, it would erase the disk. These operations were the action(s).

Authorities differ on whether or not a computer virus is a type of Trojan
horse. Most equate the purpose of the infected program with the overt action
and consider the insertion and execution phases to be the covert action. To
them, a computer virus is a Trojan horse [589, 958]. However, others argue
that a computer virus has no covert purpose. Its overt purpose is to infect and
execute. To these authorities, it is not a Trojan horse [437, 1412]. In some
sense this disagreement is semantic. In any case, defenses against a Trojan
horse inhibit computer viruses.

According to Ferbrache [668], programmers wrote the first computer viruses
on Apple II computers. A virus developed for research purposes in 1980



wrote itself to the disk boot sectors when the catalogue command was
executed. Another one infected many copies of the game “Congo,” which
stopped working. Friends of its author had released it before it was fully
debugged. The author rewrote it to replace existing copies of itself with the
fully debugged version. Released into the wild, it rapidly supplanted the
buggy copies.

In 1983, Fred Cohen was a graduate student at the University of Southern
California. During a seminar on computer security, he described a type of
Trojan horse that the teacher, Len Adleman, christened a “computer virus”
[438]. To demonstrate the effectiveness of the proposed attack, Cohen
designed a computer virus to acquire privileges on a VAX-11/750 computer
running the UNIX operating system. He obtained all system rights within half
an hour on the average, the longest time being an hour and the shortest being
less than 5 minutes. Because the virus did not degrade response time
noticeably, most users never knew the system was under attack.

In 1984, an experiment involving a UNIVAC 1108 computer showed that
viruses could spread throughout that system, too. Unlike the UNIX system,
the UNIVAC partially implemented the Bell-LaPadula Model, using
mandatory protection mechanisms.3 Cohen’s experiments indicated that the
security mechanisms of systems that did not inhibit writing using mandatory
access controls did little if anything to inhibit computer virus propagation
[437, 438].

3Specifically, it implemented the simple security condition but not the *-
property [958].

The Brain (or Pakistani) virus, written for IBM PCs, is thought to have been
created in early 1986 [668] but was first reported in the United States in
October 1987. It alters the boot sectors of floppy disks, possibly corrupting
files in the process. It also spreads to any uninfected floppy disks inserted
into the system. Since then, numerous variations of this virus have been
reported [910].



In 1987, computer viruses infected Macintosh, Amiga, and other computers.
The MacMag Peace virus would print a “universal message of peace” on
March 2, 1988, and then delete itself [686]. This computer virus infected
copies of the Aldus FreeHand program, which were recalled by their
manufacturer [668].

In 1987, Tom Duff experimented on UNIX systems with a small virus that
copied itself into executable files. The virus was not particularly virulent, but
when Duff placed 48 infected programs on the most heavily used machine in
the computing center, the virus spread to 46 different systems and infected
466 files, including at least one system program on each computer system,
within 8 days. Duff did not violate the security mechanisms in any way when
he seeded the original 48 programs [596]. He wrote another virus in a Bourne
shell script. It could attach itself to any UNIX program. This demonstrated
that computer viruses are not intrinsically machine-dependent and can
spread to systems of varying architectures.

In 1989, Dr. Harold Joseph Highland developed a virus for Lotus 1-2-3 [910].
This virus, stored as a set of commands for that spreadsheet, was loaded
automatically when a file was opened. Because the virus was intended as a
demonstration only, it changed the value in a specific row and column and
then spread to other files. This demonstrated that macros for office-type
programs on personal computers could contain viruses.

Computer viruses infect computers in different ways, and use various
techniques to conceal themselves.

23.3.1 Infection Vectors

Computer viruses can infect systems in three ways: through a boot sector,
executables, or data.

The boot sector is the part of a disk used to bootstrap the system or mount a
disk. When the system boots, any virus in that sector is executed. (The actual



boot code is moved to another place, typically another sector.)

Definition 23–5. A boot sector infector is a virus that inserts itself into the
boot sector of a disk.

EXAMPLE: The Brain virus for the IBM PC is a boot sector infector. When the
system boots from an infected disk, the virus is in the boot sector and is
loaded. It moves the disk interrupt vector (location 13H or, in decimal, 19) to
an alternative interrupt vector (location 6DH or, in decimal, 109) and sets the
disk interrupt vector location to invoke the Brain virus now in memory. It
then loads the original boot sector and continues the boot.

Figure 23–1: How an executable infector works. It inserts itself
into the program so that the virus code will be executed before the
application code. In this example, the virus is 100 words long and
appends itself to the executable code. The first instruction is
changed to a branch to the computer virus, and the computer virus
arranges to execute the replaced instruction.

Whenever the user reads a floppy, the interrupt at location 13H is invoked.
The Brain virus checks for the signature 1234H. If the signature is present,
control is transferred to the interrupt vector at location 6DH so that a normal
read can proceed. Otherwise, the virus infects the disk.

To do this, it first allocates to itself three contiguous clusters (of two



contiguous sectors each). The virus then copies the original boot sector to the
first of the six contiguous sectors and puts copies of itself into the boot sector
and the remaining five sectors.

If there are no unused clusters, the virus will not infect the disk. If it finds
only one unused cluster, it will simply overwrite the next two. This accounts
for the sometimes destructive nature of the Brain virus.

Definition 23–6. An executable infector is a virus that infects executable
programs.

Figure 23–1 illustrates how infection can occur. The virus can prepend itself
to the executable (as shown in the figure) or append itself.

EXAMPLE: The Jerusalem virus (also called the Israeli virus) is triggered
when an infected program is executed. The virus first puts the value 0E0H
into register ax and invokes the DOS service interrupt (21H). If on return the
high eight bits of register ax contain 03H, the virus is already resident on the
system and the executing version quits, invoking the original program.
Otherwise, the virus sets itself up to respond to traps to the DOS service
interrupt vector.

The Jerusalem virus then checks the date. If the year is 1987, it does nothing.
Otherwise, if it is not a Friday and not the 13th (of any month), it sets itself up
to respond to clock interrupts (but it will not infect on clock calls). It then
loads and executes the file originally executed. When that file finishes, the
virus puts itself in memory. It then responds to calls to the DOS service
interrupt.

If it is a Friday and the 13th (of any month), and the year is not 1987, the
virus sets a flag in memory to be destructive. This flag means that the virus
will delete files instead of infecting them.

Once in memory, the virus checks all calls to the DOS service interrupt,



looking for those asking that files be executed (function 4B00H). When this
happens, the virus checks the name of the file. If it is COMMAND.COM, the
virus does nothing. If the memory flag is set to be destructive, the file is
deleted. Otherwise, the virus checks the last five bytes of the file. If they are
the string “MsDos”, the file is infected.4 If they are not, the virus checks the
last character of the file name. If it is “M”, the virus assumes that a .COM file
is being executed and infects it; if it is “E”, the virus assumes that a .EXE file
is being executed and infects it. The file’s attributes, especially the date and
time of modification, are left unchanged.

4According to Compulit, as cited in Highland [910, p. 47], “[t]he author of the
virus apparently forgot to set the signature during .EXE file infection. This
will cause multiple infections of .EXE files.” Analysts at the Hebrew
University of Jerusalem found that the size of a .COM file increased only one
time, but the size of an .EXE file increased every time the file was executed.

Some computer viruses can infect both boot sectors and executables.

Definition 23–7. A multipartite virus is one that can infect both boot
sectors and applications.

These typically have two parts, one for each type. When it infects an
executable, it acts as an executable infector; when it infects a boot sector, it
works as a boot sector infector.

In addition to infecting boot sectors and executable files, some computer
viruses infect data. This data is then interpreted as a set of instructions, and
the computer virus causes the interpreter to spread the virus.

Definition 23–8. A macro virus is a virus composed of a sequence of
instructions that is interpreted, rather than executed directly.

Conceptually, macro viruses are no different from ordinary computer viruses.
Like Duff’s sh computer virus, they can execute on any system that can



interpret the instructions. For example, a spreadsheet virus executes when
the spreadsheet interprets these instructions. If the macro language allows
the macro to access files or other systems, the virus can access them, too.

EXAMPLE: The Melissa virus infected Microsoft Word 97 and 98 documents
on Windows and Macintosh systems. It is invoked when the program opens
an infected file. It installs itself as the open macro and copies itself into the
Normal template (so any Word documents that the Word program opens are
infected). It then invokes a mail program and sends copies of itself to people
in the user’s address book associated with the program.

A macro virus can infect either executables or data files (the latter leads to the
name data virus). If it infects executable files, it must arrange to be
interpreted at some point. Duff’s experiments did this by wrapping the
executables with shell scripts. The resulting executables invoked the Bourne
shell, which interpreted the virus code before invoking the usual executable.

Macro viruses are not bound by machine architecture. They use specific
programs, and so, for example, a macro virus targeted at a Microsoft Word
program will work on any system running Microsoft Word. The effects may
differ. For example, most Macintosh users do not use the particular mail
program that Melissa invoked, so although Macintosh Word files could be
infected, and the infection could spread, the virus did not mail itself to other
users. On a Windows system, where most users did use that mail program,
the infection was spread by mail.

23.3.2 Concealment

One of the goals of computer viruses is to remain undiscovered until
executed, and possibly even after that. As detection methods became more
sophisticated, so did the methods of concealment. We begin with techniques
used by the earliest computer viruses, and describe the defenses that virus
writers have evolved.



Definition 23–9. A terminate and stay resident (TSR) virus is one that
stays active (resident) in memory after the application, bootstrapping, or
macro interpretation has terminated.

TSR viruses can be boot sector infectors or executable infectors. Both the
Brain and Jerusalem viruses are TSR viruses.

Viruses that are not TSR execute only when the host application is executed,
the disk containing the infected boot sector is mounted, or the macro is
interpreted. An example is the Encroacher virus, which appends itself to the
ends of executables.

TSR viruses can be detected by examining the files they infect, and noting
that the contents have changed (because of the infection). The next step in
computer virus evolution was to hide the changes.

Definition 23–10. Stealth viruses are viruses that conceal the infection of
files.

To present the appearance of a non-infected file, the virus intercepts calls to
the operating system that access files. If the call is to obtain file attributes, the
original attributes of the file are returned. If the call is to read the file, the file
is disinfected as its data is returned. But if the call is to execute the file, the
infected file is executed. Some viruses use all these techniques; others, only
some.

EXAMPLE: The Stealth virus (also called the IDF virus or the 4096 virus) is
an executable infector. It modifies the DOS service interrupt handler (rather
than the interrupt vector; this way, checking the values in the interrupt vector
will not reveal the presence of the virus). If the request is for the length of the
file, the length of the uninfected file is returned. If the request is to open the
file, the file is temporarily disinfected; it is reinfected on closing. The Stealth
virus also changes the time of last modification of the file in the file allocation
table to indicate that the file is infected.



A second type of concealment obscures the virus rather than the fact of
infection. These transformation techniques aim to prevent the file from
containing known sequences of code that identify computer viruses, called
signatures (see Section 23.9.1). To conceal these sequences, some viruses
encipher most of the virus code, leaving only a small decryption routine and a
random cryptographic key in the clear. Thus, the encryption is used only to
obscure the virus, not conceal it. Figure 23–2 summarizes this technique.

Figure 23–2: An encrypted virus. The ordinary virus code is at the
left. The encrypted virus, plus encapsulating decryption
information, is at the right.

Definition 23–11. An encrypted virus is a virus that encrypts all of the virus
except the cryptographic key and a decryption key.

EXAMPLE: Ferbrache [668, p. 75] cites the following as the decryption code
in the 1260 virus. It uses two keys, stored in k1 and k2. The virus code itself
begins at the location sov and ends at the location eov. The pseudocode is as
follows.

(* initialize the registers with the keys *)
rA := k1;
rB := k2;
(* initialize rC with the message *)
rC := sov ;
(* the encipherment loop *)
while (rC != eov) do begin
        (* encipher the byte of the message *)
        (* ^rC means the value at the address stored in rC *)
        (^rC) := (^rC) xor rA xor rB ;
        (* advance all the counters *)
        rC := rC + 1 ;
        rA := rA + 1 ;
end



The dual keys and the shifting of the first key prevent a simple xor’ing from
uncovering the deciphered virus.

The encrypted part of the virus now varies depending on the key chosen, so
detecting known sequences of instructions will not detect the virus. However,
the decryption algorithm can be detected. So the next step was to hide
decryption signatures by allowing a virus to use different sequences of
instructions to carry out a task. Polymorphic viruses were designed to do this.

Definition 23–12. A polymorphic virus is a virus that changes the form of
its decryption routine each time it inserts itself into another program.

The deciphering code is the segment of the virus that is changed to something
different but equivalent. In some sense, they are successors to the encrypting
viruses and are often used in conjunction with them.

Consider polymorphism at the instruction level. All of the instructions

add 0 to operand
or (word of all 1’s) with operand
no operation
subtract 0 from operand

have exactly the same effect, but they are represented as different bit patterns
on most architectures. A polymorphic virus would insert these instructions
into the deciphering segment of code.

EXAMPLE: A polymorphic version of the 1260 computer virus might look like
the following. (The lines marked “random line” do not affect the decryption of
the computer virus and are changed whenever the virus replicates.)

(* initialize the registers with the keys *)
rA := k1 ;
rA := rA + 0 ;                  (* random line *)
rB := k2 ;



rD := k1 + k2 ;                 (* random line *)
(* initialize rC with the message *)
rC := sov ;
rC := rC + 1 ;                  (* random line *)
(* the encipherment loop *)
while (rC != eov) do begin
        rC := rC – 1 ;    (* random line *)
        (* encipher the byte of the message *)
        (* ^rC means the value at the address stored in rC *)
        (^rC) := (^rC) xor rA xor rB ;
        (* advance all the counters *)
        rC := rC + 2 ;          (* counter incremented ... *)
        (* to handle random line X *)
        rB := rB..0 ;           (* random line *)
        rA := rA + 1 ;
end
(* the next block does nothing *)
while (rC != sov ) do begin
        rD := rD – 1 ;
        rC = rC – 1 ;
end

Examination shows that these instructions have the same effect as the four
instructions listed above.

The production of polymorphic viruses at the instruction level has been
automated. At least two tool kits, the Mutation Engine (MtE) and the Trident
Polymorphic Engine (TPE), were available in 1992 [2066]; since then, many
such tools have been created [1861].

One characteristic of polymorphic viruses is that the computer virus they
decrypt is the same regardless of the deciphering key used. Thus, while each
occurrence of a polymorphic virus is different when not executing, once it
executes the same computer virus is loaded into memory. This makes them
susceptible to detection.

Virus writers realized that polymorphism can exist at many levels, including
that of the internal structure of the computer virus — for example, the order
in which instructions are executed. This led to the next step.



Definition 23–13. A metamorphic virus is a virus that changes its internal
structure but performs the same actions each time it is executed.

Metamorphic viruses are different even when loaded into memory; in this,
they differ from polymorphic viruses. For example, once the virus is
decrypted, it may have two completely different implementations, or two
different algorithms that produce the same result. For example, the computer
virus might change the registers used (W95/Regswap). It might vary the
order of functions (W32/Ghost) or instructions, in the latter case with
branches ensuring they are executed in the proper order (W95/Zperm).

EXAMPLE: The Zmist (W95/Zmist) [678] computer virus is a complex
metamorphic virus that includes elements of polymorphism and other
evasion techniques. One of the most sophisticated of its time, it introduced
the code integration technique, in which the virus rearranges executable code
in the file being infected, distributed parts of it through the rearranged
instructions and data, and then updates references in the file so that the
infected executable will perform its expected function.

When Zmist executed, it hides the original process if possible and allocates
memory to create room for the virus engine, Mistfall, to create a new instance
of the virus with some instructions changed, instructions added that do
nothing, and other transformations.

When Zmist finds a file to infect, it loads the file into memory. It then takes
one of three actions, chosen randomly.

1. With probability 0.1, insert jump instructions between every non-jump
instructions. In this case the file is not infected, merely altered.

2. With probability 0.1, infect the file with an unencrypted copy of Zmist.

3. With probability 0.8, infect the file with a polymorphic, encrypted copy of
Zmist. This requires that the file being infected have a section with initialized



data that is writeable. If so, when the infected file is executed, the virus
expands this section and uses it to store the virus code as it is decrypted, and
then executes that code. Otherwise, the file is infected with an unencrypted
copy of the virus.

When the third action is taken, the decryptor is scattered throughout the
executable file, with jumps ensuring that the flow of control is correct. The
decryptor code takes care to preserve the registers, so once done the original
values can be restored. It also rewrites addresses and instructions as needed
to ensure the program works as it did before.

In 2007, the Crimea virus that targeted Linux used many of the same evasion
techniques as did Zmist [677].

23.3.3 Summary

The number and variety of computer viruses has evolved rapidly. The later
viruses are far more complex than the early ones — indeed, the development
of virus writing toolkits has placed these into the hands of both expert and
non-expert attackers. Undoubtedly the future will bring even more computer
viruses.

23.4 Computer Worms

A computer virus infects other programs. A variant of the virus is a program
that spreads from computer to computer, spawning copies of itself on each
one.

Definition 23–14. A computer worm is a program that copies itself from
one computer to another.

Research into computer worms began in the mid-1970s. Shoch and Hupp
[1751] developed distributed programs to render computer animations,
broadcast messages, and perform other computations. These programs



probed workstations. If the workstation was idle, the worm copied a segment
onto the system. The segment was given data to process and communicated
with the worm’s controller. When any activity other than the segment’s began
on the workstation, the segment shut down.

EXAMPLE: On November 2, 1988, a program targeting Berkeley and Sun
UNIX-based computers entered the Internet; within hours, it had rendered
several thousand computers unusable
[622,624,1608,1715,1716,1807,1808,1841]. Among other techniques, this
program used a virus-like attack to spread: it inserted some instructions into
a running process on the target machine and arranged for those instructions
to be executed. To recover, these machines had to be disconnected from the
network and rebooted, and several critical programs had to be changed and
recompiled to prevent reinfection. Worse, the only way to determine if the
program had suffered other malicious side effects (such as deletion of files)
was to disassemble it. Fortunately, the only purpose of this worm5 turned out
to be self-propagation. Infected sites were extremely lucky that the worm did
not infect a system program with a virus designed to delete files and did not
attempt to damage attacked systems.

5We use the conventional terminology of calling this program a “computer
worm” because its dominant method of propagation was from computer
system to computer system. Others, notably Eichin and Rochlis [622], have
labeled it a “computer virus.”

The Father Christmas worm, which appeared shortly after the Internet worm,
was interesting because it was a form of macro worm.

EXAMPLE: On December 22, 1988, an electronic “Christmas card” was
passed around several IBM-based networks. This card was an electronic letter
instructing the recipient to save the message and run it as a program. The
program drew a Christmas tree (complete with blinking lights) and printed
“Merry Christmas!” It then checked the recipient’s list of previously received



mail and the recipient’s address book to create a new list of e-mail addresses.
It then sent copies of itself to all these addresses. The worm quickly
overwhelmed the IBM networks and forced the networks and systems to be
shut down [822].

This worm had the characteristics of a macro worm. It was written in a high-
level job control language, which the IBM systems interpreted, just as the
Microsoft Word program interpreted the Visual Basic instructions forming
the Melissa virus.

Computer worms generally exhibit three phases. The first, target selection,
occurs when the worm determines what systems to attempt to spread to.
Then the propagation begins, with the worm attempting to infect the set of
chosen targets. After this, the worm enters the execution phase once it is
resident on the target. The last phase may be empty, in which case the worm
is simply spreading. These phases are similar to the phases of a computer
virus, with the target selection and propagation phases corresponding to the
virus’ infection phase.

EXAMPLE: The Internet worm is a good example of this structure (see
above). The target selection phase of the Internet worm began with the worm
examining lists of trusted hosts and hosts trusted by users whose passwords
the worm had cracked. During the propagation phase, the worm attempted to
exploit four vulnerabilities: one involving an SMTP server in debugging
mode, one using a buffer overflow attack on an information server, one
involving using guessed passwords to connect to the target host, and one
exploiting trust relationships. Once resident on a system, the worm then took
actions to hide its presence, prevent reinfection, and then attempt to guess
passwords on the local system, to be used in target selection and propagation.
It is worth noting that several of these steps were programmed incorrectly,
resulting in the rapid spread of the worm, as noted above.

Since then, numerous computer worms have caused many problems. In 2001,



Code Red I and its variants exploited a vulnerability in Microsoft’s IIS web
servers [1383]. If the system was infected between the first and 19th of the
month, the worm generated a random list of target IP addresses and tries to
propagate to them. From the 20th to the 28th, the worm was set up to send
400MB of meaningless data to the U.S. White House IP address; estimates
are that 359,000 systems were ready to do this when the worm was
discovered [174]. Code Red II, which has no relationship with Code Red I
other than the name, used the same infection vector, but then created a
backdoor, and after 24 hours rebooted the system. Its target selection
involved randomly generated IP addresses but then masked them to bias
infection towards the network containing the system [1383]. The danger here
was from the backdoor, which allows an attacker to use the system in
nefarious ways.

In 2010, the Stuxnet worm had spread to systems in industrial sites in Iran
[656, 1123, 1144]. It targeted Siemens centrifuges used in a process to enrich
uranium, first compromising the Windows-based software and then the
programmable logic (PLC) in the centrifuges. The centrifuges could also be
spun at non-standard speeds, tearing themselves apart. That the worm
spread to industrial control (SCADA) was unusual; equally unusual was the
sophistication of the worm’s spread and actions. It used state-of-the-art
exploits, evasion techniques, and both Windows and (the first identified) PLC
rootkits. Symantec estimates that between 8000 and 9000 new infections
occurred per day [740].

Stuxnet propagated in two ways. First, it would be put onto a system from an
infected USB stick via a Trojan horse. Then, it looked on the local network for
Windows-based systems to infect. It would then infect no more than 3
additional systems. Once on such a system, it determined whether that
system is part of a specific Siemens industrial control system. If not, the
worm did nothing. If it was, the worm then tried to download a later version
of itself. It then exploited vulnerabilities of the system’s PLC, and took control
of the attached centrifuges. It also corrupted the information sent to the



controllers, so they would not detect that anything was wrong until the
centrifuges went out of control.

Earlier research had shown that physical systems such as power generators
are vulnerable to attacks from connected computers. For example, the U.S.
Idaho National Laboratories sent a series of commands turning a generator
off and on in such a way that the generator tore itself apart [55]. The
implication of Stuxnet is that such attacks can be launched over the Internet,
and that systems thought to be isolated are in fact connected to the Internet.
Stuxnet focused only on Siemens systems. A worm with a less selective
payload could cause widespread damage [446].

Stuxnet infected a number of sites in Iran, India, Indonesia, and other
countries. Its authorship is unknown, but there has been considerable
speculation that its complexity and sophistication mean it was developed by
one or more nation-states! [301]. Since then, analysts have discovered other
equally sophisticated worms. For example, the Flame worm [1772] spreads
using techniques similar to Stuxnet, but the attackers must enable the
propagation mechanism. It then gathers information such as audio from the
microphone, keystrokes, screen shots, and network traffic. Attackers can then
retrieve this information. Perhaps even more sophisticated, stealthy worms
are active but have yet to be discovered.

23.5 Bots and Botnets

Sometimes attackers co-ordinate actions among malware on different
systems. The malware can pre-set specific actions to occur with specific
triggers. The attackers also can have the malware take actions based on
particular messages that the attacker sends.

Definition 23–15. A bot is malware that carries out some action in co-
ordination with other bots. The attacker, called a botmaster, controls the bots
from one or more systems called command and control (C&C) servers or



motherships. They communicate over paths called C&C channels. A collection
of bots is a botnet.

The distinguishing characteristic of a bot is its using a C&C channel. The bots
can be updated or triggered through this channel.

Each bot in a botnet has four stages in its life cycle [366].

1. The bot first infects a system. This can be done in any number of ways, for
example as a computer worm or Trojan horse resident in a program that an
unsuspecting user installs and executes. It can also exploit vulnerabilities to
enter the system

2. The bot then checks for a network connection, and looks for either a C&C
server or another node that it can communicate with.

3. The bot is then given commands to execute by the C&C server or other
node. This may also involve downloading additional components to the bot to
add to its capabilities.

4. The bot executes the commands. If appropriate, it sends the results to
another site.

Steps 3 and 4 repeat as often as needed.

Botnets can be organized in three basic ways [456]. The botnet may be
centralized, in which case each bot communicates directly with the
botmaster. However, the botmaster would then become a bottleneck for large
botnets. Thus, many botnets use a hierarchical control scheme in which the
botmaster communicates with a set of bots that are in turn botmasters for
other bots. This allows control over a large botnet. Indeed, during a study of
the Torpig botnet, the researchers observed over 180,000 bots using
approximately 1,250,000 unique IP addresses [1845]. The Mirai Internet-of-
Things botnet footprint was estimated to be 493,000 instances [1097].



EXAMPLE: One of the earliest bots, GTBot, used an IRC channel as the C&C
channel. The bot would be placed on a Windows system running the mIRC
client. This was coupled with some scripts to monitor the IRC channel
looking for specific keywords, a program to hide the presence of the bot, and
in some cases programs to propagate to other Windows systems and install
servers on the infected systems. An example of this bot, the Backdoor.IRC.
Aladinz, installs itself in an invisible directory, then takes additional steps to
hide itself, and finally connects to a particular IRC channel and notifies the
attacker that it is resident. The bot had tools to launch a large number of
attacks, such as flooding the victim with UDP packets, launching a Smurf
attack that also floods the victim, gathering and sending information about
the system to the attacker, and rebooting the host [348].

The Torpig botnet was considerably more sophisticated [1844]. Its
distribution is based on Mebroot, a rootkit that is executed at boot time,
before the operating system is loaded. It then contacts the Mebroot C&C
server to obtain modules; these are the malicious modules that will become
part of Torpig. These add dynamic load modules to existing applications,
enabling sensitive data such as passwords to be compromised. This data is
then sent to the Torpig C&C server. The server may simply acknowledge the
upload, or it can send back a configuration file that contains a set of IP
addresses for backup Torpig C&C servers and an interval indicating how often
the bot should contact the server.

Peer-to-peer botnets use a C&C structure in which there is no single C&C
server. Instead, a peer-to-peer network is constructed, with the bots acting as
peers. Thus, if some portion of the botnet is deleted, the remainder of the
botnet can continue to function.

EXAMPLE: The Trojan. Peacomm bot is a peer to peer bot [828]. It infects
Windows systems. It uses the peer-to-peer Overnet protocol [1279] to connect
to its peers. The addresses of over 100 peers are stored in the bot. It searches
for a value encoding a URL that points to a component (called a “secondary



injection”). It then downloads this secondary injection and executes it.
Among these secondary injections are spamming components, rootkit
components, a component to obtain email addresses for spamming, and a
component to carry out a distributed denial of service.

The third organizational scheme has very high latency. When a bot or a C&C
server wishes to communicate with another node, it scans addresses at
random until it finds another bot. It then forwards the message to that bot.
Such an organization would minimize the damage were a bot discovered, as it
could lead to at most one other bot. But, like any random walk, there is no
guarantee that a message would reach its intended destination.

One problem with botnets is that the addresses of the C&C servers must be
available to the bots and, if redundant, other C&C servers. Thus, discovery of
any node immediately places those key servers at risk. So botnet developers
devised ways to hide this information, based on how content delivery
networks work.

Content delivery networks, like Netflix and Amazon, have many servers.
Those servers are invisible to the clients. One looks up the name of the
organization, for example www.amazon.com, in the DNS and goes to the
associated IP address. As content delivery networks grew, a mechanism called
IP flux was developed to prevent any single server from being overloaded.
This mechanism repeatedly changes the IP address associated with a
particular host name (that is, a fully qualified domain name) after a very
short period of time. Thus, network traffic to that host will appear to go to
one particular system, but in reality will be sent to whichever server has the
current IP address.

Botnet developers discovered how to use this to increase the difficulty of
locating bots, especially those used as botmasters. The idea is to associate a
list of IP addresses with a particular host name. The binding between the host
name and the IP address changes rapidly, with the next IP address selected
from that list. These botnets are called IP flux botnets. The simplest form is a



single flux botnet, in which the list of IP addresses is large (hundreds to
thousands). The host name is fluxed, that is, registered as having one of the
IP addresses in the DNS, and then after a brief time deregistered; this is done
by having a very brief time to live field in the DNS record. Once the host name
and IP address are deregistered, the process repeats with a different IP
address. A more complicated form is a double flux botnet, in which the IP
addresses of the DNS servers used to look up the host names are also fluxed.
This increases the difficulty of tracking the bots.

The term fast flux refers to the rapidly changing binding between host name
and IP address.

EXAMPLE: The Flame worm forms a fast flux botnet. As noted in Section
23.4, it gathers information from both the infected system and from the
network. The information could then be retrieved from the system over a C&C
channel to a Flame command server. The server could also send new modules
to increase the functionality of Flame.

When Flame was installed, it first checked for a network by trying to connect
to several Microsoft and a Verisign web sites. If it succeeded, it would begin
communicating with the Flame C&C servers. Five such domains were initially
in Flame, but the C&C servers could add to this list. The communications all
used SSL, with Flame having a self-signed certificate. Flame was a fast flux
botnet; preliminary analysis found more than 50 host names and more than
15 IP addresses related to the C&C messages [1772]. Subsequent analysis
raised the number of C&C hosts to about 100 [1656].

A variant on the fast flux technique described above assigns changing host
names to an IP address. The bot generates domain (host) names using an
algorithm, and tries to contact each one until it succeeds and receives a
recognizable response. This technique is called domain flux. The advantage to
this technique is that a host name is associated with a C&C server for a short
time, whereas with IP flux finding the domain name identifies the C&C



server.

EXAMPLE: Torpig uses the domain flux technique for locating its C&C
servers [1844]. The algorithm used computes a domain name that is fixed for
the current week number and year. It then appends “.com”, “.net”, and finally
“.biz”. If none of those resolve to a C&C server, it then generates a domain
name based on the current day, and repeats the probing process. Should
those fail to resolve, Torpig then goes to a fixed list of domain names.

Like worms, botnets can be used for non-malicious computations. However,
the botnets found so far are typically malicious. Among the malicious acts
that a botnet can perform are large-scale distributed denial of service attacks,
obtaining credit card information, bank account numbers, passwords, and
other private from the host that the bot is resident on and send it to
criminals, and sending spam. The Internet of Things aggravates these threats
[680, 1611] for a variety of reasons, including poor security in the devices and
problems with ensuring patches reach all devices. Indeed, closed-circuit
television cameras have been used in distributed denial of service attacks
[451], and a smart refrigerator to send spam emails as part of a botnet [1829].

23.6 Other Malware

Various other types of malware cause problems. This section surveys some of
the more common types of malware.

23.6.1 Rabbits and Bacteria

Some malware exhausts resources. This creates a denial of service attack.

Definition 23–16. A bacterium or a rabbit is a program that absorbs all of
some class of resource.

A bacterium is not required to use all resources on the system. Resources of a
specific class, such as file descriptors or process table entry slots, may not



affect currently running processes. They will affect new processes.

EXAMPLE: Dennis Ritchie [1599] presented the following shell script as
something that would quickly exhaust either disk space or inode tables on a
UNIX Version 7 system.

while true
do
        mkdir x
        chdir x
done

He pointed out, however, that the user who caused a crash using this program
would be immediately identified when the system was rebooted.

23.6.2 Logic Bombs

Some malware triggers on an external event, such as a user logging in or the
arrival of midnight, Friday the 13th.

Definition 23–17. A logic bomb is a program that performs an action that
violates the security policy when some external event occurs.

Disaffected employees who plant Trojan horses in systems use logic bombs.
The events that cause problems are related to the troubles the employees
have, such as deleting the payroll roster when that user’s name is deleted.

EXAMPLE: In the early 1980s, a program posted to the USENET news
network promised to make administering systems easier. The directions
stated that the shar archive containing the program had to be unpacked, and
the program compiled and installed, as root. Midway down the shar archive,
as part of the shell commands unpacking the archive, were the lines

cd /
rm – rf *



Anyone who unpacked the archive by having the shell execute it, as was usual,
caused these lines to be executed. These commands deleted all files in the
system. Some system administrators executed the program with unlimited
privileges, thereby damaging their systems.

23.6.3 Adware

Adware displays advertisements on systems. It may be benign if the user
consents to it being present, and understands exactly what it does. This is
often not the case, and so adware is usually considered a form of malware

Definition 23–18. Adware is a Trojan horse that gathers information for
marketing purposes and displays advertisements, often based on the gathered
information.

The presence of adware is obvious, because of the advertisements it displays.
The covert purpose is to gather, or transmit, information about the user to
provide advertisements of products or services the user is likely to desire. But
in some cases, this is expected.

EXAMPLE: A Symantec report [1925] defined three levels of adware. The
least intrusive type, called “low severity behavior” adware, simply displays
ads and does not transmit any information. The second type, “medium
severity behavior” adware, transmits information usually deemed low risk,
such as location information. It may display ads based on this information.
The third type, “high severity behavior” adware (also called madware)
transmits other information such as phone numbers, account information, or
other personal information, and presents ads tailored to devices or people
with those characteristics. Also, this type of adware is typically aggressive in
displaying ads, usually to the annoyance of users.

Chien [407] puts the first use of the word “adware” to a post to a USENET
newsgroup. The post said that a company was making some of its software
available without charge, because it would pop up a window advertising the



company. This is an example of benign adware, because its purpose was clear,
the user knew what it would do, and it required the user’s consent. This
adware spread only through the distribution of the program. In 2002,
another company released a program that emailed itself to every address in
the user’s contact list. The user had to accept the license for this program
first, and the license disclosed the propagation behavior — but as most people
did not read the agreement in detail, most did not see it.

Adware enters a system in a variety of ways. The two most common are being
placed in software that a user downloads (such as a mobile app), or being
placed on a web site that the user visits. If the adware is bundled with other
software, the user typically does not know the program they install or execute
installs the adware. Most programs do not announce this. Those that do may
put the announcement in the end-user license agreement that users must
accept to get the software. As noted above, few people read these in detail.

Several web-based techniques are used to place adware on a system. One way
is to place the adware in a banner that offers the user some benefit by clicking
on it. The click triggers the installation of the adware. Other ways are more
subtle. The web page may require the user to install some program, or allow
some script to be executed, that installs the malware. Another technique
exploits automatic page refreshing, in which a web page redirects a browser
to run an executable. This causes the browser to display a dialogue box asking
for permission to run the program. If the user clicks to allow, the program
installs the malware. Sometimes browser plug-ins allow files to be
downloaded and executed; in this case, the user may see no indication that
something is being installed or run. This latter class of techniques are
examples of drive-by downloading,

Definition 23–19. A drive-by download occurs when a user visits a web
page and a download occurs without the user knowing it, or when the user
knows it but does not understand the effects of the download.

Adware obtains information that the companies can use to target



advertisements that the target is more likely to respond to. This is financially
remunerative to the purveyors, who receive some amount of money for every
advertisement that is displayed, or that a user clicks on.

An interesting economic aspect arises when the web is used. Here, the
purveyor is the web host, and the more users that visit the web site and click
on the advertisement, the more the owner of the web site will receive. This
has led to the development of programs that emulate repeated clicks on the
ads, thereby costing the company money and enriching the purveyor.

As smartphones have become ubiquitous, and the number of apps grown
phenomenally, developers often partner with marketing companies to obtain
revenue for their software. So the software uses special libraries that manage
the collection of data and retrieval and display of advertisements. In
particular, adware is often added to software in unauthorized app stores.

During installation, the software requests permissions to carry out its
functions. Some of these permissions may be unnecessary to the purported
function of the software, and if granted would enable the libraries to send
information that the user does not intend to make available. These functions
include accessing the contact list, the camera and microphone, and other
sensitive information. In a survey of 900 Android apps, 323 had unnecessary
privileges, including accessing the camera, an approximate location and being
able to make calls without going through the user dialing interface [664].
Users often do not understand, or do not pay attention to, the permissions
being requested, and so install the app despite the excess permissions [665].

23.6.4 Spyware

Like adware, spyware gathers information about a user, system, or other
entity and transmits it or stores it for later retrieval. Unlike adware, its
presence is sup[posed to be invisible to the user and system, so its function is
truly covert. Hence it is malware.



Definition 23–20. Spyware is a Trojan horse that records information
about the use of a computer, usually resulting in confidential information
such as keystrokes, passwords, credit card numbers, and visits to web sites.
The information may be transmitted to a third party, stored for later
transmission, or stored for retrieval by a third party.

Spyware enters a system through vulnerabilities, programs, applications, or
from web sites the user visits. Spyware communicates business secrets,
personal information, and other data to another party. As such, it can be used
for malicious purposes. For example, spyware can send corporate secrets to a
competitor. It can also be used for government surveillance [122, 1590],

EXAMPLE: The Pegasus spyware is designed for Apple’s iPhone. Installation
begins with the attacker sending the victim a URL. Upon receiving the link,
the victim clicks on it. This triggers an attack using one of three vectors
(collectively known as the “Trident Vulnerabilities”) to gain full control of the
iPhone. It then installs several spyware packages. These packages
compromise several existing apps that are used for mail (Gmail), social
networking (Facebook, WeChat), voice communications (Viber, Skype), and
others. It can access any data that those apps encounter. Similarly, it can
access phone calls, logs, SMS messages, and any other audio and video
communications [141].

The compromise takes three steps.

1. The initial delivery is an HTML file that exploits a vulnerability in WebKit,
which is the basis for Safari and other web browsers.

2. Gaining full control (“jailbreaking”) comes next. The code delivered in the
first stage downloads software needed to gain control. The download is
enciphered with different keys at each download. The downloaded software
includes a loader for the last stage.

3. The spyware is installed. The loader in the previous step downloads



numerous dynamic load libraries, daemons, and other software.
Interestingly, the software checks to see if the iPhone has previously been
jailbroken and if so, it removes all access to that phone provided by that
earlier break.

Working with the security companies Lookout and Citizen Lab, Apple
developed patches for the Trident vulnerabilities and deployed them in an
update to the iPhone’s operating system, iOS 9. So iOS 9.3.5 and later have
the vulnerabilities patched.

Pegasus was discovered when a human rights activist received text messages
containing a link to information about people being tortured in the United
Arab Emirates. He sent the messages to Citizens Lab, which recognized the
links as being associated with a company that manufactures spyware for
government surveillance. They contacted Lookout, which carried out the
technical analysis. As the human rights activist had been targeted before, it is
believed that he was targeted by a government interested in compromising
his sources [1522].

23.6.5 Ransomware

In late 1989, the Computer Incident Advisory Capability (CIAC), the
Lawrence Livermore National Laboratory incident response group, reported a
Trojan horse called PC CY-BORG6 that altered the startup file
AUTOEXEC.BAT on PC/DOS systems. The altered file counted the number of
times the system was booted. On the 90th reboot, the Trojan horse
enciphered the names of all files on the main drive (C:), and hid directories
[2183]. The user was then asked to send a fee to a post office box in order to
recover their system [297].

6Also called the AIDS virus [2183].

This Trojan horse is one of the earliest reported malware that demanded
money in order to restore the system to a useable state. More formally:



Definition 23–21. Ransomware is malware that inhibits the use of
resources until a ransom, usually monetary, is paid.

In 1996, Young and Yung analyzed ways in which cryptography could be used
to harden malware [2076]. They presented an extortion protocol to show how
cryptography could be used offensively as well as defensively. Suppose Anne
wishes to extort money from Vinnie. She executes the following protocol:

1. Anne generates an asymmetric key pair and embeds the public key in the
malware. She retains the private key.

2. The malware infects Vinnie’s system. It generates a symmetric key and uses
that to encipher Vinnie’s data. The malware then enciphers the symmetric
key with the public key, and erases all instances of the unencrypted
symmetric key. Vinnie now sees a message saying he needs to send money to
Anne, or do something Anne desires. He does so, and includes the encrypted
symmetric key.

3. Once Anne gets the money or Vinnie performs the actions Anne wants, she
uses her private key to obtain the symmetric key, which she then sends to
Vinnie.

This protocol is similar to many used by ransomware.

After PC CYBORG, ransomware appeared infrequently. After 15 years,
numerous ransomware programs were released, and since then they have
grown both in complexity and in ways to have the victim pay the attacker. For
example, RANSOM-A, released in early 2006, required the victim to wire
$10.99 to a money transfer service [297] and the ARHIVEUSA, also released
in 2006, required the victim to purchase a product from a specific online
pharmacy whose URL was given [1801].

In 2013, ransomware known as CryptoLocker gave the victim 100 hours to
pay a ransom in bitcoins. If the bitcoins were paid, the victim got the



decryption key. If it was not paid within 100 hours, the key was destroyed
[1437,2156]. According to the U.K. National Crime Agency [1435], tens of
millions of spam messages containing an attachment that installed
CryptoLocker had been sent to people and businesses across the U.K. A
similar technique was used to spread it in the U.S. [2223]. CryptoLocker used
several evasive techniques including varying the Bitcoin addresses to both
keep balances low and to make tracking more difficult [1054].

In 2016, several healthcare facilities such as hospitals were found to be
infected by the Locky ransomware [2223]. Like CryptoLocker, it was spread
as attachments to email. A Kentucky hospital was able to use backup systems
and so did not pay the ransom; one in Los Angeles was less fortunate, and
paid [1092, 2025, 2199].

23.6.6 Phishing

Strictly speaking, phishing does not involve malware, although it may, and
often does, cause malware to be downloaded. With phishing, the data used is
maliciously crafted, and so covering it in a chapter on malware seems
appropriate.

Definition 23–22. Phishing is the act of impersonating a legitimate entity,
typically a web site associated with a business, in order to obtain information
such as passwords, credit card numbers, and other private information
without authorization.

A typical phishing attack requires that the attackers create a web site
displaying a page that looks like it belongs to a bank. Thus, when victims visit
the web site, they will believe they are at the bank’s web site and not the false
one. The attacker then creates a letter that instructs the recipient to click on
an enclosed link to go to the bank’s home page. But the displayed URL is that
of the real bank, and the underlying one that of the fake bank. The user clicks
on the link, is taken to the fake page, and enters the name and password. The
attacker saves these for later use.



EXAMPLE: Heidi banks at Big Bank, with a URL of www.bigbank.com. She
receives an email from the bank that says she must go the the bank’s web
page in the next 3 days to verify her telephone number, or the bak will disable
her account. The letter contains a URL of the page she is to go to:

<a href=“www.bigbank.com.ru”>www.bigbank.com</a>

The URL between the quotation marks is the one she will be taken to, but the
second URL is the one that will be displayed in the letter in most email
clients. Thus, when Heidi clicks on the URL, she will go to the fake bank web
page, enter her login name and password, which the web page saves. Now the
attackers have access to her account. If the attackers are sophisticated, they
can give an error, and then redirect her to the real bank web page, or use
other means to hide the redirection.

Phishing attacks are generic, with spam mail containing the phishing attack
going to millions of users. The attackers hope that some small fraction of the
recipients will click on the link. But sometimes the attackers want the
credentials of a specific person, such as a chief technical officer or other very
senior manager. The attackers use a type of phishing attack tailored for the
intended victim.

Definition 23–23. Spearphishing is a phishing attack tailored for a
particular victim.

High-profile companies such as banks and computer security companies
often have their employees targeted for spearphishing attacks. For example,
in 2008, several chief executive officers of U.S. companies were “served” with
a subpoena via email. They opened the attachment, and so installed malware
on their system [927].

EXAMPLE: In 2011, some employees of RSA, a leading data and computer
security company received an email with the subject “2011 Recruitment
Plan”. When they read the email, they believed it and so opened an attached



Excel spreadsheet. The spreadsheet exploited a vulnerability in Adobe Flash
to install a back door enabling attackers to control the victim’s system
remotely. From this foothold, the attackers compromised other machines at
RSA, and ultimately were able to steal sensitive information about RSA’s
SecurID system. As a result, RSA had to replace millions of SecurID tokens
[1111, 2097].

23.7 Combinations

The types of malicious logic discussed so far are not distinct. Computer
viruses are a form of Trojan horses. Computer viruses may contain logic
bombs, as might computer worms. Some worms and viruses are bacteria
because they absorb all the resources of some type.

Figure 23–3: Illustration of Cohen’s definition of a viral set. Here,
v, v′, k, and k′ are as in Definition 23–24, and |v| = j. The Turing
machine can make copies of v either before or after the tape
squares containing v but does not overwrite any part of v. Each
diagram shows a possible position for v′ with respect to v on the
tape.

EXAMPLE: The Internet worm was a bacterium on many systems. During its
infection, the worm opened a port on the network. When another worm tried
to infect the system, it first checked the port. If the port was open, the
infecting worm knew that another worm was resident on the computer. The
author apparently feared that this check would lead to a defense of system
administrators opening the port with a small program. So, once out of every
six times, the check was ignored and the worm reinfected the infected system.
Because the worm was so prolific, infected machines quickly had many
different copies of the worm and were overwhelmed. The worms consumed



the CPU.

EXAMPLE: The Father Christmas worm created so much network traffic that
the networks became unusable and had to be shut down until all instances of
the worm were purged from the mail queues. Hence, it was a bacterium also.

An obvious question is whether a universal detector can be written to detect
malicious logic. We consider the narrower question of whether there is an
algorithm that can determine if an arbitrary program contains replicating
code.

23.8 Theory of Computer Viruses

Cohen asked if a single algorithm could detect computer viruses precisely. He
demonstrated that the virus detection problem, like the safety problem (see
Theorem 3.2), is undecidable.

Definition 23–24. [439] Let T be a Turing machine and let V be a sequence
of symbols on the machine tape. Let sv be a distinguished state of T . For
every v ∈ V , when T lies at the beginning of v in tape square k, suppose that
after some number of instructions are executed, a sequence v′ ∈ V lies on the
tape beginning at location k′, where either k + |v| ≤ k′ or k′ + |v| ≤ k. Then
(T, V ) is a viral set and the elements of V are computer viruses.

Figure 23–3 illustrates this definition. The virus v may copy another element
of V either before or after itself but may not overwrite itself. Both possibilities
are shown. If v′ precedes v, then k′ + |v| ≤ k; otherwise, v precedes v′, and k
+ |v| ≤ k′. Definition 23–24 is a formal version of Definition 23–4. It focuses
on the replication (copying) aspect of computer viruses but includes the
execution phase as a component of v that need not be copied. In this case, v′
would be the infection part of v, and the actions other than infection would be
the remainder of v.

Cohen established the undecidability of detecting generic computer viruses by



showing that, if such a decision procedure existed, it would solve the halting
problem. Consider an arbitrary Turing machine T and an arbitrary sequence
S of symbols on tape. Construct a second Turing machine T′ and tape V such
that, when T halts on S, V and T′ create a copy of S on the tape. Then T′

replicates S if and only if T halts on S. By Definition 23–24, a replicating
program is a computer virus. So, there is a procedure that decides if (T′, V) is
a viral set if and only if there is a procedure that determines if T halts on S—
that is, if there is a procedure that will solve the halting problem. Because the
latter does not exist, neither can the former.

Theorem 23.1. [439] It is undecidable whether an arbitrary program
contains a computer virus.

Proof. Let T and V define a Turing machine and sequence of tape symbols,
respectively. We construct a second Turing machine T′ and sequence V′ such
that T′ reproduces V if and only if running T on V halts.

Let A and B be tape symbols, so A, B ∈ M. Let qi, i ≥ 1 be states of the Turing
machine, so qi ∈ K for i ≥ 1. Let a, b, i, and j be non-negative integers. We also
redefine the function δ as δ : K × M → K × M × {L, R, –}, where – refers to no
motion. This function is equivalent to the δ function in Section 3.2 (see
Exercise 14).

We will find it convenient to abbreviate arguments and values of δ as follows.
Let x, y, z, u, and si, i ≥ 1, represent values drawn from the set of tape symbols
M. We can then write

to represent all definitions of δ where the first argument to δ is qa and the
second argument to δ is an element of M other than A.

Three actions recur in our construction of T′. We define abbreviations to
simplify the description of that Turing machine. For any symbol x ∈ M,
LS(qa, x, qb) represents the sequence



This sequence takes effect when the Turing machine is in state qa. It moves
the head to the left, skipping over take squares, until the machine encounters
a square with the symbol x. At that point, the Turing machine enters state qb,
and the head remains over the square with the x symbol.

The abbreviation RS(qa, x, qb) is defined similarly, but for motion to the right:

This sequence moves the head to the right until a square containing x is
found. The head stops at that square.

The third abbreviation, COP Y (qa, x, y, z, qb), means that the Turing
machine’s head moves right to the next square containing the symbol x and
copies the symbols on the tape until the next square with the symbol y is
encountered. The copy is placed after the first symbol z following the symbol
y. Once the copying is completed, the Turing machine enters state qb.

The following sequence captures this. The part of each line following the
semicolon is a comment, for exposition purposes only. We assume that the
symbols A and B do not occur on the tape. If necessary, we augment the set M
with two symbols and use them for A and B.



We proceed to construct T′ and V′. Define the set of symbols in T′ to be

where A, B, C, D ∉ M, and the set of states to be

where qa, qb, qc, qd, qe, qf , qg, qh, qH ∉ K. The initial state of T′ is qa, and the
halting state of T′ is qH. The initial state of T is qf , and we simulate the
halting state of T by the state qh. We abbreviate the execution of T on the tape
with the head at the current position as SIMULAT E(qf , T, qh), where qf is the
state of T′ corresponding to the initial state of T and qh is the state of T′

corresponding to the final (terminal) state of T.

Let V′ = (A, B, V, C, D). Then the transition function δ for T′ is:

Figure 23–4: The tape V′ at state qf. The head is positioned over the
tape for T. Note that, when T is being simulated, the head can



never move left over B because T cannot move to the left of the
(simulated)tape

The Turing machine T′ first makes a copy of V. It then simulates T running on
the copy of V. The original V is to the left of the copy (see Figure 23–4), so the
simulation of T cannot alter it. If the simulation halts, T′ enters state qh, in
which the original copy of V is recopied. This satisfies Definition 23–24. On
the other hand, if the simulation never halts, V is never recopied, and
Definition 23–24 is never satisfied. This establishes the desired result. 

Adleman used a completely different approach to obtain a generalization of
this theorem, which we state without proof:

Theorem 23.2. [17] It is undecidable whether an arbitrary program
contains a malicious logic.

Further work has sharpened the theory of viruses and, by extension, of
malware. Adelman [17] proved that the basic set of computer viruses is Π2-
complete. Zuo and Zhou [2123] extended Adleman’s model to include specific
types of computer viruses. Other examinations include those of Bonfante,
Kaczmarek, and Marion [264], Thimbleby, Anderson, and Cairns [1881], and
Case and Moelius III [361].

These results mean that there is no generic technique for detecting all



malware, or even all computer viruses. Hence, defenses must focus on
particular aspects or effects of malicious logic that can be detected.
Furthermore, multiple defenses are needed. We turn to these defenses now.

23.9 Defenses

The different types of malware share many common characteristics. Defenses
focus on these characteristics, so the defenses apply to many different types
of malware. That is part of the reason why security companies that market
malware detection and prevention tools refer to them as “anti-virus” tools.
The other reason is that the term “virus” has captured the public’s
imagination, and in marketing literature that term encompasses all types of
malware.

23.9.1 Scanning Defenses

When malware infects a system, it alters memory contents or disk files. Thus,
one defense is to look for such changes.

Some mechanisms use manipulation detection codes (MDCs) to apply some
function to a file to obtain a set of bits called the signature block and then
protect that block. If, after recomputing the signature block, the result differs
from the stored signature block, the file has changed, possibly as a result of
malicious logic altering the file. This mechanism relies on selection of good
cryptographic checksums (see Section 10.4).

EXAMPLE: Tripwire [1060] is an integrity checker that targets the UNIX
environment. This program computes a signature block for each file and
stores it in a database. The signature of each file consists of file attributes
(such as size, owner, protection mode, and inode number) and various
cryptographic checksums (such as MD-4, MD-5, HAVAL, SHS, and various
CRCs). The system administrator selects the components that make up the
signature.



When Tripwire is executed, it recomputes each signature block and compares
the recomputed blocks with those in the file. If any of them differ, the change
is reported as indicating a possibly corrupted file.

An assumption is that the file does not contain malicious logic before the
signature is generated. Page [1494] has suggested expanding of Boebert and
Kain’s model [254] to include the software development process (in effect,
limiting execution domains for each development tool and user) to ensure
that software is not contaminated during development.

EXAMPLE: Pozzo and Grey [1550,1551] have implemented Biba’s integrity
model on the distributed operating system LOCUS [1540] to make the level of
trust in the above-mentioned assumption explicit. They have different classes
of signed executable programs. Credibility ratings (Biba’s “integrity levels”)
assign a measure of trustworthiness on a scale of 0 (un-signed) to N (signed
and formally verified), based on the origin of the software. Trusted file
systems contain only signed executable files with the same credibility level.
Associated with each user (subject) is a risk level that starts out as the highest
credibility level. Users may execute programs with credibility levels no less
than their risk levels. When the credibility level is lower than the risk level, a
special “run-untrusted” command must be used.

All integrity-based schemes rely on software that if infected may fail to report
tampering. Performance will be affected because encrypting the file or
computing the signature block may take a significant amount of time. The
encrypting key must also be secret because if it is not, then malicious logic
can easily alter a signed file without the change being detected.

Antivirus scanners check files for specific viruses and, if a virus is present,
either warn the user or attempt to “cure” the infection by removing the virus.
Many such agents exist for personal computers, but because each agent must
look for particular characteristics or behaviors of virus or set of viruses, they
cannot detect viruses with only characteristics or behaviors that have not yet



been analyzed.

Like a file’s checksum above, a malware signature is an algorithm that
identifies the malware. Ideally, it should be unique to minimize false
positives. Historically, these signatures began as static sequences of bits or
patterns, and grew to include patterns of behavior. Originally, they were
derived manually, but that soon proved impractical and automated methods
of deriving signatures were developed.

Kephart and Arnold [1045] had viruses infect known programs in a controlled
environment. They then found and extracted the modified parts of the
program and looked for common strings using various heuristics. They then
compared these strings to a model of non-infected programs and used the
results to minimize false positives. While effective, this approach assumes
that one has access to the uninfected programs and can control the
environment. Others extended the string extraction approach [826], and
developed other techniques based on machine learning [1707, 1893].

EXAMPLE: Earlybird [1769], a system for generating worm signatures, is
based on the belief that as a worm spreads, it increases network traffic
significantly between various hosts, and that the network traffic thus
generated will have many common substrings. This suggests an approach to
worm detection. The detector reads a network packet, puts the substrings into
a frequency table, and then into a second table along with the source and
destination addresses. Both tables keep counts of the number of times a
substring, or substring, source, and destination address appear. The
substrings that occur most often, and to most different destinations, are likely
to be part of the worm, and hence form a signature.

Earlybird approximates this approach. When a packet arrives, its content is
hashed and the destination port and protocol identifier are appended to the
hash. It then checks a hash table (“dispersion table”) to determine if the
content for that protocol and destination have been seen. If there is an entry,



the counters for the source and destination addresses are updated, and if both
counters exceed a given threshold, the content is flagged as a possible worm
signature.

If no entry exists, the content passes through a multistage filter consisting of
a table (“prevalence table”) with 4 subtables, each populated using a different
hash function. The subtables hold counts associated with hashes. The content
is hashed by each hash function, and the hashes used to find entries in each of
the 4 subtables. The count of the entry with the smallest count is
incremented. If all 4 counts exceed a second threshold, then an entry is made
in the dispersion table.

A prototype installed at the University of California at San Diego detected
signatures for several worms including variants of Code Red, MyDoom,
Kibvu.B, and Sasser. It found signatures for MyDoom and Kibvu.B before
antimalware vendors made signatures for those worms available,
demonstrating its effectiveness.

Earlybird depends on worm instances having common substrings, and so
would be less effective against polymorphic and metamorphic malware.

EXAMPLE: Polygraph [1460] assumes that a worm is either polymorphic or
metamorphic; that is, it has few if any invariants. It generates three classes of
signatures. The heart of the signatures are substrings, called tokens. A
conjunction signature is simply a collection of tokens. If all tokens appear,
regardless of the order, a match occurs. A token-subsequence signature is like
a conjunction signature, but the tokens must appear in the order given in the
signature. A Bayes signature associates a score with each token, and a
threshold with the signature. If the probability of the payload as computed
from the token scores exceeds the signature threshold, a match occurs.

Experimental results showed that, for the conjunction and token-
subsequence signatures correctly identified the worms with no false negatives
but some false positives, the number depending on the non-malicious



network traffic. The Bayes signatures work well with little extra traffic, but
when that non-malicious traffic grows to more than 80% of the network
traffic, the Bayes signatures do not identify any worms.

Behavioral signatures focus on the actions taken by the malware. The
suspected malware is placed in an environment that emulates the one it will
execute in, typically a sandbox of some kind. The suspected malware is then
executed, and the execution monitored for some period of time. If the
program does anything considered bad, it is identified as malware. This
essentially is a form of confinement (see Chapter 18).

EXAMPLE: Panorama [2068], a behavioral analysis system, uses a three step
process to analyze suspected malware. The sample is loaded into a Microsoft
Windows system, which in turn is loaded into Panorama and run. The files
that belong to the suspect sample are marked; the rest of the system is
trusted.

Panorama itself consists of four components. The first is a test engine; this
introduces sensitive information that is sent to a trusted application the
Windows system. The taint engine monitors how information flows around
the system, so when the application and sample are run, the behavior of the
information (such as what accesses it) can be recorded in a taint graph.
Numerous tests produce numerous taint graphs. The malware detection
engine then analyzes the taint graphs to determine if the sample acted
suspiciously, for example by accessing network ports it should not access or
reading from unexpected sources such as the keyboard. As malware often
exfiltrates information from the system, accessing information and saving it
to the disk or sending it out over the network. Several other policies guide the
detection. The malware analysis engine then identifies the node in the taint
graph that corresponds to the sample, and examines what it accessed and
how.

The developers downloaded 42 malware samples and 56 benign samples from



repositories and tested them using Panorama. All the malware samples were
correctly identified, and 3 of the benign samples were flagged as being
malware. Thus, there were 3 false positives and no false negatives.

Malware can attempt to evade being detected by behavioral analysis when the
analysis occurs in a sandbox or a virtual machine. One technique is to ensure
the malicious action will not be triggered in the analysis environment, for
example by launching the attack only after a period of time longer than the
behavioral analysis takes, or to wait for a particular external event or input.
The emulator is unlikely to detect these. Another approach is to identify that
the malware is running in a restricted environment and not perform
malicious actions. Then, once it is released into the unrestricted environment,
it attacks. Techniques include checking values in various descriptor tables,
running a segment of instructions that generate an exception if not in a
virtual machine, but not if run in a virtual machine; and executing illegal
instructions that should always cause traps, but with certain values in the
operands, will not cause traps in a virtual machine. Both hardware-supported
virtual machines and software-based emulators can be detected [402, 676,
1561]. Indeed, estimates placed the number of malware samples that detect
virtual machines at 2.13% in 2010 [1147]; the number has undoubtedly grown
since then.

Static analysis and behavioral analysis are fundamentally different, each with
its own strengths and weaknesses. Static analysis requires that something
about the malware’s structure be known, or be derivable; behavior analysis
does not. Static analysis is definite; a signature is matched (possibly to some
degree of probability) or it is not. Behavior analysis examines what the
program does as it executes, and so can identify previously unknown malware
if the malicious action occurs during the analysis. Also, as “maliciousness” is
defined in large part by a site’s security policy, general behavior analysis looks
for behavior indicating general attacks, and so it may miss something that is
not malicious in general but is harmful to a specific site. Like static and
dynamic analysis, static analysis and behavior analysis complement each



other, and are often used together.

23.9.2 Data and Instructions

Some malicious logic acts as both data and instructions. A computer virus
inserts code into another program. During this writing, the object being
written into the file (the set of virus instructions) is data. The virus then
executes itself. The instructions it executes are the same as what it has just
written. Here, the object is treated as an executable set of instructions.
Protection mechanisms based on this property treat all programs as type
“data” until some certifying authority changes the type to “executable”
(instructions). Both new systems designed to meet strong security policies
and enhancements of existing systems use these methods (see Section 16.3.1).

EXAMPLE: Boebert, Young, Kain, and Hansohn [254] propose labeling of
subjects and objects in the Logical Coprocessor Kernel or LOCK (formerly the
Secure Ada Target or SAT) [852, 1679, 1680], a system designed to meet the
highest level of security under the U.S. Department of Defense TCSEC (see
Section 22.2). Once compiled, programs have the label “data” and cannot be
executed until a sequence of specific, auditable events changes the label to
“executable.” After that, the program cannot be modified. This scheme
recognizes that viruses treat programs as data (when they infect them by
changing the file’s contents) and as instructions (when the program executes
and spreads the virus) and rigidly separates the two.

EXAMPLE: Duff [596] has suggested a variant for UNIX-based systems.
Noting that users with execute permission for a file usually also have read
permission, he proposes that files with execute permission be of type
“executable” and that those without it be of type “data.” Unlike the LOCK,
“executable” files could be modified, but doing so would change those files’
types to “data.” If the certifying authority were the omnipotent user, the virus
could spread only if run as that user. Libraries and other system components
of programs must also be certified before use to prevent infection from



nonexecutable files.

Both the LOCK scheme and Duff’s proposal trust that the administrators will
never certify a program containing malicious logic (either by accident or
deliberately) and that the tools used in the certification process are not
themselves corrupt.

23.9.3 Containment

Because a user (unknowingly) executes malicious logic, that code can access
and affect objects within the user’s protection domain. So, limiting the objects
accessible to a given process run by the user is an obvious protection
technique. This draws on the mechanisms for confining information (see
Chapter 18, “Confinement Problem”).

23.9.3.1 Information Flow Metrics

Cohen suggested limiting the distance a virus can spread [440].

Definition 23–25. Define the flow distance metric fd(x) for some
information x as follows. Initially, all information has fd(x) = 0. Whenever x
is shared, fd(x) increases by 1. Whenever x is used as input to a computation,
the flow distance of the output is the maximum of the flow distance of the
input.

Information is accessible only while its flow distance is less than some
particular value.

EXAMPLE: Anne, Bill, and Cathy work on the same computer. The system
uses the flow distance metric to limit the flow of information. Anne can access
information with a flow distance less than 3, and Bill and Cathy can access
information with a flow distance less than 2. Anne creates a program dovirus
containing a computer virus. Bill executes it. Because the contents of the
program have a flow distance of 0, when the virus infects Bill’s file safefile,
the flow distance of the virus is 1, and so Bill can access it. Hence, the copying



succeeds. Now, if Cathy executes safefile, when the virus tries to spread to her
files, its flow distance increases to 2. Hence, the infection is not permitted
(because Cathy can only access information with a flow distance of 0 or 1).

This example also shows the problem with the flow distance policy (which
constrains sharing based on the flow distance metric). Although Cathy cannot
be infected by viruses that Bill has acquired, she can be infected by viruses
that Bill has written. (For example, had Cathy run Anne’s dovirus program,
she would have had her files infected.) The bounding constant limits the
transitivity of trust. This number should therefore be low. If it is 1, only the
people from whom Cathy copies files are trusted. Cathy does not trust anyone
that they trust.

This mechanism raises interesting implementation issues. The metric is
associated with information and not objects. Rather than tagging specific
information in files, systems implementing this policy would most likely tag
objects, treating the composition of different information as having the
maximum flow distance of the information. This will inhibit sharing.

Ultimately, the only way to use this policy is to make the bounding constant
0. This isolates each user into his or her own protection domain and allows
no sharing. Cohen points out that this defeats the main purpose of scientific
or development environments, in which users build on the work of others.

23.9.3.2 Reducing the Rights

The user can reduce her associated protection domain when running a
suspect program. This follows from the principle of least privilege (see
Section 14.2.1). Wiseman discusses one approach [2028].

EXAMPLE: Smith [1782] combines ACLs and C-Lists to achieve this end.
Suppose s1 owns a file o1 and s2 owns a program o2 and a file o3. The union of
discretionary ACLs is



Program o2 contains a Trojan horse. If s1 wants to execute o2, he must ensure
that it does not write to o1. Ideally, s1’s protection domain will be reduced to
{(s1, o2, x)}. Then if p12, the process (subject) created when s1 executes o2,
tries to access o3, the access will be denied. In fact, p12 inherits the access
rights of s1. So, the default protection domain for p12 will be

Now, because s1 can write to o3, so can p12. Moreover, s1 cannot constrain this
behavior because s1 does not own o3 and so cannot delete its access rights
over o3.

Smith’s solution is to require each user si to define an authorization denial
subset R(si) to contain those ACL entries that it will not allow others to
exercise over the objects that si owns. In this example, if R(s2) = {(s1, o3, w)},
then

where “¬” means set complement. Now p12 cannot write to o3.

Although effective, this approach begs the question of how to determine
which entries should be in the authorization denial subsets. Karger suggests
basing access on the program being executed and some characteristic of the
file being accessed.

EXAMPLE: Karger proposes a knowledge-based subsystem to determine if a
program makes reasonable file accesses [1013]. The subsystem sits between
the kernel open routine and the application. The subsystem contains
information about the names of the files that each program is expected to
access. For example, a UNIX C compiler reads from C source files (the names
of which end in “.c” and “.h”) and writes to temporary files (the names of
which begin with “/tmp/ctm”) and assembly files (whose names end in “.s”).
It executes the assembler, which reads from assembly files and writes to
object files (with names ending in “.o”). The compiler then invokes the linking



loader, which reads from object files and library files (whose names end in
“.a”) and writes to executable files (with names ending in “.out” unless the
user supplies an alternative name). So, Karger’s subsystem has the following
associations.

(The “*” means zero or more characters.)

When the subsystem is invoked, it checks that the access is allowed. If not, it
either denies the access or asks the user whether to permit the access.

A related approach is to base access to files on some characteristic of the
command or program [437], possibly including subject authorizations as well
[439].

EXAMPLE: Lai and Gray [1130] have implemented a modified version of
Karger’s scheme on a UNIX system. Unlike Karger, they combine knowledge
about each command with the command-line arguments of the current
invocation. Their idea is to use this information to determine the user’s intent
to access files and the type of access. They do not protect these files, but
instead prevent other files not named on the command line from being
accessed (with two exceptions).

Processes are divided into two groups. File accesses by trusted processes are
not checked. Associated with each untrusted process is a valid access list
(VAL) consisting of the arguments of the process plus any temporary files
created. When an untrusted process tries to access a file, the kernel executes
the following sequence of steps.

1. If the process is requesting access to a file on the VAL, the access is allowed
if the effective UID and GID of the process allow the access.



2. If the process is opening the file for reading and the file is world-readable,
the open is allowed.

3. If the process is creating a file, the creation is allowed if the effective UID
and GID of the process allow the creation. The file is entered into the VAL of
the process and is marked as a new nonargument (NNA) file. The file’s
protection modes are set so that no other user may access the file.

4. Otherwise, an entry in the system log reflects the request, and the user is
asked if the access is to be allowed. If the user agrees, the access is allowed if
the effective UID and GID of the process allow it. Otherwise, the access is
denied.

VALs are created whenever a trusted process spawns an untrusted process,
and are inherited.

Files marked NNA have permissions such that only the creating user can
access them. They are in the VAL of the creating process, and no others, so
only that process and its descendants can access the NNA file. However,
neither the creating process nor its descendants may change the protection
modes of that file. When the file is deleted, its entry is removed from the VAL.
When the process terminates, the user is notified of any existing NNA files.

The trusted processes in a UNIX environment are UNIX command
interpreters (csh and sh), the programs that spawn them on login (getty and
login), programs that access the file system recursively (ar, chgrp, chown,
diff, du, dump, find, ls, rcp, restore, and tar), programs that often access files
not in their argument lists (binmail, cpp, dbx, mail, make, script, and vi), and
various network daemons (fingerd, ftpd, ntalkd, rlogind, rshd, sendmail,
talkd, telnetd, tftpd, and uucpd). Furthermore, a program called trust enables
root to spawn trusted processes other than those listed above.

As an example, consider the assembler when invoked from the cc program.
The assembler is called as



as x.s /tmp/cc2345

and the assembler creates the file /tmp/as1111 during the assembly. The VAL
is

x.s /tmp/cc2345 /tmp/as1111

with the first file being read-only and the next two being readable and
writable (the first because cc created it and the second because as created it).
In cc’s VAL, the temporary file /tmp/cc2345 is marked NNA; in as’s VAL, it is
not (because it is a command-line argument to as). The loader is invoked as

ld /lib/crt0.o /tmp/cc2345 -lc -o x

The loader’s VAL is

/lib/crt0.o /tmp/cc2345 /lib/libc.a x

The first three files are read-only and the last file is readable and writable.

Now, suppose a Trojan horse assembler is to copy the program to another
user’s area. When it attempts to create the target file, rule 3 forces the target
to be readable only by the originator. Hence, the attacker cannot read the
newly created file. If the attacker creates the file with privileges to allow him
to read it, the victim is asked if write access to the file should be allowed. This
alerts the user to the presence of the Trojan horse.

An alternative mechanism is interception of requests to open files. The
“watchdog” or “guardian” then performs a check to determine if the access is
to be allowed. This effectively redefines the system calls involved. The issues
of determining how to write watchdogs to meet the desired goals and
allowing users to specify semantics for file accesses [185, 510], or simply



approving file access [1688] may prove useful in some contexts—for example,
in protecting a limited set of files.

All such mechanisms trust the users to take explicit actions to limit their
protection domains sufficiently, trust the tables to describe the programs’
expected actions sufficiently for the mechanisms to apply those descriptions
and to handle commands with no corresponding table entries effectively, or
trust specific programs and the kernel when they would be the first programs
malicious logic would attack.

23.9.3.3 Sandboxing

Sandboxes and virtual machines (see Section 17.2) implicitly restrict process
rights. A common implementation of this approach is to restrict the program
by modifying it. Usually, special instructions inserted into the object code
cause traps whenever an instruction violates the security policy. If the
executable dynamically loads libraries, special libraries with the desired
restrictions replace the standard libraries.

EXAMPLE: Bishop and Dilger [227] propose a modification to UNIX system
calls to detect race conditions in file accesses. A race condition occurs when
successive system calls operate on an object identified by name, and the name
can be rebounded to a different object between the first and second system
calls. The augmentation involved would record the inode number (unique
identifier) of the object identified in the first system call. When the object
named in the second system call differed from the object named in the first
system call, the mechanism would take appropriate action.

23.9.4 Specifications as Restrictions

Fault-tolerant techniques keep systems functioning correctly when the
software or hardware fails to perform to specifications. Joseph and Avižienis
have suggested treating the infection and execution phases of a virus as
errors. The first such proposal [983,984] breaks programs into sequences of



non-branching instructions and checksums each sequence, storing the results
in encrypted form. When the program is run, the processor recomputes
checksums, and at each branch a coprocessor compares the computed
checksum with the encrypted checksum; if they differ, an error (which may be
an infection) has occurred. Later proposals advocate checking of each
instruction [511]. These schemes raise issues of key management and
protection as well as the degree to which the software managing keys, which
transmit the control flow graph to the coprocessor and implement the
recovery mechanism, can be trusted.

A proposal based on N-version programming [100] requires implementation
of several different versions of an algorithm, running them concurrently and
periodically checking their intermediate results against each other. If they
disagree, the value assumed to be correct is the intermediate value that a
majority of the programs have obtained, and the programs with different
values are malfunctioning (possibly owing to malicious logic). This requires
that a majority of the programs are not infected and that the underlying
operating system is secure. Also, Knight and Leveson [298,1078] question the
efficacy of N-version programming in general, but Harmon [876] gives an
example of it being effective. Bhansali [191] concluded that the key to
determining whether to use N-version programming is how the system reacts
when the versions disagree. Detecting the spread of a virus would require
voting on each file system access. To achieve this level of comparison, the
programs would all have to implement the same algorithm, which would
defeat the purpose of using N-version programming [1079].

23.9.5 Limiting Sharing

Inhibiting users in different protection domains from sharing programs or
data will inhibit malicious logic from spreading among those domains. This
takes advantage of the separation implicit in integrity policies (see Chapter
6).

When users share procedures, the LOCK system (see Section 23.9.2) keeps



only one copy of the procedure in memory. A master directory, accessible
only to a trusted hardware controller, associates with each procedure a
unique owner and with each user a list of others whom that user trusts.
Before executing any procedure, the dynamic linker checks that the user
executing the procedure trusts the procedure’s owner [252]. This scheme
assumes that users’ trust in one another is always well-placed.

A more general proposal [2077] suggests that programs to be protected be
placed at the lowest possible level of an implementation of a multilevel
security policy. Because the mandatory access controls will prevent those
processes from writing to objects at lower levels, any process can read the
programs but no process can write to them. Such a scheme would have to be
combined with an integrity model to provide protection against viruses to
prevent both disclosure and file corruption.

EXAMPLE: The Trusted Solaris model (see Section 5.2.2) places the
executables below the user region in the hierarchy of layers. This prevents
alteration of the Trusted Solaris executables and trusted data by site
executables and alteration of all executables and trusted data by user
applications.

Carrying this idea to its extreme would result in isolation of each domain.
Because sharing would not be possible, no viruses could propagate.
Unfortunately, the usefulness of such systems would be minimal.

23.9.5.1 Proof-Carrying Code

Necula proposed a technique that combines specification and integrity
checking [1438]. His method, called proof-carrying code (PCC), requires a
“code consumer” (user) to specify a safety requirement. The “code producer”
(author) generates a proof that the code meets the desired safety property
and integrates that proof with the executable code. This produces a PCC
binary. The binary is delivered (through the network or other means) to the
consumer. The consumer then validates the safety proof and, if it is correct,



can execute the code knowing that it honors that policy. The key idea is that
the proof consists of elements drawn from the native code. If the native code
is changed in a way that violates the safety policy, the proof is invalidated and
will be rejected.

EXAMPLE: Necula and Lee [1439] tested their method on UNIX-based
network packet filters as supported by the Berkeley packet filter (BPF) [1282,
1374]. These filters were written in an interpreted language. The kernel
performed the interpretations and prevented the filter from looping and from
writing to any location except the packet’s data or a small scratch memory.
The filters were rewritten in assembly language and augmented with proofs
that showed that they met the safety policy that the kernel enforced. The
proofs ranged from 300 to 900 bytes, and the validation times ranged from
0.3 to 1.3 ms. As expected, the start-up cost was higher (because the proofs
had to be validated before the filters were run), but the runtimes were
considerably shorter. In their experiments, in which 1,000 packets were
received per second (on the average), the total cost of using the BPF exceeded
the PCC after 1,200 packets. The method also compared favorably with
implementations using a restrictive subset of Modula-3 (after 10,500 packets)
[184,935] and software fault isolation (after 28,000 packets).

23.9.6 Statistical Analysis

Like human languages, programs have specific statistical characteristics that
malicious logic might alter. Detection of such changes may lead to detection
of malicious logic.

EXAMPLE: Malicious logic might be present if a program appears to have
more programmers than were known to have worked on it or if one particular
programmer appears to have worked on many different and unrelated
programs [2077]. Programmers have their own individual styles of writing
programs. At the source code level, features such as language, formatting, and
comment styles can distinguish coding styles [340,720]. However, adherence



to organizational coding standards obscures these features [1113]. At the
object code level, features such as choice of data structures and algorithms
may distinguish programmers [721, 1812].

Comparison of object and source may reveal that the object file contains
conditionals not corresponding to any in the source. In this case, the object
may be infected [753]; but obfuscation of an uninfected source or executable
may cause the same effect [486]. Similar proposals suggest examination of
the appearance of programs for identical sequences of instructions or byte
patterns [958,2077]. The disadvantage of such comparisons is that they
require large numbers of comparisons and need to take into account the
reuse of common library routines or of code [1046].

Another proposal suggests that a filter be designed to detect, analyze, and
classify all modifications that a program makes as ordinary or suspicious
[480]. Along the same lines, Dorothy Denning suggests the use of an
intrusion-detection expert system7 to detect viruses by looking for increases
in file size, increases in the frequency of writing to executable files, or
alterations in the frequency of execution of a specific program in ways that do
not match the profiles of users who are spreading the infection [539].

7Chapter 25, “Intrusion Detection,” discusses this system in more detail.

23.9.7 The Notion of Trust

The effectiveness of any security mechanism depends on the security of the
underlying base on which the mechanism is implemented and the correctness
of the implementation. If the trust in the base or in the implementation is
misplaced, the mechanism will not be secure. Thus, “secure,” like “trust,” is a
relative notion, and the design of any mechanism for enhancing computer
security must attempt to balance the cost of the mechanism against the level
of security desired and the degree of trust in the base that the site accepts as
reasonable. Research dealing with malicious logic assumes that the interface,
software, and/or hardware used to implement the proposed scheme will



perform exactly as desired, meaning that the trust is in the underlying
computing base, the implementation, and (if done) the verification.

23.10 Summary

Malicious logic is a perplexing problem. It highlights the impotence of
standard access controls, because authorized users are requesting authorized
actions. The security controls cannot determine if the user knows about such
actions.

The most exciting idea is the separation of data from instructions. It unites
notions of strong typing with security. In addition to blocking much malicious
logic, it has applications for security in general (see Chapter 24,
“Vulnerability Analysis,” for examples).

Both integrity scanners and antivirus scanners look for changes in files.
Antivirus scanners (which also check for many other types of malware) use
both signature and behavior scanning. The signature scanning uses a
database of virus signatures. New dictionaries of these signatures are released
periodically, or in the event of a major virus attack. For example, updated
virus dictionaries were released within hours after Melissa’s discovery. All
antivirus vendors accept samples of suspected malware for testing, which is
automated.

Integrity scanners check for changes in files, but without determining their
causes. If the contents of a file have changed since the last scan, the integrity
checker reports this fact, but another agency (user, program) must determine
the reason for the change.

Malware defenses focus on one or more characteristics of either the malware
itself or actions that the malware takes. Care must be taken to minimize both
false positives and false negatives. False negatives leave the system open to
attack; false positives may block legitimate actions, creating a denial of
service.



23.11 Research Issues

Malware is a fertile ground for study, because the problem is simple to
articulate but defies easy solution. The key observation is that any solution
must distinguish between the actions that users knowingly perform and those
same actions when users unknowingly perform them. Humans have a
difficult time determining if the actions of others are deliberate, and so how
can computers be endowed with such powers of discrimination? This raises
three issues for research: human interaction, integrity checking, and analysis
of actions.

Effective procedural mechanisms will prevent users from downloading
suspect programs, but how can users be persuaded to abide by these rules,
and how can the effects of violating these rules be ameliorated? The notion of
“sandboxing,” or restriction of privileges (as discussed in Section 23.9.3.3), is
intuitively appealing but difficult to put into practice. One issue is how to
define the sandbox. The system on which the program is to be run can define
the domain of execution (as some Web browsers do) or can be constrained
through a combination of the system and of the program itself. In the latter
case, the program carries credentials and the receiving system checks them.
Both the credentials and the way in which they are checked influence the
effectiveness of the reduced domain of execution.

A key question is how to tailor warnings and other messages so that users will
understand them and what they must do. Training is a good start, but how to
deliver that training effectively is an area of active research, as is the art and
science of developing and delivering messages and warnings that users will
understand, pay attention to, and be able to comply with. This area of useable
security, discussed further in Chapter 30 is only beginning.

Integrity checking is another area of active research. Cryptographic
checksums have been discussed in Section 10.4, and integrity models in
Chapter 6. The application of integrity models and the protection and



updating of checksums are central to system security. Networks complicate
the problem.

Analysis of actions for anomalies is the basis for one form of intrusion
detection. Among the issues are characterization of the expected behavior of a
program to such a degree that the anomalies that viruses introduce can be
distinguished from normal behavior. Because computer viruses typically
increase the number of writes (during the infection phase and possibly during
the execution phase), examining this number may be fruitful, but other
behaviors, such as transitions between localities within the program, are also
affected. Could these behaviors be detected?

Techniques for analyzing suspected malware automatically have been
developed. Improving these techniques, and indeed measuring their
effectiveness, is an area of active research. As malware authors improve their
malware, so must the analysts who develop countermeasures.

Determining whether hardware is malicious, or designed to conceal malicious
actions of software, is another important area of research, both for detecting
maliciousness and for containing and compensating for it.

23.12 Further Reading

McIlroy’s essay [1300] presents a wonderful overview of computer viruses.
Aycock’s book [103] and Szor’s book [1861] provide details on the state of
malware analysis and defenses. Nachtenberg [1420] discusses a portion of the
“arms race” between virus writers and antivirus defenders in detail. The
National Institute of Standards and Technology Special Publication 800-83
[1805] discusses management techniques for minimizing the threats of
computer malware. Spafford, Heaphy, and Ferbrache [1811] present a good
exposition of the state of the art in the late 1980s as well as a brief history of
malware. Arnold [79] and Ludwig [1223] describe how to write computer
viruses; Arnold’s book includes sample code for UNIX systems.



Liska and Gallo discuss ransomware from technical and societal perspectives
[1205]. Symantec [1857] reports on ransomware and businesses, citing
several infections of business systems. The earliest report of a medical system
being infected is from 1989 [991]. As noted above, ransomware and other
malware has continued this threat to health care as well as businesses and
government agencies.

The AEGIS architecture [68] validates integrity of the boot process, inhibiting
malware that tries to corrupt that process.

The Conficker worm, a virulent worm of 2009, has 5 strains that have been
studied in depth, as has their propagation [85,1151,1152,1542]. Other models
of propagation have been developed for different kinds of worms running in
different environments [528,689,743,1098, 1566, 1567, 2122], as have
simulation frameworks for studying the spread in practice [385].

Dagon et al. present a taxonomy of botnet architectures [494]. Holz et al.
[923] present an empirical study of a fast flux botnet. Aspects of botnets used
to send spam have also been studied [1848, 1889].

Denning’s essay [552] presents the nomenclature for malicious logic used in
this chapter. His anthology [553], and that of Hoffman [919], collect many of
the seminal, and most interesting, papers in the study of malicious logic.

Appel and Felty [65] discuss a semantic model for proof-carrying code.
Foundational proof-carrying code [64] requires the proof to define the
concepts, and prove any needed propositions based on these concepts. This
simplifies the proof verification system. Vanegue [1937] discusses attacks on
proof-carrying code that involve incomplete statements of policy, the
machine abstraction, and other aspects of the proof.

Research has demonstrated the feasibility of making hardware malicious
[1065, 1119, 2056]. Other research explores detecting and containing it [23,
907, 908]



The Virus Bulletin is a leading source of information about malware in
general. Its archives [2264] present papers and a history that shows how
malware threats evolved, up to the present time. Any researcher in the field of
malware, and any historian of malware, will find them invaluable

23.13 Exercises

1. Tripwire does not encipher the signature blocks. What precautions must
installers take to ensure the integrity of the database?

2. Consider how a system with capabilities as its access control mechanism
could deal with Trojan horses.

(a) In general, do capabilities offer more or less protection against Trojan
horses than do access control lists? Justify your answer in light of the
theoretical equivalence of ACLs and C-Lists.

(b) Consider now the inheritance properties of new processes. If the creator
controls which capabilities the created process is given initially, how could
the creator limit the damage that a Trojan horse could do?

(c) Can capabilities protect against all Trojan horses? Either show that they
can or describe a Trojan horse process that C-Lists cannot protect against.

3. Describe in detail how an executable infecting computer virus might
append itself to an executable. What changes must it make to the executable,
and why?

4. A computer system provides protection using the Bell-LaPadula policy.
How would a virus spread if:

(a) the virus were placed on the system at system low (the compartment that
all other compartments dominate)?

(b) the virus were placed on the system at system high (the compartment that



dominates all other compartments)?

5. A computer system provides protection using the Biba integrity model.
How would a virus spread if:

(a) the virus were placed on the system at system low (the compartment that
all other compartments dominate)?

(b) the virus were placed on the system at system high (the compartment that
dominates all other compartments)?

6. A computer system provides protection using the Chinese Wall model.
How would a virus spread throughout the system if it were placed within a
company dataset? Assume that it is a macro virus.

7. Discuss controls that would prevent Dennis Ritchie’s bacterium (see
Section 23.6.1) from absorbing all system resources and causing a system
crash.

8. How could Thompson’s rigged compiler be detected?

9. This question considers ways to detect rootkits.

(a) Recall early versions of rootkits Trojaned system programs, and one way
to counter them was to bypass the system programs (see section 23.2.1). How
could one use this technique to detect the presence of rootkits?

(b) Now consider rootkits that alter parts of the kernel sing kernel-loadable
modules. Describe how those might be detected using a similar technique.
How would you obtain the different views of the system attributes to do the
comparison?

10. Place the SAT/LOCK mechanism of treating instructions and data as
separate types into the framework of the Clark-Wilson model. In particular,
what are the constrained data objects, the transaction procedures, and the



certification and enforcement rules?

11. Critique Lai and Gray’s virus prevention mechanism described in Section
23.9.3.2. In particular, how realistic is its assessment of the set of programs to
be trusted? Are there programs that they omitted or that they should have
omitted?

12. The use of N-version programming depends on whether the overall
objectives are, and what the security requirements are, in a specific
application.

(a) Suppose the key requirement is integrity; it is better for the system to be
unavailable than give incorrect results. Under what conditions should N-
version programming be used?

(b) Suppose the key requirement is availability; it is better for the system to
be available even if its results are incorrect. Under what conditions should N-
version programming be used?

13. Assume that the Clark-Wilson model is implemented on a computer
system. Could a computer virus that scrambled constrained data items be
introduced into the system? Why or why not? Specifically, if not, identify the
precise control that would prevent the virus from being introduced, and
explain why it would prevent the virus from being introduced; if yes, identify
the specific control or controls that would allow the virus to be introduced
and explain why they fail to keep it out.

14. Prove that the δ function defined in Section 23.8 is equivalent to the δ
function in Section 3.2.



Chapter 24. Vulnerability
Analysis
MACBETH: I pull in resolution and begin To doubt th’ equivocation of the 
fiend That lies like truth: “Fear not, till Birnam wood Do come to Dunsinane,” 
and now a wood Comes toward Dunsinane. Arm, arm, and out!

— The Tragedy of Macbeth, V, v, 42–46.

Vulnerabilities arise from computer system design, implementation, 
maintenance, and operation. This chapter presents a general technique for 
testing for vulnerabilities in all these areas and discusses several models of 
vulnerabilities.

24.1 Introduction

A “computer system” is more than hardware and software; it includes the 
policies, procedures, and organization under which that hardware and 
software is used. Lapses in security can arise from any of these areas or from 
any combination of these areas. Thus, it makes little sense to restrict the study 
of vulnerabilities to hardware and software problems.

When someone breaks into a computer system, that person takes advantage 
of lapses in procedures, technology, or management (or some combination of 
these factors), allowing unauthorized access or actions. The specific failure of 
the controls is called a vulnerability or security flaw; using that failure to 
violate the site security policy is called exploiting the vulnerability. One who 
attempts to exploit the vulnerability is called an attacker.



For example, many systems have special administrative users who are
authorized to create new accounts. Suppose a user who is not an
administrative user can add a new entry to the database of users, thereby
creating a new account. This operation is forbidden to the nonadministrative
user. However, such a user has taken advantage of an inconsistency in the
way data in the database is accessed. The inconsistency is the vulnerability;
the sequence of steps that adds the new user is the exploit. A secure system
should have no such problems. In practice, computer systems are so complex
that exploitable vulnerabilities (such as the one described above) exist; they
arise from faulty system design, implementation, operation, or maintenance.

Formal verification and property-based testing are techniques for detecting
vulnerabilities. Both are based on the design and implementation of the
computer system, but a “computer system” includes policies, procedures, and
an operating environment, and these external factors can be difficult to
express in a form amenable to formal verification or property-based testing.
Yet these factors determine whether or not a computer system implements
the site security policy to an acceptable degree.

Figure 24–1: A comparison between formal verification and
penetration testing. In formal verification, the “preconditions”
place constraints on the state of the system when the program (or
system) is run, and the “postconditions” state the effect of running
the program. In penetration testing, the “preconditions” describe
the state of the system in which the hypothesized security flaw can
be exploited, and the “postconditions” are the result of the testing.
In both verification and testing, the postconditions must conform



to the security policy of the system.

One can generalize the notion of formal verification to a more informal
approach (see Figure 24–1). Suppose a tester believes there to be flaws in a
system. Given the hypothesis (specifically, where the tester believes the flaw
to be, the nature of the flaw, and so forth), the tester determines the state in
which the vulnerability will arise. This is the precondition. The tester puts the
system into that state and analyzes the system (possibly attempting to exploit
the vulnerability). After the analysis, the tester will have information about
the resulting state of the system (the postconditions) that can be compared
with the site security policy. If the security policy and the postconditions are
inconsistent, the hypothesis (that a vulnerability exists) is correct.

Penetration testing is a testing technique, not a proof technique. It can never
prove the absence of security flaws; it can only prove their presence. In
theory, formal verification can prove the absence of vulnerabilities. However,
to be meaningful, a formal verification proof must include all external factors.
Hence, formal verification proves the absence of flaws within a particular
program or design and not the absence of flaws within the computer system
as a whole. Incorrect configuration, maintenance, or operation of the
program or system may introduce flaws that formal verification will not
detect.

24.2 Penetration Studies

A penetration study is a test for evaluating the strengths of all security
controls on the computer system. The goal of the study is to violate the site
security policy. A penetration study (also called a tiger team attack or red
team attack) is not a replacement for careful design and implementation with
structured testing. It provides a methodology for testing the system in toto,
once it is in place. Unlike other testing and verification technologies, it
examines procedural and operational controls as well as technological
controls.



24.2.1 Goals

A penetration test is an authorized attempt to violate specific constraints
stated in the form of a security or integrity policy. This formulation implies a
metric for determining whether the study has succeeded. It also provides a
framework in which to examine those aspects of procedural, operational, and
technological security mechanisms relevant to protecting the particular
aspect of system security in question. Should goals be nebulous,
interpretation of the results will also be nebulous, and the test will be less
useful than if the goals were stated precisely. Example goals of penetration
studies are gaining of read or write access to specific objects, files, or
accounts; gaining of specific privileges; and disruption or denial of the
availability of objects.

EXAMPLE: A vendor is implementing a subsystem designed to provide
password protection for user files. With this subsystem, the owner of a file
can require others to provide a password before gaining access to that file.
The goal of a penetration study is to test these controls. The metric is binary:
were the testers able to gain access to a (possibly designated) password
protected file, either by not using a password or by gaining unauthorized
access to a password?

A second type of study does not have a specific target; instead, the goal is to
find some number of vulnerabilities or to find vulnerabilities within a set
period of time. The strength of such a test depends on the proper
interpretation of results. Briefly, if the vulnerabilities are categorized and
studied, and if conclusions are drawn as to the nature of the flaws, then the
analysts can draw conclusions about the care taken in the design and
implementation. But a simple list of vulnerabilities, although helpful in
closing those specific holes, contributes far less to the security of a system.

In practice, other constraints affect the penetration study; the most notable
are constraints on resources (such as money) and constraints on time. If



these constraints arise as aspects of policy, they improve the test because they
make it more realistic.

EXAMPLE: A company obtains documents from other vendors and, after 30
days, publishes them on the World Wide Web. The vendors require that the
documents be confidential for that length of time. A penetration study of this
site might set the goal of obtaining access to a specific file; the test could be
limited to 30 days in order to duplicate the conditions under which the site
will operate. An alternative goal might be to gain access to any of these files;
in this case, no time limit should be specified because a test could involve
planting of Trojan horses that would last more than 30 days.

The rules of engagement are a critical part of setting the goals These rules
state what the goals of the test are, what the testers are, and are not, allowed
to do, and when the test ends. It is imperative these rules be clear to all
parties, and indeed the safest way to ensure this is to have them written
down, and provide a procedure for the resolution of ambiguities.

EXAMPLE: Misunderstanding the rules of engagement can have serious
consequences. In 1995, a system administrator in one division of a company
began testing the security of the division’s systems by using a program to
guess passwords. He believed that, as a system administrator, this was part of
his job. He then moved to a different division of the same company, but kept
his account in the previous division. He continued to use the program to
guess passwords in his previous division without informing his employer. The
employer discovered this, and called the police. The system administrator
was convicted of three felonies [1166].1

1The contractor’s conviction was upheld on appeal. In 2007, the court ordered
the conviction expunged [647].

24.2.2 Layering of Tests

A penetration test is designed to characterize the effectiveness of security



mechanisms and controls to attackers. To this end, these studies are
conducted from an attacker’s point of view, and the environment in which the
tests are conducted is that in which a putative attacker would function.
Different attackers, however, have different environments; for example,
insiders have access to the system, whereas outsiders need to acquire that
access. This suggests a layering model for a penetration study.

1. External attacker with no knowledge of the system. At this level, the
testers know that the target system exists and have enough information to
identify it once they reach it. They must then determine how to access the
system themselves. This layer is usually an exercise in social engineering
and/or persistence because the testers try to trick the information out of the
company or simply dial telephone numbers or search network address spaces
until they stumble onto the system. This layer is normally skipped in
penetration testing because it tells little about the security of the system itself.

2. External attacker with access to the system. At this level, the testers have
access to the system and can proceed to log in or to invoke network services
available to all hosts on the network (such as electronic mail). They must then
launch their attack. Typically, this step involves accessing an account from
which the testers can achieve their goal or using a network service that can
give them access to the system or (if possible) directly achieve their goal.
Common forms of attack at this stage are guessing passwords, looking for
unprotected accounts, and attacking network servers. Implementation flaws
in servers often provide the desired access.

3. Internal attacker with access to the system. At this level, the testers have
an account on the system and can act as authorized users of the system. The
test typically involves gaining unauthorized privileges or information and,
from that, reaching the goal. At this stage, the testers acquire (or have) a good
knowledge of the target system, its design, and its operation. Attacks are
developed on the basis of this knowledge and access.

In some cases, information about specific layers is irrelevant and that layer



can be skipped. For example, penetration tests during design and
development skip layer 1 because that layer analyzes site security. A
penetration test of a system with a guest account (which anyone can access)
will usually skip layer 2 because users already have access to the system.
Ultimately, the testers (and not the developers) must decide which layers are
appropriate.

24.2.3 Methodology at Each Layer

The penetration testing methodology springs from the Flaw Hypothesis
Methodology. The usefulness of a penetration study comes from the
documentation and conclusions drawn from the study and not from the
success or failure of the attempted penetration. Many people misunderstand
this, thinking that a successful penetration means that the system is poorly
protected. Such a conclusion can only be drawn once the study is complete
and when the study shows poor design, poor implementation, or poor
procedural and management controls. Also important is the degree of
penetration. If an attack obtains information about one user’s data, it may be
deemed less successful than one that obtains system privileges because the
latter attack can compromise many user accounts and damage the integrity of
the system.

24.2.4 Flaw Hypothesis Methodology

The Flaw Hypothesis Methodology was developed at System Development
Corporation and provides a framework for penetration studies [1190, 2005,
2006]. It consists of four steps.

1. Information gathering. In this step, the testers become familiar with the
system’s functioning. They examine the system’s design, its implementation,
its operating procedures, and its use. The testers become as familiar with the
system as possible.

2. Flaw hypothesis. Drawing on the knowledge gained in the first step, and



on knowledge of vulnerabilities in other systems, the testers hypothesize
flaws of the system under study.

3. Flaw testing. The testers test their hypothesized flaws. If a flaw does not
exist (or cannot be exploited), the testers go back to step 2. If the flaw is
exploited, they proceed to the next step.

4. Flaw generalization. Once a flaw has been successfully exploited, the
testers attempt to generalize the vulnerability and find others similar to it.
They feed their new understanding (or new hypothesis) back into step 2 and
iterate until the test is concluded.

A fifth step is often added [2005, 2006]:

5. Flaw elimination. The testers suggest ways to eliminate the flaw or to use
procedural controls to ameliorate it.

The following sections examine each aspect of this methodology and show
how it is used in practice.

24.2.4.1 Information Gathering and Flaw Hypothesis

In the steps of the Flaw Hypothesis Methodology, the design of the system is
scrutinized, with particular attention to discrepancies in the components. The
testers devise a model of the system, or of its components, and then explore
each aspect of the designs for internal consistency, incorrect assumptions,
and potential flaws. They then consider the interfaces between the
components and the ways in which the components work together. At this
stage, some of the testers must be very knowledgeable about the system (or
acquire expertise quickly) to ensure that the model or models of the system
represent the implementation adequately. If the testers have access to design
documents and manuals, they can often find parts of the specification that are
imprecise or incomplete. These parts will be very good places to begin,
especially if different designers worked on parts of the system that used the



unclear specification. (Occasionally, a single designer may interpret an
unclear specification differently during the design of two separate
components.) If a privileged user (such as root on UNIX systems or
administrator on Windows systems) is present, the way the system manages
that user may reveal flaws.

The testers also examine the policies and procedures used to maintain the
system. Although the design may not reveal any weak points, badly run or
incorrectly installed systems will have vulnerabilities as a result of these
errors. In particular, any departure from design assumptions, requirements,
or models will usually indicate a vulnerability, as will sloppy administrative
procedures and unnecessary use of privileges. Sharing of accounts, for
example, often enables an attacker to plant Trojan horses, as does sharing of
libraries, programs, and data.

Implementation problems also lead to security flaws. Models of
vulnerabilities offer many clues to where the flaws may lie. One strategy is for
the testers to look in the manuals describing the programs and the system,
especially any manuals describing their underlying implementation,
assumptions, and security-related properties [215]. Wherever the manuals
suggest a limit or restriction, the testers try to violate it; wherever the
manuals describe a sequence of steps to perform an action involving
privileged data or programs, the testers omit some steps. More often than
not, this strategy will reveal security flaws.

Critical to this step is the identification of the structures and mechanisms that
control the system. These structures and mechanisms are the programs
(including the operating system) that will enable an attacker to take control of
(parts of) the system, such as the security-related controllers. The
environment in which these programs have been designed and implemented,
as well as the tools (compilers, debuggers, and so on) used to build them, may
introduce errors, and knowledge of that environment helps the testers
hypothesize security flaws.



Throughout all this, the testers draw on their past experience with the system,
with penetrating systems in general, and on flaws that have been found in
other systems. Later sections of this chapter present several models and
frameworks of vulnerabilities and analyze them with respect to their ability to
model system vulnerabilities. The classification of flaws often leads to the
discovery of new flaws, and this analysis is part of the flaw hypothesis stage.

24.2.4.2 Flaw Testing

Once the testers have hypothesized a set of flaws, they determine the order in
which to test the flaws. The priority is a function of the goals of the test. For
example, if the testing is to uncover major design or implementation flaws,
hypothetical flaws that involve design problems or flaws in system-critical
code will be given a very high priority. If the testing is to uncover the
vulnerability of the system to outsider attack, flaws related to external access
protocols and programs will be given a very high priority and flaws affecting
only internal use will be given a low priority. Assigning priorities is a matter
of informed judgment, which emphasizes the need for testers to be familiar
with the environment and the system.

Once the priorities have been determined, the testers study the hypothetical
flaws. If a flaw can be demonstrated from the analysis, so much the better;
this commonly occurs when a flaw arises from faulty specifications, designs,
or operations. If the flaw cannot be demonstrated in this way, the tester must
understand exactly why the flaw might arise and how to test for it in the least
intrusive manner. The goal is to demonstrate that the flaw exists and can
cause system compromise, but to minimize the impact of that demonstration.

Ideally, when a system must be tested, it should be backed up and all users
should be removed from it. This precautionary measure saves grief should the
testing go awry. This is not always possible, especially if the penetration test
is being conducted without notice to the system users and operators, to test
both the system and the procedures that protect it. The tester verifies that the
system is configured as needed for the test and takes notes (or helps an



observer take notes) of the requirements for detecting the flaw. The tester
then verifies the existence of the flaw. In many cases, this can be done
without exploiting the flaw; in some cases, it cannot. The latter cases are
often political, in which the system developers or managers refuse to believe
that the flaw exists until it is demonstrated. The test should be as simple as
possible but must demonstrate that the exploitation succeeded; for example,
a test might copy a protected file to a second protected file or change the date
of modification of a system file by 1 second (unless the precise time of
modification is critical). The tester’s goal is to demonstrate what a hostile
exploiter of the flaw could do, not to be that hostile exploiter. The notes of the
test must be complete enough to enable another tester to duplicate the test or
the exploitation on request; thus, precise notes are essential.

24.2.4.3 Flaw Generalization

As testers successfully penetrate the system (either through analysis or
through analysis followed by testing), classes of flaws begin to emerge. The
testers must confer enough to make each other aware of the nature of the
flaws, and often two different flaws can be combined for a devastating attack.
As an example, one flaw may enable a tester to gain access to an unprivileged
account on a Windows 10 system, and a second flaw may enable an ordinary
user to gain administrator privileges. Separately, the impact of these flaws
depends on the site policy and security concerns. Together, they allow anyone
who can connect to the system to become supervisor.

As a second example, some privileged programs on the UNIX system read
input into a buffer on the user stack and fail to check the length. By supplying
an appropriate input, the attacker can overwrite the return address and make
it invoke code in a way that compromises the system. Similarly, many
programs place a copy of command-line arguments onto the stack.
Generalizing the former flaw suggests that programs that do the latter are
equally vulnerable to compromise in a similar fashion (but the string is
supplied as a command-line argument rather than as input).



24.2.4.4 Flaw Elimination

The flaw elimination step is often omitted because correction of flaws is not
part of the penetration. However, the flaws uncovered by the test must be
corrected.

Proper correction of a flaw requires an understanding of the context of the
flaw as well as of the details of both the flaw and its exploitation. This implies
that the environment in which the system functions is relevant to correction
of the flaw. For example, if a design flaw is uncovered during development as
part of the testing cycle, the developers can correct the design problem and
re-implement those portions of the system that are affected by the flaw. In
this case, knowledge of how to exploit that flaw is not critical. If, however, a
design flaw is uncovered at a production site, that site (and the vendor) may
not be able to correct the flaw quickly enough to prevent attackers from
exploiting it. In this case, understanding how the flaw can be exploited
becomes critical because all the site can do is to try to block those paths of
exploitation or to detect any attacker who tries to exploit the flaw. This
justifies the extensive analysis during the flaw hypothesis and generalization
phase. Understanding the origins of the flaw, its context, and its affect on the
system leads to proper corrective measures based on the system and the
environment in which it functions.

24.2.5 Versions

The flaw hypothesis methodology lacks details on how to carry out its steps.
This is both a strength and a weakness — a strength because it gives the tester
the freedom to use any strategy to perform the tests; a weakness because the
lack of structure provides little guidance. Since its introduction, various
methods have been developed to guide the application of the flaw hypothesis
methodology.

24.2.5.1 ISSAF



The Information Systems Security Assessment Framework (ISSAF) [1578,
Appendix B], developed by the Open Information Systems Security Group, is
a methodology designed to evaluate the security of systems (including
networks and applications). The methodology defines three main steps:

• The planning and preparation step sets up the test. It includes the legal and
contractual bases for the test, including establishing the goals and what is and
is not allowed as part of the test. This corresponds to preparing to apply the
flaw hypothesis methodology.

• The assessment phase consists of nine steps The first two steps, Information
Gathering and Network Mapping, make up step 1 of the flaw hypothesis
methodology. The third step, Vulnerability Identification, corresponds to step
2 of the flaw hypothesis methodology. The remaining steps (Penetration,
Gaining Access and Privilege Escalation, Enumerating Further, Compromise
Remote Users/Sites, Maintaining Access, and Cover the Tracks) make up step
3 of the flaw hypothesis methodology. The ISSAF offers general suggestions
on how to do each of these steps.

• The final phase consists of reporting and cleaning up. In it, testers write the
reports and, if necessary, purge the target system of all attack tools and other
artifacts that they used. The report-writing corresponds to the documentation
in the flaw hypothesis methodology. It is performed after the testing, though,
and not during it.

This methodology has no step corresponding to step 4, the generalization
step. The Enumerating Further step lists specific information gathering
techniques, and then says to try the earlier steps with the newly gathered data
as a starting point. Similarly, the Compromise Remote Users/Sites step
suggests compromising users and systems, and then using the newly gained
access, try the earlier steps again. This “cycle” (really, a feedback loop)
enables one to exploit known vulnerabilities that require additional
privileges, access, or changes to the environment. It does not synthesize two
known vulnerabilities into a different new (third) one.



The strength of ISSAF is its clear and very intuitive structure, which guides
the tester through the complicated assessment steps. Its problem is its lack of
emphasis on generalizing new vulnerabilities from commonalities or
properties of existing ones.

24.2.5.2 OSSTMM

The Open Source Security Testing Methodology Manual (OSSTMM) [904] is
a widely used standard for security testers. It describes a testing methodology
with a scope comprised of three classes:

• COMSEC is the communications security class.

• PHYSSEC is the physical security class.

• SPECSEC is the spectrum security class.

Classes are the means of interacting with assets. An asset is what is valuable
to the owner. The scope requires that all the threats must be considered
possible, even if not probable.

The three main classes are in turn split into 5 channels.

• The human class comprises all the human elements of communications.

• The physical class comprises the tangible elements of security where
interaction requires physical effort or an energy transmitter to manipulate.

• The wireless communication class comprises all the electronic
communications, signals and emanations which take place over the known
electromagnetic spectrum.

• The data networks class comprises all the electronic systems and data
networks where interactions take place over established cables and wired
network lines.



• The telecommunication class comprises all the telecommunication
networks, digital or analog, where the interaction takes place over established
telephone or telephone-like network lines.

OSSTMM describes seventeen modules to analyze each of the channels. The
modules are divided into four phases. Each methodology phase covers a
different audit depth, each phase being equally important:

• The induction phase provides legal information and the resulting technical
restrictions.

• The interaction phase defines the scope of the test and the interrelations
between its components.

• The inquest phase has the testers uncover specific information about the
system. This may require some testing, for example to determine the actual
control settings rather than the way those controls should be set.

• The intervention phase tests the specific targets, trying to compromise
them. It follows the Inquest Phase so that the penetration testing does not
disrupt the gathering of the specific information in that phase.

In terms of the flaw hypothesis methodology, the induction and first part of
the interaction phases correspond to pre-testing preparation, because they set
up the goals of the test and ensure the requirements for the test are met. The
rest of the interaction phase and the Inquest Phase together correspond to
steps 1 and 2 of the flaw hypothesis methodology, because during those steps,
the testers gather and organize information about the target and its
environment, and then use that information to think of vulnerabilities and
design plans to test for them. The actual tests are conducted in the last phase
of the methodology, which corresponds to step 3 of the flaw hypothesis
methodology. The OSSTMM supplies specific modules for tests.

As with the ISSAF, there is no explicit generalization step. The standard,



however, notes that many of the steps of each phase feed back into one
another, and at the end, the alert and log review (part of the intervention
phase) feeds back into the testing [904, §6.3]. The implication is that the
testers learn from later parts of this methodology, and then cycle back to use
their new knowledge. This is a part of generalization.

The strength of the OSSTMM is its organization of resources and
environmental considerations into classes, channels, modules, and phases.
This provides a methodical approach to analyzing the system. Its weakness is
the same as that for the ISSAF: it provides no guidance on how to generalize
new vulnerabilities from commonalities or properties of existing ones, and
indeed omits discussion of that step.

24.2.5.3 GISTA

The NIST Technical Guide to Information Security Testing and Assessment
(GISTA) [1682] introduces a four-phase process for penetration testing:

• In the planning phase, the testers and the management agree on the rules
for the test, and set the goals for success.

• In the discovery phase, the testers search the system. The first part of this
phase gathers information, especially identifying and examining potential
targets. The second part examines the information gathered, and based on
vulnerability databases and the testers’ experiences and knowledge of
vulnerabilities, hypothesizes vulnerabilities to test.

• In the attack phase, the testers verify whether the hypothesized
vulnerabilities can be exploited. In some cases, the additional privileges will
suggest additional possible exploits; in other cases, the testers will merely
learn something about the system. They will then add this information to the
pool of knowledge, and go back to the discovery phase to see if they can think
of new vulnerabilities.



• The reporting phase occurs in parallel with the other phases, and results in a
report to the management describing what was found and how to mitigate
these problems.

This is the closer to the flaw hypothesis methodology than either ISSAF or
OSSTMM. Step 4, again, is hinted at more directly than in other methods in
the link between the attack and discovery phases. However, this method is
quite general, and does not provide the same discipline of system resource
guidance as do the ISSAF and OSSTMM methodologies.

24.2.5.4 PTES

The Penetration Testing Execution Standard [1038,2219] defines a seven-
phase testing plan:

1. During the pre-engagement interactions, the testers and clients agree on
the scope of the test, its goals, and the terms of the engagement. Legal and
contractual issues are resolved here.

2. Intelligence gathering follows. To identify potential targets, the testers
scour sources provided by the client as well as public information such as
DNS records, social media, web pages, company reports, and probes. For
example, a port scan during this phase gives an indication of what services
the client provides, which provides insights into the systems as well as the
software.

3. Threat modeling uses information gathered in the previous phases to
analyze the threats. In this phase, the data gathered may require more
investigation of potential threats, including non-technical ones. The testers
identify potential vulnerabilities, or combinations of vulnerabilities, that an
attacker could exploit to realize the threat.

4. In the vulnerability analysis phase, the testers determine which of the
potential vulnerabilities actually exist. They use a variety of techniques,



including automated tools to scan the network gathering data (such as
network port numbers and login banners) that will confirm the presence of
specific vulnerabilities.

5. The exploitation phase tests whether the vulnerabilities identified in the
previous step can be exploited. Depending on the agreed-upon rules for the
test, the testers may use social engineering means as well as technical means
to achieve their goal. Note that the testers may discover preventative
mechanisms that block the exploits of some vulnerabilities found in the
previous step.

6. The post exploitation phase occurs next. It expands upon the exploits,
leading to an understanding the effects of a successful exploitation. The
attackers focus on the most damaging attacks, including planting back doors
and access to backups. They must also try to conceal their efforts, unless the
terms of the test say not to.

7. The reporting phase is where the testers document their actions and what
they found. In addition to successful attacks, hypothesized but failed attacks
are documented, as are attacks and vulnerabilities that have not been tried.
The first goal of the report is to provide the clients with a foundation for
decisions about the allocation or resources to harden their systems. The
second is to provide a starting point for future penetration tests, to minimize
the time needed to review the attacks tried here and to suggest possibly
fruitful starting points for new attacks. The report will contain
recommendations and suggestions for improving security.

The pre-engagement and intelligence gathering phases correspond to step 1
of the flaw hypothesis methodology as both are information gathering steps.
The next steps, threat modeling and vulnerability analysis, results in
hypotheses about possible flaws and vulnerabilities; so this is step 2 of the
flaw hypothesis methodology. The exploitation and post exploitation steps
combine to be step 3 of the flaw hypothesis methodology. The reporting
phase is implicit in the flaw hypothesis methodology, being a critical part of



each step. The technical guide [2219] provides information to help the testers
use the methodology.

Although the post exploitation step sounds like flaw generalization, it
synthesizes possible results of attacks. That is, if the attacker compromises
one system, the attacker looks through that system to determine whether the
compromise can provide information that helps her attain the test goal. It
does not generalize vulnerabilities, which is the goal of step 4 of the flaw
hypothesis methodology.

24.2.6 Example: Penetration of the Michigan Terminal System

As an exercise, a graduate computer science class at the University of
Michigan launched a penetration test against the Michigan Terminal System,
a general-purpose operating system that ran on the University of Michigan’s
IBM 360 and 370 computer systems [891]. Their goal was to acquire access to
the terminal control structures. The students had the approval and support of
the computer center staff. They began by assuming that the attackers had
access to an authorized account (step 3 on page 729).

The first step was to learn the details of the system’s control flow and
supervisor. When an individual user ran a program, memory was split into
segments. Segments 0 to 4 contained the supervisor, system programs, and
system state and were protected by hardware mechanisms. Segment 5 was a
system work area, recording process-specific information such as privilege
level, accounting information, and so forth. The process should not have been
able to alter any of this information. Segments numbered 6 and higher
contained user process information, and the process could alter them.

Segment 5 was protected by a virtual memory protection system. The virtual
system had two states. In “system” mode, the process could access or alter its
segment 5 and could issue calls to the supervisor. In “user” mode, segment 5
was not present in the address space of the process and so could not be
modified. The process would run in user mode whenever user-supplied code



would be executed. If the user code needed a system service, it would issue a
system call; that code could in turn issue a supervisor call, in which case the
supervisor would perform the needed function. The system code had to check
parameters to ensure that the system (or supervisor) would access authorized
locations only. Complicating this check was the way in which parameters
were passed. A list of addresses (one per parameter) was constructed in user
segments, and the address of this list was given to the system call in a
register; hence, checking of parameters required following of two levels of
indirection. All such addresses, of course, had to be in user segments
numbered 6 (or higher).

The testing now entered the flaw hypothesis stage. The observation that many
security problems arise at interfaces suggested focusing on the switch from
user to system mode because system mode required supervisor privileges.
The study focused on parameter checking, and it was discovered that an
element of the parameter list could point to a location within the parameter
list (see Figure 24–2). In other words, one could cause the system or
supervisor procedure to alter a parameter’s address after the validity of the
old address had been verified.

In order to exploit this flaw, the testers had to find a system routine that used
this calling convention, took two parameters, altered at least one, and could
be made to change the parameter to any of a specific set of values (which lay
in the system segment). Several such routines were found; the one that was
exploited was the line input routine, which returned the line number and
length of the line as well as the line itself. The testers set up the parameter list
so that the address for storing the line number was the location of the address
of the line length. When called, the system routine validated the parameter
list (all addresses were indeed in user segments), and it then read the input
line. The line number was stored in the parameter list itself and was set to be
an address within the system segment. The line length corresponded to the
desired value of that location in the system segment. Thus, the testers were
able to alter data in segment 5. However, they could not alter anything in the



supervisor segments because those segments were protected by hardware.

Figure 24–2: An example of the parameter passing conventions.
Here, x is the address of the parameter list, and locations x, x + 1,
and x + 2 contain addresses of the actual parameters. Note that
location x + 1 contains the address x + 2, meaning that the last
address in the parameter list is itself the location of a parameter
(as well as containing the address of another parameter).

During the flaw generalization stage, the testers realized the full implications
of this flaw. The privilege level in segment 5 controlled the ability of the
process to issue supervisor calls (as opposed to system calls). One of these
calls turned off the hardware protection for segments 0 to 4. This enabled the
process to alter any data or instructions in those segments and thus
effectively control the computer completely.

During the test, the testers found numerous flaws that allowed them to
acquire sufficient privileges to meet their goal. The penetration study was a
success because it demonstrated how an attacker could obtain control of the
terminal control structures.

24.2.7 Example: Compromise of a Burroughs System

The penetration study of a Burroughs B6700 system [2019] is particularly
interesting because of the architecture of that system. Again as a class project,
a graduate computer systems class at the University of Canterbury attempted
to penetrate a Burroughs B6700 computer system running the 3.0 P.R.#1
release. The goal was to obtain the status of a privileged user and thus be able



to alter privileged programs. The group explored four aspects of the system,
in all cases beginning with an authorized account on the system (step 3 on
page 729); we will discuss the only part that focused on file security.

The Burroughs B6700 system security is based on strict file typing. There are
four relevant entities: ordinary users, privileged users, privileged programs,
and operating system tasks. Ordinary users are tightly restricted; the other
three classes can access file data without restriction but are still constrained
from compromising integrity. Furthermore, the Burroughs system provides
no assemblers; its compilers all take high-level languages as input and
produce executable code. The B6700 distinguishes between data files and
executable files by the type of the file. Only compilers can produce executable
files. Moreover, if any user tries to write into a file or into a file’s attributes,
that file’s type is immediately set to data, even if the file was previously an
executable.

The group hypothesized that the system would not be able to detect a file that
was altered offline. To test this hypothesis, the members of the group wrote
and compiled a program to change the type of any file. It could not be run
successfully yet because it would have to alter the file’s attributes. Because it
was not a recognized compiler, the file so altered would immediately become
a data file. They then copied the machine code version of this program to
tape. The tape utility created a header record indicating the file type. A
second tape was mounted, and the contents of the first tape were copied to
the second. During the transfer, the copying program altered the file type of
the machine code to be a compiler. They then copied the file from the second
tape to disk, and the file was installed as a compiler. The testers wrote a
second subroutine, compiled it using the regular compiler, altered the
machine code to give privileges to any user calling it, and used the bogus
compiler to change the type of the altered file to executable. They then wrote
a program to call that routine. It succeeded, and the user became privileged.
This gave the user complete control of the system, achieving the goal.



A procedural corrective measure was to prevent unprivileged users from
loading executables off tape. The testers noted the impracticality of this
measure in many environments, such as academic and development sites.

24.2.8 Example: Penetration of a Corporate Computer System

This study [2023] is instructive because it began at step 1 of the list on page
729 and looked only at gathering nontechnical information needed to breach
the computer system. It shows the importance of proper operations and
organizational procedures in securing a system. Although the specific
example is an amalgamation of techniques used in several real penetrations,
the techniques are very effective and have repeatedly succeeded. Specifics are
disguised to protect the corporations so penetrated.

The goal of the study was to determine whether corporate security measures
were effective in keeping external attackers from accessing the system. The
corporation had a variety of policies and procedures (both technical and
nontechnical) that were believed to protect the system.

The testers began by gathering information about the site. They searched the
Internet and obtained information on the corporation, including the names of
some employees and officials. They obtained the telephone number of a local
branch of the company and from that branch got a copy of the annual report.
From the report and the other data, the testers were able to construct much of
the company’s organization, as well a list of some of the projects on which
individuals were working.

The testers determined that a corporate telephone directory would provide
them with needed information about the corporate structure. One
impersonated a new employee, and through judicious telephone calls found
out that two numbers were required to have something delivered off-site: the
number of the employee requesting the shipment and a Cost Center number.
A tester promptly called the secretary of the executive about whom the testers
knew the most; by impersonating another employee, the caller obtained the



executive’s employee number. A second tester impersonated an auditor and
obtained that exec-utive’s Cost Center number. The testers used these
numbers to have a corporate directory sent to a “subcontractor.”

Figure 24–3: The output of the UNIX port scan. These are the
ports that provide network services.

At this point, the testers decided to contact newly hired personnel and try to
obtain their passwords. They impersonated the secretary of a very senior
executive of the company, called the appropriate office, and claimed that the
senior executive was very upset that he had not been given the names of the
employees hired that week. The information was promptly provided.

The testers then began calling the newly hired people. They claimed to be
with the corporate computing center and provided a “Computer Security
Awareness Briefing” over the telephone. In the process of this briefing, the
testers learned the types of computer systems used, the employees’ numbers,
their logins, and their passwords. A call to the computing center provided
modem numbers; the modems bypassed a critical security system. At this
point, the testers had compromised the system sufficiently that the
penetration study was deemed successful.



24.2.9 Example: Penetrating a UNIX System

In this example, the first goal is to gain access to the system. Our target is a
system connected to the Internet.

We begin by scanning the network ports on the target system. Figure 24–3
shows some of these ports, together with a list of protocols that servers
listening on those ports may use. Note that protocols are running on ports 79,
111, 512, 513, 514, and 540; these ports are typically used on UNIX systems.
Let us make this assumption.

Many UNIX systems use sendmail as their SMTP server. This large program
has had many security problems [422, 2134, 2181, 2205, 2234–2240]. By
connecting to the port, we determine that the target is using sendmail
Version 3.1. Drawing on previous experience and widely known information
[217], we hypothesize that the SMTP agent will recognize the command shell
and give us a root-owned shell on the system. To do this, we need to execute
the wiz command first. We are successful, as Figure 24–4 shows. On this
particular system, we have obtained root privileges.

Figure 24–4: A successful accessing of a UNIX system.

The key to this attack is an understanding of how most UNIX systems are
configured and a knowledge of known vulnerabilities. Most UNIX systems
use some variant of sendmail as their SMTP agent, and that program prints
version information when a connection is made. The information enabled the
testers to determine what set of attacks would be likely to be fruitful. Given
the wide variation in sendmails (owing to differences in vendors’ patches),
the flaw had to be tested for. The test succeeded.



Now assume we are at step 3 of the list on page 729. We have an unprivileged
account on the system. We determine that this system has a dynamically
loaded kernel; the program used to add modules to the kernel is loadmodule.
Because such a program must be privileged (or else it could not update the
kernel tables), an unprivileged user can execute a privileged process. As
indicated before, this suggests that the program does some sort of validation
or authorization check. Our vulnerabilities models (see Section 24.4) indicate
that this is a source of many problems. Let us examine this program more
closely.

The program loadmodule validates the module as being a dynamically
loadable module and then invokes the dynamic loader ld.so to perform the
actual load. It also needs to determine the architecture of the system, and it
uses the program arch to obtain this information. A logical question is how it
executes these programs. The simplest way is to use the library function
system. This function does not reset any part of the environment. Hence, if
the system call is used, the environment in which we execute loadmodule is
passed to the subprocesses, and these subprocesses are run as root. In this
case, we can set our environment to look for programs in our local directory
first, and then in system directories (by setting the PATH variable to have “.”
as the first directory).

We accept this as a working hypothesis, and we set out to verify that this flaw
exists. We write a small program that prints its effective UID, name it ld.so,
and move it to the current working directory. We then reset our PATH
variable as indicated above and run loadmodule. Unfortunately, our program
does not execute; nothing is printed.

Why not? Once we understand this, we may be able to figure out a way to
bypass this check, and our understanding of the system will increase. We scan
the executable looking for ASCII strings, to see exactly how their dynamic
loader invokes those subprograms. We see that the invocations are
“/bin/arch” and “/bin/ld.so”. So our attempt to change the search path



(PATH environment variable) was irrelevant; the system never looked at that
variable because full path names were given.

Figure 24–5: The output of the Windows port scan. These are the
ports that provide network service.

Rereading the manual page for the library function system, we notice that it
invokes the command interpreter sh. Looking at sh’s manual page, we learn
that the IFS environment variable has as its value characters used to separate
words in commands that sh executes. Given that loadmodule invokes
“/bin/arch”, if the character “/” were in the value of the environment variable
IFS, sh would treat this command as “bin arch”. Then we could use the idea
that just failed, but call the program bin rather than ld.so.

We could verify this idea without a test, but it would require disassemby of
the load-module executable unless we had source code (we would look for
anything that reset the environment within loadmodule). Assuming that we
do not have source code, we change the value of IFS to include “/”, reset
PATH and IFS as described above, change the name of our small program
from ld.so to bin, and run loadmodule. The process prints that its effective
UID is 0 (root). Our test has succeeded. (Chapter 31, “Program Security,”
discusses corrective measures for problems of this type. The vendor fixed the
problem [2247].)

Incidentally, this example leads to a simple flaw generalization. The problem
of subprocesses inheriting environment variables and their values suggests
that the privileged program did not adequately sanitize the (untrusted)
environment in which that program executes before invoking subprograms
that are to be trusted. Hence, any privileged program may have this flaw. One



could even hypothesize that a standard library routine or system call is
invoked. So, a general class of flaws would involve failure to sanitize the
environment, and the indicator of such a flaw might be one or more specific
function calls. At this point, the testers would look in the programmers’
manuals to see if such routines existed; if so, they would analyze programs to
see which privileged programs called them. This could lead to a large number
of other vulnerabilities.

This penetration test demonstrates how failure can lead to success. When a
test fails, the testers may have not understood the system completely and so
need to study why the test failed. In this example, the failure led to a re-
examination of the relevant library function, which led to a review of one of
the system command interpreters. During this review, one of the testers
noticed an obscure but documented control over the way the command
interpreter interpreted commands. This led to a successful test. Patience is
often said to be a virtue, and this is certainly true in penetration testing.

24.2.10 Example: Penetrating a Windows System

As in the preceding example, we begin at step 2 of the list on page 729, and all
we know is that the system is connected to the Internet. We begin as before,
by probing network ports, and from the results (see Figure 24–5)—especially
the service running on port 139—we conclude that the system is a Windows
server.

We first probe for easy-to-guess passwords. We discover that the system
administrator has chosen the password “Admin”, and we obtain access to the
system. At this point, we have administrator privilege on the local system. We
would like to obtain rights to other systems in the domain.

We examine the local system and discover that the domain administrator has
installed a service that is running with the privileges of a domain
administrator. We then obtain a program that will dump the local security
authority database, and load it onto the system. After executing it, we obtain



the service account password. Using this password, we acquire domain
administrator privileges and can now access any system in the domain.

This penetration test uncovered a serious administrative problem. For some
reason, a sensitive account had a password that was easy to guess. This
indicates a procedural problem within the company. Perhaps the system
administrators were too busy, or forgot, to choose a good password. Two
generalizations are appropriate. First, other systems should be checked for
weak passwords. Second, the company’s security policies should be reviewed,
as should its education of its system administrators and its mechanisms for
publicizing the policies.

24.2.11 Debate

Considerable debate has arisen about the validity of penetration studies for
testing system security. At one end of the spectrum are some vendors who
report that “after 1 year of our system being on the Internet, no one has
successfully penetrated the system,” implying (and in some cases stating) that
this shows that their product is quite secure. At the other end is the claim that
penetration testing has no validity, and only rigorous design,
implementation, and validation comprise an adequate test of security.

The resolution lies somewhere between two these extremes. Penetration
testing is no substitute for good, thorough specification, rigorous design,
careful and correct implementation, and meticulous testing. It is, however, a
very valuable component of the final stage, “testing”; it is simply a form of a
posteriori testing. Ideally, it should be unnecessary; but human beings are
fallible and make mistakes, and computer systems are so complex that no
single individual, or group, understands all aspects of the hardware’s
construction, the software’s design, implementation, and the computer
system’s interactions with users and environment. Hence, errors will be
introduced. Properly done, penetration tests examine the design and
implementation of security mechanisms from the point of view of an attacker.
The knowledge and understanding gleaned from such a viewpoint is



invaluable.

24.2.12 Conclusion

Penetration testing is a very informal, non-rigorous technique for checking
the security of a system. Two problems with the Flaw Hypothesis
Methodology described in Section 24.2.4 are its dependence on the caliber of
the testers and its lack of systematic examination of the system. High-caliber
testers will examine the design systematically, but all too often the testing
degenerates into a more scattered analysis.

In an attempt to make the process more systematic, and less dependent on
the knowledge of the individuals conducting the test, various elaborations of
the flaw hypothesis methodology have been developed. These guide testers
through various stages of that methodology, but are not checklists; the testers
must still apply their knowledge and intuition. So testers also look at flaws
that exist on other systems and decide which ones could translate into the
tested system’s model. Classification schemes can help in this regard; they
group similar vulnerabilities together and enable the analyst to extract
common features. Hence, such schemes are important in the flaw hypothesis
step and are worth exploring.

24.3 Vulnerability Classification

Vulnerability classification frameworks describe security flaws from various
perspectives. Some frameworks describe vulnerabilities by classifying the
techniques used to exploit them. Others characterize vulnerabilities in terms
of the software and hardware components and interfaces that make up the
vulnerability. Still others classify vulnerabilities by their nature, in hopes of
discovering techniques for finding previously unknown vulnerabilities.

The goal of vulnerability analysis is to develop methodologies that provide the
following abilities:



1. The ability to specify, design, and implement a computer system without
vulnerabilities.

2. The ability to analyze a computer system to detect vulnerabilities (which
feeds into the Flaw Hypothesis Methodology step of penetration testing).

3. The ability to address any vulnerabilities introduced during the operation
of the computer system (possibly leading to a redesign or reimplementation
of the flawed components).

4. The ability to detect attempted exploitations of vulnerabilities.

Ideally, one can generalize information about security flaws. From these
generalizations, one then looks for underlying principles that lead toward the
desired goals. Because the abstraction’s purpose is tied to the classifiers’
understanding of the goal, and of how best to reach that goal, both these
factors influence the classification system developed. Hence, the vulnerability
frameworks covering design often differ from those covering the detection of
exploitation of vulnerabilities. Before we present several different
frameworks, however, a discussion of two security flaws will provide a basis
for understanding several of the problems of these frameworks.

24.3.1 Two Security Flaws

This section presents two widely known security vulnerabilities in some
versions of the UNIX operating system. We will use these vulnerabilities as
examples when comparing and contrasting the various frameworks.

The program xterm is a program that emulates a terminal under the X11
window system. For reasons not relevant to this discussion, it must run as the
omnipotent user root on some UNIX systems. It enables the user to log all
input and output to a log file. If the file does not exist, xterm creates it and
assigns ownership to the user; if the file already exists, xterm checks that the
user can write to it before opening the file. Because any root process can write



to any file in the system, the extra check is necessary to prevent a user from
directing xterm to append log output to (say) the system password file and
gaining privileges by altering that file [2270].

Suppose the user wishes to log to an existing file. The following code
fragment opens the file for writing.

Figure 24–6: (a) The state of the system at the time of the access
system call. The labeled arrows indicate the name of the target.
Both /usr/sage/xyzzy and /etc/passwd name distinct objects
containing their own data. The access system call checks that the
data in /usr/sage/xyzzy can be overwritten; this is shown by the
dashed arrow in (a). However, before the process makes its open
system call, /usr/sage/xyzzy is deleted and a direct alias (hard
link) for /etc/passwd is created and named /usr/sage/xyzzy; the
data associated with the previous /usr/sage/xyzzy is no longer
accessible by that name. Then the open accesses the data
associated with /etc/passwd when it opens /usr/sage/xyzzy
because /usr/sage/xyzzy and /etc/passwd now refer to the same
file. This is shown in (b), with the dashed arrow indicating which
data is actually read.

if (access(“/usr/tom/X”, W_OK) == 0){



        if ((fd = open (“/usr/tom/X”, O_WRONLY|O_APPEND)) < 0){
                /* handle error : cannot open file */
        }
}

The semantics of the UNIX operating system cause the name of the file to be
loosely bound to the data object it represents, and the binding is asserted
each time the name is used. If the data object corresponding to /usr/tom/X
changes after the access but before the open, the open will not open the file
checked by access. So if, during that interval, an attacker deletes the file and
links a system file (such as the password file) to the name of the deleted file,
xterm appends logging output to the password file. At this point, the user can
create a root account without a password and gain root privileges. Figure 24–
6 shows this graphically.

The Internet worm of 1988 [622, 847, 1608, 1807, 1808] publicized our
second flaw. It continues to recur—for example, in implementations of
various network servers [489, 1463, 2026, 2133, 2233, 2249]; indeed, the
CVE database has over 8,000 entries of buffer overflow vulnerabilities since
1999, with 32 reports in the first two months of 2017. The finger protocol
[2119] obtains information about the users of a remote system. The client
program, called finger, contacts a server, called fingerd, on the remote
system and sends a name of at most 512 characters. The server reads the
name and returns the relevant information, but the server does not check the
length of the name that finger sends. The storage space for the name is
allocated on the stack, directly above the return address for the I/O routine.
The attacker writes a small program (in machine code) to obtain a command
interpreter and pads it to 512 bytes. She then sets the next 24 bytes to return
to the input buffer instead of to the rightful caller (the main routine, in this
case). The entire 536-byte buffer is sent to the daemon. The first 512 bytes go
into the input storage array, and the excess 24 bytes overwrite the stack
locations in which the caller’s return address and status word are stored. The
input routine returns to the code to spawn the command interpreter. The
attacker now has access to the system. Figure 24–7 shows the changes in the



user stack.

Figure 24–7: (a) The stack frame of fingerd when input is to be
read. The arrow indicates the location to which the parameter to
gets refers (it is past the address of the input buffer). (b) The same
stack after the bogus input is stored. The input string overwrites
the input buffer and parameter to gets, allowing a return to the
contents of the input buffer. The arrow shows that the return
address of main was overwritten with the address of the input
buffer. When gets returns, it will pop its return address (now the
address of the input buffer) and resume execution at that address.

Variants of buffer overflows do not require the attacker to upload executable
code. An arc attack, also called a return-to-libc attack, replaces the return
address with the address of a function in memory; arguments to that function
can also be pushed onto the stack, so the invoked function can use those
arguments [557]. For example, the C library function system passes its
argument to the command interpreter to be executed as if it were typed
directly to the interpreter. Thus, if a privileged program has this vulnerability
and function, an attacker can have that program execute an arbitrary



command.

A more subtle exploitation of buffer overflows is called return oriented
programming (ROP) [1727]. This attack pushes a sequence of return
addresses onto the stack. The return addresses correspond to small code
fragments, calledgadgets, that execute operations in the sequence desired by
the attacker. Each gadget ends in a return instruction that pops the next
return address off the stack, causing the flow of control to go to the next
gadget. This effectively creates a program within the program.

24.4 Frameworks

The goals of a framework dictate the framework’s structure. For example, if
the framework is to guide the development of an attack detection tool, the
focus of the framework will be on the steps needed to exploit vulnerabilities.
If the framework is intended to aid the software development process, it will
emphasize programming and design errors that cause vulnerabilities. Each of
the following classification schemes was designed with a specific goal in
mind.

Each of the following frameworks classifies a vulnerability as an n-tuple, the
elements of the n-tuple being the specific classes into which the vulnerability
falls. Some have a single set of categories; others are multidimensional (n > 1)
because they are examining multiple characteristics of the vulnerabilities.

24.4.1 The RISOS Study

The RISOS (Research Into Secure Operating Systems) study [5] was prepared
to aid computer and system managers and information processing specialists
in understanding security issues in operating systems and to help them
determine the level of effort required to enhance their system security. The
investigators classified flaws into seven general classes.

1. Incomplete parameter validation



2. Inconsistent parameter validation

3. Implicit sharing of privileged/confidential data

4. Asynchronous validation/inadequate serialization

5. Inadequate identification/authentication/authorization

6. Violable prohibition/limit

7. Exploitable logic error

The investigators discussed techniques for avoiding, or ameliorating, the
flaws in each class. They also attempted to develop methodologies and
software for detecting incomplete parameter validation flaws. The survey
examined several operating systems (MULTICS, BBN’s TENEX, DEC’s TOPS-
10, Honeywell’s GECOS, IBM’s OS/MVT, SDS’s SDS-940, and UNIVAC’s
EXEC-8) but noted that the flaw classes applied to other systems as well.

24.4.1.1 The Flaw Classes

Incomplete parameter validation occurs when a parameter is not checked
before use. The buffer overflows discussed earlier are the classic example of
this type of flaw. Another example is a flaw in one computer’s software
emulator for integer division [2206]. The caller provided two addresses as
parameters, one for the quotient and one for the remainder. The quotient
address was checked to ensure that it lay within the user’s protection domain,
but the remainder address was not similarly checked. By passing the address
of the user identification number for the remainder, the programmer was
able to acquire system privileges. Parameters need to be checked for type
(and possibly format), ranges of values, access rights, and presence (or
absence).

Inconsistent parameter validation is a design flaw in which each individual
routine using data checks that the data is in the proper format for that



routine, but the routines require different formats. Basically, the
inconsistency across interfaces causes this flaw. An example occurs in a
database in which each record is one line, with colons separating the fields. If
one program accepts colons and newlines as part of data but other programs
read the colons so accepted as field separators and the newlines so accepted
as record separators, the inconsistency can cause bogus records to be entered
into the database.

When an operating system fails to isolate processes and users properly, an
implicit sharing of privileged/confidential data flaw occurs. The ability to
recover a file’s password in TENEX is an example of this type of flaw [1867].
TENEX allowed the user to determine when paging occurred. Furthermore,
when a file access required a password, the password was checked character
by character, and the checking stopped at the first incorrect character. So, an
attacker would position a guess for the password so that a page boundary lay
between the first and second characters. He would then try to access the file.
If paging occurred, the first character of the password was correct; if not, it
was incorrect. Continuing in this fashion, the attacker could quickly recover
the password needed to access the file. Kocher’s timing attack against RSA, in
which small variations in the speed of encipherment enable an attacker to
deduce the private key (see Section 9.6), is another example of this type of
flaw [1091].

Race conditions and time-of-check to time-of-use flaws such as that shown in
Figure 24–6 are members of the asynchronous validation/inadequate
serialization class of flaws.

Inadequate identification/authorization/authentication flaws arise when a
system allows a user to be erroneously identified, when one user can assume
another’s privilege, or when a user can trick the system (or another user) into
executing a program without authorization. Trojan horses are examples of
this type of flaw, as are accounts without passwords, because any user can
access them freely. The UNIVAC 1100 provides an example related to file



naming [5]. On that system, access to the system file SYS$*DLOC$ meant
that the process was privileged. The system checked this by seeing if the
process could access any file with the first three characters of the qualifier
name “SYS” and the first three characters of the file name “DLO”. So, any
process that could access the file SYSA*DLOC$, which was an ordinary (non-
system) file, was also privileged and could access any file without the file
access key.

Violable prohibition/limit flaws arise when system designers fail to handle
bounds conditions properly. For example, early versions of TENEX kept the
operating system in low memory and gave the user process access to all
memory cells with addresses above a fixed value (marking the last memory
location of the operating system). The limit of memory addressing was the
address of the highest memory location; but when a user addressed a location
beyond the end of memory, it was reduced modulo the memory size and so
accessed a word in the operating system’s area. Because the address was a
large number, however, it was treated as being in user space—and hence
could be altered [1867].

Exploitable logic error flaws encompass problems not falling into any of the
other classes; examples include incorrect error handling, unexpected side
effects of instructions, and incorrect allocation of resources. One such flaw
that occurred in early versions of TENEX requires an understanding of how
the TENEX monitor implemented a return to the user’s program. Basically,
the monitor would execute a skip return to the address following the one
stored in the user’s program counter; the system would simply add 1 to the
user’s return word and return. On the PDP-10, the index field was a bit in the
return word. If the return word was set to –1, the addition would overflow
into the index field and change its semantics to refer to the contents of
register 1, so the return would be to the location stored in that register. The
attacker would load a bootstrap program into other registers, manipulate the
contents of register 1 through a series of system calls so that it contained the
address of the first bootstrap instruction, and then cause the monitor to



execute a skip return. The bootstrap program would execute, loading the
attacker’s program and executing it with system privileges [1141].

24.4.1.2 Legacy

The RISOS project created a seminal study of vulnerabilities. It provided
valuable insights into the nature of flaws, among them that security is a
function of site requirements and threats, that there are a small number of
fundamental flaws that recur in different contexts, and that operating system
security is not a critical factor in the design of operating systems. It spurred
research efforts into detection and repair of vulnerabilities in existing
systems; the Protection Analysis study was the most influential of these
efforts.

24.4.2 Protection Analysis Model

The Protection Analysis (PA) study [211] attempted to break the operating
system protection problem into smaller, more manageable pieces. The
investigators hoped that this would reduce the expertise required of
individuals working on operating systems. The study aimed at developing
techniques that would have an impact within 10 years. It developed a general
strategy, called pattern-directed protection evaluation, and applied it to
several operating systems. In one case, the investigators found previously
unknown security vulnerabilities. From this approach grew a classification
scheme for vulnerabilities. Neumann’s presentation [1450] of this study
organizes the ten classes of flaws in order to show the connections among the
major classes and subclasses of flaws (the italicized names in parentheses are
the names used in the original study).

1. Improper protection domain initialization and enforcement

(a) Improper choice of initial protection domain (domain)

(b) Improper isolation of implementation detail (exposed representations)



(c) Improper change (consistency of data over time)

(d) Improper naming (naming)

(e) Improper deallocation or deletion (residuals)

2. Improper validation (validation of operands, queue management
dependencies)

3. Improper synchronization

(a) Improper indivisibility (interrupted atomic operations)

(b) Improper sequencing (serialization)

4. Improper choice of operand or operation (critical operator selection
errors)

24.4.2.1 The Flaw Classes

The investigators identified ten classes of errors and noted that a simple
hierarchy could be built; however, the subclasses overlapped. We follow
Neumann’s reorganization, which eliminates the overlap and is conceptually
simpler than the original.

The first class is improper protection domain initialization and enforcement;
it includes security flaws arising from initialization of the system or programs
and enforcement of the security requirements. For example, when a system
boots, the protection modes of the file containing the identifiers of all users
logged in can be altered by any user. Under most security policies, the initial
assignment of protections is incorrect, and hence a vulnerability exists. The
subclass in which this particular flaw lies is improper choice of initial
protection domain, which includes any flaw related to an initial incorrect
assignment of privileges or of security and integrity classes, especially when
that flaw allows untrusted users to manipulate security-critical data.



Improper protection flaws often arise when an abstraction is mapped into an
implementation. The covert timing channel in the IBM KVM/370 system (see
the example that begins on page 521) is an example of an improper isolation
of implementation detail. This subclass also includes flaws that allow users to
bypass the operating system and write directly to absolute I/O locations or to
alter data structures in ways that are inconsistent with their functions (for
example, altering the rights of a process by writing directly to memory).

Another example of an improper protection flaw can arise when a privileged
program needs to open a file after checking that some particular condition
holds. The goal of the adversary is to have the privileged program open
another file for which the condition does not hold. The attack is an attempt to
switch the binding of the name between the check and the open. Figure 24–6
shows an example for the UNIX system [225]. This is an instance of the
subclass called improper change. Another instance of this subclass is when
some object, such as a parameter, a file, or the binding of a process to a
network port, changes unexpectedly.

If two different objects have the same name, a user may access or execute the
wrong object. The classic example is the venerable Trojan horse (see Section
23.2): an attacker crafts a program that will copy data to a hidden location for
later viewing and then invoke an editor, and gives it the same name as the
widely used system editor. Now, a user invoking the editor may get the
correct program or may get the bogus editor. Other examples of improper
naming arise in networking. The best example occurs when two hosts have
the same IP address. Messages intended for one of the hosts may be routed to
the other, without any indication to the sender.

Failing to clear memory before it is reallocated, or to clear the disk blocks
used in a file before they are assigned to a new file, causes improper
deallocation or deletion errors. One example occurs when a program dumps
core in a publicly readable file and the core dump contains sensitive
information such as passwords.



The second major class of flaws is improper validation. These flaws arise from
inadequate checking, such as fingerd’s lack of bounds checking (with the
results shown in Figure 24–7). A second example occurs in some versions of
Secure NIS. By default, that protocol maps the root user into an untrusted
user nobody on the theory that the server should not trust any claim to root
privileges from remote systems unless the credentials asserting those
privileges are cryptographic. If the Secure NIS server is misconfigured so that
root has no private key, however, the remote client can claim to be root and
supply credentials of the nobody user. The flawed system will determine that
it cannot validate root’s credentials and will promptly check for nobody’s
private key (because root is remapped when needed). Because the credentials
will be validated, the remote client will be given root privileges [2224].

Improper synchronization arises when processes fail to coordinate their
activities. These flaws can occur when operations that should be
uninterruptable are interrupted (the oxy-moron “interrupting atomic
operations” is often used to describe this phenomenon), or the flaws can arise
when two processes are not synchronized properly. The flaw in the UNIX
mkdir command in Version 7 is an example of the first case [1867]. That
command created directories by executing a privileged operation to create the
directory and then giving it to the requester by changing the ownership of the
directory. This should be done as a single operation, but in Version 7 UNIX
systems two distinct system calls were needed.

mknod (“xxx“, directory)
chown (“xxx“, user, group)

If an attacker changed the binding of the name “xxx” to refer to the password
file between these calls, the attacker would own that file and so could create
and delete accounts with impunity. Thus, such a flaw is an example of
improper indivisibility. The second subtype, improper sequencing, arises in
at least one one-time password scheme. If the target system can run multiple
copies of the server and two users attempt to access the same account, both



may be granted access even though the password should be valid for at most
one use. Essentially, accesses to the file need to be paired as a read followed
by a write; but if multiple copies of the server run, nothing enforces this
ordering of access types. This system suffers from improper sequencing.

The last category, improper choice of operand or operation, includes calling
of inappropriate or erroneous functions. Examples include cryptographic key
generation software calling pseudorandom number generation functions that
produce predictable sequences of numbers or sequences of numbers with
insufficient randomness. The Kerberos authentication system [582], as well
as numerous other security-related programs, have suffered from this
problem.

24.4.2.2 Analysis Procedure

One of the goals of the PA project was to study the automated detection of
instances of the aforementioned flaws in operating systems. The pattern-
directed protection evaluation approach sprang from the observations that
similar protection errors appear in different systems, and in different
functional areas of the same system, and that the success of automated
searching depends on the specificity with which the targets of the search are
described. These observations, and the desire to develop widely applicable
search techniques that non-experts could use, led to the following procedure.

1. Collect descriptions of protection problems. The project gathered more
than 100 security problems from six systems (EXEC-8, GECOS, MULTICS,
OS/360, TENEX, and UNIX), not counting minor variations.

2. Convert these problems to a more formalized notation (called raw error
patterns). This notation expressed a flaw as a set of conditions, possibly
including relations among them. The set’s membership was minimal, in that
if any of the conditions was removed, the raw pattern no longer represented a
security flaw. Complicating this process was a lack of a common vocabulary
for describing the features of the system and of the flaw; furthermore,



because the flaw depended on the security policy, a single error could produce
multiple patterns.

3. Eliminate irrelevant features and abstract system-specific components into
system-independent components. The goal of this step was to generalize the
raw pattern so that it was independent of the specific system on which it
arose. As an example, files, memory locations, and other data areas can be
abstracted into a “memory cell” and the generalized raw patterns can refer to
that cell.

4. Determine which features in the operating system code are relevant to the
flaw, and abstract the relevant contexts of those features. These features are
expressed independently of the system and are used to construct a pattern
from which a search procedure can be derived.

5. Compare the combination of the relevant features in the operating system
and their contexts with generic error patterns. This simply executes the
search procedure derived in step 4.

EXAMPLE: One MULTICS flaw [211, 212] enabled a user to terminate any
process. In early versions of MULTICS, STOP_PROCESS was a privileged
procedure that halted other processes. A user invoked this procedure with the
process ID of the process to be terminated. The gate (user entry point)
checked that the user’s ID was authorized to stop the process and, if so, called
the traffic controller module to halt the process. The flaw was that the process
ID could be changed after validation but before being passed to the traffic
controller module.

The raw error pattern was as follows.

1. A user process invokes the procedure STOP_PROCESS with a user-
supplied parameter.

2. The STOP_PROCESS interface validates the user-supplied parameter.



3. The traffic controller module uses the user-supplied parameter to identify
the process to be terminated.

4. The user may modify the validated parameter between steps 2 and 3.

The generalized pattern for this class of flaws was

B:M(x) and for some operation L occurring before M,
        [for operation L which does not modify Value (x),
                Value (x) before L NOT = Value ( x ) before M]

and

Value (x) after L NOT = Value (x) before M

This pattern indicated that the memory cell of interest was x and that some
operation L occurred. If L did not affect the value of x, then the value of x
changed before M; if L did affect the value of x, then the value of x changed
after L but before M. In other words, the value of x changed unexpectedly. A
similar generalized pattern could be created for a corresponding operating
system policy.

From this generalized pattern, we see that this condition arose because two
operations (L and M) accessed the variable x. L could read or alter x, but M
simply read x. L occurred before M, and M was critical to B. Furthermore, for
this specific example, x was bound to a parameter and so B could be called by
user procedures with one parameter. These statements made up the system-
independent description of the flaw; the following features were the relevant
ones.

1. Procedure callable by user procedures;

2. Parameter;

3. Code that reads or writes a variable x;



4. Code that reads a variable x;

5. The temporal relation “before”; and

6. A critical function.

The search procedure was to find a routine in which all those features were
present.

1. Ignore everything but user-callable procedures (feature 1).

2. Ignore all user-callable procedures without parameters (feature 2).

3. For each parameter, identify all statements involving reading from or
writing to that parameter (features 3 and 4).

4. Identify all statements containing operators that control the flow of
execution (feature 5).

5. Ignore all noncritical reads and writes meeting the conditions above
(feature 6).

This process was applied to a set of 47 critical procedures (feature 6) in the
MULTICS system. A list of reads from, and writes to, parameters was
automatically generated, and the list was manually searched for reads, writes,
and reads and writes followed by a write; when such a write was found, it was
checked for criticality. Of the 47 procedures examined, errors were found in
seven of them.



Figure 24–8: NRL taxonomy: flaws by genesis. This diagram shows
only the Intentional portion of the taxonomy; the Unintentional
portion is similar to the RISOS taxonomy except that the first two
RISOS classes are merged.

24.4.2.3 Legacy

The Protection Analysis project was the first project to explore automatic
detection of security flaws in programs and systems. Its methods were not
widely used, in part because of the inability to automate part of the
procedure, in part because of its complexity, and in part because the
procedure for reducing flaws to system-independent patterns was not
complete. However, the efficacy of the idea was demonstrated, and the
classification scheme of flaws greatly influenced the study of vulnerabilities.
The PA project was a milestone in computer security research and was the
last published vulnerability study for some time, because efforts were turned
toward development of methods that were free of these errors.

24.4.3 The NRL Taxonomy

In 1992, Landwehr, Bull, McDermott, and Choi [1141] developed a taxonomy
to help designers and operators of systems enforce security. They tried to
answer three questions: how did the flaw enter the system, when did it enter
the system, and where in the system is it manifest? They built three different



classification systems, one to answer each of the three questions, and
classified more than 50 vulnerabilities in these schemes.

24.4.3.1 The Flaw Classes

The first classification scheme classified vulnerabilities by genesis. The class
of inadvertent flaws was broken down using the RISOS categories (except
that the incomplete and inconsistent validation classes were merged), and the
class of intentional flaws was broken into malicious and non-malicious flaws.
Figure 24–8 summarizes these classes. The investigators felt that because
most security flaws were inadvertent, better design and coding reviews could
eliminate many of them; but if the flaws were intentional, measures such as
hiring more trustworthy designers and programmers and doing more
security-related testing would be more appropriate.

The second scheme classified vulnerabilities by time of introduction; Figure
24–9 summarizes the subclasses. The investigators wanted to know if
security errors were more likely to be introduced at any particular point in the
software life cycle in order to determine if focusing efforts on security at any
specific point would be helpful. They defined the development phase to be all
activities up to the release of the initial version of the software, the
maintenance phase to be all activities leading to changes in the software
performed under configuration control, and the operation phase to be all
activities involving patching of the software and not under configuration
control (for example, installing a vendor patch).

Figure 24–9: NRL taxonomy: flaws by time of introduction.



Figure 24–10: NRL taxonomy: flaws by location.

The third scheme classified by location of the flaw; Figure 24–10 summarizes
the classes. The intent is to capture where the flaw manifests itself and to
determine if any one location is more likely to be flawed than any other. If so,
focusing resources on that location would improve security.

24.4.3.2 Legacy

The investigators noted that their sample size (50 flaws) was too small to
draw any statistically sound conclusions. However, by plotting the classes
against one another on scatter plots, they concluded that with a large enough
sample size, an analyst could study the relationships between location and
genesis, genesis and time of introduction, and location and time of
introduction. The knowledge gained from such a study would help developers
concentrate on the most likely places, times, and causes of security flaws.

Landwehr’s taxonomy differs from the others in that it focuses on social
processes as well as technical details of flaws. In order to classify a security
flaw correctly on the time of introduction and genesis axes, either the precise
history of the particular flaw must be known or the classifier must make
assumptions. This ambiguity is unsettling, because this information is not
always available. However, when available, this information is quite useful,
and the study was the first to approach the problem of reducing
vulnerabilities by studying the environments in which they were introduced.



24.4.4 Aslam’s Model

Aslam [87] developed a classification scheme for security flaws that
categorized faults and grouped similar faults together. It differed from both
the PA and RISOS studies in that it drew on software fault studies to develop
its categories, and it focused specifically on implementation flaws in the
UNIX system. Moreover, the categories and classes in both PA and RISOS
had considerable overlap; Aslam presented a decision procedure for
classifying faults unambiguously. This made it useful for organizing
vulnerability data in a database, one of the goals of his study.

24.4.4.1 The Flaw Classes

Aslam distinguished between coding faults, which were introduced during
software development, and emergent faults, which resulted from incorrect
initialization, use, or application. For example, a program that fails to check
the length of an input string before storing it in an array has a coding fault,
but allowing a message transfer agent to forward mail to an arbitrary file on
the system is an emergent fault. The mail agent is performing exactly
according to specification, but the results produce a dangerous security hole.

The class of coding faults is subdivided into synchronization errors and
condition validation errors. Synchronization errors arise when a timing
window between two operations allows a fault to be exploited or when
operations are improperly serialized. For example, the xterm flaw discussed
previously is a classic synchronization error. Condition validation errors arise
when bounds are not checked, access rights are ignored, input is not
validated, or authentication and identification fails. The fingerd flaw is an
example of this.

Emergent faults are either configuration errors or environment faults. The
former arise from installing a program in the wrong place, with the wrong
initialization or configuration information, or with the wrong permissions.
For example, if the tftp daemon is installed so that any file in the system can



be accessed, the installer has caused a configuration error. Environment
faults are those faults introduced by the environment as opposed to those
from the code or from the configuration. On older UNIX systems, for
example, any shell whose name began with “-” was interactive; so an attacker
could link a setuid shell script to the name “-gotcha” and execute it, thereby
getting a setuid to root shell [213].

Aslam’s decision procedure [87] consisted of a set of questions for each class
of flaws, the questions being ordered so that each flaw had exactly one
classification.

24.4.4.2 Legacy

The contribution of Aslam’s taxonomy was to tie security flaws to software
faults and to introduce a precise classification scheme. In this scheme, each
vulnerability belonged to exactly one class of security flaws. Furthermore, the
decision procedure was well-defined and unambiguous, leading to a simple
mechanism for representing similar flaws in a database.

24.4.5 Comparison and Analysis

Consider the flaws described in Section 24.3.1. Both depend on the
interaction of two processes: the trusted process (xterm or fingerd) and a
second process (the attacker). For the xterm flaw, the attacker deletes the
existing log file and inserts a link to the password file; for the fingerd flaw,
the attacker writes a name the length of which exceeds the buffer size.
Furthermore, the processes use operating system services to communicate.
So, three processes are involved: the flawed process, the attacker process, and
the operating system service routines. The view of the flaw when considered
from the perspective of any of these processes may differ from the view when
considered from the perspective of the other two. For example, from the point
of view of the flawed process, the flaw may be an incomplete validation of a
parameter because the process does not adequately check the parameter it
passes to the operating system by means of a system call. From the point of



view of the operating system, however, the flaw may be a violable
prohibition/limit, because the parameter may refer to an address outside the
space of the process. Which classification is appropriate?

Levels of abstraction muddy this issue even more. At the lowest level, the flaw
may be, say, an inconsistent parameter validation because successive system
calls do not check that the argument refers to the same object. At a higher
level, this may be characterized as a race condition or an asynchronous
validation/inadequate serialization problem. At an even higher level, it may
be seen as an exploitable logic error because a resource (object) can be
deleted while in use.

The levels of abstraction are defined differently for every system, and this
contributes to the ambiguity. In the following discussion, the “higher” the
level, the more abstract it is, without implying precisely where in the
abstraction hierarchy either level occurs. Only the relationship, not the
distance, of the levels is important in this context.

We now expand on these questions using our two sample flaws.

24.4.5.1 The xterm Log File Flaw

We begin with the PA taxonomy. From the point of view of the xterm process,
the flaw is clearly an improper change flaw because the problem is that
between the time of check (access) and the time of use (open), the referent of
the name changes. However, with respect to the attacker process, the flaw is
an improper deallocation or deletion flaw because something (in this case,
the binding between the name and the referent) is being deleted improperly.
And from the operating system’s point of view, the flaw is an improper
indivisibility flaw because the opening of the file should atomically check that
the access is allowed.

Reconsider the problem at a higher level of abstraction from the point of view
of the operating system. At this level, a directory object is seen simply as an



object; deletion and creation of files in the directory are semantically
equivalent to writing in the directory, and obtaining file status and opening a
file require that the directory be read. In this case, the flaw may be seen as a
violation of the Bernstein conditions [177] (requiring no reading during
writing, and a single writer), which means that the flaw is one of improper
sequencing.

At the abstraction level corresponding to design, the attacking process should
not be able to write into the directory in the first place, leading to a
characterization of the flaw as one of improper choice of initial protection
domain. This is not a valid characterization at the implementation level
because both the attacking process and the xterm are being executed by the
same user and the semantics of the implementation of the UNIX operating
system require that both processes be able to access the same objects in the
same way.

At the implementation level, with respect to the xterm process and the RISOS
taxonomy, the xterm flaw is clearly an asynchronous validation/inadequate
serialization flaw because the file access is checked and then opened non-
atomically. From the point of view of the attacker, the ability to delete the file
makes the flaw an exploitable logic error as well as a violable
prohibition/limit flaw because the attacker is manipulating a binding in the
system’s domain. And from the operating system’s point of view, the flaw is
an inconsistent parameter validation flaw because the access check and open
use the same parameters, but the objects they refer to are different, and this is
not checked.

Interestingly, moving up in the hierarchy of abstractions, the flaw may once
again be characterized as a violation of the Bernstein conditions, or the non-
atomicity of an operation that should be atomic; in either case, it is an
asynchronous validation/inadequate serialization flaw. So the process view
prevails.

At the design level, a write being allowed where it should not be is an



inadequate identification/authentication/authorization flaw because the
resource (the containing directory) is not adequately protected. Again, owing
to the nature of the protection model of the UNIX operating system, this
would not be a valid characterization at the implementation level.

Hence, this single flaw has several different characterizations. At the
implementation level, depending on the classifier’s point of view, the xterm
flaw can be classified in three different ways. Trying to abstract the
underlying principles under one taxonomy places the flaw in a fourth class,
and under the other taxonomy, one view (the xterm process view) prevails.
Moving up to the design level, a completely different classification is needed.
Clearly, the ambiguity in the PA and RISOS classifications makes it difficult
to classify flaws with precision.

The classification under the NRL taxonomy depends on whether this flaw was
intentional or not; the history is unclear. If it was intentional, at the lowest
level, it is an inadvertent flaw of serialization/aliasing; if it was unintentional
(because on earlier systems xterm need not be privileged), it is a non-
malicious:other flaw. In either case, at higher levels of abstraction, the
classification would parallel that of the RISOS scheme. Given the history, the
time of introduction is clearly during development, and the location is in the
class support: privileged utilities. So, this taxonomy classifies this particular
flaw unambiguously on two axes. However, the third classification is
ambiguous even when points of view and levels of abstraction are ignored.

The selection criteria for fault classification in Aslam’s taxonomy places the
flaw in the object installed with incorrect permissions class from the point of
view of the attacking program (because the attacking program can delete the
file), in the access rights validation error class from the point of view of the
xterm program (because xterm does not properly validate the file at the time
of access), and in the improper or inadequate serialization error class from
the point of view of the operating system (because the deletion and creation
should not be interspersed between the access and open). As an aside, in the



absence of the explicit decision procedure, the flaw could also have been
placed in a fourth class, race conditions. So, although this taxonomy classifies
flaws into specific classes, the class into which a flaw is placed is a function of
the decision procedure as well as the nature of the flaw itself. The fact that
this ambiguity of classification is not a unique characteristic of one flaw is
apparent when we study the second flaw—the fingerd flaw.

24.4.5.2 The fingerd Buffer Overflow Flaw

With respect to the fingerd process and the PA taxonomy, the buffer overflow
flaw is clearly an improper validation flaw because the problem is failure to
check parameters, leading to addressing of memory not in its memory space
by referencing through an out-of-bounds pointer value. However, with
respect to the attacker process (the finger program), the flaw is one of
improper choice of operand or operation because an operand (the data
written onto the connection) is improper (specifically, too long, and arguably
not what fingerd is to be given). And from the operating system’s point of
view, the flaw is an improper isolation of implementation detail flaw because
the user is allowed to write directly into what should be in the space of the
process (the return address) and to execute what should be treated as data
only.

Moving still higher in the layers of abstraction, the storage space of the return
address is a variable or an object. From the operating system’s point of view,
this makes the flaw an improper change flaw because a parameter—
specifically, the return address—changes unexpectedly. From the fingerd
point of view, however, the more abstract issue is the execution of data (the
input); this is improper validation—specifically, failure to validate the type of
the instructions being executed. So, again, the flaw is an improper validation
flaw.

At the highest level, the system is changing a security-related value in
memory and is executing data that should not be executable. Hence, this is
again an improper choice of initial protection domain flaw. But this is not a



valid characterization at the implementation level because the architectural
design of the system requires the return address to be stored on the stack,
just as the input buffer is allocated on the stack, and, because the hardware
supporting most versions of the UNIX operating system cannot protect
specific words in memory (instead, protection is provided for all words on a
page or segment), the system requires that the process be able to write to, and
read from, its stack.

With respect to the fingerd process using the RISOS taxonomy, the buffer
overflow flaw is clearly an incomplete parameter validation flaw because the
problem is failure to check parameters, allowing the buffer to overflow.
However, with respect to the fingerd process, the flaw is a violable
prohibition/limit flaw because the limit on input data to be sent can be
ignored (violated). And from the operating system’s point of view, the flaw is
an inadequate identification/authentication/authorization flaw because the
user is allowed to write directly to what should be in the space of the process
(the return address) and to execute what should be treated as data only.

Moving still higher, the storage space of the return address is a variable or an
object. From the operating system’s point of view, this makes the flaw one of
asynchronous validation/inadequate serialization because a parameter—
specifically, the return address—changes unexpectedly. From the fingerd
point of view, however, the more abstract issue is the execution of data (the
input); this is improper validation—specifically, failure to validate the type of
the instructions being executed. So the flaw is an inadequate
identification/authentication/authorization flaw.

At the highest level, this is again an inadequate
identification/authentication/authorization flaw because the system is
changing a security-related value in memory and is executing data that
should not be executable. Again, owing to the nature of the protection model
of the UNIX operating system, this would not be a valid characterization at
the implementation level.



The NRL taxonomy suffers from similar problems in its classification by
genesis, which— for inadvertent flaws, as this is—uses the RISOS taxonomy.
In this case, the time of introduction is clearly during development, and the
location is in the support: privileged utilities class. So, this taxonomy
classifies this particular flaw unambiguously on two axes. Note that
knowledge of the history of the program is needed to perform the
classification. A rogue programmer could easily have inserted this
vulnerability into a patch distributed to system administrators, in which case
the genesis classification would be as a malicious flaw, falling in the trapdoor
category, and the time of introduction would be in the operating class.

Finally, under Aslam’s taxonomy, the flaw is a boundary condition error from
the point of view of the attacking program (because the limit on input data
can be ignored) and from the point of view of the fingerd program (because
the process writes beyond a valid address boundary) and an environment
fault from the point of view of the operating system (because the error occurs
when the program is executed on a particular machine—specifically, a stack-
based machine). As an aside, in the absence of the explicit decision
procedure, the flaw could also have been placed in the class of access rights
validation errors because the code executed in the input buffer should be data
only and because the return address is outside the protection domain of the
process and yet is altered by it. So, again, this taxonomy satisfies the decision
procedure criterion, but not the uniqueness criterion.

The RISOS classifications are somewhat more consistent among the levels of
abstraction because the improper authorization classification runs through
the layers of abstraction. However, point of view plays a role here because
that classification applies to the operating system’s point of view at two levels
and to the process view between them. This, again, limits the usefulness of
the classification scheme. Because Landwehr’s work is based on RISOS, it has
similar problems.

24.4.5.3 Summary



Flaw classification is not consistent among different levels of abstraction.
Ideally, a flaw should be classified the same at all levels (possibly with more
refinement at lower levels). This problem is ameliorated somewhat by the
overlap of the flaw classifications because as one refines the flaws, the flaws
may shift classes. However, the classes themselves should be distinct; they
are not, leading to this problem.

The point of view is also a problem. The point of view should not affect the
class into which a flaw falls, but, as the examples show, it clearly does. So, can
we use this as a tool for classification—that is, identify flaws on the basis of
the three classes into which they fall? The problem is that the classes are not
partitions; they overlap, and so it is often not clear which class should be used
for a component of the triple.

In short, the xterm and fingerd examples demonstrate weaknesses of the PA,
RISOS, NRL, and Aslam classifications: either the classifications of some
flaws are not well defined or they are arbitrary and vary with the levels of
abstraction and points of view from which the flaws are considered.

24.5 Standards

Although not frameworks in the above sense, several descriptive databases
have been used to examine vulnerabilities. Here, we examine the two mosst
widely used ones.

24.5.1 Common Vulnerabilities and Exposures (CVE)

Originally called “Common Vulnerabilities Enumeration” (CVE), the CVE
grew out of a need to standardize terminology for vulnerabilities [2147].
Vendors often identified, and described, the same vulnerability differently.
Thus, one could not tell whether two vulnerabilities were the same without
analysis. In addition, databases of attacks viewed vulnerabilities as parts of
attacks; databases of software faults considered vulnerabilities as faults; and
other databases described vulnerabilities through their own perspective.



Correlating the vulnerabilities in the databases required considerable
analysis.

CVE’s goal was to change this state of affairs. Started at MITRE Corp. [1250],
it assigned a label to each vulnerability. Then vendors and databases could
simply cite the number to make clear which vulnerability was being
discussed. CVE was designed to enable interoperability among the many tools
and databases that identified vulnerabilities, and thus needed to be
independent of their perspectives. MITRE also developed governance
procedures, including a CVE Board to provide input on the nature of specific
vulnerabilities, to determine whether two or more vulnerabilities overlap, and
the CVE program’s management and direction [116]. CVE Numbering
Authorities are organizations authorized to assign CVE numbers for a distinct
scope, usually for their products. Initially, CVE numbers had exactly 4 digits
to simplify automated parsing. With the explosion of vulnerability reports,
MITRE and the CVE Board decided to allow CVE numbers to have 4 or more
digits; the change took effect in January 2014.

A CVE entry consists of several fields. It gives an identifier consisting of the
year the CVE number is requested and a CVE number, a brief description,
and then references public reports from groups that have reported this
vulnerability.

EXAMPLE: The entry for the xterm race condition in Section 24.3.1 contains
the following information [2148]:

CVE-ID: CVE-1999-0965

Description: Race condition in xterm allows users to modify arbitrary files via
the logging option

References:

• CERT:CA-93.17



• XF:xterm

Date Entry Created: 20000104

The entry was created on January 4, 2000. The Computer Emergency
Response Team (CERT) created an advisory (CA-93.17) for this vulnerability,
and the X-Force, a corporate vulnerability reporting group, reported this as
“xterm”.

A buffer overflow in a function in the GNU C library has the following entry:
[2149]

CVE-ID: CVE-2016-3706

Description: Stack-based buffer overflow in the getaddrinfo function in
sysdeps/posix/getaddrinfo.c in the GNU C Library (aka glibc or libc6) allows
remote attackers to cause a denial of service (crash) via vectors involving
hostent conversion. NOTE: this vulnerability exists because of an incomplete
fix for CVE-2013-4458.

References:

CONFIRM:https://sourceware.org/bugzilla/show_bug.cgi?id=20010

CONFIRM:https://sourceware.org/git/gitweb.cgi?
p=glibc.git;h=4ab2ab03d4351914ee53248dc5aef4a8c88ff8b9

CONFIRM:http://www-01.ibm.com/support/docview.wss?
uid=swg21995039

SUSE:openSUSE-SU-2016:1527

URL:http://lists.opensuse.org/opensuse-updates/2016-06/msg00030.html

SUSE:openSUSE-SU-2016:1779



URL:http://lists.opensuse.org/opensuse-updates/2016-07/msg00039.html

BID:88440

URL:http://www.securityfocus.com/bid/88440

Date Entry Created: 20160330

This more recent vulnerability shows several more public announcements of
the vulnerability.2 SUSE is a version of Linux, and the BID entry refers to the
Bugtraq Identification database. The entry was created on March 30, 2016.

2The second and third line in the References of the GNU C library example is
shown as two lines for readability

The CVE database was started in 1999, and currently has over 82,000 entries.
It is used by over 150 organizations, including major security vendors such as
McAfee, Inc., Tripwire, Inc., Trend Micro, Inc., and Symantec, computer and
software vendors such as Apple, Inc., Juniper Networks, Inc., IBM, and Red
Hat, Inc., and other groups such as the CERT/CC and the U.S. National
Institute for Standards and Technology [489].

24.5.2 Common Weaknesses and Exposures (CWE)

As work to expand the CVE database continued, the developers realized that
another database was needed to list the weaknesses that underlay these
vulnerabilities. Such a database would provide useful information to analysts
describing vulnerabilities in programs, and especially to describe the
coverage of automated code analyzers. This database would enumerate the
weaknesses, idiosyncrasies, flaws, and faults (WIFF), and so initially was the
Common WIFF Enumeration, or CWE; the acronym subsequently evolved to
Common Weaknesses and Exposures. The developers worked with NIST, the
vulnerabilities research community, and vendors to develop the list. The
initial proposed CWE contained 28 weaknesses [1263].



In brief, the CWE is a list of common software weaknesses [2150]. It
encompasses most of the software weaknesses underlying the vulnerabilities
in the CVE list. An entry in the CWE list contains an identifier, description,
applicable environment, common consequences, how likely the weakness is
to be exploited, examples, possible mitigations, a list of relationships to other
CWE entries, and other information. The web interface to the database allows
a variety of views of each entry, so the user can focus on the parts of the entry
deemed most critical.

Although organized as a list, the CWE elements can be viewed as a graph
because some weaknesses are refinements of others. It is not, however, a tree
because some nodes with no children have multiple parents.

EXAMPLE: The “Development Concepts” (CWE-699) view has a number of
child entries. One, the “Violation of Secure Design Principles (CWE-657), is
the parent to “Execution with Unnecessary Privileges”, which has no children.
However, it is a child of numerous other entries such as “Privilege/Sandbox
Issues” (CWE-265) and “Improper Privilege Management” (CWE-269). The
former is a child of “Permissions, Privileges, and Access Controls” (CWE-
264), which is in turn a child of “Security Features” (CWE-254); that entry in
turn is a child of “Source Code” (CWE-18), itself a child of “Code” (CWE-17),
and that entry has no parent.

There are seven types of entries. In these, a “weakness” is defined as a
“mistake in software that could contribute to the introduction of
vulnerabilities within that software” [2158].

• A category entry is an entry that identifies a set of entries having a
characteristic in common with the current entry;

• A chain entry is a sequence of distinct weaknesses that can be linked
together within software; for example, one weakness can create the
conditions necessary to cause another weakness to become exploitable;



• A compound element composite entry is an entry that consists of multiple
weaknesses that all must be present to enable an exploit; and

• A view entry provides a view of the CWE database for a particular weakness
or set of weaknesses;

• A weakness variant entry describes a weakness that is described in terms of
a particular technology or language;

• A weakness base entry is an entry that describes weakness more abstractly
than a weakness variant entry, but in sufficient detail to lead to specific
methods of detection and remediation; and

• A weakness class entry is an entry that describes a weakness in a way that is
independent of any specific language or technology.

EXAMPLE: An example of a view entry is CWE-631, Resource-specific
Weaknesses. It refers to those CWE entries that occur when the software
handles resources of different types. Its children are CWE-632 (Weaknesses
that Affect Files or Directories), CWE-633 (Weaknesses that Affect memory),
and CWE-634 (Weaknesses that Affect System Processes). These in turn are
parents of other weaknesses.

An example of a chain entry is CWE-680, Integer Overflow to Buffer
Overflow. It begins with integer overflow (CWE-190), which leads to a failure
to restrict some operation to within the bounds of a buffer (CWE-119). Other
composite entries may have chains of more than 2 entries.

An example of a composite entry is CWE-61, UNIX Symbolic Link (Symlink)
Following. It requires five weaknesses to be present before it can be exploited,
including a particular setting of permissions (CWE-275), the symbolic name
not being mapped to the right object (CWE-3856), and concurrent execution
using a shared resource and lacking proper synchronization (CWE-362).

One important element of the CWE entries is the abstraction level of the



weakness because this tires to avoid the abstraction problem described in
Section 24.4.5. The CWE defines three levels of abstraction [2167]:

• Class describes a weakness at an abstract level, but independently of any
particular programming language or environment;

• Base describes a weakness at an abstract level but with enough detail for the
reader to develop specific methods of detection, prevention, and mediation
for a technology; and

• Variant describes a weakness at a low level, usually tied to a specific
programming language, system, or technology.

These levels are not formally defined, but they provide a useful demarcation
of vulnerabilities related to design, implementation, or both design and
implementation. The importance of this field is it can be used to determine
which weaknesses are most relevant to the current step in the software
development life cycle.

The CWE list enables developers to anticipate problems and guard against
them. By providing a set of entries describing weaknesses, developers can
determine which tools are best suited for their use. Like CVE, CWE provides a
common language for describing weaknesses.

24.6 Gupta and Gligor’s Theory of Penetration
Analysis

Gupta and Gligor [841] developed a formal analysis technique arising from
failure to perform adequate checks. This is not a vulnerabilities model,
because it presupposes classification— that is, the vulnerabilities that their
technique detects are asserted to be vulnerabilities arising from failure to
perform adequate checks. As a scheme for classifying flaws, this obviously is
not adequate. As a method for detecting previously undetected flaws of the
designated class, it is very elegant. We present this model here because it is



an excellent example of the use of a classification scheme.

Gupta and Gligor make two hypotheses.

Hypothesis of Penetration Patterns. “[S]ystem flaws that cause a large
class of penetration patterns can be identified in system (i.e., TCB) source
code as incorrect / absent condition checks or integrated flows that violate
the intentions of the system designers.”3

3See [841], p. 67.

If true, this hypothesis implies that an appropriate set of design and
implementation principles would prevent vulnerabilities. This leads to the
next hypothesis:

Hypothesis of Penetration-Resistant Systems. “[A] system (i.e., TCB)
is largely resistant to penetration if it adheres to a specific set of design
properties.”4

4See [841], p. 67.

Gupta and Gligor select and formalize several properties, and from those
properties derive checks to determine if the system correctly obeys them.

• System isolation or tamperproofness, which states that users must not be
able to tamper with the system. This encompasses parameter checking at the
system boundary, separation of user and system addresses, and allowing
entry to the system only at well-defined gates at which parameters and
privileges can be validated.

• System non-circumventability, which states that the system must check all
references to objects.

• Consistency of global objects belonging to the system, with respect to both
timing and storage.



• Elimination of undesirable system and user dependencies, which usually
refers to prevention of denial-of-service attacks.

For modeling purposes, Gupta and Gligor focus on the consistency principle
and set as their policy that accesses to system entities and functions were
allowed only if the conditions for access were validated atomically.

24.6.1 The Flow-Based Model of Penetration Analysis

Gupta and Gligor’s model focuses on the flow of control during the validation
of parameters. Consider the system function rmdir [842]. It takes a single
parameter. When invoked, it allocates space for a copy of the parameter on
the stack and copies that parameter into the allocated storage. Thus, control
flows through three steps: the allocation of storage, the binding of the
parameter with the formal argument, and the copying of the formal argument
(parameter) to the storage. The failure to check the length of the parameter is
the flaw.

The model represents the system as a sequence of states and state transitions.
The abstract cell set C = {c1, . . . , cn} is the set of system entities that holds
information. The system function set F = {f1, . . . , fx} is the set of all system
functions that the user may invoke; those involving time delays (such as sleep
and pause) are also in the set Z ⊆ F . The system condition set R = {r1, . . . ,
rm} is the set of all parameter checks. The information flow set is the set of all
possible information flows between pairs of abstract cells and is represented
as IF = C × C, where each (ci, cj) means that information flows from ci to cj.
Similarly, the call relationship between system functions is denoted by SF = F
× F , where each (fi, fj) means that fi calls fj or fi returns to fj. The latter two
sets capture the flow of information and control throughout the system.

System-critical functions are functions that the analysts deem critical with
respect to penetration; examples include functions that cause time delays
(because this may allow a window during which checked parameters are
changed) and functions that can cause the system to crash. These functions



are represented by the set K = {k1, . . . , ks}. System entry points are the gates
through which user processes invoke system functions; they are represented
by the set E = e1, . . . , et.

Figure 24–11: The integrated flow path for the rmdir system
function in one version of the UNIX operating system. From [842],
Figure 11(a), p. 178.

EXAMPLE: Consider the rmdir function. Figure 24–11 shows the flow of
control and information. fname points to a global entity and therefore is a
member of C. rmdir is a system function and thus is in F; it is also an entry
point and thus is in E. The parameter fname cannot be an illegal address, and
the string it points to must be smaller than the space allocated to buf. This
means that the predicates islegal(fname) and length(fname) < space f or(bu
f) are in R. We deem strcpy to be a system-critical function because it does
not check destination bounds or source addresses, so strcpy is in K. Because
information flows from fname to buf, the tuple (fname, buf) ∈ IF , and
because the rmdir function calls strcpy, (rmdir, strcpy) ∈ SF.



The alter set AC = {(c1, R1), . . . , (cn, Rn)}, where Ri ⊆ R, is the set of abstract
cells that can be altered and the conditions that must be validated first. The
predicate Element(ci, Ri) means that the conditions in Ri must be checked
before ci is viewed or altered. The view set

, where

, is the set of abstract cells that can be viewed and the conditions that must be
validated first. The critical function set

and the entry point set

are defined analogously.

EXAMPLE: Before strcpy views fname, it must validate the address as legal,
and before strcpy alters buf, it must validate the size of fname as being small
enough. Thus, (strcpy, islegal(fname) ∧ length(fname) < space f or(buf)) ∈
KF .

The model defines three functions for capturing the history of transitions.
Each triple in the altered cells set ACS = {(c1, e1, pathcond1), . . . ,} means that
ci has been altered by invoking entry point ei, and pathcondi ⊆ IF ∪ SF ∪ R is
the sequence (ordered set) of information flows, function flows, and
conditions along the path. The viewed cells set

and the critical functions invoked set

are defined analogously. The triplet (ACS, VCS, KFS) makes up the state of
the system.



A state is said to be penetration-resistant if it meets the following three
requirements.

1. For all states (c, e, p) ∈ ACS:

a. The conditions associated with the entry point e ∈ EF are a subset of the
conditions checked in p.

b. The conditions associated with the cell c ∈ AC are a subset of the
conditions checked in p.

c. There is a subsequence of p that contains the last element of p, contains the
conditions in part b, and does not contain any elements (f, g) ∈ SF with f ∈ Z
or g ∈ Z.

2. Requirement 1, but for (c, e, p) ∈ VCS rather than ACS

3. Requirement 1, but for (k, e, p) ∈ KFS rather than (c, e, p) ∈ ACS

These requirements define a state invariant SI. Intuitively, SI says that if the
system function checks all conditions on the global variables and parameters
to be altered (requirement 1) or viewed (requirement 2), and all conditions on
the system-critical functions (requirement 3), then the system cannot be
penetrated using a technique that exploits a failure to check the conditions.
Part (a) of each requirement requires checking of conditions on entry. Part
(b) requires checking of conditions on the memory locations or system-
critical functions. Part (c) requires checking of changes in previously checked
parameters as a result of a time delay caused by a function.

State transition rules control the updating of information as the system
changes. If τ is a state transition function and S = (ACS, VCS, KFS) is the
current state, then τ(S) = S′ = (ACS′, VCS′, KFS′). In this model, τ is
alter_cell, view_cell, or invoke_crit_func.

The function alter_cell(c, e, p) checks that c ∈ C, e ∈ E, and p ∈ IF ∪ SF ∪ R



and that requirement 1 holds. If so, ACS′ = ACS ∪ {(c, e, p)}, VCS′ = VCS, and
KFS′ = KFS. If not, the function has attempted to move the system into a
state that is not penetration-resistant.

The function view_cell(c, e, p) checks that c ∈ C, e ∈ E, and p ∈ IF ∪ SF ∪ R,
and that requirement 2 holds. If so, ACS′ = ACS, VCS′ = VCS ∪ {(c, e, p)}, and
KFS′ = KFS. If not, the function has attempted to move the system into a
state that is not penetration-resistant.

Finally, the function invoke_crit_func(k, e, p) checks that k ∈ K, e ∈ E, and p
∈ IF ∪ SF ∪ R and that requirement 3 holds. If so, ACS′ = ACS, VCS′ = VCS,
and KFS′ = KFS ∪ {(f, e, p)}. If not, the function has attempted to move the
system into a state that is not penetration-resistant.

Theorem 24.1. Let the system be in a state V that satisfies the state
invariant SI. Then, if a state transition function is applied to V, the resulting
state V′ will also satisfy SI.

EXAMPLE: Consider the rmdir function, and assume that the system is in a
penetration-resistant state. The call to strcpy is a state transition in which a
system-critical function is invoked, so the tuple is (strcpy, rmdir, p), where p
is the sequence of conditions, information flows, and function invocations so
far. The invoke_crit_func function tells us that requirement 3 must hold.
Because there is no condition associated with the entry point rmdir, 3a holds.
However, requirement 3b does not hold: the conditions for strcpy,
{islegal(fname) ∧ length(fname) < space f or(bu f)} ⊄ p because they have
not been checked within the TCB. After the rmdir system call, the system is
no longer in a penetration-resistant state. The specific attack on this system
call is to give it an argument sufficiently long to overflow buf and alter the
stack, much as the fingerd bug in Section 24.3.1 did.

24.6.2 The Automated Penetration Analysis Tool

Gupta and Gligor designed and implemented an automated penetration



analysis (APA) tool that performed this testing. The primitive flow generator
reduces C statements to Prolog facts recording data and control flow
information, condition statements, and sequencing information. Two other
modules, the information flow integrator and the function flow integrator,
integrate execution paths derived from the primitive flow statements to show
pertinent flows of information, flows of control among functions, and how the
conditions affect the execution paths. The condition set consistency prover
analyzes conditions along an execution path and reports inconsistencies.
Finally, the flaw detection module applies the Hypothesis of Penetration
Patterns by determining whether the conditions for each entry point conform
to penetration-resistant specifications.

24.6.3 Discussion

The Gupta-Gligor theory presents a formalization of one of the classes of
vulnerabilities— specifically, inconsistent and incomplete parameter
validation (possibly combined with improper change). The formalization
builds preconditions for executing system functions; the APA tool verifies
that these preconditions hold (or determines that they do not).

Whether or not this technique can be generalized to other classes of flaws is
an open question. In particular, the technique is extremely sensitive to the
level of detail at which the system is analyzed and to the quality of the
specifications describing the policy. This work is best seen as a foundation on
which future automation of penetration analysis may build and a
reinforcement of the idea that automated tools can aid an analyst in
uncovering system vulnerabilities.

Could the theory be generalized to classify vulnerabilities? The model
assumes an existing classification scheme (specifically, improper or
inadequate checks) and describes a technique and a tool for detecting
vulnerabilities of this class. Were the purpose of the model to classify
vulnerabilities (rather than to detect them), basing classification on the
nature of the tools that detect them is tautological and a single vulnerability



could fall into several classes depending on how the tool was crafted. Hence,
such an (inverted) application of the Gupta-Gligor approach would suffer
from the same flaws that plague the other classification schemes. However,
the purpose of the model is to detect, not to classify, vulnerabilities of one
specific type.

24.7 Summary

As the Internet has grown, so has connectivity, enabling attackers to break
into an increasing number of systems. Often very inexperienced attackers
appear to have used extremely sophisticated techniques to break into
systems, but on investigation it can be seen that they have used attack tools.
Indeed, attack tools are becoming very widespread, and most systems cannot
resist a determined attack.

In the past, attention was focused on building secure systems. Because of the
large number of nonsecure systems in use today, it is unrealistic to expect
that new, secure systems will be deployed widely enough to protect the
companies and individuals connected to the Internet. Instead, existing
systems will be made more secure, and as vulnerabilities are found they will
be eliminated or monitored. The vulnerability models discussed in this
chapter guide us in improving the software engineering cycle and in reducing
the risk of introducing new vulnerabilities, and penetration analyses enable
us to test admittedly nonsecure systems to determine whether or not they are
sufficiently secure for the uses to which they are put.

24.8 Research Issues

Research in the area of vulnerability analysis focuses on discovery of
previously unknown vulnerabilities and quantification of the security of
systems according to some metric. All agree that the security of existing
systems is poor—but how poor is another matter.



Adaptive security springs from fault-tolerant methods. When a system is
under attack, security mechanisms limit the actions of suspect processes.
When a system is not under attack, less stringent controls are applied. Under
what conditions should one begin adapting in order to minimize the impact of
the attack while still maximizing openness? Do the attack-detecting sensors
themselves introduce vulnerabilities? Minimizing false alarms (and thus
unnecessary impact on system performance) is a difficult problem.

The best test of a model is how well it describes real-world phenomena.
Ideally, a vulnerability model can describe all the security holes in a system
and can provide guidance on how to verify or refute the existence of those
holes. Most vulnerability models are based on formal methods. Those
methods are adapted to systems in which security policies cannot be
rigorously defined. One research issue is how to retain enough formalism to
prove that a model works and yet eliminate any formalism that is not relevant
to the existing system.

Vulnerability databases add to this question. They provide much of the
historical basis for the first step in the Flaw Hypothesis Methodology. The
databases support research on characterization of vulnerabilities. The data
collected about the vulnerabilities varies depending on the purpose of the
database. Sharing data raises problems of trust and interpretation. Two
workshops on sharing information from vulnerability databases concluded
that a central database is impractical and emphasized the need to share data.
One interesting aspect of such sharing is the provision of a common
numbering scheme. Each database uses its own scheme but also includes the
number from the common enumeration scheme. Researchers at MITRE have
pioneered a numbering scheme called Common Vulnerabilities and
Exposures (CVE), which provides each vulnerability with a unique number.
Vendors and vulnerability databases can use these numbers to correlate
vulnerabilities. What constitutes a “vulnerability” for the purposes of this
scheme is vague. Currently, an editorial board determines whether a
proposed vulnerability is one vulnerability, many vulnerabilities, a repeat of a



vulnerability that has already been numbered, or not a vulnerability.

Finally, the precise definitions of “attack” and “vulnerability” are under study.
Although the current definitions have much in common, the various nuances
of each paper and study color its precise meaning. Rigorous definitions of
these two terms would lead to a clearer understanding of how and why
systems fail.

24.9 Further Reading

Geer and Harthorne [758] assert that penetration testing is an art. Thompson
[1885] gives an overview of testing applications. McLaughlin et al. discuss
penetration testing in the smart grid [1302]. Dimkov et al. present
methodologies for using social engineering in penetration testing [572].

Studies of vulnerabilities analyses and countermeasures have become
common. For example, many buffer overflow analyses and countermeasures
have been developed [32, 193,
229,238,408,469,471,472,886,1106,1727,1964,2099]. Race conditions too
have been studied thoroughly, especially in the context of time-of-check-to-
time-of-use flaws [227,270,338,339, 527, 1169, 1906, 2000, 2081]. Similar
analyses exist for other types of vulnerabilities.

Some analyses focus on vulnerabilities in specific domains such as electronic
voting systems [121, 1095], automobiles [396, 1103], medical devices [554,
862] and hardware [584, 715, 1063]. These studies, and others, indicate that
security is usually an afterthought in systems developed for non-technical
applications.

Numerous techniques have been used to find vulnerabilities such as static
and dynamic analysis [988, 1208, 1639, 1943, 1989, 2047, 2053]. Some work
combines static and dynamic analysis [21, 1538]. Other methods include fault
injection [768, 1433], examining execution traces [681, 1730]. Perl et al.
[1520] look specifically at finding vulnerabilities in code repositories. Kupsch



and Miller compare manual and automated vulnerability assessment [1122].

Other taxonomies focus on the use of vulnerabilities. Lindqvist and Jonsson
[1193] present a classification of intrusions partially based on the
vulnerabilities exploited, inducing a classification of vulnerabilities. Krsul
[1112] used Aslam’s scheme as a basis for classifying vulnerabilities based on
programmer assumptions. Tsipenyuk, Chess, and McGraw [1913] present a
taxonomy intended for programmers. McPhee [1310] discusses how IBM’s
OS/VS2 Release 2 handles vulnerabilities related to system integrity. Gray
[819] gives a historical perspective of vulnerability analysis. Igure and
WIlliams [948] present a valuable review of taxonomies and classification
schemes of both vulnerability and attack models. Several efforts have
examined how and when to disclose vulnerabilities [375, 931, 2175, 2265].

Numerous other lists of common weaknesses can be mapped into the CWE
list. These other lists identify the weaknesses deemed most common in the
particular environment for which they were created. For example, the
OWASP Top 10 [1490] list focuses on web-based weaknesses, whereas the
SANS Top 25 Programming Errors [416] focuses on software design.

24.10 Exercises

1. Classify the following vulnerabilities using the RISOS model. Assume that
the classification is for the implementation level. Justify your answer.

(a) The presence of the “wiz” command in the sendmail program (see Section
24.2.9).

(b) The failure to handle the IFS shell variable by loadmodule (see Section
24.2.9).

(c) The failure to select an Administrator password that was difficult to guess
(see Section 24.2.10).



(d) The failure of the Burroughs system to detect offline changes to files (see
Section 24.2.7).

2. Classify the vulnerabilities in Exercise 1 using the PA model. Assume that
the classification is for the implementation level. Justify your answer.

3. The C shell does not treat the IFS variable as a special variable. (That is,
the C shell separates arguments to commands by white spaces; this behavior
is built in and cannot be changed.) How might this affect the loadmodule
exploitation?

4. A common error on UNIX systems occurs during the configuration of bind,
a directory name server. The time-to-expire field is set at 0.5 because the
administrator believes that this field’s unit is minutes (and wishes to set the
time to 30 seconds). However, bind expects the field to be in seconds and
reads the value as 0—meaning that no data is ever expired.

(a) Classify this vulnerability using the RISOS model, and justify your answer.

(b) Classify this vulnerability using the PA model, and justify your answer.

(c) Classify this vulnerability using Aslam’s model, and justify your answer.

5. Can the UNIX Bourne shell variable HOME, which identifies the home
directory of a user to programs that read start-up files from the user’s home
directory, be used to compromise a system? If so, how?

6. An attacker breaks into a Web server running on a Windows 2000-based
system. Because of the ease with which he broke in, he concludes that
Windows 2000 is an operating system with very poor security features. Is his
conclusion reasonable? Why or why not?

7. Generalize the vulnerability described in Section 24.2.7 in order to suggest
other ways in which the system could be penetrated.



8. Generalize the example in Section 24.2.8 in order to describe other
weaknesses that the security of the computer system might have.

9. Why might an analyst care how similar two vulnerabilities are?

10. One expert noted that the PA model and the RISOS model are isomorphic.
Show that the PA vulnerability classifications correspond to the RISOS
vulnerability classes and vice versa.

11. The NRL classification scheme has three axes: genesis, time of
introduction, and location. Name two other axes that would be of interest to
an analyst. Justify your answer.

12. In the NRL classification scheme for the “time of introduction” axis, must
the development phase precede the maintenance and operation phases, and
must the maintenance phase precede the operation phase? Justify your
answer.

13. In the NRL classification scheme for the “genesis” axis, how might one
determine whether a vulnerability is “malicious” or “non-malicious”?

14. In the NRL classification scheme for the “genesis” axis, can the classes
“Trojan horse” and “covert channel” overlap? Justify your answer. If your
answer is yes, describe a Trojan horse that is also a covert channel or vice
versa.

15. Aslam’s classification scheme classifies each vulnerability into a single
category based on a decision tree that requires “yes” or “no” answers to
questions about the vulnerability. A researcher has suggested replacing the
tree with a vector, the components of which correspond to questions about
the vulnerability. A “1” in the vector corresponds to a “yes” answer to the
question; a “0” corresponds to a “no” answer. Compare and contrast the two
approaches.

16. For the fingerd security hole to be exploited, certain conditions must hold.



Based on the discussion in Section 24.3.1, enumerate these conditions.

17. For the xterm security hole to be exploited, certain conditions must hold.
Based on the discussion in Section 24.3.1, enumerate these conditions.

18. Use Gupta and Gligor’s technique to analyze a UNIX kernel for security
flaws in the open system call. Check for problems with the first argument,
which is a character string.

19. Generalize Gupta and Gligor’s technique to extend to integer values. You
should check for overflow (both negative and positive).

(a) Describe how to check for problems with the second argument. You will
need to determine the maximum meaningful value for that argument.

(b) Describe how to check for problems with the third argument, which is a
UNIX protection mode. Its maximum meaningful value is (octal) 7777, and its
minimum meaningful value is 0.

20. Perform a penetration test on a system after you obtain
authorization to do so. Apply the Flaw Hypothesis Methodology to obtain
a meaningful assessment of the system’s security.



Chapter 25. Auditing
LADY MACBETH: Your servants ever Have theirs, themselves and what is 
theirs, in compt, To make their audit at your highness’ pleasure, Still to return 
your own.

— The Tragedy of Macbeth, I, vi, 27–30.

Auditing is a technique for determining security violations. This chapter 
presents the notions of logging (recording of system events and actions) and 
auditing (analysis of these records). Auditing plays a major role in detecting 
security violations and in postmortem analysis to determine precisely what 
happened and how. This makes an effective auditing subsystem a key security 
component of any system.

25.1 Definition

The development of techniques for auditing computer systems sprang from 
the need to trace access to sensitive or important information stored on 
computer systems as well as access to the computer systems themselves. 
Anderson [52] first proposed the use of audit trails to monitor threats. The 
use of existing audit records suggested the development of simple tools that 
would check for unauthorized access to systems and files. The premise—that 
the logging mechanism was in place and active and logged the relevant events
—required that the logs be augmented with additional information, but 
Anderson did not propose modification of the basic structure of the system’s 
logging design, the implication being that redesign of the security monitoring



mechanism was beyond the scope of the study.

Definition 25–1. Logging is the recording of events or statistics to provide
information about system use and performance.

The log need not be on the computer. For example, images from a camera
may play a role in the analysis of system state. For our purposes, we simply
note these records may be treated as log records.

Definition 25–2. Auditing is the analysis of records to present information
about the system in a clear and understandable manner.

With respect to computer security, logs provide a mechanism for analyzing
the system security state, either to determine if a requested action will put the
system in a non-secure state or to determine the sequence of events leading to
the system being in a non-secure (compromised) state. If the log records all
events that cause state transitions, as well as the previous and new values of
the objects that are changed, the system state can be reconstructed at any
time. Even if only a subset of this information is recorded, one might be able
to eliminate some possible causes of a security problem; what remains
provides a valuable starting point for further analysis.

Gligor [778] (cited in [2177]) suggests other uses for the auditing mechanism.
It allows systems analysts to review patterns of usage in order to evaluate the
effectiveness of protection mechanisms. These patterns can be used to
establish expected patterns of resource usage, which are critical for some
intrusion detection systems. (See Chapter 26, “Intrusion Detection.”)
Auditing mechanisms must record any use of privileges. A security control
that would restrict an ordinary user may not restrict the empowered user.
Finally, audit mechanisms might deter attacks because of the record and the
analysis, thereby providing some level of assurance that any violation of
security policies will be detected.

Two distinct but related problems arise: which information to log and which



information to audit. The decision of which events and actions should be
audited requires a knowledge of the security policy of the system, what
attempts to violate that policy involve, and how such attempts can be
detected. The question of how such attempts can be detected raises the
question of what should be logged [1511, 1513, 1514]: what commands must
an attacker use to (attempt to) violate the security policy, what system calls
must be made, who must issue the commands or system calls and in what
order, what objects must be altered, and so forth. Logging of all events
implicitly provides all this information; the problem is how to discern which
parts of the information are relevant, which is the problem of determining
what to audit.

25.2 Anatomy of an Auditing System

An auditing system consists of three components: the logger, the analyzer,
and the notifier. These components collect data, analyze it, and report the
results.

25.2.1 Logger

Logging mechanisms record information. The type and quantity of
information are dictated by system or program configuration parameters. The
mechanisms may record information in binary or human-readable form or
transmit it directly to an analysis mechanism (see Section 25.2.2). A log-
viewing tool is usually provided if the logs are recorded in binary form, so a
user can examine the raw data or manipulate it using text-processing tools.

EXAMPLE: RACF [2271] is a security enhancement package for many IBM
systems such as z/OS and OS/390. Among other events, it logs failed access
attempts and the use of privileges to change security levels, and it can be set
to log RACF interactions. The command LISTUSER lists information about
RACF users as follows:

USER=EW125004   NAME=S.J.TURNER   OWNER=SECADM   CREATED=88.004



  DEFAULT-GROUP=HUMRES    PASSDATE=88.004   PASS-INTERVAL=30
  ATTRIBUTES=ADSP
  REVOKE DATE=NONE    RESUME-DATE=NONE
  LAST-ACCESS=88.020/14:15:10
  CLASS AUTHORIZATIONS=NONE
  NO-INSTALLATION-DATA
  NO-MODEL-NAME
  LOGON ALLOWED     (DAYS)  (TIME)
  --------------------------------
  ANYDAY                    ANYTIME
    GROUP=HUMRES AUTH=JOIN CONNECT-OWNER=SECADM CONNECT-DATE=88.004
      CONNECTS= 15  UACC=READ LAST-CONNECT=88.018/16:45:06
      CONNECT ATTRIBUTES=NONE
      REVOKE DATE=NONE RESUME DATE=NONE
    GROUP=PERSNL AUTH=JOIN CONNECT-OWNER=SECADM CONNECT-DATE:88.004
      CONNECTS= 25 UACC=READ LAST-CONNECT=88.020/14:15:10
      CONNECT ATTRIBUTES=NONE
      REVOKE DATE=NONE RESUME DATE=NONE
    SECURITY-LEVEL=NONE SPECIFIED
    CATEGORY AUTHORIZATION
       NONE SPECIFIED

RACF can also log its interactions with users, so that if a user attempts to
modify it in any way, a log entry will be made.

EXAMPLE: Microsoft’s Windows 10 records events using the Windows Event
Log Service, and stores them in log files [275]. The system event log contains
records of events that Windows and other system level routines generate, for
example a device driver failing to load. The application event log contains
records that applications have produced; the developers determine what
events to log, and whether the event should be recorded in the application
event log or a program-specific event log. The security event log contains
records corresponding to security-critical events such as logging in and out,
system resource overuses, and accesses to system files as defined by the audit
policy. The setup event log records events occurring during application
installations, and forwarded event log records entries forwarded from other
systems.

The Windows 10 logger defines a record as a header followed by a description



and possibly an additional data field. The header contains an event identifier,
user identity information (a user identifier and, if appropriate, an
impersonation identifier), the date and time, the source that caused the
record to be generated, the specific policy setting that triggered the record,
and the computer involved. All records are kept in binary form. A tool called
the event viewer translates the records into readable form.

An example security event log record might look like the following (but would
be displayed in a graphic format):

The system logs logins (logon) and logoffs in the security log. This event arose
from the user “matt” logging out of the laptop system named “McLaren”.

25.2.2 Analyzer

==============================
Log Name: Security
Source:   Microsoft Windows security    Logged:        03/20/2017  12:02:59 PM
Event ID: 4634                          Task Category: Logoff
Level:    Information                   Keywords:      Audit Success
User:     N/A                           Computer:      McLaren
OpCode:   Info
General:

An account was logged off.
Subject:
       Security ID:       MCLAREN\matt
       Account Name:      matt
       Account Domain:    MCLAREN
       Logon ID:          0xACBA30

Details:
+ System
- EventData
    TargetUserSID        S-1-5-22-2039872233-608055118-4446661516-2001
    TargetUserName       matt
    TargetDomainName     MCLAREN
    TargetLogonId        0xacba30



An analyzer takes a log as input and analyzes it. The results of the analysis
may lead to changes in the data being recorded, to detection of some event or
problem, or both.

EXAMPLE: Suppose a system administrator wants to be notified whenever
there is an attempt to login to a non-existent account using ssh. The following
swatchdog patterns [870, 871, 2207] match the lines generated by these
remote connections.

/sshd\[[0-9]*\]:/&/Invalid user/

This line matches all log file entries containing the string “sshd” followed by a
string of digits in square brackets and a colon, and the words “Invalid user”.

EXAMPLE: An intrusion detection system (see Chapter 26) detects attacks by
analyzing log records for unexpected activity or for activity that is known to
be an attempt to compromise the system. The analysis mechanism of the
intrusion detection system is an example of an audit analysis mechanism.

25.2.3 Notifier

The analyzer passes the results of the analysis to the notifier. The notifier
informs the analyst, and other entities, of the results of the audit. The entities
may take some action in response to these results.

EXAMPLE: The swatchdog mentioned above provides a notification facility.
The following lines match the lines generated by the remote connections, as
above, and sends the lines to root and the administrator’s personal account,
heidi. The subject line contains the IP address or host name of the system
from which the attempted connection originated (the tenth field of the line).

watchfor  /sshd\[[0-9]*\]:/&/Invalid user/
      echo red
      mail addresses=root:heidi,subject=“Bad ssh login from $_[10]”



This line matches all log file entries containing the string “sshd” followed by a
string of digits in square brackets and a colon, and the words “Invalid user”.
It then prints the line, in red, on the standard output, and sends the requisite
letter to the accounts root and heidi.

EXAMPLE: Consider the login system described on page 378, in which three
consecutive failed login attempts disable the user’s account. The logging
mechanism records each attempt. The audit mechanism checks the number
of consecutive failed login attempts. When this number reaches 3, the audit
mechanism invokes the notifier, which reports the problem to the system
administrator and disables the account.

25.3 Designing an Auditing System

A single, well-unified logging process is an essential component of computer
security mechanisms [268]. The design of the logging subsystem is an
integral part of the overall system design. The auditing mechanism, which
builds on the data from the logging subsystem, analyzes information related
to the security state of the system and determines if specific actions have
occurred or if certain states have been entered.

The goals of the auditing process determine what information is logged [124,
1511, 1513, 1514]. In general, the auditors desire to detect violations of policy.
Let Ai be the set of possible actions on a system. The security policy provides
a set of constraints pi that the design must meet in order for the system to be
secure. This implies that the functions that could cause those constraints to
fail must be audited.

EXAMPLE: Consider the design hierarchy suggested by PSOS [659, 1454,
1455]. At each level, the design of the abstract machine is verified not to
violate the predicates pi. The predicates control specific actions at that level.
By auditing those actions, one can determine if an attempt to breach security
has occurred. Enough information must be logged to allow auditing at these



points.

Represent constraints as “action ⇒ condition.” Implication requires that the
action be true (which means that the action occurred, in this context) before
any valid conclusion about the condition can be deduced. Although this
notation is unusual, it allows us simply to list constraints against which
records can be audited. Furthermore, the goal of the auditing is to determine
if the policy has been violated (causing a breach of security), so the result
(success or failure) of the operation should match the satisfaction of the
constraint. That is, if the constraint is true, the result is irrelevant, but if the
constraint is false and the operation is successful, a security violation has
occurred.

EXAMPLE: Recall that the simplest form of the Bell-LaPadula policy model
linearly orders the security levels Li. A subject S has the level L(S), and the
object O has the level L(O). Under this policy, a system state is illegal if S
reads O when L(S) < L(O) or if S writes to O when L(S) > L(O). The
corresponding constraints are

1. S reads O ⇒ L(S) ≥ L(O)

2. S writes O ⇒ L(S) ≤ L(O)

Auditing for security violations merely requires auditing for writes from a
subject to a lower-level object or reads from a higher-level object and
checking for violations of these constraints. Logs must contain security levels
of the subjects and objects involved, the action (to determine which
constraint applies), and the result (success or failure). From these logs,
testing for the violation of the constraints above is trivial.

Surprisingly, the names of the subject and object need not be recorded.
However, in practice, the site security policy would require the security
analyst to identify both the object of the violation and the user who attempted
the violation. With this modification of the policy, the names of the subject



and object would also be recorded.

Removing the assumption of tranquility (see Section 5.3) adds very little
complication from an auditing perspective. Without tranquility, a subject can
change the security level or the categories of any subject or object it controls
to a level no greater than its own (this allows declassification). The command
to do this and the old and new security levels and categories must be
recorded.

To summarize in this limited case, auditing of Bell-LaPadula-based systems
requires logging of the following items.

• For reads and writes, the subject’s security level, the object’s security level,
and the result of the action

• For systems without tranquility, the subject or object, its old and new
security levels, the security level of the subject changing the security level,
and the result.

EXAMPLE: The Chinese Wall policy model partitions the set of all subjects
and objects into “conflict of interest” classes (called COIs) and partitions each
COI into “company datasets” (called CDs). Let the COI of subject S be COI(S)
and let the company dataset of subject S be CD(S); for object O, define
COI(O) and CD(O) similarly. O may contain sanitized information, which can
be read by anyone, or unsanitized information, which can be read only by a
subject in another COI class or by one that is in the COI class of the object
and has already accessed another object in CD(O). The predicate san(O) is
true if O contains only sanitized information and is false if it contains
unsanitized information.

Let CDH(S) be the set of all CDs accessed by the subject S so far. Intuitively, if
S has read some object in a dataset, it can read other objects in the same
dataset, but it cannot read objects in other datasets in the same COI class as
that of the original object. Then S can read O if and only if COI(O) ≠ COI(S)



or CD(O) ∈ CDH(S). Intuitively, if S can read O, then S can write to O unless S
can read an object in a different CD and that object contains unsanitized
information. This means S can write to O if and only if S can read O and ¬∃O′
(CD(O) ≠ CD(O′) ∧ S can read O′ ∧ ¬san(O′)). The constraints follow
immediately:

1. S reads O ⇒ COI(O) ≠ COI(S) ∧ CD(O) ∈ CDH(S)

2. S writes O ⇒ (S canread O)∧¬∃O′(COI(O) ≠ COI(O′)∧S canread O′ ∧
¬san(O′))

where S canread O is true if the consequent of constraint 1 holds.

To validate that these constraints hold for each transaction, the auditor must
be able to determine for each transaction the elements of each COI and CD as
well as the set of CDs that a particular subject has accessed. Any sanitization
is also relevant. For each transaction, logging of the subject and object
identifiers, the action, a time, and the result (success or failure) will enable
the auditor to determine whether or not the two constraints are satisfied.

25.3.1 Implementation Considerations

The example models above showed that analyzing the specific rules and
axioms of a model reveal specific requirements for logging enough
information to detect security violations. Interestingly enough, one need not
assume that the system begins in a secure (or valid) state because all the
models assert that the rules above are necessary but not sufficient for secure
operation and auditing tests necessity. That is, if the auditing of the logs
above shows a security violation, the system is not secure; but if it shows no
violation, the system may still not be secure because if the initial state of the
system is nonsecure, the result will (most likely) be a nonsecure state. Hence,
if one desires to use auditing to detect that the system is not secure rather
than detect actions that violate security, one needs also to capture the initial
state of the system. In all cases, this means recording at start time the



information that would be logged on changes in the state.

The examples above discussed logging requirements quite generically. The
discussion of the Bell-LaPadula Model asserted specific types of data to be
recorded during a “write.” In an implementation, instantiating “write” may
embody other system-specific operations (“append,” “create directory,” and
so on). Moreover, the notion of a “write” may be quite subtle—for example, it
may include alteration of protection modes, setting the system clock, and so
forth. How this affects other entities is less clear, but typically it involves the
use of covert channels (see Section 18.3) to write (send) information. These
channels also must be modeled.

Naming also affects the implementation of logging criteria. Typically, objects
have multiple names by which they can be accessed. However, if the criteria
involve the entity, the system must log all constrained actions with that entity
regardless of the name used. For example, each UNIX file has at least two
representations: first, the usual one (accessed through the file system), and
second, the low-level one (composed of disk blocks and an inode and
accessed through the raw disk device). Logging all accesses to a particular file
requires that the system log accesses through both representations. Systems
generally do not provide logging and auditing at the disk block level (owing to
performance). However, this means that UNIX systems generally cannot log
all accesses to a given file.

25.3.2 Syntactic Issues

One critical issue is how to log: what data should be placed in the log file, and
how it should be expressed, to allow an audit to draw conclusions that can be
justified through reference to the log [1511, 1513–1515]. This enables the
analyst to display the reasoning behind the conclusions of the audit. The
problem is that many systems log data ambiguously or do not present enough
context to determine to what the elements of the log entry refer.

EXAMPLE: A UNIX system logs the names of files that a user retrieves using



ftp. The log contains the file name /etc/passwd. If the associated user is the
anonymous user (indicating an anonymous login), then the file actually
retrieved is the password file in the anonymous ftp subtree, not the system’s
password file. This is an example of the naming issue discussed in the
preceding section.

This example demonstrates that a single log entry may not contain all the
information about a particular action. The context of the entry conveys
information. An analysis engine benefits from analyzing the context at the
time the entries were made as well as the entries themselves.

Flack and Atallah [687] suggest using a grammar-based approach to
specifying log content. The grammar, expressed using a notation such as
BNF, forces the designer to specify the syntax and semantic content of the
log. Because the grammar of the log is completely specified, writing tools to
extract information from the log requires development of a parser using the
stated grammar. The analyzer can then process log entries using this
grammar.

EXAMPLE: Suppose the following grammar describes log entries in a typical
UNIX system’s log for failed attempts to change user privileges.

entry : date host prog [ bad ] user [ “from” host ] “to” user “on” tty

date : daytime

host : string

prog : string “:”

bad : “FAILED”

user : string

tty : “/dev/” string

Here, “string” and “daytime” are terminals and the quoted strings are literals.
An analyst would check that this log entry format contained all the
information needed for analysis. Then all programs that created these login
entries would use a format derived from this grammar. This would provide



consistency for the entries and would allow a single tool to extract the desired
information from the log file.

Flack and Atallah point out that most current log entries are not specified
using grammars. They examined the Basic Security Module’s description and
entries (see Section 25.5.2) and found some ambiguities. For example, one
BSM entry has two optional text fields followed by two mandatory text fields.
The documentation does not specify how to interpret a sequence of three text
fields in this context, so it is unclear which of the two optional text fields is
present. They developed a BSM grammar that treats the optional fields as
either both present or both absent, so three text fields generate a parse error.
Any ambiguous log entries will thereby generate the exception. The analyst
can then examine the log entry and best determine how to handle the
situation.

Figure 25–1: The different types of sanitization. The top figure
shows logs being sanitized for external viewing. The bottom figure
shows logs being sanitized for privacy of users. In this case, the
sanitizer may save information in a separate log that enables the
reconstruction of the omitted information. Cryptographic
techniques enforce separation of privilege, so multiple
administrators must agree to view the unsanitized logs.

25.3.3 Log Sanitization

A site may consider a set of information confidential. Logs may contain some
of this information. If the site wishes to make logs available, it must delete the



confidential information.

Definition 25–3. Let U be a set of users. The policy P defines a set of
information C(U) that members of U are not allowed to see. Then the log L is
sanitized with respect to P and U when all instances of information in C(U)
are deleted from L.

Confidentiality policies may impact logs in two distinct ways. First, P may
forbid the information to leave the site. For example, the log may contain file
names that give indications of proprietary projects or enable an industrial spy
to determine the IP addresses of machines containing sensitive information.
In this case, the unsanitized logs are available to the site administrators.
Second, P may forbid the information to leave the system. In this case, the
goal is to prevent the system administration from spying on the users. For
example, if the Crashing Machine Company rents time on Denise’s
Distributed System, the CMC may not want the administrators of the system
to determine what they are doing. Privacy considerations also affect the
policy. Laws may allow the system administration to monitor users only when
they have reason to believe that users are attacking the system or engaging in
illegal activities. When they do look at the logs, the site must protect the
privacy of other users so that the investigators cannot determine what
activities the unsuspected users are engaged in.

The distinction controls the organization of the logging. Figure 25–1 shows
where the sanitizers are applied. The top figure shows a sanitizer that
removes information from an existing log file before the analysts examine it.
This protects company confidentiality because the external viewers are
denied information that the company wishes to keep confidential. It does not
protect users’ privacy because the site administration has access to the
unsanitized log. The bottom figure shows a configuration in which users’
privacy is protected, because the data is sanitized before it is written to the
log. The system administrators cannot determine the true value of the
sanitized data because it is never written to the log file. If they must be able to



recover the data at some future point (to satisfy a court order, for example),
the sanitizer can use cryptography to protect the data by encrypting it or by
using a cryptographic scheme allowing a re-identifier to reassemble the
unsanitized data.

This suggests two different types of sanitization.

Definition 25–4. An anonymizing sanitizer deletes information in such a
way that it cannot be reconstructed by either the recipient or the originator of
the data in the log. A pseudonymizing sanitizer deletes information in such a
way that the originator of the log can reconstruct the deleted information.

These issues affect the design of the log. The sanitizer must preserve
information and relationships relevant to the analysis of the data in the log.
Otherwise, the analyzers may miss information that would enable them to
detect attacks.

EXAMPLE: The Humongous Corporation wishes to conceal the IP addresses
of a set of hosts containing proprietary data. The actual IP addresses are
10.163.5.10 through 10.163.5.14. The corporation wants to make its logs
available to a consultant for analysis. The corporation must replace the IP
addresses.

The log shows connections to port 25 (the electronic mail port) of the IP
addresses in question. The order of the probing is as follows.

10.163.5.10, 10.163.5.11, 10.163.5.12, 10.163.5.13, 10.163.5.14

If the corporation replaces the IP addresses at random, the log entries will
reflect e-mail being sent to a set of random hosts. If the corporation preserves
the sequential order of the IP addresses, the log entries will reflect a port
scanning probe. This often precedes an attack of some sort.

While critical, concealing identifiers may not be enough.



Definition 25–5. A quasi-identifier is a set of elements in data of entities
that, considered together, are associated with either a specific entity or a very
small set of entities [496].

EXAMPLE: In Massachusetts, USA, the commission responsible for
purchasing insurance for state employees released records containing
information about medical visits, diagnoses, procedures, medications, and
other medical information, along with the ZIP code1, gender, and birth date of
around 135,000 patients. No names or addresses were in the records.
Sweeney obtained the voter list for the state, and looked up the governor’s
registration. The voter list contained the name, address, party affiliation,
birthdate, and gender for each voter. According to the list for the city in which
the governor lived, 6 people had the same birth date as one of the medical
records; only 3 were the same gender as the governor, and only 1 had the
governor’s ZIP code. Thus, the elements (ZIP code, gender, and birth date) in
this data set form a quasi-identifier. From them, Sweeney identified the
records in the medical data belonging to the governor [1856].

1A postal code composed of 5 digits used by the U.S. Post Office. It is based on
geographical location of the address.

Biskup and Flegel [236] point out that one need not sanitize data that is not
collected. Therefore, if a log is to be sanitized to provide anonymity, the
simplest technique is simply not to collect the data. However, pseudonymity
requires that the data be collected. Two techniques provide the hiding ability.

Suppose the policy allows site administrative personnel to view the data but
others to see only the sanitized log. The first step is to determine a set of
pseudonyms that preserve the relationships that are relevant to the analysis.
The sanitizer replaces the data with the pseudonyms and maintains a table
mapping pseudonyms to actual values (similar to a pseudonymous remailer;
see Definition 15–5). Because all site administrators have access to this table,
any of them could reconstruct the actual log.



The second technique is appropriate when the policy requires that some set of
individuals, not including the system administrators, be able to see the
unsanitized data (for example, law enforcement officers or intrusion analysts
at a remote site) [236]. The unsanitized data cannot be stored in the clear on
the system because the system security officers could then obtain the
unsanitized data. One approach is to use a random enciphering key to
encipher each sensitive datum and treat the decryption key as the
representation of the datum. Then a secret sharing scheme such as Shamir’s
(see Section 16.3.2) allows the shadows of the decryption key to be split
among as many people (or entities) as desired. Using a (t, n)-threshold
scheme allows any t of n recipients to reconstruct the decryption key and
reverse the pseudonymity.

The key to sanitization is not simply hiding data; as noted above, it also
requires hiding the relationships between the hidden data and the data that is
not hidden [226].

EXAMPLE: In 2006, Netflix created a contest to improve their movie
recommendation system, which predicts what movies customers would like
based on their previous selections and other ancillary information. They
provided each entering team with a set of anonymized training data, and
offered a large cash prize to the team or teams that were able to predict better
than the Netflix algorithm which movies the customers would select based on
that data. The training data consisted of more than 100,000,000 ratings; the
test set, not released, consisted of 3,000,000 ratings [151]. The names of the
Netflix customers were anonymized, and the rest of the data was subject to
perturbation [1429].

Narayanan and Shmatikov asked how much an adversary needs to know
about someone to deanonymize that person’s records [1429]. They analyzed
the Netflix training data set, and compared it to external information — that
stored in the public Internet Movie Database (IMDB) [2196]. They assumed
there was a strong correlation between the users, their movie ratings, and



movie titles. Other factors, such as time, also helped them reconstruct
relationships. Because of restrictions on their gathering data from IMDB,
they worked with a sample of 50 IMDB users. Because Netflix did not release
the deanonymized data, the researchers took action to minimize false
positives. They concluded that they could identify 2 Netflix customers’ IMDB
posting names.

This example shows the fallacy of making a closed world assumption, in
which the only data available to the adversary who want to deanonymize the
data is the data in the anonymized data set [477]. In practice, external
information may well be available, as was true for both examples above.
Given the rapid spread of information in many of today’s societies, making
the closed world assumption should be done very carefully and deliberately.

25.3.4 Application and System Logging

Application logs consist of entries made by applications. These entries
typically use high-level abstractions, such as

su: bishop to root on /dev/ttyp0
smtp: delivery failed; could not connect to abcxy.net:25

These entries describe the problems (or results) encountered at the
application layer. These logs usually do not include detailed information
about the system calls that are made, the results that are returned, or the
sequence of events leading up to the log entry.

System logs consist of entries of kernel events. These entries do not include
high-level information. They report system calls and events. The first part of a
system log corresponding to the su line above on a FreeBSD system is as
follows:

3876 ktrace   RET    ktrace 0
3876 ktrace   CALL   execve(0x7fffffffea62,0x7fffffffe7e8,0x7fffffffe800)



3876 ktrace   NAMI   "/usr/bin/su"
3876 ktrace   NAMI   "/usr/libexec/ld-elf.so.1"
3876 su       RET    execve 0
3876 su       CALL   mmap(0,0x8000,0x3<PROT_READ|PROT_WRITE>,
                                0x1002<MAP_PRIVATE|MAP_ANON>,0xffffffff,0)
3876 su       RET    mmap 34366169088/0x80062200
3876 su       CALL   issetugid
3876 su       RET    issetugid 0
3876 su       CALL   getuid
3876 su       RET    getuid 0
3876 su       CALL   getegid

The system log consists of 6,929 lines detailing the system calls (the “CALL”
lines), their return values (“RET”), file name lookups (“NAMI”), file I/O
(including the data read or written), and any other actions requiring the
kernel.

The difference in the two logs is their focus. If the audit is to focus on
application events, such as failures to provide correct passwords (the su
entry) or failures to deliver letters (the SMTP entry), an application log
provides a simple way of recording the events for analysis. If system events
such as file accesses or memory mapping affect the outcome of the auditing,
then system logging is appropriate. In some cases, audits using both logs can
uncover the system events leading up to an application event.

The advantage of system logs is the completeness of the information
recorded. Rather than indicating that a configuration file could not be
accessed, the system level log will identify the particular file, the type of
access, and the reason for the failure. This leads to large log files that may
require special handling. If a log overflows, the system can turn off logging,
begin overwriting the least recent log entries, or shut down the system. Many
systems allow the auditor to specify the types of information, or the specific
system events, to be logged. By a judicious choice of which events to log, the
danger of logs overflowing can be minimized.

The advantage of application logs is the level of abstraction. The applications



provide the auditor with data that has undergone some interpretation before
being entered. For example, rather than identifying a particular file as
inaccessible, an application log should indicate the reason for accessing the
file:

appx: cannot open config file appx.cf for reading: no such file

The correlation problem relates system and application logs. Given a system
log composed of events from one execution of an application, and the
corresponding application log, how can one determine which system log
entries correspond to entries in the application log, and vice versa? This issue
identifies the need to understand what an application level failure means at a
system level and what application failures are caused by system level
problems. The point is that the application logs are abstractions of system
level events interpreted by the application in view of the previous application
level events. By understanding the events at both the system and application
levels, the auditor can learn about the causes of failures and determine if they
are the results of attempts to breach system security.

25.4 A Posteriori Design

The design of an effective auditing subsystem is straightforward when one is
aware of all possible policy violations and can detect them. Unfortunately,
this is rarely the case. Most security breaches arise on existing systems that
were not designed with security considerations in mind. In this case, auditing
may have two different goals. The first goal is to detect any violations of a
stated policy; the second is to detect actions that are known to be part of an
attempt to breach security.

The difference is subtle but important. The first goal focuses on the policy
and, as with the a priori design of an auditing subsystem, records (attempted)
actions that violate the policy. The set of such actions may not be known in
advance. The second goal focuses on specific actions that the managers of the



system have determined indicate behavior that poses a threat to system
security. Thus, one approaches the first goal by examining the desired policy,
whereas one approaches the second goal by examining the actions (attacks)
that pose the threat.

25.4.1 Auditing to Detect Violations of a Known Policy

Implementation of this type of auditing is similar to the auditing subsystem
design discussed in Section 25.3. The idea is to determine whether or not a
state violates the policy. Unlike mechanisms designed into the system, the
auditing mechanisms must be integrated into the existing system. Analysts
must analyze the system to determine what actions and settings are
consistent with the policy. They then design mechanisms for checking that
the actions and settings are in fact consistent with the policy. There are two
ways to proceed: state-based auditing and transition-based auditing.

25.4.1.1 State-Based Auditing

The designer can opt for a state-based approach, in which states of the system
are analyzed to determine if a policy violation exists.

Definition 25–6. A state-based logging mechanism records information
about a system’s state. A state-based auditing mechanism determines
whether or not a state of the system is unauthorized.

Typically, a state-based auditing mechanism is built on a state-based logging
system. There is a tacit assumption that a state-based logging mechanism can
take a snapshot of the system. More generally, the state-based logging
mechanism must obtain a consistent state. Algorithms such as Chandy-
Lamport [382] can supply a consistent state for distributed resources, but
obtaining a state for non-distributed resources requires the resources to be
quiescent while the state is obtained. On most systems in which multiple
resources supply components of the state, this is infeasible.



Consider a set of resources on a system. Each resource supplies a component
(called an attribute) of the state. Hence, state-based auditing mechanisms
analyze attributes of the state. Let the state si be a vector (ci0, . . . , cin), where
cij ∈ C is an attribute of the state. If the system is quiescent, then the audit
analyzes (ci0, . . . , cin). We call this consistent static analysis. However, if the
system is not quiescent, then the audit analyzes (ci0, cj1, . . . , ckn).

Here, the “state” is a vector of attributes of different states and does not
correspond to any particular state. Although the intent is to examine a single
state, the audit actually examines attributes from multiple states. This type of
analysis is called inconsistent static analysis.

EXAMPLE: File system auditing tools such as tripwire (see the example
beginning on page 111 in Section 4.5.2) are usually discussed under the rubric
of “static analysis tools.” This implies that they analyze a single state of the
system. In fact, unless they are run on quiescent file systems, these tools take
slices of different states because the attributes are read while the system
transitions as other programs access the resource. The effect of this
incremental construction of a union of slices of the states during the tool’s
run can affect the correctness of the report. If a test that the scanner performs
near the end of the tool’s run depends on some assumptions derived from a
check made near the beginning of its run, the state may change and the test
may appear to succeed, when in reality it reveals no (or misleading)
information. With consistent static analysis, because the state does not
change during the run of the tool, the tool may rely on the assumptions, but
with inconsistent static analysis, such reliance leads to a classic “time of check
to time of use” flaw. The same observation holds for any inconsistent static
tool that relies on assumptions deduced from an earlier part of its current
incarnation.

25.4.1.2 Transition-Based Auditing

The designer can opt for a transition-based approach, in which actions that



could violate the policy are checked to determine if they do indeed cause
violations.

Definition 25–7. A transition-based logging mechanism records
information about an action on a system. A transition-based auditing
mechanism examines the current state of the system and the proposed
transition (command) to determine if the result will place the system in an
unauthorized state.

An important observation is that transition-based logging may not be
sufficient to enable a transition-based auditing mechanism to determine if
the system will enter an unauthorized state. Specifically, if the system begins
in a state that violates policy, a transition-based auditing mechanism will not
detect the security problem if the transition alone was analyzed and
determined not to move the system from a secure state to a nonsecure state.
For this reason, transition-based logging is used only when specific
transitions always require an examination (as in the example of changes of
privilege) or when some state analysis is also performed.

EXAMPLE: The program tcp_wrappers intercepts TCP connections to
UNIX-based systems and determines whether or not the connections are to
be allowed. The connections that are to be denied are identified in the file
hosts.deny. The logging mechanism determines where the connection comes
from. The auditing mechanism compares that point of origin (the IP address,
the destination port, and possibly the user name) with the data in the
hosts.deny file. If the point of origin matches the data in the hosts.deny file,
the connection is blocked. This is transition-based auditing because the
mechanism analyzes a command (the putative connection) to determine if it
will put the system in an unauthorized state (by allowing a connection in the
hosts.deny file). The current state of the system is not examined.

EXAMPLE: Some instant messaging systems allows a user to sign on from at
most one computer at a time. The mechanism that detects when a user tries



to sign on from two computers simultaneously is a mixture of state-based and
transition-based auditing. It examines the transition (the sign-on) and the
current state (whether or not that user signed on already). If the transition
would put the system in an unauthorized state (the user signed on twice), the
audit mechanism reports the problem. The system responds by blocking the
second sign-on.

25.4.2 Auditing to Detect Known Violations of a Policy

In many cases, the security policy is not stated explicitly. However, certain
behaviors are considered to be “non-secure.” For example, an attack that
floods a network to the point that it is not usable, or accessing of a computer
by an unauthorized person, would violate the implicit security policy. Under
these conditions, analysts can determine specific sequences of commands, or
properties of states, that indicate a security violation and look for that
violation.

EXAMPLE: Daniels and Spafford [500] present an analysis of the Land attack
[2197], which causes a denial of service by causing the target of the attack to
hang or to respond very slowly. This attack is built on an exchange that begins
a TCP connection (see Figure 7–2).

When a TCP connection begins, the source sends a SYN packet to the
destination. This packet contains a sequence number s. The destination
receives the packet and returns a SYN/ACK packet containing the
acknowledgment number s + 1 and a second sequence number t. The source
receives this packet and replies with the acknowledgment number t + 1.
Figure 7–2 illustrates this exchange, called a three-way handshake.

The Land attack arises from an ambiguity in the TCP specification [1544].
When the source and destination differ, or the TCP port numbers of the
source and destination differ, the two sequence numbers s and t are from
different processes. But what happens if the source and destination addresses
and ports are the same? The TCP specification is ambiguous.



Consider what happens in the three-way handshake in this case. The target
host receives a SYN packet with sequence number s. It responds with a
SYN/ACK packet containing sequence number t and acknowledgment
number s + 1. At this point, the internal state of the connection in that host is
that the next acknowledgment number will be t + 1. Because the source and
destination addresses and ports are the same, the packet returns to the host.
The host checks the packet and finds that the acknowledgment number (s + 1)
is incorrect. At this point, the TCP specification suggests two different ways to
handle the situation.

According to one part of the specification,2 the connection should send a reset
(RST). If this is done, it terminates the connection and the attack fails.

2see p. 36 of the TCP specification [1544].

According to a different part of the specification,3 the host should reply with
an empty packet with the current sequence number and the expected
acknowledgment number. Hence, the host sends a packet with sequence
number t + 1 and acknowledgment number s + 1. Naturally, it receives that
packet. It checks that the acknowledgment number is correct, and—again—it
is not. Repeating the sequence causes the same packet to be generated,
resulting in an infinite loop. If the host has disabled interrupts during this
part, the system hangs. Otherwise, it runs very slowly, servicing interrupts
but doing little else. The denial of service attack is now successful.

3see p. 69 of the TCP specification [1544].

Detecting this attack requires that the initial Land packet be detected. The
characteristic of this packet is that the source and destination addresses and
port numbers are the same. So, the logging requirement is to record that
information. The audit requirement is to report any packets for which the
following condition holds.

(source address = destination address) and



    (source port number = destination port number)

25.5 Auditing Mechanisms

Different systems approach logging in different ways. Most systems log all
events by default and allow the system administrator to disable the logging of
specific events. This leads to bloated logs.

In this section, we present examples of information that systems record and
give some details of the auditing mechanisms.

25.5.1 Secure Systems

Systems designed with security in mind have auditing mechanisms integrated
with the system design and implementation. Typically, these systems provide
a language or interface that allows system managers to configure the system
to report specific events or to monitor accesses by a particular subject or to a
particular object. This is controlled at the audit subsystem so that irrelevant
actions or accesses are not recorded.

EXAMPLE: The VAX VMM system is designed to meet the requirements of
the A1 classification of the TCSEC [2254]. This classification requires that
impending security violations be detected, actions be taken to protect the
system, auditing based on user or object be allowed, and extensive
administrative support be provided. Because the VAX VMM was intended to
be a production system, the audit mechanism could have only minimal
impact on system performance and had to be highly reliable [1719].

The system is designed as a layered kernel, and so the logging mechanisms
are not unified. Logging occurs at each place in the hierarchy where events of
interest occur. Each layer also audits accesses to the objects it controls. In
essence, the auditing mechanisms are distributed throughout the layers.

After each layer has audited its information, the logs and results of the audit



are passed to the audit subsystem for future use. The audit subsystem
manages the system log and has a single entry point (called AUD$audit). The
parameters are event identification, status (the result), auxiliary data (which
depends on the event), and the caller’s name. The audit subsystem records
the event if the event affects a subject or object listed in an audit table and if
the severity of the event (derived from the status code) exceeds that
associated with the entity in the audit table. The audit subsystem then adds
the date and time, the subject’s name and type, and other data to the log
entry, dumps the entry into a buffer, and signals the audit logging process,
which writes the log event to the log.

Two types of events are always logged. The first results from the caller’s
setting a special flag and is under the programmers’ control. The second is an
attempt to violate policy and is required by the criteria used to certify
systems. Protection violations and login failures are recorded when the event
occurs repeatedly. Use of covert channels is also flagged.

When the log reaches 75% of its capacity, the kernel notifies the audit process
to archive the log contents. This resets the log. This follows the philosophy
that the kernel never runs without auditing. Should archiving be impossible
(as a result of full disks, for example), the system stops.

Audit reduction is based on time (before or after a particular date and time),
security or integrity level (at or above a given level), and severity.

EXAMPLE: The Compartmented Mode Workstation [485] auditing
subsystem interface [1532] illustrates how the auditing mechanisms interact
with users, processes, and the kernel. The auditing subsystem maintains a
table of auditable events for the system. Each entry indicates whether or not
logging is turned on and what type of logging to use. At the user level, the
command chaud allows the system manager to turn auditing on or off, to
indicate what events and objects are to be audited, and to find out which
events and objects are being logged. If the auditor changes the entities being



audited, the log is not interrupted.

At the process level, the system call audit_on turns on logging for an event
and identifies the log file in which to place records. The call audit_off turns
off logging for that event. The audit_write system call takes a pointer to a log
entry, validates the putative ID number, and writes it out if logging is turned
on for that event. This allows processes to write their own log entries. Finally,
the calls audit_suspend and audit_resume allow the process to turn off
system logging for that process. Any calls to audit_write are honored.

Some processes, such as the window manager, perform their own auditing.
The problem is that low-level auditing, at the system call level, does not map
easily into more abstract, high-level events. By disabling low-level auditing
and writing its own records, the window manager can maintain a high level of
abstraction for its logged events.

Once the process makes a system call, the interface checks that the process is
to be audited and that the audit_suspend is not in effect. The first three
system call arguments are recorded, but if any of them is a pointer, the
pointer is not resolved.

At the kernel level, the audit_write routine determines what to do with the
record. If there is room in the log, it writes the record out. If not, it can halt
the system, discard the record, or disable the events that will cause logging.
This last technique is unusual, but its goal is to impact system functionality as
little as possible while ensuring that auditing will record all events of interest.

The logged events are analyzed using a tool called redux. This tool converts
records into a printable format and prints events that satisfy conditions based
on users, objects, security levels, and events.

25.5.2 Nonsecure Systems

Auditing subsystems for systems not designed with security in mind are



generally for purposes of accounting. Although these subsystems can be used
to check for egregious security violations, they rarely record the level of detail
or the types of events that enable security officers to determine if security has
been violated. The level of detail needed is typically provided by an added
subsystem.

EXAMPLE: The Basic Security Module (BSM) [2248] is an enhanced auditing
system for Solaris, Trusted BSD, FreeBSD, MacOS X, and many other
systems. Each log consists of files, and each file is composed of individual
records. A record is made up of a sequence of tokens. The record size is not
fixed; there is a begin token and an end token. Each record refers to an
auditable event. These events are defined either at the system level (“kernel
event”), such as a system call, or through library function calls from an
application (“application event”), such as a failure to authenticate successfully
to the login program. Finally, BSM groups records into audit event classes.
These classes are based on the event triggering the generation of the record
and can be created either before an audit log is created (in which case the
event classes that are defined tell the system which events to generate records
for) or after the log is created (in which case the classes that are defined
control which records are given to the analysis tools). The latter is an example
of log reduction, and the program auditreduce allows analysts to define the
classes of events about which records are to be extracted.

BSM defines a token as an identification field followed by a series of
information fields. These tokens encapsulate user identity (process, which
includes a real, effective, and original UID and effective group ID as well as
process ID), group list, file system information (pathname and attributes),
IPC usage (IPC token, IPC attributes), networking (IP port number, IP
address), and process and system call information (return value, arguments)
as well as more general information (text, data, opaque). This enables an
analyst to tie tokens and records to events of interest and to extract enough
information to determine what was done, who did it, and (if applicable) what
the outcome was.



An example BSM log record might look like this:

header,35,AUE_EXIT,Wed Sep 18 11:35:28 1991, + 570000 msec,
process,bishop,root,root,daemon,1234,
return,Error 0,5
trailer,35

The information is stored in a binary format to minimize log size. A program
called praudit formats and prints records when a human-readable form is
needed.

The determination of what to log and what to audit is left to the system
managers. This allows BSM to be used in multiple environments and under
different policies. This is consistent with BSM being an add-on security
module. It provides other security mechanisms as well.

25.6 Examples: Auditing File Systems

The difference between designing a logging and auditing mechanism for an
existing file system protocol and designing a logging and auditing mechanism
for a new file system protocol illuminates the differences between a priori and
a posteriori audit design. This section compares and contrasts the design of
an audit mechanism for NFSv2 and the design of a new file system intended
to provide logging and auditing.

A bit of background first. Many sites allow computers and users to share file
systems, so that one computer (called a client host) requests access to the file
system of another computer (a server host). The server host responds by
exporting a directory of its file system; the client host imports this
information and arranges its own file system so that the imported directory
(called the server host’s mount point) appears as a directory in the client
host’s file system (this directory is called the client host’s mount point).

25.6.1 Audit Analysis of the NFS Version 2 Protocol4



4This analysis was done with Jeremy Frank and Christopher Wee.

Consider a site connected to the Internet. It runs a local area network (LAN)
with several UNIX systems sharing file systems using the Network File
System version 2 [1469] protocol. What should be logged?

We first review the NFSv2 protocol. When a client host wishes to mount a
server’s file system, its kernel contacts the server host’s MOUNT server with
the request. The MOUNT server first checks that the client is authorized to
mount the requested file system and how the client will mount the requested
system. If the client is authorized to mount the file system, the MOUNT
server returns a file handle naming the mount point of the server’s file
system. The client kernel then creates an entry in its file system
corresponding to the server’s mount point. In addition, either the client host
or the server host may restrict the type of accesses to the networked file
system. If the server host sets the restrictions, the programs on the server
host that implement NFSv2 will enforce the restrictions. If the client host sets
the restrictions, the client kernel will enforce the restrictions and the server
programs will be unaware that any restrictions have been set.

When a client process wishes to access a file, it attempts to open the file as
though the file were on a local file system. When the client kernel reaches the
client host’s mount point in the path, the client kernel sends the file handle of
the server host’s mount point (which it obtained during the mount) to resolve
the next component (name) of the path to the server host’s NFSv2 server
using a LOOKUP request. If the resolution succeeds, this server returns the
requested file handle. The client kernel then requests attributes of the
component (a GETATTR request), and the NFSv2 server supplies them. If the
file is a directory, the client kernel iterates (passing the directory’s file handle
and the next component of the path in a LOOKUP request and using the
obtained file handle to get the attributes in a GETATTR request) until it
obtains a file handle corresponding to the desired file object. The kernel
returns control to the calling process, which can then manipulate the file by



name or descriptor; the kernel translates these manipulations into NFSv2
requests, which are sent to the server host’s NFSv2 server.

Because NFSv2 is a stateless protocol, the NFSv2 servers do not keep track of
which files are in use. The file handle is a capability. Furthermore, many
versions of NFSv2 require the kernel to present the requests,5 although some
accept requests from any user. In all cases, the server programs can identify
the user making the request by examining the contents of the underlying
messages.

5Validation is from the originating port number; the NFSv2 implementations
assume that only the superuser (operator) can send requests from ports with
numbers less than 1024.

The site policy drives the logging and auditing requirements because we are
capturing events relevant to violations of that policy. In our example, the site
wishes to regulate sharing of file systems among all systems on its LAN (with
individual restrictions enforced through the NFSv2 mechanism). All
imported file systems are supposed to be as secure as the local file systems.
Therefore, the policy is as follows:

P1. NFSv2 servers will respond only to authorized clients.

The site authorizes only local hosts to act as clients. Under this policy, the site
administrators could allow hosts not on the LAN to become clients, and so
the policy could be less restrictive than the statement above suggests.

P2. The UNIX access controls regulate access to the server’s exported file
system.

Once a client has imported a server host’s file system, the client host’s
processes may access that file system as if it were local. In particular,
accessing a file requires search permission on all the ancestor directories
(both local and imported).



An important ramification is the effect of the UNIX policy on file type. Only
the local superuser can create device (block and character special) files
locally, so users should not be able to create device files on any imported file
system (or change an existing file’s attributes to make it a device file).
However, this policy does not restrict a client host from importing a file
system that has device files.

P3. No client host can access a non-exported file system.

This means that exporting a file system allows clients to access files at or
below the server host’s mount point. Exporting a file system does not mean
that a client host can access any file on the server host; the client can access
only exported files.

These policies produce several constraints.

C1. File access granted ⇒ client is authorized to import file system, user can
search all parent directories and can access file as requested, and file is
descendant of server host’s file system mount point.

C2. Device file created or file type changed to device ⇒ user has UID of 0.

C3. Possession of a file handle ⇒ file handle issued to that user.

Because the MOUNT and NFSv2 server processes issue file handles when a
user successfully accesses a file, possession of a file handle implies that the
user could access the file. If another user acquires the file handle without
accessing either server, that user might access files without authorization.

C4. Operation succeeds ⇒ a similar operation local to the client would
succeed.

This follows from the second policy rule. Because an ordinary user cannot
mount a file system locally, the MOUNT operation should fail if the
requesting user is not a superuser.



These constraints follow immediately from the three policy rules.

A transition from a secure to a non-secure state can occur only when an
NFSv2-related command is issued. Figure 25–2 lists the NFSv2 commands
that a client may issue. One set takes no arguments and performs no actions;
these commands do not affect the security state of the system. A second set
takes file handles as arguments (as well as other arguments) and returns data
(including status information). The third set also takes file handles as
arguments and returns file handles as results.

Those operations that take file handles as arguments require that the auditor
validate the constraint. When a server issues a file handle, the file handle, the
user to whom it is issued, and the client to which it is sent must be recorded.

L1. When a file handle is issued, the server must record the file handle, the
user (UID and GID) to whom it is issued, and the client host making the
request.

The semantics of the UNIX file system say that access using a path name
requires that the user be able to search each directory. However, once a file
has been opened, access to the file requires the file descriptor and is not
affected by the search permissions of parent directories. From the operation
arguments, file handles seem to refer to open objects. For example, SYMLINK
creates a symbolic link, which is effectively a write to a directory object; the
argument to SYMLINK is the directory’s handle. Hence, file handles resemble
descriptors more than path names, so the auditor need not verify access
permission whenever a user supplies a file handle. The only issue is whether
the server issued the file handle to the user performing the operation.

L2. When a file handle is supplied as an argument, the server must record the
file handle and the user (UID and GID).

A file handle allows its possessor to access the file to which the handle refers.
Any operation that generates a file handle must record the user and relevant



permissions for the object in question. For example, on a LOOKUP, recording
the search permissions of the containing directory enables the auditor to
determine if the user should have had access to the named file. On a
CREATE, recording the write permissions of the containing directory
indicates whether the use could legitimately write to the containing directory.

L3. When a file handle is issued, the server must record the relevant
attributes of any containing object.

Figure 25–2: NFSv2 operations. In the Arguments and Action
columns, fh is “file handle,” fn is “file name,” dh is “directory
handle” (effectively, a file handle), attrib is “file attributes,” off is
“offset” (which need not be a byte count; it is positioning
information), ct is “count,” “link” is “direct alias,” and “slink” is
“indirect alias.”

Finally, whether the operation succeeds or fails, the system must record the



operation’s status so that the auditor can verify the result.

L4. Record the results of each operation.

Because each operation performs a different function, we consider the audit
criteria of each operation separately. We illustrate the process for mount and
lookup and leave the rest as an exercise for the reader.

Constraints C1 and C4 define the audit criteria for MOUNT.

A1. Check that the MOUNT server denies all requests by unauthorized client
hosts or users to import a file system that the server host exports.

(“Unauthorized users” refers specifically to those users who could not
perform the operation locally.) This means that the MOUNT server must
record L3 and L4.

Constraints C1 and C3 give the audit criteria for LOOKUP.

A2. Check that the file handle comes from a client host and a user to which it
was issued.

A3. Check that the directory has the file system mount point as an ancestor
and that the user has search permission on the directory.

The check for the client being authorized to import the file system (in C1) is
implicit in A3 because if the client host is not authorized to import the file
system, the client host will not obtain the file handle for the server host’s
mount point. Performing this audit requires logging of L2, L3 (the relevant
attributes being owner, group, type, and permission), and L4. Audit criterion
A3 requires recording of the name of the file being looked up; from this and
the file handle, the auditor can reconstruct the ancestors of the file.

L5. Record the name of the file argument in the LOOKUP operation.

Given the logs and the auditing checks, an analyst can easily determine if the



policy has been violated. This is a transition-based mechanism because
checks are performed during the actions and not during an evaluation of the
current state of the system.

The most recent version of NFS, version 4.2, is stateful [889]. It also allows
commands to be batched and sent to the server using COMPOUND. File
locking is supported on the server. Further, many more file attributes are
available and the protocol provides the ability to set them atomically. The
security features have been made more compatible with Microsoft Windows
access control lists. Thus, validation of the constraints are slightly different,
and the validation more complex.

EXAMPLE: NFSv4 servers export a pseudo-file system that contains
directories leading to exported file systems, so the clients can traverse the file
system freely without seeing anything that is not to be exported. The root of
this pseudo-file system is the root file handle. The server operates on the file
identified as the current file handle (CFH). Many operations do not require
that the client pass the file handle explicitly; instead, the CFH is used.

Suppose a client wishes to read a file on the NFSv4 file server [1507]. There is
no MOUNT operation, but the PUTROOTFH operation sets the CFH to that
of the root of the pseudo-file system. Thus:

A1. Check that the server denies all requests by unauthorized client hosts or
users to execute the PUTROOTFH operation.

The server then looks up the requested root of the exported file system.

A2. Check that the directory being looked up is in the pseudo-file system and
that the user has search permission on the directory.

Of course, this should always be true; but an error in implementation may
enable to client to evade the restrictions of the pseudo-file system.

The server next receives a request to set the CFH to that of the requested root,



and a request to open the file and read from it. The server can then verify the
user is authorized to open the file.

A3. Check that the file being looked up is in the pseudo-file system, that the
user has search permission on the directory containing it, and read
permission for the file.

The logging requirements are those of NFSv2, with one difference. NFSv4 has
both persistent and volatile file handles. When a volatile file handle expires,
that must be logged to indicate its validity has expired. Then an attempt to re-
use the expired file handle will be logged and the reason for its rejection clear.
If an expired file handle is not rejected, the logs will also show that.

25.6.2 The Logging and Auditing File System (LAFS)

LAFS [1998] takes a different approach. LAFS is a file system that records
user level actions taken on files. A policy language allows an auditor to
automate checks for violations of policy.

The LAFS file system is implemented as an extension of an existing file
system, NFSv2, in the prototype. A user creates a directory using the lmkdir
command and then attaches it to LAFS with the lattach command. For
example, if the file policy contains a policy for LAFS, the commands

lmkdir /usr/home/xyzzy/project policy
lattach /usr/home/xyzzy/project /lafs/xyzzy/project

attach the directory and its contents to LAFS. All references to the files
through LAFS will be logged.

LAFS consists of three main components, along with a name server and a file
manager. The configuration assistant, which interacts with the name server
and protection mechanisms of the underlying file system, sets up the required
protection modes. This part is invoked when a file hierarchy is placed under



LAFS (using lattach) and by the LAFS name server. The audit logger logs
accesses to the file. The LAFS file manager invokes it whenever a process
accesses the file. This allows LAFS to log accesses by LAFS-unaware
applications. It in turn invokes the file manager of the underlying file system.
At no point does the LAFS file manager perform access checking; that is left
to the underlying file system. The policy checker validates policies and checks
that logs conform to the policy.

A goal of LAFS is to avoid modifying applications to enable the logging. This
allows users to use existing applications rather than having to develop new
ones. The interface is therefore a set of three “virtual” files associated with
each file in the LAFS hierarchy. The file src.c is a regular file. The file
src.c%log contains a log of all accesses to src.c. The file src.c%policy contains
a description of the access control policy for the file src.c. Accessing the
virtual file src.c%audit triggers an audit in which the accesses of src.c are
compared with the policy for the file. Any accesses not conforming to the
policy are listed. The virtual files do not appear in file listings; the LAFS
interface recognizes the extensions and provides the required access.

The policy language is simple yet powerful. It consists of a sequence of lines
in the %policy files of the form

action:date&time:file:user:application:operation:status

For example, the following line says that users may not play the game
wumpus from 9 a.m. to 5 p.m. The status field is omitted, because the policy
checker is to report any attempts to play wumpus whether they succeed or
not.

prohibit:0900-1700:*:*:wumpus:exec

The following lines describe a policy for controlling accesses to source code
files in a project under development.



allow:*:Makefile:*:make:read
allow:*:Makefile:Owner:makedepend:write
allow:*:*.o,*.out:Owner,Group:gcc,ld:write
allow:-010929:*.c,*.h:Owner:emacs,vi,ed:write
allow:010930-:RCS/:librarian:rcs,co,ci:write

The first line allows the make program to read the Makefile on behalf of any
user on the system. The second line allows the owner of the Makefile
(indicated by the distinguished user “Owner”) to change the Makefile by
running the command makedepend (which adds dependencies among source
code). The owner, or anyone in the group, of an object file can re-create the
object file. Line 4 allows the owner of the source code to modify the source
files using the emacs editor, the vi editor, or the ed editor, provided that the
modification occurs before September 29, 2001. The last line allows the user
“librarian” to write into the directory RCS using the rcs, co, and ci commands
on any date from September 30, 2001, on. The purpose of this line is to allow
the librarian to commit source code changes. The preceding line requires that
all such changes be made before September 30, so (presumably) the project
code is to be frozen on September 30, 2001.

As users access files, LAFS logs the accesses in a human-readable format, and
when the user accesses the appropriate %audit file, the audit reports all
violations of the relevant policy.

25.6.3 Comparison

The NFSv2 auditing mechanism and the LAFS have important similarities. In
both cases, a security policy controls access, and the goal of both mechanisms
is to detect and report attempted violations of the policy. Both have auditing
mechanisms built into the file system.

The differences are also crucial. LAFS is “stacked” on top of NFSv2, so if a file
is not bound to LAFS, no accesses to it are logged or audited. With the
modifications of NFSv2, an attacker could avoid being audited only by not



using NFSv2. (This is a typical problem with security mechanisms layered on
top of existing protocols or other mechanisms.) The auditing mechanisms in
NFSv2 are at a lower layer than those in LAFS (because of the stacking).
However, LAFS allows users to specify policies for sets of files and to perform
audits. The analysis of NFSv2 above is not as flexible. There, a site sets the
policy for NFSv2. Users cannot define their own policies. Thus, the NFSv2
auditing mechanism will examine all file accesses, whereas LAFS may not.
This affects not only auditing but also performance because if only a few files
need to be audited, much of the effort by the NFSv2 mechanisms is
unnecessary. Finally, modifying NFSv2 for auditing requires changes in
several privileged daemons, whereas adding LAFS requires no modifications
to existing system daemons and a kernel.

Which scheme to use depends on several factors, such as the ability to modify
the NFSv2 daemons. The NFSv2 auditing modifications and LAFS can work
together, the NFSv2 modifications being for the low-level system checking
and LAFS for user level auditing.

25.6.4 Audit Browsing

In addition to running audit mechanisms to analyze log files, auditors
sometimes look through the log files themselves. The audit mechanisms may
miss information or irregularities in the log that a knowledgeable auditor can
detect. Furthermore, the audit mechanisms may be unsophisticated. By
examining the logs directly, the auditors may uncover evidence of previously
unknown patterns of misuse and attack. Finally, few systems provide a fully
integrated suite of logs. Most have several different log files, each for a
different set of applications or kernel events. The logs are usually ordered by
timestamp and do not show relations other than the time of day and the
program (process) creating the entry. For example, a log typically does not
indicate two different programs making a sequence of accesses to a particular
file.

The goal of an audit browsing tool is to present log information in a form that



is easy for the analyst to understand and use. Specifically, the tool must
indicate associations between log entries that are of interest to the analyst.
Hoagland, Wee, and Levitt [914] identify six basic browsing techniques.

1. Text display shows the logs in a textual format. The format may be fixed, or
it may be defined by the analyst through post-processing. The auditor may
search for events based on name, time, or some other attribute; however, the
attribute must be recorded in the log file. This method does not indicate
relationships among events, entries, and entities.

2. Hypertext display shows the logs as a set of hypertext documents with
associated log entries linked by hypertext constructs. This allows the auditor
to follow relationships between entries and entities by following the links.
The browser can include additional information about entities as well. The
disadvantage is that the view of the log information is local because the
browser does not highlight global relationships in a manner that is clear and
easy to understand.

3. Relational database browsing requires that the logs be stored in a
relational database. The auditor then issues queries to the database, and the
database performs the correlations and associations before it replies to the
query. The advantage of this method is that the database performs the
correlations and can do so after the logs have been preprocessed. That is, the
auditor need not know in advance what associations are of interest. The
disadvantage is that the representation of the output to the query is usually
textual. Furthermore, some preprocessing is required because the elements of
the logs must be separated to provide the information for the database. The
expected queries imply how this is to be done. This may limit the associations
between entities and events that the database can exhibit.

4. Replay presents the events of interest in temporal order. It highlights
temporal relationships. For example, if three logs are replayed on a single
screen, the temporal order of the events in the log will be intermingled and
the order of occurrence across the logs will clearly indicate the order of the



events in a way that the analyst can see.

5. Graphing provides a visual representation of the contents of logs.
Typically, nodes represent entities such as processes and files, and edges
represent associations. The associations indicate relationships between
various entities. For example, processes may have incoming edges from their
parents and outgoing edges to their children. The process hierarchy then
becomes clear. One problem with this technique is the size of the drawing. If
the area in which the graph is drawn is too small, the information may be
unreadable. Reducing the logs to eliminate some information ameliorates this
problem. The graph may also represent high-level entities (such as groups of
processes or file systems) and their relationships, and the auditor can expand
the high-level entities in order to examine relationships within the
components of those entities.

6. Slicing obtains a minimum set of log events and objects that affect a given
object. This comes from the traditional notion of slicing [2003], a program
debugging technique that extracts a minimum set of statements that affect a
given variable. Its advantage is that it focuses attention on the sequence of
events, and related objects, that affect some entity. Its disadvantage, like that
of hypertext browsing, is the locality of the technique.

Audit browsing tools emphasize associations that are of interest to the
auditor. Hence, their configurations depend on the goals of the audit.

EXAMPLE: The Visual Audit Browser tool kit [914] was designed for general-
purpose audit browsing. It consists of four tools. Each tool takes BSM logs as
input. The frame visualizer generates a graphical representation of the logs.
The movie maker generates a sequence of graphs corresponding to the logs.
Each successive audit event generates a new graph with a new node and
edge(s) corresponding to the audit event. The hypertext generator produces
one page for each user in the log, one page for each file modified in the log, a
page summarizing the audit records, and an index page. The pages are in



HTML, so any Web browser can view them. The focused audit browser
combines slicing and graphing. The auditor enters the name of a node, and
the browser displays that node, the node’s incoming and outgoing edges, and
the nodes at the ends of those edges.

Suppose a file is changed. The auditor uses the focused audit browser, with
the file as the initial focus. The edges show which processes have altered the
file and how. The auditor determines which process(es) may have caused the
unexpected change, focuses on one of the suspect processes, and iterates until
it is determined how the attacker gained access to the system (through a
login, through a network daemon, and so on). At this point, the auditor needs
to determine whether a masquerade is occurring. From the processes seen
earlier, the auditor knows the audit UID of the attacker. She uses the
hypertext generator to access the page with all audit records involving that
audit UID and examines all entries on that page for irregular activity. She can
also use the frame visualizer to graph the sequence of process creations. Once
the auditor has found the entry point, she can probably uncover the
vulnerability and then work forward to construct the actions that the attacker
took. Finally, the movie maker can generate a small movie showing the
actions that the attacker took. This will be a compelling visual record for law
enforcement authorities and may aid the auditor during presentations to
nontechnical people.

EXAMPLE: MieLog [1863] computes counts of single words and word pairs
in logs. It allows the auditor to define a threshold count. Words and word
pairs with counts higher than the threshold are colored to make them stand
out. The display of MieLog consists of four fields. The tag appearance
frequency area has a colored tile indicating the frequency of appearance (red
meaning rare). The time information area contains a bar graph indicating the
number of log entries in that period of time. Clicking on the bar brings up the
log entries for that time period. The outline of message area shows the
outline of the log messages, colored to match the frequency in the tag
appearance frequency area. The fourth field, the message in text area,



displays the log entry under study and its surrounding areas. The words and
word pairs are colored to reflect their frequencies.

As an example, an administrator examining a log file notices an unusual gap
in the time information area. There are no log messages recorded during the
period of time in the gap. The system administrator focuses on the log entries
just before and just after the gap, to determine why the logging turned off and
then turned back on. The color of the words in those log entries will aid the
auditor in looking for unusual log entries, words, or phrases indicating an
attack.

Developing a visual interface to logs is as much an art as a science. The
science lies in determining what to display; the art lies in the graphics used to
express the desired relationships and entities. The human should be able to
grasp the relevant parts of the log quickly and to pursue lines of inquiry
quickly and easily.

25.7 Summary

Logging is the collection of information; auditing is its analysis. Auditing
consists of analysis, which is the study of information gleaned from the log
entries and ancillary information, and notification, which is the reporting of
the results of the study (and possibly the taking of appropriate actions).

Designing an audit system requires that the goals of the audit be well formed.
Typically, the security policy defines these goals. The audit mechanism
reports attempts to violate the constraints imposed by the security policy,
such as a subject’s attempt to write to a lower-level object. Several
considerations affect the auditing. For example, names in the logs must be
resolvable to an object. The logs must be well structured to allow
unambiguous and consistent parsing. They may need to be sanitized before or
after analysis. Application logs reflect actions of the application; system logs
reflect events within the operating system.



Auditing mechanisms should be designed into the system. These mechanisms
may also be added after the system is completed. In this case, the mechanism
may report violations of a defined security policy or may report actions that
are considered to be security threats (whether a security policy is defined
precisely or not).

Some logs need to be anonymized before they are used. In that case, the
relationships between the suppressed data and the non-suppressed data are
as important as the method used for anonymization.

A mechanism enabling auditors to browse the logs aids in the analysis. Such a
browser helps auditors locate problems that they have not thought of and
may speed the analysis of problems that other audit mechanisms have
reported.

25.8 Research Issues

The sanitization of logs is an important research topic. The key issue is the
preservation of relationships needed to perform a useful audit and the
protection of sensitive data. The former requires a careful analysis of the
goals of the audit and the security policy involved. In real situations, the
policy is often not explicit. The audit system itself looks for known violations
of the policy. The analysts are also attempting to discover previously
unknown methods of attack. If the audit detects violations of a known policy,
then the analysts need to determine the sequence of events leading up to the
breach. In either case, the analyst may not know what information he is
looking for until he has done considerable analysis, at which point the
required data may have been sanitized and the original data may be
unavailable. But if information about the relationship of sanitized data is left
in the log, someone may be able to deduce confidential information. Whether
or not this dilemma can be resolved and, if not, how to sanitize the logs to
best meet the needs of the analysts and the people being protected are open
questions.



Determining what to record is also an area of active research. Given a system
with a precise specification, the events to be logged are simply those that
enable the audit to determine whether those specifications were violated. But
few systems have precise specifications. For these systems, analyzing the
nature of events that violate the security policy is complex, and indeed the
security policy itself may be incomplete or inconsistent. How do decide what
to record without making the logs unmanageable, and how to deal with
incomplete logs, affects the completeness of the audit.

Correlation of logs is another open problem. The first type of correlation is
development of a general method that maps a set of system log entries to the
corresponding application log entries. Conversely, an analyst may want to
map a single application log entry to a set of system log entries to determine
what happens at the lower (system) level. A second type of correlation
involves ordering of logs from systems spread over a network. If the clocks
are synchronized, the log entries may be placed in temporal order. If not,
Lamport’s clock algorithm [1136] provides a partial ordering of the entries,
provided that the sends and receives between systems are logged. However,
Lamport’s scheme assumes either that the systems communicate directly
with one another or that the logs of all intermediate systems record sends and
receives and be available to the analyst. How to correlate the events when this
information is not available, or when the logs do not record sends and
receives, is an open problem.

Data provenance is a type of logging that records details of who accesses the
data and how, especially if the data is altered or transformed in any way. It is
critical for validating the integrity of data in workflows, and the relationships
between provenance, workflow, and forensics are areas of active research.
Maintaining provenance logs securely, and validating the information in the
provenance logs, are under study.

Audit browsing techniques are in their infancy. Like other user interface
mechanisms, audit browsing mechanisms take advantage of human



psychology and cognitive abilities. How best to use these mechanisms to
enable people to study logs and draw conclusions, or to determine where to
focus the analysis, is an open question, and another one is how to create or
determine associations of entities on the fly as the interest of the human
analyst shifts from one set of data to another.

25.9 Further Reading

The analysis of log files, and auditing techniques, relating to detecting attacks
is discussed in Chapter 26, “Intrusion Detection.” Many analyses of log files
require that times be correlated. Lamport’s clock algorithm is based on events
that correlate among multiple systems. If only timestamps are available, then
Ristenpart [1598] showed that temporal relationships can only be determined
from them if they are created using synchronized clocks.

Logs and auditing are critical components of systems designed for security,
and papers discuss the auditing mechanism and the rationale behind it,
usually pointing to the relevant requirements. Sibert [1756] discusses
auditing in the SunOS MLS system. Banning and her colleagues [124] discuss
auditing of distributed systems. Shieh and Gligor [1743] discuss auditing of
covert channels. Retroactive auditing can be used to identify that problems
have occurred by examining security patches [400, 1985].

What is logged, and how those logs are analyzed, depends upon the domain of
use of the system. Rao [1574] discusses auditing in an avionics system.
Auditing systems for healthcare environments must take regulations such as
the U. S. Health Insurance Portability and Accountability Act into
consideration [249,597]. Electronic voting systems have unusual audit
requirements, in that the information logged cannot enable a voter to be
correlated with his or her ballot [63, 139, 233, 980, 1516, 1963] Introspection
of virtual systems enables system logs to be analyzed by an observer outside
the virtual system [113, 600, 912].



One technique to aid analysis is visualization. It has been used to enhance
audits of spreadsheets [377, 1647]. Other visualization techniques are
designed to aid analysts in using logs to detect intruders. Researchers have
explored using a visual interface for logs used to detect intruders [1096,
1864]. Analysts also use other visualization tools to explore the logs for events
of interest [452, 942].

Information sharing is critical to both science in general and security in
particular. Differential privacy [604, 605, 1311] captures the risk to one’s
privacy that being in a data set poses. That quasi-identifiers can arise from
unexpected combinations of data elements was shown in studies of the 1990
and 2000 censuses of the U. S. [797, 1855]. Prefix-preserving IP address
anonymization [657,1570] hides the actual addresses without disguising the
relationship of addresses being on the same network or subnet. Sweeney
proposed anonymizing data by grouping entities into sets with a lower bound
on size [1856], and others built upon her work to handle cases in which the
partitioning does not provide the requisite anonymity [1172, 1235]. The trade-
off between privacy and utility has been studied for network traces [322, 467,
1497]. Other studies discuss approaches to deanonymizing sanitized data
[468, 742, 1430].

To counter the threat of the attacker finding and altering logs or log entries,
researchers have proposed cryptographic methods to secure the logs
themselves [12, 482, 1234, 1698]. These have been implemented in file
systems [1526]. Secure logging as a service, analogous to infrastructure as a
service, has also been explored [1053,2092]. The S4 service [1850] uses
journaling techniques to secure logs even if the system has been
compromised. A number of papers discuss security in provenance logs [756,
884, 2050].

25.10 Exercises

1. Extend the example of deriving required logging information to the full



Bell-LaPadula Model with both security levels and compartments.

2. In the example of deriving required logging information for the Chinese
Wall model, it is stated that the time must be logged. Why? Can something
else be logged to achieve the same purpose?

3. The Windows system logger allows the system administrator to define
events to be entered into the security log. In the example, the system
administrator configured the logger to record process execution and
termination. What other events might the system administrator wish to
record?

4. Suppose a notifier sends e-mail to the system administrator when a
successful compromise of that system is detected. What are the drawbacks of
this approach? How would you notify the appropriate user?

5. Describe a set of constraints for the Clark-Wilson model that lead to a
description of the conditions that an audit mechanism should detect. Give
these conditions.

6. Why is adherence to the principle of complete mediation (see Section
14.2.4) a necessity for logging of file accesses?

7. A network monitor records the following information while recording a
network connection:

(a) System prompts that name neither the user nor the system

(b) System control files such as the password file

(c) A file containing a list of dictionary words

(d) A user’s start-up file

(e) A system banner



(f) A source code file

(g) A web page downloaded from a remote site

Which type of information should the monitor check to see if it must sanitize
the data to conceal the names of the users and the names and addresses of the
computers involved?

8. Fisch, White, and Pooch [683] define four levels of log sanitization.

(a) Simple sanitization, in which all information except the commands issued
by an intruder are deleted

(b) Information-tracking sanitization, in which sensitive information is
entered into a symbol table as it is encountered, a unique identifier is
assigned, and whenever that information is encountered it is replaced with
the associated identifier

(c) Format sanitization, in which compressed or encoded data is transformed
into its original form, the original form is sanitized using information-
tracking sanitization, and the resulting data is returned to its transformed
format

(d) Comprehensive sanitization, in which all data is analyzed and sanitized as
in information-tracking and format sanitization

Discuss the level of anonymity of each level of sanitization. Which level could
be automated, and to what degree would human oversight be required?

9. Prove or disprove that state-based logging and transition-based logging are
equivalent if and only if the state of the system at the first transition is
recorded.

10. Suppose a remote host begins the TCP three-way handshake with the local
host but never sends the final ACK. This is called a half-open connection. The



local host waits for some short time and then purges the information from its
network tables. If a remote host makes so many half-open connections that
the local host cannot accept connections from other hosts, the remote host
has launched a syn flood attack (See Section 7.4 for more details.) Derive
logging and auditing requirements to detect such an attack.

11. What are the logging and auditing requirements for the NFSv2 operations
MKDIR and WRITE?

12. In the LAFS file system, what does the following policy line say?

prohibit:0800-1700:*:root:solitaire:exec:ok

What is the effect of specifying the status field?

13. Write a program that will slice a log file with respect to a given object.
Your program should take an object identifier (such as a process or file name)
and a log file as input. Your program should print the minimum set of
statements that affect the object, either directly or indirectly.



Chapter 26. Intrusion Detection
HIPPOLYTA: How chance Moonshine is gone before Thisbe comes back and 
finds her lover?

THESUS: She will find him by starlight. Here she comes; and her passion ends 
the play.

— A Midsummer Night’s Dream, V, i, 320–323.

System managers must protect computer systems from attack. The 
mechanisms and techniques discussed throughout this book help protect 
systems, data, and resources. However, nothing is perfect. Even the best 
protected systems must be monitored to detect successful (and unsuccessful) 
attempts to breach security. This chapter discusses automated systems for 
detecting intrusions.

26.1 Principles

Computer systems that are not under attack exhibit several characteristics.

1. The actions of users and processes generally conform to a statistically
predictable pattern. A user who does only word processing when using the
computer is unlikely to perform a system maintenance function.

2. The actions of users and processes do not include sequences of commands
to subvert the security policy of the system. In theory, any such sequence is
excluded; in practice, only sequences known to subvert the system can be



detected.

3. The actions of processes conform to a set of specifications describing
actions that the processes are allowed to do (or not allowed to do).

Denning [539] hypothesized that systems under attack fail to meet at least
one of these characteristics.

EXAMPLE: If the goal is to put in a back door, the intruder may modify a
system configuration file or program. If the attacker enters the system as a
non-privileged user, he or she must acquire system privileges to change the
files. The non-privileged user may not be a user who normally acquires
system privileges (characteristic 1). The techniques used to acquire those
privileges may involve sequences of commands designed to violate the
security policy of the system (characteristic 2). If they do not, the alterations
in the system files may introduce elements that cause processes to act in ways
that violate specifications (characteristic 3).

If the attacker modifies a user file, processes executing on behalf of that user
can now behave in abnormal ways, such as allowing network connections
from sites not able to connect earlier, or by executing commands that the user
did not execute before (characteristic 1). The commands may subvert the
security policy, thereby gaining system privileges for the user—and the
attacker (characteristic 2).

EXAMPLE: Cliff Stoll noticed an anomaly in one of the systems he was
administering: a 79¢ discrepancy in the output of an accounting log [1840].
On investigation, he realized that an intruder was breaking in to search for
classified information. This caused the discrepancy. As a result, authorities
broke up an espionage ring [1842].

26.2 Basic Intrusion Detection

The characteristics listed above guide the detection of intrusions. Once the



province of the technologically sophisticated, attacks against systems have
been automated. So a sophisticated attack need not be the work of a
sophisticated attacker. These attack tools do not change the nature of
intrusion detection fundamentally. They do eliminate many errors arising
from incorrect installation and perform routine steps to clean up detritus of
the attack, but they cannot eliminate all traces.

EXAMPLE: Consider an attack involving the Linux Rootkit IV described in
section 23.2.1. If the configuration files controlling netstat, ps, ls, and du are
set up correctly, these programs will not report any network connections,
files, or processes associated with rootkit. The files and processes will still be
present, and other programs that perform the same functions as netstat, ps,
ls, and du will report the presence of rootkit-related files. For example, du
prints the number of blocks used by a set of files, and df reports the number
of free blocks on a file system. Their sum should be approximately the size of
the file system (less some space for disk management blocks). The number of
files in directories should agree with ls’s count. Other programs, such as a
locally written directory listing program, can check this. The load average
should be consistent with the running processes. Programs other than ps,
such as local process listers, can list processes. The point is that rootkit does
not conceal the files, connections, and processes by altering kernel or file
structures. It alters the programs that interpret the data in those structures.
So, if rootkit fails to alter any program that retrieves the data, that program
will reveal the correct data. This inconsistency indicates an anomaly, which—
by characteristic 1—indicates an attack.

EXAMPLE: When the network sniffer in the Linux Rootkit IV accesses the
network device, it puts that device into promiscuous mode.1 On some
systems, this creates a log entry. Such an entry indicates a known attack, and
—by characteristic 2—an intrusion.

1Unless the network device is in promiscuous mode, the network sniffer can
record only packets intended for the host on which the sniffer resides.



Denning [539] suggests automation of the intrusion detection process. Her
specific hypothesis is that exploiting vulnerabilities requires an abnormal use
of normal commands or instructions, so security violations can be detected by
looking for abnormalities. Her model is very general and includes
abnormalities such as deviation from usual actions (anomaly detection),
execution of actions that lead to break-ins (misuse detection), and actions
inconsistent with the specifications of privileged programs (specification-
based detection).

Systems that do this are called intrusion detection systems (IDS). Their goals
are fourfold:2

2Intrusion detection systems may simply log traffic for later analysis. In this
case, they are logging engines rather than intrusion detection mechanisms
(see Section 25.2.1).

1. Detect a wide variety of intrusions. Intrusions from within the site, as well
as those from outside the site, are of interest. Furthermore, both known and
previously unknown attacks should be detected. This suggests a mechanism
for learning or adapting to new types of attacks or to changes in normal user
activity.

2. Detect intrusions in a timely fashion. “Timely” here need not be in real
time. Often, it suffices to discover an intrusion within a short period of time.
Real-time intrusion detection raises issues of responsiveness. If every
command and action must be analyzed before it can be executed, only a very
simple analysis can be done before the computer (or network) being
monitored becomes unusable. On the other hand, in all but a few rare cases,
determining that an intrusion took place a year ago is probably useless.

3. Present the analysis in a simple, easy-to-understand format. Ideally, this
should be a light that glows green for no detected intrusions and that changes
to red when an attack is detected. Unfortunately, intrusions are rarely this
clear-cut, so intrusion detection mechanisms must present more complex



data to a site security officer. The security officer determines what action (if
any) to take. Because intrusion detection mechanisms may monitor many
systems (not just one), the user interface is of critical importance. This leads
to the next requirement.

4. Be accurate. A false positive occurs when an intrusion detection system
reports an attack, but no attack is underway. False positives reduce
confidence in the correctness of the results as well as increase the amount of
work involved. However, false negatives (occurring when an intrusion
detection system fails to report an ongoing attack) are worse, because the
purpose of an intrusion detection system is to report attacks. The goal of an
intrusion detection system is to minimize both types of errors.

Formalizing this type of analysis provides a statistical and analytical basis for
monitoring a system for intrusions. Three types of analyses—anomaly
detection, misuse (or signature) detection, and specification detection—look
for violations of the three characteristics in Section 26.1. Before discussing
these types of analyses, let us consider models of an intrusion detection
system.

26.3 Models

Intrusion detection systems determine if actions constitute intrusions on the
basis of one or more models of intrusion. A model classifies a sequence of
states or actions, or a characterization of states or actions, as “good” (no
intrusions) or “bad” (possible intrusions). Anomaly models use a statistical
characterization, and actions or states that are statistically unusual are
classified as “bad.” Misuse models compare actions or states with sequences
known to indicate intrusions, or sequences believed to indicate intrusions,
and classify those sequences as “bad.” Specification-based models classify
states that violate the specifications as “bad.” The models may be adaptive
models that alter their behavior on the basis of system states and actions, or
they may be static models that are initialized from collected data and do not



change as the system runs.

In this section we examine representative models of each class. In practice,
models are often combined, and intrusion detection systems use a mixture of
two or three different types of models.

26.3.1 Anomaly Modeling

Anomaly detection uses the assumption that unexpected behavior is evidence
of an intrusion. Implicit is the belief that some set of metrics can characterize
the expected behavior of a user or a process. Each metric relates a subject and
an object.

Definition 26–1. Anomaly detection analyzes a set of characteristics of the
system and compares their behavior with a set of expected values. It reports
when the computed statistics do not match the expected measurements.

Central to anomaly detection is the idea of being able to detect “outliers” or
values that do not match, or fall within, a set of “reasonable values.” These
outliers are the anomalies, but characterizing a value as abnormal implies
that there is a method for characterizing “normal” values. Several methods
have been developed to do this.

26.3.1.1 Threshold Metrics

Denning proposed using a threshold metric. A minimum of m and a
maximum of n events are expected to occur (for some event and some values
m and n). If, over a specific period of time, fewer than m or more than n
events occur, the behavior is deemed anomalous.

EXAMPLE: Microsoft Windows systems allow the administrator to lock a
user out after some number n of failed login attempts. This is an intrusion
detection system using the threshold metric with the lower limit 0 and the
upper limit n. The attempted logins are deemed anomalous after n failed
attempts to log in.



Determining the threshold complicates use of this model. The threshold must
take into account differing levels of sophistication and characteristics of the
users. For example, if n were set to 3 in the example above for a system in
France, and the primary users of that system were in the United States, the
difference in the keyboards would result in a large number of false alarms.
But if the system were located in the United States, setting n to 3 would be
more reasonable. One approach is to combine this approach with the other
two models to adapt the thresholds to observed or predicted behavior.

26.3.1.2 Statistical Methods

The simplest statistical method, also proposed by Denning, uses statistical
moments. The analyzer knows the mean and standard deviation (first two
moments) and possibly other measures of correlation (higher moments). If
values fall outside the expected interval for that moment, the behavior that
the values represent is deemed anomalous. Because the profile, or description
of the system, may evolve over time, anomaly-based intrusion detection
systems take these changes into account by aging (or weighting) data or
altering the statistical rule base on which they make decisions.

EXAMPLE: The Intrusion Detection Expert System (IDES) [972,1226] was
developed at SRI International based on Denning’s original model. It used
anomaly detection, among other techniques. It represents subjects, which can
include a user, a login session, applications, routers, and so on, as an ordered
sequence of statistics < q0,j, . . . , qn,j >, where qi,j is the i-th statistic on day j.
The metrics are counts or time intervals, as discussed in a preceding example.
The profile for each subject is updated every day on the basis of observed
behavior.

IDES weights its statistics to favor recent behavior over past behavior. Let Ak,l
be the summation of counts making up the metric for the k-th statistic on day
l. Then the statistic qk,l+1 = Ak,l+1 –Ak,l+2–rtqk,l, where t is the number of log
entries or the total time elapsed since time 0, and r is a half-life determined



through experience. This is an exponential decay of previous values and is
quite sensitive to changes in behavior over a short period of time.

EXAMPLE: Haystack [1775] used a similar representation of events, but
considered behavior anomalous based on values larger than or smaller than
certain limits. It used a single variable. Let An be a count or time interval, and
let TL and TU be bounds such that 90% of values for Ai, i = 0, . . . , n, lie
between TL and TU . Then, when An+1 is computed, it is deemed anomalous if
it does not fall between TL and TU . In this model, rapid changes in the values
of An are not considered relevant. But a value is anomalous if it lies outside
the bounds of an interval containing 90% of the previous values.

This mechanism is also adaptive. As the values of the variable change, so do
the thresholds. This leads to a system that can adapt to changes in user
behavior over a long period of time.

The statistical moments model provides more flexibility than the threshold
model. Administrators can tune it to discriminate better than the threshold
model. But with flexibility comes complexity. In particular, an explicit
assumption is that the behavior of processes, and users, can be statistically
modeled. If this behavior matches a statistical distribution (such as a
Gaussian or normal distribution), determining the parameters requires
experimental data that can be obtained from the system. But if not, the
analysts must use other techniques, such as clustering, to determine the
model and the values that indicate abnormal behavior.

26.3.1.3 Markov Models

Denning’s third model is a Markov model. Examine a system at some
particular point in time. Events preceding that time have put the system into
a particular state. When the next event occurs, the system transitions into a
new state. Over time, a set of probabilities of transition can be developed.
When an event occurs that causes a transition that has a low probability, the
event is deemed anomalous. This model suggests that a notion of “state,” or



past history, can be used to detect anomalies. The anomalies are now no
longer based on statistics of the occurrence of individual events, but on
sequences of events. This approach heralded misuse detection and was used
to develop effective anomaly detection mechanisms.

Teng, Chen, and Lu used this approach in Digital Equipment Corporation’s
TIM research system [1877]. Their scheme used an artificial intelligence
technique called time-based inductive learning. The system is given a type of
event to be predicted. It develops a set of temporally related conditions that
predict the time that the event will occur with respect to the set.

EXAMPLE: Consider the sequence of events abcdedeabcabc. The goal is to
predict these events. The following rules are examples that TIM might derive.

R1 : ab → c (1)     R2 : c → d (0.5)     R3 : c → e (0.5)

R4 : d → e (1)       R5 : e → a (0.5)     R6 : e → d (0.5)

The left side of each rule is the antecedent, and the right side is the event
being predicted. The number in parentheses is the probability that the
antecedent event(s) is (are) followed by the event on the right side of the rule.
Rules R1 and R4 are good indicators of expected behavior. The other rules are
not particularly good, and will either be dropped (should the probability
decrease over time) or become better (should the probability increase over
time).

Anomalies are detected when a sequence of events matches the left side of a
rule but the succeeding event differs from the expected right side. Using the
rules above, if the sequence abd occurs, an alert will be triggered because c
should always come after ab. But the sequence acf will not cause an alert,
because multiple events may follow c. This sequence could cause a new rule to
be added, namely,



—and the probabilities for rules R2 and R3 would change to .

EXAMPLE: Hofmeyr, Somayaji, and Forrest [706, 921] defined “normal
behavior” in terms of sequences of system calls of various lengths, called
traces. They built a database of these traces by observing process behavior
during normal runs of the program. For example, if the trace length were 3
and the process had the trace

open read write open mmap write fchmod close

then the database would contain the following traces.

open     read      write     open
open     mmap      write     fchmod
read     write     open      mmap
write    open      mmap      write
write    fchmod    close
mmap     write     fchmod    close
fchmod   close
close

If the sequence of system calls of this program on a later run were

open read read open mmap write fchmod close

that trace would differ from the traces in the database in five positions (the
second call after the first open is not write, the call following the first read is
not write, the call following the second read is not write, the second call is
not open, and the third call is not mmap). The maximum number of pairwise
mismatches for this sequence is 18, so the mismatch rate is about 26%.

Using this technique to monitor the UNIX sendmail program and the line
printer daemon showed that this technique could distinguish between these
two programs and other programs. They also showed promise for detecting



anomalous behavior. Comparisons of other statistical methods suggested that
more sophisticated statistical analysis could enhance the accuracy of
intrusion detection systems using system call sequences.

The effectiveness of Markov-based models depends on the adequacy of the
data used to establish the model. This data (called training data) is obtained
experimentally, usually from populations that are believed to be normal (not
anomalous). For example, TIM could obtain data by monitoring a corporate
system to establish the relevant events and their sequence. Hofmeyr, Forrest,
and Somayaji obtained traces of system calls from processes running in a
normal environment. If this training data accurately reflects the environment
in which the intrusion detection system is to run, the model will work well,
but if the training data does not correspond to the environment, the Markov
model will produce false alarms and miss abnormal behaviors. In particular,
unless the training data covers all possible normal uses of the system in the
environment, the intrusion detection mechanism will issue false reports of
abnormalities.

26.3.1.4 Machine Learning

Central to these models of anomaly detection is the idea of being able to
detect “outliers” or values that do not match, or fall within, a set of
“reasonable values.” These outliers are the anomalies, but characterizing a
value as abnormal implies that there is a method for characterizing “normal”
values. This method is statistical modeling. For example, IDES builds its
anomaly detection scheme on the assumption that values of events have a
Gaussian distribution. If the distribution is Gaussian, the model works well. If
it is not, the model will not match the events, and either too many anomalous
events will occur (a high false positive rate) or anomalous events will be
missed (a high false negative rate). The former will overwhelm the security
officers with data and possibly cause them to miss truly anomalous behavior.
The latter will simply not report events that should be reported.

Experience indicates, however, that the distribution is typically not Gaussian.



So various machine learning methods can be used to classify data as
anomalous. These methods, discussed in the next few sections, fall into two
broad categories.

Supervised learning methods begin with data that has already been
classified. First, the data is split into two sets. The first set is the “training set”
and the system uses that to learn what is anomalous and what is not. Once
the training is complete, the second set of classified data is used to test the
training. As the data has already been classified, the results reported by the
system can be compared to these classifications. Ideally, the two results
should match.

Unsupervised learning methods, on the other hand, have no training data.
The system is given the data to be classified and, based on characteristics of
the data, determines what is anomalous and what is not. This method
assumes that anomalous data is a small part of the data; otherwise, the
system will assume that the anomalous data is normal, leading to a large
number of false positives.

Several measures are commonly used to evaluate intrusion detection
methods. Define T P and T N as the number of true positives and true
negatives, respectively. Similarly, define F P and F N as the number of false
positives and false negatives, respectively.

Definition 26–2. [2042]

1. The accuracy (sometimes called the classification rate) is defined as

, or the fraction of events classified correctly.

2. The detection rate, also called the true positive rate, is

, or the fraction of reported attack events that are real attack events.



3. The false alarm rate, also called the false positive rate, is

, or the fraction of non-attack events reported as attack events.

These are sometimes expressed as fractions rather than percentages.

Evaluating intrusion detection methods requires a common set of data, and
gathering or generating data for testing, is a perennial problem [11, 1645,
1748, 1797, 1882]. The DARPA off-line intrusion detection evaluations [1201,
1202] were the first large-scale evaluation of intrusion detection systems. The
researchers developed a synthetic data set, IDEVAL, based on network traffic
of a U S. Air Force base, with attacks injected into the dataset that was used in
the testing. McHugh’s critique of the tests [1298] noted that generating
synthetic data to match a particular context means that the data may not be
valid for evaluating systems used in other contexts. A variant of the IDEVAL
dataset, the KDD-CUPS-99 (or KDD-99) dataset, is widely used to compare
anomaly detection methods and systems.

EXAMPLE: The network traffic at an academic institution is most likely quite
different than that of the KDD-CUPS-99 dataset, and so an intrusion
detection system that performs well on the KDD-CUP-99 data may perform
poorly on an academic research network. Indeed, a comparison of the KDD-
CUP-99 dataset with traffic collected from the main server for the computer
science department at the Florida Institute of Technology [1243] showed
some anomalies in the FIT traffic not in the KDD-CUPS-99 traffic, such as the
TCP ACK field being nonzero when the ACK flag was not set. Higher-level
protocols also showed differences; the KDD-CUPS-99 HTTP requests were all
regular, used the keyword GET, and were HTTP version 1.0, whereas in the
FIT data some of the commands were not GET, inconsistencies in the
requests abounded, and the protocol was either version 1.0 or 1.1. They
concluded that using the KDD-CUPS-99 data to evaluate anomaly detection
techniques for their network would result in an overestimation of how well



some of those techniques performed.

26.3.1.5 Clustering

Clustering is a statistical technique that does not assume any a priori
distribution of events. It requires some set of data to be available, usually
obtained by monitoring the system for some period of time. The data is then
grouped into subsets, or clusters, based on some property (called a feature).
Instead of analyzing individual data points, the clusters are analyzed. This
greatly reduces the amount of data analyzed, at the cost of some
preprocessing time (to cluster the data). This approach is sensitive to the
features and the statistical definitions of clustering.

Figure 26–1: Clustering. The relevant measure, CPU time, is
clustered in two ways. The first uses intervals of 25th percentiles,
and the second uses the 50th percentile.

EXAMPLE: Suppose an intrusion detection system bases anomaly detection
on the number of reads and writes that a process does. Figure 26–1 shows a
sample of the relevant data for a system. Rather than deal with six data
points, we cluster them. (In practice, the data sample would be many
thousands of values.)

Our first clustering scheme is to group the data into four clusters. The first
cluster contains all entries whose CPU times fall into the first 25th percentile
of the data; the second, the entries whose CPU times fall into the second 25th
percentile of the data; and so forth. Using this grouping, we have four
clusters, with only one value in the last quartile. This could be selected as an



anomalous cluster.

Our second clustering reduces the number of clusters to two, divided into
those events with CPU times above the 50th percentile, and those with the
CPU times below it. Here, the two clusters contain three values each, so no
conclusions about anomalies can be drawn.

As this example shows, determining how to cluster the data can be tricky.
Even more difficult is determining which features are meaningful. For
example, the CPU time used may show anomalies but may not indicate
violations of the security policy, but the number of I/O requests may indicate
a violation if the data falls into a particular cluster. To overcome this problem,
systems using clustering require training data in which the anomalous data
indicating intrusions is marked. The feature selection program will use this
data to derive features and build clusters that will reflect the anomalous data
(to some degree of accuracy).

EXAMPLE: Frank demonstrated how feature selection can aid detection of
potential problems [716]. He recounts an experiment in which network traffic
was classified by features. Normally, network traffic is characterized by its
source and destination port numbers, but on many systems the port numbers
and services can be remapped, so (for example) the telnet port could be 3925
rather than the traditional 23. This remapping is internal to the system, and
is undetectable unless the contents of the traffic are read and analyzed. Frank
used 15,947 network connections obtained by monitoring a local area
network to test the classification program. He also gathered port numbers to
train the classification program (the assumption being that there was not
enough illicit port mapping to corrupt the results).

Frank collected the following characteristics about each connection.

• Index in the set of connections

• Length of time of the connection



• Number of packets from the source to the destination, and vice versa

• Number of data bytes from the source to the destination, and vice versa

• Expert system warning, an indication of how likely the NSM (see Section
26.5.1) thought it was that the event was an attack

Initially, each characteristic was considered as a possible feature. Frank then
used three types of algorithms to determine the best feature set to use for
classifying connections as suspicious. The first was a backward sequential
search algorithm, which began with the full set of features, computed error
rates, and eliminated one of the features to reduce the error rate. This
continued for some number of steps. For Frank’s test data, the error rate was
roughly 0.011%. The best set of features used all six recorded characteristics
(the index was omitted).

The second algorithm was a beam search algorithm. In this algorithm, a
metric ordered the possible clusters from best to worst, took the best, and
extended the search from that state. As new potential clusters were
generated, they were added to the list. This algorithm achieved the same error
rate as the backward sequential search algorithm, and produced a best
features set of the same size.

The third algorithm selected sequential data beginning at randomly chosen
places in the set of network connections. This generated a random feature set,
and then both backward and forward analyses were performed. This was the
slowest algorithm and had the same error rate and best features set as those
of the other two algorithms.

All three of these algorithms found that if the time in seconds, number of
packets from the destination, and number of data bytes from the source were
the only three features used, the classification error was less than 0.02%.
Adding the other features reduced the error even further.



Frank then considered the set of features that would best classify connections
as being of a particular type, such as SMTP (electronic mail) connections. He
found that for all three algorithms, the best features set had five features (the
index and number of data bytes from the destination were unnecessary), with
an error rate of 0.007%. If the number of packets from the source and the
expert system warning were omitted, the error rate crept to 0.009%. He
obtained similar results for remote login connections (four features, with an
error rate of 0.001%). When he analyzed remote command sessions, all
algorithms found that the best features set was of size four, but the randomly
generated sequential search method chose a different set of features (it
omitted the number of destination packets and included the time), and
halved the error rate obtained by the other two algorithms.

26.3.1.6 Neural Nets

A neural net is a structure that has an input layer, an output layer, and one or
more layers between them (the “hidden layers”). Each node in a layer is
connected to all the nodes in the preceding and following layer, and has an
internal function that transforms the inputs coming into the node into
outputs leaving the node. Each of the connections has an associated weight.

Figure 26–2: A neural net with input nodes I1 and I2, output node
O, and three hidden layers of three neurons each. Note the



neurons in a layer are not connected to one another. Each
connection between neurons also as a weight assigned to it.

The goal of the neural net is to classify values as anomalous or expected. It is
first given training data that is used as input to the neural net, and the net
produces outputs. These actual outputs are compared to the ideal outputs.
The weights of the connections are adjusted according to a function that takes
into account the discrepancies between the ideal and actual outputs. The data
is then run through the neural net again, the weights adjusted again, and this
process repeats until the neural net output matches the ideal output. This
approach is called “back propagation” because the outputs are used to adjust
the internal weights. When the training is finished, the weights are set, and
testing and analysis begins.

Other types of neural networks have been used for intrusion detection. The
simplest is the perceptron, which has one intermediate neuron. Feedforward
networks have multiple internal neurons distributed among one or more
hidden layers (see Figure 26–2); the back-propagation network is an example
of this. Other types include multilayer perceptrons and autoassociative
networks.

EXAMPLE: Mukkamala, Janoski, and Sung [1402] used three types of neural
nets to analyze the KDD-CUP-99 dataset. As they used all 41 features of that
dataset, all the neural nets had 41 inputs and 1 output node. The first neural
net had three hidden layers of 20 neurons each; the second, 2 hidden layers
of 40 neurons each; and the third, 2 hidden layers of 25 and 20 neurons. They
split the dataset into two parts. The training part had 7312 elements and the
testing part had 6980 elements. The second neural net had the highest
accuracy, 99.50%; the first, 99.05%; and the third, 99%.

26.3.1.7 Self-Organizing Maps

Self-organizing maps are unsupervised learning methods. They map non-
linear statistical relationships between data points into geometrical



relationships between points in a two-dimensional map.

The self-organizing map consists of a set of neuron arranged in a lattice, with
each input neuron connected to every neuron in the lattice (see Figure 26–3.
Say the classification is to use n features (v1, . . . , vn). Each lattice neuron is
given a vector of weights (w1, . . . , wn), one per feature. A vector from the
training set is then compared to the weights in each neuron, and the neuron
whose weights are most like the vector’s values is designated the best
matching unit (BMU). The method computes a radius around the BMU,
usually starting so that all neuron are in this circle. The weights of the neuron
within this circle are then adjusted to make them more like the input vector
using a function so that the closer the neuron is to the BMU, the more its
weights are altered. This procedure is then iterated, with the radius being
reduced each iteration. The process terminates after a given number of
iterations.

Figure 26–3: A self-organizing map with two inputs. The inputs
are connected to each neuron in the lattice, and none of the lattice



neuron are connected to one another.

EXAMPLE: An intrusion detection using self-organizing maps to detect
anomalous network traffic was used to examine DNS and HTTP traffic on a
university’s network [1568]. The DNS analysis used a map of 19 × 25 neurons
and was initialized using 8857 sample DNS connections. It was tested by a set
of anomalous DNS traffic with a known exploit injected, and the DNS exploit
was successfully identified as anomalous. The HTTP analysis used 7194
connections to train a map of 16 × 27 neurons. Then the self-organizing map
was given anomalous HTTP traffic that included an HTTP tunnel through
with telnet was run. The commands setting up the tunnel were identified as
anomalous.

Some experiments involved multiple layers of self-organizing maps.

EXAMPLE: One such experiment [1675] compared the efficacy of a single-
layer map with a multi-layer map. The experiment selected 3 sets of features
from the KDD-CUP-99 dataset. For a single-layer map with 36 neurons, the
best set of features detected 99.91% of the attacks, but also reported a false
positive percentage (that is, the ratio of false positives to non-attack events)
of 77.53%. However, for a 3-layer self-organizing map in which each layer had
48 neurons and used a distinct set of features, the best combination of feature
sets detected 93.46% of the attacks with a false positive percentage of 3.99%.
The experimenters concluded that multi-layer self-organizing maps operating
on a small subset of the features were more effective than a single-layer self-
organizing map operating on all the features.

26.3.1.8 Distance to Neighbor

This technique defines anomalies by their distance from neighbor elements.
Different measures are used for this purpose. The most common one is based
on the distance to the kth nearest neighbor [1571]. Essentially, the system
uses a clustering algorithm to partition the data into disjoint subsets. It then
computes upper and lower bounds for the distances of the elements in the



partition, and from that determines which partitions are likely to contain
outliers. These partitions are then examined.

EXAMPLE: Liao and Vermuri [1182] used this approach to analyze the
IDEVAL dataset. They examined system call data from processes; this data
was labeled so that the system calls for each process could be identified. This
enabled them to use a text-based analysis method. Each system call is
considered a word, and the system calls issued by a process make up a
document. This allowed them to create a matrix with rows corresponding to
words and columns to documents. They calculated the elements of the matrix
using the term frequency–inverse document frequency weighting. This takes
into account the word frequency over all documents, and compensates for the
documents being of different lengths. This matrix is constructed using the
training data.

When a new document is to be tested, a similarity function is used to
compute the distance (similarity) to the documents. The k closest are
selected, and the average of the distances is computed. This is compared to a
threshold; if the threshold is exceeded, the document is considered normal.

The values of k tested varied between 5 and 25. The value k = 10, with a
threshold value of 0.72, detected all attacks, and had a false positive rate of
0.44%. The experiment was repeated but this time using frequency
weighting; there, the value k = 15 with a threshold value of 0.99 detected all
attacks, and had the lowest false positive rate of 0.87%. They concluded that
this classification method could detect attacks with an acceptably low false
positive rate.

Sometimes the distances can be used to define a new feature, which is then
used for classification. In the triangle area nearest neighbor [1907], the data
is clustered, and the center of each cluster obtained. Some function of the
areas of the triangles formed by the center of each pair of clusters and one
point from the data set forms a new feature of the data point. The data is then



classified using the k nearest neighbor algorithm.

EXAMPLE: This method was used on the KDD-CUP-99 data [1907]. That
dataset contains four types of attacks, so k was set to 5. The experimenters
calculated the five clusters, and then formed the triangles with each data
point and two cluster centers. The new feature was defined to be the sum of
the areas of these 10 triangles.

The KDD-CUP-99 data was split into two sets. The testing and training set
consisted of 10% of the data; the remaining 90% was used to validate the
results. With k = 17, the method gave an accuracy of 99.01%, a detection rate
of 99.27%, and a false alarm rate of 2.99%. A k nearest neighbor algorithm
worked best when k = 21, giving an accuracy of 93.87%, a detection rate of
93.39%, and a false alarm rate of 28.69%.

26.3.1.9 SVM

Consider a set of data with n features. Represent each data point as a point in
n dimensional space, one dimension per feature. The support vector machine
(SVM) is a supervised learning model that derives a hyperplane dividing the
space into two parts. The similarity of two points is determined using a
function called a kernel function; a common one is the Gaussian radial base
function (RBF) e–γ||x–y||2, where x and y are two points, γ a constant
parameter, and

. New data is mapped into the n dimensional space, and thus falls into one
class or the other. This method works well when the data can be divided into
two distinct classes with a clear separation between them.

EXAMPLE: Mukkamala, Janoski, and Sung [1402] used an SVM to analyze
the same data as they analyzed using neural nets (see Section 26.3.1.6). They
used the Gaussian RBF to determine similarity. The SVM was trained on 7312
data points, and then tested on 6980 points. It achieved an accuracy of



99.50%, and the SVM training time was much quicker than the neural nets
(18 seconds as opposed to 18 minutes).

26.3.1.10 Other Methods

Other methods for applying machine learning to detecting anomalies abound.
Several use biology, and more specifically immunology, as a model [561,
703–705, 707, 1866]. Others anomaly detection methods include Bayesian
networks [169,1115] and information theoretic approaches [833, 1471]. A
common practice is to combine two or more methods.

Critical to understanding the machine learning methods is to know that they
classify data. When applied to anomaly detection, these classifications
identify anomalous data. But “anomalous” does not necessarily mean “bad”
(that is, data indicating an attack). So the data used to initialize or train the
machine learning system must contain enough “normal” (that is, non-attack)
data for the system to identify the values of the relevant features, and in some
cases the features, that indicate non-anomalous data; otherwise, the bad data
will appear normal, and the normal data will appear anomalous.

26.3.2 Misuse Modeling

In some contexts, the term “misuse” refers to an attack by an insider or
authorized user. In the context of intrusion detection systems, it means “rule-
based detection.”

Definition 26–3. Misuse detection determines whether a sequence of
instructions being executed is known to violate the site security policy being
executed. If so, it reports a potential intrusion.

Modeling of misuse requires a knowledge of system vulnerabilities or
potential vulnerabilities that attackers attempt to exploit. The intrusion
detection system incorporates this knowledge into a rule set. When data is
passed to the intrusion detection system, it applies the rule set to the data to



determine if any sequences of data match any of the rules. If so, it reports that
a possible intrusion is underway.

Figure 26–4: The mkdir attack on page 750 described using a
Colored Petri Automaton. The circles represent states, and the
thick bars represent the commands causing transitions.

Misuse-based intrusion detection systems often use expert systems to analyze
the data and apply the rule set. These systems cannot detect attacks that are
unknown to the developers of the rule set. Previously unknown attacks, or
even variations of known attacks, can be difficult to detect. Later intrusion
detection systems used adaptive methods involving neural networks and Petri
nets to improve their detection abilities.

EXAMPLE: Kumar and Spafford [1120] have adapted colored Petri nets to
detect both attack signatures and the actions following previously unknown
attacks in their system Intrusion Detection In Our Time (IDIOT). They define
an event as a change in the system state. The observation that an “event can
represent a single action by a user or system, or it can represent a series of
actions resulting in a single, observable record”3 is key. They have developed



a model of attacks on the UNIX operating system based on temporal ordering
of events. Their model classified attacks in five ways.

3See [1120], p. 15.

1. Existence; the attack creates a file or some other entity at some time.

2. Sequence; the attack causes several events to occur sequentially.

3. Partial order; the attack causes two or more sequences of events, and the
events form a partial order under the temporal relation.

4. Duration; something exists for an interval of time.

5. Interval; two events occur exactly n units of time apart.

In these attacks, the sequence of events may be interlaced with other events.
Regular expressions and attribute- and context-free grammars cannot easily
capture this. Hence, Kumar and Spafford use colored Petri nets. Each
signature corresponds to an automaton called a Colored Petri Automaton
(CPA). The nodes represent tokens; the edges represent transitions. The final
state of each signature is the compromised state. Each automaton may have
multiple start states (see Figure 26–4). At the beginning, a token is placed in
each node corresponding to a start state. As events transition the states, the
tokens move from one node along the appropriate edge to the next node.

Associated with each transition is a set of expressions protected by (possibly
empty) guards. The expressions dictate assignments to variables when the
transition is taken, and the guards determine whether or not conditions hold
for the transitions to be taken. In a guard or expression, the function this
instantiates itself to the attributes of the last event. In Figure 26–4, the guard
for transition t4 requires that the UID of the process executing the mknod be
0 but that root not be running it (this[euid] == 0 && this[ruid] != 0). If
it is, the variable FILE1 is bound to the true name of the object being created,
and the transition is made. Similarly, the guard for transition t1 (the unlink)



requires that the UID of the process not be 0 and that FILE1 be instantiated
and be the same as the name of the object being unlinked (FILE1 ==
true_name(this[obj])). If both hold, the token is moved to s2, which
represents transitioning of the system into a new state. When transition t5

occurs, it merges the two branches into one. FILE2 obtains its value from the
s1-s2-s3 branch, but the restrictions on the user IDs come from the s4-s5
branch. If those conditions are met, the transition t5 occurs, the tokens merge
at node s6, and the system enters the corresponding (compromised) state.

This model has two important features. The first is the ability to add new
signatures dynamically. The partially matched signatures need not be cleared
and rematched; existing representations of the CPAs maintain their states.
Furthermore, the patterns can be prioritized by ordering the CPAs. Even
more, sequences that are known to be likely to occur (perhaps because they
were recently published) can be prioritized by appropriately ordering the
initial branches of the CPAs.

IDIOT monitors audit logs looking for a sequence of events that correspond
to an attack. An alternative point of view is to ignore the actual states and
focus on the commands that change them. Researchers at the University of
California at Santa Barbara have built several systems that analyze the results
of commands to breach a security policy.

EXAMPLE: STAT [949] views a computer as being in a particular state, and
commands move it from one state to another. The effect of the command is to
cause a state transition. Ilgun, Kemmerer, and Porras use this to model
attacks. Ilgun developed the first STAT prototype, called USTAT.

Although the notion of “state” encompasses all data stored on the computer,
down to the level of caches and registers, the architects of STAT noted that
they needed to track only those portions of the state that affected security.
For example, suppose that a process is running as the superuser (UID 0)
without authorization. The system has been compromised. But rather than



detect the compromised state, STAT looks at the manner in which the user
obtained the special privileges. This focuses on transitions. All compromises
may be described in this way—that is, a process goes from a limited state to a
state in which some other right is acquired. The key to STAT is to find how
this can happen.

Associated with each state is a set of assertions. Consider an attack on a UNIX
system in which an attacker renames a setuid to root shell script so its name
begins with “-”. The user executes it. Because some shells have a bug that
makes any invocation of the shell beginning with “-” interactive, the attacker
gets superuser privileges.

ln target -s
-s

The state transition diagram is

The state diagram is now augmented to capture the result of the attack by
placing postconditions under the state. Let USER be the user’s effective UID.
The transition of the process into a state where it has superuser privileges
means that the effective UID is no longer that of the user:

Finally, the state diagram needs to establish conditions under which the state
s1 can be entered. In order to enter that state, the new file name must start
with “-” and cannot be owned by USER (otherwise, the user could not acquire
additional privileges). Furthermore, it must be a script, it must be setuid, and
USER must be able to execute the file. This leads to:



USTAT uses records generated by BSM to obtain system information. A
preprocessor extracts events of interest and maps them into USTAT’s internal
representation. It also removes events in which the attempted system calls
failed (because such events do not change the system state).

It then uses an inference engine to determine when a state transition
compromising a system occurs. The system has a fact base of seven types of
transitions. The first type lists files that no unprivileged user should be able to
access (read or write). The second type lists files that no unprivileged user
should be able to write to. The third and fourth types list executable programs
that are authorized to read from files in the first list and write to files in the
second list, respectively. The fifth type lists files that are common places for
Trojan horses and should not be deleted nor overwritten. The sixth type lists
system directories that users should not be able to write to, and the last type
lists UNIX files with multiple names. A rule set uses these types of transitions
to constrain the actions that should be reported.

The inference engine constructs a series of state table entries corresponding
to the transitions. Consider the attack described above, and suppose that the
rule base consists of the one state transition rule above. Initially, the table
appears as follows:

because there is one state transition rule with two states. After the first



command (the ln), all five preconditions of state s1 are satisfied, so the system
creates a new row to represent this:

The first row will be used if another file is created with the same properties as
those in the state transition diagram. The second row asserts that a process
has already done so. The attacker now executes the file -x and, because the
EUID of the process is no longer that of the user, the system enters state s2.
The matrix is not augmented, but the violation is noted. The row remains
present until something negates the preconditions on s1 (such as the file not
being a shell script or not being setuid).

The load that USTAT places on a system does not increase as the system load
increases, because USTAT reopens log files repeatedly to read new records.
Nevertheless, its approach is interesting because, unlike other intrusion
detection mechanisms, it focuses on the changes of state rather than on the
existing state.

One important feature for intrusion detection systems is an interface into
which new users and/or maintainers can add new rules or data. The widely-
used Bro intrusion detection system does exactly this.

EXAMPLE: Bro [1508] is a network-based intrusion detection system that
provides a mechanism for users to configure its analysis. Its architecture
consists of two components, an event engine and a policy script interpreter.
The event engine reads packets from the network (using various lower-level
libraries) and processes them into a stream of events that is fed to the policy
script interpreter. The event engine does not consider any events “good” or
“bad”; that is left to the policy script interpreter. That performs the analysis,
and notifies the analyst when events of interest occur. Policy scripts control
the analysis.



The key to this architecture is the separation of policy from mechanism. The
event engine uses a variety of protocol analyzers to map the network flows
into events. For example, one protocol analyzer detects a new TCP
connection; another, HTTP requests; and so forth. Once an event is found, it
is passed up to the policy layer, where the policy script interpreter executes
the appropriate script.

Bro comes with numerous policy scripts, and the site administrator can write
others. As an example, the following script [1795] detects SSH servers on the
network:

# holds a list of SSH servers
global ssh_hosts: set[addr];

event connection_established (c: connection)
{
        local responder = c$id$resp_h; # address of responder (server)
        local service = c$id$resp_p;   # port on server

        if ( service != 22/tcp )       # SSH port is 22
                return;

        # if you get here, it’s SSH
        if ( responder in ssh_hosts )  # see if we saw this alr eady
                return;

        # we didn’t –– add it to the list and say so
        add ssh_hosts [responder];
        print “New SSH host found”, responder;
}

This script assumes that every connection to a server on port 22 is a
connection to an SSH server. The first two lines set variables to the address
and port number being accessed. If the port number is not 22, the client is
not accessing an SSH server. Otherwise, the server (responder) is a putative
SSH host. The script then checks whether this server has been seen before; if
not, it adds the address to the list of SSH servers seen, and prints a message
announcing the discovery.



The Bro scripting language offers many features. As in the above, the scripts
can preserve state over multiple invocations, and can access domain-specific
information such as IP addresses and port numbers. They can also execute
external programs.

26.3.3 Specification Modeling

Anomaly detection has been called the art of looking for unusual states.
Similarly, misuse detection is the art of looking for states known to be bad.
Specification detection takes the opposite approach; it looks for states known
not to be good, and when the system enters such a state, it reports a possible
intrusion.

Definition 26–4. Specification-based detection determines whether or not
a sequence of instructions violates a specification of how a program, or
system, should execute. If so, it reports a potential intrusion.

For security purposes, only those programs that in some way change the
protection state of the system need to be specified and checked. For example,
because the policy editor in Windows changes security-related settings, it
needs to have an associated specification.

Specification-based detection relies on traces, or sequences, of events [1086].

Definition 26–5. A system trace is a sequence of events t0, t1, . . . , ti, ti+1, . .
. during the execution of a system of processes. Event ti occurs at time C(ti),
and this imposes a total ordering on the events.

Contrast this with the notion of trace in Chapter 9, “Noninterference and
Policy Composition.” This definition uses events as elements of the sequence,
whereas the definition in Chapter 9 uses inputs and outputs as elements of
the sequence.

Definition 26–6. A subtrace of a trace T = t0, t1, . . . , ti, ti+1, . . . , tn is a
sequence of events



, where

is a subsequence of t0, t1, . . . , ti, ti+1, . . . , tn.

For example, if U is the system trace for the system, and V is a system trace
for one process in that system, then V will be a subtrace of U.

Definition 26–7. A trace T = t0, . . . , tm+n is the merge of two traces U and
V if and only if there are two subtraces u1, . . . , um and v0, . . . , vn of T such
that U = u1, . . . , um and V = v0, . . . , vn.

When a distributed process executes, its trace is the merged trace of its
components. The merge of traces U and V is written T = U ⊕ V .

Definition 26–8. A filter p is a function that maps a trace T to a subtrace T′

such that, for all events ti in T′, p(ti) is true.

The filter allows the monitoring to weed out events that are of no interest.

Definition 26–9. An execution trace of a subject s is the sequence of
operations performed by the processes making up the subject.

For example, if the subject s is composed of processes p, q, and r, with traces
Tp, Tq, and Tr, respectively, then the trace of s is Ts = Tp ⊕ Tq ⊕ Tr.

A trace policy takes a set of selection expressions and applies them to the
system trace of interest.

EXAMPLE: If the filtering function can filter on process, program, host, or
user, one can represent each subject as a quadruple < proc, prog, host, user
>. Thus, the filter

< ANY, emacs, ANY, bishop >



applied to a system trace will produce a list of subjects with program emacs
and user bishop. The filter

< ANY, ANY, progress, ANY >

produces a list of subjects on the host progress.

EXAMPLE: Ko, Ruschitzka, and Levitt [1086] developed a specification-based
intrusion detection system for the UNIX environment. They specified 15
security-related programs. The specifications constrained object access,
sequencing of operations, synchronization, and race conditions. The
researchers applied this to monitoring of the program rdist.

The UNIX program rdist (for remote distribution) updates programs on
remote systems. It first creates a temporary file /tmp/rdistxxxxx. It then
copies the contents of the new file into the temporary file, changes the
protection mask as required, and copies the temporary file over the file to be
replaced. The problem is that rdist modifies protection modes by acting on
the file name, so if an attacker can replace the file by a symbolic link, he can
force rdist to modify the protection modes of any file in the system. For
example, he can turn on the setuid bit for the program /bin/sh, which would
give him superuser privileges instantly.

A specification in the PE-grammar language describes the accepted behavior
of rdist, as shown in Figure 26–5. The first line defines the set of subjects
(events) to which the rule should be applied (namely, any process on the host
progress created from the program rdist, regardless of which user executes
it).

The next five lines set up the environment. Line 2 names the user, line 3
identifies the process, and lines 4 and 5 obtain the inode of the relevant
directories. Line 6 sets HOME to be the user’s home directory.

Lines 7 through 10 set up the grammar that constrains rdist’s actions. Line 7



specifies the top-level rule, and line 8 says that the operations of interest are
in the rule valid_op. Line 9 names the valid_ops and states when they are
valid. For example, if a file is opened and the file is not world-readable, the
second valid_op says that rdist must have created it. Similarly, if a chmod is
applied to a file, the eighth valid_op constrains the file to be one created by
rdist.

The distributed program execution monitor (DPEM) has a set of agents for
generating traces from audit logs, and a director for collecting the traces,
comparing them with the specifications, and analyzing the results. In the
experiments, specifications for all network daemons (including copies of rdist
and sendmail known to have vulnerabilities) were developed, and several
attacks were launched. On the average, detecting an attack from rdist took
0.06 second. Similarly, a race condition involving two editing sessions of a
password file took 0.05 second to detect.

Specification-based intrusion detection is in its infancy. Among its appealing
qualities are the formalization (at a relatively low level) of what should
happen. This means that intrusions using unknown attacks will be detected.
Balanced against this desirable feature is the extra effort needed to locate and
analyze the programs that may cause security problems. The subtlety of this
last point is brought home when one realizes that any program is a potential
security threat when executed by a privileged user.

26.3.4 Summary

Reflecting on the differences between the three basic types of intrusion
detection will clarify the nature of each type.

Some observations on misuse detection will provide a basis for what follows.
Definition 26–3 characterizes misuse detection as detection of violations of a
policy. The policy may be known (explicit) or implicit. In the former case, one
uses the techniques described in Section 25.4.1 to develop the rules for the
misuse detection system. In the latter case, one must describe the policy in



terms of actions or states that are known to violate the policy, which calls on
the techniques described in Section 25.4.2 to develop the relevant rules. This
distinction, although subtle, is crucial. In the first case, the rules database is
sufficient to detect all violations of policy because the policy itself was used to
populate the rule set. In the second case, the rule set contains descriptions of
states and/or actions that are known to violate the policy, but not all such
states or actions. This kind of misuse detection system will not detect all
violations of system policy.



Figure 26–5: The PE-grammar for monitoring rdist (see [1086], p.
181).

Now consider the difference between misuse detection and anomaly
detection. The former detects violations of a policy. The latter detects
violations of expectation, which may (or may not) violate the policy. For
example, TIM uses rules that it derives from logs to construct its Markov
model. If the training data contain attacks, the Markov model will accept
those attacks as normal. Hence, it is an anomaly detection mechanism. By
way of contrast, IDIOT does not construct models from data on the fly. It
contains a rule base of sequences that describe known attacks. Hence, it is a
misuse detection mechanism.

The distinction between specification-based detection and misuse detection is
also worth consideration. The former detects violations of per-program
specifications, and makes an implicit assumption that if all programs adhere
to their specifications, the site policy cannot be violated. The latter makes no
such assumption, focusing instead on the overall site policy. Suppose an
attacker could attack a system in such a way that no program violated its
specifications but the combined effect of the execution of the programs
during the attack did violate the site policy. Misuse intrusion detection might
detect the attack (depending on the completeness of the rule set). Anomaly
intrusion detection might also detect the attack (depending on the
characterization of expected behavior). However, specification-based
intrusion detection would not detect this attack. In essence, if the
specification of a program is its “security policy,” specification-based
detection is a local (per-program) form of misuse detection.

26.4 Architecture

An intrusion detection system is also an automated auditing mechanism. Like
auditing systems, it consists of three parts (see Section 25.2). The agent
corresponds to the logger. It acquires information from a target (such as a



computer system). The director corresponds to the analyzer. It analyzes the
data from the agents as required (usually to determine if an attack is in
progress or has occurred). The director then passes this information to the
notifier, which determines whether, and how, to notify the requisite entity.
The notifier may communicate with the agents to adjust the logging if
appropriate. Figure 26–6 illustrates this.

26.4.1 Agent

An agent obtains information from a data source (or set of data sources). The
source may be a log file, another process, or a network. The information, once
acquired, may be sent directly to the director. Usually, however, it is
preprocessed into a specific format to save the director from having to do
this. Also, the agent may discard information that it deems irrelevant.

EXAMPLE: If the agent is to transmit the time and location of a failed login
attempt, it will scan the appropriate log file, discard any records of successful
logins, and send the remainder to the director.

The director may determine that it needs more information from a particular
information source. In that case, the director can instruct the agent to collect
additional data, or to process the data it collects differently. The director can
use this to cut down on the amount of processing it must do, but can increase
the level of information it receives when an attack is suspected.



Figure 26–6: Architecture of an intrusion detection system. Hosts
A, B, and C are general-purpose computers, and the agents
monitor activity on them. Host N is designed for network
monitoring, and its agent reports data gleaned from the Net to the
director.

EXAMPLE: When the director determines that an attack on some other
system is underway, it might direct all agents to report all login attempts
involving the suspect accounts, whether successful or not.

An agent can obtain information from a single host, from a set of hosts (in
which case it may also function as a director; see Section 26.4.2), or from a
network. Let us consider the types of information that are available from
each, and how they might be gathered.

26.4.1.1 Host-Based Information Gathering

Host-based agents usually use system and application logs to obtain records
of events, and analyze them to determine what to pass to the director. The
events to look for, and to analyze, are determined by the goals of the intrusion
detection mechanism. The logs may be security-related logs (such as BSM
and the Windows logs discussed in Chapter 25, “Auditing”) or other logs such
as accounting logs. Crosbie and Spafford [481] point out that the logs may
even be virtual logs if the agent is put directly in the kernel. The agent then
simply copies records that the kernel puts into the logs. This eliminates the
need to convert from one log format to an internal representation. It also
means that the agents are not portable among heterogeneous computers.
There is also a drawback involving the granularity of information obtained,
which we will discuss in Section 26.4.1.3.

A variant of host-based information gathering occurs when the agent
generates its own information. Policy checkers do this. They analyze the state
of the system, or of some objects in the system, and treat the results as a log
(to reduce and forward). However, these agents are usually somewhat



complex, and a fundamental rule of secure design is to keep software simple,
usually by restricting its function to one task. This arrangement violates that
rule. So, the policy checker usually logs its output, and the agent simply
analyzes that log just as it would analyze any other log.

26.4.1.2 Network-Based Information Gathering

Network-based agents use a variety of devices and software to monitor
network traffic. This technique provides information of a different flavor than
host-based monitoring provides. It can detect network-oriented attacks, such
as a denial of service attack introduced by flooding a network. It can monitor
traffic for a large number of hosts. It can also examine the contents of the
traffic itself (called content monitoring).

Network-based agents may use network sniffing to read the network traffic.
In this case, a system provides the agent with access to all network traffic
passing that host. If the medium is point-to-point (such as a token ring
network), the agents must be distributed to obtain a complete view of the
network messages. If the medium is a broadcast medium (such as Ethernet),
typically only one computer needs to have the monitoring agent. Arranging
the monitoring agents so as to minimize the number required to provide
complete network coverage is a difficult problem. In general, the policy will
focus on intruders entering the network rather than on insiders. In this case,
if the network has a limited number of points of access, the agents need to
monitor only the traffic through those points. If the computers controlling
those entry points do extensive logging on the network traffic that they
receive, the network-based information gathering is in effect reduced to host-
based information gathering.

Monitoring of network traffic raises several significant issues. The critical
issue is that the analysis software must ensure that the view of the network
traffic is exactly the same as at all hosts for which the traffic is intended.
Furthermore, if the traffic is end-to-end enciphered, monitoring the contents
from the network is not possible.



26.4.1.3 Combining Sources

The goal of an agent is to provide the director with information so that the
director can report possible violations of the security policy (intrusions). An
aggregate of information is needed. However, the information can be viewed
at several levels.

EXAMPLE: Consider a FreeBSD UNIX system with two sources of
information. The first is the application level log. Whenever a user changes
privileges by executing the program su, a log entry is written into that log.
The second is the system call log that the (nonstandard, instrumented) kernel
generates.

The application level log presents a very high-level view of actions:

Apr  2 14:24:05 nob su: bishop to root on /dev/pts/3

The system call level log generates a very different view of this action. The log
contains 1941 entries for the single command. A few such entries from the
middle of the process give the flavor of the entire log. The entries that follow
correspond to obtaining the user’s effective UID, opening the password file,
and obtaining the password of the user with that effective UID.

79878 su       CALL   geteuid
79878 su       RET    geteuid 0
79878 su       CALL   open(0x800fc539a,0x100000<O_CLOEXEC>,<unused>0)
79878 su       NAMI   "/etc/spwd.db"
79878 su       RET    open 3
79878 su       CALL   fstat(0x3,0x7fffffffdf00)
79878 su       RET    fstat 0
79878 su       CALL   read(0x3,0x80164d000,0x104)
79878 su       RET    read 260/0x104
79878 su       CALL   pread(0x3,0x801656000,0x1000,0x6000)
79878 su       RET    pread 4096/0x1000
79878 su       CALL   pread(0x3,0x80165c000,0x1000,0x4000)
79878 su       RET    pread 4096/0x1000
79878 su       CALL   close(0x3)



79878 su       RET    close 0

If one views the issue at the application level, the single-line log entry is
sufficient, but from a system level view, it is not, because it obscures the many
system calls actually made. Similarly, from an application level view, the
system level view is inadequate, because the sequence of system calls does not
make clear what their combined function is (specifically, to log in a user).

The difference between application and system views (which is, essentially, a
problem of layers of abstraction) affects what the agent can report to the
director and what the director can conclude from analyzing the information.
The agent, or the director, must either obtain information at the level of
abstraction at which it looks for security problems or be able to map the
information into an appropriate level.

26.4.2 Director

The director itself reduces the incoming log entries to eliminate unnecessary
and redundant records. It then uses an analysis engine to determine if an
attack (or the precursor to an attack) is underway. The analysis engine may
use any of, or a mixture of, several techniques to perform its analysis.

Because the functioning of the director is critical to the effectiveness of the
intrusion detection system, it is usually run on a separate system. This allows
the system to be dedicated to the director’s activity. It has the side effect of
keeping the specific rules and profiles unavailable to ordinary users. Then
attackers lack the knowledge needed to evade the intrusion detection system
by conforming to known profiles or using only techniques that the rules do
not include.

The director must correlate information from multiple logs.

EXAMPLE: A particular user logs in during the day to perform system
maintenance functions. Occasionally she logs in during the late evening to



write reports. One day, she apparently logs in during the late evening and
begins altering the kernel (a system maintenance procedure). Agents provide
information from both the log of login times and the log of commands
executed. Neither set of data by itself will give an indication of a security
problem. However, if the director correlates the two sets of data, the anomaly
will be apparent.

Many types of directors alter the set of rules that they use to make decisions.
These adaptive directors alter the profiles, add (or delete) rules, and
otherwise adapt to changes in the systems being monitored.

Figure 26–7: An example of GrIDS output showing the spread of a
worm. The left figure shows the graph shortly after the spread has
begun. The right figure shows the graph after further spread.

EXAMPLE: A science DMZ [501,502,1512] is a high-speed network used for
big data science. Because of the throughput that is required, security
mechanisms must be simple and not interfere with the flow of legitimate
data. The architecture of this type of network uses routers to provide security.
When a connection begins, the beginning of the connection is copied to a
system and analyzed. If the connection is malicious, the system reconfigures
the router to discard packets coming from the source of the connection. This
way, legitimate connections pass through the router onto the science DMZ
with no interference, but illegitimate connections are blocked.

Directors rarely use only one analysis technique, because different techniques



highlight different aspects of intrusions. The results of each are combined,
analyzed and reduced, and then used.

26.4.3 Notifier

The notifier accepts information from the director and takes the appropriate
action. In some cases, this is simply a notification to the system security
officer that an attack is believed to be underway. In other cases, the notifier
may take some action to respond to the attack.

Many intrusion detection systems use graphical interfaces. A well-designed
graphics display allows the intrusion detection system to convey information
in an easy-to-grasp image or set of images. It must allow users to determine
what attacks are underway (ideally, with some notion of how likely it is that
this is not a false alarm). This requires that the GUI be designed with a lack of
clutter and unnecessary information.

EXAMPLE: The Graphical Intrusion Detection System (GrIDS) [1827],
intended for monitoring very large networks, uses a graph-oriented user
interface to show the progress of attacks across multiple systems. The hosts
are represented as nodes, and as an attack from one system to another is
identified, the nodes are connected with edges labeled to show the progress of
the attack. Figure 26–7 is an example of one of the user displays of GrIDS. It
shows the progress of a worm attack as it progresses through a network.

The notifier may contact the appropriate person or make entries into the
appropriate log files.

EXAMPLE: Credit card companies often allow customers to set up alerts
notifying them when their card is used. This capability helps detect
fraudulent purchases using the card. If a cardholder has set up SMS
notification when the card is used for a purchase over $500, then the credit
card company will text the cardholder a message informing her when a
purchase with the card exceeds that amount. The cardholder can then



challenge the charge if she believes it to be fraudulent, for example if she is in
San Francisco at the time the purchase was made in Dubai.

When the intrusion detection system is a distributed one, or a set of
cooperating intrusion detection systems, they must communicate among
themselves and change firewall and router rules as appropriate to block
attacks.

EXAMPLE: The Intrusion Detection Message Exchange Format (IDMEF)
[529] describes messages that different intrusion detection systems can
exchange, using a protocol such as the Intrusion Detection Exchange Protocol
(IDXP) [660]. These have been used in an intrusion detection system for
computational grids [1706]. This system consists of host-and network-based
intrusion detection systems that feed information to a higher level grid
intrusion detection system (GIDS), which analyzes the data and reports any
intrusions it, or one of the lower level intrusion detection systems, detects.
The lower level intrusion detection systems send IDMEF messages using the
IDXP. An intrusion detection system for MANETS [1073] converts IDMEF-
format messages to an internal form and transmit them using authenticated,
encrypted SNMPv3 messages to a central console. The console reconstructs
the messages and determines how to respond. The appropriate messages are
then sent back to the responder nodes. To detect compromises to the network
infrastructure, when a specific number of messages have not been
acknowledged, it is assumed they were not received and the nodes switch to
communication by flooding messages onto the network.

Incident response, discussed in Section 27.3, is a type of notification.

Definition 26–10. An intrusion prevention system is an intrusion
detection system with a notifier that responds to attacks by taking action to
block or mitigate that attack and future similar attacks.

In addition to any human-intelligible notifications, the intrusion detection
system communicates with other entities to counteract the attack. Responses



include disconnecting from the network, filtering packets from attacking
hosts, increasing the level of logging, and instructing agents to forward
information from additional sources.

26.5 Organization of Intrusion Detection Systems

An intrusion detection system can be organized in several ways. This section
explores three such paradigms using research intrusion detection systems.
The first system examined network traffic only. The second explored how to
combine network and host sources. The third system distributed the director
among multiple systems to enhance security and reliability.

26.5.1 Monitoring Network Traffic for Intrusions: NSM

The Network Security Monitor (NSM) [893] develops a profile of expected
usage of a network and compares current usage with that profile. It also
allows the definition of a set of signatures to look for specific sequences of
network traffic that indicate attacks. It runs on a local area network and
assumes a broadcast medium. The monitor measures network utilization and
other characteristics and can be instructed to look at activity based on a user,
a group of users, or a service. It reports anomalous behavior.

The NSM monitors the source, destination, and service of network traffic. It
assigns a unique connection ID to each connection. The source, destination,
and service are used as axes for a matrix. Each element of the matrix contains
the number of packets sent over that connection for a specified period of
time, and the sum of the data of those packets. NSM also generates expected
connection data from the network. The data in the array is “masked” by the
expected connection data, and any data not within the expected range is
reported as an anomaly.

The developers of the NSM quickly found that too much data was being
generated during the network analysis. To reduce the overhead, they
constructed a hierarchy of elements of the matrix and generated expected



connection data for those elements. If any group in the hierarchy showed
anomalous data, the system security officer could ask the NSM to break it
down into the underlying elements. The groups were constructed by folding
axes of the matrix. For example, one group would be the set of traffic between
two hosts for each service. It would have the elements {(A, B, SMTP), (A, B,
FTP), . . .}, where A and Bwere host names. The next group would collapse
the service names and simply group all traffic into source-destination pairs.
At the highest level, traffic would be grouped into its source. The NSM would
analyze the data at the source level. If it flagged an anomaly, the system
security officer could have the NSM examine each component of the
underlying group and determine which specific source-destination pair had
the anomaly. From there, it could be broken into the specific service or
services involved.

The NSM’s use of a matrix allowed a simple signature-based scheme to look
for known patterns of misuse. For example, repeated telnet connections that
lasted only as long as the normal setup time would indicate a failed login
attempt. A specific rule could look in the matrix for this occurrence (although,
as the designers point out, these patterns can be hidden as one moves up the
hierarchy).

The implementation of the NSM also allowed the analyst to write specific
rules against which to compare network traffic. The rules initially used were
to check for excessive logins, a single host communicating with 15 or more
hosts, or any attempt to communicate with a nonexistent host.

The NSM provided a graphical user display to enable the system security
officer to see at a glance the state of the network. Furthermore, the display
manager was independent of the NSM matrix analyzer, so the latter could
devote full time to the analysis of the data. The prototype system, deployed at
the University of California at Davis, detected many attacks. As with all
intrusion detection systems, it also reported false positives, such as alumni
logging into accounts that had laid dormant for some time. But its capabilities



revealed the need for and feasibility of monitoring the network as well as
individual hosts.

The NSM is important for two reasons. First, it served as the basis for a large
number of intrusion detection systems. Indeed, 11 years after its creation, it
was still in use at many sites (although with an augmented set of signatures).
Second, it proved that performing intrusion detection on networks was
practical. As network traffic becomes enciphered, the ability to analyze the
contents of the packets diminishes, but NSM did not look at the contents of
the traffic. It performed traffic analysis. Hence, its methodology will continue
to be effective even after widespread deployment of network encryption.

Figure 26–8: DIDS actions and domains. The domains are listed in
order of priority, from top to bottom.

26.5.2 Combining Host and Network Monitoring: DIDS

The Distributed Intrusion Detection System (DIDS) [1784, 1785] combined
the abilities of the NSM with intrusion detection monitoring of individual
hosts. It sprang from the observation that neither network-based monitoring
nor host-based monitoring was sufficient. An intruder attempting to log into
a system through an account without a password would not be detected as
malicious by a network monitor. Subsequent actions, however, might make a
host-based monitor report that an intruder is present. Similarly, if an attacker
tries to telnet to a system a few times, using a different login name each time,
the host-based intrusion detection mechanism would not report a problem,
but the network-based monitor could detect repeated failed login attempts.



DIDS used a centralized analysis engine (the DIDS director) and required
that agents be placed on the systems being monitored as well as in a place to
monitor the network traffic. The agents scanned logs for events of interest
and reported them to the DIDS director. The DIDS director invoked an expert
system that performed the analysis of the data. The expert system was a rule-
based system that could make inferences about individual hosts and about
the entire system (hosts and networks). It would then pass results to the user
interface, which displayed them in a simple, easy-to-grasp manner for the
system security officer.

One problem is the changing of identity as an intruder moves from host to
host. An intruder might gain access to the first system as user alice, and then
to the second system as user bob. The host-based mechanisms cannot know
that alice and bob are the same user, so they cannot correlate the actions of
those two user names. But the DIDS director would note that alice connected
to the remote host and that bob logged in through that connection. The expert
system would infer that they were the same user. To enable this type of
correlation, each user was identified by a network identification number
(NID). In the example above, because alice and bob are the same user, both
would share a common NID.

The host agents and network agent provide insight into the problems
distributed intrusion detection faces. The host logs are analyzed to extract
entries of interest. In some cases, simple reduction is performed to determine
if the records should be forwarded; for example, the host agents monitor the
system for attacks using signatures. Summaries of these results go to the
director. Other events are forwarded directly. To capture this, the DIDS
model has host agents report events, which are the information contained in
the log entries, and an action and domain (see Figure 26–8). Subjects (such
as active processes) perform actions; domains characterize passive entities.
Note that a process can be either a subject (as when it changes the protection
mode of a file) or an object (as when it is terminated). An object is assigned to
the highest-priority domain to which it belongs. For example, a file may be



tagged as important. If the file contains authentication data and also is
tagged, it will be reported as a tagged object. A hand-built table dictates
which events are sent to the DIDS director based on the actions and domains
associated with the events. Events associated with the NID are those with
session_start actions, and execute actions with network domains. These
actions are forwarded so that the DIDS director can update its system view
accordingly.

The network agent is a simplified version of the NSM. It provides the
information described above.

The expert system, a component of the DIDS director, derives high-level
intrusion information from the low-level data sent to it. The rule base comes
from a hierarchical model of intrusion detection. That model supplies six
layers in the reduction procedure.

1. At this lowest layer, the log records are all visible. They come from the host
and the network agent, and from any other sources the DIDS director has.

2. Here, the events abstract relevant information from the log entries.

3. This layer defines a subject that captures all events associated with a single
user. The NID is assigned to this subject. This layer defines the boundary
between machine-dependent information and the abstraction of a user
(subject) and associated events.

4. This layer adds contextual information. Specifically, temporal data such as
wall clock time, and spacial data such as proximity to other events, are taken
into account. If the user tries to log in at a time when that user has never tried
to log in before, or if a series of failed logins follows commands to see who is
using a system, the context makes the events suspicious.

5. This layer deals with network threats, which are combinations of events in
context. A threat is abuse if the protection state of the system is changed (for



example, making a protected file world-writable). A threat is misuse if it
violates policy but does not change the state of the system (for example,
copying a world-readable homework file, which is a clear violation of policy at
most universities). A threat is a suspicious act if it does not violate policy but
is of interest (for example, a finger probe may be a prelude to an attack).

6. This layer assigns a score, from 1 to 100, representing the security state of
the network. This score is derived from the threats to the system developed in
layer 5. This is a user convenience, because it enables the system security
officer to notice problems quickly. Because the raw data (and intermediate
data) used to derive the figure is present, the specifics can be provided
quickly.

Within the expert system, each rule has an associated rule value. This value is
used to calculate the score. The system security officer gives feedback to the
expert system, and if false alarms occur, the expert system lowers the value
associated with the rules leading to the false alarm.

GrIDS, mentioned in Section 26.4.3, extended DIDS to wide area networks.
In addition to monitoring hosts and network traffic, the GrIDS directors
could obtain data from network infrastructure systems (such as DNS servers).
Figure 26–7 shows that GrIDS deployed a hierarchy of directors, each one
reducing data from its children (agents or other directors) and passing the
information to its parent. GrIDS directors can be in different organizations.
This leads to the ability to analyze incidents occurring over a wide area, and
to coordinate responses.

26.5.3 Autonomous Agents: AAFID

In 1995, Crosbie and Spafford examined intrusion detection systems in light
of fault tolerance [481]. They noted that an intrusion detection system that
obtains information by monitoring systems and networks is a single point of
failure. If the director fails, the IDS will not function. Their suggestion was to
partition the intrusion detection system into multiple components that



function independently of one another, yet communicate to correlate
information.

Definition 26–11. An autonomous agent is a process that can act
independently of the system of which it is a part.

Crosbie and Spafford suggested developing autonomous agents each of which
performed one particular monitoring function. Each agent would have its
own internal model, and when the agent detected a deviation from expected
behavior, a match with a particular rule, or a violation of a specification, it
would notify other agents. The agents would jointly determine whether the
set of notifications were sufficient to constitute a reportable intrusion.

The beauty of this organization lies in the cooperation of the agents. No
longer is there a single point of failure. If one agent were compromised, the
others can continue to function. Furthermore, if an attacker shoud
compromise one agent, she has learned nothing about the other agents in the
system or monitoring the network. Moreover, the director itself is distributed
among the agents, so it cannot be attacked in the same way that an intrusion
detection system with a director on a single host can be. Other advantages
include the specialization of each agent. The agent can be crafted to monitor
one resource, making the agent small and simple (and meeting the principle
of economy of mechanism; see Section 14.2.3). The agents could also migrate
through the local network and process data on multiple systems. Finally, this
approach appears to be scalable to larger networks because of the distributed
nature of the director.

The drawbacks of autonomous agents lie in the overhead of the
communications needed. As the functionality of each agent is reduced, more
agents are needed to monitor the system, with an attendant increase in
communications overhead. Furthermore, the communications must be
secured, as must the distributed computations.

EXAMPLE: The Autonomous Agents for Intrusion Detection (AAFID) system



[56, 958] implements these ideas. Each host has a set of agents and a
transceiver, which controls the execution of the agents, collates the
information, and forwards it to a monitor (director). If the transceiver’s host
does not have a monitor, the transceiver simply transmits the information to
a monitor on another host.

In theory, each agent obtains its own data. This approach causes unnecessary
duplication of work and leads to agents that are highly system-dependent. To
avoid this problem, AAFID uses filters to provide access to monitored
resources in a system-independent way. An agent subscribes to a filter by
specifying which records it needs. The filter collects the data, transforms it
into a system-independent form, and sends each agent the requested records.
Multiple agents may subscribe to a single filter.

Transceivers collect data from the local agents, process it, and forward it to
other agents or to monitors as appropriate. A transceiver also tracks the
agents on its host, and can initiate them or terminate them. For example, if a
system begins to accept TCP connections, the transceiver can initiate the
SMTP monitoring agent. When TCP networking is shut down, the transceiver
can then terminate that agent.

Monitors are the distributed components of the AAFID director. They accept
information from transceivers and can communicate with the transceivers
and other monitors. They perform high-level correlations for one or more
hosts. Multiple monitors may receive data from, and transmit commands to,
a single transceiver. In such cases, the AAFID system must ensure that the
transceiver receives consistent information and commands.

Finally, the user interface plays one of the roles of a notifier. This interface
interacts with the monitors. It may be graphical (for human interaction) or
textual (for command scripts).

The implemented AAFID prototype runs on Linux and Solaris systems. It
focused on testing the ideas and architecture outlined above. It was



implemented in Perl [417] for ease of programming, portability, and
modification. Because the prototype was a proof of concept and not a
production system, the loss of performance was considered acceptable. The
prototype validated the architecture and demonstrated that autonomous
agents were a practical method for intrusion detection systems.

26.6 Summary

Intrusion detection is a form of auditing that looks for break-ins and attacks.
Automated methods aid in this process, although it can be done manually.
There are three basic models of intrusion detection.

Anomaly detection looks for unexpected behavior. A baseline of expected
actions or characteristics of processes, users, or groups of users is developed.
Whenever something deviates from that baseline, it is reported as a possible
intrusion. In some cases, the profiles are changed over time. In this way, the
expected behavior of users is updated as their actual behavior changes over
time.

Misuse detection looks for sequences of events known to indicate attacks. A
rule set (or database) of attacks provides the requisite information. Ideally, an
expert system will use the rule set to detect previously unknown attacks (but
efforts of this type have been singularly unsuccessful). Both state-based and
transition-based techniques capture the sequence of events in attacks.

Specification-based detection looks for actions outside the specifications of
key programs. Each program has a set of rules specifying what actions it is
allowed to take. If the program tries to take any other action, the intrusion
detection mechanism reports a probable intrusion. This method requires that
specifications for programs be written.

Intrusion detection systems are auditing engines, so models of auditing
systems can describe their architecture. The director, or analysis engine, may
be centralized or distributed, and may be hierarchical or fragmented. Each



organization has advantages and disadvantages, but for wide area networks, a
distributed director provides the greatest flexibility and power. Information
may be gathered from hosts, from the network, from both, or from other
directors.

26.7 Research Issues

Models of intrusion detection are being studied. In particular, techniques for
developing profiles of expected behavior that allow deviations to be quickly
determined would improve the state of anomaly detection, such as
mechanisms that learn program or user behavior or mechanisms allowing for
rapid adaptation of profiles. The acme of misuse detection would be to
develop methods of detecting previously unseen attacks. Research on attack
taxonomies and attack languages provides a better understanding of how
attacks work. Vulnerabilities analysis is another approach that is compatible
with research on attacks.

The architecture of a wide area intrusion detection system is critical to
successful deployment. Technical problems abound. Should the director be
distributed or centralized? Should intrusion detection systems be organized
hierarchically? How can existing security tools be integrated into an intrusion
detection system? Cooperation among intrusion detection systems would
allow different organizations to work together to detect, ameliorate, and
possibly trace attacks. Several techniques for enabling communication among
such systems are under study.

Related to communication is the data processing required to analyze large
amounts of data from distributed agents and directors. Intrusion detection
agents can gather large amounts of data, and when this data is combined with
output from other agents, storing, sending, and processing the data becomes
difficult. The layering methodology of GrIDS lessens the amount of raw data
that the higher-level directors need, but at lower levels the problem persists.
Unless the hierarchy involves few directors, the problem can exist even when



the abstractions are used. Data mining and other techniques for processing
large amounts of data are proving useful for this problem.

If end-to-end encryption becomes pervasive, intrusion detection techniques
that rely on analysis of unencrypted network traffic will become less useful,
and intrusion detection mechanisms will move to the endpoints. Similarly, if
link level encryption becomes widely used, intrusion detection will take place
at the intermediate hosts. How this will impact the organization, efficiency,
and effectiveness of intrusion detection systems is not fully understood.

The most technically exacting area of research is testing of intrusion detection
systems. Determining the rate of false negatives is difficult unless the data
has been thoroughly analyzed before the test by people other than the
designers (and, even then, the analysts may miss attacks). Furthermore,
comparison of intrusion detection systems requires an understanding of the
policies that each intrusion detection system assumes, as well as development
of a basis for comparison. These areas will grow in importance as the need to
determine efficiency with respect to various metrics increases.

Privacy issues pervade intrusion detection. In particular, how does one
ensure that the data being analyzed does not reveal information about non-
attackers? The data can be sanitized, but sanitization risks elimination of data
that the intrusion detection system needs in order to detect intrusions.
Moreover, if different organizations decide to cooperate, how can each
organization sanitize the data that it wishes to keep private? Although the
heart of these questions is non-technical, their resolution is central to
maintaining people’s trust in the system and the security mechanisms. The
technologies used to protect individuals and organizations raise sublime
technical questions.

26.8 Further Reading

Several authors describe intrusion detection in detail. Bace [106] provides a



wonderful overview with much historical information. Kemmerer and Vigna
[1036] provide a history of the field. Collins [445], Bejtlich [146], and Sanders
and Smith [1659] give a practitioner’s overview. Others [639, 1556, 1681]
present both managerial and technical information, and discuss tools such as
Snort [368, 473, 679, 1609]. Intrusion detection systems and techniques have
been developed for a variety of environments such as cyber-physical systems
[1369], critical infrastructure [1189], wireless networks [331, 1368], and
MANETs [1421]. Chandola, Banerjee, and Kumar [379] provide an excellent
survey of anomaly detection methods.

Work on the Bro intrusion detection system includes augmenting it to
perform host-based intrusion detection [591] and developing protocol parsers
to aid in the creation of policies [1498]. Both Bro [1183] and Snort [2058]
have been used to monitor SCADA systems.

Many methods of evaluating intrusion detection systems have been proposed
[349, 832, 1277]. Sommer and Paxson [1796] challenge the widespread
acceptance of machine learning techniques being suitable for finding attacks
in real network data, and offer guidelines for applying machine learning
effectively in that domain.

Honeydocuments, sometimes called decoy documents, appear to be an
effective tool for detecting intruders targeting particular information [1839].
Stoll used one to catch a spy [1840]. Honeydocuments must be developed,
deployed, and monitored with care to fool attackers [168, 277, 278, 1960].

Specification-based anomaly detection has been used with the ad-hoc on-
demand distance vector routing protocol [1912]. It also served as the basis for
pecification-based anomaly intrusion detection, which augments that with
statistics that can be used to detect anomalies [1720].

Evaluating intrusion detection systems is an area of active research. Axelsson
[102] discusses the relationship between false positives and false negatives.
Several papers describe techniques for testing [602, 733, 853, 1341, 1413,



1559] intrusion detection systems. Tavallaee et al. [1872] describe two
problems with the KDD-CUP-99 dataset and suggest ways to ameliorate
them. Ptacek and Newsham [1558] take advantage of packet fragmentation to
evade intrusion detection systems; mimicry attacks [1114, 1966] use exploits
that craft a set of allowed interactions with the system to carry out malicious
actions; as the interactions are allowed, the intrusion detection system does
not detect the attack.

Sobirey, Fischer-Hübner, and Rannenberg raise the issue of privacy in an
intrusion detection context [1789]. Others have analyzed this problem and
suggested approaches [236,1225]. Lakkaraju and Slagell [1133] examine how
anonymization affects the results of an intrusion detection mechanism.

26.9 Exercises

1. You have been hired as the security officer for Compute Computers, Inc.
Your boss asks you to determine the number of erroneous login attempts that
should be allowed before a user’s account is locked. She is concerned that too
many employees are being locked out of their accounts unnecessarily, but is
equally concerned that attackers may be able to guess passwords. How would
you determine an appropriate value for the threshhold?

2. Why should the administrator (or the superuser) account never be locked
regardless of how many incorrect login attempts are made? What should be
done instead to alert the staff to the attempted intrusion, and how could the
chances of such an attack succeeding be minimized?

3. Consider the trace-based approach to anomaly-based intrusion detection.
An intrusion detection analyst reports that a particular pattern of system
usage results in processes with “low entropy,” meaning that there is little
uncertainty about how the system processes behave. How well would a
cluster-based analysis mechanism for anomaly-based intrusion detection
work with this system? Justify your answer.



4. Use a Colored Petri Automaton (see Section 26.3.2) to describe the xterm
attack discussed in Section 24.3.1.

5. One view of intrusion detection systems is that they should be of value to
an analyst trying to disprove that an intrusion has taken place. Insurance
companies and lawyers, for example, would find such evidence invaluable in
assessing liability. Consider the following scenario. A system has both
classified and unclassified documents in it. Someone is accused of using a
word processing program to save an unclassified copy of a classified
document. Discuss if, and how, each of the three forms of intrusion detection
mechanisms could be used to disprove this accusation.

6. GrIDS uses a hierarchy of directors to analyze data. Each director performs
some checks, then creates a higher-level abstraction of the data to pass to the
next director in the hierarchy. AAFID distributes the directors over multiple
agents. Discuss how the distributed director architecture of AAFID could be
combined with the hierarchical structure of the directors of GrIDS. What
advantages would there be in distributing the hierarchical directors? What
disadvantages would there be?

7. As encryption conceals the contents of network messages, the ability of
intrusion detection systems to read those packets decreases. Some have
speculated that all intrusion detection will become host-based once all
network packets have been encrypted. Do you agree? Justify your answer. In
particular, if you agree, explain why no information of value can be gleaned
from the network; if you disagree, describe the information of interest.



Chapter 27. Attacks and
Responses
ROMEO: Courage, man; the hurt cannot be much.

MERCUTIO: No, ’tis not so deep as a well, nor so wide as a church-door; but ’tis 
enough,’twill serve—ask for me to-morrow, and you shall find me a grave 
man.

— The Tragedy of Romeo and Juliet, III, i, 98–101.

Preparing for attacks, handling them, and recovering from them require both 
preparation and an understanding of how attacks work. Attack models are an 
attempt to frame the general ideas underlying attacks into a form that 
provides a basis for developing attacks or countering them. Understanding 
what happened in an attack, including its possible goals, requires that the 
attack be analyzed. Often, the model guides the analysis. This chapter 
examines models of attacks and how attacks are analyzed.

27.1 Attacks

Security policies define what is, and is not, allowed.

Definition 27–1. An attack is a sequence of actions that create a violation of 
a security policy.

When attackers launch an attack, they have a particular goal in mind. The 
goal may be ill-formed, as in one of exploration; it may be very general, as in 
simply disrupting the proper operation of the system; or it may be very



specific, as in acquiring a copy of a particular file.

Definition 27–2. A goal is that which the attacker hopes to achieve.

For example, the students’ goal in attacking the University of Michigan’s
system (see Section 24.2.6) was to acquire access to the terminal control
structures. The goal of the attack on the Burroughs machine (see Section
24.2.7) was to obtain privileged status. These are both technical goals,
relating specifically to the use of a computer. Other goals may be more
general: cracking a safe, or embarrassing a public figure or political party.

An attacker launches an attack against an entity or entities. The attack may
affect other entities, but that is incidental to the purpose of the attack.

Definition 27–3. A target of an attack is the entity that the attacker wishes
to affect.

The targets of the two attacks mentioned above were the computer system.
Acquiring control of a computer may be simply a step towards achieving a
larger goal, for example obtaining a copy of a confidential document or
changing information on the system, causing the company to take actions (or
not to take actions) that it otherwise would (or would not) take.

Definition 27–4. A multistage attack is an attack that requires several
steps to achieve its goal.

Most attacks are indeed multi-stage. Describing them requires considering
the details of system configuration and operation, and the environment in
which it is held. This suggests some sort of graphical representation, the
nodes representing steps in the attack and the edges providing relationships
among them.

27.2 Representing Attacks

The notion of layers of abstraction is important in representing attacks.



Attacks can be viewed at many layers. As one goes down from the highest
layer, the attack steps become more detailed. What appears to be one step
becomes several. Each step is designed to achieve a subgoal that must be
satisfied in order to achieve the larger goal.

EXAMPLE: Consider the penetration of a corporate computer system
described in Section 24.2.8. The system managers wanted to determine the
effectiveness of the corporation’s defenses against unauthorized people
accessing their computers. In order to accomplish this, the testers played the
role of attackers whose goal was to gain access to the corporate computer
system.

Their approach was to try to get people to reveal their account information
and change their passwords to something the attackers knew. They targeted
newly hired employees who had not had the “Computer Security Awareness
Briefing”. So, one subgoal was to find those people.

To obtain this list, the attackers needed to know who had it. This required
them to learn about the company’s organization. To achieve this subgoal, they
chose a method that required them to get the company’s annual report and a
telephone directory. The former was simple, as the report was public; the
latter required the attackers to find out how to acquire that directory.

Acquiring the directory required two numbers, so obtaining those numbers
became another subgoal. Both were obtained by impersonating employees,
one an auditor. So successful impersonation of these employees were
additional subgoals.

Had the corporation controls prevented the attackers from meeting a subgoal,
they would have tried to find other ways to achieve the corresponding goal.
This shows the benefit of viewing an attack as a set of subgoals all directed to
achieving a particular goal.

The above example shows that an attack, and its goals, can be framed as a



sequence of subgoals that must be satisfied in order to achieve the attack’s
goal. In essence, a series of very specific attacks can be combined to achieve a
higher-level goal. The question is how best to represent these steps.

27.2.1 Attack Trees

An obvious way to represent a sequence of hierarchical steps is as a tree.

EXAMPLE:

Longley and Rigby [1214] developed a program to examine cryptographic key
management schemes for security flaws. Their goal was to develop a package
that would allow attackers to ask (for example) what data is needed to
determine the encryption key. Their system has only two functions, Ek(m)
(encrypt message m with key k) and Dk(c) (decrypt ciphertext c with key k).

The package sets up an attack tree (called a “search tree” in the paper). Each
node represents a subgoal, and the root of the tree represents the information
that the attacker requires. Nodes are of two types: “required” and “available.”
A “required” node represents information that is necessary for the parent,
and is said to be satisfied when that information becomes available. An
“available” node represents information that is known. Thus, a node may be
of type “available” if it represents information known initially or if all its
“required” children have been satisfied. When all the children of the root
node become “available” nodes, then the package has found an attack.

As each level of the tree is constructed, the system looks for leaf nodes that
are “required” using a breadth-first search, and then constructs one
additional layer. See exercise 1.

As an example, assume that Sage knows Ek(m), Ek′ (k), and k′. She wants to
determine m. Thus, the node representing m is a “required” node, and the
nodes representing Ek(m), Ek′ (k), and k′ are marked “available.”

The next step is the construction of the tree. The goal is to determine m. One



way to determine this is to use k to decrypt Ek(m). Figure 27–1a shows this
tree. The system determines that one node, representing the subgoal of
finding k, is “required”; all other subgoals are “available”. To find k, then, one
approach is to determine whether it is encrypted, and if so try to decrypt it.
Figure 27–1b shows this tree.

At this point, all k’s child nodes are “available”, so the subgoal of determining
k can be satisfied. Thus, the k node becomes “available”. Now, all children of
m are “available”, so the node k becomes “available”, satisfying the goal.
Thus, Sage can determine the required message m.

Schneier [1694] generalized the idea of using trees to describe ways to attack
systems. He defined two types of nodes. An “and” node requires all its
children to be satisfied before it is satisfied. An “or” node requires one of its
children to be satisfied before it is satisfied. Each node may have a weight
indicating a relevant characteristic of the node, such as a measure of the
difficulty in satisfying the node. In this case, the weights of the interior nodes
depend upon the weights of the child nodes. The weights of the leaf nodes
must be assigned based on the analyst’s assessment of the characteristic.

To build an attack tree, represent the goal as the root node of the tree. Then
determine what steps are necessary to satisfy the goal. These become the
children of the root. For each child, repeat this process, until the leaves are at
an appropriate layer of abstraction.

EXAMPLE: Schneier presents an attack tree for reading a message encrypted
using PGP [744, 1220]. Here, we show how the first few levels of a modified
version are generated.



Figure 27–1: Search trees. The square nodes are “required”; the
circular ones are “available”.

Sage wants to read a message that Skyler is sending to Caroline. Knowing
this, Skyler encrypts the message using PGP. Sage has five ways she can read
the plaintext message:

1. Read the message before Skyler encrypts it; or

2. Read the message after Caroline decrypts it; or

3. Break the encryption used to encrypt the message; or

4. Determine the symmetric key used to encrypt the message; or

5. Obtain Caroline’s private key.

Here, we focus on 2. Once Caroline has decrypted the message, she may
forward it to someone she trusts. So, monitoring her outgoing mail may
provide Sage with the plaintext message. Similarly, Caroline may reply to the
message, and the reply may contain parts of the original message or enable
Sage to deduce the original message. The problem here is the reply will
almost certainly be enciphered. If so, Sage can try to spoof a “Reply-To” field,
causing Caroline to use Sage’s public key rather than Skyler’s. Sage can also



read the message directly by compromising Caroline’s computer. Thus, the
next layer of the tree under the root node is:

1. Monitor Caroline’s outgoing mail; or

2. Add a “Reply-To” field to the header (or change the address in the existing
“Reply-To” field); or

3. Compromise Caroline’s computer and read the decrypted message.

The last is really two steps:

1. Compromise Caroline’s computer; and

2. Read the decrypted message.

Focusing on the former, Sage can compromise Caroline’s computer in a
number of ways:

1. Copy decrypted message from memory; or

2. Copy decrypted message from secondary storage; or

3. Copy decrypted message from backup; or

4. Monitor network to observe Caroline sending the plaintext message; or

5. Use a Van Eck device [1934] to monitor the display of the message on
Caroline’s monitor as it is displayed.

We end here, although each of these leaf nodes can be expanded further.

Schneier also suggests a text-based representation of attack trees, with
indentation indicating the level of the node. “(AND)” after an interior node
indicates it is an “and” node; “(OR)”, an “or” node. So, the trees in Figure 27–
1 would be written:



1. m (AND)

1.1. k

1.2. Ek(m)

and

1. m

1.1. k (AND)

1.1.1 k’

1.1.2 Ek’ (m)

1.2. Ek(m)

The tree for the previous example is:

1. Read a message that Skyler is sending to Caroline. (OR)

1.1. Read the message before Skyler encrypts it.

1.2. Read the message after Caroline decrypts it (OR)

1.2.1. Monitor Caroline’s outgoing mail.

1.2.2. Add a “Reply-To” field to the header (or change the address in the
existing “Reply-To” field).

1.2.3. Compromise Caroline’s computer and read the decrypted message
(AND)

1.2.3.1. Compromise Caroline’s computer (OR)

1.2.3.1.1. Copy decrypted message from memory.



1.2.3.1.2. Copy decrypted message from secondary storage.

1.2.3.1.3. Copy decrypted message from backup.

1.2.3.1.4. Monitor network to observe Caroline sending the clear-text
message.

1.2.3.1.5. Use a Van Eck device to monitor the display of the message on
Caroline’s monitor as it is displayed.

1.2.3.2. Read the decrypted message.

1.3. Break the encryption used to encrypt the message.

1.4. Determine the symmetric key used to encrypt the message.

1.5. Obtain Caroline’s private key.

The key to developing an attack tree is creativity; that is, being able to think
of the ways to attack a system. The PGP attack tree is an excellent example,
because most people focus on the cryptography (branch 1.3) or on the key
management infrastructure (branch 1.5). However, in practice, compromising
the system on which the cryptography is executed will oftprove simpler and
equally effective.

27.2.2 The Requires-Provides Model

Attack trees provide a mechanism for organizing the steps needed to achieve
a particular goal. Templeton and Levitt [1876] generalize this approach by
describing attacks in terms of their building blocks.

Definition 27–5. A capability is a semantic object that encapsulates a
number of semantically typed attributes.1

1Contrast this with the “capability” used for access control (see Section 16.2).



Intuitively, a capability represents information or a situation to advance the
attack. For example, Sage must be physically proximate to Caroline’s
computer in order to use a Van Eck device to read the message. Thus, a
capability would represent “close enough” in this context. If one capability
exists, it may imply that another exists. For example, the capability of
knowing someone’s password means that that a capability to read their files
on that system also exists. This is called inherent implication.

Capabilities differ from leaves in attack trees because they are representations
of the results of the step. Sage can copy the decrypted message from memory
(see leaf 1.2.3.1.1) in several ways, and indeed the “leaf” node in the attack
tree would be the root of a subtree detailing these methods. In practice,
though, the exact method may not be known until the system is examined,
and the set of methods may change over time. The capability, however,
represents the situation of reading the memory, encapsulating the result of
any method to do so. So multiple events—here, the different ways to gain
access and read memory—provide the same, or equivalent, capabilities.

Definition 27–6. A concept is a set of required capabilities and a mapping
from that set of required capabilities to another set of capabilities that are
provided.

Concepts are descriptions of subgoals of an attack. To realize the subgoal, the
attacker must have the required capabilities. The attacker then receives the
additional, provided capabilities with the values given by the concept. This
leads to several features.

First, it captures variants of attacks. As the concepts focus on the capabilities
and not the method by which those capabilities are required, the focus of
detection is on the effect of the attack and not the manner of the attack.
Similarly, from the attacker’s point of view, the focus is in the capabilities to
be obtained, and any method that obtains them reaches the desired concept.
Similarly, this moves away from the notion of having to know all unique
methods of attacks. Only the effects need be known, as those are the



capabilities fed into the concepts. Finally, it allows the composition of attacks
based solely on the effects and not the methods of attack. Thus, it captures
multi-stage attacks naturally.

Figure 27–2: The rsh attack. Step 1: the attacker launches a denial
of service attack against trusted, a host trusted by the victim. Step
2: attacker sends a spoofed packet purportedly from trusted to
victim. Step 3: victim replies to trusted, but the packet never
arrives (step 4) due to the denial of service attack. Stpe 5: the
attacker sends another forged packet, purportedly from trusted,
to victim, which executes the command in the packet because it
ostensibly came from trusted.

EXAMPLE: The remote shell (rsh) program allowed remote execution of
commands with authentication based on the IP address, user name, and
password of the requester. It also allowed trusted hosts to execute commands
remotely; no user name or password was required.

Consider an rsh connection spoofing attack, in which host attacker wishes to
spoof host trusted so it can execute a command remotely on host victim (see
Figure 27–2). The goal of attacker is to execute a command remotely on
victim. This is done using a TCP connection, which immediately poses a



problem.

Recall the three-way handshake that occurs when opening the connection.
The host victim responds by sending a SYN/ACK packet back, with a
sequence number t associated with the SYN. When it gets a responding ACK
packet, it checks that the sequence number is t + 1. But as attacker is spoofing
trusted, victim replies to trusted and not attacker. So attacker must block
trusted from receiving the SYN/ACK packet, and be able to send the ACK
packet with the right sequence number.

To do this, attacker first launches a denial of service attack against trusted. It
then probes victim to determine what sequence number t will be in the
SYN/ACK packet. Once it determines this, it begins the TCP three-way
handshake by sending a SYN packet to victim, which promptly sends trusted
a reply with sequence number t. But trusted never sees this because of the
denial of service attack. So attacker sends a spoofed ACK packet to victim
bearing the sequence number t + 1. The payload of this TCP packet is the
command to be executed, usually a command to insert a vulnerability that
attacker can later exploit. Note attacker cannot get any output from victim,
because victim would send the output to the host trusted.

In this context, one capability would be blocking of a connection between
trusted and victim. The capability itself would have a source and destination
address, and a time interval indicating when the communication is blocked.
The concept would be to spoof the rsh host.

Templeton and Levitt designed a domain-specific language called JIGSAW.
The basis of the language are two constructs, capabilities and concepts.
Capabilities are simply sets of typed attributes and their values. Concepts are
two sets of capabilities. Those required to satisfy the concept are listed in a
requires block, followed by a with block that lists the required relationships
among the attributes. When those required relationships hold, the
capabilities provided by the concept are in a provides block. An optional



action field describes an action to take place when the concept is is active;
typical actions are to report a potential or actual problem. The keyword
extern when applied to a capability means it is defined elsewhere, much as a
variable in a program may be labeled extern if it is defined in another file.

EXAMPLE: Templeton and Levitt [1876, p. 36] present a JIGSAW
representation of rsh connection spoofing. They first define the form of a
capability in this context:

capability nosend is
   true_src, src, dst:     type Host;
   using:         type Service;
end.

Here, true_src is the real source of whatever the capability allows the
attacker to do (so it is usually the attacking host), src is the ostensible source
(for example, the host the attacker is spoofing; for non-spoofing capabilities,
it may well be the same as true_src), and dst is the target or destination.
Finally, using is the requisite service, if any. They then build the concept:

concept rsh_connection_spoofing is
   requires
      TP:      type Trusted_Partner;
      SA:      type Active_Service;
      PPS:     type Prevent_Packet_Send;
      FPS:     type Forged_Packet_Send;
      extern SNP: type SeqNumProbe;
   with           #– These instantiate the capabilities
      TP.service is RSH,         #– Service is RSH
      PPS.host is TP.trusted,    #– Blocked host is trusted host
      FPS.dst.host is TP.trustor,#– Spoofed packets go to host
                                 #–     trusting TP
      FPS.src is [PPS.host,PPS.port],  #– Apparent source of forged
                                       #–    packets i s blocked
      SNP.dst is [SA.host,SA.port],    #– Probed host must be running
      SA.port is TCP/RSH,              #–    RSH on usual port
      SA.service is RSH,
      SNP.dst is FPS.dest,             #– Forged packets go to probed



      active(FPS) during active(PPS)   #–    host while DOS of trusted
                                       #–    host is active
   end;

   provides
      PSC: type push_channel;
      REX: type remote_execution;
   with
      PSC.src <– FPS.true_src,   #– Capability to move code from
      PSC.dst <– FPS.dst,        #–    attacker to rsh server ( target )
      PSC.true_src <– FPS.true_src
      PSC.using <– rsh;

      REX.src <– FPS.true_src,   #– Capability to execute code on
      REX.dst <– FPS.dst,        #–    to rsh server
      REX.true_src <– FPS.true_src
      REX.using <– rsh;
   end;

   action
      true –> report (“rsh connection spoofing: “ + TP.hostname )
   end;
end.

This concept uses a capability called SeqNumProbe that is defined elsewhere.

The requires block requires a trusted host TP, a service SA (in this case, the
rsh server), and three capabilities, PPS that enables the “src” host to block the
“dst” host from sending packets, FPS that enables the “src” host to send a
forged packet to the “dst” host, and SNP that enables the “src” host to
determine the next sequence number of the “dst” host. Note the full “src” and
“dst” of the capabilities also includes the appropriate port number, here the
one for the rsh service. For the requires conditions to be met, a number of
relationships, in the with part of the block, must hold. These conditions are
that the trusted host must be running the rsh service, the attacker must have
the capability to both block the trusted host from sending packets and be able
to send packets spoofed to appear to come from the trusted host to the victim
(here, the “victim” is expressed as “the host that trusts the trusted host”).
Finally, the host whose sequence number can be probed is the victim, and



when the attack on the victim (FPS ) is being carried out, the attack on the
trusted host (PPS ) is also being carried out.

Given all these conditions, the attacker acquires two new capabilities as
shown in the provides block. The first, PSC, is the ability to send code or
commands to the victim and the second, REX, is the ability to execute that
code or those commands on the victim.

Finally, when this concept is realized (that is, all the conditions in the
requires block hold), the events in the action block occur: a message is
printed out alerting the observer that an rsh spoofing attack is under way.

Figure 27–3: Four steps in an attack. (a) represents the initial scan
of the target. (b) represents identifying an unused address. (c)
represents establishing that the target trusts another host. (d) is
the forging of a SYN packet.

27.2.3 Attack Graphs

Attack trees are actually a subset of the more general attack graph. These
describe an attack in terms of a general graph. Meadows used such a graph to
model stages of an attack on cryptographic protocols [1315]. Moskowitz and
Kang used graphs to represent circuits in their study of how a lack of security
can spread throughout composed systems [1392]. More generally, Dacier and
Deswarte proposed a graph-based extension to the typed access control
matrix model and describe its use for detecting attacks [490,491]. Misuse
intrusion detection systems have also used graphical representations to
represent attacks, as discussed in Section 26.3.2. The difference between
these models and the attack tree is that the earlier models focus on the
detailed representation of attacks rather than on the goals that motivated the
attack. In other words, the earlier work views the attack as the end; Schneier’s



attack tree and the requires/provides model treats the attack as a means to a
given end, the goal.

Phillips and Swiler [1531] use a graphical method to identify attacks on
network resources, and further to prune the set to those that have a high
probability of success. They consider paths based on the configuration of
systems, and focus on both probabilistic risk assessment and on the
instantiation of their model to assess the attack paths. The graph represents
attack states and transitions. This is very close to the attack trees; the primary
difference is their focus on network topology, vulnerabilities, and
configurations. The attack trees discussed above are much more general.
Further, Phillips and Swiler generate their attack graphs based on
configuration information. The corresponding requires/provides model
would use capabilities to eliminate potential attack paths, and thus can be
used for classes of systems and networks. So it is more general in that sense
also.

EXAMPLE: McDermott [1291] shows how to use attack graphs to guide
penetration testing.

The nodes P = {p1, . . . , pn} of the net are states of entities relevant to the
security of the system under attack, and the edges T = {t1, . . . , tn} are the
transitions between states. The tokens move from node to node to indicate
the attack’s progress; when a token is present on a node, the attacker has
obtained the appropriate control of that entity. The edges are directed in the
sense that, if node Pi precedes pj, then the attacker must gain control of the
entity represented by pi before being able to control the entity represented by
pj.

McDermott’s approach is to hypothesize individual flaws as two nodes
connected by a transition. The nodes are then examined for relationships that
allow them to be linked.

Consider the rsh connection spoofing attack discussed previously. The first



steps in the attack are as shown in Figure 27–3. These steps can be combined
as shown in Figure 27–4. This is in fact a method of carrying out the flaw
hypothesis step in that methodology.

Figure 27–4: An attack graph representing the rsh spoofing attack
using a Petri net. The small dashed circles represent the tokens.
Graph (a) is before the attack; graph (b) is after the first stages.

Figure 27–4a shows the attack graph representation of the attack. The dotted
circle in the node p0 in Figure 27–4a indicates the starting point of the attack.
Transition t0 is the initial scan of the system. Note that it splits into three
transitions, as successful completion leads to three states of interest. To
proceed, all three states must be found: identifying an unused address on the
target network (p1), a trusted host (p2), and the target (p3) that trusts the
trusted host. As each is found, the token in p0 advances into each of p1, p2,
and p3. The graph of Figure 27–4b shows this state.

Transition t1 corresponds to the creation of a forged SYN packet, with address
that of the trusted host. Transition t2 is the attacker launching a SYN flood
against the trusted host. The token in p1 can move to p4 via t1 and then to p6,
representing the (saturated) state of the network connections of the trusted
host. Similarly, transition t3 represents the attacker figuring out how to
predict the TCP sequence numbers of the target host, and p5 represents that
ability. Transition t4 represents the actual attack using the entities above,
producing a system state in which the target has established a spoofed TCP



session with the trusted host — but actually, with the attacker’s host.

Transition t5 represents the attacker’s modifying the trusted host list on the
target, enabling the attacker to acquire root privileges on the host and thus
continue the attack on other hosts.

27.3 Intrusion Response

Once an attack is detected, how can the system be protected? The field of
intrusion response deals with this problem. Its goal is to handle the
(attempted) attack in such a way that damage is minimized (as determined by
the security policy). Some intrusion detection mechanisms may be
augmented to thwart intrusions. Others require human intervention to
respond to the attack and attempt to repair any damage.

27.3.1 Incident Prevention

Ideally, intrusion attempts will be detected and stopped before they succeed.
This typically involves closely monitoring the system, usually with an
intrusion detection mechanism, and taking action to defeat the attack.

In the context of response, prevention requires that the attack be identified
before it completes. Defenders typically use real-time intrusion detection
systems and other techniques for monitoring the logs and systems to identify
attacks. The defenders then take measures to prevent the attack from
completing. This may be done manually or automatically.

EXAMPLE: Jailing of attackers is an approach that allows the attackers to
think that their attacks have succeeded, but places them in a confined area in
which their observed behavior can be controlled and, if necessary,
manipulated. Cheswick [404] used this approach to examine an attack. His
system recorded a break-in attempt using the SMTP server. After several
attempts to break in had failed, Cheswick created a highly restrictive account
and monitored the intruder’s actions, including which machines were



attacked. (None of the attempts succeeded; Cheswick notified the
administrators of those systems.) The jail had a file system that closely
resembled a real UNIX file system (but without some programs that would
reveal system information, and the deception), and access times to certain
critical files were also masked. The attacker returned numerous times.
Cheswick finally shut down the jail at the request of his management.

Amoroso [45] points out that multilevel secure systems are excellent places to
implement jails, because they provide much greater degrees of confinement
than do ordinary systems. The attacker is placed into a security compartment
isolated from other compartments. The built-in security mechanisms are
designed to limit the access of the subjects in the compartment, thereby
confining the attacker.

More sophisticated host-based approaches may be integrated with intrusion
detection mechanisms. Signature-based methods enable one to monitor
transitions for potential attacks. Anomaly-based methods enable one to
monitor relevant system characteristics to identify anomalies and to react
when anomalies are detected in real time.

EXAMPLE: Somayaji and Forrest [1794] extended intrusion detection using
system calls (see the example that begins on page 810) to respond to
suspected intrusions. They first modified the intrusion detection system to
record anomalous system calls in the locality frame buffer. When the number
of anomalous system calls (the locality frame count or LFC) exceeded a user-
defined threshold, the system delayed the evaluation of system calls by
d×2LFC, where d was a tunable parameter. If the maximum LFC exceeded an
abort_execve parameter, any attempt to spawn a child process failed.

This scheme was implemented in the kernel of a Linux system. The first test
examined an ssh daemon, and found that attempts to use a global password
installed as a back door in the daemon were detected. In one set of
experiments, the attacker’s connection was slowed down significantly. In a



second set, the abort_execve parameter was set to 1. This prevented the
attacker from obtaining a login shell. The second set used sendmail, the
standard Linux SMTP daemon. In those experiments, the delays that were
produced quickly grew to more than 2 hours, discouraging all but the most
patient attacker.

The performance impact of the mechanism was minimal if delays were turned
off. When delays were turned on and programs were being used legitimately,
the performance of system calls was substantially degraded. However, this
did not appear to affect the user’s view of system performance significantly.
Because system calls are a small part of the runtimes of most programs, this
result is not surprising.

Diversity is an attempt to increase the difficulty of successful attacks. In a
monoculture, where all systems are the same, an attack that works against
one will work against all. But if systems are of different types, then attacks
that work against one type of system are likely to fail against another. Thus,
varying system types, or even configurations within systems of the same
types, limits the extent to which an attack against a particular system can be
used. But this diversity may increase the number of attacks that would
compromise the overall system.

One such mechanism, moving target defense, focuses on changing the
system as it runs to thwart attacks. They are based on the asymmetry of the
attacker and defender.

Definition 27–7. [1246] An attack surface is the set of entry points and
data that attackers can use to compromise a system.

The attacker need only find one such avenue to compromise the system.
Traditionally, defenses simply hardened the system to reduce the attack
surface. But that surface was not empty, so there were still ways for the
attacker to gain entry. This is the asymmetry: elements of the attack surface
either stay the same, or are diminished, or are eliminated. But the attacker is



free to change tactics, and thus has considerably more flexibility than the
defender. This asymmetry is called the defender’s dilemma.

Moving target defenses reduce this asymmetry. They change the attack
surface while the system is running, so that attacks that work at one time may
not work at another time. Thus, elements of the attack surface now can
change. One example, used in network defense, is IP address hopping.

EXAMPLE: The defenses of IP address and port hopping [89] are designed to
confuse attackers as they probe a system, and to hide services. Essentially,
when a client needs to contact a server, a component maps the destination
address and port numbers to different addresses and port numbers. The
packet goes to the network on which the server is located, and a mechanism
there maps the destination address and port number to the actual address
and port number of the server. The mapped address and port number are
selected from a set of possible addresses and port numbers pseudorandomly.

If the client and server are on different networks, the changed IP address
must be on the same network as the server. Further the components that do
the mapping and reverse mapping must be synchronized, so the reverse
mapping matches the original IP address and port number. The mapping
changes frequently (for example, every minute) so that an attacker
monitoring the connections cannot determine the actual IP address and port
number from the packets, and further can only piggyback on the connection
to attack the server and service between changes to the map.

As an example of how the mapping is done, one implementation of port
hopping [1146, 1153] divides time into a series of discrete intervals of length τ
at times t0, t1, . . . , ti, . . .. Letf be a pseudorandom number generator, and s a
seed for it. Then, at time k, the port pk = f(k, s) is used. Further, the ports
overlap at the interval boundaries, so (for example) pk is valid from tk – Lτ to
tk+1 + Lτ , where L is the amount of overlap in the interval. Another
implementation uses an encryption algorithm [1052]. As each packet is



received, the low-order 8 bits of the IP address (identifying the host) and the
bits of the port number are put into a 3-byte array that is left-rotated by 4
bits, and then encrypted using a key shared by both the mapping component
and the reverse mapping component. The high-order byte becomes the low-
order 8 bits of the IP address, and the rest of the bytes become the port
number. The reverse mapping component simply reassembles the array,
decrypts it, and restores the correct IP address and port number.

Network-based moving target defense mechanisms [823] must not introduce
any impediments to authorized clients connecting to the target while they
prevent unauthorized clients from doing so. The defense must rely on
randomness to prevent unauthorized clients from predicting the changes to
the attack surface. If they could do so, they would simply act in anticipation of
the next change. Finally, the defender must be able to distinguish between
clients that are trustworthy, in the sense that they are to be allowed to
connect, and clients that are not.

EXAMPLE: In the example above, the changed IP address acts as a valid IP
address. It introduces only the cost of the mapping and reverse mapping,
which is negligible compared to the network transit times. A similar
observation applies to the port number mappings. Both use
pseudorandomness (the key and encryption algorithm for the IP address and
the seed act as a pseudorandom number generator). Both hopping schemes
determine whether a client is to be allowed to connect by the mapping and
reverse mapping mechanisms. If the client uses the correct IP address and
port number, then the packets will arrive at the correct server and service,
which means the packet’s destination address was reverse mapped correctly,
and hence mapped correctly. Otherwise, the reverse mapping will change the
destination address and port number to invalid ones, and the packet will be
dropped. So, these two examples have all the characteristics for a network-
based moving target defense.

Moving target defenses at the host level defend against attackers who have



access to the host. The access may be as an authorized user with an account
or as a remote client connecting to a server. Now, the attack surface is within
the host, and that must be changed as the system runs.

EXAMPLE: Address space layout randomization (ASLR) is a host-level
moving target defense. Consider how the binary of a program is structured. It
has several segments, the number depending on the particular type of system
and compiler. When loaded into memory for execution, the segments are
arranged in a particular order, so the position of the variables and functions
in virtual memory are fixed. Thus, an attack tool that (for example) overflows
a buffer causing a branch to a function within the program (a return-to-libc
or an arc attack) will work on every invocation of the program. ASLR
perturbs the placement of segments, variables, and functions in virtual
memory so that attacks that depend on knowing the location of variables and
functions will fail.

The key question is how the perturbation is done. The simplest version
simply randomizes the placement of the segments in virtual memory [1874].
Other forms randomize the order of functions and variables within their
segments, the location of those functions and variables, or add a random
amount of space between variables and between functions [194].

The effectiveness of ASLR depends in large part upon the entropy (amount of
randomness) introduced into the address space. For example, on 32-bit Linux
systems, the uncertainty in the base address of a library loaded into memory
is around 16 bits, which can be searched by brute force quickly. But in a 64-
bit system, the uncertainty can be as large as 40 bits of uncertainty, which
increases the time needed sufficiently so that such an attack is likely to be
detected. Interestingly, compile-time randomization is more effective than
run-time randomization, and re-randomizing the address space during
runtime increases the number of attempts by at most a factor of 2 [1728] (see
Exercise 11).



27.3.2 Intrusion Handling

When an intrusion occurs, the security policy of the site has been violated.
Handling the intrusion means restoring the system to comply with the site
security policy and taking any actions against the attacker that the policy
specifies. Intrusion handling consists of several phases [421, 1467].

1. Preparation for an attack. This step occurs before any attacks are detected.
It establishes procedures and mechanisms for detecting and responding to
attacks.

2. Identification of an attack. This triggers the remaining phases.

3. Containment (confinement) of the attack. This step limits the effects of the
attack as much as possible.

4. Eradication of the attack. This step stops the attack and blocks further
similar attacks.

5. Recovery from the attack. This step restores the system to a secure state
(with respect to the site security policy).

6. Follow-up to the attack. This step involves taking action against the
attacker, identifying problems in the handling of the incident, and recording
lessons learned.

In the following discussions, we focus on the containment, eradication, and
follow-up phases.

27.3.2.1 Containment Phase

Containing or confining an attack means limiting the access of the attacker to
system resources. The protection domain of the attacker is reduced as much
as possible. There are two approaches: passively monitoring the attack, and
constraining access to prevent further damage to the system. In this context,



“damage” refers to any action that causes the system to deviate from a
“secure” state as defined by the site security policy.

Passive monitoring simply records the attacker’s actions for later use. The
monitors do not interfere with the attack in any way. This technique is
marginally useful. It will reveal information about the attack and, possibly,
the goals of the attacker. However, not only is the intruded system vulnerable
throughout, the attacker could attack other systems.

EXAMPLE: It may be helpful to know the type of operating system from
which the intruder is entering. A passive monitor can examine settings of the
TCP and IP headers of incoming connections to generate a signature. For
example, some systems change the window size field more often, and in
different ways, than others. This signature can be compared with known
signatures of operating systems, and the analyst may be able to draw some
conclusions about the type of the remote system from which the packets have
been generated [95, 825, 1233, 1776].

The other approach, in which steps are taken to constrain the actions of the
attacker, is considerably more difficult. The goal is to minimize the protection
domain of the attacker while preventing the attacker from achieving her goal.
But the system defenders may not know what the goal of the attacker is, and
thus may misdirect the confinement so that the data or resources that the
attacker seeks lie within the minimal protection domain of the attacker.

EXAMPLE: Stoll [1842] detected an attacker in a computer system at the
Lawrence Berkeley Laboratory. After a period of monitoring, Stoll concluded
that the attacker was looking for documents related to nuclear weaponry. He
arranged for a trace over network and telephone lines, but the tracing ended
at the attacker’s point of entry into the United States. The foreign authorities
reported that they would need a longer connection to trace the attacker to his
point of origin in Europe. Stoll created a very large file containing some of the
keywords for which the attacker had been searching. When the attacker next



entered, he found the file and began to download it. The time required for the
upload was more than ample for the trace to be completed, and the attacker
was identified and subsequently arrested.

The document that Stoll wrote is an example of a honeypot (or, more
specifically, a honeyfile or honeydocument deception technology. The file was
carefully designed to entice the attacker to download it, but in fact contained
false and meaningless information. This technique can be extended to
systems and networks. Honeypots, sometimes called decoy servers, are
servers that offer many targets for attackers. The targets are designed to
entice attackers to take actions that indicate their goals. Honeypots are also
instrumented and closely monitored. When a system detects an attack, it
takes actions to shift the attacker onto a honeypot system. The defenders can
then analyze the attack without disrupting legitimate work or systems. Two
good examples are the Deception Tool Kit and the tools produced by the
Honeynet Project.

EXAMPLE: Cohen’s Deception Tool Kit (DTK) [441] creates a false network
interface that allows the user of the tool kit to present any desired
configuration to incoming connections. When an attacker probes the putative
network, the DTK returns a wide range of vulnerabilities. The attacker may
then choose some subset of the presented network addresses to attack. The
defender can configure illusionary systems and servers, and monitor the
attacks, so while the attacker is probing nonexistent systems the defender can
analyze the attacks to determine the goals and abilities of the attacker.

EXAMPLE: The Honeynet Project [1815] was created to learn about the
“black hat” (attacker) community. The organizers were interested in the
motives, techniques, and tools of the attackers. The honeypot work was split
into phases. The first was to identify common threats against specific
operating systems and configurations. These Gen-I honeynets were crude but
remarkably effective. The next was to develop a Gen-II honeypot network that
was easier to deploy, harder to detect, and could collect data more efficiently.



Honeynets are used in research, to gather attack signatures, and to enable
defenders to analyze attacks and counter them without endangering
production systems [420, 1529, 1580, 1581, 1816, 1992].

27.3.2.2 Eradication Phase

Eradicating an attack means stopping the attack. The usual approach is to
deny access to the system completely (such as by terminating the network
connection) or to terminate the processes involved in the attack. An
important aspect of eradication is to ensure that the attack does not
immediately resume. This requires that attacks be blocked.

A common method for implementing blocking is to place wrappers around
suspected targets. The wrappers implement various forms of access control.
Wrappers can control access locally on systems or control network access.

EXAMPLE: Wrappers that control local access to resources are usually
embedded in the kernel to make them difficult to bypass. In an experiment
that used wrappers to improve the security of commercial off-the-shelf
programs, Fraser, Badger, and Feldman [723] used loadable kernel modules
to place wrappers in the kernels of UNIX systems. When the wrappers were
invoked, they waited for some specified event (such as a system call, possibly
with particular privilege settings or arguments). When the event occurred,
the wrapper would take control of the process and perform a specified action.
The action could be to log the call, to deny access (by returning a failure code
to the caller), or to generate and process auxiliary data such as system call
counts. The wrappers were specified using an extension of the C
programming language. The performance impact of using the wrappers was
measured at less than 7%.

The researchers noted that the functionality of the wrappers’ was varied,
ranging from access control and auditing to intrusion detection and response.
Others [1085] focused on the latter, designing wrappers that would detect
intrusions. Their mechanism accepted notifications from multiple wrappers.



In one experiment, when two wrappers determined that a process appeared
to be launching an attack, they notified a wrapper that was monitoring
program execution, which terminated the process.

EXAMPLE: Wrappers can also control access from the network. Bina,
McCool, Jones, and Winslett [210] describe an application in which a Web
server accepts requests for database records and returns the desired records if
so authorized. Access to the records is determined by the role of the
requester. To determine this, the Web server obtains information from the
client (including a public key for authentication) and passes the data to a
script that assigns the appropriate role to the request. The role and request
are given to the database engine, which returns an appropriate response. The
script is a wrapper around the database. It mediates access to the database.

Firewalls (see Section 17.6.2) sit between an organization’s internal network
and some other external network (such as the Internet). The firewall controls
access from the external network to the internal network and vice versa. The
advantage of firewalls is that they can filter network traffic before it reaches
the target host. They can also redirect network connections as appropriate, or
throttle traffic to limit the amount of traffic that flows into (or out of) the
internal network.

EXAMPLE: Because Java applets (see Section 4.5.1) come from (usually)
untrusted sources, many organizations want to block the applets from
entering their internal networks. A simple method of doing this is to block the
applets at a firewall [1265]. When an HTTP connection is made through the
firewall, the firewall creates a small application (called a proxy) to reassemble
the packets and determine if they contain a Java applet. The proxy then may
use one of three approaches to block the applet.

First, it can rewrite the HTML tag to something other than “<object>” or
“<applet>”. When the page is delivered to the browser, the browser will not
recognize the applet and will not run it. This method requires the firewall to



determine that the connection is indeed an HTTP connection and to parse the
HTML in that connection. Both are nontrivial tasks.

The second approach is to look for incoming files with the hexadecimal
sequence “CA FE BA BE”. All Java class files must contain this four-byte
signature in order to be properly recognized and interpreted. If this sequence
is found, the file is immediately discarded. The danger here is a false positive.
Because ActiveX and JavaScript code are different, this approach cannot
block those.

The third approach is to block based on file name, but this is far more
problematic because the names do not necessarily represent the contents of
the file. Many browsers require Java class files to end in “.class”. The firewall
can block these applets. However, more recent browsers allow Java class files
to be combined into archives. The names of these archives often end in “.zip”.
This is a popular format among users of MS-DOS and Windows, so it is not
realistic to block all such files.

An interesting approach, similar to the first, is to use a proxy situated on the
firewall. Spout [409], one such proxy, forwards HTML requests from a client
to the web server. When the server responds, the requested page goes to the
proxy. If the HTML includes a Java applet, the proxy replaces the applet
name with that of a template applet, and maintains the association between
the requested applet name and the template applet name. It then forwards
the HTML file to the client. When the client issues a request for the applet,
Spout gets the request, and forwards to the web server a request for the real
applet. When the applet arrives at the proxy, it routes the applet to a Java
application server and forwards the bytecode of the template applet to the
client. The Java application server executes the applet. The template applet
links the input from the client browser to the real applet, and the output from
the real applet to the client’s browser.

An organization may have several firewalls on its perimeter, or several
organizations may wish to coordinate their responses. The Intruder Detection



and Isolation Protocol (IDIP) [1689] provides a protocol for coordinated
responses to attacks.

The IDIP protocol runs on a set of computer systems. A boundary controller
is a system that can block connections from entering a perimeter. Typically,
boundary controllers are firewalls or routers. A boundary controller and
another system are neighbors if they are directly connected. If they send
messages to one another, the messages go directly to their destination
without traversing any other system. If two systems are not boundary
controllers and can send messages to each other without the messages
passing through a boundary controller, they are said to be in the same IDIP
domain. This means that the boundary controllers form a perimeter for an
IDIP domain.

When a connection passes through a member of an IDIP domain, the system
monitors the connection for intrusion attempts. If one occurs, the system
reports the attempt to its neighbors. The neighbors propagate information
about the attack and proceed to trace the connection or datagrams to the
appropriate boundary controllers. The boundary controllers can then
coordinate their responses, usually by blocking the attack and notifying other
boundary controllers to block the relevant communications.

Figure 27–5: Example of IDIP. C, D, W, X, Y, and Z are boundary
controllers. Host a runs the IDIP protocol but is not a boundary
controller. The flooding attack follows the dashed arrows from f to
A.



EXAMPLE: Kahn [994] discusses the use of IDIP to handle network flooding
attacks, in which one or more sources spew large numbers of packets to a
target. This effectively prevents legitimate traffic from being processed, either
because the target is overwhelmed with processing the flooding packets or
because the legitimate traffic cannot reach the destination (target).

Consider Figure 27–5. Suppose host f launches a flooding attack against host
A along the path f, Z, Y, X, W, a, A. The flood effectively stops all traffic along
that path. Host a detects the flood and begins blocking traffic for host A. It
also notifies its neighbor W, a boundary controller. W detects traffic targeting
A, suppresses it, and notifies its neighbor X. X detects the traffic targeting A,
suppresses it, and notifies its neighbors Y and C. W then notices the traffic for
A has stopped, and it eliminates its suppression. At this point, A, a, W, and b
can again communicate freely, because the traffic formerly saturating the
links has been eliminated by X. C detects no traffic for A and so does nothing.
Y does detect the traffic, and suppresses it. X detects that the traffic going
through it for A has stopped, and X eliminates its suppression. Y then
communicates with Z, and Z detects and suppresses the traffic. Y also
communicates with D, which detects no relevant traffic. This process
continues until all traffic from f to A is suppressed.

The IDIP protocol is flexible, because if multiple sources attempt to flood a
host, the boundary controllers will block the traffic along each path that the
sources use. Of course, if any path has no IDIP controllers, the traffic can flow
freely along that path. Kahn and Zurko suggest that IDIP, or a similar
protocol, should be widely deployed throughout the Internet to handle
flooding attacks. They argue that economic and other incentives will
encourage Internet Service Providers and other network providers to
cooperate in suppressing distributed flooding attacks.

27.3.2.3 Follow-Up Phase

In the follow-up phase, the systems take some action against the attacker.



The most common follow-up is to pursue some form of legal action, either
criminal or civil. The requirements of the law vary among communities, and
indeed vary within communities over time. So, for our purposes, we confine
ourselves to the technical issue of tracing the attack through a network. Two
techniques for tracing are thumbprinting and IP header marking.

Thumbprinting takes advantage of connections passing through several
hosts. An attacker may go from one host, through many intermediate hosts,
until he reaches his target. If one monitors the connections at any two hosts
that the connections pass through, the contents of the connections will be the
same (excluding data added at the lower layers). By comparing contents of
connections passing through hosts, one can construct the chain of hosts
making up the connections.

Staniford-Chen and Heberlein [1828] list five characteristics of a good
thumbprint.

1. The thumbprint should take as little space as possible, to minimize storage
requirements at each site.

2. If two connections have different contents, the probability that their
thumbprints are the same should be low. Notice that two connections with
identical contents will have the same thumbprint. This is a consequence of
the thumbprint being computed over the contents of the connection.

3. The thumbprint should be affected minimally by common errors in
transmission. Thus, if traffic between two hosts often has some bits
discarded, the thumbprints of the connections at both hosts should be close
enough to identify them as belonging to the same connection. (Recall that
thumbprints are computed passively, and that the thumbprinting program
may not have access to the error correction features of TCP.)

4. Thumbprints should be additive so that two thumbprints over successive
intervals can be combined into a single thumbprint for the total interval.



5. Finally, thumbprints should cost little to compute and compare.

There are several possible sources of error (see Exercise 8).

EXAMPLE: Staniford-Chen and Heberlein [1828] experimented with
thumbprints made up of linear combinations of character frequencies in
telnet and rlogin connections. The thumbprints were computed over a set of
connections drawn from normal network traffic. First, a control experiment
checked that thumbprints were unlikely to match randomly paired
connections. Out of 4,000 pairings, only one match was identified. On
inspection, the two connections had identical contents over the period of
thumbprinting (a prompt and a logout command). Next, they computed
thumbprints from connections passing through multiple hosts (one
thumbprint per host for each connection) on a local area network. These
thumbprints were injected into a collection of thumbprints made at the same
time. Comparison identified these thumbprints as belonging to the same
connections. Experiments on long haul networks (across the United States
and the Atlantic Ocean) also showed that the comparison procedure was able
to find the connections correctly.

Figure 27–6: Example network. Routers A, B, C, and D mark
packets. The destination host E is experiencing a SYN flood. The
administrators at host E use the markings to identify the flooder.

Figure 27–7: The number of packets marked with a route from
Figure 27–6. Some routes are incomplete as not every router
marks every packet it routes.



An alternative approach is to ignore the contents of the packets and examine
the headers. IP header marking does just this. A router places extra
information into the IP header of each packet to indicate the path that the
packet has taken. This information may be examined in order to to trace the
packet’s route back through the Internet [1678].

The keys to IP header marking are selection of the packets to mark, and
marking of the packets. Packet selection may be deterministic or
probabilistic. Packet marking may be internal or expansive.

Deterministic packet selection means that packets are selected on the basis of
a non-random algorithm. For example, every second packet may have the
router’s IP address inserted as the marking. It is unreliable because an
attacker can enter false data into the header area and prevent the marking
(see Exercise 3). In general, it is also expensive. Probabilistic packet selection
reduces this somewhat by selecting a subset of the packets based on a given
probability.

Internal packet marking places the router’s marking in the packet header
without expanding it. For example, Dean, Franklin, and Stubblefield [526]
have identified several bits in an IPv4 header that could be used for marking.
Expansive packet marking means that the packet header is expanded to
include extra space for the marking.

EXAMPLE: Doeppner, Klein, and Koyfman [581] suggest a probabilistic,
expansive packet marking scheme. They propose adding space (“slots”) for s
markings. The probability that a packet will be marked is p. The following
algorithm describes how the router handles an incoming packet.

/* generate random number between 0, 1 */
x = random (0, 1);
/* stamp the packet appropriately */
if x < s * p then
        slot [x/p] = /* router’s stamp */;



Note that the slot into which the router’s marking is placed depends on the
random number generated.

The markings can enable one to trace certain attacks back to their sources. As
an example, consider the SYN flood attack [500], in which an attacker
generates a large number of TCP SYN packets (see Section 7.4). The target
receives them and sends the SYN/ACK packet in the second step of the three-
way handshake (see Section 25.4.2). The attacker never sends the third
packet, so the connection is pending until it times out. At that point, the
target grabs the next incoming SYN packet and repeats the cycle. Because the
attacker is flooding the target with SYN packets, the probability of any other
host’s SYN packet initiating the three-way handshake is very low. The attack
therefore denies service to all other hosts.

Consider the network in Figure 27–6. Host E experiences a SYN flood. The
administrators identify 3,150 packets that could be a result of the attack.
Figure 27–7 shows the number of packets that have been marked as taking
each route. Counting, there are 1,200 packets with A’s mark, 750 with B’s
mark, 700 with C ’s mark, and 2,450 with D’s mark. Assuming that the
probability of marking is the same on each router, the number of packets that
D received is more than three times as great as the number that B received.
Thus, B is probably the source of the flooding.

EXAMPLE: Dean, Franklin, and Stubblefield [526] employ an algebraic
technique to encode suffixes of the paths taken by packets. Evaluating an nth-
degree polynomial requires n + 1 data points. Consider the packets being sent
from host A to host B along path P. The first router in path P labels the jth
packet with the integer xj. Let the routers’ IP addresses on path P be a0, . . . ,
an. Then, when the jth packet arrives at B, its marking will be the value of the
polynomial f(x) = a0xn + . . . + an at xj. When n + 1 packets along that path
arrive, the coefficients of the polynomial can be determined. The routers can
use Horner’s rule [1083] to evaluate the polynomial, so they need not know
the path P. Router ai needs to know



. It then computes

.

This approach has several problems. First, recording the entire path requires
that a router know it is the first router on path P so that it can assign xj and
begin computing the polynomial. This is infeasible given the current structure
of the Internet. One approach is to select a number from a weighted random
distribution of integers to determine if the router is the first on P. If so, it
assigns xj; if not, the router evaluates the polynomial as described above.
Furthermore, if xj is assigned, the router assigns similar values to the next k
packets (k being a tunable parameter). This increases the number of packets
needed to reconstruct the full path. Moreover, an attacker can place arbitrary
information into the marking, so if the router does not select the packet for
marking, the erroneous information is passed along. Ultimately, the
destination will not be able to distinguish the erroneous information from
legitimate packet markings.

An alternative approach modifies the scheme so that at most l routers mark
the packet. The first router sets this parameter; each marking router
decrements it by 1. This scheme records subsequences of P, rather than
suffixes of P or the entire path. This keeps the degree of the polynomials
small (of degree l – 1 at most).

Dean, Franklin, and Stubblefield used this last scheme to mark packets. The
bits of the values of the polynomials were distributed over 11 bits in the IP
header. In their simulations, they analyzed 20,000 packets and recovered
paths of length 25 more than 98% of the time, demonstrating the efficacy of
their scheme.

Counterattacking, or attacking the attacker, takes several forms.



Legal mechanisms, such as filing criminal complaints, require protecting a
“chain of evidence” so that legal authorities can establish that the attack was
real (in other words, that the attacked site did not invent evidence) and that
the evidence can be used in court. The precise requirements of the law change
over time and jurisdictions, so this first form of counterattacking lies outside
the scope of this discussion.

Related to this is the ability to attribute the attack to a set of entities [228,
230, 943]. This helps determine the set of legal remedies available, if any. The
degree of accuracy of the attribution will also affect those remedies, as will the
intentions of the attackers. If the attackers do not want to be identified, then
accurate attribution will be a deterrent.

A technical counterattack has a the goal of damaging the attacker seriously
enough to stop the current attack and discourage future attacks. This
approach has several important consequences that must be considered.

1. The counterattack may harm an innocent party. The attacker may be
impersonating another site. In this case, the counterattack could damage a
completely innocent party, putting the counterattackers in the same position
as the original attackers. Alternately, the attackers may have broken into the
site from which the attack was launched. Attacking that host does not solve
the problem. It merely eliminates one base from which future attacks might
be launched.

2. The counterattack may have unintended consequences. For example, if the
counterattack consists of flooding a specific target, the flood could block
portions of the network that other parties need to transit, which would
damage them.

3. The counterattack is antithetical to the shared use of a network. Networks
exist to share data and resources and provide communication paths. By
attacking, regardless of the reason, the attackers make networks less usable
because they absorb resources and make threats more immediate. Hence,



sites must protect themselves by limiting the sharing and communication on
the network beyond what is needed for their safe operation.

4. The counterattack may be legally actionable. If an attacker can be
prosecuted or sued, it seems reasonable to assume that one who responds to
the attack by counterattacking can also be prosecuted or sued, especially if
other innocent parties are damaged by the counterattack.

Under exceptional circumstances, counterattacking may be appropriate. In
general, it should be avoided, and legal avenues of prosecution (either civil or
criminal) should be pursued. Improving defenses will also hinder attacks. The
efforts used to develop and launch counterattacks could be spent far more
effectively in that way.

EXAMPLE: Recall the example of the two versions of the animal game (see
page 684). In that case, the new version of animal targeted a specific, older
version written by the same authors, and it was unlikely that any organization
depended on the existence of that game. Consider moving this example into
the world of distributed systems and networks. Imagine a computer worm
that enters systems through a widely used network server. The worm spreads
rapidly, and despite attempts to eradicate it, systems continue to be
reinfected. One company designs a “counterworm.” Whenever a break-in
comes from a remote site, the “counterworm” detects the break-in, deletes the
connection, and uses the same infection technique as that of the original
worm to enter the attacking host. On that host, it deletes all worm processes
(except its own). It then waits until that system is attacked, and the cycle
repeats.

This response raises several questions. First, how can the “counterworm” be
set to ensure that it deletes only those processes belonging to the original
worm? Second, what if the invaded machine is gathering data for research or
countermeasures? Third, how can the originators of the “counterworm”
ensure that it does no damage to any system it is sent to? Fourth, can they be



held legally liable for any problems that a site encounters if that site is sent
the “counterworm?” The answers to these questions are complex, and
illustrate clearly why one needs informed, full consent of a remote site before
sending an automated response.

27.3.2.4 Incident Response Groups

When a security incident occurs, it rarely affects one system, and the
response must be co-ordinated with other affected sites. Even if only one
system is affected, the system administrators may not know how to handle
the situation.

Definition 27–8. A computer security incident response team (CSIRT) is a
team established to assist and co-ordinate responses to a security incident
among a defined constituency.

A constituency may be a company, an organization, a sector (such as
academic institutions), or even broader.

EXAMPLE: As several groups dealt with the Internet Worm (see Section
24.3.1), members of the groups communicated with people they knew at other
affected sites. In some cases, establishing the connection required a third
party trusted by all groups; in other cases, the groups were not aware of other
groups analyzing the worm, resulting in a duplication of work. This raised the
concern of how to enhance communication and co-ordinate responses,
leading to the formation of the Computer Emergency Response Team
(CERT/CC) located at Carnegie Mellon University. It had several purposes,
among them the co-ordination of responses to incidents and preserving
information about incidents that were reported to better understand whether
they were separate incidents or different facets of a larger attack. CERT/CC
worked with vendors and others to ensure vulnerabilities reported in
products were fixed, and issued vulnerability advisories to report to the
community.



Many CSIRTs have been formed, such as national CSIRTs that have the
country as their constituency, vendor CSIRTs that deal with vulnerabilities in
the vendor’s products or services, and internal CSIRTs that deal with
incidents involving their organization. The mission of a CSIRT depends in
large part upon its constituency. A critical part of all missions is to keep the
constituency informed about the services the CSIRT will provide and how
members of the constituency can communicate with the CSIRT. A CSIRT
would not have much value if the procedures used to report an incident were
not known to those who are expected to do the reporting.

CSIRT missions generally have at least 3 aspects [308]

1. Publication. As above, the CSIRT should publish its policies and procedures
to inform its constituency of what it can do, how it will communicate
information to the constituency, and how the constituency can inform it of
incidents and requests.

2. Collaboration. Given the scope of many attacks over the Internet, the
CSIRT will almost certainly collaborate with other CSIRTs in gathering
information about such attacks, disseminating information about attacks, and
responding to them.

3. Secure communication. A key component of any CSIRT is its credibility.
Thus, the constituency needs to be sure that its members are communicating
with the CSIRT and not some rogue group masquerading as the CSIRT.
Similarly, when dealing with an incident, the CSIRT must be certain it is
dealing with the affected members of its constituency, and other CSIRTS, and
not the attackers impersonating members of the constituency or other
CSIRTs.

Underlying a CSIRT’s functioning are policies and procedures, plans, and
management [421].

The policy of a CSIRT defines what it will, and will not, do. For example, will



the CSIRT handle news media requests for information about an ongoing
incident? Can the CSIRT order systems isolated from the network during an
attack? At what point might the CSIRT conclude the incident has been
responded to appropriately, and either end its involvement or transfer the
response to another group, such as law enforcement? With what other
CSIRTs will it collaborate, and what information will it share? Many of these
questions illustrate aspects of the policy driven by the needs and constraints
of the organization that the CSIRT is a part of. For example, the information
that a medical CSIRT can share is much more limited than that of a public
agency, because medical records are protected by different, more restrictive
laws.

A CSIRT also needs a plan to respond to incidents. How will an incident
report be handled? What actions might the CSIRT take to contain an attack,
and how does it enable members of its constituency to continue to do their
jobs during the attack — or does it? How does the CSIRT interact with
management? How will it report the status of the attack and its own efforts to
its constituency? How will it interact with other CSIRTs and interested
parties? Do laws or regulations require the CSIRT, or the reporters, to take
specific actions such as notifying law enforcement or regulatory bodies and if
so, when and how? Again, the plans for handling incidents are driven by the
needs and constraints of the organization.

The management component deals with the organization and staffing of the
CSIRT It can be centralized or distributed, and internal to the organization or
be contracted to an outside group. Cost, availability needs, and other factors
will guide this. A key factor is morale — the members of the CSIRT will be on
call (whether all the time or part time is up to the organization), and this
combined with the importance of their work to the organization will
undoubtedly cause stress. To keep the CSIRT functioning well, the
organization must have a plan to deal with this.

The CSIRT must take care to avoid a simply technical approach [27]. Often a



strategic analysis coupled with the technical analysis will reveal
organizational issues that contribute to an incident, or hinder appropriate
responses. Understanding the impacts of the attack on the organization’s
mission is critical, and involves non-technical aspects of the organization
such as human resources, economics, and the law.

Finally, the CSIRT should disseminate information that will prevent or limit
attacks. This information includes reports of vulnerabilities so system
administrators can patch them, reports of attacks so users and administrators
know what to look for, and contact information for the CSIRT. The more
involved the constituency is in protecting the systems and the data on it, the
more effective a CSIRT can be.

27.4 Digital Forensics

As part of incident response, determining what happened and what failed
requires an analysis of the detritus of the attack.

Definition 27–9. Digital forensics is the science of identifying and
analyzing entities, states, and state transitions of events that have occurred or
are occurring.

The distinction between this and the legal notion of forensics is important.
Digital forensics, also called computer forensics, may in fact be a component
of a legal forensic analysis, in which case the computer analysts must acquire
the information and perform the analysis in such a way that they meet the
appropriate legal requirements. More commonly, digital forensics is used to
figure out what caused an anomaly or to understand the nature of an attack,
including how the attackers entered the system, what they did there, and how
the defenses failed, without following legal strictures. This complicates
matters should the analysis uncover information requiring legal intervention.

27.4.1 Principles



Locard’s Exchange Principle states that “every contact leaves a trace” [928, p.
45]. This principle is widely applied in the investigation of physical crime
scenes. The principles of digital forensics create an environment in which
Locard’s Exchange Principle also holds. They are based on the notion that the
entire system must be considered, because attacks on one component may
affect other components. In particular, multi-stage attacks often leverage
access to one system to gain access to other systems. Further, while the
analyst may expect an attack to have a certain effect, often the attack has
other, or additional, effects that are unexpected — another reason to consider
the system as a whole rather than only looking at the attacked components.
Finally, an attack occurs when the system is active, and hence data about the
attack gathered while the system is running can be critical to the analysis.
Post-intrusion analysis is helpful, but the analyst often must deduce what
happened rather than observe it in comprehensive logs. Such deductions may
be incorrect due to erroneous assumptions, or the analyst may not know
which of several possible transitions occurred.

Five principles build upon these bases [1513]:

1. Consider the entire system;

2. Assumptions should not control what is logged;

3. Consider the effects of actions as well as the actions;

4. Context assists in understanding meaning; and

5. Information must be processed and presented in an understandable way.

We consider these separately.

27.4.1.1 Consider the entire system.

The analyst must have access to at least the information that the intruder had
both before and during the attack. This is necessary to be able to deduce what



the intruder did. This includes changes to the memory, kernel, file systems,
and files. On most systems, such information is rarely recorded continuously,
so the analyst will have incomplete information for her analysis. Logging and
auditing tools typically record information about connections, the state of
services, and which programs are executed. But they do not identify the
directories searched to find the libraries loaded when the programs are
executed, which would reveal both how an attacker is exploring the file
system, and whether the standard library or a modified version of the library
was loaded. Nor do they reveal the contents of memory or the functions called
during program execution, all of which would provide valuable information
about the attack. In addition, many applications do not log security-relevant
information, leaving the analyst to reconstruct actions taken by the
application from incomplete, system-level logs.

27.4.1.2 Assumptions should not control what is logged.

Forensic analysts work from logs of information captured before, during, and
after the attack. Thus, what is logged affects the analysis. So if assumptions
inhibit information from being logged, the analysts may have incomplete
information, leading to an incomplete or incorrect analysis of the attack.
Instead, as much information as needed to reconstruct the system state at any
point in time should be recorded.

Virtual machine introspection provides an avenue for examining a running
system. It also can be used to record the state of the system. Introspection
systems usually focus on non-deterministic events, such as user input or
hardware interrupts, because deterministic events can be reconstructed.

EXAMPLE: Oliveira et al. [524] developed an architecture to enable replay of
events with minimal overhead and no modification to the running systems.
Their system consists of three components: a checkpoint mechanism, a
logging mechanism, and a replay mechanism, ExecRecorder. These reside in
the virtual machine monitor Bochs, and so are invisible to the operating



system being monitored. The checkpoint component takes a snapshot of the
state of the system. In addition, Bochs supports a disk mode enabling
recovery of the state of the disk at any point in time. The logging component
records non-deterministic events in sufficient detail to allow them to be
reproduced exactly in the way they occurred, down to the instruction, number
of bytes moved, and where they are moved (register or memory). The
contents are recorded when necessary, but for I/O from the disk, this is not
needed as the state of the disk at that moment can be reproduced. The replay
component allows the state of the system to be restored and system activity
continued from that point, reproducing what happened. During this time, all
interrupts and other non-deterministic events are disabled or blocked so as
not to affect the execution.

27.4.1.3 Consider the effects of actions as well as the actions.

One of the goals of forensic analysis is to establish what happened to the
system as well as what the attacker did. Logging will record actions, and in
some cases the effects of actions, but rarely the causes that allow those
actions to occur. Consider a remote attacker who is able to gain sufficient
access to execute commands on another system. The logs will show which
server she connected to, perhaps the commands she issued to that server, and
that she executed an unauthorized command remotely. But the logs will not
show the vulnerability in the server that allowed this. Other attackers can use
the same vulnerability in different ways to gain access. Thus, while one effect
of the commands is to allow remote execution of a program, a second effect
might be a way to escalate privileges so that program runs as root or admin.
The forensic analysts must consider these possibilities.

27.4.1.4 Context assists in understanding meaning.

Complicating the application of the previous principle, the same actions may
create two different effects depending on the context in which they occur. The
simplest example is typing a command to the Linux shell. If the full path
name of the command is not used, then the actual program executed depends



on the user’s search path, which is part of the context. Keystroke logging
suffers from the same defect; the same set of keystrokes may cause wildly
different actions depending on what program they are given to as input.

Another example is a filesystem monitoring tool that logs accesses to files by
file names. The problem is that a file name may refer to one file at one point
in time, and then a different file in another point in time because the first was
deleted and a new file, with the same name, was created. The omitted context
here is the information in the file allocation table, which would enable the
tool to distinguish between the files.

27.4.1.5 Information must be processed and presented in an
understandable way.

This principle simply requires that those who need to understand the forensic
analysis can do so. Two aspects must be considered.

The first audience is the analysts themselves. The interfaces to tools that do
the analysis and reconstruction should be designed with usability in mind,
and — perhaps most importantly — indicate where gaps in the analysis exist.
The forensic analysts should be able to use the tools so they can find needed
information, and generate intelligible output. The results should be clear to a
technical audience.

The second audience is non-technical. They should be provided the
information needed to understand what happened, how it happened, and
what the effects of the attack were. Thus, they must be shown the results of
the analysis, and the root causes of the successful attack, or the reasons the
unsuccessful attack failed. In some cases, they will require access to evidence
collected in accordance with legal or regulatory requirements, or information
gathered to a particular level of assurance that it is correct. This may be
difficult if the analysts had to reconstruct actions and intermediate results,
because they may have to justify the reasons for their reconstruction — and
those reasons may be highly technical.



We now consider the practice of forensics in light of the above principles.

27.4.2 Practice

The practice of digital forensics depends in large part upon the intended use
of the forensic information. If the information is to be gathered for use in a
court of law, then legal evidentiary procedures must be followed in order to
ensure the data can be used in court. As courts and laws vary among
jurisdictions, we forego that discussion and instead focus on the gathering of
information to determine what happened.

Reconstructing the state of the system (including system inputs and outputs
such as network traffic) and sequence of actions of interest typically requires
four steps:

1. Capture and preserve the current state of the system and network data;

2. Extract information about that state, and about prior states;

3. Analyze the data gathered to determine the sequence of actions, which
objects they affected, and how; and

4. Prepare and report the results of the analysis to the intended audience.

The first two steps may be reversed if the system on which the forensics is
being performed is active, perhaps because the cost of shutting it down is
unacceptable. The active nature of the system typically precludes obtaining
the exact, correct state of the system because gathering that data takes time,
and the system state changes while (and sometimes even as a result of)
gathering that data [355].

The results of the forensic analysis can be used to determine which system
defenses need to be hardened, changed, or added. If the analysis would have
benefitted from more data, the systems can be tuned to save that data. It can
also be used in legal proceedings, in reports to management, in media



statements, and other ways. Because the requirements for how the
investigation is to be conducted and the evidence preserved depends on the
goals of the forensic investigation, plans for these possible uses should be
prepared and approved with the relevant parties in advance. As in incident
handling, contingencies may arise that force the plans to be altered, but being
prepared will enable the analysts, and others involved, to cope with these
changes readily. These show the importance of the principle of processing
information in a way useful to the goals of the analysis.

When performing forensic analysis, the principle of considering the complete
system means that a complete image of all components should be made at the
time of compromise. In most cases this is infeasible because the compromise
is discovered after it occurs or the system is active, so any snapshot of it will
include changes over the time of the snapshot. So the analyst must acquire as
complete an image of the system as possible. For example, an image of the
disks affected by the attack can be made. Data from backups and other
sources may also be useful. Similarly, any network traffic stored will prove
valuable; if none is available, the logs from intrusion detection systems and
other network monitoring tools may suffice. As soon as the data is acquired, a
cryptographic hash of it needs to be computed and saved not on the media, so
that an independent observer can verify the data was not changed after
acquisition.

Persistent data remains when the system or data storage is powered off; data
stored on a hard drive is an example.

EXAMPLE: One evening a junior system administrator notices something
odd about a UNIX system — one of the disks is full, but on inspection, the
total space used by the files on the system is much less than the size of the
disk. He sends out a message saying the system is having hardware problems,
and shuts the system down. He then removes the disk, attaches it to another
system, mounts it read-only (as there are no physical write blockers
available), and uses the dc3dd(1) command to create an image of it on some



other media (like a second, wiped disk). This command also creates a
cryptographic checksum of the image, which can be used to show the image
was not altered since its creation. The analyst then uses a separate program to
compute the checksum from the image, and verifies that it matches the one
dc3dd generated.

Volatile data is not permanent; it disappears at at some point in time, for
example when the system is powered off. Data stored in memory is a good
example. Capturing the contents of memory of a running system is much
more difficult that capturing the contents of a disk because, as noted above,
any capture using software alters the contents of memory. Further, capturing
the contents of kernel memory requires using the kernel, which alters the
contents of the kernel memory.

EXAMPLE: Carrier and Grand [356] use specialized hardware to capture the
contents of memory. They add a custom PCI card to the bus before any
incident occurs. When the computer boots, the card configures itself and then
disables its controller so it is invisible to any programs scanning the PCI bus.
When a switch is thrown, the card reenables the controller, suspends the
CPU, and then dumps the contents of memory to a non-volatile storage
medium. Once that is done, it has the CPU resume and again disables the PCI
controller. Some architectures restrict access to physical RAM for protection
reasons, which also blocks access for forensic analysis.

Another approach is to embed memory-reading software in a trusted
location. Then attackers cannot alter the software. The software freezes the
operating system and all associated processes, captures the contents of
memory and transmits it or saves it, and then unfreezes the operating system.

EXAMPLE: The System Management Mode on Intel IA-32 platforms [2193]
provide such a trusted, protected area of memory. Software drivers for a
standard network PCI card reside in the SMM. To obtain a snapshot of
memory, the SMM obtains the contents of the CPU registers, and the PCI



card reads memory. This is transmitted to a waiting server. The use of the
SMM suspends the operating system, and hence the memory remains in a
consistent state [1976].

An alternate approach is to put acquisition software between the operating
system and the hardware. Virtual machine introspection provides this
capability. When memory is to be captured, the virtual machine monitor
stops the virtual machine and captures the contents of its memory [600, 888,
912]. Rather than a full-fledged virtual machine, specialized software that
over complete control of the hardware can capture memory, but the software
must execute in an area of memory that the system does not use for anything
else [376, 1685].

Finally, memory retains its contents for a very short time after power is lost—
and cooling the memory increases the time significantly [856]. This
remanence effect has enabled forensics on Android phones [939].

The next step is to extract information from the data. For system data, the file
systems and other data are analyzed to determine the events and a timeline.
To do this, the analysts first obtain a list of files from the image, and also
check for deleted files and data stored in the free space. Then the analysts
determine which files are critical, based on the effects of the attack, and look
not only at those files but also any earlier versions that have been deleted or
are in the free space to see what changes were made. Similarly, for network
packet captures, the analysts look for data that involves interaction with the
computers under investigation or that are themselves attacked. Data and logs
from intrusion detection systems can help in this.

EXAMPLE: To continue the Linux example from above, the analysts begin
extracting information from the disk. First, they obtain a list of all files on the
disk from the disk image. They then check for deleted files, and find several
corresponding to undeleted files. They then examine the free space on the
disk, and find a large number of files stored there.



The analysis phase begins. The specific questions to be answered depends
upon the nature of the attack, the resources involved (both as potential
targets and compromised resources), and also in part on what is found.

EXAMPLE: The analysts begin by examining the files stored in the free space.
They are copies of recently released movies. As they are hidden, this focuses
on the effects of the (as yet unknown) actions. Given that the system was
being used to store recently released movies without authorization, an
obvious question is how the attackers got access to the system, when they
obtained that access, and how they hid the movies.

The analysts first extract the log files of the network servers and user actions
— for this system, the logins, logouts, and changes of privilege. They begin
with the logins, and find a user name with control characters in it. There is no
corresponding entry in the list of users who logged out; indeed, there is no
user with that name. They then execute the login program, and give it a user
name that is 1000 characters long. The login program crashes. This suggests
a buffer overflow.

The next question is how the attackers gained access to the system. They
examine the logs of the servers, and see nothing suspicious. They then look at
the configuration files controlling the servers being run, and there is nothing
suspicious. But as the attackers did not have physical access to the system,
the analysts look through other log files — and in one, they see an entry made
by a program that starts the telnet service. That service should never run. So
they scan the list of file names looking for the file, and find it in a system
administrator’s directory.

They then go to the network logs. The organization’s intrusion detection
systems capture packets and store them for 30 days, then delete the packet
bodies and store the headers for 5 more months. They look through these logs
for telnet packets. They find several, including one the contents of which
match the user name with control characters that they found earlier. Without



the context of the strange login, this would probably be interpreted as a failed
attack. But given the context and the match, the context means that these
packets are how the attackers first entered the system. The analysts copy
these packets to a separate file, and create a textual representation of these
packets in another file. Both files are then checksummed and saved on read-
only media.

The last question is how the attackers put the movies into the free space. The
obvious answer is that they simply deleted them. However, this contradicts
previously gathered evidence — that the total space used by the files on the
system was much less than the size of the disk. Were the movie files stored as
ordinary files in the file system, the discrepancy would not exist. Further, had
the attackers simply stored the files in the free space by writing directly to the
raw disk, the files would not be counted in the total space used by the files on
the system. Thus, the disk blocks used by the files were marked used, but the
file was not present in the file hierarchy. This means the attacker created the
file, opened it, and then deleted the file while it was opened. This removes the
file name from the hierarchy, so a program that determines the amount of
used disk space by traversing the hierarchy will not count it, but a program
that looks directly at the disk maps will. This explains the discrepancy.

Finally, the analysts must deliver a report on the findings. They must take
into account the principle of presenting information in an understandable
way. So the contents of the delivered report depends on the audience. If the
audience were non-technical, the report could simply state the movies were
put into unused space on the disk, and provide information about the number
of movies found, their titles, and so forth. If the audience were technical, then
the report should also describe how the movies were stored and how they
were found. Perhaps the most comprehensive approach is to prepare a
detailed technical report for reference, and then other types of reports based
on the technical report as needed.

EXAMPLE: The analysts need to present a report to the organization’s legal



team. Because the lawyers may take legal action based on the results, the
analysts must ensure the data and analysis are gathered in such a way that
they will stand up in court. Everything from the imaging on must have the
chain of possession and access documented, so the courts can determine
whether the evidence is trustworthy. The report must reflect this, and explain
what happened in terms that non-technical readers can understand. It must
also justify the analysis done, to ensure that the methods used meet the
criteria of acceptability in court. As part of this, the report must also
demonstrate that the analysts followed accepted industry best practices or
standard methodologies. Finally, i needs to state the qualifications and
experience of those doing the analysis.

If the lawyers are not involved, then the chain of evidence is less important.
The analysts need to track who has access to ensure only authorized people
can perform authorized actions on the image, but they need not document it
as rigorously as they would need to were it to be introduced in a court of law.

27.4.3 Anti-Forensics

The term “anti-forensics” has many definitions [449], all of which have the
idea of interfering with a forensic analysis. We focus on this:

Definition 27–10. [878] Anti-forensics is the attempt to compromise the
availability or usefulness of evidence to the forensics process.

Several goals flow from this [746].

The first is to interfere with the forensic tools gathering information, for
example by hiding the data or obscuring the type or sequence of events. Disk
wiping is a very simple anti-forensic mechanism. It prevents the collection of
any data from that disk. So it hides events that occurred, although it may
indicate that events that left traces on the disk and that the attacker wants to
hide did occur. Similarly, forensic tools may not scan all parts of the system,
so anti-forensic tools can hide data there. Rather than wiping the disk, the



attacker may wish the forensic tools to construct an incorrect timeline of file
accesses. To do this, the anti-forensic mechanism changes the times of last
access in the file metadata. Then any forensic tool that uses the metadata to
construct a timeline will be using incorrect data, and hence give incorrect
results.

EXAMPLE: Timestomp is a Metasploit [1038] plug-in that enables the user to
change file access times. A second plug-in, event_manager, enables the user
to modify log files to delete entries corresponding to events the user wishes to
delete.

Forensics is often used to determine the authenticity of a digital image.
Consequently, some anti-forensic techniques are designed to hinder this
validation.

EXAMPLE: The JPEG image format compresses the digital representation of
the picture into multiple bands of transform coefficients. This compression
technique introduces a unique signature into the transform coefficients. The
coefficients in a band generally follow a smooth distribution. Altering the
image introduces perturbations in the coefficients, called “transform
coefficient quantization artifacts.” Forensic analysis methods look for such
irregularities to determine whether the image has been altered. Anti-forensic
tools attempt to remove these artifacts to smooth the transform coefficients’
distribution by adding dithering to make the modified distribution
approximate the original one, hiding the alterations to the image [1824].

A second goal is to exploit weaknesses in forensic analysis tools.

EXAMPLE: One Windows forensic analysis tool determines whether a file is
an executable by checking file extensions for “.exe”, and if found then checks
whether the first two bytes of the file are “MZ”. If so, the file is an executable.
Thus, this tool will not detect executable files if the user changes the file
extension [746]. This technique has also been used to evade spam filters,
which look for and block attached files with certain extensions.



The free space on a disk is also a good place to hide information [514]. The
danger of doing this is the operating system allocating the blocks to a file,
thereby overwriting the contents of the hidden data. If the disk space
allocation algorithm is known, though, it is possible to minimize this threat.
Also, if a file size is not a multiple of the block length, then data can be stored
in the empty space between the end of the file and the end of the block (called
“the slack space”) .

Other goals are detecting active forensic tools and attacking the user of the
forensic tools, either indirectly, for example by increasing the time needed to
analyze the event, or directly, for example by crashing the analyst’s system.
Perhaps the most insidious goal is simply to cast doubt on the results of the
forensic analysis, which would diminish its credibility in (for example) a court
of law.

Anti-forensic tools sometimes leave traces [760]. For example, the JPEG anti-
forensic tools introduce a slight distortion, and thus can itself be detected
[1930]. Some anti-forensic techniques, such as encryption, are easily
detected. But others, such as storing data in free disk space, will not be
detected unless the analyst knows what to look for and where to look.

27.5 Summary

The goal of modeling attacks is to understand the attackers, and the systems
they are attacking. Attack graphs, and attack trees in particular, represent the
way in which attacks proceed. Beginning from a knowledge of some aspects of
the system, including the human, social, and procedural aspects, the attacks
achieve intermediate goals, and combine the results of those goals to
incrementally approach, and achieve, the ultimate goal of the attack. The
requires-provides model formalizes what is necessary to achieve the goals
(preconditions) and what achieving the goals provide (postconditions).

When an intrusion occurs, some response is appropriate. If the intrusion



attempt is detected before the attack is successful, the system can take action
to prevent the attack from succeeding, including modifying itself to negate
the value of the results of any information gleaned from reconnaissance or
previous attacks. Otherwise, the intrusion must be handled. Among the steps
involved are confinement of the attack to limit its effectiveness, eradication to
eliminate the attacking processes or connections, and follow-up to take action
against the attacker as well as learn from the attack.

As part of the response, or after the attack, the detritus of the attack must be
analyzed to determine the effects of the attack, how it was carried out, and to
glean information to enable analysts to determine the goals of the attack. This
is the realm of digital or computer forensics. The principles that underlie the
practice require considering the entire system, the effects of actions as well as
the actions themselves, understanding the context to properly interpret the
data, and presenting the results in a way that the audience can understand.
The practice requires preserving the information on the system and
extracting information from that data, then analyzing the data to determine
the steps of the attack, what it accessed, and how, and reporting the results.
How these steps are carried out depends in part on the use to which the
results will be put. For example, preserving evidence for use in a court of law
requires special steps to meet legal requirements. Thus, planning for forensic
analysis is critical.

27.6 Research Issues

There is a semantic gap between understanding the technical goals of an
attack, as discussed in this chapter, and how those goals fit into the overall
goals of an attacker. For example, if an attacker wishes to shut down a
factory, the technical attack on the factory’s computerized equipment may be
tied to financial manipulations designed to inhibit its ability to obtain the
resources and people necessary to recover. Representing attacks in terms that
span this gap would enable analysts to interpret data from attacks in light of
the overall goals of the attacker. This interpretation is particularly helpful in



predicting future attacks, allowing defenders to focus their resources to
develop and support plans to handle those attacks, as well as harden their
defenses.

Moving target defenses have existed for many years, although not under that
name. As system complexity increases, the complexity of the moving target
defense also increases. Further, the danger of such a defense corrupting
legitimate activities may require additional precautions, ideally within the
defense or system itself, but possibly within an application or library, adding
to their complexity. Complicating this is the use of multiple moving target
defenses simultaneously, and ensuring they do not conflict. Adversaries
aware of the defenses may alter their behavior in the hope that the adaptation
will decrease, or even nullify, the effectiveness of the moving target defense.

The interest in counterattacking, and its legal and technical consequences,
has increased in importance as attacks targeting specific people or entities
becomes more prominent. Several nations have formed military groups
focusing on cyberwarfare, specifically both attacking and defending. Although
the virtual world is different than the physical world, warfare in cyberspace is
expected to share much of the strategies and tactics of warfare in the physical
world, including counterattacking. But the problems are the same, and the
consequences may be much more severe, than responding to attacks
launched by non-state actors.

Techniques to gather volatile data, especially on running systems, has two
problems. The first occurs when the volatile data is gathered while the system
is active. The data changes while it is being gathered, so the image of the
storage represents the state of a number of parts of the storage in several
states, rather than an image of the storage at a particular state. The obvious
answer is to freeze the system (or just the storage) while the volatile data is
gathered. This introduces the second problem, that the system’s
responsiveness drops drastically (or the system is non-responsive) while the
data is gathered. Determining how to gather the image at a particular state



with minimal impact on the system will improve the ability of forensic
analysis to capture the state of a system.

In order to pursue culprits, it is necessary to have evidence that will satisfy a
court or a jury that a tort (or crime) has been committed and that the accused
is guilty. The legal rules for collecting and handling evidence must be
followed if the evidence is to be admissible in court. An area of active research
is the development of intrusion detection systems, methodologies, and
procedures that will supply evidence of this caliber.

27.7 Further Reading

Attack trees and attack graphs have been used and studied extensively. Mauw
and Oostdijk [1273] provide a formal model of attack trees. They have been
used to assess security of systems and networks [41, 947, 1399]. Studies have
examined ways to automate their generation and analysis [952, 1023, 1489,
1742]. Some work has combined attack steps and corresponding defense
steps [1101, 1623, 1676].

Papers describing security incident handling and response [27, 308, 421], and
examples of incidents [404, 1746, 1840, 1842] often describe both successful
and unsuccessful attacks. Some books and papers
[32,656,831,892,1590,2266] describe attacks in detail. Parker [1503] outlines
several techniques that unsuccessful criminals have used.

Honeynets and honeypots have their counterpart in honeydocuments and
honeyfiles [168, 1839, 1960, 2086]. Rowe [1619, 1620] discusses modeling
and designing good deception. Almeshekah and Spafford [36] discuss
planning deception and how to integrate it into defenses. Most deception
presents a consistent image (“fiction”) of a non-existent system or server.
Bishop and Neagoe [1436] introduced inconsistency in deception as a tactic in
computer defenses; Rowe and Goh evaluated it [1620]. Game theory is a
useful tool for analyzing deception as a defense [359]. Honeypots provide an



opportunity for forensics when no production systems will be disrupted
[1529, 1580, 1581].

Carvalho and Ford present an overview of the philosophy and goals of moving
target defenses [360]. Atighetchi and his colleagues expand on this [90]. Zhu,
Hu, and Liu suggest using machine learning to guide moving target defenses
[2115]. One model for evaluating IP address hopping analyzes the cost for
users, and that the defense is most effective if the number of vulnerable
systems is small compared to the address space [358]. The greater address
space size of IPv6 makes IP address hopping particularly attractive for IPv6
addresses [601]. It has been used to protect Smart Grids [829] and VPN
servers [906]. Operating system hopping [1887] and instruction set
randomization [129] have also been proposed, as has permuting the locations
of code and variables at load time [1058].

An “anti-worm” counters a malicious worm by changing it into a worm that
disinfects the original. Simulations show it would be effective [363]. Other
work takes a more strategic view [2085]. Characteristics of an attack provide
information about whether the attacker was launched by a nation-state [231].
Information warfare, in which two nation-states come into conflict in
cyberspace, is now an important concern, involving psychology, organization,
economics, politics, civil liberties, and law as much as technology [413, 414,
541, 824, 1144, 1491, 2221].

A critical part of testing forensic tools is determining how effective anti-
forensic measures are against the tools. Moses [1389] proposes a framework
to do this. Others [517] consider how aware investigators are of anti-forensic
methods. Machine learning appears to be a promising approach to coping
with anti-forensics [1240]. Böhme and Kirchner [256] discuss the theory of
anti-forensics in images. Rekhis and Boudriga [1587] discuss a formal model
for doing digital forensics in the presence of anti-forensic tools.

27.8 Exercises



1. In the example on page 845, why is the tree constructed using a breadth-
first search rather than a depth-first search?

2. In the IP address and port number hopping example on page 856, the
mapping mechanisms use a pseudorandom sequence rather than a random
sequence. Why?

3. This exercise examines deterministic packet selection (see Section
27.3.2.3). Assume that the packet header contains spaces for routers to enter
their IP addresses.

(a) Suppose the header contains space for 30 router addresses. Initially, these
spaces contain all zero bits. As the packet passes through a router, the router
inserts its IP address into the first available location in this space. If there is
no room left (because the packet has passed through 30 routers), the router
does not insert its address. Describe how an attacker could conceal the route
that the packet takes as it travels to its destination.

(b) Now suppose the header uses variable-sized space for a list of router
addresses. Initially, no router addresses are attached. As the packet passes
through a router, the router adds its IP address to this list. Would this
prevent the attack in your answer to part (a)? Why or why not? What other
problems would this variable-length router address field cause?

4. Consider the “counterworm” in the example on that begins on page 866.

(a) Pretend you are a technical expert called as a witness in a lawsuit between
the sender of the “counterworm” and the target. What arguments could you
make for and against the sending of the worm?

(b) How might the arguments for a company providing “worms” to fix
security problems in their software differ from those for providing a
“counterworm?” How would they be the same?

5. The last example in Section 27.3.1 states that “compile-time randomization



is more effective than run-time randomization.” Give an intuitive explanation
of why this is so.

6. Systems can log both successful and unsuccessful attempts to access files.
This is often not enabled. Why?

7. Every time a process is started on a Microsoft Windows system, a
corresponding event is entered into the security log. Although the name of the
file being executed is logged, no parameters (such as command-line
arguments) are logged. In earlier versions of the system, the full command,
including parameters, was logged by default.

(a) Why would one want to enable the logging of both the name of the
executed file and parameters?

(b) Why would one want to enable the logging of the name of the executed file
and not want to log parameters?

8. This exercise asks you to consider sources of errors in thumbprints (see
Section 27.3.2.3). Recall that a thumbprint is computed from the contents of
a connection over some interval of time. Consider clocks on two different
computers. Initially, they are synchronized. After some period of time has
passed, the clocks will show different times. This is called clock skew.

(a) Why might clock skew introduce differences in the thumbprints of a
connection?

(b) Why might propagation delays introduce differences in the thumbprints
of a connection?

(c) Staniford-Chen and Heberlein computed thumbprints based on contents
only, rather than on contents plus information gleaned from the packet
header. Suppose they computed the thumbprint over the contents plus the
packet header. What errors might this introduce? Could they have chosen
some fields of the TCP and IP headers that would not have introduced errors?



If so, state which ones, and why.

9. Consider how enciphering of connections would affect thumbprinting.

(a) If the connection contents were enciphered using an end-to-end
encipherment protocol, would thumbprinting work? Why or why not?

(b) If the connection contents were enciphered using a link encipherment
protocol, would thumbprinting work? Why or why not?

10. The benefit of diversity, discussed on page 855, is to prevent an attack
that is successful against one system to be successful against other systems.
Consider a set of systems s1, . . . , sn each running a different operating
system. What advantages do these diverse attack surfaces present to an
attacker, compared to a monoculture?

11. An attack can succeed on a system using ASLR if the attacker can guess n
bits of randomness in the placement of each of the segments. The attacker
launches a brute force attack in which she probes the address space
repeatedly until she finds the right address.

(a) How many possibilities for the placement of each of the segments are
there?

(b) Assume the ASLR is done at compile-time, so the address space is fixed
once loaded into memory. What is the expected number of probes required
for the attack to succeed?

(c) . Assume the ASLR is done at run time, and the address space is re-
randomized after each probe. What is the probability that a brute force attack
will succeed after exactly t probes?

12. Systems can log both successful and unsuccessful file accesses. But this is
often not enabled. Why not?



13. A Microsoft Windows security log contains an entry (called an event)
every time a process is created or started. The name of the executable file is
logged, but by default the parameters to the command are not logged. So, for
example, the command “edit.exe file1” would cause the system to log the
name “edit.exe” but not “file1”. In some earlier versions of Windows, the
default was to log the name of the executable file and all the parameters.
What were the advantages and disadvantages to the change of default
behavior?



Part VIII: Practicum
The practice of computer security draws on the principles and mechanisms
discussed in Parts I through VII. Part VIII explores the application of these
ideas and tools in four different settings. Each chapter considers a particular
situation and discusses solutions that include various levels of security.
Beginning with policy considerations, each chapter develops a security
architecture and deploys appropriate mechanisms to provide the desired level
of security.

Chapter 28, “Network Security,” considers a corporation that must provide
public access to some information but limit access to other information even
within the company. It derives parts of a network configuration and security
mechanisms that support the policy.

Chapter 29, “System Security,” examines two systems in the corporation’s
network. One is an infrastructure machine in the DMZ (demilitarized zone)
and the other is a developer workstation. This chapter discusses an
appropriate policy for each, and from parts of that policy derives system
configurations and mechanisms that support the security policy.

Chapter 30, “User Security,” shows how components of a site policy and a
user’s personal policy lead to the user configuring her environment to provide
protection for her programs and data.

Chapter 31, “Program Security,” begins with the requirements for a program.
Policy considerations flow from these requirements and from the
environment in which the program is to be used, and from these policy
considerations are developed the security mechanisms that the program must
implement. This chapter concludes with a discussion of common errors that
cause vulnerabilities in privileged programs.



Chapter 28. Network Security
JOHN OF GAUNT: This fortress built by Nature for herself Against infection 
and the hand of war, This happy breed of men, this little world, This precious 
stone set in the silver sea, Which serves it in the office of a wall, Or as a moat 
defensive to a house Against the envy of less happier lands;

— The Tragedy of King Richard the Second, II, i, 43–49.

The goals of an organization , and its security policy, dictate the functionality 
required of the site. The distribution of functionality throughout the site’s 
network is critical to improving the security of the site. The functionality of 
each part of the network controls the nature and configuration of each host 
on the network. This chapter applies some of the principles and concepts of 
computer security to the network of the organization.

28.1 Introduction

The Dribble Corporation builds and sells dribbles, an electronic item 
popularly seen as the successor to the Pet Rock. The Drib (the popular name 
for the corporation) has decided to develop a network infrastructure that 
would enable it to connect to the Internet, to provide a Web and electronic 
mail presence that consumers, suppliers, and other partners could access, 
and to protect its proprietary information. Because of its need to add 
meaningless but entertaining information gleaned from various Internet web 
sites, the Drib developers must have access to the Internet, but external users 
cannot be allowed to access the development sites. Finally, because dribbles



look like their main competitor, gibbles (from the Gibble Gabble Gobble Git
Company), the Drib has many lawyers working to defend its patents on
dribbles, and its corporate officers are preparing to fight a hostile takeover
from GGGGC. Hence, the corporate officers and lawyers also need access to
developer data, but the developers are not to have access to the corporation’s
private or legal information.

The goals of the Drib’s security policy are to be as follows:

• Data related to company plans is to be kept secret. In particular, sensitive
corporate data, such as data involved in developing potential products, is to
be available only to those who need to know.

• When a customer provides data (such as a credit card number) to the Drib
as part of a purchase, the data, and all information about the customer, are to
be available only to those who fill the order. Company analysts may obtain
statistics about a number of orders for planning purposes.

• Releasing sensitive data requires the consent of the company’s officials and
lawyers.

Our goal is to design a network infrastructure that will meet these
requirements. We begin by analyzing the goals of the policy so that we can
make them precise.

28.2 Policy Development

The Drib requires a policy that minimizes the threat of data being leaked to
unauthorized entities. However, it is unclear what “unauthorized” should
mean. The Drib’s internal structure suggests one answer.

The Drib has three main internal organizations. The first is the Customer
Service Group (CSG), which handles all dealings with customers. This group
maintains all customer data and serves as the interface between the other



groups and the clients of the Drib. The second group is the Development
Group (DG), which develops, modifies, and maintains products. Members of
the DG rely on the CSG for descriptions of customer complaints, suggestions,
and ideas; at no time do they talk directly with customers. This prevents them
from accidentally revealing confidential information or from learning
confidential information such as credit card numbers. The Corporate Group
(CG) handles the Drib’s debentures, lawsuits, patents, and other corporate-
level work.

The policy is to describe the way information is to flow among these groups.
When one looks at the actual functions of the three groups, how they restrict
information, and how they share information, a pattern emerges.
Specifications of current products, as well as marketing and sales literature,
are publicly available. However, other information about current products,
such as problems (especially those that are the subjects of lawsuits), patent
applications, and budgets, is not public. The CG and DG groups share this
information for planning, budgeting, and development purposes, but beyond
this sharing, each group keeps its own private information. The CG keeps
corporate information private so that it can be protected by attorney privilege
and so that it can comply with government stock regulations. The DG plans
and prototypes future products. The DG waits until it is convinced that
production is feasible before it proposes a new product to the CG. The CSG
keeps track of customer credit card information and specific clients’ ordering
information for its own purposes, and it does not share this information
(except in the aggregate) with either the CG or the DG. This forms the basis
for the policy.

28.2.1 Data Classes

We classify information into five classes that reflect the divisions outlined
above. The classification reflects the principle of least privilege1 by separating
the data in such a way that the ability to view one class of data does not imply
the ability to view another class of data. Also, the policy and all its rules are



not secret, reflecting the principle of open design.2 Note that “open design”
does not mean that this information is available to the public. It simply
means that anyone within the Drib who is affected by the policy, or who
wants to know what the policy is and why it was designed that way, can find
out.

1See Section 14.2.1, “Principle of Least Privilege.”

2See Section 14.2.5, “Principle of Open Design.”

• Public data (PD) is available to anyone. It includes product specifications,
price information, marketing literature, and any other data that will help the
Drib sell dribbles without compromising its secrets.

• Development data for existing products (DDEP) is available only internally.
Because of pending lawsuits, it must be available to the company lawyers and
officers as well as to the developers. It is kept secret from all others.

• Development data for future products (DDFP) is available to the developers
only. The specifications may change, as may various aspects of development,
but the Drib never announces information about products under
development, and does not intend to change this style of operation.

• Corporate data (CpD) includes legal information that is privileged and
information about corporate actions that is not to become known publicly
(such as actions that may affect stock values). The corporate officials and
lawyers need access to this information; no one else does.

• Customer data (CuD) is data that customers supply, such as credit card
information. The Drib protects this data as strongly as it protects its own
data.

Data may change from the DDFP class to the DDEP class as products become
implemented; from the DDEP class to the PD class when deemed
advantageous to publicize some development details; and from the CpD class



to the PD class as privileged information becomes publicly known through
mergers, lawsuit filings, or the ordinary course of business. There is no
provision for revealing CuD directly; this protects the privacy of the Drib’s
customers.

28.2.2 User Classes

Four classes of people may access data. The user classes are based on the
same principles as the classes of data: separation of privilege3 and least
privilege. Some users may be placed in multiple classes. If so, an underlying
assumption of the model is that they will not bypass the restrictions by
copying data from one class to another without using the mechanisms
provided for that purpose.

3See Section 14.2.6, “Principle of Separation of Privilege.”

• Outsiders (members of the public) get access to some of the Drib’s data such
as prices, product descriptions, and public corporate information. The public
can also order merchandise, download new drivers for their dribbles, and
send electronic mail to the company.

• Developers get access to both classes of development data. They cannot
alter development data for existing products because that data describes how
to manufacture the product. It also provides a historical record for use in
developing new products. Developers can modify development data for future
products, however.



Figure 28–1: The classes of users, data, and the allowed accesses.

• Corporation executives (corporation counsel, members of the board of
directors, and other executives) get access to corporate data. They can see
development data for both existing and future products but may not alter it.
They may read customer data (for legal purposes or analysis). Under specific
conditions (described below), they may make sensitive data public.

• Employees get access to customer data only.

Figure 28–1 summarizes the access that each class of users has to each class
of data. This table is an access control matrix4 and defines the access control
policy. It reflects a mandatory access control policy;5 the discretionary
component is fixed at “allow always.” This matrix combines elements of
confidentiality6 and integrity.7 Left as an implementation detail is the security
officer who puts people and data into the appropriate classes (see Lipner’s
integrity matrix model8, and Exercise 1).

4See Chapter 2, “Access Control Matrix.”

5See Section 4.4, “Types of Access Control.”

6See Chapter 5, “Confidentiality Policies.”

7See Chapter 6, “Integrity Policies.”



8See Section 6.3, “Lipner’s Integrity Matrix Model.”

Specific classes of people can move data from one class to another, as
indicated above. The specific transformation rules are as follows:

• The developers must propose that a proposed future product be realized.
Corporation executives must determine if the proposed action is wise, from
both legal and economic standpoints. Hence, both developers and
corporation executives must agree to reclassify data from the DDFP class to
the DDEP class.

• The employees may identify certain development data as important for
answering technical questions from outsiders, or for market literature. In
these cases, the employees notify the corporation executives, who then decide
whether or not to make the information public. Both employees and
corporation executives must agree to reclassify data from the DDEP class to
the PD class.

• Corporation executives may reveal corporate data in filings or when
revealing that the data will not harm the company. Thus, they can reclassify
data from CpD to PD. However, at least two members must agree to do the
reclassification.

The principle of separation of privilege dictates that moving data from one
class to another requires approval of more than one user. In the first two
cases, the users must come from separate classes because the data involved
may reveal internal information that would be of use to a competitor. (Two
users in different classes may be the same user in two different roles.9 Hence,
the requirement for two different users.) The third case involves corporate
business, usually in legal matters (such as lawsuits or stock filings). In this
case, the Drib lawyers (all of whom are in the “corporate executive” user
class) have the expertise to determine what must be revealed, and because the
consequences may involve criminal charges, the lawyers and corporate
executives must make the decisions. Because the Drib is a well-run company,



they will obtain the appropriate information and recommendations from
people in the other user classes as required. However, the requirement that
the two members be in the corporate executive class is an acknowledgment of
the responsibility of the corporate executives.

9See Section 15.4, “Groups and Roles.”

28.2.3 Availability

The Drib is a world-wide, multinational corporation and does business on all
seven continents (although its Antarctic operation is quite small). Orders
come from all over the world. Thus, the corporate officers want employees
and the public to be able to contact the Drib at any time. In practice, this
means that the Drib’s systems must be available 99% of the time, the
remaining 1% being used for planned maintenance and unexpected
downtimes.

28.2.4 Consistency Check

The policy described above should meet the goals of the Drib. Otherwise, it is
not an appropriate policy. We will now review the goals of the policy and
discuss consistency.

The first goal is to keep sensitive information confidential, on a “need to
know” basis. Public data is, by definition, not confidential, and is available to
all. Developers clearly need access to both current and future development
data, but not to customer data or corporate information (because they do not
decide which products to market). They can alter development data as they
investigate possibilities and test ideas. Corporate executives need access to
corporate data to plan business actions. Some of these actions may be based
on development data for existing products; for example, should the Drib
invest in a company developing faster CPUs for the Drib’s products? Hence,
corporate executives also need access to development data for existing
products. They can alter corporate data, but not development data. So, the



first goal of the policy is met.

The second goal requires that only employees who handle purchases can
access customer data, and only they and the customers themselves can alter
the customer data. The policy above provides this restriction.

The third goal is met by the rules for changing security classes. Moving data
from the DDFP class to the DDEP class requires consent of both a developer
and a corporate executive. Moving data from the DDEP class to the PD class
requires the consent of an employee and a corporate executive. Finally,
moving data from the corporate class to the public class requires consent of a
corporate executive. In all cases, a corporate executive can prevent the release
of company information. Furthermore, because no other class of users can
write public class data, only the corporate executives can release the
information.

Thus, the policy is valid, because it meets the security requirements of the
Drib.10

10See Section 19.1.2, “The Role of Requirements in Assurance.”

We next verify the consistency of the policy, to show that it is not self-
contradictory. We construct the transitive closure of all paths along which
information can flow among the classes. From this closure, it is clear that the
only way information can flow into the public class is when a corporate
executive moves it there. Hence, the key point of trust is in the corporate
executive class. Without an executive acting, information simply cannot
become public. Furthermore, by the rules for moving data out of the DDEP
and DDFP classes, some other entity beyond the corporate executives must
consent to the release of the information. This satisfies the principle of
separation of privilege as well as the corporate goals. Because there is no
contradiction among the rules in the policy, the policy is self-consistent.

We have now (informally) both validated and verified the policy. Validation



and verification are basic aspects of information assurance11 and provide a
basis for asserting that the policy is correct.

11See Chapter 19, “Introduction to Assurance.”

We have now defined the confidentiality, integrity, and availability aspects of
the Drib’s basic security policy. We will now expand this into a simple
network architecture.

28.3 Network Organization

The policy discussed above suggests that the network be partitioned into
several parts, with firewalls12 between parts to prevent information from
leaking. Each type of data resides in one of the parts (we combine both types
of development data into one type, DD). The resulting partition is shown in
Figure 28–2. It is an instantiation of the configuration in Figure 17–4(b), with
one part available to the public and a second part available only internally.

12See Section 17.6.2, “Firewalls.”

Definition 28–1. The DMZ13 is a portion of a network that separates a
purely internal network from an external network.

13“DMZ” stands for “demilitarized zone.”

When information moves from the Internet to the internal network,
confidentiality is not at issue. However, integrity is. Firewalls separate the
Internet, the DMZ, and the internal network. They must not accept messages
that will cause servers to work incorrectly or to crash. When information
moves from the internal network to the Internet, confidentiality and integrity
are both at issue. The firewalls must ensure that no confidential information
goes to the Internet and that the information that reaches the Internet is
correct.14 The latter issue requires simply that information not be altered in
transit from the internal network to the Internet. For simplicity, we make the



assumption that the systems as deployed will not change any information in
transit (except delivery information, such as packet headers). If such changes
are made, then the system has been compromised by an attacker. This would
require the attacker to gain access to the system. This is equivalent to the
problem of disallowing certain types of information (namely, attack
mechanisms) from entering the internal or DMZ subnets from the Internet—
in other words, ensuring the integrity of this information.15

14See Chapter 17, “Information Flow.”

15See Chapter 24, “Vulnerability Analysis.”

Figure 28–2: The network designed for the Dribble Corporation.
The “outer firewall” sits between the Internet and the company
network. The subnet labeled “DMZ” provides limited public access
to various servers. The “inner firewall” sits between the DMZ and
the subnets that are not to be accessed by the public. These
subnets share common mail and DNS servers that, like the other
hosts, are not publicly accessible.

The arrangement and configuration of the firewalls provide the supporting
access control mechanisms used to implement the policy. A different point of



view is to see the firewall as an audit mechanism.16 It analyzes the packets
that enter or leave. Firewalls can then base actions on this analysis, leading to
traffic shaping (in which percentages of bandwidth are reserved for specific
types of traffic), intrusion response,17 and other controls.

16See Chapter 25, “Auditing.”

17See Section 27.3, “Intrusion Response.”

With these definitions in mind, the reason for this structure of the network
falls into place.

28.3.1 Analysis of the Network Infrastructure

The benefits of this design flow from the security policy and the principle of
least privilege. The security policy distinguishes “public” entities from those
internal to the corporation, but recognizes that some corporate resources
must be available to the public. The network layout described above provides
this functionality. The public entities may enter the corporate perimeter
(bounded by the “outer firewall”) but are confined to the DMZ area (bounded
inside by the “inner firewall”). The next few paragraphs give an overview of
the technical details of this arrangement. We then expand on the
configurations of the infrastructure systems.

The key decision is to limit the flow of information from the internal network
to the DMZ. The public cannot communicate directly with any system in the
internal network, nor can any system in the internal network communicate
directly with other systems on the Internet (beyond the “outer firewall”). The
systems in the DMZ serve as mediators, with the firewalls providing the
guards. This setup is derived from the notion of the “pump” (see page 541 in
Section 18.3.3. The firewalls and the DMZ systems make up the pump,
because they control all access to and from the Internet and filter all traffic in
both directions.



The first step is to conceal the addresses of the internal network. In general,
the internal network addresses can be any IP addresses (the families of
addresses specifically allocated to private networks are 10.x.y.z, 172.a.x.y
(where 16 ≤ a ≤ 31), and 192.168.x.y18 [1588]), and the inner firewall can use
a protocol such as the Network Address Translation protocol [1817] to map
these internal host addresses to the firewall’s Internet address. A more
common method is to assign each host an address but not allow those
addresses to leave the corporate network. This is particularly simple, because
all services are implemented as proxies in the outer firewall. However,
electronic mail presents a special problem.

18In classless IP terminology, 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16.

The DMZ mail server must know an address in order for the internal mail
server to pass mail back and forth. This need not be the actual address of the
internal mail server. It could be a distinguished address that the inner
firewall will recognize as representing the internal mail server. Similarly, the
internal mail server must know an address for the DMZ mail server. These
addresses can be fixed (in which case the DMZ DNS server is unnecessary).
For flexibility, we will assume that the Drib has decided to use a DNS server
on both the internal and DMZ subnets. As a backup, each system in the DMZ
has the network addresses of both firewalls stored locally, so if the DNS
system is unavailable, the other servers can function.

The Web server lies in the DMZ for the same reasons that a mail server lies in
the DMZ. External connections to the Web server go into the DMZ and no
farther. If any information is to be transmitted from the Web server to the
internal network (for example, the customer data subnet), the transmission is
made separately, and not as part of a Web transaction.

This network organization reflects several of Saltzer and Schroeder’s design
principles [1653]. The containment of internal addresses reflects the principle
of least privilege19 as well as the Drib’s solution to the confinement
problem.20 The inner firewall mediates every access involving the DMZ and



the internal networks, meeting the principle of complete mediation.21 Going
out of the inner network to the Internet requires that several criteria be met,
to implement the principle of separation of privilege.22 The firewalls are
distinct computers, as are the DMZ servers, leading to a duplication rather
than a sharing of network services. If the mail server stops working, for
example, the WWW server is not affected. The principle of least common
mechanism23 suggests this design. The shared DNS server in the DMZ
violates this principle, because multiple systems are affected if it is corrupted
or unavailable. The reason for the local, fixed addresses of the two firewalls is
to handle the case of unavailability, mitigating this threat. Finally, the
applications of confinement, access control,24 and information flow control25

have been discussed earlier.

19See Section 14.2.1, “Principle of Least Privilege.”

20See Section 18.1, “The Confinement Problem.”.

21See Section 14.2.4, “Principle of Complete Mediation.”

22See Section 14.2.6, “Principle of Separation of Privilege.”

23See Section 14.2.7, “Principle of Least Common Mechanism.”

24See Chapter 16, “Access Control Mechanisms.”

25See Chapter 17, “Information Flow.”

We now examine each component in more detail.

28.3.1.1 Outer Firewall Configuration

The goals of the outer firewall are to restrict public access to the Drib’s
corporate network and to restrict the Drib’s access to the Internet. This arises
from the duality of information flow.26 In the Bell-LaPadula Model,27 for
example, one cannot read information from a higher level (here, by



restricting public access to the Drib’s network), but one cannot write
information to a lower level, either (here, by restricting the Drib’s employees’
access to the Internet). Certain sanitized exchanges, however, are allowed. To
implement the required access control, the firewall uses an access control
list,28 which binds source addresses and ports and destination addresses and
ports to access rights.

26See Chapter 17, “Information Flow.”

27See Section 5.2, “The Bell-LaPadula Model.”

28See Section 16.1, “Access Control Lists.”

The public needs to be able to access the Web server and mail server, and no
other services; under some conditions, employees working remotely may
need to access an encrypted virtual private network (VPN) used to
communicate with the internal network. The firewall therefore presents an
interface that allows connections to the WWW services (HTTP and HTTPS),
to electronic mail (SMTP), and to the inner firewall using the VPN. Sites on
the Internet see the addresses of these servers as the same—that of the
firewall. No other services are provided to sites on the Internet.

The firewall is a proxy-based firewall. When an electronic mail connection is
initiated, the SMTP proxy on the firewall collects the mail. It then analyzes it
for computer viruses and other forms of malicious logic. If none is found, it
forwards the mail to the DMZ mail server. When a Web connection (or
datagram) arrives, the firewall scans the message for any suspicious
components (such as extraordinarily long lines or other evidence of attacks)
and, if none is found, forwards it to the DMZ Web server. These two DMZ
servers have different addresses, neither of which is the address of the
firewall. When a VPN session is initiated, the outer firewall is configured to
route it directly to the inner firewall.

Attackers trying to penetrate the firewall have four methods of entry. The first



is to enter through the Web server ports. The unsecured (HTTP) port proxy
checks for invalid or illegal HTTP requests and rejects them. The second is to
enter through the SMTP port. The mail proxy will detect and reject such
attempts. The third is through the VPN port. The firewall immediately
forwards those messages to the inner firewall, which will vaidate the
communication. The fourth is to attempt to bypass the low-level firewall
checks by exploiting vulnerabilities in the firewall itself.

The discussion of vulnerabilities in Chapter 24, “Vulnerability Analysis,”
implies that there is no way to ensure that the firewall software and hardware
cannot be breached. Designing the firewall mechanisms to be as simple as
possible, in accordance with the principle of economy of mechanism,29 using
assurance techniques such as those described in Part VI minimizes, but does
not eliminate, this possibility. So we apply the principle of separation of
privilege30 in the form of a technique called “defense in depth.” In order to
attack a system in the DMZ by bypassing the firewall checks, the attacker
must know something about the internal addresses of the DMZ. If, for
example, the attacker knows that the internal address of the DMZ mail server
is 10.34.231.19, the attacker may be able to use that information to piggyback
packets to that host.31 But if the attacker has no idea of the internal DMZ mail
server’s address, even if the attacker is able to bypass the firewall checks, he
or she will not know where to have the packets sent.

29See Section 14.2.3, “Principle of Economy of Mechanism.”

30See Section 14.2.6, “Principle of Separation of Privilege.”

31The description here is vague out of necessity. Whether or not such a
method exists, and how to exploit it, are properties of individual hosts,
software, and vendors. The curious reader is invited to use the Flaw
Hypothesis Methodology (see Section 24.2.4) to analyze his or her
organization’s firewall after obtaining written permission from the
responsible officials.



28.3.1.2 Inner Firewall Configuration

The internal network is where the Drib’s most sensitive data resides. It may
contain data, such as proprietary information, that the Drib does not want
outsiders to see. For this reason, the inner firewall will block all traffic except
for that specifically authorized to enter (the principle of fail-safe defaults32).
All such information will come from the DMZ, and never directly from the
Internet.

32See Section 14.2.2, “Principle of Fail-Safe Defaults.”

EXAMPLE: The Drib uses the Network File System (NFS) protocol to share
files among its systems. The NFS protocol (see Section 25.6.1) sends the
contents of files around a network. Were any of these packets containing
sensitive information to leak to the Internet, the Drib would be compromised.
The outer firewall is configured to disallow NFS packets from leaking to the
Internet. However, the principle of least privilege says that, unless hosts in
the DMZ require access to the internal NFS information, the packets should
not even reach the DMZ. Furthermore, the principle of separation of privilege
says that multiple mechanisms should prevent NFS packets from leaking to
the Internet. If one mechanism fails, the others will still prevent the leak.
Hence, the inner firewall should also disallow NFS packets from going to the
DMZ.

Like the outer firewall, the inner firewall allows a limited set of traffic through
(using the same type of access control mechanism as does the outer firewall).
It allows SMTP connections using proxies, but all electronic mail is sent to
the DMZ mail server for disposition. It allows limited transfer of information
to the DNS server in the DMZ. It also allows system administrators to access
the systems in the DMZ from a trusted administrative server. All other traffic,
including Web access, is blocked.

The administrator’s connection uses the Secure Shell (SSH) protocol and
differs from the other protocols in that a direct connection through the SSH



port is allowed (that is, no SSH proxies). This allows the address of the
administrative server to leave the internal network. However, the firewall
filter ensures that the SSH connection can go only to one of the DMZ servers.
This use of cryptography provides message secrecy and integrity as well as
strong (cryptographic) authentication of the endpoints.33 Because the
requisite public keys are embedded into the system when SSH is configured,
the issue of an infrastructure for public key distribution34 is finessed.

33See Chapter 10, “Basic Cryptography,” and Chapter 11, “Cipher
Techniques.”

34See Section 11.4, “Cryptographic Key Infrastructures.”

The access allowed to system administrators violates the principle of least
privilege,35 because the connection allows the administrators full control over
the DMZ systems. Several precautions ameliorate this violation. First, if the
connection to the systems in the DMZ does not originate from a special
system in the internal network (dubbed the “administrative server”), the
firewall will disallow the connection. Second, the Drib trusts its system
administrators, so only trusted users will be allowed unrestricted access to
the DMZ servers. Third, the administrators can use the SSH protocol only to
connect to the DMZ servers, and all administrative traffic is protected using
SSH. This means that an attacker would not only have to spoof the internal
network host addresses, but also find the correct set of cryptographic keys.
Although not perfect, these precautions reduce the risk of compromise.

35See Section 14.2.1, “Principle of Least Privilege.”

28.3.2 In the DMZ

Four servers reside in the DMZ. They are the mail, WWW, DNS, and log
servers. We will discuss these servers separately.

28.3.2.1 DMZ Mail Server



The mail server in the DMZ performs address and content checking on all
electronic mail messages. The goal is to hide internal information from the
outside while being transparent to the inside. When the mail server receives a
letter from the Internet, it performs the following steps:

1. The mail proxy reassembles the message into a set of headers, a letter, and
any attachments. The attachments are assembled into their native form (not
the form used to transmit them through electronic mail). This allows the mail
server to work on the original mail, as opposed to a packetized form of the
letter. It simplifies the checking.

2. The mail proxy scans the letter and attachments, looking for any “bad”
content. “Bad” content here is defined as a computer virus or known
malicious logic. The attachments are then restored to the form used to
transmit them through electronic mail. The headers, the letter, and the
attachments are rescanned for any violation of the SMTP specification [1075].
This is the basic content checking. Any binary data (which might indicate a
buffer overflow or other attack) is weeded out, as are excessively long lines.36

Although address lines are limited in length to 1,000 characters, the mail
proxy will split them as needed to keep lines less than 80 characters long. The
scanning also detects and eliminates known malicious logic (computer
viruses and worms, logic bombs, and so forth). The analysis of content for
malicious logic uses standard techniques.37

36See Chapter 24, “Vulnerability Analysis.”

37See Section 23.9.1, “Scanning Defenses.”

3. The mail proxy scans the recipient address lines. The addresses that
directed the mail to the Drib are rewritten to direct the mail to the internal
mail server. The DMZ mail server then forwards the mail to the internal mail
server. This step forwards the mail to the Drib’s internal network, on which it
will be delivered. Identification is by host name and not user name,38 because
the mail server determines the identity of the correct host to forward the mail



to on the basis of host name, not user name.

38See Section 15.6.1, “Host Identity.”

The procedure for sending mail out of the Drib is similar. All outgoing mail
comes from the internal mail server. Steps 1 and 2 are the same (although the
content checking in step 2 may be enhanced to detect keywords such as
“proprietary”). But the sanitization for step 3 is different.

3′. The mail proxy scans the header lines. All lines that mention internal
hosts are rewritten to identify the host as “drib.org”, the name of the outside
firewall. All header lines must be checked. In addition to the source address
lines, any “Received” lines are to be removed, and any destinations that name
the Drib must also be changed. Following this sanitization, the letter is
forwarded to the firewall for delivery. This step forwards the mail to the
Internet after hiding all details of the Drib’s networks. This idea comes from
the principle of least privilege,39 because those who do not need to know
about the internals of the Drib’s network do not get that information.

39See Section 14.2.1, “Principle of Least Privilege.”

The primary goals of the mail server are to handle mail and to perform all
needed checks and sanitization. This way, the firewalls only need to perform
rudimentary checks (such as checks on line length and character type) and
leave the detailed checking to the mail servers.

The DMZ mail server also runs an SSH server. This server is configured to
accept connections only from the trusted administrative host in the internal
network. This allows the system administrators to configure and maintain the
DMZ mail host remotely (a great convenience) without unnecessarily
exposing that host to compromise.

28.3.2.2 DMZ WWW Server

The Web server accepts and services requests from the Internet. It does not



contact any servers or information sources within the internal network. This
means that if the Web server is compromised, the compromise cannot affect
internal hosts. Although the Web server runs CGI scripts, the scripts have
been checked for potential attacks and hardened to prevent their success.40

The server itself contains no confidential data.

40See Chapter 24, “Vulnerability Analysis,” and Chapter 31, “Program
Security.”

The Web server also identifies itself as “www.drib.org” and uses the IP
address of the outside firewall. This hides part of the DMZ configuration in
accordance with the principle of least privilege41 (because people outside the
network need not know the address), and forces external entities to send Web
traffic to the firewall.

41See Section 14.2.1, “Principle of Least Privilege.”

A system in the internal network known as the “WWW-clone” is used to
update the DMZ Web server. People authorized to update the Drib’s Web
page can access this system. Periodically (or on request), an administrator
will copy the contents of the WWW-clone to the DMZ Web server (see Section
29.3.1). This follows from the principle of separation of privilege,42 because
any unauthorized changes in the Web server are mitigated by the updates.
Like the mail server, the WWW server also runs an SSH server for
maintenance and updating. The server provides the cryptographic support
necessary to ensure confidentiality and data and origin integrity.43

42See Section 14.2.6, “Principle of Separation of Privilege.”

43See Chapter 10, “Basic Cryptography,” and Chapter 12, “Cipher
Techniques.”

The Drib accepts orders for its merchandise through the Web. The data
entered by the consumer is saved to a file. After the user confirms an order,



the Web server invokes a simple program that checks the format and contents
of the file and creates an enciphered version of the file using the public key of
a system on the internal customer subnet. This file resides in a spooling area
that is not accessible to the Web server (see Exercise 2). The program deletes
the original file. This way, even if the attacker can obtain the file, the attacker
cannot determine the order information or credit card numbers associated
with customers. Indeed, because the customer names are in the enciphered
files, the attacker cannot even determine the names. Formally, not keeping
valuable information online and in the clear follows from the principle of
least privilege,44 because the users of that machine are not authorized to read
the data, and from the principle of separation of privilege,45 because the
cryptographic key is needed to read the data. Using public key cryptography
means that only a public key need be on the DMZ Web server. This prevents
an attacker from deciphering the data on that system should it be
compromised, which is an application of the principle of fail-safe defaults.46

44See Section 14.2.1, “Principle of Least Privilege.”

45See Section 14.2.6, “Principle of Separation of Privilege.”

46See Section 14.2.2, “Principle of Fail-Safe Defaults.”

The internal trusted administrative server periodically connects to the Web
server using the SSH protocol, uploads the enciphered order files, and
transmits them to the appropriate system on the internal customer subnet.
The SSH server on the Web server is configured to reject connections from
any host other than the trusted internal administrative server, so an attacker
cannot connect from outside (assuming the attacker is able to penetrate the
outer firewall). The principle of denying unknown connections, rather than
allowing them and then authenticating them, follows the principle of fail-safe
defaults.47

47See Section 14.2.2, “Principle of Fail-Safe Defaults.”



28.3.2.3 DMZ DNS Server

The DMZ DNS host contains directory name service information about those
hosts that the DMZ servers must know. It contains entries for the following:

• DMZ mail, Web, and log hosts

• Internal trusted administrative host

• Outer firewall

• Inner firewall

Note that the DNS server does not know the addresses of the internal mail
server. The inner firewall will forward mail to that server. The DMZ mail
server need only know the addresses of the two firewalls (for mail transfers),
and the trusted administrative server. If the mail server knows the address of
the DNS server, it can obtain these three addresses.

This gives the internal network the flexibility to rearrange its host addressing.
The DMZ DNS server must be updated only if the address of the internal
trusted administrative host is changed.

The limited information in the DNS server reflects the principle of least
privilege,48 because those entries are sufficient for the systems in the DMZ.

48See Section 14.2.1, “Principle of Least Privilege.”

28.3.2.4 DMZ Log Server

The log server performs an administrative function. All DMZ machines have
logging turned on. In the event of a compromise (or an attempted
compromise), these logs will be invaluable in assessing the method of attack,
the damage (or potential damage), and the best response. However, attackers
can delete logs, so if the logs were on the attacked machines, they might be
tampered with or erased.



The Drib has located a fourth server in the DMZ. All other servers log
messages by writing them to a local file and then to the log server. The log
server also writes them to a file and then to write-once media, which is a
precaution in case some attacker is able to overwrite log files on both the
target server and the log server. It is also an application of the principle of
separation of privilege.49

49See Section 14.2.6, “Principle of Separation of Privilege.”

The log system is placed in the DMZ to confine its activity.50 It never initiates
transfer to the inner network. Only the trusted administrative host does that,
and then only if the administrators choose not to read logs by reading the
media on which the logs reside.

50See Chapter 18, “Confinement Problem.”

Like the other servers, the log server accepts connections from the internal
trusted administrative host. Administrators can view the logs directly, or they
can replace the write-once media with another instance of the media and read
the extracted media directly. The use of write-once media is an example of
applying the principle of least privilege51 and fail-safe defaults,52 because the
media cannot be altered; they can only be destroyed, and then only if the
attacker has physical access to the system.

51See Section 14.2.1, “Principle of Least Privilege.”

52See Section 14.2.2, “Principle of Fail-Safe Defaults.”

28.3.2.5 Summary

Each server has the minimum knowledge of the network necessary to
perform its task. This follows the principle of least privilege. Compromise of
the servers on these systems will restrict the transfer of information, but will
not lead to compromise of the systems on the internal network.



Ideally, the operating systems of the server computers should be very small
kernels that provide only the system support services necessary to run the
appropriate servers. In practice, the operating systems are trusted operating
systems (developed using assurance techniques,53 or—more commonly—
commercial operating systems in which all unnecessary features and services
have been disabled. This minimizes the operations that a server can perform
on behalf of a remote process. Hence, even if the server is compromised, the
attacker cannot use it to compromise other hosts such as the inner firewall.

53See Part VI, “Assurance.”

The use of proxies on the firewalls prevents direct connections across the
firewalls. Moreover, the data passing through the firewalls can be checked
and, based on the content, filtered or blocked. The only exception is the SSH
connection from the internal network to the DMZ. The inner firewall checks
the origination of the connection, to ensure that it comes from the internal
administrative host, and the destination, to ensure that it goes to one of the
servers.

28.3.3 In the Internal Network

The internal network may be organized in several ways. Each of the subnets
may have its own firewall and its own server, and may filter traffic just as the
inner firewall does. The subnets may share servers. If the primary goal is to
guard the Drib’s internal data from being stolen by an outside attacker, what
goes on behind the inner firewall is irrelevant.

The Drib’s policy imposes the opposite requirement. The subnets must guard
against unauthorized access to information as dictated by the policy. For
these purposes, “read” corresponds to fetching or retrieving a file, and “write”
corresponds to putting or depositing a file. For the moment, we ignore
electronic mail, updating of Web pages on the DMZ, and the internal
administrative host.



The constraints on information flow54 dictate the arrangement of the
network. The firewalls impose the confinement55 required at the interfaces.

54See Chapter 17, “Information Flow.”

55See Chapter 18, “Confinement Problem.”

The data and users are distributed among the three subnets of the internal
network in the obvious way. The firewall on the developer network allows
read access from the corporate network but blocks write access to all other
subnets. The firewall on the corporate network does not allow read or write
access from the other networks. The firewall for the customer subnet allows
read access from the corporate network. It also allows write access for
information placed by the public onto the DMZ Web server. However, the
write access is constrained to be mediated only by the DMZ Web server and
the inner firewall, so the public does not have unrestricted access. These
firewalls may be proxy firewalls or filtering firewalls.

The internal mail server must be free to communicate with hosts behind each
of the subnet firewalls. Either the subnet may have its own mail server, or the
internal mail server can deliver mail directly to each host on the subnets. The
former has the advantage of flexibility, because the internal DNS server need
only know the addresses of the subnet firewalls and (possibly) the mail
servers. Thus, other host addresses can be changed freely within each subnet.
The latter requires the internal DNS to have the addresses of all hosts on the
internal network, but is simpler to configure and maintain. Either
arrangement will satisfy the Drib’s policy.

In addition to the mail server, an internal Web server provides a staging area
for the Drib’s Web pages. All internal firewalls allow both read and write
access to this server. (The server itself controls the specific access that
individuals have to each Web page.) The DMZ Web server’s pages are
synchronized with the Web pages on this server by using the trusted internal
administrative host. This provides a test bed for changes in the pages, so



corporate and other internal personnel can review and approve changes
before they are made visible to the public. Furthermore, if the DMZ Web
server is ever compromised, the Web pages can be restored very quickly.

Finally, the trusted internal administrative server has strict access rules: only
system administrators authorized to administer the DMZ systems have access
to it. All connections to the DMZ through the inner firewall must use this
server, except for the mail server and (possibly) the DNS server. The server
itself uses SSH to access systems in the DMZ, and the DMZ servers recognize
it as the only host authorized to access their SSH daemons. This prevents a
user on the internal network from sending SSH commands from a local
workstation to DMZ servers.

With respect to the internal network, the DMZ servers know only about the
inner firewall’s address and the trusted administrative host’s address, by the
principle of least privilege.56 The DMZ servers never communicate directly
with the internal servers. They instead send information to the firewall, which
routes the messages appropriately. DMZ servers accept only incoming SSH
connections from the trusted administrative host. These connections use
public key authentication to establish identity,57 so an attacker cannot forge
addresses.

56See Section 14.2.1, “Principle of Least Privilege.”

57See Section 10.3, “Public Key Cryptography,” and Section 15.6.1, “Host
Identity.”

This arrangement is layered with checks. A single action affecting a host on
the DMZ requires that several tests be passed (implementing the principle of
separation of mechanism). Only a few administrators can alter or update
systems on the DMZ. In general, the only data in the DMZ that non-
administrators can alter is the data in the Web pages. However, the
alterations occur on a copy on the internal network. An administrator must
invoke special functions to move the updated pages to the Web server on the



DMZ.

The only data that is written from the DMZ to the internal network comes
from customer orders, but the data so received has been checked for potential
errors (or deliberately corrupt data), is enciphered, and is transferred to an
internal machine in such a way that it cannot be executed. This applies the
analysis techniques for analyzing existing systems58 and developing systems
with some level of assurance.59 This again limits the ability of an attacker to
use this data to attack systems on the internal network.

58See Chapter 24, “Vulnerability Analysis.”

59See Part VI, “Assurance.”

28.3.3.1 The Wireless Network

The Drib maintains two sets of wireless networks. The first set is a single
wireless network. It is for guests who need access to the Internet and are not
authorized to access any Drib resources or data. The access points for this
wireless network bypass the firewalls for the subnets, connecting directly to
the inner firewall and through that to the outer firewall. A virtual private
network provides the connection, so all traffic to the outer firewall is
encrypted. At that firewall, the traffic is decrypted and routed to its
destination. Similarly, responses to any queries are returned to the user via
the same virtual private network.

The second set of wireless network is for Drib employees. It consists of 3
subnets, one for each subnet on the internal network. Each of these is
connected to an access point that uses a virtual private network to connect to
the appropriate firewall. The firewalls check all communication to and from
the wireless access points to ensure that it is not malicious. It also enforces
the controls described above.

The Drib handles mobile computing in a number of ways. Personal devices,



such as cell phones, tablets, and personal laptops are allowed to connect to
the guest wireless network but not the others. Laptops owned by the Drib
may connect to the other wireless networks. The reason for this arrangement
lies in the control of the mobile systems. The Drib laptops have all software
installed and maintained by the Drib administrators. Some laptops are
designated as “internal” and are not to be removed from the physical
premises. Others are designated “external” and may be taken off the
premises, but these are configured so that any network connection will be
tunneled directly to the outer firewall, and then the inner firewall, over an
encrypted VPN. This arrangement enables employees to take laptops on trips,
but imposes the same controls on Internet access as are imposed on users of
the Drib’s internal network. So, for example, an employee cannot use a web
browser to visit a web site as the internal firewall blocks such connections. In
addition, the disks of all external laptops are encrypted, and the user must
supply both a password and an appropriate fingerprint scan to log into the
system. This minimizes the risk to the Drib should the laptop be stolen.

The VPN server resides on the inner firewall. The external laptops each have
a different public key pair known to the server. These are generated randomly
and changed whenever the laptop is given to an employee. Thus, the server
can tell whether an attempt to connect using the VPN is from an authorized
laptop. Note there is a risk of an employee copying the key pair to a personal
laptop and using that system. To mitigate this risk, the Drib has procedures
for checking laptops when they are returned. The logs in the laptop are
extracted and the actions compared to those logged by the other Drib
systems. Discrepancies indicate a potential problem and lead to further
investigation.

28.3.3.2 The Cloud

Definition 28–2. A cloud is “a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that



can be rapidly provisioned and released with minimal management effort or
service provider interaction.” [1323, p. 2]

A cloud has several properties that have caused the Drib to consider using it.
The client (here, the Drib) can obtain computing resources such as time and
storage without manual intervention by the provider of the cloud. Further, as
the client’s needs expand, the cloud can provide the needed resources;
similarly, as those needs contract, the cloud can reallocate resources that are
no longer needed. Thus, the Drib pays for the resources it needs, and
resources that are no longer necessary are not paid for. Network accessibility
allows the Drib to use the cloud remotely.

Using these properties, the cloud can provide several services: software as a
service, platform as a service, and infrastructure as a service [1323].

A software as a service cloud provides the applications that a client needs,
and the client supplies the data. The client does not control how the data is
managed, how the application is run, or any other aspect of the execution.
But the Drib uses its own software to develop widgets, so the Drib
immediately rejected the idea of using such a cloud.

A platform as a service cloud is similar, except that the client develops the
software using cloud resources such as libraries, programming languages and
systems, tools, and other services of the cloud provider. This type of cloud
platform has exactly the same drawbacks for the Drib as does the cloud
providing software as a service: the Drib’s software executes on the cloud
provider, and hence is visible to them. Again, the Drib rejected the idea of
using this type of cloud.

A cloud providing infrastructure as a service enables the client to run its own
software on the cloud rather than on the client’s local systems. The cloud
provider manages the execution of the software. The client provides the
software and the input, and the provider returns the output. This means the
cloud provider has access to the software in order to run it. Fortunately, the



Drib’s computations are well within the resources the Drib has locally, so the
Drib need not use the cloud to execute its software — and as the software is
proprietary, the Drib decided to keep the computations local.

But this type of cloud provides other services, including storage. Of course,
the Drib cannot store raw data on such a cloud because the provider can see
it, contrary to the Drib’s need to protect the data as noted above. The cloud
may offer an encrypted storage service, in which the cloud provider enciphers
the data as it enters the cloud, and when the client requests the data, the
provider deciphers the data as it goes back to the client. While this protects
data in the cloud from many attackers, the provider has the keys to the
encryption, and — more directly — can see the data before it is encrypted or
after it is encrypted. The obvious solution, then, is for the data to be
encrypted on the Drib systems and that sent to the cloud. The Drib can then
retrieve the data and decrypt it locally, so neither the cloud provider nor
anyone who gains access to the data stored in the cloud will see the Drib’s raw
data. So the Drib should choose a provider whose client does the encryption
and decryption on the Drib’s system, or the Drib should encrypt the data itself
before uploading it to the cloud.

The Drib considered this possibility for two cases. The first was to minimize
the need for local storage. But as secondary storage is inexpensive and the
Drib did not have or need massive amounts of data, a cost analysis showed
the Drib’s management that the cost of sufficient local storage was affordable
and, indeed, reasonable. Should this change, the Drib management agreed
that they would revisit the issue. The second was for doing backups of its
data. As the data would be stored off site, any data at the Drib’s site that was
damaged or erased could then be retrieved. The issue for the Drib was the
reliance on a second party; if the cloud provider suffered failures, or for some
reason cut the Drib’s access to the cloud, the backups would be unavailable.
The Drib management felt that this was an unacceptable risk. So backups are
performed daily, and stored on storage media, a copy of which is physically
transported to a remote site (in the Drib’s case, a bank vault located in a



nearby city). Thus, the Drib can make immediate use of the copy of the
backup on site, and if needed retrieve a copy of the backups from the off site
media.

28.3.4 General Comment on Assurance

All of the defenses discussed above depend on software that has been written
defensively. This is particularly true of software on the firewalls. Although the
amount of software running on the firewalls is minimized, and the software is
written to perform only necessary functions and has been extensively audited
and tested, the Drib defensive mechanisms all trust that the software is
correct and cannot be compromised. If this trust is misplaced, the defensive
mechanisms can be breached. This is another reason why the configuration of
servers and firewalls is based extensively on the principle of separation of
mechanism. If one mechanism fails, another may prevent the attacker from
exploiting that failure.

A similar remark applies to hardware. Suppose the network interface card
connected to the Internet never cleared its buffer. An attacker could craft a
packet that contained data of the form of a legal packet addressed to an
interior system. The containing packet would be validated as allowed to go to
the interior network and then would be passed to the interior network. The
next packet would be short enough to overwrite the contents of the buffer
from the beginning up to the data in the form of the valid packet. If the card
then flushed the contents of its buffer to the inside network, the legal but
unvalidated packet would be sent on, too. The separation of mechanism
inherent in a proxy firewall hinders attacks based on failures in single
network cards, but other types of malfunctions may allow other attacks.

Assurance at all levels is important. Here, the informal policy model of the
Drib (see Section 28.2) guides the design of the network architecture as well
as the analysis of the software and hardware configurations. Infrastructure,
software, and hardware all provide the basis for claims that the network
actually enforces the policy model correctly.



28.4 Availability

The availability component of the Drib’s policy requires that the systems
must be available to the public and to Drib personnel. This means that access
over the Internet must be unimpeded. We consider this in the context of
flooding attacks, in which attackers attempt to overwhelm system resources.

The SYN flood60 is a common type of flooding attack. There are two aspects of
SYN flooding. The first is the consumption of bandwidth. If the flooding is
more than the capacity of the physical network medium, or of intermediate
nodes, legitimate handshakes may be unable to reach the target. The second
is the use of resources—specifically, memory space— on the target. If the
flooding absorbs all the memory allocated for half-open connections, then the
target will discard the SYN packets from legitimate handshake attempts.

60See Section 7.4, “Availability and Network Flooding”

We focus on the second aspect, because the first involves infrastructure
elements not under the control of the Drib. First, we consider defenses that
do not involve the target system. Then we examine the target system.

28.4.1 Intermediate Hosts

This approach tries to reduce the consumption of resources on the target by
using routers to divert or eliminate illegitimate traffic. The key observation
here is that the SYN flood is handled before it reaches the firewall, at the
infrastructure level. The goal is to have only legitimate handshakes reach the
firewall.

EXAMPLE: Cisco routers can use “TCP intercept mode” to implement this
approach [2139]. When the router sees a SYN packet coming from the
Internet, it does not forward the packet to its destination. Instead, the router
responds, and tries to establish the connection. If the SYN packet is part of a
legitimate handshake and a connection is established, the router establishes a



connection with the intended destination and “merges” the two connections.
If the SYN packet is part of an attack handshake, the router never sees a
following ACK packet, and times the pending connection out without ever
contacting the putative destination. The router uses short time-outs to ensure
it does not run out of space for pending connections. The TCP intercept
feature may be set either on a per-host basis or for all hosts on the Internet.

An alternative is to have a system monitor the network traffic and track the
state of the three-way handshake.

EXAMPLE: Synkill [1704] is an active monitor that analyzes packets being
sent to some set of systems to be protected. It classifies IP addresses as never
seen (null), not flooding (good), flooding (bad), or unknown (new). Initially,
a set of IP addresses may be put into these classes. As synkill monitors the
network, it adds addresses to each class.

When synkill sees an SYN packet, it checks the IP address. If that address is
bad, synkill immediately sends an RST to the destination. This terminates the
pending connection. If the IP address is good, synkill ignores the packet. If
the IP address has not yet been seen, it is classified as new. A subsequent
ACK or RST packet from the new address will cause the address to be added
to the list of good addresses, because its behavior is correct, but if no such
packet is seen for a specified expiry period of time, the new address is
assumed to be attempting a SYN flood and is moved into the bad set of IP
addresses, and an RST is sent to the destination.

If no traffic from a good address is observed during a different time interval,
called the staleness time, the address is deleted from the list of good
addresses.

Experiments showed that the effects of using synkill enabled legitimate
connections to be completed. Delays grew as the rate of SYN packets from
different IP addresses grew, but the developers concluded that the delays
were acceptable given a powerful enough computer running synkill.



The problem with these techniques is that they simply push the focus of the
attack back from the firewall onto infrastructure systems on the outside of the
Drib’s network. They do not solve the problem, but they may ameliorate it
sufficiently to allow some legitimate connections to reach their destinations.

28.4.2 TCP State and Memory Allocations

This approach springs from the way in which most TCP servers are
implemented. When a SYN packet is received, the server creates an entry in a
data structure of pending connections and then sends the SYN/ACK packet.
The entry remains until either a corresponding ACK is received or a time-out
occurs. In the former case, the connection is completed; in the latter case, a
new entry for the next SYN packet is created. Under a SYN flood, the data
structure is kept full of entries that never move to the connected state. All will
be timed out, and new SYNs create new entries to continue the cycle.

The data structure contains the state of the pending connection. This
information typically includes the source IP address, a sequence number, and
other (internal) information. When the client replies with an ACK packet to
complete the handshake, the server uses this information to verify that the
ACK packet corresponds to the initial SYN packet. The SYN flood succeeds
because the space allocated to hold this state information is filled before any
three-way handshakes are completed. Legitimate handshakes cannot obtain
space in the data structure. However, if legitimate handshakes can be assured
space, to some level of probability, then legitimate handshakes have a
probability of successfully completing even in the face of a denial of service
attack.

Several techniques are used to make availability of space more likely. One is
to push the tracking of state to the client. For example, if the state can be
encoded in the initial sequence number of the ACK, the server can re-derive
the information from information in the client’s ACK packet. Then no state
needs to be kept on the server system. This approach is called the SYN cookie
approach.



EXAMPLE: The Linux 4.10.11 kernel uses SYN cookies by default. The
formula is based on one developed by Bernstein and Schenk [183]:

where h is the SHA1 hash function, s1 and s2 are randomly generated secrets,
sA and sP are the source address and port, dA and dP are the destination
address and port, t is a time-based counter, and n is the sequence number of
the received SYN packet. When the ACK is received, the SYN cookie is
checked by recomputing each part of the SYN cookie anew and subtracting
that value from the received SYN cookie [1068].

The SYN cookie formula minimizes the threat of an attacker guessing a SYN
cookie value and sending an ACK to which there has been no corresponding
SYN or SYN/ACK. The t parameter causes successive values of the second
hash function to vary unpredictably, so an attacker cannot predict the next
value given a set of prior values. The 224t value causes the SYN cookies to
increase more rapidly than the standard sequence number n. This makes
guessing of SYN cookie values more difficult than guessing of sequence
numbers.

If the table of pending connections is full, no state is stored until the ACK
from the remote host is received. At this point, the connection is opened, so
the state is stored in a different table than the table of pending connections.

A second technique assumes that there is a fixed amount of space for the state
of pending connections. A SYN flood causes attack handshakes to fill this
space. After some constant amount of time (usually 75 seconds), the server
deletes the state information associated with the attack handshake. This is
called the “time-out” of the pending connection. This approach simply varies
the times before the time-outs depending on the amount of space available
for new pending connections. As the amount of available space decreases, so
does the amount of time before the system begins to time out connections.
This approach is called adaptive time-out.



EXAMPLE: Freedman [725] modified the kernel of a SunOS system to
provide adaptive time-outs of pending connections. First, he shortened the
time-out period for pending connections from 75 to 15 seconds. He then
modified the formula for queuing pending connections. Suppose a process
allows up to b pending connections on a given port. Let a be the number of
completed connections that the process has not begun using.61 Let b be the
maximum number of queued connections allowed, and p the number of
pending connections. Let c be a tunable parameter. When

61Specifically, the number of connections that have completed the TCP three-
way handshake but are awaiting an accept system call from the process.

the current SYN message is dropped.

Both of these techniques improve the resilience of systems in the face of
flooding attacks. The first technique changes the allocation of space for
pending connections by trading the space used to store the state information
of pending connections for extra computations to validate the states of
incoming ACKs. The second method times out pending connections quickly
to make more space available for the incoming handshakes.

28.4.3 Anticipating Attacks

In spite of the measures outlined above, the Drib security officers realize that
their network and systems might be compromised through unanticipated
means. They have taken steps to prepare for, and handle, such attacks. The
extensive logging described above is one step. The DMZ log server contains
an intrusion detection mechanism that scans through the logs looking for
evidence of known attacks and of anomalous behavior. The reasons, and
settings, are bound in the Drib’s philosophy of defense.

The Drib security officers are aware of the multitude of attacks that can be
launched against networks and systems. They expect these attacks to come



from the Internet against the outer firewall. If the attacks are stopped by the
firewall, they are logged and ignored. For example, should someone attempt a
known buffer overflow attack against the SMTP mail proxy, the proxy will
reject the attack, log the attempt, and continue to function. The security
officers will not pursue the attacker, and are interested in the attack only as a
statistic they can use when higher management asks them to justify their
budget, or when they are training new system administrators in security
procedures and techniques.

However, should the SMTP proxy be attacked successfully, the Drib’s security
officers will be very interested. At that point, the SMTP mail proxy will cease
to function as a mail proxy. Instead, it will start nonstandard programs (such
as a command interpreter or some other program that gives the attacker
access to, or information about, the system). At this point, the anomaly
detection component of the intrusion detection mechanism will detect the
unusual behavior and report a potential problem. The Drib’s security staff
monitors the intrusion detection system around the clock, so they can act
quickly on such reports.

The Drib’s security officers are very interested in attempted attacks within the
DMZ. Unlike the Internet, where attack tools are commonplace, use of the
DMZ is restricted only to those who have access to the internal administrative
trusted host or who are using a small set of services. If a known attack occurs
on this network, someone who has obtained access to the network has
launched it. This means that some trusted administrator should not have
been trusted (entry through the administrative trusted host), that one of the
servers on the firewall has been compromised (entry through the outer
firewall), or that the software on the DMZ systems either is corrupted
(already in the DMZ) or does not restrict actions sufficiently tightly (entry
through the DMZ Web or mail server). Hence, network traffic is monitored
using both anomaly and misuse detection methods, and all attempted
compromises are reported.



The philosophy of ignoring attacks that fail seems dangerous, because when
an attacker succeeds in compromising the system, the attacker probably has
tried—and failed— numerous times before. Although this is true, the Drib’s
answer is, “So what? We do not have the personnel to handle the false alarms
and the failed attacks. Instead, we focus on what we are most concerned
about: successful attacks, and failed attacks in areas where attacks ought not
to be launched. A failed attack within the DMZ tells us that someone or
something is acting in a forbidden way and that some compromise has
occurred. But a failed attack from the Internet tells us that someone may have
found a new attack script and used us as the target. We put our efforts where
we can obtain useful results.”

Finally, the Drib security officers analyzed many commercial intrusion
detection systems to find one that met their needs. All reported many false
positives. Some even failed to detect attacks launched by the security officers.
The Drib therefore purchased an intrusion detection system that allowed
them to add signatures of known attacks and to tune parameters to control
reporting of events. After considerable experimentation, they found a group
of settings that seemed to work well. To verify this, every month the Drib
security officers select two 1-hour periods at random and analyze the logs for
attacks, probes, and other nefarious events. The results of the analysis are
compared with the reported events. If they match, the current set of settings
is accepted; if not, the settings are retuned.

28.5 Summary

This chapter demonstrated how to develop a network infrastructure from
security requirements. The security goals led directly to the development of a
security policy, which in turn suggested the form of the network. One firewall
limits the types of traffic to public servers; the other firewall blocks all
external traffic from reaching the innermost portions of the corporate
network. The servers available to the public are dedicated systems that
provide only one service. The firewalls are application level firewalls, so they



can check the contents of any connection. Finally, meeting the availability
policy requirements led to a discussion of defenses against attackers using
SYN floods to prevent legitimate connections accessing the publicly available
servers.

28.6 Research Issues

Distributed denial of service (DDoS) attacks are insidious and difficult to
handle. Research into handling them, as well as tracing them, focuses on both
the end system and the infrastructure. One difficult problem is to distinguish
between an attack and a large number of attempted connections over a short
period of time; the effect is the same, but the response may need to be
different.

The dissonance between policy and implementation means that systems often
do not enforce the stated policy. Policies include procedural issues, some of
which cannot be enforced by technical means. However, the host and
infrastructure systems should be configured to implement those parts of the
policy that can be enforced by technical means. An automated method of
deriving settings for a system from a given policy would reduce the
inconsistencies and provide a higher degree of assurance that the site
enforces those aspects of the policy correctly. Conversely, many sites do not
have a clear policy for controlling access to their networks. Application of
reverse engineering techniques to deduce the actual policy that the
configurations of the systems support, and expression of that policy in a
clearly understood manner, also constitute a deep research problem that
involves not just technical analysis but also human factors. The elements of
policy languages are critical to both of these problems.

The structure of the network architecture resembles that of a medieval
fortress: a single gateway to the outside world, an outer keep (the DMZ) in
which people from outside the fortress may enter for limited purposes, and
an inner keep, in which the inhabitants of the fortress dwell. This structure



ignores the historical problem of the frailty of medieval fortresses, and can be
attacked in the same way—through an insider. The problem of defending
systems from unauthorized access is simpler than defending them from
unauthorized acts by authorized users. This “insider problem” suggests a
different approach. The skin of the human body is designed to protect people
from certain bacteria, but if the skin is breached (through a cut, or through
breathing in bacteria or viruses), the body responds with antibodies. Perhaps
this could be extended to a network architecture other than the one shown
here. How to do this is a research question, and how to do it effectively
involves not only technical considerations but also human factors.

28.7 Further Reading

Architecting networks for security requires an understanding of the
environment in which the network will function and what its function is to be.
Convery [454] discusses network security architectures in general. Others
discuss architectures for specific types of networks such as ad hoc networks
among vehicles [643,1579], networks with programmable infrastructure
[33,1134,2011], and the smart grid [1057,1979,2179,2209]. Science DMZs are
networks designed to transfer massive amounts of data; as stateful firewalls
that analyze the contents of packets would impose an unacceptable
performance delay, these networks instead use routers to control access [501,
1378, 2124]. Such networks relating to medical science have more stringent
constraints and so use firewalls, but does not put them in the path of the
traffic [1512].

Virtual Private Networks (VPNs) build virtual infrastructures on existing
infrastructures. They are ideal for corporations with geographically
distributed offices, or when telecommuting is used. Several books discuss
their creation and management [645, 1080, 1783, 2084]. Caronni, Kumar,
Schuba, and Scott present a layering approach to VPNs that hides the existing
infrastructure [351].



Web commerce and security uses principles and practices that are common to
other systems in which security is desired. Several authors [749, 1424, 1921]
have described the issues and approaches specifically in terms of the Web and
electronic commerce.

28.8 Exercises

1. Suppose a new class of users, the system security officers (SSOs), were to
be added to the access control matrix discussed in Section 28.2. Augment the
matrix with the change right. This right allows the user to alter the classes of
other users in that category. For example, if user Amy had change rights over
the class “developers,” she could change the class of user Tom, who is
currently in the “developers” class, to any of the other four classes.

(a) Let Alice be a member of the SSO class, and let her have change rights
over the “developers” and “employees” classes. Let Bob be a member of the
SSO class, with change rights over “outsiders” and “employees.” Redraw the
matrix for this situation and write rules describing the allowed
transformations of the matrix.

(b) Describe any problems that might occur if Alice and Bob were not careful
about the changes of classes they made. Could information leak in undesired
ways? If so, give an example. If not, show why not.

(c) Should members of the SSO class be allowed to apply the change right to
members of that class? Justify your answer. In particular, state what damage
could occur if this were allowed, and if it were not allowed.

2. Consider the scheme used to allow customers to submit their credit card
and order information. Section 28.3.2.2 states that the enciphered version of
the data is stored in a spooling area that the Web server cannot access.

(a) Why is the file kept inaccessible to the Web server?



(b) Because the file is inaccessible to the Web server, and no other services
are available to an attacker from the Internet, the encipherment may seem
unnecessary. Discuss this issue, but assume that the attacker is on the
internal network.

3. The organization of the network provides a DMZ to which the public has
controlled access. This follows the principle of least privilege, as noted in
Section 28.3.2.2. For each of Saltzer and Schroeder’s other design principles
[1653] (see Chapter 14), explain how the principle is relevant to the creation
of the DMZ. Justify your answer.

4. A security analyst wishes to deploy intrusion detection monitors to
determine if any attackers penetrate the Drib’s network.

a. Where should the intrusion detection monitors be placed in the network’s
topology, and why?

b. If the analyst wished to monitor insider attacks (that is, attacks by people
with access to the Drib’s internal network), how would your answer to part
(a) change (if at all)? Justify your changes (or lack of changes).

5. The Drib has hired the computer security firm of Dewey, Cheatham, and
Howe to audit their networks. The analyst from DC&H arrives and produces a
floppy disk. She states that the disk is to be loaded onto a system on the
internal network. She will then run the program. It will scan the Drib’s
networks and send the information to DC&H’s headquarters in Upper
Bottom. There, DC&H analysts will determine whether the Drib’s security is
acceptable, and will recommend changes.

(a) The analyst informs the Drib that the program works by sending the data
to DC&H’s headquarters over the Internet using a proprietary protocol. She
requests that the firewalls be opened to allow communications to remote
hosts with destination port 80. The audit department manager, who was told
to hire DC&H by the Drib’s CEO, is nervous. Should his security expert



recommend that the communication be allowed, or not? Why?

(b) The analyst is asked exactly what the program does. She assures the Drib
that it does nothing harmful. Given that she is so vague, the Drib security
officers want to find out more information. Suggest four or five questions that
they should ask to obtain the information they seek.

(c) The analyst admits that her answers are based on what the DC&H auditors
have told her. When asked for the source code of the program on the floppy,
she states that it is proprietary and cannot be released. What could the Drib’s
officers do to assure themselves that the program is not harmful?

(d) Based on the actions of the analyst, and assuming that finances are not a
consideration, would you hire DC&H to analyze your network security? Why
or why not?

6. This exercise asks you to compare an SMTP server such as sendmail with
an SMTP proxy for an application level firewall. Your answers should assume
that the questions refer to the Drib’s network.

(a) The SMTP server must be able to parse electronic mail addresses. It may
have to change the destination address (so the mail can be delivered
correctly) and/or the source address (so the recipient can reply). Would an
SMTP proxy on the outer firewall need to rewrite addresses of mail moving
from the Internet to the DMZ? From the DMZ’s mail server to the Internet? If
not, explain why not. If so, explain which addresses would need to be
rewritten, and how.

(b) The SMTP server must be able to deliver mail locally. Does the SMTP
proxy server need to deliver mail locally (that is, on the outer firewall)? Why
or why not?

(c) Considering your answers to the previous two parts, how does the
complexity of the SMTP proxy compare with the complexity of the SMTP



server? From the point of view of security, is this important? Justify your
answer.

7. ‘Suppose the Drib wished to allow employes to telecommute. In order to
protect the network, they require all remote connections (other than those for
the Web and mail servers) to use SSH.

a. Discuss the required changes in the network infrastructure. In particular,
should the outer firewall provide an SSH proxy or a packet filter to incoming
SSH connections? Why?

b. The destination of an SSH connection from the Internet might be the
address of any host on the internal network. Such addresses, however, are not
broadcast to the Internet and in fact may be addresses that routers on the
Internet should not pass (such as 10.x.x.x ). Devise a method or protocol that
will continue to conceal the addresses of the hosts on the internal network but
still allow SSH connections from the Internet to arrive at the proper
destinations. What supporting infrastructure must the Drib add to its
network?

c. The inner firewall will pass SSH connections, provided that one endpoint is
the trusted administration server on the internal network. With the above-
mentioned change, the destination of the incoming SSH connection may be
any host on the internal network. For this question, assume that the
addresses of the hosts on the internal network are kept within the internal
network—in other words, that the method or protocol in part (b) is
implemented. What are the security implications of allowing SSH
connections to any internal host through the inner firewall? Should such
connections be restricted (for example, by requiring users to register the
hosts from which they will be connecting)?

d. An alternative to allowing the SSH connections through the firewall is to
provide a specific host (the “SSH host”) on the internal network that is also
connected to the Internet. Telecommuters could use SSH to log into this



system, and from it reach systems on the internal network. (The difference
between this method and allowing connections through the firewall is that the
user must log into the intermediate host, and from there move to the internal
system. The firewall approach makes the intermediate system transparent.)
Identify the minimum number of services that this system should run in
order to fulfill its function. Why must these services be run? As part of your
answer, identify any other systems (such as DNS servers, mail servers, and so
on) that this SSH host would have to trust.

e. From the point of view of Saltzer and Schroeder’s design principles [1653]
(see Chapter 14), is the solution suggested in part (d) better than, worse than,
or the same as the solutions involving access through the firewall? Justify
your answer.

8. Consider the first example in Section 28.4.

(a) Why does the router not save time by opening a connection to the
destination host before the pending connection completes its three-way
handshake?

(b) The router is protecting a target from being flooded. Is the router itself
vulnerable to a flooding attack? If not, why not, and why won?t the same
property make the target immune? If the router is vulnerable, does the attack
on the router differ from the attack on the target? How?

9. The Linux system uses the SYN cookie approach discussed in the first
example in Section 28.4.2, with one modification. The maximum segment
size (MSS) is sent as part of the initial SYN. This value must be encoded in the
sequence number so that the state can be properly reconstructed when the
ACK arrives. The MSS used is three bits. The Linux system simply adds it to
the SYN cookie shown in the example. How does the system recover the MSS
from the ACK’s sequence number?



Chapter 29. System Security
IMOGEN: To your protection I commend me, gods. From fairies and the 
tempters of the night Guard me, beseech ye.

— Cymbeline, II, ii, 8–10.

System configuration and administration relies on many principles of security 
and assurance. This chapter considers how the administration of security 
affects the system. It begins with a policy for the DMZ web server system and 
for a development system in the internal network. It explores the 
configuration and maintenance of several system components in light of the 
policy and in light of principles of computer security. This illuminates how the 
practice of computer security is guided by the fundamental principles 
discussed throughout this book.

29.1 Introduction

Among the many functions of system administration is the security of the 
system and the data it contains. For our purposes, we consider the security 
policy of the WWW server within the DMZ and a user system in the 
development subnet. This will contrast the manner in which an administrator 
secures a system that many users use for development of software with the 
methods used to secure a system that is likely to be attacked and that is not 
intended for the use of nonadministrative users.

Section 28.3.2.2 discusses the WWW server’s function in relation to the rest 
of the Drib’s network infrastructure. Briefly, the WWW server system



provides access to untrusted users through a WWW server, and access to
trusted users through SSH. Untrusted users can come from any system on the
Internet. Trusted users are those users who have access to the trusted
administrative host on the internal network. For the purposes of our policy,
we assume that any user in that system has been correctly authenticated to
that system and is “trusted” as we use the term.

The development system is a standard UNIX or UNIX-like system. A set of
developers are allowed to use the system.

29.2 Policy

Policy is at the heart of every decision involving security. The DMZ WWW
server has a policy very different from that of the development system. This
section discusses portions of the policies in order to provide a foundation for
the remainder of this chapter. We then compare and contrast the policy
elements.

29.2.1 The WWW Server System in the DMZ

Section 28.3.2.2, “DMZ WWW Server,” discusses the basic security policy of
the WWW server. Some of the consequences of the policy are as follows:

1. All incoming web connections come through the outer firewall, and all
replies are sent through the outer firewall.

2. All users log in from an internal trusted server running SSH. Web pages are
never updated locally. New web pages are downloaded through the SSH
tunnel.

3. Log messages are transmitted to the DMZ log server only.

4. The WWW server may query the DMZ DNS system for IP addresses.

5. Other than those expressly mentioned here, no network services are



provided.

6. The WWW server runs various scripts. One of these scripts will write
enciphered information (transaction data) to a spooling area. The enciphered
file will be retrieved from the trusted internal administrative host using the
SSH tunnel.

7. The WWW server must implement its services correctly, and must restrict
access to those services as much as possible.

8. The public key of the principal who will decipher and process the
transaction data must reside on the DMZ WWW server.

From these implications, several constraints emerge. The WWW server
consequences (WCs) of interest are as follows.

WC1. Policy consequence 1 requires that no unrequested network connections
except those from the outer firewall over the HTTP and HTTPS ports, and
those from the internal trusted administrative server over SSH, should be
accepted. Replies to DNS queries should be accepted provided that they can
be verified to come from the DMZ DNS server. If other network clients are to
be run, only replies to messages originating from the DMZ WWW server
should be accepted.

WC2. Policy consequence 2 states that user access to the system is to be
limited to those users on the internal trusted administrative server.
Furthermore, the number of users who need access to the WWW server
should be as small as possible, with only those privileges needed to perform
their tasks. All actions must be attributable to an individual, as opposed to a
role, user.

WC3. Policy consequences 4 and 5 suggest that the WWW server should be
configured to provide minimal access to the system. This prevents an attacker
who compromises the WWW server from accessing other parts of the system.



This requirement leads to one unexpected, interesting consideration. If an
attacker gains access to the system through the WWW server, she can delete
all uncollected transaction files. This denial of service attack would blemish
the Drib’s reputation. Some other mechanism should capture the transaction
files and copy them to an area that the WWW server cannot reach. Then, if an
attacker compromises the WWW server, that attacker cannot reach the
transaction files.

WC4. Policy consequences 5, 6, and 8 imply that all software must have a
very high assurance of functioning correctly (as specified by its
documentation). In practice, this means that the software must be either
developed or checked very carefully. It also requires that extensive logging
occur, to verify that the software is functioning correctly even when under
attack. In essence, we view attacks as situations in which software functions
correctly (and the attack fails) or incorrectly (and the attack succeeds).

WC5. Policy consequence 7 states that the WWW server must contain as few
programs, and as little software, configuration information, and other data,
as possible. If the system is compromised, this will minimize the effects of the
attack.

29.2.2 The Development System

The development system lies in the internal network, on the development
subnet (called the “devnet”). It must provide an environment in which
developers can produce code for dribbles. Because users will be active on the
system, its policy is considerably different than that of the WWW server
system.

The devnet has both infrastructure and user systems. The infrastructure
systems are the devnet firewall (which separates it from other internal
subnets), a DNS server, a logging host (which provides a central repository
for logs), one or more file servers, and one or more systems containing user
information common to the workstations (the UINFO servers). There is also



an isolated system used to build a “base system configuration” (system files,
configuration files, company-approved software, and so on) and to create the
bootable media. The policy that follows does not apply to these systems. They
are under much tighter controls. The components of the security policy
relevant to our discussion are as follows:

1. Only authorized users are allowed to use the devnet systems. They may
work on any devnet workstation. All actions and system accesses must be tied
to an individual user, rather than to a role account.

2. Workstation system administrators must be able to access the workstations
at all times, unless the particular workstation has crashed. The set of devnet
workstation administrators differs from the set of devnet central server
administrators.

3. Within the devnet itself, users are trusted not to attack devnet systems.
Users not on the devnet are not trusted. They are not allowed to access devnet
resources except as permitted by the network security policy (for internal
Drib users). Furthermore, devnet users are not allowed to access systems not
on the devnet except as permitted by the network policy.

4. ] All network communications, except electronic mail, are to be
confidential and are to be checked to ensure that the messages are not altered
in transit.

5. The base standard configuration for each devnet system cannot be changed
on that system. There is to be a local area in each system in which developers
may install programs that are nonstandard. Before doing this, they must
obtain approval from the security officers and system administrators. Should
the software prove useful, it may be integrated into the standard
configuration.

6. Backups shall enable system administrators to restore any devnet system
with the loss of at most one day’s changes in user and local files.



7. Security officers shall perform both periodic and ongoing audits of devnet
systems. Compromised systems shall be removed from the devnet until they
have been restored to an uncompromised state.

These components have several consequences, two of which affect the
infrastructure and configuration of workstations. Policy component 3 leads to
the use of a firewall at the boundary of the devnet and the other subnets to
enforce the network security policy. This allows the network security
administrators to enforce changes in the network policy without having to
alter each system on the devnet. Any changes need only be made at the
firewall. Also, the systems on the devnet need not be so tightly configured as
must the firewalls. The firewalls enforce the policy that hosts outside the
devnet see; the hosts inside the devnet enforce the policy specific to the
developers and their hosts (the policy outlined above).

Policy component 3 also bars direct access between the Internet and devnet
systems. This decision was based on a risk analysis. The security officers and
management of the Drib realized that the Drib would benefit from allowing
access to remote web sites. However, the dangers of opening up an avenue of
attack from Internet hosts to internal hosts, and allowing unsuspecting Drib
employees to download untrusted, and possibly malicious, code, outweighed
the perceived benefits.

Some developers need access to the Internet to determine what equipment to
obtain as they plan new mechanisms and devices to enhance the value of the
Drib’s products. These developers are given separate workstations connected
to a commercial Internet Service Provider (ISP) outside the Drib’s perimeter.
These “ISP workstations” are physically separated from the internal network,
and the ISP workstation cannot easily be connected with the devnet
workstation. These procedural mechanisms enforce the desired separation.

Other consequences of the policy apply to the devnet workstations. The
development system consequences (DCs) of interest are as follows.



DC1. Policy components 1 and 4 imply the need for authenticated,
enciphered, integrity-checked communications. These policy components
also imply a consistent naming scheme across systems, so that a user name
refers to the same user on all devnet systems.

DC2. Policy component 2 requires that each workstation have one or more
local privileged accounts to administer the system locally. Policy components
1 and 2 imply that multiple local administrative accounts may be used to limit
access to particular administrative functions. This division of power into roles
allows the administrators to designate special system accounts, such as mail,
as being limited in their power. Policy requirement 2 also requires that the
workstation be able to run without any network connections.

DC3. Policy component 1 also requires that there be a notion of a “login” or
“audit” user (see Section 29.4). This identity must be recorded in logs, to tie
individuals to actions. Furthermore, users should not be able to log directly
into role accounts such as root, because this would eliminate the ability to tie
an individual to an action. Instead, they must log into an individual account
and change to the role account, or add a new role, to their individual account.

DC4. If a developer wants to install a program from the outside onto his
devnet workstation, he must first obtain approval from the security officers.
Once approved, he installs it in an area separate from the base system
configuration (see policy component 5). Adding a program to the base system
configuration requires that it be added to the isolated system first. This
requires testing and analysis of the program to ensure (to an appropriate level
of integrity) that the software is not malicious and will not accidentally
damage the system on which it runs.

DC5. Policy component 5 requires that each workstation protect the base
system configuration, as installed, from being altered. One approach is to
mount the disks containing that configuration as read-only disks. A far
simpler and more effective approach is to use read-only media. This meets
policy requirements and ensures that all devnet workstations are up to date.



A writable hard drive provides space for local files such as spool and
temporary files.

DC6. Policy component 1 requires that an employee’s files be available to her
continuously. This requires that the files be stored on systems other than the
workstations, in case a workstation goes down. As a corollary, the file controls
should enforce the same sets of permissions regardless of the workstations
from which they are accessed.

DC7. Policy component 6 requires regular backups. As explained in Section
29.3.2, the development workstations store only transient files on writable
media. Hence, they need not be backed up. Restoration involves rebooting
and remounting of file systems from the file servers, which are regularly
backed up.

DC8. Policy component 7 requires several security precautions. The primary
one is a logging system to which all systems send log messages. Furthermore,
security officers need access to both devnet systems and the devnet network.
They conduct periodic (and irregular) sweeps of the network, looking for
unauthorized servers. They also conduct periodic (and irregular) sweeps of
each system looking for dangerous settings in user accounts and the local
areas.

Two points about this policy, and its implications, are apparent. First, the
system security policy relies on the outer and inner firewalls to prevent
Internet users from reaching the system. If one firewall fails, the other will
still block such accesses.1 Also, the firewall at the perimeter of the developer’s
subnet enforces the access restrictions among the users of the other two
subnets and the systems on the developer’s subnet.2 So the system policy
assumes that those who can connect to the system are authorized to access
developer systems.

1See Section 14.2.6, “Principle of Separation of Privilege.”



2See Section 14.2.4, “Principle of Complete Mediation.”

The security policy also requires procedural enforcement mechanisms.

EXAMPLE: Consider a system administrator for the development network
who has both an ISP workstation and a devnet workstation on her desk. She
could download a program to her ISP workstation, copy it onto a floppy disk,
and move the floppy disk to the devnet workstation. This clearly would violate
policy, but there is no reasonable technical means of preventing it. (See
Exercise 1.)

Here, the Drib must rely on procedural mechanisms to enforce the policy. In
this case, the procedures should specify both the prohibition and the
consequences of violating it. This puts all employees on notice that the
prohibition will be enforced, and encourages them to use the allowed
methods to obtain approval.

29.2.3 Comparison

The differences between the policies of the DMZ WWW system and the
devnet developer system arise from their different roles. The DMZ WWW
server is not a general-use system. It exists only to serve web pages and
accept orders over the web. The devnet developer system is a general-use
computer. It must allow compilation, editing, and other functions that
programmers and software engineers need to design, implement, and test
software.

The DMZ WWW server system’s security policy focuses on the single purpose
of the server: to run the web server. Two sets of users can access the server:
the system administrators, who maintain the security and the web pages; and
the users from the Internet, who must go through the outer firewall and can
access only the web server. The developer system’s security policy focuses on
more complex purposes. These purposes include software creation, testing,
and maintenance. The developer system requires more supporting software



than does the DMZ WWW server system. The user population is different and
provides an environment more amenable for attackers than does the DMZ
WWW server system, because the users may not be as security-conscious as
the security officers comprising the user population of the DMZ WWW server
system.

That the system administrators of the DMZ WWW server system are trained
in security (hence, the term “security officers”) should be expected. The
developer systems are more numerous and require more administrative effort
to maintain. More system administrators are required. The administrators
will also have different skills and abilities; some may be very senior and
experienced, whereas others will be junior and inexperienced. Hence, the
system administrators for the developer systems may not be trained in
security. So the system security officers may not be administrators. This leads
to situations in which system administrators and security officers disagree on
what actions are appropriate. The policy must have some mechanism for
resolving these disputes. The mechanism typically involves a person, or a
group of people, performing a cost-benefit analysis of each option and
selecting the option that provides the greatest benefit at the least cost. This
type of analysis was briefly discussed in Section 1.6.1.

29.2.4 Conclusion

We now examine several areas of system administration in light of these
security requirements. Our goal is to install, and manage, as secure a system
as possible. Our approach is to compare and contrast these two systems.
What follows is organized into areas, and each system is examined with
respect to the mechanisms used to enforce the policy. We then compare the
two systems.

29.3 Networks

Both the DMZ WWW server system and the devnet user system are



connected to the network. Although the firewalls provide some measure of
protection, the principle of separation of privilege says that access should be
limited even when the firewalls fail.3 So we consider how the administrators
should set network configurations and services to protect the systems in the
case that the firewalls fail.

3See Section 14.2.6, “Principle of Separation of Privilege.”

29.3.1 The WWW Server System in the DMZ

Item WC1 limits network access to the WWW server.4 External users can
reach the system only by using web services and connecting through the outer
firewall. Internal users can reach the system by using SSH from the trusted
administrative system, through the inner firewall. A security mechanism
must block any other types of connections, or any connections from sources
other than the outer firewall or the trusted administrative server.5 Moreover,
item WC4 requires that all attempts to connect be monitored6 to validate that
the security mechanism functions according to this policy (or to detect
failures).7

4See Section 14.2.1, “Principle of Least Privilege.”

5See Section 17.6, “Example Information Flow Controls.”

6See Chapter 25, “Auditing.”

7See Chapter 26, “Intrusion Detection.”

Consider the WWW server first. Although requests can come from any IP
address on the Internet, all such requests go to the outer firewall’s web proxy.
That firewall forwards well-formed requests to the DMZ WWW server.
Hence, the WWW server’s access control mechanism can discard any
requests from sites other than the outer firewall. Whether to accept requests
from the inner firewall depends on several policy factors. The current policy
for the Drib is not to allow the WWW server to accept these requests.8



However, the policymakers have realized that some situations may require
internal users to access the WWW server directly (these situations typically
will involve debugging or checking for errors). Should this be necessary, the
security officers will reconfigure the inner firewall to run a web proxy
identical to the one on the outer firewall. Thus, the DMZ WWW server is
configured to accept requests from the inner firewall as well as the outer
firewall. The server will not accept requests from other DMZ systems, because
they are not to be used for accessing the web server.

8See Section 14.2.2, “Principle of Fail-Safe Defaults.”

EXAMPLE: The Apache web server can control access to specific parts of the
web pages based on IP address. The configuration file controls which
addresses are allowed access and which ones are denied access. By default, all
accesses are allowed.

The system administrator sets the configuration file to load the module
mod_authz_host, and sets the host authorizations to allow connections from
the inner and outer firewall:

<RequireAll>
     Require ip outer_firewall
     Require ip inner_filewall
<RequireAll>

where inner_firewall and outer_firewall are the addresses of those hosts. If
either condition holds, that is the connecting IP address matches the address
in either line, the connection is allowed. If not, it is denied.

Item WC1 requires the DMZ WWW server to allow administrative access
from the trusted administrative WWW host. This allows system
administrators to update web pages, reconfigure and modify software, and
perform other administrative tasks. The WWW server runs an SSH server.
This server provides enciphered, authenticated access to the web server



system using cryptographic mechanisms to provide those security services. Of
interest here is that the server requires both the host and the user to be
authenticated.9 This allows the system administrators to restrict access to
users connecting from the trusted administrative WWW host only.

9See Section 14.2.6, “Principle of Separation of Privilege.”

EXAMPLE: The simplest way to control access to the SSH server is to use the
“hosts.allow” file. This file controls access to network services on a per-host,
per-server basis. The relevant lines in this file are:

sshd : trusted_admin_WWW_host : allow
sshd : ALL : deny

where trusted_admin_WWW_host is the name of the trusted administrative
WWW host.

The lines in this file are matched in order, and on a match the respective
access is used. As the request is for the SSH server, sshd, the first field
matches that service. If the incoming connection is from the administrative
host, the name matches the name of the host in the first line, and the access is
allowed. Otherwise, the host name matches the wild card “ALL” in the second
line, and the access is denied.

If the DMZ WWW server has an internal firewall, that can also be used. For
example, the following lines block all attempts to connect to the SSH server
except those from the trusted administrative WWW host:

ipfw add 100 allow tcp from ip_trusted_host to me 22 in
ipfw add 101 deny tcp from any to me 22 in

where ip_trusted_WWW_host is the IP address of the trusted administrative
WWW host.



Each packet is matched to these firewall rules. The first line allows incoming
packets from the trusted administrative WWW host to the SSH server, which
listens at port 22. If the host is another, the first line does not match and the
second line is checked. If the packet is destined for the SSH server, it is
discarded. Other lines in the file control which outgoing packets are allowed.

Section 29.4.1 discusses users, and authentication of both hosts and users, on
the WWW server system.

To maximize availability, the WWW server system wraps each server with a
small script. If the server terminates, the script starts a new instance of the
server.

EXAMPLE: The web server and the SSH server are started at boot time. Both
are wrapped so that, should either fail, a new copy will be run. For example,
the web server webd is run from the following shell script.

#! /bin/sh
echo $$ > /mnt/users/servers/webdwrapper.pid
while true
do
     /usr/local/bin/webd
     sleep 30
done

Now, if the web server terminates, the script will automatically start a new
web server process after a wait of 30 seconds.

By virtue of item WC3, the WWW server system should run a minimum of
network servers. Because access is to be given only to web requests and
administrative logins, no network servers other than the web server and the
SSH server are needed.10

10See Section 14.2.2, “Principle of Fail-Safe Defaults.”

The web server runs several network clients, however. Because the web server



system must request IP addresses and host names, it must make requests of,
and receive replies from, a DMZ DNS server. At any time, multiple requests
may be outstanding. By virtue of item WC1, this satisfies the policy. However,
several types of attacks on DNS clients involve “piggybacking” of multiple
host name and address associations onto a reply to a request for a single such
association.11 The WWW server system’s DNS client will use only the
requested data. It will discard any additional data as well as any logs that
such data has been received.12 Furthermore, if the client receives a response
that provides information that was not requested, or if two responses provide
different answers to the same query, both are logged and discarded, and the
client acts as though the DNS request has timed out.

11See Section 15.6.1.2, “Security Issues with the Domain Name Service.”

12See Section 14.2.1, “Principle of Least Privilege.”

The WWW server system also runs a logging client to send log messages to
the log server. Programs use an internal message delivery system to send
messages to the logging client, which then delivers them to the appropriate
hosts and files. The delivery addresses lie in a configuration file. Each log
message is timestamped and has the name of the process and (WWW server)
system attached.

The system is configured to log any attempts to connect to network ports on
which no servers are listening. The three reasons for doing this follow from
item WC4. First, it serves as a check that the outer firewall is intercepting all
probes from the Internet to the Drib’s WWW server. Second, it detects probes
from the internal network to the DMZ WWW server. Because the inner
firewall has one port that is filtered rather than proxied (the SSH port), such
probing is possible if the filter does not check the destination port number.
This should never happen, of course, unless the inner firewall is
misconfigured or compromised. Thus, in order for an attack on the firewall to
be undetectable, two failures must occur (the firewall fails to block, and the
DMZ WWW server fails to log).13 Third, probes to other ports from within the



DMZ indicate unauthorized activities on the DMZ systems, meaning that one
of them has been compromised. This requires immediate investigation.

13See Section 14.2.6, “Principle of Separation of Privilege.”

29.3.2 The Development System

Item DC1 requires that the development system accept user connections only
when they are authenticated and encrypted. Like the DMZ WWW server, the
development systems run SSH servers to provide such access. Both hosts and
users use public key authentication.14

14See Section 10.3, “Public Key Cryptography.”

Unlike the DMZ WWW server system, the development system runs several
other servers. It runs a line printer spooler to send print requests to a print
server. It runs a logging server to accept log messages and dispose of them
properly. It also runs servers to support access to both the file server and the
user information database system. These servers are necessary in order for
the developers to be productive on that system.

The development system does not have FTP or web services. Instead, special
FTP and web server systems mount directories from the central file servers.
The workstations run an SMTP server as a convenience to users,15 but all mail
is forwarded to a central mail server and is never delivered locally. (This
allows workstation SMTP servers to be very simple programs.16) Users can
access mail on any workstation, because the mail spooling directory resides
on the central file server. Similarly, users can make files available for FTP and
web access by placing them into user-specific directories on the central file
server. The corresponding servers mount these directories for remote access.
They cannot access other parts of the file systems on the file servers.

15See Section 14.2.8, “Principle of Least Astonishment.”

16See Section 14.2.3, “Principle of Economy of Mechanism.”



Placing the mail, FTP, and web services on systems other than the
development workstations has two advantages that satisfy item DC2. First, it
minimizes the set of network servers that each workstation has to run.
Second, it minimizes the number of systems that provide the services.17 This
enables the firewall to be configured to allow traffic for these services through
to a small set of systems, and the security administrators can configure those
systems to handle access control appropriately.

17See Section 14.2.3, “Principle of Economy of Mechanism.”

The development system uses access control wrappers to support access
controls. The firewall provides this control for systems not on the devnet, but
the workstation’s access control wrappers provide this control for other
devnet workstations, as well as duplicating the firewall’s control rules. If the
firewall’s access controls fail (for example, as a result of a configuration
error), the workstation will still honor the network security policy.18

Furthermore, the development system logs all attempts to access servers.
These logs provide both evidence of intrusions and verification of the correct
functioning of the security mechanisms, as required by item DC8.

18See Section 14.2.6, “Principle of Separation of Privilege.”

EXAMPLE: TCP wrappers [1939] is a program that provides host-based
wrappers to intercept requests (connections or datagrams) to some set of
servers. The wrapper determines the origin of the request from the packet. It
then looks in the configuration file. If the wrapper is configured to allow the
connection, it then spawns the appropriate server and passes the open port to
the server. Otherwise, the request is ignored. In either case, the wrapper logs
the request and its origin.

On some systems, this functionality is folded into the program. The SSH
server configuration in the example on page 918 shows this. The
configuration file is “hosts.allow”, and the code in the TCP wrappers program
that controls access is in a library available to all network servers and used by



the SSH server.

Item DC8 requires checking of the security of the development workstations.
To ensure that they remain at the desired level of security, the system security
officers occasionally scan each system. Their scanner probes each port and
records those that are open. The results are compared with the list of ports
that are expected to be open. Any discrepancies are reported to the security
officers. Moreover, the scanners record the address of each system on the
network. Any unauthorized system is reported immediately, as are any
unexpected changes in addresses. The security officers make these scans
periodically. To prevent an attacker from determining the schedule, the
security officers launch additional scans at irregular intervals as well.19

19See Chapter 25, “Auditing.”

Finally, the security officers occasionally attack devnet systems to determine
how well they withstand attacks.20 These operations are sustained and take
some time, but the information gleaned from them has proven invaluable.
When flaws are discovered, the security officers determine whether they are
attributable to the initial configuration or to user changes in the system. In
the former case, the security officers develop a patch or modification of the
standard configuration. In the latter case, they assess the situation in more
detail, and act on the basis of that analysis.

20See Section 24.2, “Penetration Studies.”

29.3.3 Comparison

The difference between approaches to network services and accesses springs
from the use of, and the locations of, the systems.

The DMZ WWW server system is dedicated to two specific tasks—serving web
pages and accepting commercial transactions. Only those functions and
processes required to support this specific task are allowed. Any other



programs, such as those required for general use, are simply not present in
the system. It need not provide access to a line printer, or handle remote file
systems from central servers. Everything is present in the system itself. No
extraneous services are provided or used.21

21See Section 14.2.7, “Principle of Least Common Mechanism.”

The development system performs many tasks, all designed to achieve the
goal of providing an environment in which the developers can be
productive.22 It has general-purpose tools ranging from compilers and text
editors to electronic mail reading programs. It shares user files with other
workstations using a central file server, and user information with a central
user information system. Users can run processes freely.

22See Section 14.2.8, “Principle of Least Astonishment.”

The environment plays a role in configuration. Both systems use a “defense in
depth” strategy of providing access controls that duplicate some of the
firewall controls.23 The DMZ WWW server system does not depend on the
firewall to filter or block web client requests. Even if the inner firewall
allowed messages to flow through it with no control, the DMZ WWW server
system would function as required by policy. However, access to the
development systems depends on the devnet firewall’s filtering abilities. If a
user from another internal subnet tries to access a development system, the
devnet firewall will determine whether or not access to the devnet is allowed.
If it is, then the developer system determines whether or not to accept the
connection. This allows the Drib network administrators to control access
among the three subnets and the DMZ independently of the system
administrators within the subnets (who do not control the firewalls). It also
allows the developer workstations to support developers on other subnets if
the Drib policy allows it.

23See Section 14.2.6, “Principle of Separation of Privilege.”



29.4 Users

Our first step is to determine the accounts needed to run the systems. The
user accounts, as distinguished from the system administration accounts
(system administrators), require enough privileges to use the computer to
perform their jobs, but as few others as possible.24 Creating, configuring, and
maintaining their accounts are crucial to the successful use of the computer.
For brevity, we refer to a user account as a “user” and a system
administration account as a “sysadmin” in this section.

24See Section 14.2.1, “Principle of Least Privilege.”

29.4.1 The WWW Server System in the DMZ

Items WC2 and WC3 suggest that the number of user accounts on the system
be minimal. The WWW server requires at most two users and a sysadmin.
The first user is a user with enough privileges to read (and serve) web pages
and to write to the web server transaction area. The second user is a user who
can move files from the web server transaction area to the commerce
transaction spooling area. The reason the web server has minimal privileges
lies in the assumption that the WWW server, which interacts with other
systems on the Internet, may be compromised. A compromised web server
running with sysadmin privileges could allow the attacker to control the
system, but if the web server had only enough privileges to read web pages,
then compromising it would be less likely to compromise the WWW system.
The commerce server and the web server should be different users in order to
prevent an attacker from compromising the web server and then deleting files
from the commerce server’s area. Access control mechanisms25 can inhibit
this, but defense should not depend on one control only.26 If the web server
and commerce server are different users, and the web server is compromised,
the attacker must then compromise either the sysadmin or the commerce
server user.

25See Chapter 16, “Access Control Mechanisms.”



26See Section 14.2.6, “Principle of Separation of Privilege.”

EXAMPLE: Let the web server account’s name be webbie, and let the
commerce server’s account be ecommie. The web server’s scripts would create
the transaction file, with an ACL allowing ecommie to read and delete the file.
The commerce server then could simply copy the contents of the file into a
file in the spooling area, set the ACL to allow the administrator to read and
delete the file, and delete the original file. Note that with the given ACL,
webbie can no longer read the file. This protects transactions against attack if
the web server is attacked.

Some systems (such as many UNIX systems) use a simplified mechanism that
does not allow individual users to be placed in an access control list.27

However, group mechanisms achieve the same end.

27See Section 16.1.1, “Abbreviations of Access Control Lists.”

EXAMPLE: The web server’s transaction directory is group-owned by the
group trans. That group contains two members, webbie and ecommie. The
scripts write a transaction file group-owned by trans and group-readable. The
commerce server can read the file and, because the directory is group-
writable,28 delete the file.

28Some UNIX variants allow the group owner of a file to delete it only if the
directory and the file itself are group-writable. In this case, the transaction
file must be group-writable as well.

There is a tension between the desire to minimize the number of accounts
(item WC2) and the desire to minimize the privileges of these accounts (item
WC3). Most computer systems allow the assignment of privilege to accounts
independently of name. This means that there can be multiple sysadmin
accounts. Each person designated as a system administrator could have a
separate sysadmin account or could use a single, role account.29 The reason
for having separate sysadmin accounts is to tie each action to a particular



user. Whether or not this can be done depends to some extent on the
implementation of the WWW server system.

29See Section 15.3, “Users,” and Section 15.4, “Groups and Roles.”

EXAMPLE: Most UNIX systems represent accounts by UIDs. The particular
UID determines the level of privilege, with 0 being the sysadmin. Having
separate system administration accounts would require the account names to
be different, but the account UIDs to be the same (0). Hence, the only benefit
is to be able to track who logged in as a system administrator. All logged
actions would show up as having been executed by the user with UID 0.

Some UNIX systems support an audit, or a login, UID.30 This UID is assigned
at login and is not changed throughout the lifetime of the process.
Furthermore, all children of the process inherit that audit UID. Assigning
each system administrator a unique user account (each with a unique UID)
associates that UID with every action that account takes. This includes
acquiring administrator privileges.

30See Section 15.3, “Users.”

EXAMPLE: FreeBSD 10.3 supports an audit UID. When the WWW server
system is set up, each system administrator is assigned a separate,
unprivileged account. After the system administrator logs in as the ordinary
user, she switches to the sysadmin role. Each action will have three associated
UIDs: the real, effective, and audit UIDs. Any action that the sysadmin takes
will be tied to the individual account of the particular system administrator
who takes it.

Because item WC4 requires strict user accountability, the WWW server
system is set up to disallow direct logins from system administrators. Each
user must log into the system from the trusted administrative server. As
stated in Section 29.3.1, this requires the use of SSH, so the user must be an
authorized user of the WWW server system.31 The set of allowed users is



enumerated in the SSH configuration file in the WWW server system. Once
logged in, the user may switch to a role account. To do so, the user supplies a
password. The program checks that the user has self-authenticated correctly,
and then that the user is authorized to access the requested role account. If
so, the user is switched into this role.

31See Section 14.2.6, “Principle of Separation of Privilege.”

Direct login to a sysadmin account is allowed in one situation only. The
WWW server system allows logins to role accounts (such as root) from the
system console. Although the system cannot identify the individual logging
into the role, the console itself is in a locked room to which only a few highly
trusted individuals have access. At least three people are in that room at all
times, including one security officer. The officer can identify by sight the set
of people authorized to enter the room.32 If someone walks up to the console
and logs into a role account, the security officer will log that individual’s use
of the console.33 Thus, should the SSH server become unexpectedly
unavailable, a system administrator could fix it.

32See Section 14.2.6, “Principle of Separation of Privilege.”

33See Section 14.2.4, “Principle of Complete Mediation.”

29.4.2 The Development System

Unlike the DMZ WWW server system, the development system requires at
least one user account per developer (items DC1, DC3, and DC6). It also
requires administrative accounts, as well as groups corresponding to projects
(items DC2 and DC3). Furthermore, an account on different development
systems must refer to the same individual, role, or project (item DC1).
Otherwise, inconsistent use of identifiers may allow access rights that exceed
the level authorized by the security policy.

EXAMPLE: The r-protocols [1012] define a set of protocols that implement a



trusted host relationship. The host stokes names host navier in the file
/etc/hosts.equiv. Then, if the user Abby has an account abby on navier, and
there is an account abby on stokes, Abby can log into abby on stokes without
supplying a password. The system administrator configures the hosts.equiv
file.

Suppose a site34 had two different users named Abraham and Abigail, both of
whom use the nickname “Abby.” Abraham’s account on navier is abby, and
Abigail’s account on stokes is abby. If navier trusts stokes as described above,
then Abraham can log into Abigail’s account on stokes. This violates the
security policy requirement of being able to tie actions to individual users
(item DC3).

34Not the Drib. SSH provides the same functionality as the r-protocols, but
with added security. So the Drib does not use the r-protocols.

Shared files increase the risk of accidental or deliberate damage.35 The
Network File System (NFS) protocol for sharing files bases access on the UID
of the user requesting access. If abby has UID 8924 on navier, and sioban
has UID 8924 on stokes, both have access to files owned by the user with UID
8924 on the NFS file server. This violates the security policy requirement of
users being able to control access to their files from any development system
(item DC6).

35See Section 14.2.1, “Principle of Least Common Mechanism.”

To meet the requirement for consistency of naming, the Drib developers have
decided to use a central repository to define users and accounts, the UINFO
system. They use the LDAP protocol [881,1723,2095, 2215] to allow
distribution of user information. All systems on the developer subnet, except
the firewall, use the LDAP server to obtain information about users and
accounts. Any new account must be instantiated on the databases of this
server. No user accounts are created on the developer workstations
themselves, and all system accounts have entries in the server databases.



The developers benefit from this arrangement. Because their files are kept on
NFS file servers, a developer can access them at any devnet workstation, as
required by item DC6. If one workstation cannot function, the developer can
walk to another workstation and continue development. The system and
network administrators can then repair the malfunctioning workstation with
minimal loss of developer time.

To satisfy item DC2, each developer workstation has a local root account and
one local account for each system administrator.36 This account gives
administrators access should the workstation be unable to contact the LDAP
server. Because there are both primary and secondary LDAP servers, and
backups for each, the only reason that this situation might arise would be
either a network problem or a workstation problem. Using the local root
account, the administrator could access the workstation, diagnose the
problem, and (if possible) correct the problem at the client.

36See Section 14.2.7, “Principle of Least Common Mechanism.”

As allowed by item DC2, the Drib administrators have set up several accounts
to perform system functions. Examples are the mail account, which allows
the user to manipulate mail queues and configuration files, and the daemon
user, under which most network daemons run. These accounts do not have
root privileges. This is an application of the principle of least privilege,37

because few functions require the powers of the root account.

37See Section 14.2.1, “Principle of Least Privilege.”

EXAMPLE: Backups require access to the raw disk device. Rather than
require root to do the backups, the Drib administrators have created the
operator user. This user is in the group devices. All files corresponding to raw
disk devices are in that group and are group-readable. The operator user can
therefore dump the contents of the disk using a backup program.

To enforce the individual accountability of item DC3, the operator account



does not allow password authentication. To access the account, the user must
log in to her normal account, and then change to the operator account. The
version of the UNIX operating system that is used here has a login UID, so
when the user changes to the operator account, the new process inherits the
login UID. This is logged (along with the real and effective UIDs), so each
action taken as operator can be tied to a particular user’s UID.

The LDAP mechanism uses TLS connections to transmit user information,
and so satisfies requirement DC1.

29.4.3 Comparison

The difference between selecting users for the DMZ WWW server system and
selecting users for the development system reflects the differences between
the security policies of the two systems. The root lies in the intended use of
each system.

The DMZ WWW server system is in an area that is accessible to untrusted
users (specifically, from the Internet). Although access is controlled, the
controls may have vulnerabilities. Limiting the number of users on the
system, and ensuring that untrusted users access servers running with
minimal privileges, increase the difficulty of an attacker obtaining
unauthorized access to the system.38 Except for the superuser, users can
perform only restricted actions. Finally, the user information is kept on the
system, so attackers cannot inject false information (such as information on
other users) into the system’s accesses to a user information database.39

38See Section 14.2.1, “Principle of Least Privilege.”

39See Section 14.2.7, “Principle of Least Common Mechanism.”

The development system allows general user access, so it has many more
accounts. Furthermore, the development system shares its user population
with other systems on the same subnet, so it accesses a centralized database



containing the information. This keeps the user and file information
consistent across platforms. The features of the LDAP system allow each
devnet system administrator to control authorization to use that particular
system. System accounts other than that of the superuser allow the system
administrators to control administrative actions to a fairly high degree of
granularity. The trade-off is that these administrative accounts can access
files on the file server, whereas the superuser can access only public files.

Finally, the difference in means of access reflects the differences in the
environments and uses of the two systems. The DMZ WWW server system
allows access only through a small set of tightly controlled access points: the
web server (from the outer firewall), the SSH server (from the inner firewall),
and a login server bound to the physical console of the system. This reflects
the classes of users who are authorized to use the system, as well as the ways
in which they are authorized to use it.40 External users can access only the
web server; internal users, only the SSH server. However, the devnet system
is in the internal network. Hence, users can come from a wide variety of
systems and can access any server. The only controls on access are that the
accesses must come from within the devnet, unless explicitly stated
otherwise, and that the users must have accounts on the devnet centralized
database system.

40See Section 14.2.1, “Principle of Least Privilege.”

29.5 Authentication

Authentication binds the identity of the user to processes. Incorrect or
compromised authentication leads to security problems. In this section, we
consider the authentication techniques used in the two systems.

29.5.1 The WWW Server System in the DMZ

As required by WC1 and WC2, the SSH server uses cryptographic
authentication to ensure that the source of the connection is the trusted



administrative host. If the connection is from any other host, the SSH server
is configured to reject the connection. Furthermore, SSH uses a cryptographic
method of authentication rather than relying on IP addresses.41

41See Section 10.3, “Public Key Cryptography.”

When a user connects to the SSH server, that server attempts to perform
cryptographic authentication. If that attempt fails, that server requests a
password from the user. Were this likely to remain unchanged, the
administrator would configure the authentication routines directly in the SSH
daemon. However, the Drib is experimenting with one smart card system and
plans to try two more. Because such a system would require changes in the
authentication methods, the system administrator has elected to use PAM to
avoid having to modify the source to the SSH server, recompile, and
reinstall.42

42See Section 13.9, “Multifactor Authentication.”

The UNIX system used for the web server system allows the use of a SHA-
256-based password hashing mechanism. The advantage of this scheme over
the standard UNIX scheme is that the passwords may be of arbitrary length.
The password changing program on the web server system is set to require
passwords to have a mixture of letters, numbers, and punctuation (including
white space) characters. When a password is changed, the password changing
program runs the proposed password through a series of checks to determine
if it is too easy to guess.43 If not, the change is allowed.

43See Section 13.3.3, “User Selection of Passwords.”

The system administrator has disabled password aging. Password aging is
suitable when reusable passwords may be tried repeatedly until guessed, or if
the hashed passwords can be obtained and cracked.44 Here, all user
connections come from the trusted administrative host, so only users who are
authorized to use that system can get to the WWW server system’s SSH



server. These users are trusted. The purpose of password aging is to limit the
danger of passwords being guessed. Because the only users who could guess
passwords are trusted not to do so, password aging is unnecessary.

44See Section 13.5, “Password Aging.”

29.5.2 Development Network System

The development system supports several users. It is in a physically secure
area, accessible only to Drib employees. However, employees other than
developers (such as custodians and managers) have access to the restricted
area, so authentication controls are required.45

45See Section 14.2.6, “Principle of Separation of Privilege.”

Item DC1 means that each user must self-authenticate at login. Although the
Drib is moving toward a smart card system, each user currently has a
reusable password. Each proposed password is checked to ensure that it is
not easy to guess.46 The criteria include a mixture of case, character type,
length, and testing against various word lists and transformations of those
lists. Like the WWW server system, the development system uses a password
hashing scheme based on SHA-256.

46See Section 13.4.3, “Password Strength.”

Although the Drib does not expect to upgrade the methods of authentication
on the development system, that system uses PAM to provide a uniform,
consistent interface for authentication. The system maintainers found that
providing consistency and simplicity, as the interface to PAM does, eases the
burden of administration.

To allow developers to access the system from anywhere within the Drib’s
offices, the development system runs an SSH server. This is configured to
accept connections from any system within the internal network. It validates
host identities using public key encryption and validates users using public



key authentication, smart card authentication, and (if needed) password
authentication.47 However, to meet item DC3, root access is blocked. A
system administrator must log in as an ordinary user and then change to
root. To enforce this, the server’s configuration file disallows root logins, and
the system is set to disallow root logins on all terminals (network terminals
and console). Other role accounts simply have a password hash that cannot
be produced when any password is entered. Thus, users cannot log into them.
To gain access, administrators must use a special program on the workstation
that validates their identities, and then checks their authorization to access
the desired role account.48

47See Section 15.6.1, “Host Identity.”

48See Section 15.4, “Groups and Roles.”

EXAMPLE: The programs lsu [220] and sudo [1221, 1445] both implement
role-based access control for a variety of UNIX systems. These programs
require that the user enter his or her password and then, if the password is
validated, determine whether or not the user is authorized to assume the
requested role.

29.5.3 Comparison

Both the DMZ WWW server system and the devnet system use strong
authentication measures to ensure that users and hosts are correctly
authenticated. The SSH server requires cryptographic authentication of not
only the user but also the host from which the user is connecting, and the
server responds only to known hosts. Host and user identities are established
using the RSA public key cryptosystem. The certificates are initialized by
trusted system administrators, so systems that are set up by unauthorized
personnel will not be able to connect over SSH to any Drib system.

29.6 Processes



A system runs a collection of processes to perform specific tasks. Each
process is a potential vulnerability. This section examines the processes run
on both systems.

29.6.1 The WWW Server System in the DMZ

As required by WC5, the WWW server system runs a minimum set of
processes49 because its function is only to serve Web pages and batch
transactions for off-line processing. The required services are as follows.

49See Section 14.2.1, “Principle of Least Privilege.”

• Web server

• Commerce server

• SSH server

• Login server, if there is a physical terminal or console

• Any essential operating system services (such as paging daemons)

Items WC2 and WC3 require each server to run with a minimum of
privileges. The SSH and login servers need enough privileges to change to the
user logging in. The web and commerce servers run with minimal privileges,
because they only need to access public data. Neither the login nor the
commerce server accepts network connections.50 The former is tied to
specific, hard-wired terminals (such as a console); the latter simply responds
to interprocess communication from the web server.

50See Section 14.2.2, “Principle of Fail-Safe Defaults.”

EXAMPLE: A typical UNIX-like system will have the following daemons
running.

• init, the login server



• sshd, the SSH server

• webd, the web server

• commerced, the commerce server

• Various servers for the operating system

For example, a Solaris system running with minimal services will include a
scheduling process, a paging process, a file system flushing process, and a
process for recording logins and logouts. Enabling of accounting creates one
more process, but the information gleaned may provide guidance for
optimizing the performance of the system.

Consider the level of privilege that the servers need.51 The SSH server must
run with sysadmin privileges to support the remote access and tunneling
facilities. The login server (if present) must run with this level of privilege
also. The web server requires enough privileges to read web pages and invoke
subordinate scripts. The web pages can be world-readable, so the web server
simply needs minimal privileges. The scripts manipulate web pages or
generate transaction data, and with appropriate settings of file permissions
can write into the web server’s area. The commerce server needs enough
privileges to copy transaction files from the web server area to the transaction
spooling area. However, it should not have enough privileges to alter Web
pages. Other required servers run with appropriate privileges.

51See Section 14.2.1, “Principle of Least Privilege.”

EXAMPLE: A program may require extra privileges when it begins. Most
UNIX-like systems require that only root programs be able to access network
ports with numbers of 1023 or lower. These systems do not enforce the
principle of complete mediation, because access is checked only when the
port is opened. This allows two approaches to minimizing of privileges.

The web server can run with root privileges. As soon as it opens the network



port, it discards those privileges. So it runs as the user webbie. This requires
special code in the web server to drop the privileges. If the web server does
not do this, a second approach is to write a wrapper program that runs as
root, opens the port, spawns the web server (as the user webbie), and passes
the file descriptor corresponding to the port to that process. The wrapper
then terminates.

File access is an important issue. File system access control lists52 provide
one defense. We can adapt another defense from capabilities.53 Recall that in
a pure capability system, the capability names the object; if the subject does
not possess the capability, it cannot even identify an object. An access
control-based system does not work this way. However, if we can change the
meaning of a file system name, then we can confine all references to a
particular part of the file system. The web server, for example, needs to
reference only programs and files within the hierarchy of web pages (and
scripts). The commerce server needs access only to the transaction spooling
area and the area where the web server’s scripts place transactions.

52See Section 16.1, “Access Control Lists.”

53See Section 16.2, “Capabilities.”

EXAMPLE: Most UNIX-like systems provide a system call chroot that
changes the process’ notion of the root of the file hierarchy. For example,
suppose a process wishes to open the file /usr/web/pages/index.html. The
appropriate system call would be

if ((fd = open(“/usr/web/pages/index.html”, O_RDONLY)) < 0)
    perror(“open⊔/usr/web/pages/index.html⊔for⊔reading⊔failed”);

But the system call chroot(“/usr/web”) changes the process’ notion of root to
/usr/web rather than /. After this, the system call that would open the same
file as above is



if ((fd = open(“/pages/index.html”, O_RDONLY)) < 0)
    perror(“open⊔/usr/web/pages/index.html⊔for⊔reading⊔failed”);

because the kernel maps the first / in /pages/index.html to the directory
/usr/web. Every full path name that the process refers to uses /usr/web as its
beginning. The process could not directly refer to the file /usr/trans/1.

Depending on the nature of the hierarchy, the process may be able to refer
indirectly to the file /usr/trans/1. Some variants of these system allow the
superuser to make links to a directory. Consider the hierarchy shown in
Figure 29–1. The directory xdir is a child of trans, so the entry .. in xdir refers
to trans. The superuser has created a hard link in web that refers to xdir. Now
suppose a process executes the call chroot(“/usr/web”). The process can no
longer access /usr/trans/1 by that name, but it can access it as xdir/../1
because the change in root does not affect the interpretation of the path
name. This shows that, in addition to the chroot, the file hierarchy in which
the process is rooted must not have any hard links extending to directories
not in that file hierarchy.

Finally comes interprocess communication. Processes should be able to
communicate only through known, well-defined communication channels.54

The issue here is how the web server communicates with the commerce
server to tell it that transaction files are present, and the names of those files.

54See Chapter 18, “Confinement Problem.”

The simplest method of communication is to use the directory that both the
web server and commerce server share. The commerce server periodically
checks for files with names consisting of trns followed by a set of digits. When
a transaction begins, the scripts create a temporary transaction file. It builds
the transaction data and enciphers it using the appropriate public key. It then
renames the temporary file with a name consisting of trans followed by the
integer representation of the date and time, followed by one or more digits.
(See Exercise 5.) When the commerce server checks the directory, it moves



any files with that type of name to the spooling area.

Figure 29–1: A UNIX file system. The directed edges indicate the
parents of each directory. A hard link to xdir lies in Web.

If the web server and commerce server run with the same real or effective
UID, or either runs with superuser privileges,55 then they can communicate
using the signaling (asynchronous interrupt) mechanism. If an attacker
acquires access through the web server, and can signal the commerce server,
then the attacker can damage the Drib with a denial of service attack. Hence,
the web server and the commerce server should run as distinct users, with
different privileges.

55See Section 15.3, “Users.”

29.6.2 The Development System

Unlike the DMZ WWW server system, the development workstation serves
developers who will compile, test, debug, and manage software. They will also
write reports and analyses, communicate with other developers on different
systems in the devnet, and send and receive electronic mail over the Internet.



The system must support all these functions.

Consider servers and clients first. The devnet workstations may run servers to
provide administrative information (such as who is currently logged into the
system). These servers require administrative users. As discussed in Section
29.4.2, item DC2 requires these users to be local. Item DC1 requires that
users be named (and numbered) consistently. The LDAP protocol provides
user information to clients, ensuring this consistency. Hence, the devnet
workstation runs LDAP clients. Similarly, the workstation runs NFS clients to
satisfy item DC6. Servers run with the fewest privileges necessary to perform
their tasks. In many cases, servers begin with root privileges to open
privileged ports. They then drop privileges to a more restricted user.56

56See Section 14.2.1, “Principle of Least Privilege.”

EXAMPLE: Consider a mail server on the devnet mail server system. It must
listen for connections on port 25. That port (and all ports with numbers less
than 1024) can be opened only by root processes, but the mail server itself
need not run as root to perform other functions. It can forward mail to the
central mail server as an ordinary user. Thus, two alternatives arise.

Some mail servers allow the system administrator to specify an execution
UID. The mail server begins execution as root (either by being setuid to root
or, more commonly, by being started at boot time), opens port 25, and then
switches to the execution UID. The disadvantage of this approach is that the
saved UID is root. If an attacker can trick the server into executing a system
call to set the UID to root, the mail server can do so. This means that the mail
server must be carefully programmed, as discussed in Chapter 31, “Program
Security.”

The second approach is to use a wrapper. The wrapper runs as root. It opens
port 25, redirects standard input and output to that port, drops privileges,
and then spawns the mail server. For this to work, the mail server must be
able to read messages from the standard input and write messages to the



standard output.

The abilities of the mail server dictate which approach to use.

Server processes on the development machine run with as few privileges as
necessary, as required by item DC2. Whenever possible, they run with the
nobody UID and the nogroup GID to ensure that the clients can obtain only
information that the developers deem public (that is, available to others
within the confines of the Drib’s internal network).57 When access to
privileged ports is required, one of two methods is used. In the first, the inetd
daemon (which runs with root privileges) listens for messages at the port.
When a message is received, inetd spawns the server with the limited
privileges. In the second method, the server starts with root privileges, opens
the ports and other files accessible only to root, and drops to a lesser privilege
level. This minimizes the actions that the process takes when it has unlimited
privilege.58 It also allows the operating system to enforce normal file system
access checks.59 As with the WWW server system, the servers run in a subtree
of the file system whenever possible.

57See Section 14.2.1, “Principle of Least Privilege.”

58See Section 14.2.1, “Principle of Least Privilege.”

59See Section 14.2.4, “Principle of Complete Mediation.”

To satisfy item DC3, the development system has a logging mechanism that
can record any operating system call, its parameters, and the result.60 Logged
information is recorded locally and sent to a central logging server. The
security officers monitor the logs from that server using an intrusion
detection system.61 If an attack is suspected, the central logging server can
instruct the kernel to begin (or cease) recording data to augment the current
set of data. Initially, the system logs process initiation and termination, along
with the audit UID and effective UID of the user executing the command.



60See Section 25.3, “Designing an Auditing System,” and Section 25.4, “A
Posteriori Design.”

61See Chapter 26, “Intrusion Detection.”

In addition to requiring the use of file servers, item DC6 requires that the
workstations have sufficient disk space available for local users’ work. To
meet this goal, every night, or when disk space reaches 95% of capacity, a
program scans the file system and deletes auxiliary files such as editor backup
files and files in temporary directories that are not in current use (defined as
not having been accessed within the last 3 days).

As required by item DC1, the devnet workstations allow remote access using
SSH. This allows devnet users to test software using multiple workstations,
which is useful when the software involves network connections or
concurrency. It also allows system administrators to log in remotely to
perform maintenance activities.

29.6.3 Comparison

The DMZ WWW server system uses a minimalist approach: only those
processes necessary for the web server, remote administration, and the
operating system are present. All other processes are eliminated. This
requires that any new software be compiled on other systems and that all
development be done elsewhere. Only those programs essential to the serving
of Web pages, to remote administration, and to the operating system are
available. The number of processes active at any time on this system is
small.62 By way of contrast, the devnet system must provide an environment
in which developers can be productive. This requires that more programs be
available, and that more processes be active, than on the DMZ WWW server
system. Compilers, scripting languages, Web servers, and other tools help the
developers carry out their tasks.

62See Section 14.2.1, “Principle of Least Privilege.”



Both systems run servers with the minimum level of privilege needed. This
includes not only minimizing user privileges but also restricting the
environment in which the process runs.63 The difference between the systems
is that the “minimum environment” for the DMZ WWW server system is
different from the minimum environment for the web servers on the devnet
systems. In the latter, users wish to share data, so users must be able to place
data into areas in which the devnet system’s web server can make it available
to other users on the development network. The DMZ WWW server system
has no such requirement.64 The root user installs all new web pages. So the
web server needs to serve data only from a part of the file system to which the
root user can write. No other user needs access, except for the commerce user
—and that user has tightly restricted access.

63See Section 14.2.1, “Principle of Least Privilege.”

64See Section 14.2.7, “Principle of Least Common Mechanism.”

Both systems have processes that log information, but the types of the logging
processes differ. The devnet system has a log server that accepts messages
from other programs, timestamps and formats them, and writes them to
locations specified in a control file. This conforms to the way most UNIX-like
systems handle logging and allows devnet systems to use off-the-shelf
software. The DMZ WWW server system has no such daemon. Each program
writes log entries to a local log and to a remote daemon on the log server.65

This minimizes the number of servers on the DMZ WWW server system.

65See Section 14.2.6, “Principle of Separation of Privilege.”

29.7 Files

The setting of protection modes, and the contents of files, affect the
protection domains of users and so are critical to a system satisfying a
security policy. Again, consider each system separately.



29.7.1 The WWW Server System in the DMZ

The WWW server system’s goal is to serve the web pages. The system
programs and configuration files will not change; only the web pages, log
files, and spooling area for the electronic commerce transactions will change.
To preserve their integrity, as required by item WC4, all system programs and
files are on read-only media such as a CD-ROM or DVD-R. When the system
boots, it boots from the read-only media. That media is mounted as a file
system, so even if attackers can break into the web server, they cannot alter
system or configuration files.66 A hard drive provides space for temporary
and spooled files, for the home directories of authorized users, and for
portions of the web pages.

66See Section 14.2.1, “Principle of Least Privilege.”

Because the web pages change often, it is not feasible to have them on read-
only media. However, the scripts change very infrequently, and are to be
protected from any attacker who might gain access to the system, as required
by item WC4. Hence, the web page root directory, and the subdirectory
containing the scripts, are on the read-only media. In the web page root
directory is a subdirectory called pages that serves as a mount point for a file
system on the hard drive. That file system contains the web pages. In other
words, an attacker can alter web pages, but cannot alter the scripts or the
internal public key, which is also kept in a directory under the web page root
directory on the read-only media. (See Exercise 10.)

When the system boots, one of its start-up actions is to mount two directories
from the hard drive onto mount points on the read-only media. The hard
drive file system containing the web pages is mounted onto the mount point
in the web page root directory. A separate area, containing user home
directories for the system administrators, a temporary file area, and spooling
directories for transactions, is also mounted on the root file system.

As dictated by item WC3, the web server runs confined to the web page root



directory and its subdirectories.67 An attacker who compromises the web
server cannot alter the scripts, nor add new ones, but can only damage the
web pages on the server.

67See Section 18.2, “Isolation.”

The commerce server has access to the web page directory and the spooling
area. When the scripts have processed a request for an electronic transaction,
they name the transaction file appropriately (see Section 29.6.1). The
commerce server copies the data to the spooling area and deletes the original
data. Because the web server is confined to the web page partition, an
attacker who seizes control of the web server will be unable to control the
commerce server. Moreover, because the scripts (and the containing
directory) cannot be altered, an attacker could not alter the programs to send
raw data to the attacker. Because the scipts encipher all data using a public
key system before writing the data to disk, the attacker cannot read the raw
data there.68 The corresponding private key is on the internal network, not
the DMZ system, so the attacker cannot decipher the data without breaking
the public key system.69

68See Section 14.2.7, “Principle of Least Common Mechanism.”

69See Section 10.3, “Public Key Cryptography.”

The system administrator partition provides a home directory area when an
administrator logs in. It is small and intended for emergency use only.

EXAMPLE: Suppose the WWW server system is a UNIX-like system and the
web server runs as the user webbie. This user has access to all world-readable
files, but to no others. Moreover, the web server changes its notion of the root
directory to the root of the Web page directory—on this system /mnt/www.
The scripts are owned by root and are located in a separate directory,
/mnt/www/scripts, on the read-only media. The public key used by the
scripts to encipher the data is in the directory /mnt/www/keys. All three of



these directories are owned by root and are not writable by anyone else. The
scripts place all transaction data into the directory /mnt/www/pages/trans.
Because the executing process runs as the user webbie, this directory is
writable by a group containing the users webbie and ecommie.

The commerce server, running as the user ecommie, periodically checks the
directory /mnt/www/pages/trans for transaction files. When a transaction
is completed, the scripts name it appropriately. The commerce server then
copies the contents of the named file into the transaction directory spool
/home/com/transact area. Both the commerce server and the web server log
to the log server.

Finally, WC5 also specifies that the number of programs on the system be
minimal.70 Fortunately, the system itself requires few programs. No
compilers or software development tools are available. Because all
executables are statically linked, the dynamic loader is not present (see
Exercise 3). The only programs that are available allow the users to log in and
out; run commands (command interpreters); monitor the system; copy,
create, edit, or delete files; and stop and start servers. Programs such as mail
readers, news readers, batching systems (the at and cron commands), and
Web browsers are not present. This minimizes what an attacker can
compromise.

70See Section 14.2.1, “Principle of Least Privilege.”

WC4 suggests that the integrity of the system should be checked. Periodically,
or whenever there is a question about the integrity of the system, the web
server is stopped, transaction files are transferred, the system is rebooted
from the read-only media, the hard drive is reformatted, and the contents of
the user and web page areas are reloaded from the internal WWW server
system clone mirroring the DMZ system (see Section 28.3.2.2). This restores
the web pages and user directories to a known, safe state. If an attacker has
left any back doors or other processes to gather information, the reformatting
of the hard drive eliminates them.



29.7.2 The Development System

The development system’s goal is to provide the resources that developers
need to develop new software for the Drib’s products and (if necessary)
infrastructure and systems. This requires a variety of software. A site can take
two approaches.

The first approach is to allow each developer to configure his or her own
workstation. The Drib rejected this approach because it would create too
many different systems for the system administrators to manage.
Furthermore, tools available on one workstation might not be available on
another, violating the interchangeability required by item DC6. Meeting item
DC5 would also be infeasible because read-only media would have to be
created for each workstation separately—an effort that was deemed
unacceptable.71

71See Section 14.2.8, “Principle of Least Astonishment.”

The second approach is to develop a standard configuration that provides
developers and system administrators with needed software tools and
configuration settings. To create such a configuration, the Drib policy
managers gathered developers, system administrators, security officers, and
all other users of the development workstations. The group developed a
configuration that met the Drib’s policies and that was acceptable to as many
people as possible, and ensured that all members of the group were willing
and able to use systems with that configuration.72 The system administrators
then installed and configured a base system on an isolated workstation
system and created a bootable media that, once written, cannot be
overwritten. This was copied and given to all developers. The developers use
this to boot their workstations, ensuring that the resulting configuration is
the standard one. All updates and upgrades are made to that isolated
workstation system and tested, and a new bootable media is created. The
bootable media is copied and distributed to the developers. This eliminates
the problem of inconsistent patching or upgrading of workstations.73 It also



ensures that files are available on all workstations (through mounting of the
central file server’s file systems) and that the naming scheme is consistent
(through use of the same user database system), satisfying items DC1 and
DC5. Finally, the local system configurations of all workstations are identical,
so all have the same administrative accounts.

72See Section 14.2.5, “Principle of Open Design.”

73See Section 14.2.7, “Principle of Least Common Mechanism.”

Some members of the group pointed out the need for local writable storage.
In the event that no file servers are available, the local administrators may
need to create files (for example, to save output from a program for analysis).
Furthermore, spool files require space, and many programs use temporary
storage. Hence, each workstation has a hard drive with several file systems.
When the computer boots from the media, the root file system is located on
the media itself. All system programs and configuration files lie on this
media, as indicated above. During the boot, the workstation mounts the file
systems on the hard drive at mount points in the file system loaded from the
media. This provides the workstation with appropriate writable storage,
satisfying item DC5.

This approach also prevents developers from adding new system programs to
the workstations. Programs can of course be added to the writable file
systems, but adding a program to the configuration requires that it be added
to the isolated system and that new bootable media.74 This satisfies part of
item DC4. Procedural mechanisms (ranging from warnings to firings) enforce
the requirement that programs be inspected before they are added to the
writable file system. The organization of the various file systems allows the
writable media to be wiped during the boot procedure, eliminating any and
all programs added to the workstation. This is part of the recommended boot
procedure, but it can be skipped if spool files are queued.

74See Section 14.2.6, “Principle of Separation of Privilege.”



Wiping the writable disks deletes some local log files. However, the logging
server also forwards log messages to an infrastructure system that records
messages from all workstations. Security analysts examine these logs using
various analysis tools, including host-based and network-based intrusion
detection tools, to detect misuse and attacks. To validate that the analysis
tools are working as expected and are configured correctly, every day the
analysts select 30 minutes’ worth of log entries and examine them to
determine if the analysis tools correctly analyzed those entries. The analysis
either validates the security mechanisms and procedures as effective, or
reports (or finds) problems. This serves two purposes: validation of the
current configuration and software (item DC4)75 and detection of security
incidents (item DC8).76

75See Section 20.3.3, “Justifying That the Implementation Meets the Design.”

76See Chapter 26, “Intrusion Detection.”

The use of read-only media eliminates the need for integrity checking of the
development system binaries and configuration files. Scans of the writable
media locate files that match patterns of intrusions. When such files are
found, the security officer merely reboots the system, wiping the writable
hard drive. This cleans up the workstation. An extensive check of the file
servers follows.

29.7.3 Comparison

Both the WWW server system and the development system rely on physical
protection of media to prevent unauthorized alteration of system programs
and configuration files. Both boot from read-only media and use the file
system on that media as the main file system. Because some files on both
systems must change (for example, transaction files on the WWW server
system and spooled files on the development system), both have file systems
on writable media that are mounted on the main file system.77



77See Section 14.2.1, “Principle of Least Privilege.”

When the WWW server system must be reloaded (because the integrity of the
system may have been violated), the spooled transaction files are removed
from the system, the system is booted, and the writable medium is
reformatted. Then the web pages and user directories are reloaded from a
clone kept in a state known to be safe. The development system does not
require this, because any non-transient files are kept on a centralized file
server that is itself regularly checked. The only local files are temporary files
that the users can re-instantiate when they log back in, so the system is
simply rebooted and the media reformatted. Because the main file system is
on storage that cannot be altered, its integrity is ensured.

The differences between the approaches used in developing the two read-only
media spring from the question of attack from within the company. The
developers are all trusted not to attack the workstation, because at any time a
developer may have to use any workstation. However, the developers may be
used as “vectors of attack” if they should (accidentally or deliberately) make
errors in programming or bring in software from untrusted sources.78 This
led to the consensus-based development of the workstation media. The
developers had great influence, because they would be using the
workstations. Security was a consideration, but it was weighted against
productivity and morale. The outer, inner, and devnet firewalls were to
provide the bulwark of the security for the development network systems.79

78See Section 23.9, “Defenses.”

79This approach violates the principle of fail-safe defaults, but it was deemed
necessary to allow the developers to be as productive and effective as
possible. This illustrates a tension between the principle of fail-safe defaults
and the principle of least astonishment (see Exercise 11).

The set of users trusted to work on the DMZ WWW server system was much
smaller. Thus, the DMZ WWW server system was designed to withstand



attack from both the Internet and the internal network. For example, the web
server originally was intended to handle transactions; the security people
vetoed this as allowing too many potential attacks, and instead suggested the
staging approach, in which the DMZ WWW server system acts as a proxy for
the transaction processing systems on the customer data subnet (see Figure
28–2). The construction of that media began with the security officers
devising the most secure, minimal WWW server system they could construct
and then adding those features necessary for the Drib’s special needs.80 They
monitor activities on the web server, and several vulnerability tracking lists
and news services, to ensure that they are up to date on all potential
problems.

80See Section 14.2.2, “Principle of Fail-Safe Defaults.”

The DMZ WWW server system is self-contained in that all files are local.
None are served remotely.81 If an attacker alters files, a reboot and a reload
restore the files to their original state. No other system depends on those files.
However, the development workstation relies on file servers. This removes
user file integrity from the purview of the development workstation’s security.
Integrity of the configuration becomes critical, to ensure that the right servers
are used, but the read-only ensures that the configuration file data is correct.
However, the security of the development systems depends more on the
security of the infrastructure of the development network than the security of
the DMZ WWW server system depends on the security of the infrastructure
of the DMZ network.

81See Section 14.2.7, “Principle of Least Common Mechanism.”

29.8 Retrospective

This section briefly reviews the basics of the security of the systems.

29.8.1 The WWW Server System in the DMZ



The web server on the DMZ WWW server system runs a minimal set of
services. It keeps everything possible on unalterable media.82 Except for the
web server process, the system accepts only enciphered, authenticated
connections from a known, trusted host by known, trusted users.83

82See Section 14.2.1, “Principle of Least Privilege.”

83See Section 14.2.4, “Principle of Complete Mediation.”

The web server process must accept connections from any host on the
Internet. However, all such connections go through an outer firewall that can
(if desired) be configured to reject requests.84 This means that denial of
service attacks could be handled at the outer firewall and not by the DMZ
WWW server system.

84See Section 14.2.6, “Principle of Separation of Privilege.”

The web server and commerce server run with minimal privileges. Neither
may communicate with the other except through a shared directory used to
transfer transaction requests from the public web server area to a private
spooling area from which they can be retrieved through the enciphered link.85

The transaction files themselves are enciphered using a public key algorithm,
so an attacker who compromises the web server cannot alter the transaction
files, but can only delete them. To minimize this risk, the commerce server
moves the transaction files as quickly as possible to an area that is
inaccessible to the web server.

85See Section 18.2, “Isolation.”

Access to the administrative account requires that the user access a trusted
host (the internal trusted administrative host) and then authenticate to the
DMZ WWW server system using a public key protocol. Automated processes
will authenticate on the basis of the host from which they are run, which is
the internal trusted administrative host. The SSH server ignores connections



from other hosts, and host identity is determined using public key
authentication, not IP addresses.

Other servers and programs are simply deleted from the system, so they
cannot be run even by accident.86 This simplifies system maintenance. It also
deprives any attackers of available tools should they penetrate the DMZ
WWW server system.

86See Section 14.2.2, “Principle of Fail-Safe Defaults.”

29.8.2 The Development System

The development system also runs a minimal set of programs and services.87

The notion of “minimal” is different for the development system than for the
DMZ WWW server system, because the systems must serve many functions.
Users compile and debug programs. They test programs, and they integrate
different programs into a single software system. They may use ancillary
hardware (such as embedded systems) to support the development. The
development systems must support this functionality.

87See Section 14.2.1, “Principle of Least Privilege.”

Given this, security plays a prominent but not dominant role. Hidden behind
three fire-walls, each development workstation has sufficient security
mechanisms to hinder attackers, and to allow quick recovery if an attack does
occur,88 but these systems rely more on the infrastructure than does the DMZ
WWW server system.

88See Section 27.3.2, “Intrusion Handling.”

The development system allows a large number of users access from any
development network system and (possibly) from systems in other subnets of
the internal network. User information resides in a centralized repository to
maintain consistency across all development systems. Reusable passwords
are supported. However, passwords are tested for strength before they are



accepted, and the security officers periodically try to guess passwords. Other
password schemes are also supported.

Backups occur daily. Because each workstation has a local writable area,
users may keep files in that area rather than place them on the file servers.
These areas are backed up. The dumps are typically small, because most users
work on directories mounted from the file servers. The main reason for these
backups is to preserve the log files should an investigation require them.

29.9 Summary

This chapter refined parts of a security policy to derive requirements for
mechanisms on systems to implement the policy. The mechanisms rely in
part on infrastructure systems and the environment in which those systems
function. The server in the DMZ is based on assumptions under which a small
set of users is trusted, and everyone else is distrusted. This leads to a system
that provides minimal services. System files are kept on protected media so
that they cannot be physically altered. Other files, such as those containing
transactions, are protected using cryptographic mechanisms so that
alterations will be detected, and sanity checks are performed on their
contents both before encryption and after delivery and decryption. By way of
contrast, the development workstations are general-purpose workstations
designed to support a development environment. They support many more
functions, and more open access, than the DMZ server. Furthermore, their
user population is trusted to a greater degree than that of the DMZ WWW
server system. This leads to differences in infrastructure support and
workstation configuration.

29.10 Research Issues

The role of a security policy in system development raises several research
issues. The first is realism and consistency of policy. A security policy must be
consistent with the requirements of the organization. The second issue is the



difficulty of ensuring that a policy is internally consistent. Aggravating this
issue is the manner of expression of the policy. If the policy can be expressed
mathematically, one can apply mathematical techniques to determine its
internal consistency. In practice, few policies can be so expressed, and those
that can are usually abstractions of the policy in use (that is, they are policy
models). Analyzing the actual policies in use at a site requires techniques and
methodologies that have not yet been developed.

A third issue is to express the policy in a way users and other other people can
understand, which is usually in opposition to mathematical expression.
Creating the policy in both forms requires establishing consistency between
the mathematical version and the natural language version. Methods to do
this are highly informal, and more rigorous methods are needed.

Part of the problem is how to map policy components to security
mechanisms. Although such mapping appears clear in many cases, the
influences of the environment, the users, and the organization affect the
selection of mechanisms. For example, the nature of the authentication
mechanism determines whether an access control list is sufficient to restrict
access as required by the policy, because if users are improperly identified
through a weak authentication mechanism, unauthorized users may gain
access to data. One research issue is the development of automated (or
semiautomated) techniques for guiding the selection of mechanisms for
enforcing policies.

The inverse of this problem is also an interesting research topic. Given a
system, one would like to derive a high-level exposition of the policy it
enforces. Given a set of systems, one would like to demonstrate that the
policy they collectively enforce is consistent. Security mechanisms work at a
low level. Translating those implementation-specific mechanisms to higher-
level expositions, whether formal or informal, is an area that is ripe for study.

Developing methodologies for maintaining large collections of systems
consistently seems straightforward. It is not. The difficulty arises from the



administration of the distribution system and from the need to ensure that
any failures in the process will be detected and reported. This problem is
related to the problem of updating distributed databases, and some protocols
from that field ameliorate the problem. But human factors, such as keeping
the distribution versions up to date, often create problems, as does the desire
for control over one’s own system. Much work remains to be done in the area
of distributing upgrades and patches to systems in a trusted manner, and in
the area of determining whether installing a patch or an upgrade will
interfere with the system’s meeting the security policy of the local site.

29.11 Further Reading

Many books discuss system administration and security for UNIX and UNIX-
like systems [750, 1102, 1445, 1806], Windows systems [275, 1637, 1771,
1792], and Macintosh systems [1067, 1618].

As sites grow in complexity and number of systems, automated system
administration tools are becoming more important. Several authors
[145,175,320,321,915,1010,2089] discuss systems for administering sites.

29.12 Exercises

1. A system administrator on a development network workstation wants to
execute a program stored on a DVD. What steps could the Drib take to
configure the workstation to prevent the system administrator from
mounting the DVD and executing the program?

2. Suppose a user has physical access to computer hardware (specifically, the
box containing the CPU and a hard drive). The user does not have an account
on the computer. How can the user force the computer to shut down? To
reboot?

3. Some systems support dynamic loading, in which system library routines
are not loaded until they have been referenced. A library can be updated



independently of any programs that use the library. If the program loads the
library routines dynamically, the updated routines will be used. If the
program does not load the library routines dynamically, the program will use
the versions of the routines that were in the library at link time. This exercise
examines this property from the viewpoint of security.

(a) From the point of view of assurance, what problems might dynamic
loading introduce? (Hint: Think about the assumptions the programmer
made when writing the code that calls the library functions.)

(b) Does dynamic loading violate any of Saltzer and Schroeder’s principles of
secure design89 Justify your answer. If an attacker wanted to implant a
Trojan horse into as many processes as possible, how would dynamic loading
lower the amount of work that the attacker would need to do?

89See Chapter 14.

4. Suppose there is no system dedicated to the bootable media discussed in
Section 29.7.2. How would you go about constructing such a bootable media?
Discuss procedures, and justify them. What is the problem with updating a
running system and writing only the changes onto the write-once media?

5. The web server on the DMZ Web server system renames temporary files
used to record transactions. The name has the form trns followed by the
integer representation of the date and time, followed by one or more digits.
Why are the extra digits necessary?

6. Consider a developer who has both an ISP workstation and a devnet
workstation on his desk, and who wants to move a program from the ISP
workstation to the devnet workstation.

(a) Assume that the user is not allowed to mount media such as a DVD. Thus,
he would not be able to access the data on the disk as though it were a file
system. Would he be able to access the data in some other way? (Hint: Must



data on all media be accessed as though it were a file system, or can it be read
in some other way?)

(b) Assume that the root user is asked to mount the DVD for the user, so he
can access data on it. What precautions should root take before making the
data available to the user?

(c) Suppose the ISP workstation were removed. How could the Drib prevent
the developer from bringing a DVD into his office?

(d) Suppose the DVD reader were removed from the development network
workstation. Would this solve the problem? Why or why not? Discuss the
advantages and disadvantages of this approach.

7. The second line of the web server starting script puts the process ID
number of the Web server wrapper into a file. Why? (Hint: Think of how to
terminate the process automatically.)

8. This exercise reconsiders the use of NIS or some other name service to
distribute user information such as password hashes.

(a) In general, why might an administration want to use encryption
techniques to protect the transmission of NIS records over a network?

(b) Why is secrecy of the NIS records not important to the system
administrators?

(c) Assume the devnet firewall (and the inner and outer firewalls) did not
prevent outside users from monitoring the development network. How
important would secrecy of the NIS records be then? Why?

(d) The NIS client accepts the first response to its query that it receives from
any NIS server. Why is physical control of the development network critical
to the decision not to use cryptography to protect the NIS network traffic?



9. The system administrators on the development network believe that any
password can be guessed in 180 days of continuous trial and error. They set
the lifetime of each password at a maximum of 90 days. After 90 days, a
password must be changed. Why did they use 90 days rather than 180 days?

10. Section 29.7.1 discusses using executable scripts on the DMZ web server
system. It points out that web pages change too frequently to be placed on
write-once media, but that the scripts are changed infrequently enough to
allow them to be placed on the media.

(a) In light of the fact that the scripts do not contain data, why is their
alteration a concern?

(b) The scripts can generate web pages from data stored on the server.
Discuss the integrity issues arising from storing of the data that those scripts
use on writable media but storing of the scripts themselves on read-only
media. In particular, how trustworthy are the pages resulting from the script’s
use of stored data? (Hint: See Section 6.2.)

(c) Assume that the scripts are to be changed frequently. Devise a method
that allows such changes and also keeps the interface to those scripts on read-
only media. Where would you store the actual scripts, and what are the
benefits and drawbacks of such a scheme?

11. Brian Reid has noted that “[p]rogrammer convenience is the antithesis of
security” [1584]. Discuss how the Drib’s trade-off between security and
convenience exemplifies the conflict between users (programmers) and
security. In particular, when should the principle of least astonishment (see
Section 14.2.8) override other principles of secure design?

12. Computer viruses and worms are often transmitted as attachments to
electronic mail. The Drib’s development network infrastructure directs all
electronic mail to a mail server. Consider an alteration of the development
network infrastructure whereby workstations download user mail rather than



mounting the file system containing the mailboxes.

(a) The Drib has purchased a tool that scans mail as it is being received. The
tool looks for known computer worms and viruses in the contents of
attachments, and deletes them. Should this antivirus software be installed on
the mail server, on the desktop, or on both? Justify your answer.

(b) What other actions should the Drib take to limit incoming computer
worms and viruses in attachments? Specifically, what attributes should cause
the Drib to flag attachments as suspicious, even when the antivirus software
reports that the attachment does not contain any known virus?

(c) What procedural mechanisms (such as warnings) should be in place to
hinder the execution of computer worms and viruses that are not caught by
the antivirus filters? Specifically, what should users be advised to do when
asked to execute a set of instructions to (for example) print a pretty picture?



Chapter 30. User Security
COMINIUS: Away! the tribunes do attend you: arm yourself To answer mildly; 
for they are prepar’d With accusations, as I hear, more strong Than are upon 
you yet.

— Coriolanus, III, ii, 138–141.

Although computer systems provide security mechanisms and policies that 
can protect users to a great degree, users must also take security precautions 
for a variety of reasons. First, although system controls limit the access of 
unauthorized users to the system, such controls often are flawed and may not 
prevent all such access. Second, someone with access to the system may want 
to attack an authorized user—for example, by reading confidential or private 
data or by altering files. The success of such attacks may depend on the 
victim’s failure to take certain precautions. Finally, users may notice problems 
with their accounts, causing them to suspect compromises. The system 
administrator can then investigate thoroughly.

This chapter considers a user of a workstation on the development network at 
the Drib. The user’s primary job is to develop products or support for the 
Drib. It is not to secure her system. We explore the precautions, settings, and 
procedures that such a user can use to limit the effect of attacks on her 
account.

30.1 Policy

Most users have informal policies in mind when they decide on security



measures to protect their accounts, data, and programs. Few analyze the
policies or even write them down. However, as with the development of a
network infrastructure, and of the configuration and operation of a system,
users’ security policies are central to the actions and settings that protect
them.

The components of users’ policies that we focus on are as follows:

U1. Only users have access to their accounts.

U2. No other user can read or change a file without the owner’s permission.

U3. Users shall protect the integrity, confidentiality, and availability of their
files.

U4. Users shall be aware of all commands that they enter, or that are entered
on their behalf.

30.2 Access

Component U1 requires that users protect access to their accounts. Consider
the ways in which users gain access to their accounts. These points of entry
are ideal places for attackers to attempt to masquerade as users. Hence, they
form the first locus of users’ defenses.

30.2.1 Passwords

Section 13.3, “Password Selection,” discussed the theory behind good
password selection. Ideally, passwords should be chosen randomly.1 In
practice, such passwords are difficult to remember. So, either passwords are
not assigned randomly, or they require that some information be written
down. And if a user chooses a password that is easy to guess, it may cause a
violation of policy component U1.

1See Section 13.3.1, “Random Selection of Passwords.”



Writing down passwords is popularly considered to be dangerous. In reality,
the degree of danger depends on the environment in which the system is
accessed and on the manner in which the password is recorded.

EXAMPLE: Consider the isolated system that the development network
administrators use to create the CD-ROM from which other workstations
boot (see Section 29.7.2). This system is kept in a locked room, and only the
authorized users of the system have keys. The system is not connected to
networks or telephone lines and can be accessed only from within that room.
The password for the role account used to construct the CD-ROM is written
on a whiteboard in the room. Given that all users of the isolated system are
authorized to know that password, and that anyone else entering the room is
under observation, this arrangement meets policy component U1. (But see
Exercise 1.)

Users with accounts on many systems will choose the same password for each
system, choose passwords that follow a pattern, or write passwords down.2

On the development network, the first of these is a result of centralizing the
user database. Even there, users (especially system administrators) may have
multiple accounts, including some on infrastructure systems that do not use
the centralized user database. These users must take precautions to protect
their passwords.

2See Section 13.3.3, “User Selection of Passwords.”

EXAMPLE: The development network has 10 infrastructure systems (mail,
file, Web, and other servers). Anne and Paul are the lead system
administrators for the infrastructure systems. They must have privileged
access to all those systems. To make the root and Administrator passwords
as difficult as possible to guess, those passwords are chosen randomly. But
Paul and Anne cannot remember 10 random passwords. Instead, each has
decided on a transformation algorithm.3 Anne’s is “Change the third letter’s
case, and delete the last character.” Paul’s is “Add 2 mod 10 to the first digit,



and delete the first letter.” The following table summarizes the actual
passwords and what Paul and Anne have written on small pieces of paper that
they carry with them.

3See Section 13.3.1, “Random Selection of Passwords.”

If someone obtains either Anne’s or Paul’s list, the thief will not be able to
determine the correct password before Anne or Paul notices that the list is
missing and takes appropriate action.

The users of development network workstations can choose their own
passwords, but a proactive password checking program checks the proposed
password before accepting it.4 The proactive password checker rejects
proposed passwords that are deemed too easy to guess.5 Most users choose
verses of poetry or sayings, and use them to generate their passwords.

4See Section 13.3.1, “User Selection of Passwords.”

5An example set of criteria begins on page 368.

EXAMPLE: The third verse of the nonsense poem Jabberwocky [357] is

He took his vorpal sword in hand:

Long time the manxome foe he sought—



So rested he by the Tumtum tree,

And stood awhile in thought.

Marilyn, a developer at the Drib, chose her password by taking the first letter
of the second and fourth words from each line, the last letter of the third and
fifth words on each line, putting various non-letter non-digits between them,
and her age (22) after. Her password is “ttrs-vmbi&sdee+eeet22”.

30.2.2 The Login Procedure

The Drib uses 2-factor login. Every Drib system is equipped with a fingerprint
scanner. To log in, the user must supply her login name and authentication
information. First, the user obtains a prompt at which she can enter the
information. She is then prompted to use the fingerprint scanner to supply
biometric data. The data is encrypted using a session key shared with the
biometric validation server; this key is different each time the fingerprint
scanner is used. If the fingerprint is validated, the user obtains access;
otherwise, access is denied. The fingerprint is requested at all login attempts,
so the user is not told whether the login name, password, or biometric is
incorrect when access is denied.

This approach has another advantage. In order to communicate with the Drib
servers, the client must have the private key associated with the public key for
the client. The public key is resident on the Drib servers. Thus, only someone
with access to the Drib’s authorized clients can access the Drib’s network.
This is intended to limit access to those whom the Drib authorizes when the
client (for example, a laptop) is off site.

If only passwords are used, there is a potential attack that arises from the lack
of mutual authentication on most systems. An attacker may place a program
at the access point that emulates the login prompt sequence. Then, if the user
has a reusable password, the name and password are captured. Crude
versions of this Trojan horse6 save the name and password to a file and then



terminate by spawning a legitimate login session. The user will be re-
prompted for the information. Most users simply assume that they have
mistyped some part of the password (which, after all, is usually not printed)
and proceed to repeat the login procedure. A more sophisticated version
saves the name and password to a file and then spawns the login process and
feeds it the name and password. The program terminates, giving control of
the access point to the login process.

6See Section 23.2, “Trojan Horses.”

EXAMPLE: Students at many university sites in the 1970s tried this attack in
public terminal rooms. They had varying degrees of success. An early version
of one operating system had a feature that defeated the crude versions of this
attack. If a user mistyped his name or password, the login program would re-
prompt him for this information. However, the prompt for the user name
would change from “Login:” to “Name:”. If a user saw the prompt “Login:”
twice in a row, he had reason to believe that a spoof was underway.

EXAMPLE: Secure Xenix [780] had an alternative approach that is common
to systems that desire high assurance authentication of users. When a user
wished to log in, he struck a particular combination of keys that created a
trusted path to the kernel. No application program could disable this feature;
no application program could read or alter the information given to the
kernel over that path. The kernel then performed the identification and
authentication processing and granted or denied the user access.

Windows systems have a similar feature. The control-alt-delete key sequence
is trapped by the operating system. Typing this sequence to begin logging in
ensures the user is connected to the authentication system of Windows and
not a rogue program impersonating the login procedure.7. Once logged in,
that key sequence invokes the Windows task manager.

7A system administrator can disable this.



A second potential attack arises from an attacker reading the password as it is
entered. At a later date, the attacker can reuse the password. This differs from
the first attack in that it succeeds even when the user and system mutually
authenticate each other. The problem is that the password is no longer
confidential.

EXAMPLE: “Shoulder surfing” is a technique in which an attacker watches
the target enter the password. Variations on this attack include reading of the
characters from kernel variables, which requires that the attacker have access
to those structures (usually as a result of a system configuration error8), and
passive wiretapping of an unenciphered connection.

8See Section 23.2, “The Development System.”

The latter opportunity for reading the password is important. Many
protocols, such as ftp and telnet, do not encipher messages. If a user name
and password are sent over such a connection, they are visible at every
intermediate node and network. Other protocols, such as SSH and SSL,
provide enciphered “tunnels” through which other protocols can be sent.9

This provides the user with confidentiality even when the protocols
themselves do not. In some environments, this is unnecessary. For example,
the Drib firewalls block any traffic to the Internet, and hosts and networks
within the Drib are trusted not to capture network traffic. In other
environments, especially when messages are sent over untrusted links,
enciphering of all messages is prudent.

9See the examples in Section 12.5, “Example Protocols.”

The second potential attack is thwarted by use of the biometric. The first may
be; it depends on whether the Trojan horse can read the biometric data and
encrypt it using the session key supplied by the biometric validator. If so,
then it can replay the login.

As part of the login procedure, many systems print useful information. If the



date, time, and location of the last successful login are shown, the user can
verify that no one has used her account since she last did. If the access point
is shown, the user can determine if some program is intercepting and
rerouting her communications.

EXAMPLE: Suppose a user logs in from the console. After the login, the
system prints a message indicating that she last successfully logged in on the
previous Tuesday and was currently using a network terminal. The time of
login happens to be correct, but the terminal is not, and the user should
contact the system administrator. One possible explanation is that a Trojan
horse is capturing all commands, saving them in a file, and then passing the
commands back to the normal system login process over a network
connection.

Policy component U1 suggests that the user should be alert when logging in.
If something suspicious occurs, or the link to the system is not physically or
cryptographically protected, an unauthorized user may acquire access to the
system.

30.2.2.1 Trusted Hosts

The notion of “trusted hosts” comes from the belief that if two hosts are under
the same administrative control, each can rely on the other to authenticate a
user. It allows certain mechanisms, such as backups, to be automated without
placing passwords or cryptographic keys on the system.

EXAMPLE: The Drib uses a remote backup scheme run from a backup
system. It logs into each system as the user backup and executes a backup
program. The backup program sends the data to be backed up over the
network connection. If logging in required a password, then an administrator
password would have to be present on the backup system. The Drib
development network administrators considered this to be an unacceptable
risk. Instead, they made all systems trust the backup host. Then the backup
user could simply log in without a password.



The trusted host mechanism requires accurate identification of the
connecting host. The primary identification token of a host is its IP address,10

but the authentication mechanism can be either the IP address itself [1012] or
a challenge-response exchange11 based on cryptography [2072]. The Drib
uses the latter. This prevents IP spoofing.

10See Section 15.6.1, “Host Identity.”

11See Section 13.6, “Challenge-Response.”

The development network workstations use the cryptographically based
trusted host mechanism. The implementation provides enciphered and
integrity-checked connections. Because all development network
workstations use the same user information database, a developer need only
log into one using a password. She can then access any workstation on that
subnet.

Hence, the development network provides an infrastructure that supports
this aspect of policy component U1.

30.2.3 Leaving the System

The Drib has many physical and procedural controls that limit access to its
facility, but some people not authorized to use the systems have access to the
rooms in which those systems reside. For example, custodians clean the
rooms. If lights or air conditioning units need to be repaired, maintenance
workers need entry. Hence, physical security is not sufficient to control access
to the systems.

Users must authenticate themselves to begin a session. However, once
authenticated, the user must also control access to the session. A common
problem is that users will leave their sessions unattended—for example, by
walking away from their monitors to go to the bathroom. If a custodian came
into the room, she would see that the monitor was logged in and could enter



commands, thereby obtaining access to the system even though she was not
authorized to do so.

When a user of a system leaves a session unattended, he must restrict
physical access to the endpoint of the session.12 When that endpoint is a
monitor or terminal, a screen locking program provides an appropriate
defense against this threat.

12See Section 14.2.1, “Principle of Least Privilege.”

EXAMPLE: The X window system provides a program called xlock. When
run, xlock blocks access to the monitor until the user’s password is entered.
Only the user or the system administrator can terminate the program without
the password by sending an appropriate termination signal to it from another
session.

Screen locking programs may have security holes. The most common is a
“master password” that unlocks the terminal if the user forgets the password
used to lock it.13

13Section 1.4, “Assumptions and Trust,” discusses the role of beliefs
underlying security mechanisms such as a screen locking program. Section
19.1.3, “Assurance Throughout the Life Cycle,” discusses the role of assurance
in developing software.

EXAMPLE: In one version of the UNIX operating system, the lock program
prompted the user for a password and then locked access to the terminal until
the password was entered. If the user forgot the password, the master
password “Hasta la vista!” would unlock the terminal. (See Exercise 2.)

30.3 Files and Devices

Users keep information and programs in files. This makes file protection a
security mechanism that users can manipulate to refine the protection



afforded their data. Similarly, users manipulate the system through devices of
various types. Their protection is to some degree under the user’s control.
This section explores both.

30.3.1 Files

Users must protect confidentiality and integrity of the files to satisfy policy
component U2. To this end, they use the protection capabilities of the system
to constrain access. Complicating the situation are the interpretation of
permissions on the containing directories.

EXAMPLE: Peter is using a UNIX-based system. He wants to allow Deborah
to read the file design but prevent other users from doing so. He can use the
abbreviated ACL mechanism of standard UNIX systems14 to do this in three
ways.

14See Section 16.1.1, “Abbreviations of Access Control Lists.”

If Deborah and Peter are the only members of a group, Peter can make the
file owned by that group and readable by that group but not readable by
others.

If Deborah is the only member of a group and the UNIX system semantics
allow the owner of a file to give the file to a group of which the owner is not a
member, Peter can give group ownership of the file to Deborah’s group and
then set the group ownership privileges as described above.

An alternative approach is to set permissions on the containing directory.
Peter can set the permissions of the directory to allow search access only to
himself and to the group of which Deborah is the only member by turning on
read and execute permission for the group owner of the directory. Then the
protections of the file can allow anyone to read the file. Because only Peter
and Deborah can search the directory (the execute permission), only they can
reach the file.



This example illustrates the cumbersome nature of abbreviated ACLs (see
Exercise 3; Exercise 4 explores an approach to the situation in which Peter
and Deborah are the only members in common to two groups). Ordinary
ACLs make the task considerably simpler.

EXAMPLE: The Windows 10 access control lists15 allow Peter to give Deborah
access directly. Peter creates an ACL for design with two entries:

15See Section 16.1.4, “Example: NTFS and Access Control Lists.”

(Peter, full control) (Deborah, read)

The semantics of Windows 10 disallow access to any user or group omitted
from the ACL. Hence, only Peter and Deborah can access the file.

Users can control several aspects of file protection. The remainder of this
section explores some of these aspects.

30.3.1.1 File Permissions on Creation

Many systems allow users to specify a template of permissions to be given to
a file when it is created. The owner can then modify this set as required.

EXAMPLE: When Roger creates a directory on Windows 10, it inherits the
ACL of its parent directory.

UNIX-like systems take an alternative approach. A user can identify specific
permissions to be denied on creation.

The variable umask contains a set of permissions to be disabled. It uses the
nine-bit format of the standard UNIX protection mask, in which the first set
of three bits corresponds to the owner, the second set corresponds to the
group, and the third set corresponds to others (everyone except the owner
and members of the group). The first bit in each triplet controls read access,
the second bit controls write access, and the third bit controls execute access.



So, if a user sets her umask to 022, then, when she creates a file, group and
other write permissions are turned off, regardless of the permissions she
requested. If she wants the group members to have write access, she can use a
command or system call such as chmod to enable that access. (See Exercise
5.)

30.3.1.2 Group Access

Group access provides a selected set of users with the same access rights.16

The problem is that the membership of the group is not under the control of
the owner of the file. This has an advantage and a disadvantage.

16See Section 15.4, “Groups and Roles.”

The advantage arises when the group is used as a role.17 Then, as users are
allowed to assume the role, their access to the file is altered. Because the
owner of the file is concerned only with controlling access of those role users,
reconfiguration of the access to the role reconfigures user access to the file,
which is what the user wants.

17See Section 15.4, “Groups and Roles.”

EXAMPLE: Tom is working on a project to develop the next generation of
widgets, called Widget-NG. All members of the Widget-NG design team are in
the group widgetngd. The files that contain the design are group-owned by
widgetngd, and the members of that group can read from and write to the
file.

Even when the membership of the group changes, the function of the group
does not. Hence, the new users are given access to the Widget-NG
information. The group ownership mechanism provides that access.

The disadvantage arises when a group is used as a shorthand for a set of
specific users. If the membership of the group changes, unauthorized users
may obtain access to the file, or authorized users may be denied access to the



file.

EXAMPLE: Maria wants her friends Anne and Joan to have access to the file
movies. She has the system administrator create a group called maj, which
contains those three users, and makes the file group-owned, readable, and
writable by the group maj.

The system administrator is later asked to create a group containing Maria,
Anne, Joan, and Lorraine. He notices that the group maj contains three of
those four users, and he simply adds Lorraine to the group. Now Lorraine can
read and alter the file movies, even though Maria never intended for her to do
so.

In general, users should limit access as much as possible when creating new
files. So ACLs and C-Lists should include as few entries as possible, and
permissions for each entry should be as restrictive as possible. Constructs
such as the umask should be set to deny permissions to as many users as
possible (in the specific case of UNIX systems, umask should deny all
permissions to all but the owner, unless there are specific reasons to set it
differently).

30.3.1.3 File Deletion

A user deletes a file. Either the file data or the file name is discarded. The
effects of these differ widely.

Computer systems store files on disk. The file attribute table contains
information about the file. The file mapping table contains information that
allows the operating system to locate the disk blocks that compose the file.
Systems represent a file being in a directory in a variety of ways. All involve
an entry in the directory for that file, but the entry may contain attribute
information (such as permissions and file type) or may merely point to an
entry in the file attribute table.



Definition 30–1. A direct alias is a directory entry that points to (names)
the file. An indirect alias is a directory entry that points to a special file
containing the name of the target file. The operating system interprets the
indirect alias by substituting the contents of the special file for the name of
the indirect alias file.

All direct aliases that name the same file are equal. Each direct alias is an
alternative name for the same file.18

18See Section 15.2, “Files and Objects.”

The representation of containment in a directory affects security. If each
direct alias can have different permissions, the owner of a file must change
the access modes of each alias in order to control access. To avoid this, most
systems associate the file attribute information with the actual data, and
directory entries consist of a pointer to the file attribute table.

When a user deletes a file, the directory entry is removed. The system tracks
the number of directory entries for each file, and when that number becomes
0, the data blocks and table entries for that file are released. This means that
deleting a file does not ensure that the file is unavailable; it merely deletes the
directory entry.

EXAMPLE: Anna uses a UNIX-based system. She has a program runasanna
that is setuid to herself.19 She wishes to delete it so that no one can use it.
However, if she executes the command

19See Section 15.3, “Users.”

rm runasanna

she will delete the directory entry for that file. If no one else has a direct alias
(or, in UNIX terminology, a hard link) to the file, it will be removed from the
system.



Sandra, however, has made a direct alias to the file. Anna has deleted the file,
but there is still a directory entry (Sandra’s direct alias) corresponding to the
file, so the file has not been deleted. Sandra can still execute the program.
Because it is still setuid to Anna, the program runs with Anna’s, not Sandra’s,
permissions.

On UNIX systems, Anna can delete the file from Sandra’s directory only if
Sandra has given Anna write permission to the directory. To prevent anyone
from using the program, Anna must change the permissions of the program
to disable it. She can then delete her direct alias. The first line turns off all
access permissions to the file, including the setuid permission.

chmod 000 runasanna
rm runasanna

Sandra will retain her alias, and the program will still reside on disk, but it
will be useless.

The second issue affecting file deletion is persistence. When a file is deleted,
its disk blocks are returned to the pool of unused disk blocks, and they may
be reused. However, the data on them remains, and if an attacker can read
those blocks, he may read information that was intended to be confidential.
When sensitive files are deleted, the contents should be erased before
deletion.20

20See, for example, Section 22.2.1.1, “TCSEC Functional Requirements” and
Section 22.7.3, “CC Security Functional Requirements.”

EXAMPLE: Many Windows and Macintosh system utilities programs have
mechanisms for “wiping” files before they are deleted. These mechanisms
overwrite the contents of the file with a bit pattern. The patterns used, and
the number of times the contents of the file are overwritten, are configurable.
Some versions of the rm (file deletion) command on UNIX systems have a
similar option.



The third issue lies in the difference between direct and indirect aliases.
When a command that affects a file is executed, it may have different effects
depending on whether the file is a direct alias or an indirect alias. This may
mislead a user into believing that certain information has been protected or
deleted when in fact the protection or deletion applied only to the indirect
alias and not to the file itself.

EXAMPLE: Suppose Angie executes a command to add read permission to a
file for Lucy. If the file is a direct alias, Lucy will be able to read the contents
of the file, but if it is an indirect alias, does Lucy have permission to read the
file or the indirect alias file? The answer depends entirely on the semantics of
the system. The semantics may not be consistent. For example, on Fedora
Linux release 25, the chmod command changes the permissions of the file
named by the indirect alias, whereas the rm command deletes the indirect
alias file itself.

30.3.2 Devices

Users communicate with the system through devices. The devices may be
virtual, such as network ports, or physical, such as terminals. Policy
components U1 and U4 require that these devices be protected so that the
user can control what commands are sent to the system in her name and so
that others are prevented from seeing her interactions.

30.3.2.1 Writable Devices

Devices that allow any user to write to them can pose serious security
problems. Unless necessary for the correct functioning of the system, devices
should restrict write access as much as possible.21 Two examples will
demonstrate why.

21See Section 14.2.1, “Principle of Least Privilege.”

EXAMPLE: Many systems have tape drives set so that anyone can write to



them. When a process begins writing, the ACL of the device changes so that
only that process (or the user executing the process) can write to the device.
However, between the mounting of the media and the execution of the
process is an interval during which another user’s process can access the tape
drive and read, or overwrite, the tape. For this reason, users should always
write-protect mounted media unless they are to be altered.22 If possible,
processes should be attached to such devices, or the devices should be locked
to prevent anyone except the user from accessing them, before the media are
mounted.

22See Section 14.2.2, “Principle of Fail-Safe Defaults.”

EXAMPLE: If any user can write to another user’s terminal, an attacker can
erase the terminal screen by writing an appropriate control sequence to it. On
some early UNIX systems, such a denial of service attack could terminate
sessions because the attacker could set the communications speed of the
terminal line to 0. The terminal session would immediately terminate [213].

The development network users have a default configuration that denies
write privileges to everyone except the user of a terminal.

30.3.2.2 Smart Terminals

A smart terminal provides built-in mechanisms for performing special
functions. Most importantly, a smart terminal can perform a block send.
Using this mode, a process can instruct a terminal to send a set of characters
that are printed on the screen. The instructions are simply a sequence of
characters that the process sends to the terminal. This can be used to implant
a Trojan horse.23

23See Section 23.2, “Trojan Horses.”

EXAMPLE: Robert wants to trick Craig into executing the command



chmod 666 .profile

so that Robert can add commands to Craig’s startup file. Robert carefully
crafts a letter that contains the following.

Dear Craig,
Please be careful. Someone may ask you to execute
chmod 666 .profile
You shouldn’t do it!
Your friend,
Robert
<BLOCK SEND (-3,18), (-3,18)><BLOCK SEND (-4,0),(-4,18)><CLEAR>

The sequence

<BLOCK SEND (a,b ), (c, d)>

sends all characters from screen position (a,b) to position (c,d) to the system,
as though the user had typed them. On Craig’s terminal, a newline is stored as
an invisible character at the end of each line. The sequence

<CLEAR>

clears the terminal screen.) When Craig reads this letter, the command

!chmod 666 .profile

will be sent to the system as though the user had typed it. In this particular
mail reading program, the “!” causes the mail program to send the rest of the
line to a command interpreter. That interpreter promptly executes the
forbidden command and clears the screen to hide the visible traces of the
command.

The difference between a smart terminal and a writable terminal is subtle.



Only the user of the terminal need have write access to the smart terminal,
whereas the earlier attacks required the attacker as well as the user of the
terminal to be able to write to the terminal. An attacker must therefore trick
the user into reading data in order to spring the smart terminal attack. This
requires malicious logic (or, in this context, malicious data).24

24See Chapter 23, “Malicious Logic.”

30.3.2.3 Monitors and Characters

A more subtle form of this attack involves the use of Unicode characters that
resemble, but are not, Latin characters [515]. This attack, called an
international domain name homograph attack, is particularly effective in
phishing attacks.25

25See Section 23.6.6, “Phishing.”

EXAMPLE: As in the example in Section 23.6.6, Heidi banks at Big Bank,
with a URL of www.bigbank.com. She receives an email from the bank that
says she must go the the bank’s web page in the next 3 days to verify her
telephone number, or the bak will disable her account. The letter contains a
URL of the page she is to go to:

<a href=“https://www.bigbank.com”>https://www.bigbank.com</a>

She carefully checks the underlying URL, and sees the above. Believing it is
safe, she clicks on the link. And as in the earlier example, she goes to the
attackers’ web site — because the “a” in the actual URL is a Cyrillic letter, not
the Latin letter that the bank uses.

30.3.2.4 Monitors and Window Systems

Window systems provide a graphical user interface to a system. Typically, a
process called the window manager controls what is displayed on the



monitor and accepts input from input devices. Other processes, called clients,
register with the window manager. They can then receive input from the
window manager and send output to the window manager. The window
manager draws the output on the monitor screen if appropriate. The window
manager is also responsible for routing input to the correct client.

The obvious question is how the window manager determines which clients it
may talk to. If an attacker is able to register a client with the window
manager, the attacker can intercept input and send bogus output to the
monitor.

EXAMPLE: In some versions of the X window system [750], it was possible
for an attacker to overlay an invisible window the size of the monitor screen.
The attacker could then record all mouse motions and keystrokes from that
monitor and then transmit them to the appropriate window on the screen.
The effect was to record everything, including passwords and cryptographic
keys. Effectively, this was a keylogger.

Window systems can use any of the access control mechanisms described in
Chapter 16 to control access to the window manager. The granularity of the
access control mechanism varies among different window systems.

EXAMPLE: The X window system controls access on the basis of host name
or possession of a token [1401]. If access is granted to the window manager,
the client may control the display. The window manager cannot control which
parts of the display, or which clients, the new client communicates with. The
X window system offers two modes of control. Neither provides any
confidentiality.

The first mode, called the xhost method, determines the name of the host
from which the client is trying to connect.26 The window manager then
checks a list of hosts from which processes are authorized to connect. If the
process comes from one of those hosts, access is granted. Otherwise, access is
denied.



26See Section 15.6.1, “Host Identity.”

The second mode, called the xauth method, requires that a process be able to
supply a fixed random number (called a magic cookie).27 When the X window
manager starts, it creates (or is given) a magic cookie. This cookie is stored in
the file .Xauthority in the user’s home directory. Any client that attempts to
connect to the window manager for that user’s display must supply that
magic cookie. If the process is local and is run by the user, it can obtain the
magic cookie directly from the .Xauthority file. If the process is to be run on a
remote host, the user must ensure that the process has the magic cookie
before it connects to the window manager (this is usually done by copying the
.Xauthority file to the remote system).

27See Section 15.6.2, “State and Cookies.”

30.4 Processes

Processes manipulate objects, including files. Policy component U3 requires
the user to be aware of how processes manipulate files. This section examines
several aspects of this requirement.

30.4.1 Copying and Moving Files

Copying a file duplicates its contents. The semantics of the copy command
determine if the file attributes are also copied. If the attributes are not copied,
the user may need to take steps to preserve the integrity and confidentiality of
the file.

EXAMPLE: Suppose Mona Anne wants to copy the file xyzzy on a UNIX
system. She gives the following command.

cp xyzzy plugh

If the file plugh does not exist, this command creates it and copies the



contents of xyzzy into it. The permissions will be the same as for xyzzy,
except that the setuid and setgid attributes will be discarded (see Section
30.4.5).

If the file plugh exists, the command copies the contents of xyzzy into it. It
does not alter the permissions of plugh. This is a security problem, because if
xyzzy is not readable by everyone but plugh is, the contents of xyzzy will no
longer be confidential because anyone reading plugh will learn them.

Similarly, sometimes the semantics of moving files involve copying a file and
deleting the original copy. In this case, the file attributes of the move
command follow those of the copy command. Otherwise, the move command
may preserve the attributes of the original command.

EXAMPLE: Now Mona Anne decides to move the file plugh to another
directory. She gives the command

mv plugh /usr/monaanne/advent

If the directory resides in the same file system, the direct alias is deleted from
the current directory and placed in the directory /usr/monaanne/advent.
Otherwise, the mv command executes:

cp plugh /usr/monaanne/advent/plugh
rm plugh

In the first case, the permissions of plugh are preserved. In the second, those
permissions may be changed, as noted above.

The semantics of the commands, and how well the user knows those
semantics and can take steps to handle potential security problems, affect
their ability to satisfy policy component U3.

30.4.2 Accidentally Overwriting Files



Part of policy component U3 is to protect users from themselves.28

Sometimes people make mistakes when they enter commands. These
mistakes can have unpleasant consequences.

28See Section 14.2.2, “Principle of Fail-Safe Defaults.”

EXAMPLE: Scout wants to delete all the files in her directory whose names
end in the characters “.o”. She uses the pattern “*.o”to match these file
names. The “*” is a wildcard that matches 0 or more characters, so the
pattern is read as “all file names that end in .o”. Unfortunately, she mistypes
the command, putting a space between the “*” and the “.o” accidentally:

rm * .o

This command says to delete all files in the current directory, and the file “.o”.
Scout will discover this when the command prints the error message

.o: No such file or directory

after all the files have been deleted.

Many programs that delete or overwrite files have an interactive mode.
Before any file is deleted or overwritten, the program requests confirmation
that the user intends for this to happen.29 Policy component U3 strongly
suggests that these modes be used. In fact, the development workstations
have these modes set in user start-up files. The users can disable the modes,
but generally do not.

29See Section 14.2.8, “Principle of Least Astonishment.”

30.4.3 Encryption, Cryptographic Keys, and Passwords

The basis for encryption is trust. Cryptographic considerations aside, if the
encryption and decryption are done on a multiuser system, the cryptographic



keys are potentially visible to anyone who can read memory and, possibly,
swap space. Anyone who can alter the programs used to encipher and
decipher the files, or any of the supporting tools (such as the operating
system), can also obtain the cryptographic keys or the cleartext data itself.
For this reason, unless users trust the privileged users,30 and trust that other
users cannot acquire the privileges needed to read memory, swap space, or
alter the relevant programs, the sensitive data should never be on the system
in cleartext.31

30Here, “privileged users” means those who can read memory, swap space, or
alter system programs.

31See Section 14.2.1, “Principle of Least Privilege.”

EXAMPLE: PGP protects a user’s private key by enciphering it with a pass-
phrase. Mary Ann receives a letter that the sender has enciphered for
confidentiality using PGP. She enters her pass-phrase to allow the PGP
deciphering program to obtain her private key. It uses her key to decipher the
data encryption key, and then the message. Unknown to Mary Ann, Eve has
broken into her system and has implanted a keystroke recording module.
When Eve retrieves the log of the session, she will have the pass-phrase, from
which she can obtain Mary Ann’s private key, and thus her identity (as far as
Mary Ann’s PGP recipients are concerned).

The saving of passwords on a multiuser system suffers from the same
problem. In addition, some programs that allow users to put passwords into a
file do not rely on enciphering the passwords; they simply require the user to
set file permissions so that only the owner can read the file.

EXAMPLE: An implementation of the ftp client under some versions of the
UNIX system allows users to keep account names, host names, and
passwords in a file called .netrc. Kathy uses the remote host gleep to store
files, so she often connects using ftp. Her .netrc file looks like this:



machine gleep
login kathy
password oi4ety98

The security risks of keeping her information in this file were brought home
when one day ftp ignored the file. On investigation, Kathy determined that
the .netrc file was readable by all users on the system. By looking at her
previously typed commands, Kathy realized that she had mistyped one of
them. The unfortunate effect of that command was to make the .netrc file
readable.

The circumstances under which a password should reside in a system are
few.32 Unless unavoidable, no password should reside unenciphered in a
system, either on disk or in memory. The Drib has modified its ftp programs
to ignore .netrc files. This discourages their use. Furthermore, system
administrators have embedded a check for such files in their audit tools that
check the systems.

32See Section 14.2.2, “Principle of Fail-Safe Defaults.”

30.4.4 Start-up Settings

Many programs, such as text editors and command interpreters, use start-up
information. These variables and files contain commands that are executed
when the program begins but before any input is accepted from the user. The
set of start-up files, and the order in which they are accessed, affect the
execution of the program.

EXAMPLE: When a user logs in to a FreeBSD 11.0 system, her login shell sh
initializes itself by accessing start-up information in the following order:

1. The contents of the start-up file /etc/profile

2. The contents of the start-up file .profile in the user’s home directory



3. The contents of the start-up file named in the environment variable ENV

If any of these files do not exist, the step is skipped.

The security threat lies in the program’s trust of the start-up information. For
example, if the environment variable ENV were to name a file that an
untrusted user could alter, then that user could insert commands to delete
files or give the attacker privileges to perform actions that violate policy. This
Trojan horse can be difficult to detect, especially because it can erase itself
after execution but before the shell allows interaction.

30.4.5 Limiting Privileges

Users should know which of their programs grant additional privileges to
others. They should also understand the implications of granting such
privileges.

EXAMPLE: Part of Toni’s job as a secretary to the manager of the Drib
Development Group is to read mail sent to her boss, Fran. Because Fran knew
about the dangers of sharing passwords, she copied the UNIX command
interpreter into a file that she owned, and turned on the setuid permission.33

This allowed Toni to read Fran’s mail.

33See Section 15.3, “Users.”

Toni quickly discovered that the command interpreter allowed her to do
anything as Fran. She suggested to Fran that perhaps some other approach
could be found.34 After some discussion, the two decided to forward to Toni a
copy of every letter that Fran received. This enabled Toni to process Fran’s
mail without having access to her account.

34See Section 14.2.2, “Principle of Least Privilege.”

The two had considered an alternative approach—to make a copy of the mail
reading program setuid to Fran. Unfortunately, the mail program had an



escape mechanism that allowed the user to pass commands to a command
interpreter—and that had the same effect as giving Toni the shell.

30.4.6 Malicious Logic

Section 29.2.2 discusses mechanisms for preventing users from bringing
malicious software from outside the development network. However, insiders
can write malicious programs in order to gain additional privileges or to
sabotage others’ work. Also, if an attacker breaks in, he may not acquire the
desired privileges and may leave traps for authorized users to spring. Hence,
users need to take precautions.

Definition 30–2. A search path is a sequence of directories that a system
uses to locate an object (program, library, or file).

Because programs rely on search paths, users must take care to set theirs
appropriately.

EXAMPLE: Johannes’ coworker wants to see Johannes’ confidential designs.
The coworker has created a small program called ls that will copy the designs
to a public area, from which the coworker can retrieve them. She has placed
copies of ls in various publicly writable directories, including /tmp. Johannes
changed to that directory to clean up files he had left there. Johannes’
program search path was

. /bin /usr/bin /usr/local/bin

where “.” means the current directory. Johannes executed the ls program.
The command interpreter first looked in the current directory for an
executable named ls, found it, and executed it. The coworker got the desired
files.

Some systems have many types of search paths. In addition to searching for
executables, a common search path contains directories that are used to



search for libraries when the system supports dynamic loading. In this case,
an attacker can create a new library that the unsuspecting victim will load,
much as Johannes executed the wrong program in the example above.35

35See Section 24.2.9, “Example: Penetrating a UNIX System.”

Part of policy component U4 requires that the users have only trusted
directories in their search paths. Here, “trusted” means that only trusted
users can alter the contents of the directory. The default start-up files for all
the development workstation users have search paths set in this way.36

36See Section 14.2.2, “Principle of Fail-Safe Defaults.”

30.5 Electronic Communications

Electronic communications deserves discussion to emphasize the importance
of users understanding basic security precautions. Electronic mail may pass
through firewalls (as the Drib policy allows; see Section 28.3). Although it can
be checked for malicious content, such checking cannot detect all forms of
such content.37 Finally, users may unintentionally send out more material
than they realize. Hence, users must understand the threats and follow the
procedures that are appropriate to the site policy.

37See Section 23.8, “Theory of Malicious Logic.”

30.5.1 Automated Electronic Mail Processing

Some users automate the processing of electronic mail. When mail arrives, a
program determines how to handle it. The mail may be stored for the user, or
it may be interpreted as a sequence of commands causing execution of either
programs already on the system or part of the content of the message, or
both. The danger is that the execution may have unintended side effects.

EXAMPLE: The NIMDA worm [1237] used several methods to propagate
itself. One method involved the use of e-mail. The worm would mail itself to a



user on the target system, encapsulated as an attachment to a letter. When
the user opened the letter, the default configuration of the mail programs
involved would pass the attachment to another program to be displayed. The
other program would execute the code comprising the worm, thereby
infecting the system.

The WannaCry ransomware, which was also a worm, worked similarly
[429,1924]. When U.K. National Health Service personnel opened an email
attachment, the WannaCry program was started. It spread among systems by
exploiting a vulnerability in the implementation of SMB on various types of
Windows systems. It is believed to have spread to other institutions through a
combination of phishing and exploiting the SMB vulnerability.

Electronic mail may come from untrusted sources. Hence, in general, the
contents of e-mail messages are not trustworthy. Mail programs should be
configured not to execute attachments, or indeed any component of the
letter.38 The trust in the result of such execution is the same as the trust the
reader puts in the data contained in the mail message.

38See Section 23.9.2, “Data and Instructions.”

30.5.2 Failure to Check Certificates

Electronic signatures can be misleading. In particular, a certificate may
validate a signature, but the certificate itself may be compromised, invalid, or
expired. Mail reading programs must notify the user of these problems, as
well as provide a mechanism for allowing the user to validate certificates.

EXAMPLE: Someone pretending to be a Microsoft employee obtained two
certificates that could be used to sign programs under the name of Microsoft
Corporation [2262].39 The issuer (not Microsoft Corporation) immediately
revoked both certificates and placed them on the Certificate Revocation
List,40 but sites that had not received the revocation notice would accept the
certificates as valid and could execute malicious logic that the attackers had



signed. Although the mechanism involved used Web pages, the generalization
to electronic mail is obvious.

The Drib has enhanced all mail reading programs that use certificates to
validate the certificates as far as possible. The programs then display the
certificates that could not be validated, to allow users to determine how to
proceed. It does so in a form designed to minimize the threat of “click-
through,” where users simply click acceptance without reading the warning or
error messages because there are too many of them.

30.5.3 Sending Unexpected Content

Attachments to electronic mail may contain data of which the sender is not
aware. When these files are sent, the recipient may see more than the sender
intended.

EXAMPLE: A sales director once sent her sales team a chart showing the
effects of a proposed reorganization. Unfortunately, she did not realize that
the spreadsheet in which she had created the chart also contained
confidential information such as names and addresses, salaries, and personal
comments about each employee. The information disrupted the efficiency of
the sales force [96].

Some programs perform “rapid saves,” in which data is appended to the file
and pointers are updated. When the program rereads the file, the document
appears as it was last saved, and the extraneous data is ignored. However, if
the file is sent to a different system, or if other programs are used to access
the file, the “deleted” contents will be accessible.

The users of the development workstations are periodically warned about this
risk. Furthermore, all programs with “rapid saves” have them disabled by
default.41

30.6 Summary



This chapter covered only a few aspects of how users can protect the data and
programs with which they work. The security policy of the site and the desires
of the user combine to provide a personalized, if unwritten, security policy.

Well-chosen reusable passwords, or (even better) one-time passwords, inhibit
unauthorized access. Other authentication mechanisms allow users to control
access to some degree on the basis of the host of origin and cryptographic
keys (although in some cases the system administrator can override these
access controls). Users can prevent interference with their sessions by using
enciphered, integrity-checked sessions and by physically securing the
monitors or terminals they use to interact with the system (as well as the
system of origin, if they are working remotely).

Basic file permission mechanisms help protect the confidentiality and
integrity of data and programs. The user can check programs for an
“interactive” mode that will require verification of any request to delete or
overwrite files. Other aspects of file handling, such as erasing files before
deleting them, and verifying that deletion of a file does not delete only an
alias and leave the file accessible, also affect file security.

Equally important are the controls on devices. The sophistication of most
modern equipment allows devices to be programmed from the computer to
which they are connected. Hence, devices should be configured to refuse
unexpected or untrusted connections. Ideally, access control mechanisms will
provide sufficient granularity to allow access based on users or processes.

Processes act on the user’s behalf, and can perform any action that the user
requests. Malicious logic, or corrupt input, can cause the process to act in
ways that the user does not want. Users can minimize this risk by setting up
their environments carefully and by not executing untrusted programs or
giving untrusted data to trusted programs.

30.7 Research Issues



There is a tension between allowing security features to be highly
configurable and expecting users to configure them correctly (as defined by
adherence to a security policy). Users view security as an infrastructure
measure, designed to support work, and not as an end goal in itself. Because
their primary goal is not security, many users find security mechanisms
cumbersome and difficult to use. Designing mechanisms that can be readily
understood, and that can be configured with a minimum of effort by
untrained users, is a critical area of research that has received little attention.
Striking the right balance between configurability and usability is a topic that
combines security, psychology, and user interfaces.

30.8 Further Reading

Discussions of user level mechanisms in various systems abound. Books on
the security of various systems (such as Gibson [771], Garfinkel, Spafford, and
Schwartz [750], Kalsi [1001],and Soyinka [1806]) focus on the system
administration aspects of security but also describe user level mechanisms.
Books on how to use the systems (such as Pogue [1534]) cover the material
more effectively for ordinary users.

Zurko and Simon discuss the notion of user-centered security as fundamental
to secure systems [2125]. This theme has gained acceptance with the
recognition of the importance of the user in security. West [2010] gives a
good overview of the problem. Security and usability are often seen to
conflict. Thus, users choose the action that provides the most direct,
immediate benefit. Herley [901] argues that this leads to the rejection of
security advice because users feel that understanding and following the
advice is a greater burden that dealing with an attack that, to them, appears
unlikely. Another study [653] examines how gaps in perception motivate
users’ security decisions. A second factor is that many security indicators and
warnings are simply ineffective. One study [619] examined passive alerts
(which do not interrupt the user’s task) and active warnings (which force the
user to interrupt their task to deal with the warning) in web browsers, and



found that most participants heeded active warnings about a spearphishing
attack, whereas most ignored passive alerts. Designing warnings that meet
users’ mental models to better communicate risk in personal firewalls
increased the probability that users would act on the warnings [1563].
Acquisti and his colleagues provide an insightful survey and synthesis of
many results [13]. Other studies have examined the mental models that guide
home computer users in their security interactions [1560, 1987, 1988] and the
effect of social influences in those interactions [503, 504, 620].

30.9 Exercises

1. Consider the isolated system described in the first example in Section
30.2.1. If custodians and other people not authorized to use the isolated
system were allowed into the room without observation, would that violate
policy component U1? Justify your answer.

2. Reconsider the lock program discussed in Section 30.2.3.

(a) The program requires a user to choose a password (rather than using her
login password) to lock the screen. Does this violate the principle of least
astonishment (see Section 14.2.8)? Justify your answer.

(b) If a user forgets her password, how might she terminate the program
without using the master password? (Hint: Although she cannot use that
terminal, she can use another terminal to access the system.)

(c) How might a user determine the master password? Discuss steps that the
implementer could take to prevent such a discovery. In particular, could a
per-system master password be implemented (rather than a single master
password for the program)? How?

3. The example of Peter and Deborah on the UNIX system in Section 30.3.1
assumes that Deborah is the only member, or that Deborah and Peter are the
only members, of a group. If this is not so, can Peter give only himself and



Deborah access to the file by using the abbreviated ACL? Explain either how
he can or why he cannot.

4. Suppose that Deborah, Peter, and Kathy are the only members of the group
proj and that Deborah, Peter, and Elizabeth are the only members of the
group exeter. Show how Peter can restrict access to the file design to himself
and Deborah using only abbreviated ACLs. (Hint: Consider both design and
its containing directory.)

5. The UNIX umask disables access by default. The Windows scheme enables
it. Discuss the implications of enabling access by default and of disabling
access by default with respect to security. In particular, which of Saltzer and
Schroeder’s design principles (see Chapter 14, “Design Principles”) is violated
by either enabling or disabling access by default?

6. Many UNIX security experts say that the umask should be set to 077 (that
is, to allow access only to the owner). Why? What problems might this cause?

7. The problem in the example in section 23.6.6 is that there is no visual
difference between the Cyrillic character “a” and the Latin character “a”.
Thus, Heidi cannot tell that the displayed URL is not the same as the actual
URL.

(a) What actions can Heidi take to ensure that the attack fails?

(b) How could the web browser be modified to ensure Heidi knows the two
URLs differ?

(c) How could the web browser be modified to detect this attempted attack?

8. For file deletion programs, the goal of an interactive mode is to enable the
user to change his or her mind and not delete certain files. Many systems do
not provide such a mode on their file deletion programs. Instead, they move
deleted files to a holding area. The user can then use another command to
actually remove the files from the system. If the system runs out of file system



space, it will then automatically delete enough files in the holding area to
create the necessary room. Compare and contrast these two approaches.
What are the advantages of the interactive mode over the other method, and
what are the disadvantages?



Chapter 31. Program Security
CLOWN: What is he that builds stronger than either the mason, the 
shipwright, or the carpenter?

OTHER CLOWN: The gallows-maker; for that frame outlives a thousand 
tenants.

— Hamlet, V, i, 42–45.

The software on systems implements many mechanisms that support 
security. Some of these mechanisms reside in the operating system, whereas 
others reside in application and system programs. This chapter discusses the 
design and implementation of a program to grant users increased privileges. 
It also presents common programming errors that create security problems, 
and offers suggestions for avoiding those problems. Finally, testing and 
distribution are discussed.

This chapter shows the development of the program from requirements to 
implementation, testing, and distribution.

31.1 Problem

The purpose of this chapter is to provide a glimpse of techniques that provide 
better than ordinary assurance that a program’s design and implementation 
satisfy its requirements. This chapter is not a manual on applying high-
assurance techniques. In terms of the techniques discussed in Part VI,
“Assurance,” this chapter describes low-assurance techniques.



However, given the current state of programming and software development,
these low-assurance techniques enable programmers to produce significantly
better, more robust, and more usable code than they could produce without
these techniques. So, using a methodology similar to the one outlined in this
chapter will reduce vulnerabilities and improve both the quality and the
security of code.

A specific problem will illustrate the methods in this chapter. On the Drib’s
development network infrastructure systems, numerous system
administrators must assume certain roles, such as bin (the installers of
software), mail (the manager of electronic mail), and root (the system
administrator). Each of these roles is implemented as a separate account,
called a role account. Unfortunately, this raises the problem of password
management. To avoid this problem, as well as to control when access is
allowed, the Drib will implement a program that verifies a user’s identity,
determines if the requested change of account is allowed, and, if so, places the
user in the desired role.

31.2 Requirements and Policy

The problem of sharing a password arises when a system implements
administrative roles as separate user accounts.

EXAMPLE: Linux systems implement the administrator role as the account
root (and several other accounts that have more limited functionality).1 All
individuals who share access to the account know the account’s password. If
the password is changed, all must be notified. All these individuals must
remember to notify the other individuals should they change the password.

An alternative to using passwords is to constrain access on the basis of
identity and other attributes. With this scheme, a user would execute a special
program that would check the user’s identity and any ancillary conditions. If
all these conditions were satisfied, the user would be given access to the role



account.

31.2.1 Requirements

The first requirement comes directly from the description of the alternative
scheme above. The system administrators choose to constrain access through
known paths (locations) and at times of day when the user is expected to
access the role account.

Requirement 31.1. Access to a role account is based on user, location, and
time of request.

Users often tailor their environments to fit their needs. This is also true of
role accounts. For example, a role account may use special programs kept in a
subdirectory of the role account’s home directory. This new directory must be
on the role account’s search path, and would typically be set in the start-up
file executed when the user logged in. A question is whether the user’s
environment should be discarded and replaced by the role account’s
environment, or whether the two environments should be merged. The
requirement chosen for this program is as follows.

Requirement 31.2. The settings of the role account’s environment shall
replace the corresponding settings of the user’s environment, but the
remainder of the user’s environment shall be preserved.

The set of role accounts chosen for access using this scheme is critical. If
unrestricted access is given (essentially, a full command interpreter), then
any user in the role that maintains the access control information can change
that information and acquire unrestricted access to the system. Presumably,
if the access control information is kept accessible only to root, then the users
who can alter the information—all of whom have access to root—are trusted.
Thus:

Requirement 31.3. Only root can alter the access control information for



access to a role account.

In most cases, a user assuming a particular role will perform specific actions
while in that role. For example, someone who enters the role of oper may
perform backups but may not use other commands. This restricts the danger
of commands interacting with the system to produce undesirable effects
(such as security violations) and follows from the principle of least privilege.2

This form of access is called “restricted access.”

Requirement 31.4. The mechanism shall allow both restricted access and
unrestricted access to a role account. For unrestricted access, the user shall
have access to a standard command interpreter. For restricted access, the
user shall be able to execute only a specified set of commands.

Requirement 31.4 implicitly requires that access to the role account be
granted to authorized users meeting the conditions in Requirement 31.1.
Finally, the role account itself must be protected from unauthorized changes.

Requirement 31.5. Access to the files, directories, and objects owned by
any account administered by use of this mechanism shall be restricted to
those authorized to use the role account, to users trusted to install system
programs, and to root.

We next check that these requirements are complete with respect to the
threats of concern.

31.2.2 Threats

The threats against this mechanism fall into distinct classes. We enumerate
the classes and discuss the requirements that handle each threat.

31.2.2.1 Group 1: Unauthorized Users Accessing Role Accounts

There are four threats that involve attackers trying to acquire access to role
accounts using this mechanism.



Threat 31.1. An unauthorized user may obtain access to a role account as
though she were an authorized user.

Threat 31.2. An authorized user may use a nonsecure channel to obtain
access to a role account, thereby revealing her authentication information to
unauthorized individuals.

Threat 31.3. An unauthorized user may alter the access control
information to grant access to the role account.

Threat 31.4. An authorized user may execute a Trojan horse (or other form
of malicious logic),3 giving an unauthorized user access to the role account.

Requirements 31.1 and 31.5 handle Threat 31.1 by restricting the set of users
who can access a role account and protecting the access control data.
Requirement 31.1 also handles Threat 31.2 by restricting the locations from
which the user can request access. For example, if the set of locations
contains only those on trusted or confidential networks, a passive wiretapper
cannot discover the authorized user’s password or hijack a session begun by
an authorized user. Similarly, if an authorized user connects from an
untrusted system, Requirement 31.1 allows the system administrator to
configure the mechanism so that the user’s request is rejected.

The access control information that Requirement 31.1 specifies can be
changed. Requirement 31.3 acknowledges this but restricts changes to trusted
users (defined as those with access to the root account). This answers Threat
31.3.

Threat 31.4 is more complex. This threat arises from an untrusted user,
without authorization, planting a Trojan horse at some location at which an
authorized user might execute it. If the attacker can write into a directory in
the role account’s search path, this attack is feasible. Requirement 31.2 states
that the role account’s search path may be selected from two other search
paths: the default search path for the role account, and the user’s search path



altered to include those components of the role account’s search path that are
not present. This leads to Requirement 31.5 which states that, regardless of
how the search path is derived, the final search path may contain only
directories (and may access only programs) that trusted users or the role
account itself can manipulate. In this case, the attacker cannot place a Trojan
horse where someone using the role account may execute it.

Finally, if a user is authorized to use the role account but is a novice and may
change the search path, Requirement 31.4 allows the administrators to
restrict the set of commands that the user may execute in that role.

31.2.2.2 Group 2: Authorized Users Accessing Role Accounts

Because access is allowed here, the threats relate to an authorized user
changing access permissions or executing unauthorized commands.

Threat 31.5. An authorized user may obtain access to a role account and
perform unauthorized commands.

Threat 31.6. An authorized user may execute a command that performs
functions that the user is not authorized to perform.

Threat 31.7. An authorized user may change the restrictions on the user’s
ability to obtain access to the account.

The difference between Threats 31.5 and 31.6 is subtle but important. In the
former, the user deliberately executes commands that violate the site security
policy. In the latter, the user executes authorized commands that perform
covert, unauthorized actions as well as overt, authorized actions—the classic
Trojan horse. Threat 31.6 differs from Threat 31.4 because the action may not
give access to authorized users; it may simply damage or destroy the system.

Requirement 31.4 handles Threat 31.5. If the user accessing the role account
should execute only a specific set of commands, then the access controls must
be configured to restrict the user’s access to executing only those commands.



Requirements 31.2 and 31.5 handle Threat 31.6 by preventing the
introduction of a Trojan horse, as discussed in the preceding section.

Requirement 31.3 answers Threat 31.7. Because all users who have access to
root are trusted by definition, then the only way for an authorized user to
change the restrictions on obtaining access to the role account is to implant a
back door (which is equivalent to a Trojan horse) or to modify the access
control information. But the requirement holds that only trusted users can do
that, so the authorized user cannot change the information unless he is
trusted—in which case, by definition, the threat is handled.

31.2.2.3 Summary

Because the requirements handle the threats, and because all requirements
are used, the set of requirements is both necessary and sufficient. We now
proceed with the design.

31.3 Design

To create this program, we build modules that fit together to supply security
services that satisfy the requirements. First, we create a general framework to
guide the development of each interface. Then we examine each requirement
separately, and design a component for each requirement.

31.3.1 Framework

The framework begins with the user interface and then breaks down the
internals of the program into modules that implement the various
requirements.

31.3.1.1 User Interface

The user can run the program in two ways. The first is to request unrestricted
access to the account. The second is to request that a specific program be run
from the role account. Any interface must be able to handle both.



The simplest interface is a command line. Other interfaces, such as graphical
user interfaces, are possible and may make the program easier to use.
However, these GUIs will be built in such a way that they construct and
execute a command line version of the program.

The interface chosen is

role role_account [ command ]

where role_account is the name of the role account and command is the
(optional) command to execute under that account. If the user wants
unrestricted access to the role account, he omits command. Otherwise, the
user is given restricted access and command is executed with the privileges of
the role account.

The user need not specify the time of day using the interface, because the
program can obtain such information from the system. It can also obtain the
location from which the user requests access, although the method used
presents potential problems (see Section 31.4.3.1). The individual modules
handle the remainder of the issues.

31.3.1.2 High-Level Design

The basic algorithm is as follows.

1. Obtain the role account, command, user, location, and time of day. If the
command is omitted, the user is requesting unrestricted access to the role
account.

2. Check that the user is allowed to access the role account

(a) at the specified location;

(b) at the specified time; and



(c) for the specified command (or without restriction).

If the user is not, log the attempt and quit.

3. Obtain the user and group information for the role account. Change the
privileges of the process to those of the role account.

4. If the user has requested that a specific command be run, overlay the child
process with a command interpreter that spawns the named command.

5. If the user has requested unrestricted access, overlay the child process with
a command interpreter.

This algorithm points out an important ambiguity in the requirements.
Requirements 31.1 and 31.4 do not indicate whether the ability of the user to
execute a command in the given role account requires that the user work
from a particular location or access the account at a particular time. This
design uses the interpretation that a user’s ability to run a command in a role
account is conditioned on location and time.

The alternative interpretation, that access only is controlled by location and
time, and that commands are restricted by role and user, is equally valid. But
sometimes the ability to run commands may require that users work at
particular times. For example, an operator may create the daily backups at 1
a.m. The operator is not to do backups at other times because of the load on
the system. The interpretation of the design allows this. The alternative
interpretation requires the backup program, or some other mechanism, to
enforce this restriction. Furthermore, the design interpretation includes the
alternative interpretation, because any control expressed in the alternative
interpretation can be expressed in the design interpretation.

Requirement 31.4 can now be clarified. The addition is in boldface.

Requirement 31.6. The mechanism shall allow both restricted access and
unrestricted access to a role account. For unrestricted access, the user shall



have access to a standard command interpreter. For restricted access, the
user shall be able to execute only a specified set of commands. The level of
access (restricted or unrestricted) shall depend on the user, the
role, the time, and the location.

Thus, the design phase feeds back into the requirements phase, here
clarifying the meaning of the requirements. It is left as an exercise for the
reader to verify that the new form of this requirement counters the
appropriate threats (see Exercise 2).

31.3.2 Access to Roles and Commands

The user attempting access, the location (host or terminal), the time of day,
and the type of access (restricted or unrestricted) control access to the role
account. The access checking module returns a value indicating success
(meaning that access is allowed) or failure (meaning that access is not
allowed). By the principle of fail-safe defaults, an error causes a denial of
access.

We consider two aspects of the design of this module. The interface controls
how information is passed to the module from its caller, and how the module
returns success or failure. The internal structure of the module includes how
it handles errors. This leads to a discussion of how the access control data is
stored. We consider these issues separately to emphasize that the interface
provides an entry point into the module, and that the entry point will remain
fixed even if the internal design of the module is completely changed. The
internal design and structures are hidden from the caller.

31.3.2.1 Interface

Following the practice of hiding information among modules,4 we minimize
the amount of information to be passed to the access checking module. The
module requires the user requesting access, the role to which access is
requested, the location, the time, and the command (if any). The return value



must indicate success or failure. The question is how this information is to be
obtained.

The command (or request for unrestricted access) must come from the caller,
because the caller provides the interface for the processing of that command.
The command is supplied externally, so the principles of layering require it to
pass through the program to the module.

The caller could also pass the other information to the module. This would
allow the module to provide an access control result without obtaining the
information directly. The advantage is that a different program could use this
module to determine whether or not access had been or would be granted at
some past or future point in time, or from some other location. The
disadvantage is a lack of portability, because the interface is tied to a
particular representation of the data. Also, if the caller of the module is
untrusted but the module is trusted, the module might make trusted
decisions based on untrusted data, violating a principle of integrity.5 So we
choose to have the module determine all of the data.

This suggests the following interface.

boolean accessok(role rname, command cmd);

where rname is the name of the requested role and cmd is the command to be
executed (or is empty if unrestricted access is desired). The routine returns
true if access is to be granted, and false otherwise.

31.3.2.2 Internals

This module has three parts. The first part gathers the data on which access is
to be based. The second part retrieves the access control information. The
third part determines whether the data and the access control information
require access to be granted.



The module queries the operating system to determine the needed data. The
real user identification data is obtained through a system call, as is the
current time of day. The location consists of two components: the entry point
(terminal or network connection) and the remote host from which the user is
accessing the local system. The latter component may indicate that the entry
point is directly connected to the system, rather than using a remote host.

Part I : Obtain user ID, time of day, entry point, and remote host.

Next, the module must access the access control information. The access
control information resides in a file. The file contains a sequence of records of
the following form.

role account
user names
locations from which the role account can be accessed
times when the role account can be accessed
command and arguments

If the “command and arguments” line is omitted, the user is granted
unrestricted access. Multiple command lines may be listed in a single record.

Part II : Obtain a handle (or descriptor) to the access control information.
The programmer will use this handle to read the access control records from
the access control information.

Finally, the program iterates through the access control information. If the
role in the current record does not match the requested role, it is ignored.
Otherwise, the user name, location, time, and command are compared with
the appropriate fields of the record. If they all match, the module releases the
handle and returns success.6 If any of them does not match, the module
continues on to the next record. If the module reaches the end of the access
control information, the handle is released and the module returns failure.
Note that records never deny access, but only grant it. The default action is to
deny. Granting access requires an explicit record.7



If any record is invalid (for example, if there is a syntax error in one of the
fields or if the user field contains a nonexistent user name), the module logs
the error and ignores the record. This again follows the principle of fail-safe
defaults, in which the system falls into a secure state when there is an error.

Part III : Iterate through the records until one matches the data or there are
no more records. In the first case, return success; in the second case, return
failure.

31.3.2.3 Storage of the Access Control Data

The system administrators of the local system are to control access to
privileged accounts. To keep maintenance of this information simple, the
administrators store the access control information in a file. Then they need
only edit the file to change a user’s ability to access the privileged account.
The file consists of a set of records, each containing the components listed
above. This raises the issue of expression. How should each part of the record
be written?

For example, must each entry point be listed, or are wildcards acceptable?
Strictly speaking, the principle of fail-safe defaults8 says that we should list
explicitly those locations from which access may be obtained. In practice, this
is too cumbersome. Suppose a particular user was trusted to assume a role
from any system on the Internet. Requiring the administrators to list all hosts
would be time-consuming as well as infeasible. Worse, if the user were not
allowed to access the role account from one system, the administrators would
need to check the list to see which system was missing. This would violate the
principle of least astonishment.9 Given the dynamic nature of the Internet,
this requirement would be absurd. Instead, we allow the following special
host names, both of which are illegal [1372].

*any* (a wildcard matching any system)

*local* (matches the local host name)



In BNF form, the language used to express location is

location ::= ‘(’ location ‘)’ | ‘not’ location | location ‘or’ location | basic

basic ::= ‘*any*’ | ‘*local*’ | ‘.’ domain | host

where domain and host are domain names and host names, respectively. The
strings in single quotation marks are literals. The parentheses are grouping
operators, the “not” complements the associated locations, and the “or”
allows either location.

EXAMPLE: A user is allowed to assume a role only when logged into the local
system, the system “control.fixit.com”, and the domain “watchu.edu”. The
appropriate entry would be

*local* | control.fixit.com | .watchu.edu

A similar question arises for times. Ignoring how times are expressed, how do
we indicate when users may access the role account? Considerations similar
to those above lead us to the following language, in which the keyword

*any*

allows access at any time. In BNF form, the language used to express time is

time ::= ‘(’ time ‘)’ | ‘not’ time | time ‘or’ time | time time | time ‘–’ time |
basic

basic ::= day_of_year day_of_week time_of_day | ‘*any*’

day_of_year ::= month [ day ] [ ‘,’year ] | nmonth ‘/’ [ day ‘/’ ] year | empty

day_of_week ::= ‘Sunday’ | . . . | ‘Saturday’ | ‘Weekend’ | ‘Weekday’ | empty

time_of_day ::= hour [ ‘:’ min ] [ ‘:’ sec ] [ ‘AM’ | ‘PM’ ] | special | empty



special ::= ‘noon’ | ‘midnight’ | ‘morning’ | ‘afternoon’ | ‘evening’

empty ::= ‘’

where month is a string naming the month, nmonth is an integer naming the
month, day is an integer naming the day of the month, and year is an integer
specifying the year. Similarly, hour, min, and sec are integers specifying the
hour, minute, and second. If basic is empty, it is treated as not allowing
access.10

EXAMPLE: A user is allowed to assume a role between the hours of 9 o’clock
in the morning and 5 o’clock in the evening on Monday through Thursday. An
appropriate entry would be

Monday-Thursday 9a.m.-5p.m.

This is different than saying

Monday 9a.m.-Thursday 5p.m.

because the latter allows access on Monday at 10 p.m., whereas the former
does not.

Finally, the users field of the record has a similar structure.

*any*

In BNF form, the language used to express the set of users who may access a
role is

userlist ::= ‘(’ userlist ‘)’ | ‘not’ userlist | userlist ‘,’ userlist | user

where user is the name of a user on the system.

These “little languages” are straightforward and simple (but incomplete; see
Exercise 5). Various implementation details, such as allowing abbreviations



for day and month names, can be added, as can an option to change the
American expression of days of the year to an international one. These points
must be considered in light of where the program is to be used. Whatever
changes are made, the administrators must be able to configure times and
places quickly and easily, and in a manner that a reader of the access control
file can understand quickly.11

The listing of commands requires some thought about how to represent
arguments. If no arguments are listed, is the command to be run without
arguments, or should it allow any set of arguments? Conversely, if arguments
are listed, should the command be run only with those arguments? Our
approach is to force the administrator to indicate how arguments are to be
treated.

Each command line contains a command followed by zero or more
arguments. If the first word after the command is an asterisk (“ * ”), then the
command may be run with any arguments. Otherwise, the command must be
run with the exact arguments provided.

EXAMPLE: Charles is allowed to run the install command when he accesses
the bin role. He may supply any arguments. The line in the access control file
is

/bin/install *

He may also copy the file log from the current working directory to the
directory /var/install. The line for this is

/bin/cp log /var/install/log

Finally, he may run the id command to ensure that he is working as bin. He
may not supply other arguments to the command, however. This would be
expressed by



/usr/bin/id

The user must type the command as given in the access control file. The full
path names are present to prevent the user from accidentally executing the
command id with bin privileges when id is a command in the local directory,
rather than the system id command.12

31.4 Refinement and Implementation

This section focuses on the access control module of the program. We refine
the high-level design presented in the preceding section until we produce a
routine in a programming language.

31.4.1 First-Level Refinement

Rather than use any particular programming language, we first implement
the module in pseudocode. This requires two decisions. First, the
implementation language will be block-structured, like C or Java, rather than
functional, like Scheme or ML. Second, the environment in which the
program will function will be a UNIX-like system such as FreeBSD or Linux.

The basic structure of the security module is

boolean accessok(role rname, command cmd);
    status ← false
    user ← obtain user ID
    timeday ← obtain time of day
    entry ← obtain entry point (terminal line, remote host)
    open access control file
    repeat
        currecord ← obtain next record from file; EOF if none
        if currecord ≠ EOF then
            status ← match(currecord, rname, cmd, user, timeday, entry)
    until currecord = EOF or status = true
    close access control file
    return status



We now verify that this sketch matches the design. Clearly, the interface is
unchanged. The variable status will contain the status of the access control
file check, becoming true when a match is found. Initially, it is set to false
(deny access) because of the principle of fail-safe defaults. If status were not
set, and the access control file were empty, status would never be set and the
returned value would be undefined.

The next three lines obtain the user ID, the current time of day, and the
system entry point. The following line opens the access control file.

The routine then iterates through the records of that file. The iteration has
two requirements — that if any record allows access, the routine is to return
true, and that if no record grants access, the routine is to return false. From
the structure of the file, one cannot create a record to deny access. By default,
access is denied. Entries explicitly grant access. So, iterating over the records
of the file either produces a record that grants access (in which case the
match routine returns true, terminating the loop and causing accessok to
return with a value of true) or produces no such record. In that case, status is
false, and currecord is set to EOF when the records in the access control file
are exhausted. The loop then terminates, and the routine returns the value of
status, which is false. Hence, this pseudocode matches the design and,
transitively, the requirements.

31.4.2 Second-Level Refinement

Now we will focus on mapping the pseudocode above to a particular language
and system. The C programming language is widely available and provides a
convenient interface to UNIX-like systems. Given that our target system is a
UNIX-like system, C is a reasonable choice. As for the operating system, there
are many variants of the UNIX operating system. However, they all have
fundamental similarities. The Linux operating system will provide the
interfaces discussed below, and they work on a wide variety of UNIX systems.

On these systems, roles are represented as normal user accounts. The root



account is really a role account,13 for example. Each user account has two
distinct representations of identity:14 an internal user type uid_t,15 and a
string (name). When a user specifies a role, either representation may be
used. For our purposes, we will assume that the caller of the accessok routine
provides the uid_t representation of the role identity. Two reasons make this
representation preferable. First, the target systems are unable to address
privilege in terms of names, because, within the kernel, process identity is
always represented by a uid_t. So the routines will need to do the conversion
anyway. The second reason is more complex. Roles in the access control file
can be represented by numbers or names. The routine for reading the access
control file records will convert the roles to uid_ts to ensure consistency of
representation. This also allows the input routine to check the records for
consistency with the system environment. Specifically, if the role name refers
to a nonexistent account, the routine can ignore the record. So any
comparisons would require the role from the interface to be converted to a
uid_t.

This leads to a design decision: represent all user and role IDs as integers
internally. Fortunately, none of the design decisions discussed so far depend
on the representation of identity, so we need not review or change our design.

Next, consider the command. On the target system, a command consists of a
program name followed by a sequence of words, which are the command line
arguments to the command. The command representation is an array of
strings, in which the first string is the program name and the other strings are
the command line arguments.

Putting this all together, the resulting interface is

int accessok(uid_t rname, char *cmd[])

Next comes obtaining the user ID. Processes in the target system have several
identities, but the key ones are the real UID (which identifies the user



running the process) and the effective UID (which identifies the privileges
with which the process runs).16 The effective UID of this program must have
root privileges (see Exercise 4) regardless of who runs the process. Hence, it
is useless for this purpose. Only the real UID identifies the user running the
program. So, to obtain the user ID of the user running the program, we use:

userid = getuid();

The time of day is obtained from the system and expressed in internal format.
The internal representation can be given in seconds since a specific date and
time (the epoch)17

or in microseconds since that time. It is unlikely that times will need to be
specified in microseconds in the access control file. For both simplicity of
code and simplicity of the access control data,18 the internal format of
seconds will be used. So, to obtain the current time, we use:

timeday = time(NULL);

Finally, we need to obtain the location. There is no simple method for
obtaining this information, so we defer it until later by encapsulating it in a
function. This also localizes any changes should we move this program to a
different system (for example, the methods used on a Linux system may differ
from those used on a FreeBSD system).

entry = getlocation();

Opening the access control file for reading is straightforward:

if ((fp = fopen(acfile, “r”)) == NULL){
    logerror(errno, acfile);
    return(0);
}



Notice first the error checking, and the logging of information on an error.
The variable errno is set to a code indicating the nature of the error. The
variable acfile points to the access control file name. The processing of the
access control records follows:

do {
    acrec = getnextacrec(fp);
    if (acrec != NULL)
        status = match(acrec, rname, cmd, user, timeday, entry);
} while (acrec == NULL || status == 1);

Here, we read in the record — assuming that any records remain — and check
the record to see if it allows permission. This looping continues until either
some record indicates that permission is to be given or all records are
checked. The exact internal record format is not yet specified; hence, the use
of functions. The routine concludes by closing the access control file and
returning status:

(void) fclose(fp);
return(status);

31.4.3 Functions

Three functions remain: the function for obtaining location, the function for
getting an access control record, and the function for checking the access
control record against the information of the current process. Each raises
security issues.

31.4.3.1 Obtaining Location

UNIX and Linux systems write the user’s account name, the name of the
terminal on which the login takes place, the time of login, and the name of the
remote host (if any) to the utmp file. Any process may read this file. As each
new process runs, it may have an associated terminal. To determine the utmp



record associated with the process, a routine may obtain the associated
terminal name, open the utmp file, and scan through the record to find the
one with the corresponding terminal name. That record contains the name of
the host from which the user is working.

This approach, although clumsy, works on most UNIX and Linux systems. It
suffers from two problems related to security.

1. If any process can alter the utmp file, its contents cannot be trusted. Several
security holes have occurred because any process could alter the utmp file
[2269].

2. A process may have no associated terminal. Such a detached process must
be mapped into the corresponding utmp record through other means.
However, if the utmp record contains only the information described above,
this is not possible because the user may be logged into multiple terminals.
The issue does not arise if the process has an associated terminal, because
only one user at a time may be logged into a terminal.

In the first case, we make a design decision that if the data in the utmp file
cannot be trusted because any process can alter that file, we return a
meaningless location. Then, unless the location specifier of the record allows
access from any location, the record will not match the current process
information and will not grant access. A similar approach works if the process
does not have an associated terminal.

The outline of this routine is

hostname getlocation()
    status ← false
    myterm ← name of terminal
    obtain access control list for utmp
    if any user other than root can alter it then
        return “*nowhere*”
    open utmp
    repeat



        term ← obtain next entry from utmp; otherwise EOF
        if term ≠ EOF and myterm = term then
                status ←  true
    until term = EOF or status = true
    if host field of utmp entry = empty
        host = “localhost”
    else
        host = host field of utmp entry
    close utmp
    return host

We omit the implementation due to space limitations.

31.4.3.2 The Access Control Record

The format of the records in the access control file affects both the reading of
the file and the comparison with the process information, so we design it
here.

Our approach is to consider the match routine first. Four items must be
checked: the user name, the location, the time, and the command. Consider
these items separately.

The user name is represented as an integer. Thus, the internal format of the
user field of the access control record must contain either integers or names
that the match routine can convert to integers. If a match occurs before all
user names have been checked, then the program needs to convert no more
names to integers. So, we adopt the strategy of representing the user field as a
string read directly from the file. The match routine will parse the line and
will use lazy evaluation to check whether or not the user ID is listed.

A similar strategy can be applied to the location and the set of commands in
the record.

The time is somewhat different, because in the previous two cases, the
process user ID and the location had to match one of the record entries
exactly. However, the time does not have to do so. Time in the access control



record is (almost always) a range. For example, the entry “May 30” means
any time on the date of May 30. The day begins at midnight and ends at
midnight, 24 hours later. So, the range would be from May 30 at midnight to
May 31 at midnight, or in internal time (for example) between 1022742000
and 1022828400. In those rare cases in which a user may assume a role only
at a precise second, the range can be treated as having the same beginning
and ending points. Given this view of time as ranges, checking that the
current time falls into an acceptable range suggests having the match routine
parse the times and checking whether or not the internal system time falls in
each range as it is constructed.

This means that the routine for reading the record may simply load the record
as a sequence of strings and let the match routine do the interpretation. This
yields the following structure:

record
    role rname
    string userlist
    string location
    string timeofday
    string commands[]
    integer numcommands
end record;

The commands field is an array of strings, each command and argument
being one string, and numcommands containing the number of commands.

Given this information, the function used to read the access control records,
and the function used to match them with the current process information,
are not hard to write, but error handling does deserve some mention.

31.4.3.3 Error Handling in the Reading and Matching Routines

Assume that there is a syntax error in the access control file. Perhaps a record
specifies a time incorrectly (for example, “Thurxday”), or a record divider is



garbled. How should the routines handle this?

The first observation is that they cannot ignore the error. To do so violates
basic principles of security (specifically, the principle of least
astonishment19). It also defeats the purpose of the program, because access
will be denied to users who need it.20 So, the program must produce an
indication of error. If it is printed, then the user will see it and should notify
the system administrator maintaining the access control file. Should the user
forget, the administrator will not know of the error. Hence, the error must be
logged. Whether or not the user should be told why the error has occurred is
another question. One school of thought holds that the more information
users have, the more helpful they will be. Another school holds that
information should be denied unless the user needs to know it, and in the
case of an error in the access control file, the user only needs to know that
access will be denied.

Hence, the routines must log information about errors. The logged
information must enable the system administrator to locate the error in the
file. The error message should include the access control file name and line or
record number. This suggests that both routines need access to that
information. Hence, the record counts, line numbers, and file name must be
shared. For reasons of modularity, this implies that these two routines should
be in a submodule of the access checking routine. If they are placed in their
own module, no other parts of the routine can access the line or record
numbers (and none need to, given the design described here). If the module
is placed under the access control routine, no external functions can read
records from the access control file or check data against that file’s contents.

31.4.4 Summary

This section has examined the development of a program for performing a
security-critical function. Beginning with a requirements analysis, the design
and parts of the implementation demonstrate the need for repeated analysis
to ensure that the design meets the requirements and that design decisions



are documented. From the point at which the derivation stopped, the
implementation is simple.

We will now discuss some common security-related programming problems.
Then we will discuss testing, installation, and maintenance.

31.5 Common Security-Related Programming
Problems

Unfortunately, programmers are not perfect. They make mistakes. These
errors can have disastrous consequences in programs that change the
protection domains. Attackers who exploit these errors may acquire extra
privileges (such as access to a system account such as root or Administrator).
They may disrupt the normal functioning of the system by deleting or altering
services over which they should have no control. They may simply be able to
read files to which they should have no access.21 So the problem of avoiding
these errors, or security holes, is a necessary issue to ensure that the
programs and system function as required.

We present both management rules (installation, configuration, and
maintenance) and programming rules together. Although there is some
benefit in separating them, doing so creates an artificial distinction by
implying that they can be considered separately. In fact, the limits on
installation, configuration, and maintenance affect the implementation, just
as the limits of implementation affect the installation, configuration, and
maintenance procedures.

Researchers have developed several models for analyzing systems for these
security holes.22 These models provide a framework for characterizing the
problems. The goal of the characterization guides the selection of the model.
Because we are interested in technical modeling and not in the reason or time
of introduction, many of the categories of the NRL model23 are inappropriate
for our needs. We also wish to analyze the multiple components of



vulnerabilities rather than force each vulnerability into a particular point of
view, as Aslam’s model24 does. So either the PA model25 or the RISOS
model26 is appropriate. We have chosen the PA model for our analysis.

We examine each of the categories and subcategories separately. We consider
first the general rules that we can draw from the vulnerability class, and then
we focus on applying those rules to the program under discussion.

31.5.1 Improper Choice of Initial Protection Domain

Flaws involving improper choice of initial protection domain arise from
incorrect setting of permissions or privileges. There are three objects for
which permissions need to be set properly: the file containing the program,
the access control file, and the memory space of the process. We will consider
them separately.

31.5.1.1 Process Privileges

The principle of least privilege27 dictates that no process have more privileges
than it needs to complete its task, but the process must have enough
privileges to complete its task successfully.

Ideally, one set of privileges should meet both criteria. In practice, different
portions of the process will need different sets of privileges. For example, a
process may need special privileges to access a resource (such as a log file) at
the beginning and end of its task, but may not need those privileges at other
times. The process structure and initial protection domain should reflect this.

Implementation Rule 31.1. Structure the process so that all sections
requiring extra privileges are modules. The modules should be as small as
possible and should perform only those tasks that require those privileges.

The basis for this rule lies in the reference monitor.28 The reference monitor
is verifiable, complete (it is always invoked to access the resource it protects),
and tamperproof (it cannot be compromised). Here, the modules are kept



small and simple (verifiable), access to the privileged resource requires the
process to invoke these modules (complete), and the use of separate modules
with well-defined interfaces minimizes the chances of other parts of the
program corrupting the module (tamperproof).

Management Rule 31.1. Check that the process privileges are set
properly.

Insufficient privileges could cause a denial of service. Excessive privileges
could enable an attacker to exploit vulnerabilities in the program. To avoid
these problems, the privileges of the process, and the times at which the
process has these privileges, must be chosen and managed carefully.

One of the requirements of this program is availability (Requirements 31.1
and 31.4). On Linux and UNIX systems, the program must change the
effective identity of the user from the user’s account to the role account. This
requires special (setuid) privileges of either the role account or the
superuser.29 The principle of least privilege30 says that the former is better
than the latter, but if one of the role accounts is root, then having multiple
copies of the program with limited privileges is irrelevant, because the
program with privileges to access the root role account is the logical target of
attack. After all, if one can compromise a less privileged account through this
program, the same attack will probably work against the root account.
Because the Drib plans to control access to root in some cases, the program
requires setuid to root privileges.

If the program does not have root privileges initially, the UNIX protection
model does not allow the process to acquire them; the permissions on the
program file corresponding to the program must be changed. The process
must log enough information for the system administrator to identify the
problem,31 and should notify users of the problem so that the users can notify
the system administrator. An alternative is to develop a server that will
periodically check the permissions on the program file and reset them if
needed, or a server that the program can notify should it have insufficient



privileges. The designers felt that the benefits of these servers were not
sufficient to warrant their development. In particular, they were concerned
that the system administrators investigate any unexpected change in file
permissions, and an automated server that changed the permissions back
would provide insufficient incentive for an analysis of the problem.

As a result, the developers required that the program acquire root permission
at startup. The access control module is executed. Within that module, the
privileges are reset to the user’s once the log file and access control file have
been opened.32 Superuser privileges are needed only once more—to change
the privileges to those of the role account should access be granted. This
routine, also in a separate module, supplies the granularity required to
provide the needed functionality while minimizing the time spent executing
with root privileges.

31.5.1.2 Access Control File Permissions

Biba’s models33 emphasize that the integrity of the process relies on both the
integrity of the program and the integrity of the access control file. The
former requires that the program be properly protected so that only
authorized personnel can alter it. The system managers must determine who
the “authorized personnel” are. Among the considerations here are the
principle of separation of duty34 and the principle of least privilege.35

Verifying the integrity of the access control file is critical, because that file
controls the access to role accounts. Some external mechanism, such as a file
integrity checking tool, can provide some degree of assurance that the file has
not changed. However, these checks are usually periodic, and the file might
change after the check. So the program itself should check the integrity of the
file when the program is run.

Management Rule 31.2. The program that is executed to create the
process, and all associated control files, must be protected from
unauthorized use and modification. Any such modification must be detected.



In many cases, the process will rely on the settings of other files or on some
other external resources. Whenever possible, the program should check these
dependencies to ensure that they are valid. The dependencies must be
documented so that installers and maintainers will understand what else
must be maintained in order to ensure that the program works correctly.

Implementation Rule 31.2. Ensure that any assumptions in the program
are validated. If this is not possible, document them for the installers and
maintainers, so they know the assumptions that attackers will try to
invalidate.

The permissions of the program, and its containing directory, are to be set so
only root can alter or move the program. According to Requirement 31.2, only
root can alter the access control file. Hence, the file must be owned by root,
and only root can write to it. The program should check the ownership and
permissions of this file, and the containing directories, to validate that only
root can alter it.

EXAMPLE: The naive way to check that only root can write to the file is to
check that the owner is root and that the file permissions allow only the
owner to write to it. But consider the group permissions. If root is the only
member of the group, then the group permissions may allow members of the
group to write to the file. The problem is that checking group membership is
more complicated than looking up the members of the group. A user may
belong to a group without being listed as a member, because the GID of the
user is assigned from the password file, and group membership lists are
contained in a different file.36 Either the password file and the group
membership list must both be checked, or the program should simply report
an error if anyone other than the user can write to the file. For simplicity,37

the designers chose the second approach.

31.5.1.3 Memory Protection

As the program runs, it depends on the values of variables and other objects



in memory. This includes the executable instructions themselves. Thus,
protecting memory against unauthorized or unexpected alteration is critical.

Consider sharing memory. If two subjects can alter the contents of memory,
then one could change data on which the second relies. Unless such sharing is
required (for example, by concurrent processes), it poses a security problem
because the modifying process can alter variables that control the action of
the other process. Thus, each process should have a protected, unshared
memory space.

If the memory is represented by an object that processes can alter, it should
be protected so that only trusted processes can access it. Access here includes
not only modification but also reading, because passwords reside in memory
after they are types. Multiple abstractions are discussed in more detail in the
next section.

Implementation Rule 31.3. Ensure that the program does not share
objects in memory with any other program, and that other programs
cannot access the memory of a privileged process.

Interaction with other processes cannot be eliminated. If the running process
obtains input or data from other processes, then that interface provides a
point through which other processes can reach the memory. The most
common version of this attack is the buffer overflow.

Buffer overflows involve either altering of data or injecting of instructions
that can be executed later. There are a wide variety of techniques for this [32,
709].38 Several remedies exist. For example, if buffers reside in sections of
memory that are not executable, injecting instructions will not work.
Similarly, if some data is to remain unaltered, the data can be stored in read-
only memory.

Management Rule 31.3. Configure memory to enforce the principle of
least privilege. If a section of memory is not to contain executable



instructions, turn execute permission off for that section of memory. If the
contents of a section of memory are not to be altered, make that section
read-only.

These rules appear in three ways in our program. First, the implementers use
the language constructs to flag unchanging data as constant (in the C
programming language, this is the keyword const). This will cause compile-
time errors if the variables are assigned to, or runtime errors if instructions
try to alter those constants.

The other two ways involve program loading. The system’s loader places data
in three areas: the data (initialized data) segment, the stack (used for
function calls and variables local to the functions), and the heap (used for
dynamically allocated storage). A common attack is to trick a program into
executing instructions injected into three areas. The vector of injection can be
a buffer overflow,39 for example. The characteristic under discussion does not
stop such alteration, but it should prevent the data from being executed by
making the segments or pages of all three areas non-executable. This suffices
for the data and stack segments and follows Management Rule 31.3.

If the program uses dynamic loading to load functions at runtime, the
functions that are loaded may change over the lifetime of the program. This
means that the assumptions the programmers make may no longer be
valid.40 One solution to this problem is to compile the program in such a way
that it does not use dynamic loading. This also also prevents the program
from trying to load a module at runtime that may be missing. This could
occur if a second process deleted the appropriate library. So disabling of
dynamic loading also follows Implementation Rule 31.3.41

Finally, some UNIX-like systems (including the one on which this program is
being developed) allow execution permission to be turned off for the stack.
The boot file sets the kernel flag to enforce this.

31.5.1.4 Trust in the System



This analysis overlooks several system components. For example, the
program relies on the system authentication mechanisms to authenticate the
user, and on the user information database to map users and roles into their
corresponding UIDs (and, therefore, privileges). It also relies on the inability
of ordinary users to alter the system clock. If any of this supporting
infrastructure can be compromised, the program will not work correctly. The
best that can be done is to identify these points of trust in the installation and
operation documentation so that the system administrators are aware of the
dependencies of the program on the system.

Management Rule 31.4. Identify all system components on which the
program depends. Check for errors whenever possible, and identify those
components for which error checking will not work.

For this program, the implementers should identify the system databases and
information on which the program depends, and should prepare a list of
these dependencies. They should discuss these dependencies with system
managers to determine if the program can check for errors. When this is not
possible, or when the program cannot identify all errors, they should describe
the possible consequences of the errors. This document should be distributed
with the program so that system administrators can check their systems
before installing the program.

31.5.2 Improper Isolation of Implementation Detail

The problem of improper isolation of implementation detail arises when an
abstraction is improperly mapped into an implementation detail. Consider
how abstractions are mapped into implementations. Typically, some function
(such as a database query) occurs, or the abstraction corresponds to an object
in the system. What happens if the function produces an error or fails in some
other way, or if the object can be manipulated without reference to the
abstraction?

The first rule is to catch errors and failures of the mappings. This requires an



analysis of the functions and a knowledge of their implementation. The action
to take on failure also requires thought. In general, if the cause cannot be
determined, the program should fail by returning the relevant parts of the
system to the states they were in when the program began.42

Implementation Rule 31.4. The error status of every function must be
checked. Do not try to recover unless the cause of the error, and its effects,
do not affect any security considerations. The program should restore the
state of the system to the state before the process began, and then terminate.

The abstractions in this program are the notion of a user and a role, the
access control information, and the creation of a process with the rights of the
role. We will examine these abstractions separately.

31.5.2.1 Resource Exhaustion and User Identifiers

The notion of a user and a role is an abstraction because the program can
work with role names and the operating system uses integers (UIDs). The
question is how those user and role names are mapped to UIDs. Typically,
this is done with a user information database that contains the requisite
mapping, but the program must detect any failures of the query and respond
appropriately.

EXAMPLE: A mail server allowed users to forward mail by creating a
forwarding file [2240]. The forwarding file could specify files to which the
mail should be appended. In this case, the mail server would deliver the letter
with the privileges of the owner of the forwarding file (represented on the
system as an integer UID). In some cases, the mail server would queue the
message for later delivery. When it did so, it would write the name (not the
UID) of the user into a control file. The system queried a database, supplying
the UID, and obtaining the corresponding name. If the query failed, the mail
server used a default name specified by the system administrator.

Attackers discovered how to make the queries fail. As a result, the user was



set to a default user, usually a system-level user (such as daemon). This
enabled the attackers to have the mail server append mail to any file to which
the default user could write. They used this to implant Trojan horses into
system programs. These Trojan horses gave them extra privileges,
compromising the system.

The designers and implementers decided to have the program fail if, for any
reason, the query failed. This application of the principle of fail-safe
defaults43 ensured that in case of error, the users would not get access to the
role account.

31.5.2.2 Validating the Access Control Entries

The access control information implements the access control policy (an
abstraction). The expression of the access control information is therefore the
result of mapping an abstraction to an implementation. The question is
whether or not the given access control information correctly implements the
policy. Answering this question requires someone to examine the
implementation expression of the policy.

The programmers developed a second program that used the same routines
as the role-assuming program to analyze the access control entries. This
program prints the access control information in an easily readable format. It
allows the system managers to check that the access control information is
correct. A specific procedure requires that this information be checked
periodically, and always after the file or the program is altered.

31.5.2.3 Restricting the Protection Domain of the Role Process

Creating a role process is the third abstraction. There are two approaches.
Under UNIX-like systems, the program can spawn a second, child, process. It
can also simply start up a second program in such a way that the parent
process is replaced by the new process. This technique, called overlaying, is
intrinsically simpler than creating a child process and exiting. It allows the



process to replace its own protection domain with the (possibly) more limited
one corresponding to the role. The programmers elected to use this method.
The new process inherits the protection domain of the original one. Before
the overlaying, the original process must reset its protection domain to that of
the role. The programmers do so by closing all files that the original process
opened, and changing its privileges to those of the role.

EXAMPLE: The effective UIDs and GIDs44 control privileges. Hence, the
programmers reset the effective GID first, and then the effective UID (if
resetting were done in the opposite order, the change to GIDs would fail
because such changes require root privileges). However, if the UNIX-like
system supports saved UIDs, an authorized user may be able to acquire root
privileges even if the role account is not root. The problem is that resetting
the effective UID sets the saved UID to the previous UID—namely, root. A
process may then reacquire the rights of its saved UID. To avoid this problem,
the programmers used the setuid system call to reset all of the real, effective,
and saved UIDs to the UID of the role. Thus, all traces of the root UID are
eliminated and the user cannot reacquire those privileges.

Similarly, UNIX-like systems check access permissions only when the file is
opened. If a root process opens a privileged file and then the process drops
root privileges, it can still read from (or write to) the file.

The components of the protection domain that the process must reset before
the overlay are the open files (except for standard input, output, and error),
which must be closed, the signal handlers, which must be reset to their
default values, and any user-specific information, which must be cleared.

31.5.3 Improper Change

This category describes data and instructions that change over time. The
danger is that the changed values may be inconsistent with the previous
values. The previous values dictate the flow of control of the process. The
changed values cause the program to take incorrect or nonsecure actions on



that path of control.

The data and instructions can reside in shared memory, in non-shared
memory, or on disk. The last includes file attribute information such as
ownership and access control list.

31.5.3.1 Memory

First comes the data in shared memory. Any process that can access shared
memory can manipulate data in that memory. Unless all processes that can
access the shared memory implement a concurrent protocol for managing
changes, one process can change data on which a second process relies. As
stated above, this could cause the second process to violate the security
policy.

EXAMPLE: Two processes share memory. One process reads authentication
data and writes it into the shared memory space. The second process
performs the authentication, and writes a boolean true back into the shared
memory space if the authentication succeeds, and false if it fails. Unless the
two processes use concurrent constructs to synchronize their reading and
writing, the first process may read the result before the second process has
completed the computation for the current data. This could allow access
when it should be denied, or vice versa.

Implementation Rule 31.5. If a process interacts with other processes,
the interactions should be synchronized. In particular, all possible sequences
of interactions must be known and, for all such interactions, the process
must enforce the required security policy.

A variant of this situation is the asynchronous exception handler. If the
handler alters variables and then returns to the previous point in the
program, the changes in the variables could cause problems similar to the
problem of concurrent processes. For this reason, if the exception handler
alters any variables on which other portions of the code depend, the



programmer must understand the possible effects of such changes. This is
just like the earlier situation in which a concurrent process changes another’s
variables in a shared memory space.

Implementation Rule 31.6. Asynchronous exception handlers should not
alter any variables except those that are local to the exception handling
module. An exception handler should block all other exceptions when begun,
and should not release the block until the handler completes execution,
unless the handler has been designed to handle exceptions within itself (or
calls an uninvoked exception handler).

A second approach applies whether the memory is shared or not. A user feeds
bogus information to the program, and the program accepts it. The bogus
data overflows its buffer, changing other data, or inserting instructions that
can be executed later.

EXAMPLE: The buffer overflow attack on fingerd described in Section
24.4.5.2 illustrates this approach. The return address is pushed onto the stack
when the input routine is called. That address is not expected to change
between its being pushed onto the stack and its being popped from the stack,
but the buffer overflow changes it. When the input function returns, the
address popped from the stack is that of the input buffer. Execution resumes
at that point, and the input instructions are used.

This suggests one way to detect such transformations (the stack guard
approach) [471]. Immediately after the return address is pushed onto the
stack, push a random number onto the stack (the canary). Assume that the
input overflows the buffer on the stack and alters the return address on the
stack. If the canary is n bits long and has been chosen randomly, the
probability of the attacker not changing that cookie is 2–n. When the input
procedure returns, the canary is popped and compared with the value that
was pushed onto the stack. If the two differ, there has been an overflow.45

In terms of trust, the return address (a trusted datum) can be affected by



untrusted data (from the input). This lowers the trustworthiness of the return
address to that of input data. One need not supply instructions to breach
security.

EXAMPLE: One (possibly apocryphal) version of a UNIX login program
allocated two adjacent arrays. The first held the user’s cleartext password and
was 80 characters long, and the second held the password hash46 and was 13
characters long. The program’s logic loaded the password hash into the
second array as soon as the user’s name was determined. It then read the
user’s cleartext password and stored it in the first array. If the contents of the
first array hashed to the contents of the second array, the user was
authenticated. An attacker simply selected a random password (for example,
“password”) and generated a valid hash for it (here, “12CsGd8FRcMSM”).
The attacker then identified herself as root. When asked for a password, the
attacker entered “password”, typed 72 spaces, and then typed
“12CsGd8FRcMSM”. The system hashed “password”, got
“12CsGd8FRcMSM”, and logged the user in as root.

A technique in which canaries protect data, not only the return address,
would work, but raises many implementation problems (see Exercise 7).

Implementation Rule 31.7. Whenever possible, data that the process
trusts and data that it receives from untrusted sources (such as input)
should be kept in separate areas of memory. If data from a trusted source is
overwritten with data from an untrusted source, a memory error will occur.

In more formal terms, the principle of least common mechanism47 indicates
that memory should not be shared in this way.

These rules apply to our program in several ways. First, the program does not
interact with any other program except through exception handling.48 So
Implementation Rule 31.5 does not apply. Exception handling consists of
calling a procedure that disables further exception handling, logs the
exception, and immediately terminates the program.



Illicit alteration of data in memory is the second potential problem. If the
user-supplied data is read into memory that overlaps with other program
data, it could erase or alter that data. To satisfy Implementation Rule 31.7, the
programmers did not reuse variables into which users could input data. They
also ensured that each access to a buffer did not overlap with other buffers.

The problem of buffer overflow is solved by checking all array and pointer
references within the code. Any reference that is out of bounds causes the
program to fail after logging an error message to help the programmers track
down the error.

31.5.3.2 Changes in File Contents

File contents may change improperly. In most cases, this means that the file
permissions are set incorrectly or that multiple processes are accessing the
file, which is similar to the problem of concurrent processes accessing shared
memory. Management Rule 31.2 and Implementation Rule 31.5 cover these
two cases.

A non-obvious corollary is to be careful of dynamic loading. Dynamic load
libraries are not part of this program’s executable. They are loaded, as
needed, when the program runs. Suppose one of the libraries is changed, and
the change causes a side effect. The program may cease to function or, even
worse, work incorrectly.

If the dynamic load modules cannot be altered, then this concern is minimal,
but if they can be upgraded or otherwise altered, it is important. Because one
of the reasons for using dynamic load libraries is to allow upgrades without
having to recompile programs that depend on the library, security-related
programs using dynamic load libraries are at risk.

Implementation Rule 31.8. Do not use components that may change
between the time the program is created and the time it is run.



This is another reason that the developers decided not to use dynamic
loading.

31.5.3.3 Race Conditions in File Accesses

A race condition in this context is the time-of-check-to-time-of-use problem.
As with memory accesses, the file being used is changed after validation but
before access.49 To thwart it, either the file must be protected so that no
untrusted user can alter it, or the process must validate the file and use it
indivisibly. The former requires appropriate settings of permission, so
Management Rule 31.2 applies. Section 31.5.7, “Improper Indivisibility,”
discusses the latter.

This program validates that the owner and access control permissions for the
access control file are correct (the check). It then opens the file (the use). If an
attacker can change the file after the validation but before the opening, so
that the file checked is not the file opened, then the attacker can have the
program obtain access control information from a file other than the
legitimate access control file. Presumably, the attacker would supply a set of
access control entries allowing unauthorized accesses.

EXAMPLE: The UNIX operating system allows programs to refer to files in
two ways: by name and by file descriptor.50 Once a file descriptor is bound to
a file, the referent of the descriptor does not change. Each access through the
file descriptor always refers to the bound file (until the descriptor is closed).
However, the kernel reprocesses the file name at each reference, so two
references to the same file name may refer to two different files. An attacker
who is able to alter the file system in such a way that this occurs is exploiting
a race condition. So any checks made to the file corresponding to the first use
of the name may not apply to the file corresponding to the second use of the
name. This can result in a process making unwarranted assumptions about
the trustworthiness of the file and the data it contains.

In the xterm example51 the program can be fixed by opening the file and then



using the file descriptor (handle) to obtain the owner and access
permissions.52 Those permissions belong to the opened file, because they
were obtained using the file descriptor. The validation is now ensured to be
that of the access control file.

The program does exactly this. It opens the access control file and uses the
file descriptor, which references the file attribute information directly to
obtain the owner, group, and access control permissions. Those permissions
are checked. If they are correct, the program uses the file descriptor to read
the file. Otherwise, the file is closed and the program reports a failure.

31.5.4 Improper Naming

Improper naming refers to an ambiguity in identifying an object. Most
commonly, two different objects have the same name. The programmer
intends the name to refer to one of the objects, but an attacker manipulates
the environment and the process so that the name refers to a different object.
Avoiding this flaw requires that every object be unambiguously identified.
This is both a management concern and an implementation concern.

Objects must be uniquely identifiable or completely interchangeable.
Managing these objects means identifying those that are interchangeable and
those that are not. The former objects need a controller (or set of controllers)
that, when given a name, selects one of the objects. The latter objects need
unique names. The managers of the objects must supply those names.

Management Rule 31.5. Unique objects require unique names.
Interchangeable objects may share a name.

A name is interpreted within a context. At the implementation level, the
process must force its own context into the interpretation, to ensure that the
object referred to is the intended object. The context includes information
about the character sets, process and file hierarchies, network domains, and
any accessible variables such as the search path.



EXAMPLE: Stage 3 in Section 24.2.9 discussed an attack in which a privileged
program called loadmodule executed a second program named ld.so. The
attack exploited loadmodule’s failure to specify the context in which ld.so was
named. Loadmodule used the context of the user invoking the program.
Normally, this caused the correct ld.so to be invoked. In the example, the
attacker changed the context so that another version of ld.so was executed.
This version had a Trojan horse that would grant privileged access. When the
attacker executed loadmodule, the Trojan horse was triggered and maximum
privileges were acquired.

Implementation Rule 31.9. The process must ensure that the context in
which an object is named identifies the correct object.

This program uses names for external objects in four places: the name of the
access control file, the names of the users and roles, the names of the hosts,
and the name of the command interpreter (the shell) that the program uses to
execute commands in the role account.

The two file names (access control file and command interpreter) must
identify specific files. Absolute path names specify the location of the object
with respect to a distinguished directory called / or the “root directory.”
However, a privileged process can redefine / to be any directory.53 This
program does not do so. Furthermore, if the root directory is anything other
than the root directory of the system, a trusted process has executed it. No
untrusted user could have done so. Thus, as long as absolute path names are
specified, the files are unambiguously named.

The name provided may be interpreted in light of other aspects of the
environment. For example, differences in the encoding of characters can
transform file names. Whether characters are made up of 16 bits, 8 bits, or 7
bits can change the interpretation, and therefore the referent, of a file name.
Other environment variables can change the interpretation of the path name.
This program simply creates a new, known, safe environment for execution of



the commands.54

This has two advantages over sanitization of the existing context. First, it
avoids having the program analyze the environment in detail. The meaning of
each aspect of the environment need not be analyzed and examined. The
environment is simply replaced. Second, it allows the system to evolve
without compromising the security of the program. For example, if a new
environment variable is assigned a meaning that affects how programs are
executed, the variable will not affect how this program executes its commands
because that variable will not appear in the command’s environment. So this
program closes all file descriptors, resets signal handlers, and passes a new
set of environment variables for the command.

These actions satisfy Implementation Rule 31.9.

The developers assumed that the system was properly maintained, so that the
names of the users and roles would map into the correct UIDs. (Section
31.5.2.1 discusses this.) This applies to Management Rule 31.5.

The host names are the final set of names. These may be specified by names
or IP addresses. If the former, they must be fully qualified domain names to
avoid ambiguity. To see this, suppose an access control entry allows user matt
to access the role wheel when logging in from the system amelia. Does this
mean that the system named amelia in the local domain, or any system
named amelia from any domain? Either interpretation is valid. The former is
more reasonable,55 and applying this interpretation resolves the ambiguity.
(The program implicitly maps names to fully qualified domain names using
the former interpretation. Thus, amelia in the access control entry would
match a host named amelia in the local domain, and not a host named
amelia in another domain.) This implements Implementation Rule 31.9.56

As a side note, if the local network is mismanaged or compromised, the name
amelia may refer to a system other than the one intended. For example, the
real host amelia may crash or go offline. An attacker can then reset the



address of his host to correspond to amelia. This program will not detect the
impersonation.

31.5.5 Improper Deallocation or Deletion

Failing to delete sensitive information raises the possibility of another
process seeing that data at a later time. In particular, cryptographic
keywords, passwords, and other authentication information should be
discarded once they have been used. Similarly, once a process has finished
with a resource, that resource should be deallocated. This allows other
processes to use that resource, inhibiting denial of service attacks.

A consequence of not deleting sensitive information is that dumps of
memory, which may occur if the program receives an exception or crashes for
some other reason, contain the sensitive data. If the process fails to release
sensitive resources before spawning unprivileged subprocesses, those
unprivileged subprocesses may have access to the resource.

Implementation Rule 31.10. When the process finishes using a sensitive
object (one that contains confidential information or one that should not be
altered), the object should be erased, then deallocated or deleted. Any
resources not needed should also be released.

Our program uses three pieces of sensitive information. The first is the clear-
text password, which authenticates the user. The password is hashed, and the
hash is compared with the stored hash. Once the hash of the entered
password has been computed, the process must delete the cleartext password.
So it overwrites the array holding the password with random bytes.

The second piece of sensitive information is the access control information.
Suppose an attacker wanted to gain access to a role account. The access
control entries would tell the attacker which users could access that account
using this program. To prevent the attacker from gaining this information,
the developers decided to keep the contents of the access control file



confidential. The program accesses this file using a file descriptor. File
descriptors remain open when a new program overlays a process. Hence, the
program closes the file descriptor corresponding to the access control file
once the request has been validated (or has failed to be validated).

The third piece of sensitive information is the log file. The program alters this
file. If an unprivileged program such as one run by this program were to
inherit the file descriptor, it could flood the log. Were the log to fill up, the
program could no longer log failures. So the program also closes the log file
before spawning the role’s command.

31.5.6 Improper Validation

The problem of improper validation arises when data is not checked for
consistency and correctness. Ideally, a process would validate the data
against the more abstract policies to ensure correctness. In practice, the
process can check correctness only by looking for error codes (indicating
failure of functions and procedures) or by looking for patently incorrect
values (such as negative numbers when positive ones are required).

As the program is designed, the developers should determine what conditions
must hold at each interface and each block of code. They should then validate
that these conditions hold.

What follows is a set of validations that are commonly overlooked. Each
program requires its own analysis, and other types of validation may be
critical to the correct, secure functioning of the program, so this list is by no
means complete.

31.5.6.1 Bounds Checking

Errors of validation often occur when data is supposed to lie within bounds.
For example, a buffer may contain entries numbered from 0 to 99. If the
index used to access the buffer elements takes on a value less than 0 or



greater than 99, it is an invalid operand because it accesses a nonexistent
entry. The variable used to access the element may not be an integer (for
example, it may be a set element or pointer), but in any case it must reference
an existing element.

Implementation Rule 31.11. Ensure that all array references access
existing elements of the array. If a function that manipulates arrays cannot
ensure that only valid elements are referenced, do not use that function.
Find one that does, write a new version, or create a wrapper.

In this example program, all loops involving arrays compare the value of the
variable referencing the array against the indexes (or addresses) of both the
first and last elements of the array. The loop terminates if the variable’s value
is outside those two values. This covers all loops within the program, but it
does not cover the loops in the library functions.

For loops in the library functions, bounds checking requires an analysis of the
functions used to manipulate arrays. The most common type of array for
which library functions are used is the character string, which is a sequence of
characters (bytes) terminating with a 0 byte. Because the length of the string
is not encoded as part of the string, functions cannot determine the size of the
array containing the string. They simply operate on all bytes until a 0 byte is
found.

EXAMPLE: The program sometimes must copy character strings (defined in
C as arrays of character data terminating with a byte containing 0). The
canonical function for copying strings does no bounds checking. This
function, strcpy (x, y), copies the string from the array y to the array x,
even if the string is too long for x. A different function, strncpy(x, y, n),
copies at most n characters from array y to array x. However, unlike strcpy,
strncpy may not copy the terminating 0 byte.57 The program must take two
actions when strncpy is called. First, it must insert a 0 byte at the end of the x
array. This ensures that the contents of x meet the definition of a string in C.



Second, the process must check that both x and y are arrays of characters,
and that n is a positive integer.

The programmers use only those functions that bound the sizes of arrays. In
particular, the function fgets is used to read input, because it allows the
programmer to specify the maximum number of characters to be read. (This
solves the problem that plagued fingerd.58)

31.5.6.2 Type Checking

Failure to check types is another common validation problem. If a function
parameter is an integer, but the actual argument passed is a floating point
number, the function will interpret the bit pattern of the floating point
number as an integer and will produce an incorrect result.

Implementation Rule 31.12. Check the types of functions and
parameters.

A good compiler and well-written code will handle this particular problem.
All functions should be declared before they are used. Most programming
languages allow the programmer to specify the number and types of
arguments, as well as the type of the return value (if any). The compiler can
then check the types of the declarations against the types of the actual
arguments and return values.

Implementation Rule 31.13. When compiling programs, ensure that the
compiler flags report inconsistencies in types. Investigate all such warnings
and either fix the problem or document the warning and why it is spurious.

31.5.6.3 Error Checking

A third common problem involving improper validation is failure to check
return values of functions. For example, suppose a program needs to
determine ownership of a file. It calls a system function that returns a record
containing information from the file attribute table. The program obtains the



owner of the file from the appropriate field of the record. If the function fails,
the information in the record is meaningless. So, if the function’s return
status is not checked, the program may act erroneously.

Implementation Rule 31.14. Check all function and procedure executions
for errors.

This program makes extensive use of system and library functions, as well as
its own internal functions (such as the access control module). Every function
returns a value, and the value is checked for an error before the results of the
function are used. For example, the function that obtains the ownership and
access permissions of the access control file would return meaningless
information should the function fail. So the function’s return value is checked
first for an error; if no error has occurred, then the file attribute information
is used.

As another example, the program opens a log file. If the open fails, and the
program tries to write to the (invalid) file descriptor obtained from the
function that failed, the program will terminate as a result of an exception.
Hence, the program checks the result of opening the log file.

31.5.6.4 Checking for Valid, not Invalid, Data

Validation should apply the principle of fail-safe defaults.59 This principle
requires that valid values be known, and that all other values be rejected.
Unfortunately, programmers often check for invalid data and assume that the
rest is valid.

EXAMPLE: A metacharacter is a character that is interpreted as something
other than itself. For example, to the UNIX shells, the character “?” is a
metacharacter that represents all single character files. A vendor upgraded its
version of the command interpreter for its UNIX system. The new command
interpreter (shell) treated the character “ `” (back quote) as a delimiter for a
command (and hence a metacharacter). The old shell treated the back quote



as an ordinary character. Included in the distribution was a program for
executing commands on remote systems. The set of allowed commands was
restricted. This program carefully checked that the command was allowed,
and that it contained no metacharacters, before sending it to a shell on the
remote system. Unfortunately, the program checked a list of metacharacters
to be rejected, rather than checking a list of characters that were allowed in
the commands. As a result, one could embed a disallowed command within a
valid command request, because the list of metacharacters was not updated
to include the back quote.

Implementation Rule 31.15. Check that a variable’s values are valid.

This program checks that the command to be executed matches one of the
authorized commands. It does not have a set of commands that are to be
denied. The program will detect an invalid command as one that is not listed
in the set of authorized commands for that user accessing that role at the time
and place allowed.

As discussed in Section 31.3.2.3, it is possible to allow all users except some
specific users access to a role by an appropriate access control entry (using
the keyword not). The developers debated whether having this ability was
appropriate because its use could lead to violations of the principle of fail-safe
defaults. On one key system, however, the only authorized users were system
administrators and one or two trainees. The administrators wanted the ability
to shut the trainees out of certain roles. So the developers added the keyword
and recommended against its use except in that single specific situation.

Implementation Rule 31.16. If a trade-off between security and other
factors results in a mechanism or procedure that can weaken security,
document the reasons for the decision, the possible effects, and the situations
in which the compromise method should be used. This informs others of the
trade-off and the attendant risks.

31.5.6.5 Checking Input



All data from untrusted sources must be checked. Users are untrusted
sources. The checking done depends on the way the data is received: into an
input buffer (bounds checking) or read in as an integer (checking the
magnitude and sign of the input).

Implementation Rule 31.17. Check all user input for both form and
content. In particular, check integers for values that are too big or too small,
and check character data for length and valid characters.

The program determines what to do on the basis of at least two pieces of data
that the user provides: the role name and the command (which, if omitted,
means unrestricted access).60 Users must also authenticate themselves
appropriately. The program must first validate that the supplied password is
correct. It then checks the access control information to determine whether
the user is allowed access to the role at that time and from that location.

The length of the input password must be no longer than the buffer in which
it is placed. Similarly, the lines of the access control file must not overflow the
buffer allocated for it. The contents of the lines of the access control file must
make up a valid access control entry. This is most easily done by constraining
the format of the contents of the file, as discussed in the next section.

An excellent example of the need to constrain user input comes from
formatted print statements in C.

EXAMPLE: The printf function’s first parameter is a character string that
indicates how printf is to format output data. The following parameters
contain the data. For example,

printf(“%d⊔%d\n”, i, j);

prints the values of i and j. Some versions of this library function allow the
user to store the number of characters printed at any point in the string. For
example, if i contains 2, j contains 21, and m and n are integer variables,



printf(“%d⊔%d%n⊔%d\n%n”, i, j, &m, i, &n);

prints

2 21 2

and stores 4 in m and 7 in n, because four characters are printed before the
first “%n” and seven before the second “%n” (the sequence “\n” is interpreted
as a single character, the newline). Now, suppose the user is asked for a file
name. This input is stored in the array str. The program then prints the file
name with

print f (str);

If the user enters the file name “log%n”, the function will overwrite some
memory location with the integer 3. The exact location depends on the
contents of the program stack, and with some experimentation it is possible
to cause the program to change the return address stored on the stack. This
leads to the buffer overflow attack described earlier.

31.5.6.6 Designing for Validation

Sometimes data cannot be validated completely. For example, in the C
programming language, a programmer can test for a NULL pointer (meaning
that the pointer does not hold the address of any object), but if the pointer is
not NULL, checking the validity of the pointer may be very difficult (or
impossible). Using a language with strong type checking is another example.

The consequence of the need for validation requires that data structures and
functions be designed and implemented in such a way that they can be
validated. For example, because C pointers cannot be properly validated,
programmers should not pass pointers or use them in situations in which
they must be validated. Methods of data hiding, type checking, and object-



oriented programming often provide mechanisms for doing this.

Implementation Rule 31.18. Create data structures and functions in such
a way that they can be validated.

An example will show the level of detail necessary for validation. The entries
in the access control file are designed to allow the program to detect obvious
errors. Each access control entry consists of a block of information in the
following format.

role name
    user comma–separated list of users
    location comma–separated list of locations
    time comma–separated list of times
    command program and arguments
    . . .
    command program and arguments
endrole

This defines each component of the entry. (The lines need not be in any
particular order.) The syntax is well-defined, and the access control module
in the program checks for syntax errors. The module also performs other
checks, such as searching for invalid user names in the user field and
requiring that the full path names of all commands be specified. Finally, note
that the module computes the number of commands for the module’s internal
record. This eliminates a possible source of error—namely, that the user may
miscount the number of commands.

In case of any error, the process logs the error, if possible, and terminates. It
does not allow the user to access the role.

31.5.7 Improper Indivisibility

Improper indivisibility61 arises when an operation is considered as one unit
(indivisible) in the abstract but is implemented as two units (divisible). The
race conditions discussed in Section 31.5.3.3 provide one example. The



checking of the access control file attributes and the opening of that file are to
be executed as one operation. Unfortunately, they may be implemented as
two separate operations, and an attacker who can alter the file after the first
but before the second operation can obtain access illicitly. Another example
arises in exception handling. Often, program statements and system calls are
considered as single units or operations when the implementation uses many
operations. An exception divides those operations into two sets: the set before
the exception, and the set after the exception. If the system calls or
statements rely on data not changing during their execution, exception
handlers must not alter the data.

Section 31.5.3 discusses handling of these situations when the operations
cannot be made indivisible. Approaches to making them indivisible include
disabling interrupts and having the kernel perform operations. The latter
assumes that the operation is indivisible when performed by the kernel,
which may be an incorrect assumption.

Implementation Rule 31.19. If two operations must be performed
sequentially without an intervening operation, use a mechanism to ensure
that the two cannot be divided.

In UNIX systems, the problem of divisibility arises with root processes such
as the program under consideration. UNIX-like systems do not enforce the
principle of complete mediation.62 For root, access permissions are not
checked. Recall the xterm example in Section 24.3.1. A user needed to log
information from the execution of xterm, and specified a log file. Before
appending to that file, xterm needed to ensure that the real UID could write
to the log file. This required an extra system call. As a result, operations that
should have been indivisible (the access check followed by the opening of the
file) were actually divisible. One way to make these operations indivisible on
UNIX-like systems is to drop privileges to those of the real UID, then open
the file. The access checking is done in the kernel as part of the open.

Improper indivisibility arises in our program when the access control module



validates and then opens the access control file. This should be a single
operation, but because of the semantics of UNIX-like systems, it must be
performed as two distinct operations. It is not possible to ensure the
indivisibility of the two operations. However, it is possible to ensure that the
target of the operations does not change, as discussed in Section 31.5.3, and
this suffices for our purposes.

31.5.7.1 Improper Sequencing

Improper sequencing means that operations are performed in an incorrect
order. For example, a process may create a lock file and then write to a log
file. A second process may also write to the log file, and then check to see if
the lock file exists. The first program uses the correct sequence of calls; the
second does not (because that sequence allows multiple writers to access the
log file simultaneously).

Implementation Rule 31.20. Describe the legal sequences of operations
on a resource or object. Check that all possible sequences of the program(s)
involved match one (or more) legal sequences.

In our program, the sequence of operations in the design shown in Section
31.3.1.2 follow a proper order. The user is first authenticated. Then the
program uses the access control information to determine if the requested
access is valid. If it is, the appropriate command is executed using a new, safe
environment.

A second sequence of operations occurs when privileges to the role are
dropped. First, group privileges are changed to those of the role. Then all user
identification numbers are changed to those of the role. A common error is to
switch the user identification numbers first, followed by the change in group
privileges. Because changing group privileges requires root privileges, the
change will fail. Hence, the programmers used the stated ordering.

31.5.8 Improper Choice of Operand or Operation



Preventing errors of choosing the wrong operand or operation requires that
the algorithms be thought through carefully (to ensure that they are
appropriate). At the implementation level, this requires that operands be of
an appropriate type and value, and that operations be selected to perform the
desired functions. The difference between this type of error and improper
validation lies in the program. Improper implementation refers to a
validation failure. The operands may be appropriate, but no checking is done.
In this category, even though the operands may have been checked, they may
still be inappropriate.

EXAMPLE: The UNIX program su allows a user to substitute another user’s
identity, obtaining the second user’s privileges. According to an apocryphal
story, one version of this program granted the user root privileges if the user
information database did not exist (see Exercise 10 in Chapter 14). If the
program could not open the user information database file, it assumed that
the database did not exist. This was an inappropriate choice of operation
because one could block access to the file even when the database existed.

Assurance techniques63 help detect these problems. The programmer
documents the purpose of each function and then checks (or, preferably,
others check) that the algorithms in the function work properly and that the
code correctly implements the algorithms.

Management Rule 31.6. Use software engineering and assurance
techniques (such as documentation, design reviews, and code reviews) to
ensure that operations and operands are appropriate.

Within our program, many operands and operations control the granting
(and denying) of access, the changing to the role, and the execution of the
command. We first focus on the access part of the program, and afterwards
we consider two other issues.

First, a user is granted access only when an access control entry matches all
characteristics of the current session. The relevant characteristics are the role



name, the user’s UID, the role’s name (or UID), the location, the time, and
the command. We begin by checking that if the characteristics match, the
access control module returns true (allowing access). We also check that the
caller grants access when the module returns true and denies access when the
module returns false.

Next, we consider the user’s UID. That object is of type uid_t. If the interface
to the system database returns an object of a different type, conversion
becomes an issue. Specifically, many interfaces treat the UID as an integer.
The difference between the types int and uid_t may cause problems. On the
systems involved, uid_t is an unsigned integer. Since we are comparing
signed and unsigned integers, C simply converts the signed integers to
unsigned integers, and the comparison succeeds. Hence, the choice of
operation (comparison, here) is proper.

Checking location requires the program to derive the user’s location, as
discussed above, and pass it to the validator. The validator takes a string and
determines whether it matches the pattern in the location field of the access
control entry. If the string matches, the module should continue; otherwise, it
should terminate and return false.

Unlike the location, a variable of type time_t contains the current time. The
time checking portion of the module processes the string representing the
allowed times and determines if the current time falls in the range of allowed
times. Checking time is different than checking location because legal times
are ranges, except in one specific situation: when an allowed time is specified
to the exact second. A specification of an exact time is useless, because the
program may not obtain the time at the exact second required. This would
lead to a denial of service, violating Requirement 31.4. Also, allowing exact
times leads to ambiguity.

EXAMPLE: The system administrator specifies that user matt is allowed
access to the role mail at 9 a.m. on Tuesdays. Should this be interpreted as



exactly 9 a.m. (that is, 9:00:00 a.m.) or as sometime during the 9 a.m. hour
(that is, from 9:00:00 to 9:59:59 a.m.)? The latter interprets the specification
as a range rather than an exact time, so the access control module uses that
interpretation.

The use of signal handlers provides a second situation in which an improper
choice of operation could occur. A signal indicates either an error in the
program or a request from the user to terminate, so a signal should cause the
program to terminate. If the program continues to run, and then grants the
user access to the role account, either the program has continued in the face
of an error or it has overridden the user’s attempt to terminate the program.

31.5.9 Summary

This type of top-down analysis differs from the more usual approach of taking
a checklist of common vulnerabilities and using it to examine code. There is a
place for each of these approaches. The top-down approach presented here is
a design approach, and should be applied at each level of design and
implementation. It emphasizes documentation, analysis, and understanding
of the program, its interfaces, and the environment in which it executes. A
security analysis document should describe the analysis and the reasons for
each security-related decision. This document will help other analysts
examine the program and, more importantly, will provide future developers
and maintainers of the program with insight into potential problems they
may encounter in porting the program to a different environment, adding
new features, or changing existing features.

Once the appropriate phase of the program has been completed, the
developers should use a checklist to validate that the design or
implementation has no common errors. Given the complexity of security
design and implementation, such checklists provide valuable confirmation
that the developers have taken common security problems into account.

Appendix H lists the implementation and management rules in a convenient



form.

31.6 Testing, Maintenance, and Operation

Testing provides an informal validation of the design and implementation of
the program. The goal of testing is to show that the program meets the stated
requirements. When design and implementation are driven by the
requirements, as in the method used to create the program under discussion,
testing is likely to uncover only minor problems, but if the developers do not
have well-articulated requirements, or if the requirements are changed
during development, testing may uncover major problems, requiring changes
up to a complete redesign and reimplementation of a program. The worst
mistake managers and developers can make is to take a program that does
not meet the security requirements and add features to it to meet those
requirements. The problem is that the basic design does not meet the security
requirements. Adding security features will not ameliorate this fundamental
flaw.

Once the program has been written and tested, it must be installed. The
installation procedure must ensure that when a user starts the process, the
environment in which the process is created matches the assumptions
embodied in the design. This constrains the configuration of the program
parameters as well as the manner in which the system is configured to protect
the program. Finally, the installers must enable trusted users to modify and
upgrade the program and the configuration files and parameters.

31.6.1 Testing

The results of testing a program are most useful if the tests are conducted in
the environment in which the program will be used (the production
environment). So, the first step in testing a program is to construct an
environment that matches the production environment. This requires the
testers to know the intended production environment. If there are a range of



environments, the testers must test the programs in all of them. Often there is
overlap between the environments, so this task is not so daunting as it might
appear.

The production environment should correspond to the environment for
which the program was developed. A symptom of discrepancies between the
two environments is repeated failures resulting from erroneous assumptions.
This indicates that the developers have implicitly embedded information
from the development environment that is inconsistent with the testing
environment. This discrepancy must be reconciled.

The testing process begins with the requirements. Are they appropriate? Do
they solve the problem? This analysis may be moot (if the task is to write a
program meeting the given requirements), but if the task is phrased in terms
of a problem to be solved, the problem drives the requirements. Because the
requirements drive the design of the program, the requirements must be
validated before designing begins.

As many of the software life cycle models indicate, this step may be revisited
many times during the development of the program. Requirements may
prove to be impossible to meet, or may produce problems that cannot be
solved without changing the requirements. If the requirements are changed,
they must be reanalyzed and verified to solve the problem.

Then comes the design. Section 31.4 discusses the stepwise refinement of the
program. The decomposition of the program into modules allows us to test
the program as it is being implemented. Then, once it has been completed,
the testing of the entire program should demonstrate that the program meets
its requirements in the given environment.

The general philosophy of testing is to execute all possible paths of control
and compare the results with the expected results. In practice, the paths of
control are too numerous to test exhaustively. Instead, the paths are analyzed
and ordered. Test data is generated for each path, and the testers compare the



results obtained from the actual data with the expected results. This
continues until as many paths as possible have been tested.

For security testing, the testers must test not only the most commonly used
paths but also the least commonly used paths.64 The latter often create
security problems that attackers can exploit. Because they are relatively
unused, traditional testing places them at a lower priority than that of other
paths. Hence, they are not as well scrutinized, and vulnerabilities are missed.

The ordering of the paths relies on the requirements. Those paths that
perform multiple security checks are more critical than those that perform
single (or no) security checks because they introduce interfaces that affect
security requirements. The other paths affect security, of course, but there are
no interfaces.

First, we examine a module that calls no other module. Then we examine the
program as a composition of modules. We conclude by testing the
installation, configuration, and use instructions.

31.6.1.1 Testing the Module

The module may invoke one or more functions. The functions return results
to the caller, either directly (through return values or parameter lists) or
indirectly (by manipulation of the environment). The goal of this testing is to
ensure that the module exhibits correct behavior regardless of what the
functions returns.

The first step is to define “correct behavior.” During the design of the
program, the refinement process led to the specification of the module and
the module’s interface. This specification defines “correct behavior,” and
testing will require us to check that the specification holds.

We begin by listing all interfaces to the module. We will then use this list to
execute four different types of tests. The types of test are as follows:



1. Normal data tests. These tests provide unexceptional data. The data should
be chosen to exercise as many paths of control through the module as
possible.

2. Boundary data tests. These tests provide data that tests any limits to the
interfaces. For example, if the module expects a string of up to 256 characters
to be passed in, these tests invoke the module and pass in arrays of 255, 256,
and 257 characters. Longer strings should also be used in an effort to
overflow internal buffers. The testers can examine the source code to
determine what to try. Limits here do not apply simply to arrays or strings. In
the program under discussion, the lowest allowed UID is 0, for root. A good
test would be to try a UID of –1 to see what happens. The module should
report an error.

EXAMPLE: One UNIX system had UIDs of 16 bits. The system used a file
server that would not allow a client’s root user to access any files. Instead, it
remapped root’s UID to the public UID of –2. Because that UID was not
assigned to any user, the remapped root could access only those files that
were available to all users. The limit problem arose because one user, named
Mike, had the UID 65534. Because 65534 = –2 in twos’ complement 16-bit
arithmetic, the remote root user could access all of Mike’s files—even those
that were not publicly available.

3. Exception tests. These tests determine how the program handles interrupts
and traps. For example, many systems allow the user to send a signal that
causes the program to trap to a signal handler, or to take a default action such
as dumping the contents of memory to a core file. These tests determine if the
module leaves the system in a nonsecure state—for example, by leaving
sensitive information in the memory dump. They also analyze what the
process does if ordinary actions (such as writing to a file) fail.

EXAMPLE: An FTP server ran on a system that kept its authentication
information confidential. An attacker found that she could cause the system



to crash by sending an unexpected sequence of commands, causing multiple
signals to be generated before the first signal could be handled. The crash
resulted in a core dump. Because the server would be restarted automatically,
the attacker simply connected again and downloaded the core dump. From
that dump, she extracted the authentication information and used a
dictionary attack65 to obtain the passwords of several users.

4. Random data tests. These tests supply inputs generated at random and
observe how the module reacts. They should not corrupt the state of the
system. If the module fails, it should restore the system to a safe state.66

EXAMPLE: In a study of UNIX utilities [1352], approximately 30% crashed
when given random inputs. In one case, an unprivileged program caused the
system to crash. In 1995, a retest showed some improvement, but still
“significant rates of failure” [1353, p. 1]. Other tested systems fared little
better [708, 1351].

Throughout the testing, the testers should keep track of the paths taken. This
allows them to determine how complete the testing is. Because these tests are
highly informal, the assurance they provide is not as convincing as the
techniques discussed in Chapter 20. However, it is more than random tests,
or no tests, would provide.

31.6.2 Testing Composed Modules

Now consider a module that calls other modules. Each of the invoked
modules has a specification describing its actions. So, in addition to the tests
discussed in the preceding section, one other type of test should be
performed.

5. Error handling tests. These tests assume that the called modules violate
their specifications in some way. The goal of these tests is to determine how
robust the caller is. If it fails gracefully, and restores the system to a safe state,
then the module passes the test. Otherwise, it fails and must be rewritten.



EXAMPLE: Assume that a security-related program, running with root
privileges, logs all network connections to a UNIX system. It also sends mail
to the network administrator with the name of the connecting host on the
subject line. To do this, it executes a command such as

mail -s hostname netadmin

where hostname is the name of the connecting host. This module obtains
hostname from a different module that is passed the connecting host’s IP
address and uses the Domain Name Service to find the corresponding host
name. A serious problem arose because the DNS did not verify that hostname
was composed of legal characters. The effects were discovered when one
attacker changed the name of his host to

hi nobody; rm -rf *; true

causing the security-related program to delete critical files. Had the calling
module expected failure, and checked for it, the error would have been caught
before any damage was done.

31.6.3 Testing the Program

Once the testers have assembled the program and its documentation, the
final phase of testing begins. The testers have someone follow the installation
and configuration instructions. This person should not be a member of the
testing team, because the testing team has been working with the program
and is familiar with it. The goal of this test is to determine if the installation
and configuration instructions are correct and easy to understand. The
principle of least astonishment67 requires that the tool be as easy to install
and use as possible. Because most installers and users will not have
experience with the program, the testers need to evaluate how they will
understand the documentation and whether or not they can install the
program correctly by following the instructions. An incorrectly installed



security tool does not provide security; it may well detract from it. Worse, it
gives people a false sense of security.

31.7 Distribution

Once the program has been completed, it must be distributed. Distribution
involves placing the program in a repository where it cannot be altered except
by authorized people, and from which it can be retrieved and sent to the
intended recipients. This requires a policy for distribution. Specific factors to
be considered are as follows.

1. Who can use the program? If the program is licensed to a specific
organization, or to a specific host, then each copy of the program that is
distributed must be tied to that organization or host so it cannot be
redistributed or pirated. This is an originator controlled policy.68 One
approach is to provide the licensee with a secret key and encipher the
software with the same key. This prevents redistribution without the
licensee’s consent, unless the attacker breaks the cryptosystem or steals the
licensee’s key.69

2. How can the integrity of the master copy be protected? If an attacker can
alter the master copy, from which distribution copies are made, then the
attacker can compromise all who use the program.

EXAMPLE: The program tcp_wrappers provides host-level access control for
network servers. It is one of the most widely used programs in the UNIX
community. In 1996, attackers broke into the site from which that program
could be obtained [2253]. They altered the program to allow all connections
to succeed. More than 50 groups obtained the program before the break-in
was detected.

Part of the problem is credibility. If an attacker can pose as the vendor, then
all who obtain the program from the attacker will be vulnerable to attack.
This tactic undermines trust in the program and can be surprisingly hard to



counter. It is analogous to generating a cryptographic checksum for a
program infected with a computer virus.70 When an uninfected program is
obtained, the integrity checker complains because the checksum is wrong. In
our example, when the real vendor contacts the duped customer, the
customer usually reacts with disbelief, or is unwilling to concede that his
system has been compromised.

3. How can the availability of the program be ensured? If the program is
sent through a physical medium, such as a read-only DVD, availability is
equivalent to the availability of mail or messenger services between the
vendor and the buyer. If the program is distributed through electronic means,
however, the distributor must take precautions to ensure that the distribution
site is available. Denial of service attacks such as SYN flooding may hamper
the availability.

Like a program, the distribution is controlled by a policy. All considerations
that affect a security policy affect the distribution policy as well.

0

31.8 Summary

This chapter discussed informal techniques for writing programs that enforce
security policies. The process began with a requirements analysis and
continued with a threat analysis to show that the requirements countered the
threats. The design process came next, and it fed back into the requirements
to clarify an ambiguity. Once the high-level design was accepted, we used a
stepwise refinement process to break the design down into modules and a
caller. The categories of flaws in the program analysis vulnerability helped
find potential implementation problems. Finally, issues of testing and
distribution ensured that the program did what was required.

31.9 Research Issues



The first research issue has to do with analysis of code. How can one analyze
programs to discover security flaws? This differs from the sort of analysis that
is performed in the development of high-assurance systems, because the
program and system are already in place. The goal is to determine what, and
where, the problems are. Some researchers are developing analysis tools for
specific problems such as buffer overflows and race conditions. Others are
using flow analysis tools to study the program for a wide variety of
vulnerabilities.

Related to this issue is the development of languages that are safer with
respect to security. For example, some languages automatically create an
exception if a reference is made beyond the bounds of an array. How much
overhead does this add? Can the language use special-purpose hardware to
minimize the impact of checking the references? What else should a language
constrain, and how should it do so?

31.10 Further Reading

Robust programming—the art of writing programs that work correctly and
handle errors gracefully—is a topic of great interest, often in the guise of
“secure programming.” Kernighan and Plauger’s book [1046] describes the
principles and ideas underlying good programming style. Kernighan and Pike
[1047] also discusses style and other elements of good programming.
Stavely’s book [1830] combines formalisms with informal steps. Maguire’s
book [1241] is much more informal, and is a collection of tips on how to write
robust programs. Martin [1264] focuses on robust practices for agile
programming, while McConnell [1284] discusses robust programming in the
general context of software construction.

Howard and LeBlanc [933] discuss secure coding, emphasizing the Windows
and .NET environment. Howard, LeBlanc, and Viega’s book [934] describes
24 serious but common software flaws and how programmers can avoid
them.



Much focus is on the C and C++ programming languages, because of their
wide use, lack of type-safe features, and ability to manipulate memory
directly. Seacord [1713] and Viega and Messier [1947] discuss ways to make
programs in these languages more robust and secure. Sutter and
Alexandrescu [1854] present a set of coding standards for C++. Similarly,
developing robust, secure web applications is critical, and several books
[119,1248,1400,1744] discuss how to do so.

Graff and van Wyk [809] provide a general overview of principles and
practice, and much sound advice. Viega and McGraw’s book [1944] is also
general, with many examples focusing on UNIX and Linux systems. Its design
principles give good advice. McGraw [1294] expands on these in a later book.
Garfinkel, Schwartz, and Spafford [750] has a wonderful chapter on trust,
which is must reading for anyone interested in security-related programming.
Wheeler [2012] also provides valuable information and insight.

31.11 Exercises

1. Consider the two interpretations of a time field that specifies “1 a.m.” One
interpretation says that this means exactly 1:00 a.m. and no other time. The
other says that this means any time during the 1 a.m. hour.

(a) How would you express the time of “exactly 1 a.m.” in the second
interpretation?

(b) How would you express “any time during the 1 a.m. hour” in the first
interpretation?

(c) Which is more powerful? If they are equally powerful, which do you think
is least astonishing? Why?

2. Verify that the modified version of Requirement 31.4 shown as
Requirement 31.6 on page 972 counters the appropriate threats.



3. Assume the alternative interpretation of Requirement 31.4 given in Section
31.3.1.2, so that access only is controlled by location and time, and that
commands are restricted by role and user. This means that if a user is
authorized to run a command, she can run it from any location he is
authorized to use. How would you change the way information is stored in
the access control file described in Section 31.3.2.2?

4. Currently, the program described in this chapter is to have setuid-to-root
privileges. Someone observed that it could be equally well-implemented as a
server, in which case the program would authenticate the user, connect to the
server, send the command and role, and then let the server execute the
command.

(a) What are the advantages of using the server approach rather than the
single program approach?

(b) If the server responds only to clients on the local machine, using
interprocess communication mechanisms on the local system, which
approach would you use? Why?

(c) If the server were listening for commands from the network, would that
change your answer to the previous question? Why or why not?

(d) If the client sent the password to the server, and the server authenticated,
would your answers to any of the three previous parts change? Why or why
not?

5. The little languages presented in Section 31.3.2.3 have ambiguous
semantics. For example, in the location language, does “not host1 or host2”
mean “neither at host1 nor at host2” or “at host2 or not at host1”?

(a) Rewrite the BNF of the location language to make the semantics reflect
the second meaning (that is, the precedence of “not” is lower than that of
“or”). Are the semantics unambiguous now? Why or why not?



(b) Rewrite the BNF of the time language to make the semantics reflect the
second meaning (that is, the precedence of “not” is higher than that of “or”).
Are the semantics unambiguous now? Why or why not?

6. Suppose an access control record is malformed (for example, it has a
syntax error). Show that the access control module would deny access.

7. The canary for StackGuard simply detects overflow that might change the
return address. This exercise asks you to extend the notion of a canary to
detection of buffer overflow.

(a) Assume that the canary is placed directly after the array, and that after
every array, access is checked to see if it has changed. Would this detect a
buffer overflow? If so, why do you think this is not suitable for use in
practice? If not, describe an attack that could change a number beyond the
buffer without affecting the canary.

(b) Now suppose that the canary was placed directly after the buffer but—like
the canary for StackGuard—was only checked just before a function return.
How effective do you think this method would be?



Part IX: Appendices
This part presents background, and additional, material that may prove
helpful with some of the chapters of this book.

Appendix A, “Lattices,” reviews the mathematical properties of lattices.

Appendix B, “The Extended Euclidean Algorithm,” presents a very useful
number-theoretic algorithm used in various cryptosystems.

Appendix C, “Entropy and Uncertainty,” presents an overview of probability
and entropy. Appendix D, “Virtual Machines,” reviews the notion of a virtual
machine.

Appendix E, “Symbolic Logic,” discusses different types of logic, including
propositional logic and temporal logic.

Appendix F, “The Encryption Standards,” discusses the Data Encryption
Standard and its successor, the Advanced Encryption Standard.

Appendix G, “Example Academic Security Policy,” presents a real authorized
use, and electronic mail, policy.

Appendix H, “Programming Rules,” lists rules for programming
implementation and management.



Appendix A. Lattices
A lattice is built on the notion of a group. First, we review some basic terms. 
Then we discuss lattices.

A.1 Basics

For a set S, a relation R is any subset of S × S. For convenience, if (a, b) ∈ R, 
we write aRb.

EXAMPLE: Let S = {1, 2, 3}. Then the relation less than or equal to is defined 
on S by the set R = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}. We write 1R2 and 
2R3 for convenience, because (1, 2) ∈ R and (2, 3) ∈ R, but 3R2 does not 
hold, because (3, 2) ∉ R. Of course, the symbol used for R is simply ≤.

The following definitions describe properties of relations.

Definition 1–1. A relation R defined over a set S is reflexive if aRa for all a

∈ S.

Definition 1–2. A relation R defined over a set S is antisymmetric if aRb
and bRa imply a = b for all a, b ∈ S.

Definition 1–3. A relation R defined over a set S is transitive if aRb and
bRc imply aRc for all a, b, c ∈ S.

EXAMPLE: Consider the set of complex numbers ℂ. For any a ∈ ℂ, define aR

as the real component and aI as the imaginary component (that is, a = aR +
aIi). Let a ≤ b if and only if aR ≤ bR and aI ≤ bI. This relation is reflexive,



antisymmetric, and transitive.

A partial ordering occurs when a relation orders some, but not all, elements
of a set. Such a set and relation are often called a poset. If the relation
imposes an ordering among all elements, it is a total ordering.

EXAMPLE: The relation “less than or equal to”, as defined in the usual sense,
imposes a total ordering on the set of integers, because, given any two
integers, one will be less than or equal to the other. However, the relation in
the preceding example imposes a partial ordering on the set ℂ. Specifically,
the numbers 1 + 4i and 2 + 3i are not related under that relation (because 1 ≤
2 but 4 ≰ 3).

Under a partial ordering (and a total ordering), we define the upper bound of
two elements to be any element that follows both in the relation.

Definition 1–4. For two elements a, b ∈ S, if there exists a u ∈ S such that
aRu and bRu, then u is an upper bound of a and b.

A pair of elements may have many upper bounds. Intuitively, the one
“closest” to the two elements but greater than or equal to both is the least
upper bound. The following definition formalizes “closest”.

Definition 1–5. Let U be the set of upper bounds of a and b. Let u ∈ U be an
element such that there is no t ∈ U for which tRu. Then u is the least upper
bound of a and b (written lub(a, b) or a ⊗ b).

Lower bounds, and greatest lower bounds, are defined similarly.

Definition 1–6. For two elements a, b ∈ S, if there exists an l ∈ S such that
lRa and lRb, then l is a lower bound of a and b.

Definition 1–7. Let L be the set of lower bounds of a and b. Let l ∈ L be an
element such that there is no m ∈ L for which lRm. Then l is the greatest
lower bound of a and b (written glb(a, b) or a ⊗ b).



EXAMPLE: Consider the subset of the set of complex numbers for which the
real and imaginary parts are integers from 0 to 10, inclusive, and the relation
defined in the second example in this appendix. The set of upper bounds for 1
+ 9i and 9 + 3i is {9 + 9i, 9 + 10i, 10 + 9i, 10 + 10i}. The least upper bound of
1 + 9i and 9 + 3i is 9 + 9i. The set of lower bounds is {1 + 1i, 1 + 0i, 0 + 0i}.
The greatest lower bound is 1 + 1i.

A.2 Lattices

A lattice is a set of elements S and a relation R meeting the following criteria.

1. R is reflexive, antisymmetric, and transitive on the elements of S.

2. For every s, t ∈ S, there exists a greatest lower bound.

3. For every s, t ∈ S, there exists a least upper bound.

EXAMPLE: The set {0, 1, 2} forms a lattice under the relation “less than or
equal to” (≤). By the laws of arithmetic, the relation is reflexive,
antisymmetric, and transitive. The greatest lower bound of any two integers is
the smaller, and the least upper bound is the larger.

EXAMPLE: Consider the subset ℂ′ of the set of complex numbers for which
the real and imaginary parts are integers from 0 to 10, inclusive. For any a ∈
ℂ′, define aR as the real component and aI as the imaginary component (that
is, a = aR + aIi). Let a ≤ b if and only if aR ≤ bR and aI ≤ bI. This set and
relation define a lattice, because the relation is reflexive, antisymmetric, and
transitive (see the second example of this chapter) and any pair of elements a,
b have a least upper bound and a greatest lower bound.

A.3 Exercises

1. Determine the least upper bound and greatest lower bound for the pair of
complex integers a and b in the subset ℂ′ used in the examples.



2. Prove that the set of all subsets of a given set S (that is, the power set of S)
forms a lattice under the relation “subset” (⊆).

3. Consider a set with elements that are totally ordered by a relation. Does the
set form a lattice under that relation? If so, show that it does. If not, give a
counterexample.



Appendix B. The Extended
Euclidean Algorithm
The Extended Euclidean Algorithm is a staple of number theory and is used 
to solve equations of the form ax mod n = b. This chapter reviews this 
algorithm and its applications. We begin with the classical algorithm and 
then extend it to solve simple equations.

B.1 The Euclidean Algorithm

Euclid’s algorithm determines the greatest common divisor of two integers. 
The algorithm is based on the observation that, if x divides both a and b, then 
x divides their difference a – b. The trick is to find the largest such x.

Assume (without loss of generality) that a > b. If x divides a – b, then it also 
divides a – qb, where q is an integer. Let r = a – qb. If r ≠ 0, and x divides a –
qb, then x divides r. We have now reduced the problem of finding the largest 
x such that x divides a and b to the problem of finding the largest x such that 
x divides b and r. (To see this, realize that if x divides b and r, then x divides 
qb + r, or a.) We iterate until r is 0. Then x is the greatest common divisor of 
a and b.

If we take q to be the integer portion of

, these operations can form a simple table, as follows.



EXAMPLE: Find the greatest common divisor of 15 and 12.

Take a = 15 and b = 12. Then:

a b q r

15 12 1 3

12 3 4 0

The greatest common divisor of 15 and 12 is 3.

EXAMPLE: Find the greatest common divisor of 35,731 and 24,689.

Take a = 35731 and b = 24689. Then:

a b q r

35731 24689 1 11042

24689 11042 2 2605

11042 2605 4 622

2605 622 4 117

622 117 5 37

117 37 3 6

37 6 6 1

6 1 6 0

The numbers 35,731 and 24,689 have 1 as the greatest (and only) common
factor.

The algorithm (in pseudocode) is as follows:

function gcd (a : integer , b : integer) : integer;
var r : integer;
    rprev: integer;
begin
    rprev := r := 1;
    while r <> 0 do begin
        rprev := r;



        r := a mod b;
        write ’a = ’ , a, ’b =’ , b, ’q = ’ , a div b, ’r = ’ , r , endline;
        a := b;
        b := r;
    end;
    gcd := rprev;
    write ’the gcd is ’ , gcd , endline;
end.

The “write” corresponds to the lines in the tables in the examples above.

B.2 The Extended Euclidean Algorithm

The Extended Euclidean Algorithm determines two integers x and y such that

In order for these integers to exist and be unique, the greatest common
divisor of a and b must be 1. The following algorithm (in pseudocode) returns
x and y:

proc eeuclid (a : integer, b : integer,
        var x : integer, var y : integer) : integer;
var q, u : integer;
    xprev, yprev, uprev: integer;
    xtmp, ytmp, utmp: integer;
begin
    uprev := a; u := b;
    xprev := 0; x := 1; yprev := 1; y := 0;
    write ’u = ’, uprev, ’ x = ’, xprev, ’ y = ’, yprev,   endline;
    write ’ u = ’, u, ’ x = ’, x, ’ y = ’, y, endline;
    while u <> 0 do begin
        q := uprev div u;
        write ’q = ’, q, endline;
        utmp := uprev – u * q; uprev := u; u := utmp;
        xtmp := xprev – x * q; xprev := x; x := xtmp;
        ytmp := yprev – y * q; yprev := y; y := ytmp;
        write ’ u = ’, u, ’ x = ’, x, ’ y = ’, y, endline;
    end;
    x := xprev; y := yprev;
    write ’the values are x = ’, x, ’ y = ’, y, endline;



end.

The “write” corresponds to the lines in the tables in the examples below. The
variable u contains xa + yb at each step.

EXAMPLE: Find x and y such that 51x + 100y = 1.

u x y q

100 0 1

51 1 0 100/51 = 1

49 –1 1 51/49 = 1

2 2 –1 49/2 = 24

1 –49 25 2/1 = 2

0 100 –51

So, 51 × (–49) + 100 × 25 = 1.

EXAMPLE: Find x and y such that 24689x + 35731y = 1.

u x y q

35731 0 1

24689 1 0 35731/24689 = 1

11042 –1 1 24689/11042 = 2

2605 3 –2 11042/2605 = 4

622 –13 9 2605/622 = 4

117 55 –38 622/117 = 5

37 –288 199 117/37 = 3

6 919 –635 37/6 = 6

1 –5, 802 4,009

0 35,731 –24689

So 24689 × (–5802) + 35731 × 4009 = 1.



B.3 Solving ax mod n = 1

Recall that if ax mod n = 1, then there exists an integer k such that ax = 1+ kn.
Rewriting this, ax–kn = 1. Def ine j = –k, to yield ax+jn = 1. So, to find x and j,
use the Extended Euclidean Algorithm. As before, a and n must be relatively
prime.

EXAMPLE: Find x such that 51x mod 100 = 1.

Because 51 × (–49) + 100 × 25 = 1 from the first example in Section B.2,

Checking,

EXAMPLE: Find x such that 24689x mod 35731 = 1.

From the last example in Section B.2, 24689 × (–5802) + 35731 × 4009 = 1.
Therefore,

Checking,

B.4 Solving ax mod n = b

From the fundamental laws of modular arithmetic,

Thus, if x solves the equation ax mod n = 1, we can multiply both sides by b to
get



So, we first solve ax mod n = 1 for x and then compute bx mod n.

EXAMPLE: Find x such that 51x mod 100 = 10.

Solving 51y mod 100 = 1, y = –49 mod 100 = 51. Then,

EXAMPLE: Find x such that 24689x mod 35731 = 1753.

Solving 24689y mod 35731 = 1, y = –5802 mod 35731 = 29929. Then,

B.5 Exercises

1. Find the greatest common divisor of 234 and 124.

2. Find r and s such that 8092r + 1111s = 1.

3. Find a counterexample to the claim that if the greatest common divisor of a
and b is not 1, there exists a unique r and a unique s such that ra + sb = 1.

4. Solve for x: 324x mod 121 = 1.

5. Solve for x: 99997x mod 8888 = 1234.



Appendix C. Entropy and
Uncertainty
Entropy is an information-theoretic measure of the amount of uncertainty in 
a variable. Beginning with Shannon’s seminal works [1735–1737], 
cryptographers and information theorists have used entropy to determine 
how well transformations on messages obscure their meaning. Entropy has 
applications in a wide variety of disciplines, including cryptography, 
compression, and coding theory. This chapter reviews the basics of entropy, 
which has its roots in probability theory.

C.1 Conditional and Joint Probability

Definition 3–1. A random variable is a variable that represents the 
outcome of an event.

EXAMPLE: Let X be a variable representing some random event. X is a 
random variable. For example, X might be the result of rolling a six-sided die. 
Then X has a value selected from the set {1, 2, 3, 4, 5, 6}. Assuming the die is 
fair, the six possible outcomes are equiprobable. So,

Were the die loaded, so that 2 came up twice as often as the other faces, p(X =
2) = 2/7 and p(X = i) = 1/7 for i = 1, 3, 4, 5, 6.

A word about notation. We write p(X = x1) for the probability that the random
variable X has value x1. When the specific value does not matter (for example,
when all values are equiprobable), we abbreviate this as p(X).



Sometimes the results of two different events are of interest.

EXAMPLE: Let X be a random variable representing the roll of one die, and
let Y be a random variable representing the flip of a coin. Assuming that both
die and coin are fair, the probability of the die coming up 6 and the coin being

heads is .

Definition 3–2. The joint probability of X and Y, written p(X, Y), is the
probability that the random variables X and Y will simultaneously assume
particular values.

This example involves the probability p(X = 6, Y = heads). If the two random
variables are independent (that is, if the value of one does not affect the value
of the other), then

Now suppose that the two random variables are not independent.

EXAMPLE: Let X represent the roll of a red die, and let Y represent the sum
of the values from rolling the red die and a blue die. Then,

If both dice are fair, this formula yields

But if Y = 11, then the only two possible throws of the red die are 5 and 6 (the
corresponding numbers on the blue die are 6 and 5, respectively). The events
X = 1 and Y = 11 cannot be simultaneously true. So, p(X = 1, Y = 11) = 0.



This example shows that if two events are not independent, then the formula
for joint probability is more complicated. The next definition captures the
notion of dependence.

Definition 3–3. The conditional probability of X given Y (written p(X|Y)) is
the probability that X takes on a particular value, given that Y has a particular
value.

EXAMPLE: Returning to our previous example, p(Y = 11|X = 1) = 0, because
when X = 1, Y cannot be 11. However, p(Y = 7|X = 1) = 1/6, because in one of
the six ways to throw a 7, the number on the red die is 1.

We can now write the formula for joint probability in terms of conditional
probability:

EXAMPLE: Consider p(X = 3, Y = 8). The two events are dependent. So,

This matches intuition, because by constraining the total throw and the value
of the red die, there is only one value for the blue die that will produce the
desired sum.

In fact, the formula for joint probability of two independent events is a special
case of the formula above. When X and Y are independent random variables,

C.2 Entropy and Uncertainty

Definition 3–4. Let the random variable X take values from some set {x1,
...xn}. The value xi occurs with probability p(X = xi), where



. The entropy, or uncertainty, of x is

where “lg x” is the base 2 logarithm of x. (For purposes of this definition, we
define 0 lg 0 to be 0.)

This definition measures the uncertainty of a message in bits.

EXAMPLE: Suppose the message m is either “yes” or “no,” with either
message being equally likely. Because there are two possibilities for the
message, intuitively there is 1 bit of uncertainty. The message can be
represented as either a 0 or a 1. From the previous discussion,

as expected.

EXAMPLE: Suppose each message is equally likely—that is, p(M = mi) = 1/n.
Then

The uncertainty of m is the number of bits needed to represent n.

EXAMPLE: Suppose Ann, Paul, and Pamela are finalists in a game. Ann and
Pamela are twice as likely to win as Paul is. Let W be the random variable



representing the winner, and let w1 = Ann, w2 = Pamela, and w3 = Paul. Then
p(W = w1) = 2/5, p(W = w2) = 2/5, p(W = w3) = 1/5, and

Were all three players equally likely to win, the uncertainty would be lg 3 ≈
1.58, again matching our intuition that the winner is less uncertain if two of
the three are more likely to win. To take an extreme case, were Paul 100 times
more likely to win than either Ann or Pamela, the uncertainty would be 0.14,
considerably lower still.

EXAMPLE: Given a fair die, the uncertainty of the result of rolling it is lg 6 ≈
2.58. When two fair dice are rolled, the uncertainty of the result is 3.27.

C.3 Joint and Conditional Entropy

Joint and conditional entropy are analogous to joint and conditional
probability.

C.3.1 Joint Entropy

Definition 3–5. Let the random variable X take values from some set {x1,
...xn}. The value xi occurs with probability p(X = xi), where

. Let the random variable Y take values from some set {y1, ...ym}. The value yj
occurs with probability p(Y = yj), where

. The joint entropy of X and Y is



EXAMPLE: Let X be a random variable representing the roll of one die, and
let Y be a random variable representing the flip of a coin. (See the second
example in Section C.1.) Assuming that both die and coin are fair, the entropy
of X and Y taken jointly is

C.3.2 Conditional Entropy

Definition 3–6. Let the random variable X take values from some set {x1,
...xn}. The value xi occurs with probability p(X = xi), where

. Let the random variable Y take values from some set {y1, ...ym}. The value yj
occurs with probability p(Y = yj), where

. The conditional entropy, or equivocation, of X given Y = yj is

The conditional entropy of X given Y is

The latter is the weighted mean of the conditional entropies of X given Y = yj
for the possible values of Y .



EXAMPLE: Let X represent the roll of a red die, and let Y represent the sum
of the values from rolling the red die and a blue die. Then the conditional
entropy of X given Y = 2 is

because p(X = 1|Y = 2) = 1 and p(X = i|Y = 2) = 0 for i = 2, ..., 6. However, the
conditional entropy of X given Y = 7 is

Intuitively, these results make sense. If the total of the red and blue dice
comes up 2, both must be 1, and so in the first case the conditional entropy is
0 because, given the value of Y, there is no uncertainty in the value of X. In
the second case, the red die may take on any of its six possible values, so,
assuming that it is fair, the uncertainty corresponds to each possible value of
X being equally likely.

The conditional entropy of X given Y is

C.3.3 Perfect Secrecy

Perfect secrecy arises when knowing the ciphertext does not decrease the
uncertainty of the plaintext. More formally:



Definition 3–7. Let M be a random variable that takes values from the set
of messages {m1, . . . mn}. The cipher C = E(M) achieves perfect secrecy if
p(M|C) = p(M).

EXAMPLE: The one-time pad (see Section 10.2.2.2) meets this requirement.
Let M be a random variable representing a message selected from a set of n
four-letter messages. The probability of this variable is p(M). An attacker
intercepts C = AAVG. Given this, the probability of M is p(M|C). However, the
attacker has gleaned no more information than was initially available,
because the key is four randomly chosen letters. Any message could produce
the intercepted ciphertext. Hence, p(M|C) = p(M), and the cipher achieves
perfect secrecy.

C.4 Exercises

1. Let X represent the roll of a red die, and let Y represent the sum of the
values from rolling the red die and a blue die. Prove that p(X = 3|Y = 8) = 1/5.

2. Prove that the maximum entropy for an unknown message chosen from the
set of possible messages {“yes”, “no”} occurs when the probability of each
message is 1/2.

3. Let X and Y be random variables that take values from finite sets. Prove
that

with equality holding when X and Y are independent.

4. Let X and Y be random variables that take values from finite sets. Prove
that

5. Let M and C be random variables that take values from the set of possible



plaintexts and the set of possible ciphertexts for some cryptosystem. Prove
that the cryptosystem provides perfect secrecy if and only if H(M|C) = H(M).



Appendix D. Virtual Machines
Virtual memory provides the illusion of physical memory. The abstraction 
allows a process to assume that its memory space both is contiguous and 
begins at location 0. This simplifies the process’ view of memory and hides the 
underlying physical locations of the process’ memory. The physical memory 
corresponding to the virtual memory need not be contiguous. Indeed, some of 
the locations in virtual memory may have no corresponding physical 
addresses until the process references them.

Like virtual memory, a virtual machine provides the illusion of a physical 
machine. The abstraction allows operating systems to assume that they are 
running directly on the hardware. This allows one to run the operating 
system, and allows the operating system to run processes, with no changes in 
either the operating system or the programs. A second, lower virtual machine 
monitor runs directly on the hardware and provides the illusion of hardware 
to the operating systems run above it. The physical machine may support 
many virtual machines, each running its own operating system.

This appendix reviews the structure of a virtual machine.

D.1 Virtual Machine Structure

A virtual machine runs on a virtual machine monitor. That monitor virtualizes 
the resources of the underlying system and presents to each virtual machine 
the illusion that it and it alone is using the hardware.

EXAMPLE: IBM’s VM/370 and its successors provide each user with the



illusion that she has complete access to the resources of a single IBM
mainframe system. Many users will use the same physical machine, but each
one is isolated from the others.

D.2 Virtual Machine Monitor

The virtual machine monitor keeps track of the state of each virtual machine
just as an ordinary operating system keeps track of the states of its processes.
When a privileged instruction is executed, the hardware causes a trap to the
virtual machine monitor. The monitor services the interrupt and restores the
state of the caller.

EXAMPLE: Suppose the virtual machine monitor VMM is running the
operating system OS. Process p running under OS makes a system call to read
data from a disk. The system call causes a trap. The VMM is invoked and
detects that the trap occurred from within OS. It updates the state of OS to
make it appear that the hardware on which OS is running (the virtual
machine) invoked OS. OS then tries to read from the disk to service the
interrupt.

This causes another trap, and the VMM is again invoked. It services the trap
by carrying out the read and placing the results in the locations that OS
indicates. It then returns control to OS, which updates the appropriate parts
of process p (such as the return value of the system call). OS then performs a
context switch to return control to p. This is a privileged instruction, so VMM
is again invoked. It updates the virtual machine on which OS runs to make it
appear that OS performed the context switch, and then performs the context
switch itself. The process p now resumes execution.

A virtual machine monitor is sometimes called a hypervisor. A type-1
hypervisor runs directly on the hardware, just like a regular operating
system; a type-2 hypervisor runs as a process or processes on a regular
operating system. Figure D.1 illustrates the difference.



Figure D.1: A virtual machine environment. To the left is a type-1
hypervisor running 4 virtual machines VH1, . . . , VH4 each with a
different operating system. The Windows 7 operating system is
itself running a type-2 hypervisor that runs a Debian Linux
system. To the right is a set of type-2 hypervisors T2H1, T2H2, T2H3
each running at least one virtual machine VH5, . . . , VH8. T2H2 is
running two virtual machines, each with its own operating system.
VH5 is running Ubuntu Linux, which in turn is running another
type-2 hypervisor that runs Windows 7.

D.2.1 Privilege and Virtual Machines

The Digital Equipment Corporation VAX/VMM project examined the issues
of privilege in virtual machines [1017]. Consider the requirements for a
computer architecture to be virtualizable [1539].

Definition 4–1. A sensitive instruction is an instruction that discloses or
alters the state of privilege of the processor. A sensitive data structure is a
data structure that contains information about the state of privilege of the



system.

EXAMPLE: The VAX architecture had four levels of privilege: user,
supervisor, executive, and kernel. On the VAX architecture, the CHMK
instruction was privileged because it changed the privilege level (to kernel
mode), and the MOVPSL instruction copied the processor status longword
(PSL) to a memory location. The former instruction was a sensitive
instruction because it altered the state of privilege (moving it to kernel mode).
The latter was also sensitive because it revealed information about the
current level of privilege (the level of privilege was encoded in two bits in the
PSL).

Page table entries were sensitive data structures because they contained
information about the protection state of the processor (notably, they could
contain a copy of the PSL for the process).

A computer architecture is virtualizable if it meets the following
requirements:

1. All sensitive instructions cause traps when executed by processes at lower
levels of privilege.

2. All references to sensitive data structures cause traps when executed by
processes at lower levels of privilege.

EXAMPLE: The CHMK instruction met requirement 1, because it caused a
trap unless it was executed in kernel mode. The MOVPSL instruction met
neither requirement, because it did not cause a trap regardless of the level of
privilege of the process executing it. User level processes could alter page
table entries, so references to those data structures also failed to meet the
second requirement (but see Exercise 1).

If the hardware supports n levels of privilege, each virtual machine must
appear to support n levels of privilege.



On some architectures only the virtual machine monitor can run at the
highest level of privilege. This makes n – 1 levels of privilege available to each
virtual machine. The virtual machine monitor virtualizes the levels of
privilege. This technique is called ring compression.

EXAMPLE: Recall that the VAX system had four levels of privilege: user,
supervisor, executive, and kernel. The VMM monitor had to emulate all of
these levels for each virtual machine that it ran. However, it could not allow
the operating system of any of those virtual machines to enter kernel mode,
because then that operating system could access the physical resources
directly, bypassing the virtual machine monitor. Yet to run the VAX standard
operating system, VAX/VMS, the virtual machine had to appear to provide all
four levels.

The solution was to virtualize the executive and kernel privilege levels. The
executive and kernel levels of the virtual machine (called VM executive and
VM kernel levels, respectively) were mapped into the physical executive
mode. The architects of VAX/VMM added three extensions to the VAX
hardware to support this compression.

First, a virtual machine bit was added to the PSL. If this bit were set, the
current process was running on a virtual machine. Second, a special register,
the VMPSL register, recorded the PSL of the running virtual machine. Third,
all sensitive instructions that could reveal the level of privilege either
obtained their information from the VMPSL or caused a trap to the virtual
machine monitor. In the latter case, the virtual machine monitor emulated
the instruction.

Yet another approach is used in the Intel architectures [1920]. This defines a
virtualization mode, so that each virtual machine can execute instructions at
any privilege level, but certain instructions cause a transition to the non-
virtualized mode so the virtual machine monitor can take control.

EXAMPLE: The VT-i architecture, which adds virtualization support for



Itanium processors, adds a bit to the processor status register and a new
fault, the “virtualization fault.” This bit, PSR.vm, is set when the system is
running a guest operating system, and cleared when the virtual machine
monitor is running. All four privilege levels (rings 0 to 3) are supported
whether the bit is set or cleared, but when PSR.vm is set, privileged
instructions cause a virtualization fault. When an interrupt occurs, the
PSR.vm bit is automatically cleared so the virtual machine monitor can
service it. A special instruction changes the bit with minimal overhead,
avoiding a full context switch.

The processor abstraction layer provides an abstract interface to the
hardware; this hides changes in the architecture of the hardware from the
virtual machine monitors. Interfaces include procedures to create and destroy
virtual machines as well as saving and restoring part of the state of a virtual
machine.

The VT-x architecture, which adds virtualization support for IA-32
processors, also defines two modes of operation, called “VMX root operation”
and “VMX non-root operation”. This is similar to the VT-i architecture, but is
implemented differently. A control structure (the VMCS) contains parts of the
state of the guest operating system and of the virtual machine monitor.
Context switches between the virtual machine monitor and the guest system
save and restore state from the VMCS. Like the VT-i, all 4 privilege levels are
available in both modes, but in VMX non-root operation, some instructions
cause a transition to VMX root operation.

A third approach to privilege is to divide users into different classes and
control access to the system by limiting the access of each class.

EXAMPLE: The IBM VM/370 uses this approach to associate various CP
commands with users [530]. Each CP command is associated with one or
more user privilege classes. For example, class G is the “general user” class.
Members of that class can start a virtual machine. Class A is the “primary



system operator” class. Members of that class can control system accounting,
the availability of virtual machines, and other system resources. Members of
class “Any” can gain access to, or surrender access to, a virtual machine.

D.2.2 Physical Resources and Virtual Machines

The virtual machine monitor manages the physical resources by distributing
them among the virtual machines as appropriate. Each virtual machine
therefore appears to have a reduced amount of resources. For example, if the
control program is to allocate space on a single disk for ten virtual machines,
it will divide the disk into ten minidisks. Each virtual machine will have
access to a different portion of the physical disk. The size of each minidisk is
less than the size of the actual disk (although the sizes of the ten minidisks
may differ). The virtual machine monitor handles the mapping from the
minidisk address (presented to it by the virtual machine) and the physical
disk.

EXAMPLE: When a virtual machine’s operating system tries to write to a
disk, the I/O instruction is privileged and causes a trap to the virtual machine
monitor. The virtual machine monitor translates the addresses to be accessed
(read from or written to), verifies that the I/O references disk space allocated
to that virtual machine, and services the request. It returns control to the
virtual machine when the request is satisfied (completed for synchronous
I/O, begun for asynchronous I/O).

D.2.3 Paging and Virtual Machines

On an ordinary machine, paging occurs at the highest level of privilege. When
a virtual machine attempts to page, it does so from the virtual machine’s level
of privilege. The attempt to read from, or write to, the disk causes a transfer
to the virtual machine monitor. At that point, the request is handled as any
other request for I/O. However, two problems unique to virtual machines
arise.



First, because of the way some operating systems are designed, some pages
may be accessible only to processes running at the highest level of privilege,
but the virtual machine operating systems run at a lower level of privilege.
The virtual machine must change the protection level of these pages to the
appropriate level of privilege.

EXAMPLE: On the VAX/VMS system, only kernel level processes could read
some pages. Hence, the virtual machine monitor on the VAX/VMM system
had to ensure that executive level processes on a virtual machine could not
read the pages for kernel level processes on that virtual machine. This was
necessary because the kernel level processes on the virtual machine were
actually running at the VM kernel level, which was in the physical executive
level of privilege.

In theory, reducing the level of protection for these pages posed a security
risk (because processes at the VM executive level could then access the
pages). In practice, the VMS system allowed processes in executive mode to
change to kernel mode freely. Hence, there was no loss of security. But if the
process running at the VM executive level attempted to access one of these
pages, the access would have been allowed. Were the VAX/VMS system
running directly on the hardware and not under a virtual machine, the access
would have been denied. Hence, there was a loss of reliability.

The second problem is performance. The virtual machine monitor paging its
own data or instructions is transparent to the virtual machines. If the virtual
machines attempt to page, the virtual machine monitor must handle the
request as described above. If the virtual machine operating system pages
heavily, this indirection may cause significant delays.

EXAMPLE: IBM’s VM/370 provided support for several different operating
systems. OS/MFT and OS/MVT were designed to access storage on disk. If
the jobs being run under those systems depended on timings, the delays
caused by the virtual machine might have affected the success of the jobs.



With a system that supported virtual storage, such as MVS, either MVS or CP
(the virtual machine monitor) might have caused paging. Again, if timings
were important, the delays could have caused failure of a process that would
not have failed were there no intermediate CP.

D.3 Exercises

1. The second example in Section D.2.1 states that “user level processes can
alter page table entries, so references to those data structures also fail to meet
the second requirement.” How can an operating system prevent a user level
process from altering its page table entries?

2. Suppose a virtual machine monitor (call it V1) is running another virtual
machine monitor (V2), which in turn is running a version of the Linux
operating system L. The user running the Linux system is editing a file with
the E text editor. The user requests that the editor write the file to disk.

(a) Is the instruction RFT (Return From Trap) sensitive? Why or why not?

(b) Trace the flow of control among V1, V2, L, and E.

(c) How many RFT instructions will be executed? Justify your answer.

3. The Intel VT-i architecture deals with the problem of privileges by having a
bit that indicates whether the hypervisor or the guest system is executing.
What advantages does this have over the architectures that do virtualization
by having the hypervisor run in the ring with highest privilege, and the virtual
machine in the other rings? What are the disadvantages of the Intel
approach?



Appendix E. Symbolic Logic
This appendix provides background on various types of logic. One can use 
symbols to represent data and functions to create formulas using the rules of 
logic. Then the rules of a logic system allow the analyst to reason about 
formulas made out of the symbols.

E.1 Propositional Logic

Propositional logic, also called the propositional calculus, is based on 
propositions, or atomic, declarative sentences that can be shown to be either 
true or false (but not both). Examples of such statements are “The sky is blue 
today,” “Nine divided by 3 equals 3,” and “All people like chocolate.” 
Questions, and statements such as “Let’s go!” and “Here’s hoping for the 
best,” are not considered declarative because they cannot be argued to be true 
or false. Propositions are usually represented by lowercase letters — usually 
those in the middle of the alphabet such as p and q — or by letters with 
subscripts, such as p1, p2, . . . to make more than 26 symbols.

Propositions can be composed into compound sentences using connectives. 
These compound sentences are more complex propositions, or formulas. 
Formulas are generally represented by lowercase Greek letters, notably ø and 
ψ. The connectives of propositional logic are as follows.

• Negation, written as “¬”, reverses the truth value of a proposition. If
proposition p is true, then ¬p is false, and if p is false, ¬p is true.

• Disjunction, written as “⋁”, joins propositions. If one or both of p and q are



true, then p ⋁ q is true. If both p and q are false, then p ⋁ q is false.

• Conjunction, written as “⋀”, also joins propositions. If both p and q are true,
then p ⋀ q is true. If either p or q is false, then p ⋀ q is false.

• Implication, written as “→”, suggests that one proposition is the logical
consequence of another. Formally, p → q if and only if (¬p) ⋁ q. In the
implication p → q, p is called the premise of the formula and q is the
conclusion of the formula. Implication is also referred to as “if . . . then,” but
there are slight differences. In natural language, “if . . . then” assumes a
causal role in which the premise enables the conclusion. Implication in logic
languages indicates a preservation of truth and not necessarily a causal
relationship.

As in arithmetic, logic formulas consisting of symbols and connectives can be
ambiguous. Arithmetic expressions and programming language expressions
are evaluated according to specific rules, and when the rules are insufficient
to distinguish ambiguities, distinctions are generally made using parentheses.
For example, in arithmetic, ab + c is not the same as a(b + c). We know that
multiplication and division have higher precedence than addition and
subtraction, so the expression ab + c is interpreted to mean “multiply a and b
and add c” rather than “add b to c and multiply the result by a.” Propositional
logic has rules of precedence that behave in a similar fashion.

• Negation (¬) has higher precedence than conjunction (⋀) and disjunction
(⋁).

• Conjunction (⋀) and disjunction (⋁) have equal precedence.

• Conjunction (⋀) and disjunction (⋁) have higher precedence than
implication (→)

Parentheses group operands and operators, and, as in arithmetic, operations
within parentheses have the highest precedence. For example, (¬p) ⋀ q can



be written as ¬p ⋀ q to distinguish it from ¬(p ⋀ q), illustrating the first rule
of precedence above. Similarly, (p ⋀ q) → r can be written as p ⋀ q → r, but p
⋀ (q → r) requires the parentheses.

E.1.1 Natural Deduction in Propositional Logic

Natural deduction is a means of reasoning about propositions, allowing us to
draw conclusions. Proof rules let us infer formulas from other formulas. The
rules can be applied to a set of premises, formulas that we know or assume to
be true, to reach a conclusion, or the formula we wish to establish. A
contradiction is a formula that is always false, regardless of p. For example, p
⋀ ¬p is a contradiction. All contradictions are equivalent and are denoted by a
special symbol, ⊥, called bottom.

A tautology is a formula that is always true, regardless of p. For example, the
expression p ⋁ ¬p is a tautology. All tautologies are equivalent and are
denoted by a special symbol, ⊤, called top.

E.1.1.1 Rules

We present 11 rules of natural deduction. For each of the logical connectives,
there is an introduction rule and an elimination rule. The introduction rules
allow us to deduce information about the conclusion from the premises. The
elimination rules allow us to conclude information about the variables used in
the premise from the conclusion.

EXAMPLE: An introduction rule for the connective “*” would allow us to
draw conclusions about p * q based on information about p and q. An
elimination rule for “*” would allow us to draw conclusions about p (or q)
based on what we know about p * q.

• And introduction: If we have concluded (the truth of) p and q, then we can
also conclude (the truth of) p ⋀ q. In other words, we can say that if p is true
and q is true, then p ⋀ q is also true.



• And elimination: If we have concluded p ⋀ q, then we can also conclude p
and we can also conclude q. In other words, if p ⋀ q is true, then p is true and
q is true.

• Implication introduction: Assume that p is true temporarily, and, based on
this assumption, prove q. Thus, we can conclude p → q. More generally, if we
assume the premise and reach the conclusion, we can say that the premise
implies the conclusion.

• Implication elimination, also called modus ponens: If we have concluded p
and p → q, we can also conclude q. More generally, if the premise is true and
the implication is true, then the conclusion must be true.

• Disjunction introduction: If we can conclude p, then we can conclude p ⋁ q.
Similarly, if we can conclude q, then we can conclude p ⋁ q. If either p or q is
true, then p ⋁ q.

• Disjunction elimination: If we can conclude p ⋁ q and want to use it to
conclude X, we first assume p and conclude X. Then we assume q and
conclude X. Given p ⋁ q and these two proofs, we can infer X.

• Negation introduction: If we assume p and conclude bottom (⊥), we infer
¬p.

• Negation elimination: If we assume p and ¬p, we conclude bottom (⊥).

• Bottom elimination: If we assume ⊥, a contradiction, then we can prove any
proposition p.

• Double negation introduction: If we have concluded p, then we can also
conclude the double negation of p, ¬¬p. In other words, if p is true, then ¬¬p
is also true.

• Double negation elimination: If we have concluded ¬¬p, then we can also
conclude p. In other words, if ¬¬p is true, then p is also true.



E.1.1.2 Derived Rules

Two commonly used rules that are derived from the rules above are modus
tollens and reductio ad absurdum. Modus tollens eliminates an implication.
If we have concluded ¬q and p → q, we can also conclude ¬p.

Suppose that ¬q holds. Suppose we assume that a premise p holds and we can
prove that p → q holds. By the implication elimination rule above, q holds.
But it is impossible for both q and ¬q to hold, so our assumption about p
must be false, which means ¬p. In other words, if the conclusion is false and
the implication is true, then the premise must be false. This is an example of a
proof technique called reductio ad absurdum or proof by contradiction. A
succinct description is: to prove p, assume ¬p and reach bottom (or a
contradiction).

E.1.2 Well-Formed Formulas

Any set of symbols using symbols for propositions, connectors, and
parentheses is a word in the alphabet of a logical language. But not all words
are meaningful. An important class of meaningful words is the set of well-
formed formulas (WFFs). They are defined inductively.

• A propositional atom is a WFF.

• The negation of a WFF is a WFF.

• The conjunction of WFFs is a WFF.

• The disjunction of WFFs is a WFF.

• An implication between two WFFs is a WFF.

E.1.3 Truth Tables

The previous sections show how one may reach a conclusion based on a set of
premises and applying the laws of natural deduction. Another way of



approaching such a proof is by using truth tables. A truth table is a set of the
possible values of a compound proposition based on the possible values (in
this case, T for true or F for false) of the atomic propositions. Truth tables for
conjunction, disjunction, implication, and negation are shown below.

p q p ⋀⋀ q p ⋁⋁ q p →→ q ¬p

T T T T T F

T F F T F F

F T F T T T

F F F F T T

To reach a “proof” by using truth tables, create a truth table for a formula that
states that the conjunction of the premises implies the conclusion. Of course,
the more atomic propositions there are, the larger the truth table and the
more complex this technique becomes. If the truth table of the conjunction of
the premises is the same as the truth table of the conclusion, then we say that
we have reached a proof.

Definition 5–1. A sequent is a set of formulas (premises) ø1, ø2, . . . , øn and
a conclusion ψ. It is denoted by ø1, ø2, . . . , øn ├ ψ.

Definition 5–2. A sequent is valid if a proof for it can be found.

Definition 5–3. Two formulas ø and ψ are provably equivalent if and only
if ø ├ ψ and ψ ├ ø both are valid.

Definition 5–4. Two formulas that have the same truth table values are
called semantically equivalent. If ψ evaluates to true whenever ø1, ø2, . . . , øn
evaluate to true, this is denoted by ø1, ø2, . . . , øn ⊨ ψ.

These definitions lead to two critical theorems in propositional logic.

The first theorem says that if there is a proof of a conclusion given a set of
premises, then the premises and conclusion are semantically equivalent.



Formally:

Theorem E.1. Soundness Theorem of Propositional Logic: Let ø1, ø2,
. . . , øn and ψ be propositional logic formulas. If ø1, ø2, . . . , øn ├ ψ, then ø1,
ø2, . . . , øn ⊨ ψ.

The second theorem says that if a set of premises and a conclusion are
semantically equivalent, then there is a natural deduction proof for the
sequent. Formally:

Theorem E.2. Completeness Theorem of Propositional Logic: If ø1,
ø2, . . . , øn and ψ be propositional logic formulas. If ø1, ø2, . . . , øn ⊨ ψ, then
ø1, ø2, . . . , øn ├ ψ.

E.1.4 Mathematical Induction

Mathematical induction is a proof technique that allows us to prove
equations true when dealing with arbitrary values. Suppose we want to show
that a property M(n) holds for all natural numbers n. To use mathematical
induction, we proceed as follows.

• Prove that M(1) holds. This is called the base case or basis.

• Assert that M(n) holds for n = 1, . . . , k. This is called the induction
hypothesis.

• Prove that if M(k) holds, then M(k + 1) holds. This is called the induction
step.

Then M(n) is true for all natural numbers n.

EXAMPLE: We wish to prove that the formula for the sum of the first n
natural numbers is:



We use mathematical induction. Call this formula M(n).

BASIS: M(1) is

, which is clearly true.

INDUCTION HYPOTHESIS: M(n) is true for n = 1, . . . , k.

INDUCTION STEP: Consider 1 + . . . + k + (k + 1):

But this is simply M(k + 1). Hence, if M(k) holds, then M(k + 1) holds. This
completes the proof.

E.2 Predicate Logic

Predicate logic, also called predicate calculus or first order logic, is based on
the concept of predicates and may contain variables, quantifiers, constants,
and functions in addition to the components of propositional calculus.
Consider the sentence: “Every directory contains some files.” We would like
to express this concept in terms of logic. To do this, we need to introduce the
concepts of variables and predicates and a means of capturing the ideas of
“every” and “some.”



We define predicates that describe the properties represented by the
sentence, using variables x and y to describe any file or directory. Let us
assume that

• F (x): x is a file

• D(y): y is a directory

• C(x, y): x is a file in directory y

We next need to define the concepts of “every” and “some.” We define the
symbol ∃, the existential quantifier, to denote that something exists.
Therefore, a statement containing the notation “∃x” is read “there exists x” or
“there is some x.” The concept of “all” is represented by the symbol ∀, called
the universal quantifier. The phrase “∀x” is read “for all x.” Both ∃ and ∀ can
be combined with the negative connector, ¬, to mean “there does not exist” or
“not all.” The sentence “Every file belongs to some directory” becomes “∀xF
(x) → (∃y(D(y) ⋀ C(x, y))).” More precisely read, our sentence becomes “for
every x, if x is a file, then there is some y such that y is a directory and
directory y contains file x.”

Variables and constants are the basic terms of predicate logic. More complex
terms are constructed using function references on terms. The definition of a
function is consistent with the usual definition from mathematics: a function
provides a unique output for each input. If one views constants as “functions”
without any variable references, then we see that the entire predicate
vocabulary consists of function symbols and predicate symbols that range
over the set of terms.

A variable is said to be bound if it is quantified with either ∀ or ∃. A variable
that is not bound is said to be unbound or free. For example, in ∀xΦ(x, y), x is
a bound variable and y is a free variable.

A formula in predicate calculus with predicates P and functions Φ is defined



as follows.

• If P is a predicate taking n arguments (n ≥ 1) and the arguments are terms
t1, . . . , tn, defined over the set Φ of functions, then P (t1, t2, . . . , tn) is a
formula.

• If ø is a formula, then ¬ø is also a formula.

• If ø and ψ are formulas, so are ø ⋀ ψ, ø ⋁ ψ, and ø → ψ.

• If ø is a formula and x is a variable, then ∀xø and ∃xø are also formulas.

E.2.1 Natural Deduction in Predicate Logic

The natural deduction rules for predicate logic are similar to those in
propositional logic. They add new rules for existential and universal
quantifiers as well as the distinguished predicate equals, represented by the
equality sign (=). The new rules are as follows.

• Equality: A term t is equal to itself.

• Substitution: Equals may be substituted for equals. If t1 = t2 and x is a free
variable in ø(x), then ø(t1) = ø(t2).

• Universal quantifier elimination: If you have ∀xø(x), then you can replace
the x in ø(x) by any term t that is free in ø(x) .

• Universal quantifier introduction: If you can prove some formula ø(x) with
x a free variable, you can derive ∀xø(x).

E.3 Temporal Logic Systems

There are many temporal logic systems. Linear time logic systems view
events as sequential. Branching time logic systems view events as concurrent
“alternative universes.” Temporal logic systems view time as either a
continuous flow of events or a set of discrete events.



Section 21.4.2 discussed the use of Control Tree Logic (CTL) in the study and
verification of hardware and communications protocols. This section
describes the logic itself. CTL views time as branching and discrete.

E.3.1 Syntax of CTL

CTL builds on the concepts of propositional logic. Its building blocks are
propositions; the connectors ¬, ⋀, ⋁, and →; the concepts of ⊥ (bottom, never
true) and ⊤ (top, always trivially true); the signs of aggregation ( ), [ ], and { };
and the notion of a well-formed formula.

CTL adds eight temporal connectives to this list. Each connective has two
identifying symbols. The first symbol is either “A” or “E”; these symbols are
somewhat similar in concept to the symbols ∀ and ∃ of predicate logic. “A”
means “along all paths,” whereas “E” means “along at least one path.” The
second symbol is “X,” “F,” “G,” or “U.” An “X” refers to “the next state,” an “F”
means “some next state,” a “G” means “all future states,” and a “U” means
“until some future state.”

The precedence rules for CTL are as follows.

• The unary operators ¬, AG, EG, AF, EF, AX, and EX have the highest
precedence.

• The operators ⋀ and ⋁ have the next-highest precedence.

• The operator → has the next-highest precedence.

• The operators AU and EU have the lowest precedence.

We define a well-formed CTL formula as follows.

• Top (⊤) is a formula.

• Bottom (⊥) is a formula.



• All atomic descriptions are formulas.

• If ø and ψ are formulas, so are ø ⋀ ψ, ø ⋁ ψ, ¬ø, ø → ψ, AXø, EXø, A[øUψ],
E[øUψ], AGø, EGø, AFø, and EFø.

E.3.2 Semantics of CTL

It is easiest to define the syntax of CTL in terms of a model of a system. The
basic unit of a system model is a set of atoms defined for the system. The
model consists of the states of the system, an operator that represents the
changes of state, and a function that gives the atoms that hold for a state.
More formally:

Definition 5–5. A model is formally defined within CTL as M = (S, ⇒, L),
where S is a set of states, ⇒ is the transition operator on the set S such that
∀s ∈ S(∃s′ ∈ S[s ⇒ s′]), L is a labeling function, and

(atoms).

Here, (atoms) is the power set (set of all subsets) of the defined atoms.

If M is a model and s is a state, the state satisfies a formula ø if the formula is
true in that state. Again, formally:

Definition 5–6. Satisfaction Relation. Let M = (S, ⇒, L) be a model for
CTL. Given any s ∈ S, if a CTL formula ø holds in state s, we denote this by M,
s ⊨ ø, and say we that state s of model M satisfies formula ø.

For convenience, we write M, s ⊭ ø if state s of model M does not satisfy
formula ø.

Let M be a model, let s and si for i = 1, . . . be states of M, let p be an atomic
proposition of M, and let ø, ø1, and ø2 be CTL formulas. Then:

• ∀s ∈ S [M, s ⊨ ⊤].



This says that tautologies hold in all states of the model M.

• ∀s ∈ S [M, s ⊭ ⊥].

This says that contradictions do not hold in any state of the model M.

• M, s ⊨ p if and only if p ∈ L(s). This says that p holds in state s of model M
whenever p is in the set of atoms that hold in state s. Conversely, if p is not in
that set, then p does not hold in state s.

• If M, s ⊭ ø, then M, s ⊨ ¬ø.

This establishes that if a state does not satisfy a formula, then the state
satisfies the negation of that formula.

• M, s ⊨ ø1 ⋀ ø2 if and only if M, s ⊨ ø1 and M, s ⊨ ø2.

This says that a state satisfies the disjunction of two formulas if and only if it
satisfies both formulas.

• M, s ⊨ ø1 ⋁ ø2 if and only if M, s ⊨ ø1 or M, s ⊨ ø2.

This says that a state satisfies the conjunction of two formulas if and only if it
satisfies either formula.

• M, s ⊨ ø1 → ø2 if and only if M, s ⊭ ø1 or M, s ⊨ ø2.

This says that a state satisfies the implication of two formulas if and only if it
satisfies the second, or satisfies neither the first nor the second, formula.

Now consider the temporal connectives.

• M, s ⊨ ø AXø if and only if ∀s1 such that s → s1, then M, s1 ⊨ ø.

This says that a state satisfies a formula in all possible next states if and only
if every state that the original state implies also satisfies the formula.



• M, s ⊨ EXø if and only if ∃s1 such that s → s1, then M, s1 ⊨ ø.

This says that a state satisfies a formula in some next state if and only if at
least one state that the original state implies also satisfies the formula.

• M, s ⊨ AGø if and only if for all paths s1 → s2 → s3 → . . . , where s = s1 and
∀si on the path, [M, si ⊨ ø].

This says that a state satisfies a formula in all future states if and only if every
state on every path of transitions beginning at the original state satisfies the
formula.

• M, s ⊨ EGø if and only if there exists a path s1 → s2 → s3 → . . . , where s = s1
and ∀si on the path, [M, si ⊨ ø].

This says that there is a path with all states satisfying a formula if and only if
every state on a path of transitions beginning at the original state satisfies the
formula.

• M, s ⊨ AFø if and only if for all paths s1 → s2 → s3 → . . . , where s = s1 and
∃si[M, si ⊨ ø].

This says that on all paths there will be a state satisfying the formula if and
only if every path of transitions beginning at the original state contains at
least one state that satisfies the formula.

• M, s ⊨ EFø if and only if there exists a path s1 → s2 → s3 → . . . , where s = s1
and ∃si on the path [M, si ⊨ ø].

This says that there is a path with one state satisfying the formula if and only
if a state on a path of transitions beginning at the original state satisfies the
formula.

• M, s ⊨ A[ø1ø2] if and only if for all paths s1 → s2 → s3 → . . ., ∃i [i ≥ 0 ⋀ si ⊨
ø2 ⋀ ∀j [0 ≤ j < i → sj ⊨ ø1]].



This says that on all paths there will be a state satisfying the formula if and
only if every path of transitions beginning at the original state has a state
satisfying the second formula and all previous states in that path satisfy the
first formula.

• M, s ⊨ E[ø1ø2] if and only if for some path s1 → s2 → s3 → . . . , ∃i [i ≥ 0 ⋀ si ⊨
ø2 ⋀ ∀j [0 ≤ j < i → sj ⊨ ø1]].

This says that there is a path on which there is a state satisfying the formula if
and only if every path of transitions beginning at the original state has a state
satisfying the second formula and all previous states in that path satisfy the
first formula.

E.4 Exercises

1. Prove that p ⋁ (q ⋀ r) = (p ⋁ q) ⋀ (p ⋁ r)

(a) using a truth table.

(b) using natural deduction (show the rules that you apply at each step of the
proof).

2. Use the logical connectives of propositional logic to express the following
sentences in propositional logic. Be sure to define all propositional atoms.

(a) If the sun shines, we can make hay.

(b) For dinner I can have a potato or rice but not both.

(c) If you do all the homework, read the text, and study the lecture notes, then
you will be prepared for the midterm exam. Otherwise, you may not be
prepared for the exam.

3. Use mathematical induction to prove that, for n ≥ 1,



4. Use predicate logic to state the following sentences. Be sure to define all
predicates, constants, and variables.

(a) Not all birds can fly.

(b) Every child is younger than its mother.

(c) Mary and Sue have the same paternal grandfather.

5. State which of the following strings are well-formed CTL formulas.

(a) FGr

(b) A¬Fp

(c) ¬(¬p) ⋀ (q → r)

(d) ¬EXq

(e) pU(AX⊥)

(f) AFq ⋀ EXr

6. Express the meaning of the following CTL WFFs in ordinary English:

(a) A[True U ø]

(b) E[True U ø]



Appendix F. The Encryption
Standards
The two ciphers described in Chapter 10 are built upon iterations of functions 
both to encrypt and to generate keys. This Appendix describes them in detail.

F.1 Data Encryption Standard

The DES (see section 10.2.3) takes as input a 64-bit plaintext message, and 
iterates through 16 rounds to generate a 64-bit ciphertext. Each round 
requires a 48-bit key, called a round key. A schedule of 16 round keys is 
generated from the 64-bit DES key. Section F.1.2 describes the generation of 
the round keys.

The input to the DES is 64 bits. The bits are permuted, and the resulting bits 
split into two halves. One half is given to a function, along with the round key 
for that round, and the output is combined with the other half. This becomes 
the first half, and the old first half becomes the second half. This continues for 
15 rounds. The last round is the same except the two halves are not 
exchanged; they are concatenated, the result permuted again, and the result is 
the output.

The function combines the right half of the current round with the round key, 
and then uses a substitution function to replace sets of bits. The result is then 
permuted to form the output of the function.

The permutations and substitutions are described by tables shown in this 
section. The notation for these tables bears explaining. For all tables except 
the S-boxes, each entry in the table is a bit position from the input. The bits



are output in the order shown in the table. Thus, for the initial permutation
IP (see Figure F.2a), the first bit of the output of the permutation is bit 58 of
the input to the permutation, the second bit of the output is the 50 bit of the
input, the third bit of the output is the 42nd bit of the input, and so forth. All
blocks begin with bit number 1, as in the standard. The notation for the S-box
tables will be explained later.

F.1.1 Main DES Algorithm

The DES algorithm consists of 16 iterations, called rounds. Figure F.1a shows
the structure of the algorithm. The 64-bit input is permuted as indicated by
the permutation table IP (see Figure F.2a). The resulting 64 bits are split into
two halves, L0 and R0.

The first round begins by transforming R0 using a function f, which also takes
as input the first round key k1. The result of that function is exclusive or’ed
with L0, and the result becomes L1. L0 becomes R1.

This process repeats for Li and Ri for i = 1, . . . , 15. The last round proceeds as
do the earlier ones, except that the two haves are not exchanged. After the last
round, R16 and L16 are concatenated to form a 64-bit quantity. This is then
permuted according to the table IP–1, the inverse of the initial permutation IP
(see Figure F.2b). The resulting block is the output.



Figure F.1: The DES Algorithm

Figure F.2: Initial and Final Permutation Tables.

The function f lies at the heart of this algorithm. Figure F.1b shows the
computation of f. For round i, the inputs to f are the right half Ri and the
corresponding round key ki.

Figure F.3: E Expansion and P Permutation Tables.

First, Ri is expanded from 32 to 48 bits by replicating some of its bits as
indicated by the E expansion table (see Figure F.3a). These 48 bits are
exclusive or’ed with the round key ki. The resulting 48 bits are split into 8
groups of 6 bits each, and group i is run through the i-th S-box Si. Each S-box
replaces the 6 bit input with a 4 bit output. The 8 groups of 4 bits are
concatenated into 32 bits, and those bits permuted as indicated by the P table
(see Figure F.3b). The result is the output of f.

The way the S-boxes work is interesting. The 8 S-boxes are shown in Figure
F.4. All work the same way, so we consider S1 as an example. The input is 6
bits. The first and last bits, taken as a pair, form an integer between 0 and 3
inclusive that is the row number in the table. The middle 4 bits form a
number between 0 and 15 inclusive that is the column number in the table.
Note that, unlike other tables, the first row of each S-box is numbered 0, as is



the first column.

EXAMPLE: Consider S1. If the input bits are 010011, then the row is 1 (01)
and the column is 9 (1001), so the output bits corresponding to these input
bits are 0110 (6). Similarly, if the input is 111000, then the row is 2 (10) and
the column is 12 (1100), so the output bits are 0011 (3). For S2, ..., S8, the
outputs corresponding to the input 010011 are 0000 (0), 1000 (8), 0111 (7),
0000 (0), 0001 (1), 0011 (3), and 0101 (5), respectively. The outputs
corresponding the the input 111000 are 1001 (9), 0101 (5), 0101 (5), 0110 (6),
0001 (1), 0000 (0), and 1111 (15), respectively.



Figure F.4: S Boxes.

Figure F.5: Key Generation Tables.

F.1.2 Round Key Generation

Figure F.6 shows the generation of the round keys. The initial 64-bit key is
passed through permutation PC-1 (see Figure F.5a). This permutation
discards 8 bits and scrambles the rest. These remaining 56 bits are then split
into two 28-bit halves, called C0 and D0. Each half is independently rotated
left1 by the number of bits shown in the LSH table for that round (see Figure
F.5b; the shift is si bits for round i), producing C1 and D1. Then C1 and D1 are
concatenated, and the resulting 56-bit quantity is permuted as indicated by



the permutation table PC-2 (see Figure F.5c). Like PC-1, PC-2 eliminates 8
bits and scrambles the rest, resulting in a 48-bit output that is the round key
k1.

Figure F.6: Key schedule generation.

Then for each round, this process iterates: Ci and Di are left rotated, and the
combination permuted as indicated by PC-2. Each round produces the round
key ki. The process ends when 16 round keys are generated.

These 16 keys k1, . . . , k16 form the key schedule. Key ki is used as input to a
function f in the main DES algorithm, as described below.

F.2 Advanced Encryption Standard

The Advanced Encryption Standard, the replacement for the DES, takes as
input blocks of 128 bits and transforms them into 128 bit output blocks. The



AES, as defined in the standard, accepts three different key sizes, each of
which causes the algorithm to perform a different number of rounds. The
relationship between key size and rounds is:

• AES-128 has a key length of 128 bits and uses 10 rounds.

• AES-192 has a key length of 192 bits and uses 12 rounds.

• AES-256 has a key length of 256 bits and uses 14 rounds.

We use Nk and Nb to represent the number of 32-bit words in the key and
block size, respectively. Nr represents the number of rounds. Also, we
represent bytes as two hexadecimal digits or 8 binary digits. So the ASCII
representation of the character “Q” is 51 (hexadecimal) or 01010001 (binary).

Like the DES, the AES consists of a series of rounds. Each round operates on
an internal state of the cipher. The state is represented by a 16 byte array. At
the beginning, the input is copied into the state array; after execution, the
state array becomes the output. Figure F.7 shows this relationship.

F.2.1 Background

Many of the internal transformations used by the AES rely on the
manipulation of bytes. These manipulations all treat a byte as a polynomial in
GF (28), with each bit being a coefficient of the respective power of x. So, for
example, the byte b5 in hexadecimal, which is 10110101 in binary, is treated as
the polynomial x7 + x5 + x4 + x2 + 1. All arithmetic involving coefficients is
done modulo 2.

The addition of two bytes is simply the exclusive or of the two bytes. This is
equivalent to converting the two bytes into polynomial form, adding them in
GF (28), and converting the result back into binary form.

EXAMPLE:



The sum of the bytes 5b and a4 is f3:

Figure F.7: Input, State, and Output for the AES

To multiply two bytes a and b (written a • b), convert them to the
corresponding polynomials and multiply them together modulo x8 + x4 + x3 +
x + 1. As we are working in GF (28), addition of coefficients is done modulo 2.

EXAMPLE: To multiply the bytes 57 and 83, proceed as follows:

Then reduce this product modulo x8 + x4 + x3 + x + 1:

So, the product is 11000001 in binary, and therefore 57 • 83 = c1.

F.2.2 AES Encryption

Each round of the AES is built up from four basic transformations: SubBytes,
ShiftRows, MixColumns, and AddRoundKey.



F.2.2.1 SubBytes

This transformation takes a single byte as input, and replaces it with another
byte. Figure F.8 defines this transformation. Thus, each byte of the state is
changed with this transformation.

The substitution table is itself generated by composing two transformations.
First, map the byte 00 to itself, and if the input byte is anything else, take the
multiplicative inverse of the input byte in the field GF (28). Then transform
the resulting byte b to a new byte b′ as follows. Let ci be the ith bit of the byte
01100011. Then, for i = 0, . . . , 7, generate  as follows:

F.2.2.2 ShiftRows

This transformation shifts the rows of the state cyclically to the left, by the
number of the row. Figure F.9 shows this transformation.

Figure F.8: The SubBytes transformation. The first 4 bits of the byte
identify the row; the last 4 bits, the column. So for example the



byte 7a would be transformed into the byte da.

Figure F.9: The table on the left shows the state before ShiftRows is
applied. The table on the right shows the state after ShiftRows is
applied.

F.2.2.3 MixColumns

Let

and  be the bytes resulting from applying MixColumns to column c, where c
= 0, 1, 2, 3. Then:

F.2.2.4 AddRoundKey

This transformation adds a round key into the mix. Let wi be the ith set of 32
bits (4 bytes) of the key schedule (see Section F.2.4). Let r be the current
round, and

and  the bytes resulting from applying AddRoundKey to column c, where c =
0, 1, 2, 3. Then:



Figure F.10: Pseudocode for AES Encryption (adapted from [2129,
p. 15, Figure 5])

F.2.3 Encryption

First, the input bytes are copied into the state array (see Figure F.7).

The encryption begins with applying AddRoundKey to the state array, using
round key 0. Then the transformations SubBytes, ShiftRows, MixColumns, and
AddRoundKey (using the round key for the current round) are applied in
succession, to form one round; in all, Nr – 1 rounds take place. The final
round consists of an application of the SubBytes, ShiftRows, and AddRoundKey
transformations.

At the end, the contents of the state array are the output bytes.

Figure F.10 shows this process.



F.2.3.1 AES Decryption

Like the encryption, the AES decryption is a series of rounds based on
transformations similar to those used in the encryption. The InvShiftRows,
InvSubBytes, and InvMixColumns are the inverses of the corresponding
encryption transformations, and are shown below.

F.2.3.2 InvSubBytes

This transformation takes a single byte as input, and replaces it with another
byte. Figure F.11 defines this transformation. Thus, each byte of the state is
changed with this transformation.

Figure F.11: The InvSubBytes transformation. The first 4 bits of the
byte identify the row; the last 4 bits, the column. So for example
the byte da would be transformed into the byte 7a.



Figure F.12: The table on the left shows the state before
InvShiftRows is applied. The table on the right shows the state after
InvShiftRows is applied.

The substitution table is simply the inverse of the SubBytes table used to
encrypt.

F.2.3.3 InvShiftRows

This transformation shifts the rows of the state cyclically to the right, by the
number of the row. Figure F.12 shows this transformation.

F.2.3.4 InvMixColumns

Let

and  be the bytes resulting from applying InvMixColumns to column c,
where c = 0, 1, 2, 3. Then:



Figure F.13: Pseudocode for AES Decryption (adapted from [2129,
p. 21, Figure 12])

F.2.3.5 Decryption

First, the input bytes are copied into the state array (see Figure F.7). Next, the
round keys are computed and the schedule reversed.

The decryption begins with applying AddRoundKey to the state array, using
round key Nr. Then the transformations InvShiftRows, InvSubBytes,
AddRoundKey (with the current round key from the reversed schedule), and
MixColumns are applied in succession, to form one round; in all, Nr – 1 rounds
take place. The final round consists of an application of the InvShiftRows,
InvSubBytes, and AddRoundKey (using round key 0) transformations.

At the end, the contents of the state array are the output bytes.

Figure F.13 shows this process.



F.2.4 Round Key Generation

Like the DES, the AES takes a key k and generates 4-byte round keys ki =
ki0ki1ki2ki3. It is more convenient to consider these round keys as one array of
4-byte words. So let [wi] be the i-th byte of this array. As there are Nr rounds,
then 0 ≤ i ≤ Nb(Nr + 1).

The round key generation algorithm uses two transformations, SubWord and
RotWord, and a round constant word array, Rcon.

F.2.4.1 SubWord

SubWord takes as input a 4-byte word. It applies the SubByte transformation to
each byte individually, and returns the result. So the input [ae, 3f, 78, 21]
produces the output [e4, 75, bc, fd].

Figure F.14: Values of Rcon[1] through Rcon[10] (adapted from
[2129, Section A.2])

Figure F.15: Pseudocode for Generating the Round Keys (adapted
from [2129, p. 20, Figure 11])



F.2.4.2 RotWord

RotWord cyclically shifts the input 4-byte word right by one byte. So the input
[b0, b1, b2, b3] produces the output [b1, b2, b3, b0].

F.2.4.3 Rcon

For the ith round, the round constant word array Rcon[i] has the value [xi–1,
00, 00, 00], where x is 02, and xi uses multiplication as described in Section
F.2.1. Figure F.14 shows values for Rcon[1] through Rcon[10].

F.2.4.4 Round Key Schedule Generation

The round key schedule is generated as a sequence of words in the array w. In
the algorithm presented in Figure F.15, word takes 4 bytes and combines them
into a single word.

F.2.5 Equivalent Inverse Cipher Implementation

The order of transformations between AES encryption and AES decryption
differ. Specifically, in encryption, the order of the transformations is
SubBytes, ShiftRows, MixColumns, and AddRoundKeys, and in decryption the
order of the transformations is InvShiftRows, InvSubBytes, AddRoundKeys,
and InvMixColumns. But two properties allow a more efficient implementation
of decryption.

The first two transformations in both sequences commute, so the order of
SubBytes and ShiftRows is unimportant. The same is true for the order of
InvShiftRows and InvSubBytes.



Figure F.16: Pseudocode to be added to the end of the roundkeys
algorithm in Figure F.15 (adapted from Figure 15 [2129, p. 25])

Figure F.17: Pseudocode implementing the Equivalent Inverse
Cipher (AES Decryption) (adapted from [2129, p. 25, Figure 15])

Also, the column mixing operations are linear in the column input, so:

This means the order of InvMixColumns and AddRoundKey can be reversed,
providing the round key schedule is also modified by using InvMixColumns.
This leads to the algorithm in Figures F.16 and F.17.

F.3 Exercises

1. Prove that the DES key consisting of all 0-bits and the DES key consisting
of all 1-bits are both weak keys. What are the other two weak keys? (Note:

InvMixColumns(state xor roundkey) = InvMixColumns(state) xor InvMixColumns(rou



Differences in the parity bits, which the PC-1 permutation drops, do not
count; the keys must differ in the 56 bits that are used to generate the key
schedule.)

2. Prove that the DES cipher satisfies the complementation property (see
page 263).

3. Section F.2.5 states that the first two transformations in the rounds for
both AES encryption and AES decryption commute.

(a) Prove that the SubBytes and ShiftRows transformations commute.

(b) Prove that the InvShiftRows and InvSubBytes transformations commute.



Appendix G. Example Academic
Security Policy
The first policy statement presented here is the University of California at 
Davis’ acceptable use policy for electronic communications. It is an informal 
statement, focusing on clear language and references to other resources. Next 
comes the University of California’s Electronic Communications Policy.1 The 
third statement gives the user advisories associated with this policy (and is the 
first attachment to the Electronic Communications Policy). This applies to all 
10 University of California campuses. The User Advisories associated with this 
policy follow; again, these are written for the ordinary user, and have many 
references to the full policy. Last comes the University of California at Davis’ 
implementing procedures for the Electronic Communications Policy.

The text of these policy statements is copyrighted by the Regents of the 
University of California, © 2000, 2005, 2006, 2013 and is used by 
permission. The text is taken directly from the University of California web 
pages and Policy and Procedure Manual. Section numbering has been 
changed to reflect the section numbering of this text, and all cross-references 
have been updated.2 These changes do not affect the contents of the policy.

G.1 Acceptable Use Policy

This is from the University of California at Davis Policy and Procedure 
Manual, section 310-23, Exhibit A, issued on May 9, 2006 and reissued on 
September 6, 2013 [2128].



G.1.1 Introduction

The University encourages the use of electronic communications to share
information and knowledge in support of the University’s mission of
education, research, community service, and patient care, and to conduct the
University’s business. To these ends, the University supports and provides
electronic communications resources such as computers, networks, video and
audio equipment, telecommunications devices, email, and the World Wide
Web.

Incorporating the values affirmed by the UC Davis Principles of Community,
this policy governs the use of electronic communications resources at UC
Davis. All UC Davis users are responsible for reading and understanding this
policy. Users must acknowledge, in writing, that they have read and
understand this policy before they are allowed access to UC Davis electronic
communications resources.

G.1.2 Rights and Responsibilities

Electronic communications provide access to resources on and off campus, as
well as the ability to communicate with other users worldwide. Such open
access is a privilege and requires that individual users act responsibly. Users
must respect the rights of other users, respect the integrity of the systems and
related physical resources, and observe all relevant laws, regulations, and
contractual obligations. Since electronic information is volatile and easily
reproduced, users must exercise care in acknowledging and respecting the
work of others through strict adherence to software licensing agreements and
copyright laws.

The University is the legal owner and operator of all electronic
communications resources purchased or leased with University funds.
Overall responsibility for administering the University’s electronic
communications resources is primarily that of the Vice Provost– Information
& Educational Technology. The Vice Provost–Information & Educational



Technology may delegate overall responsibility for certain resources.

Other organizations such as universities, companies, and governments that
operate resources that are accessible via the UC Davis network may have their
own policies governing the use of those resources. When accessing remote
resources from UC Davis facilities, users are responsible for following the
policy of UC Davis and/or the remote facility, whichever is more restrictive.

G.1.3 Privacy

The University recognizes that principles of academic freedom and shared
governance, freedom of speech, and privacy hold important implications for
the use of electronic communications resources. This policy reflects these
principles within the context of the University’s legal and other obligations.
The University respects the privacy of electronic communications in the same
way that it respects the privacy of paper correspondence and conversations,
while seeking to ensure that University administrative records are accessible
for the conduct of University business.

The University does not routinely inspect, monitor, or disclose electronic
communications without the holder’s consent. Nonetheless, the University
may deny access to its electronic communications resources and may inspect,
monitor, or disclose electronic communications under certain limited
circumstances, subject to the requirements for authorization, notification,
and recourse in the UC and UC Davis Electronic Communications Policies.

G.1.4 Enforcement of Laws and University Policies

Federal and state laws and University policies apply to electronic
communications resources, including not only those that are specific to
computers, but also those that apply generally to personal conduct.

Minor or accidental violations of this policy may be handled informally by the
unit administering the accounts or network. This may be done through



electronic mail or in-person discussion and education.

More serious violations (including repeated minor violations) may result in
the temporary or permanent loss of access privileges or the modification of
those privileges. Violators may be subject to disciplinary action up to and
including dismissal or expulsion under applicable University policies and
collective bargaining agreements. Violators may be referred to their
sponsoring advisor, supervisor, manager, dean, vice chancellor, Student
Judicial Affairs, or the Misuse of University Resources Coordinating
Committee or other appropriate authority for further action.

G.1.5 Unacceptable Conduct

Unacceptable conduct includes, but is not limited to, the following attempted
or completed actions:

A. Copyrights and licenses. Users shall respect copyrights and licensing
agreements.

1. Copying. Software shall not be copied except as permitted by copyright law
or a license agreement.

2. Number of simultaneous users. The number and distribution of copies
shall be handled in such a way that the number of simultaneous users in a
department does not exceed the number of copies purchased by that
department, unless otherwise stipulated in the purchase contract.

3. Plagiarism. Copied material shall be properly attributed. Plagiarism of
electronic communications information is subject to the same sanctions as in
any other medium.

B. Integrity of electronic communications resources. Users shall not interfere
with the normal operation of electronic communications resources.

1. Modification, damage, or removal. Users shall not modify, damage, or



remove electronic communications resources that are owned by the
University or other users without proper authorization.

2. Encroaching on others’ access and use. Users shall not encroach on others’
access and use of the University’s electronic communications resources. This
includes but is not limited to: the sending of chain-letters or excessive
messages; printing excessive copies; running grossly inefficient programs
when efficient alternatives are available; unauthorized modification of
electronic communications resources; attempting to crash or tie up electronic
communications resources.

3. Unauthorized or destructive programs. Users shall not intentionally
develop or use programs such as, but not limited to, viruses, backdoors, and
worms that disrupt other users, access private or restricted portions of the
system, identify security vulnerabilities, decrypt secure data, or damage the
software or hardware components of an electronic communications resource.
Legitimate academic pursuits for research and instruction that are conducted
under the supervision of academic personnel are authorized by the Vice
Provost–Information and Educational Technology to the extent that the
pursuits do not compromise the University’s electronic communications
resources.

4. Unauthorized equipment. Users shall not install or attach any equipment
to a UCD electronic communications resource without the explicit approval of
the system administrator for that electronic communications resource.

C. Unauthorized access. Users shall not seek or enable unauthorized access.

1. Authorization. Users shall not access electronic communications resources
without proper authorization, or intentionally enable others to do so.

2. Password protection. A user who has been authorized to use a password-
protected account shall not disclose the password or otherwise make the
account available to others without authorization.



3. Misuse of EC records. Users may seek out, use, or disclose information
contained in EC records only for University business.

D. Usage. Users shall comply with applicable law and University policy.

1. Hostile working environment. Users shall not use electronic
communications resources in a manner that creates a hostile working
environment (including sexual or other forms of harassment), or that violates
obscenity laws.

2. Unlawful activities. Users shall not use electronic communications
resources for unlawful activities or activities that violate University policy,
including fraudulent, libelous, slanderous, harassing, threatening, or other
communications.

3. Mass messaging. Users shall avoid spamming, and other inappropriate
mass messaging to newsgroups, bulletin boards, mailing lists, or individuals.
Subscribers to an electronic mailing list will be viewed as having solicited any
material delivered by the list so long as the material is consistent with the
list’s purpose.

4. Information belonging to others. Users shall not intentionally seek or
provide information on, obtain copies of, or modify data files, programs, or
passwords belonging to other users without the permission of those other
users.

5. False identity. Users shall not use the identity of another user without the
explicit approval of that user, or mask the identity of an account or machine.

6. Implying University endorsement. Users shall not imply University
endorsement of products or services of a non-University entity from a
University electronic communications resource without approval. Users shall
not give the impression that the user is representing, giving opinions, or
otherwise making statements on behalf of the University unless authorized to



do so. To avoid this, the user may use a disclaimer such as “The opinions or
statements expressed herein should not be taken as a position of or
endorsement by the University of California.”

7. Protection of restricted personal information. Employees are responsible
for maintaining the security of individual’s restricted personal information.
Restricted personal information that is not necessary for an employees
position responsibilities shall be removed from electronic communication
devices. If the security of restricted personal information is compromised
(e.g., loss of computer, theft, hacking), the employee must immediately
inform their supervisor and the Security Coordinator at
security@ucdavis.edu.

E. Political, religious, personal, and commercial use. The University is a not-
for-profit, tax-exempt organization and, as such, is subject to federal, state,
and local laws on the use of University property.

1. Political or religious use. In communications relating to religious or
political activities or issues, the user’s University title may be used only for
identification. If such identification might reasonably be construed as
implying the support, endorsement, or opposition of the University with
regard to any religious or political activity or issue, a disclaimer (see D.63

above) shall be used.

2. Personal use. University users may use electronic communications
resources for incidental personal purposes provided that such use does not:
(a) directly or indirectly interfere with the University’s operation of electronic
communications resources, (b) interfere with the user’s employment or other
obligations to the University, (c) burden the University with noticeable
incremental costs, or (d) violate the law or University policy.

3. Commercial use. University electronic communications resources shall not
be used for non-University commercial purposes, except as permitted under
University policy or with the appropriate approval.



4. Advertisements. The University’s electronic communications resources
shall not be used to transmit commercial or personal advertisements,
solicitations, or promotions, except as permitted under University policy or
with the appropriate approval.

G.1.6 Further Information

UC Davis Policy & Procedure Manual Sections 310-23 and 310-24 (available
on the Web at http://manuals.ucdavis.edu), and the University of California
Electronic Communications Policy (available on the Web at
http://www.ucop.edu/ucophome/policies/ec/), give further information and
a list of relevant federal and state laws and University policies.

The Information & Educational Technology Services Website at
http://iet.ucdavis.edu/ provides information on the use of the University’s
electronic communications resources.

G.2 University of California Electronic
Communications Policy

This is the Electronic Communications Policy issued on November 17, 2000
and revised on August 18, 2005, for the University of California [2164]. The
policy was issued by the University’s Office of the President.

G.2.1 Introduction

The University of California encourages the use of electronic communications
to share information and knowledge in support of the University’s mission of
education, research and public service and to conduct the University’s
business. To this end, the University supports and provides interactive
electronic communications services and facilities for telecommunications,
mail, publishing, and broadcasting.

Recognizing the convergence of technologies based on voice, video, and data



networks, as Presidential Policy
[http://www.ucop.edu/ucophome/coordrev/policy/], the University of
California Electronic Communications Policy establishes principles, rules,
and procedures applying to all members of the University community to
specifically address issues particular to the use of electronic communications.
It clarifies the applicability of law to electronic communications and
references other University guidelines to ensure consistent application of the
Electronic Communications Policy on all University campuses (see Appendix
B, References4).

G.2.2 General Provisions

A. Purpose

The purposes of this Policy are to:

• Establish policy on privacy, confidentiality, and security in electronic
communications;

• Ensure that University electronic communications resources are used for
purposes appropriate to the University’s mission;

• Inform the University community about the applicability of laws and
University policies to electronic communications;

• Ensure that electronic communications resources are used in compliance
with those laws and University policies; and

• Prevent disruptions to and misuse of University electronic communications
resources, services, and activities.

B. Scope

This Policy applies to:

• All electronic communications resources owned or managed by the



University;

• All electronic communications resources provided by the University through
contracts and other agreements with the University;

• All users and uses of University electronic communications resources; and

• All University electronic communications records in the possession of
University employees or of other users of electronic communications
resources provided by the University.

This Policy does not apply to electronic communications resources of the
Department of Energy Laboratories managed by the University, or to users of
such electronic communications resources who are employees and agents of
those Laboratories. The Policy does apply to University users (as defined
here) of the DOE Laboratories’ electronic communications resources, to the
extent that the provisions of the Policy are not superseded by those of DOE
Laboratories managed by the University.

This Policy applies to the contents of electronic communications, and to the
electronic attachments and transactional information associated with such
communications.

This Policy applies only to electronic communications records in electronic
form. The Policy does not apply to printed copies of electronic
communications records or printed copies of transactional information.
Electronic communications records in either printed or electronic form are
subject to federal and state laws as well as University records management
policies, including their provisions regarding retention and disclosure (see
State of California Statutes, Federal Statutes and Regulations, and Business
and Finance Bulletins in the Records Management and Privacy (RMP) series
listed in Appendix B, References5).

C. Definitions



The following terms used in this Policy are defined in Appendix A,
Definitions.6 Knowledge of these definitions is important to an understanding
of this Policy.

• Compelling Circumstances

• Electronic Communications

• Electronic Communications Resources

• Electronic Communications Records

• Electronic Communications Service Provider

• Electronic Communications Systems or Services

• Emergency Circumstances

• Faculty

• Holder of an Electronic Communications Record or Electronic
Communications Holder

• Possession of Electronic Communications Record

• Public Record

• Substantiated Reason

• Time-dependent, Critical Operational Circumstances

• Transactional Information

• University Administrative Record

• University Electronic Communications Record

• University Electronic Communications Systems or Services



• Use of Electronic Communications Services

D. Responsibilities

1. Policy. This Policy is issued by the President of the University of
California. The Associate Vice President, Information Resources and
Communications (IR&C) in the Office of the President is responsible for
maintenance of this Policy.

2. Implementation. Each Chancellor, and for the Office of the President,
the Senior Vice President, Business and Finance, shall designate a
coordinator to administer the Policy. In consultation with faculty, students,
and staff, the designated coordinator shall develop, maintain, and publish
specific procedures and practices that implement this Policy. Campus
procedures shall include information on accessibility of student information,
authorized users, procedures for restricting or denying use of its electronic
communications services, adjudication of complaints, network monitoring
practices, and other matters as described in Attachment 2, Implementation
Guidelines.7 IR&C shall facilitate regular communication among campus
coordinators to address consistency in campus implementing procedures.

3. Informational Material. Campuses shall provide users of University
electronic communications resources with instructional material based on
this Policy and on their own campus implementation guidelines.

E. Violations of Law and Policy

1. Law. Federal and state law prohibit the theft or abuse of computers and
other electronic resources such as electronic communications resources,
systems, and services. Abuses include (but are not limited to) unauthorized
entry, use, transfer, tampering with the communications of others, and
interference with the work of others and with the operation of electronic
communications resources, systems, and services. The law classifies certain
types of offenses as felonies (see Appendix B, References8).



2. University Disciplinary Actions. University policy prohibits the use of
University property for illegal purposes and for purposes not in support of the
mission of the University. In addition to legal sanctions, violators of this
Policy may be subject to disciplinary action up to and including dismissal or
expulsion, pursuant to University policies and collective bargaining
agreements. Further information on permitted and prohibited uses is given in
Section III, Allowable Use.9

G.2.3 Allowable Use

A. Introduction

The University encourages the use of electronic communications resources
and makes them widely available to the University community. Nonetheless,
the use of electronic communications resources is limited by restrictions that
apply to all University property and by constraints necessary for the reliable
operation of electronic communications systems and services. The University
reserves the right to deny use of its electronic communications services when
necessary to satisfy these restrictions and constraints.

In general, the University cannot and does not wish to be the arbiter of the
contents of electronic communications. Neither can the University always
protect users from receiving electronic messages they might find offensive.

B. Ownership

This Policy does not address the ownership of intellectual property stored on
or transmitted through University electronic communications resources.
Ownership of intellectual property is governed by law, the University of
California Policy on Copyright Ownership (1992) and the 2003 Policy on
Ownership of Course Materials, Academic Personnel Policy 020, Special
Services to Individuals and Organizations (Regulation 4), and other
University policies and contracts (see Appendix B, References10).



University policy issued by Vice President Bolton on October 31, 1969 and
reiterated in Business and Finance Bulletin RMP-1, University Records
Management Program (see Appendix B, References11) assigns the ownership
of the administrative records of the University to The Regents of the
University of California. This applies whether such records are in paper,
digital, or other format. Electronic communications records pertaining to the
administrative business of the University are considered public records (see
Appendix A, Definitions12), whether or not the University owns the electronic
communications resources, systems or services used to create, send, forward,
reply to, transmit, store, hold, copy, download, display, view, read, print, or
otherwise record them. Other records, although not owned by The Regents,
nevertheless may be subject to disclosure as public records under the
California Public Records Act if they pertain to the business of the University.

University electronic communications resources, systems and services are the
property of The Regents of the University of California. These include all
components of the electronic communications physical infrastructure and
any electronic communications address, number, account, or other identifier
associated with the University or any unit of the University or assigned by the
University to individuals, units, or functions.

C. Allowable Users

1. University Users. University students, faculty, staff, and others affiliated
with the University (including those in program, contract, or license
relationships with the University) may, as authorized by the Chancellor, be
eligible to use University electronic communications resources and services
for purposes in accordance with Sections III.D, Allowable Use.13

2. Public Users. Persons and organizations that are not University Users
may only access University electronic communications resources or services
under programs sponsored by the University, as authorized by the
Chancellor, or for the Office of the President, the Senior Vice President,
Business and Finance, for purposes of such public access in accordance with



Section III.D, Allowable Use.14

3. Transient Users. Users whose electronic communications merely transit
University facilities as a result of network routing protocols are not
considered “Users” for the purposes of this Policy.

D. Allowable Uses

Use of University electronic communications resources is allowable subject to
the following conditions:

1. Purpose. Electronic communications resources may be provided by
University units or sub-units in support of the teaching, research, and public
service mission of the University, and of the administrative functions that
support this mission.

2. Non-Competition. University electronic communications resources
shall not be provided to individual consumers or organizations outside the
University except by approval of the Chancellor. Such services shall support
the mission of the University and not be in competition with commercial
providers.

3. Restrictions. University electronic communications resources may not
be used for:

• unlawful activities;

• commercial purposes not under the auspices of the University;

• personal financial gain (except as permitted under applicable academic
personnel policies);

• personal use inconsistent with Section III.D, Allowable Uses;15 or

• uses that violate other University or campus policies or guidelines. The
latter include, but are not limited to, policies and guidelines regarding



intellectual property and sexual or other forms of harassment (see Appendix
B, References16).

4. Representation. Use of the University’s name and seal is regulated by
the State of California Education Code 92000. Users of electronic
communications resources must abide by this statute as well as by University
and campus policies on the use of the University’s name, seals, and
trademarks (see Appendix B, References17). Users of electronic
communications resources shall not give the impression that they are
representing, giving opinions, or otherwise making statements on behalf of
the University or any unit of the University unless appropriately authorized to
do so.

5. Endorsements. Users of electronic communications resources must
abide by University and campus policies regarding endorsements. References
or pointers to any non-University entity contained in University electronic
communications shall not imply University endorsement of the products or
services of that entity.

6. False Identity and Anonymity. Users of University electronic
communications resources shall not, either directly or by implication, employ
a false identity (the name or electronic identification of another). However,
when not prohibited by law or other University policy, a supervisor may
direct an employee to use the supervisor’s identity to transact University
business for which the supervisor is responsible. In such cases, an employee’s
use of the supervisor’s electronic identity does not constitute a false identity.
A user of University electronic communications resources may use a
pseudonym (an alternative name or electronic identification for oneself) for
privacy or other reasons, so long as the pseudonym clearly does not constitute
a false identity. A user of University electronic communications resources
may remain anonymous (the sender’s name or electronic identification are
hidden) except when publishing web pages and transmitting broadcasts.
Campus guidelines and procedures may further restrict the circumstances



under which pseudonyms and anonymous electronic communications are
permitted.

7. Interference. University electronic communications resources shall not
be used for purposes that could reasonably be expected to cause excessive
strain on any electronic communications resources, or to cause interference
with others’ use of electronic communications resources. Users of electronic
communications services shall not: (i) send or forward chain letters or their
equivalents in other services; (ii) “spam,” that is, exploit electronic
communications systems for purposes beyond their intended scope to
amplify the widespread distribution of unsolicited electronic messages; (iii)
“letter-bomb,” that is, send an extremely large message or send multiple
electronic messages to one or more recipients and so interfere with the
recipients’ use of electronic communications systems and services; or (iv)
intentionally engage in other practices such as “denial of service attacks” that
impede the availability of electronic communications services.

8. Personal Use. University users of a University electronic
communications facility or service may use that facility or service for
incidental personal purposes provided that, in addition to the foregoing
constraints and conditions, such use does not: (i) interfere with the
University’s operation of electronic communications resources; (ii) interfere
with the user’s employment or other obligations to the University, or (iii)
burden the University with noticeable incremental costs. When noticeable
incremental costs for personal use are incurred, users shall follow campus
guidelines and procedures for reimbursement to the University. The
California Public Records Act requires the University to disclose specified
public records. In response to requests for such disclosure, it may be
necessary to examine electronic communications records that users consider
to be personal to determine whether they are public records that are subject
to disclosure (see the presumption in Appendix A, Definitions,18 of a
University Electronic Communications Record). The University is not
responsible for any loss or damage incurred by an individual as a result of



personal use of University electronic communications resources.

9. Accessibility. All electronic communications intended to accomplish the
academic and administrative tasks of the University shall be accessible to
allowable users with disabilities in compliance with law and University
policies. Alternate accommodations shall conform to law and University
policies and guidelines.

10. Intellectual Property. The contents of all electronic communications
shall conform to laws and University policies regarding protection of
intellectual property, including laws and policies regarding copyright,
patents, and trademarks. When the content and distribution of an electronic
communication would exceed fair use as defined by the federal Copyright Act
of 1976, users of University electronic communications resources shall secure
appropriate permission to distribute protected material in any form,
including text, photographic images, audio, video, graphic illustrations, and
computer software.

E. Access Restriction

Eligibility to access or use University electronic communications services or
electronic communications resources, when provided, is a privilege accorded
at the discretion of the University. This privilege is subject to the normal
conditions of use, including procedures for initiation and termination of
service eligibility, established by the manager of the individual electronic
communications resource.

In addition, use of University electronic communications resources may be
restricted or rescinded by the University at its discretion when required by
and consistent with law, when there is substantiated reason to believe that
violations of law or University policies have taken place, when there are
compelling circumstances, or under time-dependent, critical operational
circumstances (see Appendix A, Definitions). Restriction of use is subject to
established campuswide procedures or, in the absence of such procedures, to



the approval of the appropriate Vice Chancellor(s) or, for the Office of the
President, the Senior Vice President, Business and Finance. Electronic
communications resource providers may, nonetheless, restrict use of
University electronic communications systems and services on a temporary
basis as needed in Emergency Circumstances and Compelling Circumstances
(see Appendix A, Definitions19).

In compliance with the Digital Millennium Copyright Act, the University
reserves the right to suspend or terminate use of University electronic
communications systems and services by any user who repeatedly violates
copyright law.

G.2.4 Privacy and Confidentiality

A. Introduction

The University recognizes that principles of academic freedom and shared
governance, freedom of speech, and privacy hold important implications for
the use of electronic communications. This Policy reflects these firmly-held
principles within the context of the University’s legal and other obligations.
The University respects the privacy of electronic communications in the same
way that it respects the privacy of paper correspondence and telephone
conversations, while seeking to ensure that University administrative records
are accessible for the conduct of the University’s business.

The University does not examine or disclose electronic communications
records without the holder’s consent. Nonetheless, subject to the
requirements for authorization, notification, and other conditions specified in
this Policy, the University may examine or disclose electronic
communications under very limited circumstances as described in Section
IV.B, Access Without Consent.20

University employees are prohibited from seeking out, using, or disclosing
personal information in electronic communications without authorization



(see Business and Finance Bulletin RMP-8, Legal Requirements on Privacy of
and Access to Information). University policy requires that its employees take
necessary precautions to protect the confidentiality of personal information
encountered either in the performance of their duties or otherwise (see
Business and Finance Bulletin IS-3, Electronic Information Security).

University contracts with outside vendors for electronic communications
services shall explicitly reflect and be consistent with this Policy and other
University policies related to privacy.

B. Access Without Consent

An electronic communications holder’s consent shall be obtained by the
University prior to any access for the purpose of examination or disclosure of
the contents of University electronic communications records in the holder’s
possession, except as provided for below.

The University shall permit the examination or disclosure of electronic
communications records without the consent of the holder of such records
only: (i) when required by and consistent with law; (ii) when there is
substantiated reason (as defined in Appendix A, Definitions21) to believe that
violations of law or of University policies listed in Appendix C, Policies
Relating to Access Without Consent,22 have taken place; (iii) when there are
compelling circumstances as defined in Appendix A, Definitions;23 or (iv)
under time-dependent, critical operational circumstances as defined in
Appendix A, Definitions.24

When under the circumstances described above the contents of electronic
communications records must be examined or disclosed without the holder’s
consent, the following shall apply:

1. Authorization. Except in emergency circumstances (as defined in
Appendix A, Definitions25) in accordance with Section IV.B.2, Emergency
Circumstances,26 or except for subpoenas or search warrants in accordance



with Section IV.B.6, Search Warrants and Subpoenas,27 such actions must be
authorized in advance and in writing by the responsible campus Vice
Chancellor or, for the Office of the President, the Senior Vice President,
Business and Finance (see Section II.D, Responsibilities28).29 This authority
may not be further redelegated. Authorization shall be limited to the least
perusal of contents and the least action necessary to resolve the situation.

2. Emergency Circumstances. In emergency circumstances as defined in
Appendix A, Definitions,30 the least perusal of contents and the least action
necessary to resolve the emergency may be taken immediately without
authorization, but appropriate authorization must then be sought without
delay following the procedures described in Section IV.B.1, Authorization,31

above.

3. Notification. The responsible authority or designee shall at the earliest
opportunity that is lawful and consistent with other University policy notify
the affected individual of the action(s) taken and the reasons for the action(s)
taken. Each campus will issue in a manner consistent with law an annual
report summarizing instances of authorized or emergency nonconsensual
access pursuant to the provisions of this Section IV.B, Access Without
Consent,32 without revealing personally identifiable data.

4. Compliance with Law. Actions taken under Sections IV.B.1,
Authorization,33 and IV.B.2, Emergency Circumstances,34 shall be in full
compliance with the law and other applicable University policies, including
laws and policies listed in Appendix B, References.35 Advice of legal counsel
must always be sought prior to any action involving electronic
communications records (a) stored on equipment not owned or housed by the
University, or (b) whose content is protected under the federal Family
Educational Rights and Privacy Act of 1974 (see Section IV.C.1.b, Student
Information36).

5. Recourse. Campus implementing procedures shall specify the process for
review and appeal of actions taken under Sections IV.B.1, Authorization,37



and IV.B.2, Emergency Circumstances38 to provide a mechanism for recourse
to individuals who believe that actions taken by employees or agents of the
University were in violation of this Policy.

6. Search Warrants and Subpoenas. Search warrants and subpoenas are
not subject to sections 1-2 and 4-5 above. Search warrants and subpoenas for
electronic communications records shall be referred to University legal
counsel at the Office of the General Counsel or designated officials at campus
locations.

Search Warrants. Duly signed search warrants shall be processed in
accordance with federal and state laws, University policies, and instructions
in the warrant.

Subpoenas. Subpoenas shall be processed in accordance with applicable
federal and state laws and University policies (see Business and Finance
Bulletin RMP-10, Instructions for Responding to Subpoena). Campus officials
shall provide advance notice to individuals whose records are the subject of a
subpoena duces tecum in accordance with instructions and time
requirements in RMP-10, section III.C, “Responding to requests for personal
records of a consumer.”

C. Privacy Protection and Limits

1. Privacy Protections

a. Personal Information. Federal and California law provide privacy
protections for some information that personally identifies an individual.
Business and Finance Bulletin RMP-8, Legal Requirements on Privacy of and
Access to Information, provides guidelines for the collection and use of
personal information in conformance with the law. These guidelines apply to
information collected and disseminated by electronic means just as they do to
records stored on paper and other media.



b. Student Information. Users of electronic communications systems and
services shall not disclose information about students in violation of the
federal Family Educational Rights and Privacy Act of 1974 (FERPA), and the
University policies that provide guidance in meeting FERPA requirements.
See Business and Finance Bulletin RMP-8, Legal Requirements on Privacy of
and Access to Information, and the University’s Policy Applying to the
Disclosure of Information from Student Records (Sections 130-134 of the
Policies Applying to Campus Activities, Organizations, and Students).

c. Electronically Gathered Data. Any collection or distribution of
personally identifiable information shall be consistent with federal and state
law and University policy (see Business and Finance Bulletin RMP-8, Legal
Requirements on Privacy of and Access to Information). Except when
otherwise provided by law, users of University electronic communications
systems and services shall be informed whenever personally identifiable
information other than transactional information (see *Appendix A,
Definitions39) will be collected and stored automatically by the system or
service.

In addition, California law requires state agencies and the California State
University to enable users to terminate an electronic communications
transaction without leaving personal data (see Appendix B, References40). All
electronic communications systems and services in which the University is a
partner with a state agency or the California State University must conform to
this requirement.

In no case shall electronic communications that contain personally
identifiable information about individuals, including data collected by the use
of “cookies” or otherwise automatically gathered, be sold or distributed to
third parties without the explicit permission of the individual.

d. Telephone Conversations. In compliance with federal law, audio or
video telephone conversations shall not be recorded or monitored without
advising the participants unless a court has explicitly approved such



monitoring or recording. Emergency services shall record 911-type emergency
calls in accordance with federal and state laws and regulations.

Participants shall be informed when a call is being monitored or recorded for
the purpose of evaluating customer service, assessing workload, or other
business purpose permitted by law. University units that monitor or record
telephone calls shall provide an alternative method of doing business with the
University to clients who do not wish to be part of a monitored telephone call.

2. Privacy Limits

a. Possession of Public Records. University employees shall comply with
University requests for copies of public records in their possession, regardless
of whether such records reside on University electronic communications
resources.

b. System Monitoring. University employees who operate and support
electronic communications resources regularly monitor transmissions for the
purpose of ensuring reliability and security of University electronic
communications resources and services (see Section V.B, Security
Practices41), and in that process might observe certain transactional
information or the contents of electronic communications. Except as
provided elsewhere in this Policy or by law, they are not permitted to seek out
transactional information or contents when not germane to system
operations and support, or to disclose or otherwise use what they have
observed. In the process of such monitoring, any unavoidable examination of
electronic communications (including transactional information) shall be
limited to the least invasive degree of inspection required to perform such
duties. This exception does not exempt systems personnel from the
prohibition (see Section IV.A, Introduction42) against disclosure of personal
or confidential information.

Except as provided above, systems personnel shall not intentionally search
the contents of electronic communications or transactional information for



violations of law or policy. However, if in the course of their duties systems
personnel inadvertently discover or suspect improper governmental activity
(including violations of law or University policy), reporting of such violations
shall be consistent with the Policy on Reporting and Investigating Allegations
of Suspected Improper Governmental Activities (the “Whistleblower Policy”).

c. Back-up Services. Operators of University electronic communications
resources shall provide information about back-up procedures to users of
those services upon request.

G.2.5 Security

A. Introduction

The University makes reasonable efforts to provide secure and reliable
electronic communications services. Operators of University electronic
communications resources are expected to follow appropriate professional
practices in providing for the security of electronic communications records,
data, application programs, and systems following guidelines provided in
Business and Finance Bulletin IS-3, Electronic Information Security.

IS-3 provides guidelines for managing the security of electronic information
resources used to conduct activities in support of the University’s mission. IS-
3 guidelines apply to the security of University electronic information
resources in the form of electronic communications, stored data, and
electronic communications resources used to transmit and process such
records and data.

B. Security Practices

Providers of electronic communications services ensure the integrity and
reliability of systems under their control through the use of various
techniques that include routine monitoring of electronic communications.
Network traffic may be inspected to confirm malicious or unauthorized



activity that may harm the campus network or devices connected to the
network. Such activity shall be limited to the least perusal of contents
required to resolve the situation. User consent is not required for these
routine monitoring practices. Providers shall document and make available to
their users general information about these monitoring practices. If providers
determine that it is necessary to examine suspect electronic communications
records beyond routine practices, the user’s consent shall be sought. If
circumstances prevent prior consent, notification procedures described in
Section IV.B.3, Notification43 shall be followed.

C. Integrity

No person shall attempt to breach any security mechanisms that protect
electronic communications services or facilities or any records or messages
associated with these services or facilities unless otherwise authorized by
other provisions of this Policy.

D. Authentication

Electronic communications service providers (see Appendix A, Definitions44)
shall maintain currency with authentication technologies supported by the
University and implement them in accordance with Business and Finance
Bulletin IS-3, Electronic Information Security, and commensurate with
applicable security requirements.

E. Authorization

Service providers shall use authorization technologies commensurate with
security requirements of the service, application, or system. See Business and
Finance Bulletin IS-3, Electronic Information Security, for requirements
regarding access management of the University’s electronic information
resources.

F. Encryption



Where deemed appropriate, electronic communications containing restricted
data as defined in Business and Finance Bulletin IS-3, Electronic Information
Security should be encrypted during transit across communications
networks. Other communications may be encrypted during transit. All
encrypted communications shall be handled upon receipt in conformance
with the storage requirements for electronic information resources, as
defined in IS-3.

G. Recovery

Providers of campuswide or Universitywide electronic communications
services shall implement recovery practices adequate to ensure rapid recovery
from security intrusions and service interruptions.

H. Audit

Providers of electronic communications services shall use cost-effective audit
technologies and practices to help identify security violators and speed up
recovery from security incidents. The use of such audit technologies and
practices shall not conflict with other provisions of this Policy, in particular
Section IV, Privacy and Confidentiality.45

G.2.6 Retention and Disposition

A. Retention

Electronic communications records are subject to University records
management policies as stated in the University of California Records
Disposition Schedules Manual, which provides guidance for administering
the retention and disposition of all records, regardless of the medium on
which they are stored.

B. Disposition

The Record Proprietor, as defined in Business and Finance Bulletin RMP-1,



University Records Management Program, is responsible for preserving those
electronic communications records that have been identified as having lasting
business purpose or historical value to the University.

C. Back-Up

The University does not maintain central or distributed electronic archives of
all electronic communications records sent or received. Electronic
communications records are normally backed up, if at all, only to assure
system integrity and reliability, not to provide for future retrieval, although
back-ups may at times serve the latter purpose incidentally. Operators of
University electronic communications services are not required by this Policy
to routinely retrieve electronic communications records from such back-up
facilities for individuals.

G.2.7 Appendix A: Definitions

Compelling Circumstances: Circumstances in which failure to act might
result in significant bodily harm, significant property loss or damage, loss of
significant evidence of one or more violations of law or of University policies
listed in Appendix C, Policies Relating to Access Without Consent,46 or
significant liability to the University or to members of the University
community.

Electronic Communications: Any transfer of signals, writings, images,
sounds, data or intelligence that is, created, sent, forwarded, replied to,
transmitted, distributed, broadcast, stored, held, copied, downloaded,
displayed, viewed, read, or printed by one or several electronic
communications systems.47 For purposes of this Policy, an electronic file that
has not been transmitted is not an electronic communication.

Electronic Communications Records: The contents of electronic
communications created, sent, forwarded, replied to, transmitted,
distributed, broadcast, stored, held, copied, downloaded, displayed, viewed,



read, or printed by one or several electronic communications systems or
services. This definition of electronic communications records applies equally
to attachments to such records and transactional information associated with
such records.

Electronic Communications Resources: Telecommunications
equipment, transmission devices, electronic video and audio equipment,
encoding or decoding equipment, computers and computer time, data
processing or storage systems, computer systems, servers, networks,
input/output and connecting devices, and related computer records,
programs, software, and documentation that supports electronic
communications services.

Electronic Communications Service Provider: Any unit, organization,
or staff with responsibility for managing the operation of and controlling
individual user access to any part of the University’s electronic
communications systems and services.

Electronic Communications Systems or Services: Any messaging,
collaboration, publishing, broadcast, or distribution system that depends on
electronic communications resources to create, send, forward, reply to,
transmit, distribute, broadcast, store, hold, copy, download, display, view,
read, or print electronic records for purposes of communication across
electronic communications network systems between or among individuals or
groups, that is either explicitly denoted as a system for electronic
communications or is implicitly used for such purposes.

Emergency Circumstances: Circumstances in which time is of the
essence and there is a high probability that delaying action would almost
certainly result in compelling circumstances.

Faculty: A member of the faculty as defined by Academic Personnel Policy
110-4 (14).



Holder of an Electronic Communications Record or Electronic
Communications Holder: An electronic communications user who, at a
given point in time, is in possession (see definition below) or receipt of a
particular electronic communications record, whether or not that electronic
communications user is the original creator or a recipient of the content of
the record.

Possession of Electronic Communications Record: An individual is in
possession of an electronic communications record, whether the original
record or a copy or modification of the original record, when that individual
has effective control over the location of its storage or access to its content.
Thus, an electronic communications record that resides on an electronic
communications server awaiting download to an addressee is deemed, for
purposes of this Policy, to be in the possession of that addressee. Systems
administrators and other operators of University electronic communications
services are excluded from this definition of possession with regard to
electronic communications not specifically created by or addressed to them.

• Electronic communications users are not responsible for electronic
communications records in their possession when they have no knowledge of
the existence or contents of such records.

Public Record: A record as defined in Business and Finance Bulletin RMP-
8, Legal Requirements on Privacy of and Access to Information, and/or the
California Public Records Act. Public records include writings or other forms
of recording that contain information relating to the conduct of the public’s
business in materials prepared, owned, used, or retained by the University
regardless of physical form or characteristics [California Government Code
Section 6252(e)]. Except for certain defined situations, such records are
subject to disclosure under the California Public Records Act. For more
information regarding the requirements of the Public Records Act, and the
University’s implementation of that Act, including exemptions from
disclosure, see RMP-8.



Substantiated Reason: Reliable evidence indicating that violation of law
or of University policies listed in Appendix C, Policies Relating to Access
Without Consent,48 probably has occurred, as distinguished from rumor,
gossip, or other unreliable evidence.

Time-dependent, Critical Operational Circumstances: Circumstances
in which failure to act could seriously hamper the ability of the University to
function administratively or to meet its teaching obligations, but excluding
circumstances pertaining to personal or professional activities, or to faculty
research or matters of shared governance.

Transactional Information: Information, including electronically
gathered information, needed either to complete or to identify an electronic
communication. Examples include but are not limited to: electronic mail
headers, summaries, addresses and addressees; records of telephone calls;
and IP address logs.

University Administrative Record: A Public Record (see definition
above) that documents or contains information related to the organization,
functions, policies, decisions, procedures, operations, or other business
activities of the University.

University Electronic Communications Record: A Public Record in
the form of an electronic communications record, whether or not any of the
electronic communications resources utilized to create, send, forward, reply
to, transmit, distribute, broadcast, store, hold, copy, download, display, view,
read, or print the electronic communications record are owned by the
University. This implies that the location of the record, or the location of its
creation or use, does not change its nature (i) as a University electronic
communications record for purposes of this or other University policy, and
(ii) as having potential for disclosure under the California Public Records Act.

• Until determined otherwise or unless it is clear from the context, any
electronic communications record residing on university-owned or controlled



telecommunications, video, audio, and computing facilities will be deemed to
be a University electronic communications record for purposes of this Policy.
This would include personal electronic communications. Consistent with the
principles of least perusal and least action necessary and of legal compliance,
the University must make a good faith a priori effort to distinguish University
electronic communications records from personal and other electronic
communications in situations relevant to disclosures under the California
Public Records Act and other laws, or for other applicable provisions of this
Policy.

University Electronic Communications Systems or Services:
Electronic communications systems or services owned or operated by the
University or any of its sub-units or provided through contracts with the
University.

Use of Electronic Communications Services: To create, send, forward,
reply to, transmit, distribute, broadcast, store, hold, copy, download, display,
view, read, or print electronic communications with the aid of electronic
communications services. An Electronic Communications User is an
individual who makes use of electronic communications services.

• The act of receipt of electronic communications as contrasted with actual
viewing of the record by the recipient is excluded from the definition of “use”
to the extent that the recipient does not have advance knowledge of the
contents of the electronic communications record.

G.2.8 Appendix B: References

The following list identifies significant sources used as background in the
preparation of this Policy, whether or not they are directly referenced by this
Policy. It does not include all applicable laws and University policies. Laws
and policies change from time to time, so users of this Policy are encouraged
to refer to the Office of the President Universitywide Policy Manuals and
Selected Guidelines website at



http://www.ucop.edu/ucophome/coordrev/ucpolicies/policymanuals.html
for updates.

University Policies and Guidelines

• Business and Finance Bulletins:

A-56, Academic Support Unit Costing and Billing Guidelines

BUS-29, Management and Control of University Equipment

BUS-43, Materiel Management

BUS-65, Guidelines for University Mail Services

IS-3, Electronic Information Security

RMP-1, University Records Management Program

RMP-2, Records Retention and Disposition

RMP-7, Privacy of and Access to Information Responsibilities

RMP-8, Legal Requirements on Privacy of and Access to Information

RMP-10, Instructions for Responding to Subpoena

• Personnel Manuals and Agreements:

Academic Personnel Manual

Personnel Policies for Staff Members and Appendix II for Senior Managers

Collective Bargaining Contracts (Memoranda of Understanding)

• Other Related Policies and Guidelines:

Campus Access Guidelines for Employee Organizations (Local Time, Place,



and Manner Rules)

Policies Applying to Campus Activities, Organizations, and Students

Policy and Guidelines on the Reproduction of Copyrighted Materials for
Teaching and Research

Policy on Copyright Ownership (1992) and the 2003 Policy on Ownership of
Course

Materials

Policy on Reporting and Investigating Allegations of Suspected Improper
Governmental Activities (the “Whistleblower Policy”)

Policy on Sexual Harassment and Procedures for Responding to Reports of
Sexual

Harassment

University of California Records Disposition Schedules Manual

University Policy on Integrity in Research

State of California Statutes

State of California Information Practices Act of 1977 (Civil Code Section 1798
et seq.)

State of California Public Records Act (Government Code Section 6250 et
seq.)

State of California Education Code, Section 67100 et seq.

State of California Education Code 92000

State of California Government Code, Section 11015.5



State of California Penal Code, Section 502 and 1523 et seq.

Federal Statutes and Regulations

Americans with Disabilities Act of 1990

Communications Decency Act of 1996

Copyright Act of 1976

Digital Millennium Copyright Act of 1998

Electronic Communications Privacy Act of 1986

Family Educational Rights and Privacy Act of 1974

Health Insurance Portability and Accountability Act of 1996

Privacy Act of 1974

Telecommunications Act of 1934

Telecommunications Act of 1996

Federal Communications Commission Rules and Regulations

G.2.9 Appendix C: Policies Relating to Access Without Consent

The Electronic Communications Policy cites circumstances under which
access to electronic communications may occur without the prior consent of
the holder (see Section IV.B, Access Without Consent).49 Following are
University policies that may trigger nonconsensual access following
procedures defined in Section IV.B, Access Without Consent.50

1. University policies governing sexual or other forms of harassment,
specifically: Policies Applying to Campus Activities, Organizations, and
Students, Section 160; Section APM-035, Appendix A of Affirmative Action



and Nondiscrimination in Employment; and Personnel Policies for UC Staff
Members. Sexual harassment concerning students is covered by item 6 below.

2. Certain portions of policies governing access to University records,
specifically RMP-1, Section IV.B; RMP-8, Sections on Disclosure of
Information and Rules of Conduct.

3. The Academic Personnel Manual, APM-015, Section II, Part II,
Professional Responsibilities, Ethical Principles, and Unacceptable Faculty
Conduct, and the University Policy on Integrity in Research, APM 190,
Appendix B.

4. Personnel Policies for Staff Members and Appendix II for Senior Managers

5. Collective bargaining agreements and memoranda of understanding.

6. Section 102 governing student conduct of the policy entitled Policies
Applying to Campus Activities, Organizations, and Students.

7. Sections III, Allowable Use, and IV, Privacy and Confidentiality, of this
Electronic Communications Policy.

Violations of other policies can normally be detected and investigated without
requiring nonconsensual access to electronic communications. On occasion,
attention to possible policy violations is brought about because of the receipt
by others of electronic communications. However, it is acknowledged that
electronic communications can be forged, the true identity of the sender can
be masked, and the apparent sender might deny authorship of the electronic
communication. In such circumstances and provided there is substantiated
reason (as defined in Appendix A, Definitions51) that points to the identity of
the sender, nonconsensual access to the purported sender’s electronic
communications may be authorized following the procedures defined in
Section IV.B, Access Without Consent,52 but only to the least extent necessary
for verifying unambiguously the identity of the sender, and only for major



violations of the following policies:

• Business and Finance Bulletin A-56, Section IV.H, governing sales of goods
or services outside the University.

• Business and Finance Bulletin BUS-29, Section N, governing use of
University materiel or property.

• Business and Finance Bulletin BUS-43, Part 3, Section X.A, governing use of
University credit, purchasing power, or facilities.

• Policies Applying to Campus Activities, Organizations, and Students,
Section 42.40, governing use of University properties for commercial
purposes and personal financial gain.

• Business and Finance Bulletin BUS-65, Section VII, governing provision of
University mailing lists to others.

• Policy and Guidelines on the Reproduction of Copyrighted Materials for
Teaching and Research.

• Campus Access Guidelines for Employee Organizations.

Posting and Authority to Change

Because University policies are subject to change, this list may change from
time to time. The authoritative list at any time will be posted under the
listings of University policies posted on the Web. Authority to change this list
rests with the President of the University acting, where policies affecting
faculty are concerned, with the advice of the Academic Senate.

G.3 User Advisories

This is Attachment 1 of the University of California Electronic
Communications Policy [2164]. It describes the parts of the policy that impact



the users in a form that users can read.

G.3.1 Introduction

University policies often interpret the application of federal and state laws to
the University community. The Electronic Communications Policy interprets
the application of other University policies, as well as federal and state laws,
to electronic communications. Users of electronic communications who are in
doubt concerning the permissibility of an intended action should seek
guidance from the Universitywide Electronic Communications Policy and,
where they exist, local campus implementing guidelines and other computer
policies that may interpret policy or address areas not explicitly covered by
Universitywide policies.

G.3.2 User Responsibilities

A. Compliance With Law

The Electronic Communications Policy refers to federal laws that prohibit:

• Monitoring telephone conversations without informing participants or
without a court order;

• Using the Internet to make available intellectual property belonging to
another in such a way as to cause the loss of $2500 or more;

• Infringing copyright by electronic communications.

The Electronic Communications Policy refers to California laws that govern
the use of computer equipment, systems and services, and which apply to
electronic communications as well. Section 502 of the California Penal Code
prescribes criminal penalties for:

• Using electronic means to defraud others;

• Using data or documentation without permission;



• Using electronic equipment without permission;

• Tampering with data, software, or programs;

• Disrupting or causing denial of services to authorized users;

• Accessing or providing access to others without permission;

• Introducing computer contaminants, such as viruses; and

• Using the Internet domain name of another.

In general, behaviors that are prohibited in the physical environment are also
prohibited in the digital environment.

B. Allowable Uses

The Electronic Communications Policy identifies ten principles that govern
the allowable use of University electronic communications resources. Users
are advised to review local campus computing guidelines that specify how
these are implemented and enforced at each University location (see
Electronic Communications Policy, Section III.D, Allowable Use53).

In accordance with federal law, users should assume that material created by
others, in electronic or other form, is protected by copyright unless such
material includes an explicit statement that it is not protected, or unless such
material is clearly in the public domain (see the Electronic Communications
Policy, Section III.D.10, Intellectual Property54).

C. Courtesy

The University cannot protect users of University electronic communications
resources from receiving communications they may not wish to receive.
Members of the University community are strongly encouraged to use the
same personal and professional courtesies and considerations in electronic
communications as they would in other forms of communication (see



Electronic Communications Policy, Section IV.A, Introduction55).

G.3.3 Privacy Expectations

Various laws and available security technologies affect the degree of privacy
that users can expect. Generally, laws relating to more mature
communications technologies are more fully developed than those governing
newer technologies as a result of court interpretations that have led to
consensus about their application. For example, laws that circumscribe the
privacy of telephone communications are well established while those that
apply to electronic mail are not. While some laws support higher expectations
of privacy, other laws interfere with such expectations (see Electronic
Communications Policy, Section IV.C, Privacy Protections and Limits56).

Users commonly associate different levels of privacy with various electronic
communications technologies or with alternative uses of those technologies.
For example:

• Users generally expect a high level of privacy with telephone conversations,
and these expectations are generally protected by law;

• Users often expect a similarly high level of privacy with electronic mail, but
(i) these expectations are not always supported by law, and (ii) recipients may
compromise confidentiality by redirecting electronic mail messages;

• Users might expect a more moderate level of privacy with electronic
communications intended for distribution to a limited audience, since privacy
can be compromised by the limit of available security protections or by the
behavior of members of the intended audience (a user, for example, might
share a password without knowledge or consent of the originator of the
communication); and

• Users should expect minimal or no privacy in broadcast communications,
such as television or unprotected web pages, because they are accessible to a



wide, unspecified audience.

G.3.4 Privacy Protections

Two categories of information that are protected from disclosure by law are
information that personally identifies an individual and certain information
pertaining to students. In addition, state and federal laws partially limit the
use of automated electronic data gathering tools to collect and store
personally identifiable information about individuals without their
knowledge or consent (see Electronic Communications Policy, Section IV,
Privacy and Confidentiality57). In spite of these legal protections users of
electronic communications should exercise caution to protect their privacy.

A. Personal Information

Users of electronic communications systems and services should be aware of
the diffi-culty of maintaining privacy and confidentiality on the web and
should be particularly careful about posting personal information on the web.
They should note that even web pages that have no pointers to or from other
web pages might be found by search engines.

Users who do not want their electronic mail addresses made public are
cautioned not to send electronic communications to mailing list systems, chat
rooms, web pages, and newsgroups where they might be discovered or
otherwise used for purposes over which the individual has no control.

B. Student Privacy

Federal law protecting student privacy is incorporated into University
policies. In accordance with the policies and procedures in the University’s
Policy Applying to the Disclosure of Information from Student Records
(Sections 130-134 of the Policies Applying to Campus Activities,
Organizations, and Students), campuses are responsible for designating the
categories of personally identifiable information about a student that are



public. Individual students may, consistent with the above policy, request the
campus not to make public their electronic mail addresses and telephone
numbers (see Electronic Communications Policy, Section II.D,
Responsibilities58 and Section IV.C, Privacy Protections and Limits59).

C. Electronic Data Gathering

Legislation protecting the privacy of electronic communications users is still
evolving. There are currently few laws that would adequately protect users
from electronic data gathering without their permission (see Electronic
Communications Policy Section IV.C, Privacy Protections and Limits60).

G.3.5 Privacy Limits

A. Introduction

The privacy of electronic communications at the University is limited by: i)
laws that protect the public’s right to know about the public business; ii)
policies that require employees to comply with management requests for
University records in their possession; and iii) technical requirements for
efficient operation of University electronic communications resources (see
Electronic Communications Policy, Section IV, Privacy & Confidentiality61).
Privacy and confidentiality might also be compromised by unintended
redistribution or by the inadequacy of current technologies to protect against
unauthorized access. Therefore, users should exercise extreme caution in
using electronic communications to transmit confidential or sensitive
matters. Guidance on storage, disposal, and preservation of records is
addressed in the Appendices to RMP-2, “Records Retention and Disposition:
Principles, Processes, and Guidelines.”

B. Public Records

Users of University electronic communications services should be aware that
the California Public Records Act and other similar laws make it impossible



for the University to guarantee complete protection of an individual’s
personal electronic communications records resident on University facilities
(see Electronic Communications Policy Section III.D.8, Personal Use62).

The University does not automatically comply with all requests for disclosure,
but evaluates all such requests against the precise provisions of the California
Public Records Act, other laws concerning disclosure and privacy, and other
applicable law. Business and Finance Bulletin RMP-8 and personnel manuals
and agreements provide guidelines for University implementation of the
California Public Records Act.

Electronic communications records arising from personal use may be difficult
to distinguish from public records, and such records may be subject to
inspection or disclosure pursuant to the California Public Records Act (see
the presumption in the Electronic Communications Policy, Appendix A,
Definitions,63 of a University Electronic Communications Record, regarding
personal and other electronic communications records). Users should assess
the implications of this presumption in their decision to use University
electronic communications resources for personal purposes.

The California Public Records Act does not in general apply to records
generated or held by students except in their capacity, if any, as employees or
agents of the University. This exemption only applies to the Act and does not
exclude students’ electronic communications from other aspects of this
Policy.

C. University Policies

In addition to University policies that require employees to comply with
management requests for University records in their possession, other
University policies affect the privacy of some forms of electronic
communication.

In compliance with law, the University does not record or monitor audio or



video telephone conversations except as described below, unless under court
order. The law permits the University to monitor or record calls for the
purpose of evaluating customer service, assessing workload, or other business
purposes. In such cases the University advises the participants that the call is
being monitored or recorded. Users who do not wish to be part of a
monitored telephone call should be aware that University units are required
to provide them with an alternative method of doing business with the
University (see Electronic Communications Policy, Section IV.C. Privacy
Protections and Limits64).

The use of University telephone equipment creates transaction records
(which include the number called and the time and length of the call) that are
reviewed by University units and sub-units as part of routine accounting
procedures. Employees who use University telephones for personal or other
purposes should be aware that supervisors have access to records of all calls
made from University telephones under their jurisdiction and that such
records may be used for administrative purposes.

D. Unintended Distribution

Both the nature of electronic mail and the public character of the University’s
business make electronic mail less private than users might anticipate. For
example, electronic mail intended for one person sometimes might be widely
distributed because of the ease with which recipients can forward it to others.
A reply to an electronic mail message posted on an electronic bulletin board
or mailing list system intended only for the originator of the message might
be distributed to all subscribers to the mailing list system. Users of
workstations in public computer laboratories might forget to remove files
after they finish their work. Even after a user deletes an electronic mail
record, it might persist on back-up or local facilities and become subject to
disclosure under the provisions of Section IV.B, Access Without Consent,65 of
this Policy. The University cannot routinely protect users against such
eventualities.



Users of telephone, video teleconference, and other telecommunications
services are advised that although electronic communications are subject to
the non-consensual access provisions of the Electronic Communications
Policy Section IV.B,66 their privacy might be compromised by the presence of
persons listening to speaker phones or participating in teleconference calls
and video teleconferences without announcing their presence.

E. Electronic Data Gathering

Users of electronic communications systems or services should also be aware
that by accessing electronic communications resources, users create
transaction records that leave a trail of the electronic communications
resources used and might give information about the users and their
activities. Current state and federal laws governing such electronic data
gathering may not fully protect the user from the gathering of such
information without their knowledge or consent. Users are advised to read
the privacy statement of any application that collects personally identifiable
information to learn its disclosure and privacy policies.

G.3.6 Security Considerations

A. Security

Encryption technology enables the encoding of electronic communications so
that for all practical purposes they cannot be read by anyone who does not
possess the commensurate technology needed to decrypt them. Users of
electronic communications services should be aware that the University does
not routinely encrypt electronic communications during transit across its
facilities. If there is a concern about possible interception or disclosure of
electronic communications, correspondents should implement appropriate
encryption technology while ensuring conformance with BFB IS-3.

Since the University is not responsible for any loss or damage incurred by an
individual as a result of personal use of University electronic communications



resources, users should not rely on personal use of University electronic
communications resources for communications that might be sensitive with
regard to timing, financial effect, or privacy and confidentiality. (See the
Electronic Communications Policy, Section III.D.8, Personal Use.67)

B. Authentication

Unless authentication technologies are in use, there is no guarantee that an
electronic communication received was in fact sent by the purported sender,
since it is relatively straightforward, although a violation of the Electronic
Communications Policy, for senders to falsify their identity. Electronic
communications that are forwarded might also be modified. General purpose
(in contrast to application specific) authentication technologies are not widely
and systematically in use at the University as of the issuance of the Policy, but
can be expected in future.

As with print documents, recipients of electronic communications should, in
case of doubt, check directly with the purported sender to validate the
authenticity of the sender or the content.

C. Back-Up

Electronic communications systems are backed up on a routine or occasional
basis to protect system reliability and integrity, and to prevent potential loss
of data. The back-up process entails the copying of electronic data onto
storage media that might be retained for periods of time and in locations
unknown to the originator or recipient of electronic communications. The
practice and frequency of back-ups and the retention of back-up copies vary
from system to system. Users are encouraged to request information on local
back-up practices followed by the operators of University electronic
communications resources, and such operators are required to provide such
information to users upon request (see the Electronic Communications
Policy, Section IV.C, Privacy Protections and Limits68).



Users of electronic communications resources should be aware that even if
they have discarded copies of an electronic communication stored on devices
they can control, back-up copies could exist on other devices. Back-up copies
that are able to be retrieved might be subject to disclosure under the
California Public Records Act or, in litigation, as the result of the discovery
process.

D. Disposition

Electronic communications users should be aware that generally it is not
possible to assure the longevity of electronic communications records for
record-keeping purposes, in part because of the difficulty of guaranteeing that
they can continue to be read in the face of changing formats and technologies,
and in part because of the changing nature of electronic communications
systems. Archiving is increasingly difficult as electronic communications
encompass more digital forms, such as compound records composed of
digital voice, music, image, and video in addition to text. In the absence of the
use of authentication systems it is difficult to guarantee that electronic
communications have not been intentionally or inadvertently altered (see the
Electronic Communications Policy, Section IV.C, Privacy Protections and
Limits69 and Section V.D, Authentication70).

Those in possession of University records in the form of electronic
communications are cautioned, therefore, to be prudent in their reliance on
electronic means for purposes of maintaining a lasting record. Sound
business practice suggests that consideration be given to the feasibility of
transferring electronic communications records to a more lasting medium or
format, such as acid-free paper or microfilm, for long-term accessibility as
required.

G.4 Electronic Communications—Allowable Use

This is from the UC Davis Policies and Procedures Manual, Chapter 310,



“Communications and Technology”, Section 23, “Electronic Communications
—Allowable Use”, dated May 9, 2006 and reissued September 6, 2013 [2151].
It incorporates the “Acceptable Use Policy” in section G.1 as Exhibit A.

G.4.1 Purpose

This section provides UC Davis (UCD) implementing procedures for the
allowable use of University Electronic Communications (EC). The UC and
UCD EC policies apply to all EC resources owned by the University; provided
by the University through contracts and other agreements; users and uses of
University EC resources; and all University EC records in the possession of
University employees or other users of University EC resources. See also
Section 310-24, Electronic Communications—Privacy and Access to Records.

G.4.2 Definitions

The UC EC policy, Appendix A,71 defines terms used in this policy. Some
terms are further defined at UCD as follows:

A. Department head—the head of a teaching, research, administrative, or
other organizational unit as designated by the Chancellor. For students,
“department head” shall be the Director of Student Judicial Affairs.

B. Record (EC record)—EC records residing on University-owned or -
controlled EC resources are University records for the purposes of this policy
and subject to disclosure as required by the California Public Records Act.

C. Restricted personal information—unencrypted data in which the
individual’s first and last name appears in combination with the Social
Security number, driver’s license number, California identification card
number, or credit card or account number together with the security code,
access code, or password that would permit access to the account.

D. Security Coordinator—the Electronic Information Security Guidelines
Coordinator, as designated by the Chancellor pursuant to UC Business and



Finance Bulletin IS-3.

E. System administrator—department designee who has the physical or
logical control over EC resources.

G.4.3 Policy

The use of electronic communications resources is limited by restrictions that
apply to all University property and by constraints necessary for the reliable
operation of electronic communications systems and services. The University
reserves the right to deny use of its electronic communications services when
necessary to satisfy these restrictions and constraints.

G.4.4 Allowable Users

A. University users may be granted access to University EC resources and
services for purposes in accordance with allowable use. University users are
defined as follows:

1. UCD students, staff, academic appointees, and emeriti. Department heads
may grant access in support of teaching, research, public service, and patient
care mission of the University, and the administrative functions that support
that mission.

2. Other individuals who are affiliated with the University, including those in
program, contract, or license relationships. Department heads may grant
access for the term of the affiliation, when such access supports the mission
of the University and is not in competition with commercial providers. These
individuals must be sponsored by a UCD department and must complete a
Temporary Affiliate form (http://email.ucdavis.edu).

a. Students, academic appointees, and staff at other UC campuses.

b. University Extension students enrolled in courses requiring access.



c. Retirees.

d. Volunteers.

e. Contractors, independent consultants, and certain agents of the University
other than employees may be given access for the sole purpose of conducting
their business on behalf of the University, unless agreed otherwise in writing.

B. Public users. Individuals and organizations that are not University users
may only access University EC resources under programs sponsored by the
University, as authorized by the Vice Provost–Information & Educational
Technology or other administrator designated by the Chancellor for the
purpose of public access in accordance with allowable use.

C. Separation from the University

1. Access to records. If a separating individual is unable or unwilling to turn
over the University records in his or her possession, the department may seek
the records through the procedures for access without consent. (See Section
310-24.)

2. Mail forwarding upon separation.

a. Forwarding services for email may be provided indefinitely, subject to
biennial renewal, for separated users unless they leave for disciplinary
reasons.

b. Separated employees whose mail is being forwarded must agree that any
mail that pertains to the University’s business will be returned to the
department. The department head may require that all mail forwarded to a
terminated user from the UCD address also be forwarded to a departmental
account.

G.4.5 Allowable Uses



A. Acceptable Use Policy

All users must comply with the Acceptable Use Policy (Exhibit A72) and with
applicable laws and University policies (see References, below). Users must
acknowledge, in writing, that they have read and understand the Acceptable
Use Policy before they are allowed access to UC Davis electronic
communications resources.

B. Use for University Purposes

Access to EC resources is provided at the discretion of the department in
consideration of educational requirements, job demands, departmental
needs, and cost and efficiency factors. EC resources may be provided to UCD
employees and others for the purpose of conducting the University’s business
and such other purposes that conform to the Acceptable Use Policy.

C. Incidental Personal Use

1. University users may use EC resources for incidental personal purposes
provided that such use does not directly or indirectly interfere with the
University’s operation of EC resource; does not interfere with the user’s
employment or other obligations to the University; does not burden the
University with noticeable incremental costs; and does not violate the law or
University policy. Accordingly, regular or voluminous personal messages
delivered via lengthy email lists are impermissible.

a. University users are prohibited from, among other things, using EC
resources in a manner that creates a hostile working environment (including
sexual or other forms of harassment) in violation of the law, or violates
obscenity laws.

b. When noticeable incremental costs for personal use are incurred (e.g.,
telephone long distance charges), users shall reimburse the University.

2. Incidental personal use on behalf of an outside organization is permitted



only under the circumstances listed below. Before such use, users shall verify
with their supervisors that the proposed use complies with UC and UCD
policy. A UCD EC resource shall not be published as the point of contact for
non-University activities.

a. Charities. UCD EC resources may be used only for charitable activities that
have been approved by the Chancellor (e.g., the United Way campaign).
Before such use, the user must obtain written authorization from the
Chancellor or designee.

b. Professional and public service organizations. UCD EC resources may be
used on behalf of outside professional or public service organizations when
the individual is participating as a representative of the University in the
activities of an organization of which the University is a member, or when the
individual is a member of an organization in support of the University’s
mission.

c. Civic committees or task forces. UCD EC resources may be used on behalf
of national, state, and local committees or task forces when associated with
an approved University activity.

D. Policy Violations

Uses that violate this policy, other University policies, or any federal or state
law or regulation may result in:

1. Service restriction;

2. Corrective action under applicable University policies and collective
bargaining agreements; and/or

3. Civil lawsuit or criminal prosecution.

G.4.6 Restrictions on Use



A. Use of University EC resources is accorded at the discretion of the
University and can be restricted or revoked without prior notice and without
consent of the user.

1. A system administrator may temporarily restrict access to perform required
maintenance. The system administrator shall give reasonable notice if
possible.

2. A system administrator may temporarily restrict access to control an
emergency or prevent damage or loss. The system administrator shall notify
the department head and users as soon as possible.

3. A system administrator may restrict or rescind a user’s access as described
in UC Policy, III.E, Access Restriction.73 The system administrator shall:

a. Obtain approval from the department head prior to restricting the
individual user’s access.

b. Notify the user of the reason for the restriction and the name of the person
who authorized the restriction.

c. Restore access when authorized to do so by the department head who
authorized the restriction.

B. Recourse

The decision to restrict access may be appealed to the Vice Provost–
Information and Educational Technology within 30 days of notification.

C. Copyright infringement

As permitted by the Digital Millennium Copyright Act (DMCA), the
University may suspend access to EC systems by any user allegedly violating
copyright law upon receipt of a DMCA notification. (See Section 250-05.)

G.4.7 References and Related Policies



A. Office of the President: University of California Electronic
Communications Policy (http://www.ucop.edu/ucophome/policies/ec/).

B. UCD Policy and Procedure Manual
(http://manuals.ucdavis.edu/PPM/about.htm):

1. Section 250-02, Use of Copyrighted Materials.

2. Section 250-05, Digital Millennium Copyright Act.

3. Section 270-20, Use of University Properties.

4. Section 270-25, Commercial Activities.

5. Section 310-10, Telecommunications Services.

6. Section 310-24, Electronic Communications—Privacy and Access to
Records.

7. Section 310-65, Use of the University’s Name and Seal.

8. Section 310-70, World Wide Web (pending approval).

C. State of California, Education Code Section 92000
(http://www.leginfo.ca.gov/calaw.html).

D. Digital Millennium Copyright Act of 1998 (U.S. Code Title 17, Section 512)
(http://uscode.house.gov/search/criteria.shtml).

E. UC Davis Principles of Community (http://occr.ucdavis.edu/poc/).

F. Business and Finance Bulletin IS-3, Electronic Information Security
(http://www.ucop.edu/ucophome/policies/bfb/is3.pdf).



Appendix H. Programming Rules
This chapter lists the programming implementation and management rules in 
Chapter 31.

H.1 Implementation Rules

Implementation Rule 31.1. Structure the process so that all sections 
requiring extra privileges are modules. The modules should be as small as 
possible and should perform only those tasks that require those privileges.

Implementation Rule 31.2. Ensure that any assumptions in the program 
are validated. If this is not possible, document them for the installers and 
maintainers, so they know the assumptions that attackers will try to 
invalidate.

Implementation Rule 31.3. Ensure that the program does not share 
objects in memory with any other program, and that other programs cannot 
access the memory of a privileged process.

Implementation Rule 31.4. The error status of every function must be 
checked. Do not try to recover unless the cause of the error, and its effects, do 
not affect any security considerations. The program should restore the state of 
the system to the state before the process began, and then terminate.

Implementation Rule 31.5. If a process interacts with other processes, the 
interactions should be synchronized. In particular, all possible sequences of 
interactions must be known and, for all such interactions, the process must



enforce the required security policy.

Implementation Rule 31.6. Asynchronous exception handlers should not
alter any variables except those that are local to the exception handling
module. An exception handler should block all other exceptions when begun,
and should not release the block until the handler completes execution,
unless the handler has been designed to handle exceptions within itself (or
calls an uninvoked exception handler).

Implementation Rule 31.7. Whenever possible, data that the process
trusts and data that it receives from untrusted sources (such as input) should
be kept in separate areas of memory. If data from a trusted source is
overwritten with data from an untrusted source, a memory error will occur.

Implementation Rule 31.8. Do not use components that may change
between the time the program is created and the time it is run.

Implementation Rule 31.9. The process must ensure that the context in
which an object is named identifies the correct object.

Implementation Rule 31.10. When the process finishes using a sensitive
object (one that contains confidential information or one that should not be
altered), the object should be erased, then deallocated or deleted. Any
resources not needed should also be released.

Implementation Rule 31.11. Ensure that all array references access
existing elements of the array. If a function that manipulates arrays cannot
ensure that only valid elements are referenced, do not use that function. Find
one that does, write a new version, or create a wrapper.

Implementation Rule 31.12. Check the types of functions and parameters.

Implementation Rule 31.13. When compiling programs, ensure that the
compiler flags report inconsistencies in types. Investigate all such warnings
and either fix the problem or document the warning and why it is spurious.



Implementation Rule 31.14. Check all function and procedure executions
for errors.

Implementation Rule 31.15. Check that a variable’s values are valid.

Implementation Rule 31.16. If a trade-off between security and other
factors results in a mechanism or procedure that can weaken security,
document the reasons for the decision, the possible effects, and the situations
in which the compromise method should be used. This informs others of the
trade-off and the attendant risks.

Implementation Rule 31.17. Check all user input for both form and
content. In particular, check integers for values that are too big or too small,
and check character data for length and valid characters.

Implementation Rule 31.18. Create data structures and functions in such
a way that they can be validated.

Implementation Rule 31.19. If two operations must be performed
sequentially without an intervening operation, use a mechanism to ensure
that the two cannot be divided.

Implementation Rule 31.20. Describe the legal sequences of operations
on a resource or object. Check that all possible sequences of the program(s)
involved match one (or more) legal sequences.

H.2 Management Rules

Management Rule 31.1. Check that the process privileges are set properly.

Management Rule 31.2. The program that is executed to create the
process, and all associated control files, must be protected from unauthorized
use and modification. Any such modification must be detected.

Management Rule 31.3. Configure memory to enforce the principle of



least privilege. If a section of memory is not to contain executable
instructions, turn execute permission off for that section of memory. If the
contents of a section of memory are not to be altered, make that section read-
only.

Management Rule 31.4. Identify all system components on which the
program depends. Check for errors whenever possible, and identify those
components for which error checking will not work.

Management Rule 31.5. Unique objects require unique names.
Interchangeable objects may share a name.

Management Rule 31.6. Use software engineering and assurance
techniques (such as documentation, design reviews, and code reviews) to
ensure that operations and operands are appropriate.
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